Package 'memoria’

May 17, 2019
Type Package
Title Quantifying Ecological Memory in Palaeoecological Datasets and Other Long Time-Series

Version 1.0.0
Author Blas M. Benito
Maintainer Blas M. Benito blasbenito@gmail.com
Description Tools to quantify ecological memory in long time-series with Random Forest models (Breiman 2001 doi:10.1023/A:1010933404324) fitted with the 'ranger' library (Wright and Ziegler 2017 doi:10.18637/jss.v077.i01). Particularly oriented to palaeoecological datasets and simulated pollen curves produced by the 'virtualPollen' package, but also applicable to other long time-series involving a set of environmental drivers and a biotic response.
License GPL (>=2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
VignetteBuilder knitr
Depends R (>= 2.10)
Imports ggplot2, ranger, cowplot, viridis, viridisLite, zoo, stringr, HH, tidyr
Suggests devtools, formatR, kableExtra, magrittr, knitr, rmarkdown, rpart, rpart.plot, randomForest, virtualPollen
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-17 08:00:02 UTC

R topics documented:

climate 2
computeMemory 3
experimentToTable 5
extractMemoryFeatures 6
mergePalaeoData 9
palaeodata 10
palaeodataLagged 11
palaeodataMemory 12
plotExperiment 13
plotInteraction 14
plotMemory 15
pollen 16
prepareLaggedData 17
runExperiment 18
Index 21
climate Dataframe with palaeoclimatic data.

Description

A dataframe containing palaeoclimate data at 1 ky temporal resolution with the following columns:

Usage

```
    data(climate)
```


Format

dataframe with 6 columns and 800 rows.

Details

- age in kiloyears before present (ky BP).
- temperatureAverage average annual temperature in Celsius degrees.
- rainfallAverage average annual precipitation in milimetres per day ($\mathrm{mm} /$ day).
- temperatureWarmestMonth average temperature of the warmest month, in Celsius degrees.
- temperatureColdestMonth average temperature of the coldest month, in Celsius degrees.
- oxigenIsotope delta O 18 , global ratio of stable isotopes in the sea floor, see http://lorraine-lisiecki. com/stack.html for further details.

Author(s)

Blas M. Benito blasbenito@gmail.com

Description

Takes the oputput of prepareLaggedData to fit the following model with Random Forest:
$p_{t}=p_{t-1}+\ldots+p_{t-n}+d_{t}+d_{t-1}+\ldots+d_{t-n}+r$
where:

- d is a driver (several drivers can be added).
- t is the time of any given value of the response p.
- $t-1$ is the lag number 1 (in time units).
- $p_{t-1}+\ldots+p_{t-n}$ represents the endogenous component of ecological memory.
- $d_{t-1}+\ldots+d_{t-n}$ represents the exogenous component of ecological memory.
- d_{t} represents the concurrent effect of the driver over the response.
- r represents a column of random values, used to test the significance of the variable importance scores returned by Random Forest.

Usage

```
computeMemory(
    lagged.data = NULL,
    drivers = NULL,
    response = "Response",
    add.random = TRUE,
    random.mode = "autocorrelated",
    repetitions = 10,
    subset.response = "none",
    min.node.size = 5,
    num.trees = 2000,
    mtry = 2
    )
```


Arguments

lagged.data	a lagged dataset resulting from prepareLaggedData. See palaeodataLagged as example.
drivers	a character string or vector of character strings with variables to be used as predictors in the model (i.e. c("Suitability", "Driver.A")). Important: drivers names must not have the character "_".
response	character string, name of the response variable (typically, "Response_0"). if TRUE, adds a random term to the model, useful to assess the significance of add. random the variable importance scores.

```
random.mode either "white.noise" or "autocorrelated". See details.
repetitions integer, number of random forest models to fit.
subset.response
character string with values "up", "down" or "none", triggers the subsetting of
the input dataset. "up" only models memory on cases where the response's
trend is positive, "down" selectes cases with negative trends, and "none" selects all cases.
min.node.size integer, argument of the ranger function. Minimal number of samples to be allocated in a terminal node. Default is 5 .
num.trees integer, argument of the ranger function. Number of regression trees to be fitted (size of the forest). Default is 2000.
mtry integer, argument of the ranger function. Number of variables to possibly split at in each node. Default is 2 .
```


Details

This function uses the ranger package to fit Random Forest models. Please, check the help of the ranger function to better understand how Random Forest is parameterized in this library. This function fits the model explained above as many times as defined in the argument repetitions. To test the statistical significance of the variable importance scores returned by random forest, on each repetition the model is fitted with a different r (random) term. If random. mode equals "autocorrelated", the random term will have a temporal autocorrelation, and if it equals "white.noise", it will be a pseudo-random sequence of numbers generated with rnorm, with no temporal autocorrelation. The importance of the random sequence (as computed by random forest) is stored for each model run, and used as a benchmark to assess the importance of the other predictors used in the models. Importance values of other predictors that are above the median of the importance of the random term should be interpreted as non-random, and therefore, significant.

