Package ‘mirar’

August 16, 2022
Type Package

Title Minimalist Async Evaluation Framework for R
Version 0.5.3

Description Extremely simple and lightweight method for concurrent /
parallel code execution, built on 'nanonext' and 'NNG' (Nanomsg Next Gen)
technology.

License GPL (>=3)
BugReports https://github.com/shikokuchuo/mirai/issues

URL https://shikokuchuo.net/mirai/,
https://github.com/shikokuchuo/mirai/

Encoding UTF-8

Depends R (>=2.4)

Imports nanonext (>=0.5.3)

RoxygenNote 7.2.1

NeedsCompilation no

Author Charlie Gao [aut, cre] (<https://orcid.org/0000-0002-0750-061X>),
Hibiki AI Limited [cph]

Maintainer Charlie Gao <charlie.gao@shikokuchuo.net>
Repository CRAN
Date/Publication 2022-08-16 21:30:02 UTC

R topics documented:

mirai-package L
call_mirai e
daemons L L L e e e e e e e e
eval_mirai e e e e e e e e
is_error_value e e
IS IMNITAL . . o v v o e e e e e e e e e e s
IS_MITAL_EITOT v o o o e e e e e e e e e e e e

https://github.com/shikokuchuo/mirai/issues
https://shikokuchuo.net/mirai/
https://github.com/shikokuchuo/mirai/
https://orcid.org/0000-0002-0750-061X

2 call_mirai

SEOP_IMATAL v v v o e 8
unresolvedo L L 9
Do>>T0 . . .o e e e e e e e 10
Index 12
mirai-package mirai: Minimalist Async Evaluation Framework for R
Description

Extremely simple and lightweight method for concurrent / parallel code execution, built on nanonext’
and "NNG’ (Nanomsg Next Gen) technology. mirai is Japanese for ’future’.

Links

mirai website: https://shikokuchuo.net/mirai/
mirai on CRAN: https://cran.r-project.org/package=mirai

nanonext website: https://shikokuchuo.net/nanonext/
nanonext on CRAN: https://cran.r-project.org/package=nanonext

NNG website: https://nng.nanomsg.org/

Author(s)

Charlie Gao <charlie.