Value

A list with 4 slots:

- memory dataframe with five columns:
- Variable character, names and lags of the different variables used to model ecological memory.
- median numeric, median importance across repetitions of the given Variable according to Random Forest.
- sd numeric, standard deviation of the importance values of the given Variable across repetitions.
- min and max numeric, percentiles 0.05 and 0.95 of importance values of the given Variable across repetitions.
- R2 vector, values of pseudo R-squared value obtained for the Random Forest model fitted on each repetition. Pseudo R-squared is the Pearson correlation beteween the observed and predicted data.
- prediction dataframe, with the same columns as the dataframe in the slot memory, with the median and confidence intervals of the predictions of all random forest models fitted.
- multicollinearity multicollinearity analysis on the input data performed with vif. A vif value higher than 5 indicates that the given variable is highly correlated with other variables.

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

plotMemory, extractMemoryFeatures
\#\#'

- Wright, M. N. \& Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw 77:1-17. https://doi.org/10.18637/jss. v077.i01.
- Breiman, L. (2001). Random forests. Mach Learn, 45:5-32. https://doi. org/10.1023/A: 1010933404324.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Springer, New York. 2nd edition.

Examples

```
#loading data
data(palaeodataLagged)
memory.output <- computeMemory(
    lagged.data = palaeodataLagged,
    drivers = c("climate.temperatureAverage", "climate.rainfallAverage"),
    response = "Response",
    add.random = TRUE,
    random.mode = "autocorrelated",
    repetitions = 10,
    subset.response = "none"
)
str(memory.output)
str(memory.output$memory)
#plotting output
plotMemory(memory.output = memory.output)
```

experimentToTable Turns the outcome of runExperiment into a long table.

Description

Takes the output of runExperiment, extracts the dataframes containing the ecological memory patterns generated by computeMemory, and binds them together into a single dataframe ready for further analyses or plotting.

Usage

```
experimentToTable(
experiment.output = NULL,
parameters.file = NULL,
sampling.names = NULL,
R2 = TRUE
)
```


Arguments

experiment.output list, output of runExperiment.
parameters.file dataframe of simulation parameters.
sampling. names vector of character strings with the names of the columns of simulations.file.
R2 boolean. If TRUE, the average pseudo R-squared of the random forest models used to analyze the ecological memory pattern of the virtual taxa are shown with the taxon traits.

Details

This function is used internally by plotExperiment, but it is also available to users in case they want to do other kinds of analyses or plots with the data.

Value

A dataframe.

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

runExperiment, plotExperiment

```
extractMemoryFeatures Extracts ecological memory features on the output of computeMemory.
```


Description

It computes the following features of the ecological memory patterns returned by computeMemory:

- memory strength maximum difference in relative importance between each component (endogenous, exogenous, and concurrent) and the median of the random component. This is computed for exogenous, endogenous, and concurrent effect.
- memory length proportion of lags over which the importance of a memory component is above the median of the random component. This is only computed for endogenous and exogenous memory.
- dominance proportion of the lags above the median of the random term over which a memory component has a higher importance than the other component. This is only computed for endogenous and exogenous memory.

Usage

```
extractMemoryFeatures(
    memory.pattern = NULL,
    exogenous.component = NULL,
    endogenous.component = NULL,
    sampling.subset = NULL,
    scale.strength = TRUE
    )
```


Arguments

memory. pattern either a list resulting from computeMemory, or a dataframe with memory patterns of several taxa generated by experimentToTable.
exogenous.component
character string or vector of character strings, name of the variable or variables defining the exogenous component.
endogenous.component
character string, string, name of the variable defining the endogenous component. If the data was generated by prepareLaggedData, endogenous. component would usually be "Response".
sampling.subset
only relevant when analysis.output is the result of runExperiment. Character string with the name of the column of the list with the simulation outcomes.
scale.strength boolean. If TRUE, the strength of the ecological memory components, which has the same units as the importance scores yielded by Random Forest (percentage of increment in mean squared error when a variable is permuted), is scaled between 0 and 1 .

Details

Warning: this function only works when only one exogenous component (driver) is used to define the model in computeMemory. If more than one driver is provided throught the argument exogenous.component, the maximum importance scores of all exogenous variables is considered. In other words, the importance of exogenous variables is not additive.

Value

A dataframe with 8 columns and 1 row if memory.pattern is the output of computeMemory and 13 columns and as many rows as taxa are in the input if it is the output of experimentToTable. The columns are:

- label character string to identify the taxon. It either inherits its values from experimentToTable, or sets the default ID as " 1 ".
- strength.endogenous numeric in the range [0, 100], in importance units (percentage of increment in the mean squared error of the random forest model if the variable is permuted) difference between the maximum importance of the endogenous component at any lag and the median of the random component (see details in computeMemory)
- strength.exogenous numeric in the range [0,100], same as above, but for the exogenous component.
- strenght.concurrent numeric in the range [0,100], same as above, but for the concurrent component (driver at lag 0).
- length.endogenous numeric in the range [0, 100], proportion of lags over which the importance of the endogenous memory component is above the median of the random component.
- length.exogenous numeric in the range $[0,1]$, same as above but for the exogenous memory component.
- dominance.endogenous numeric in the range [0, 1], proportion of the lags above the median of the random term over which a the endogenous memory component has a higher importance than the exogenous component.
- dominance.exogenous, opposite as above.
- maximum.age, numeric. As every column after this one, only provided if memory. pattern is the output of experimentToTable. Trait of the given taxon.
- fecundity numeric, trait of the given taxon.
- niche.A.mean numeric, trait of the given taxon.
- niche.A.sd numeric, trait of the given taxon.
- sampling numeric, trait of the given taxon.

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

computeMemory

Examples

```
#loading example data
data(palaeodataMemory)
#computing ecological memory features
memory.features <- extractMemoryFeatures(
    memory.pattern = palaeodataMemory,
    exogenous.component = c(
    "climate.temperatureAverage",
    "climate.rainfallAverage"
    ),
```

```
endogenous.component = "Response",
sampling.subset = NULL,
scale.strength = TRUE
)
```

mergePalaeoData Merges palaeoecological datasets with different time resolution.

Description

It merges palaeoecological datasets with different time intervals between consecutive samples into a single dataset with samples separated by regular time intervals defined by the user

Usage

```
mergePalaeoData(
        datasets.list = NULL,
        time.column = NULL,
        interpolation.interval = NULL
    )
```


Arguments

datasets.list list of dataframes, as in datasets.list = list(climate = climate.dataframe, pollen = pollen. 0 The provided dataframes must have an age/time column with the same column name and the same units of time. Non-numeric columns in these dataframes are ignored.
time.column character string, name of the time/age column of the datasets provided in datasets.list.
interpolation.interval
temporal resolution of the output data, in the same units as the age/time columns
of the input data

Details

This function fits a loess model of the form $y \sim x$, where y is any column given by columns. to. interpolate and x is the column given by the time.column argument. The model is used to interpolate column y on a regular time series of intervals equal to interpolation.interval. All columns in every provided dataset go through this process to generate the final data with samples separated by regular time intervals. Non-numeric columns are ignored, and absent from the output dataframe.

Value

A dataframe with every column of the initial dataset interpolated to a regular time grid of resolution defined by interpolation. interval. Column names follow the form datasetName.columnName, so the origin of columns can be tracked.

Author(s)

Blas M. Benito blasbenito@gmail.com

Examples

```
#loading data
data(pollen)
data(climate)
x <- mergePalaeoData(
    datasets.list = list(
        pollen=pollen,
        climate=climate
    ),
    time.column = "age",
    interpolation.interval = 0.2
    )
```

 palaeodata Dataframe with pollen and climate data.

Description

A dataframe with a regular time grid of 0.2 ky resolution resulting from applying mergePalaeoData to the datasets climate and pollen:

Usage

data(palaeodata)

Format

dataframe with 10 columns and 7986 rows.

Details

- age in ky before present (ky BP).
- pinus pollen counts of Pinus.
- quercus pollen counts of Quercus.
- poaceae pollen counts of Poaceae.
- artemisia pollen counts of Artemisia.
- temperatureAverage average annual temperature in Celsius degrees.
- rainfallAverage average annual precipitation in milimetres per day (mm/day).
- temperatureWarmestMonth average temperature of the warmest month, in Celsius degrees.
- temperatureColdestMonth average temperature of the coldest month, in Celsius degrees.
- oxigenIsotope delta O 18 , global ratio of stable isotopes in the sea floor, see http://lorraine-lisiecki . com/stack.html for further details.

Author(s)

Blas M. Benito blasbenito@gmail.com

```
palaeodataLagged Lagged data generated by prepareLaggedData.
```


Description

A dataframe resulting from the application of prepareLaggedData to the dataset palaeodata. The dataframe columns are:

Usage

data(palaeodataLagged)

Format

dataframe with 13 columns and 3988 rows.

Details

- Response_0 numeric, values of the response variable selected by the user in the argument response of the function prepareLaggedData. This column is used as response variable by the function computeMemory. In this case, Response represent pollen counts of Pinus.
- Response_0.2-1 numeric, time delayed values of the response for different lags (in ky). Considered together these columns represent the endogenous ecological memory.
- climate.temperatureAverage_0 numeric, values of the variable temperatureAverage for the lag 0 (no lag). This column represents the concurrent effect of the temperature over the response. \#'
- climate.rainfallAverage_0 numeric, values of the variable rainfallAverage for the lag 0 (no lag). This column represents the concurrent effect of rainfall over the response.
- climate.temperatureAverage_0.2-1 numeric, time delayed values of temperatureAverage for lags 0.2 to 1 (in ky). \#'
- climate.rainfallAverage_0.2-1 numeric, time delayed values of rainfallAverage for lags 0.2 to 1 (in ky).

Author(s)

Blas M. Benito blasbenito@gmail.com

```
palaeodataMemory Output of computeMemory
```


Description

List containing the output of computeMemory applied to palaeodataLagged. Its slots are:

Usage

data(palaeodataMemory)

Format

List with four slots.

Details

- memory dataframe with five columns:
- Variable character, names and lags of the different variables used to model ecological memory.
- median numeric, median importance across repetitions of the given Variable according to Random Forest.
- sd numeric, standard deviation of the importance values of the given Variable across repetitions.
- min and max numeric, percentiles 0.05 and 0.95 of importance values of the given Variable across repetitions.
- R2 vector, values of pseudo R-squared value obtained for the Random Forest model fitted on each repetition. Pseudo R-squared is the Pearson correlation beteween the observed and predicted data.
- prediction dataframe, with the same columns as the dataframe in the slot memory, with the median and confidence intervals of the predictions of all random forest models fitted.
- multicollinearity multicollinearity analysis on the input data performed with vif. A vif value higher than 5 indicates that the given variable is highly correlated with other variables.

Author(s)

Blas M. Benito blasbenito@gmail.com
plotExperiment Plots the output of runExperiment.

Description

It takes the output of runExperiment, and generates plots of ecological memory patterns for a large number of simulated pollen curves.

Usage

```
plotExperiment(
    experiment.output = NULL,
    parameters.file = NULL,
    experiment.title = NULL,
    sampling.names = NULL,
    legend.position = "bottom",
    R2 = NULL,
    filename = NULL,
    strip.text.size = 12,
    axis.x.text.size = 8,
    axis.y.text.size \(=12\),
    axis.x.title.size = 14,
    axis.y.title.size \(=14\),
    title.size = 18,
    caption = ""
    )
```


Arguments

experiment.output
list, output of runExperiment.
parameters.file
dataframe of simulation parameters.
experiment.title
character string, title of the plot.
sampling. names vector of character strings with the names of the columns used in the argument simulations.file of runExperiment. If NULL, no pdf plot is produced.
legend. position
legend position in ggplot object. One of "bottom", "right", "none".
R2 boolean. If TRUE, pseudo R-squared values are printed along with the traits of the virtual taxa.
filename character string, path and name (without extension) of the output pdf file.
strip.text.size
size of the facet's labels.
axis.x.text.size
size of the labels in x axis.

```
axis.y.text.size
    size of the labels in y axis.
axis.x.title.size
    size of the title of the x axis.
axis.y.title.size
    size of the title of the y axis.
title.size size of the plot title.
caption character string, caption of the output figure.
```


Value

A ggplot2 object.

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

plotMemory, runExperiment

Description

Plots a response surface plot or interaction plot (2 predictors and a model response) for models of the functions ranger, randomForest, and rpart. It also plots the observed data on top of the predicted surface.

Usage

```
plotInteraction(
    model = NULL,
    data = NULL,
    x = NULL,
    y = NULL,
    z = NULL,
    grid = 100,
    point.size.range = c(0.1, 1)
    )
```


Arguments

model a model object produced by the functions ranger, randomForest, or rpart.
data dataframe used to fit the model.
$x \quad$ character string, name of column in data to be plotted in the x axis.
$y \quad$ character string, name of column in data to be plotted in the y axis.
z character string, name of column in data to be plotted as a surface. Generally, the name of the response variable in model.
grid numeric, resolution of the x and y axes.
point.size.range
numeric vector with two values defining the range size of the points representing the observed data.

Value

A ggplot object.

Author(s)

Blas M. Benito blasbenito@gmail.com

```
plotMemory Plots output of computeMemory
```


Description

Plots the ecological memory pattern yielded by computeMemory.

```
Usage
    plotMemory(
        memory.output = NULL,
        title = "Ecological memory pattern",
        legend.position = "right",
        filename = NULL
    )
```


Arguments

memory. output a dataframe with one time series per column.
title character string, name of the numeric column to be used as response in the model.
legend. position
character vector, names of the numeric columns to be used as predictors in the model.
filename character string, name of output pdf file. If NULL or empty, no pdf is produced. It shouldn't include the extension of the output file.

Value

A ggplot object.

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

computeMemory

Examples

```
#loading data
data(palaeodataMemory)
#plotting memory pattern
plotMemory(memory.output = palaeodataMemory)
```

 pollen Dataframe with pollen counts.

Description

A dataframe with the following columns:

Usage

data(pollen)

Format

dataframe with 5 columns and 639 rows.

Details

- age in kiloyears before present (ky BP).
- pinus pollen counts of Pinus.
- quercus pollen counts of Quercus.
- poaceae pollen counts of Poaceae.
- artemisia pollen counts of Artemisia.

Author(s)

Blas M. Benito blasbenito@gmail.com
prepareLaggedData Organizes time series data into lags.

Description

Takes a multivariate time series, where at least one variable is meant to be used as a response while the others are meant to be used as predictors in a model, and organizes it in time lags, generating one new column per lag and variable in the model.

```
Usage
    prepareLaggedData(
        input.data = NULL,
        response = NULL,
        drivers = NULL,
        time = NULL,
        oldest.sample = "first",
        lags = NULL,
        time.zoom = NULL,
        scale = FALSE
        )
```


Arguments

input.data	a dataframe with one time series per column.
response	character string, name of the numeric column to be used as response in the model.
drivers	character vector, names of the numeric columns to be used as predictors in the model.
time	character vector, name of the numeric column with the time/age.
oldest. sample	character string, either "first" or "last". When "first", the first row taken as the oldest case of the time series and the last row is taken as the newest case, so ecological memory flows from the first to the last row of input. data. When "last", the last row is taken as the oldest sample, and this is the mode that should be used when input. data represents a palaeoecological dataset. Default behavior is "first".
lags	numeric vector of positive integers, lags to be used in the equation. Generally, a regular sequence of numbers, in the same units as time. The use seq to define it is highly recommended. If 0 is absent from lags, it is added automatically to allow the consideration of a concurrent effect. Lags should take into account the temporal resolution of the data, and be aligned to it. For example, if the interval between consecutive samples is 100 years, lags should be something like $0,100,200,300$. Lags can also be multiples of the time resolution, such as $0,200,400,600$ (in the case time resolution is 100 years).
time.zoom	numeric vector of two numbers of the time column used to subset the data if desired.

scale boolean, if TRUE, applies the scale function to normalize the data. Required if the lagged data is going to be used to fit linear models.

Details

The function interprets the time column as an index representing the

Value

A dataframe with columns representing time-delayed values of the drivers and the response. Column names have the lag number as a suffix. The response variable is identified in the output as "Response_0".

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

```
computeMemory
```


Examples

```
#loading data
data(palaeodata)
#adding lags
lagged.data <- prepareLaggedData(
    input.data = palaeodata,
    response = "pollen.pinus",
    drivers = c("climate.temperatureAverage", "climate.rainfallAverage"),
    time = "age",
    oldest.sample = "last",
    lags = seq(0.2, 1, by=0.2),
    time.zoom=NULL,
    scale=FALSE
)
str(lagged.data)
```

 runExperiment
 Computes ecological memory patterns on simulated pollen curves produced by the virtualPollen library.

Description

Applies computeMemory to assess ecological memory on a large set of virtual pollen curves.

Usage

```
runExperiment(
simulations.file = NULL,
selected. rows = 1,
selected.columns = 1,
parameters.file \(=\) NULL,
parameters.names \(=\) NULL,
sampling.names = NULL,
driver.column = NULL,
response.column = "Response_0",
subset.response = "none",
time.column = "Time",
time.zoom = NULL,
lags = NULL,
repetitions = 10
)
```


Arguments

simulations.file
list of dataframes, output of the function simulatePopulation of the virtualPollen
library.
selected. rows numeric vector, rows (virtual taxa) of simulations.file to be analyzed.
selected.columns
numeric.vector, columns (experiment treatments) of simulations.file to be analyzed.
parameters.file
dataframe of simulation parameters.
parameters.names
vector of character strings with names of traits and niche features from parameters.file to be included in the analysis (i.e. c("maximum.age", "fecundity", "niche.A.mean", "niche.A.sd"))
sampling. names vector of character strings with the names of the columns of simulations.file.
driver. column vector of character strings, names of the columns to be considered as drivers (generally, one of "Suitability", "Driver.A", "Driver.B).
response.column
character string defining the response variable, typically "Response_0".
subset.response
character string, one of "up", "down" or "none", triggers the subsetting of the input dataset. "up" only models ecological memory on cases where the response's trend is positive, "down" selectes cases with negative trends, and "none" selects all cases.
time.column character string, name of the time/age column. Usually, "Time".
time.zoom numeric vector with two numbers defining the time/age extremes of the time interval of interest.

lags | ags numeric vector of positive integers, lags to be used in the equation. Gener- |
| :--- |
| ally, a regular sequence of numbers, in the same units as time. The use seq to |
| define it is highly recommended. If 0 is absent from lags, it is added automat- |
| ically to allow the consideration of a concurrent effect. Lags should take into |
| account the temporal resolution of the data, and be aligned to it. For example, if |
| the interval between consecutive samples is 100 years, lags should be something |
| like $0,100,200,300$. Lags can also be multiples of the time resolution, such |
| as $0,200,400,600$ (in the case time resolution is 100 years). |
| repetitions \quad integer, number of random forest models to fit. | ll

Value

A list with 2 slots:

- names matrix of character strings, with as many rows and columns as simulations.file. Each cell holds a simulation name to be used afterwards, when plotting the results of the ecological memory analysis.
- output a list with as many columns and columns as simulations.file. Each slot holds a an output of computeMemory.
- memory dataframe with five columns:
* Variable character, names and lags of the different variables used to model ecological memory.
* median numeric, median importance across repetitions of the given Variable according to Random Forest.
* sd numeric, standard deviation of the importance values of the given Variable across repetitions.
* min and max numeric, percentiles 0.05 and 0.95 of importance values of the given Variable across repetitions.
- R2 vector, values of pseudo R-squared value obtained for the Random Forest model fitted on each repetition. Pseudo R-squared is the Pearson correlation beteween the observed and predicted data.
- prediction dataframe, with the same columns as the dataframe in the slot memory, with the median and confidence intervals of the predictions of all random forest models fitted.
- multicollinearity multicollinearity analysis on the input data performed with vif. A vif value higher than 5 indicates that the given variable is highly correlated with other variables.

Author(s)

Blas M. Benito blasbenito@gmail.com

See Also

computeMemory

Index

```
*Topic datasets
    climate, 2
    palaeodata,10
    palaeodataLagged, 11
    palaeodataMemory, 12
    pollen,16
climate, 2, 10
computeMemory, 3, 5-8, 11, 12, 15, 16, 18, 20
experimentToTable, 5, 7, 8
extractMemoryFeatures, 5,6
loess, }
mergePalaeoData, 9, 10
palaeodata, 10,11
palaeodataLagged, 3, 11, 12
palaeodataMemory,12
plotExperiment, 6,13
plotInteraction, 14
plotMemory, 5, 14,15
pollen, 10, 16
prepareLaggedData, 3, 7, 11, 17
randomForest, 14, 15
ranger, 4, 14, 15
rnorm,4
rpart, 14, 15
runExperiment, 5, 6,13,14,18
scale, 18
seq, 17, 20
vif, 4, 12, 20
```

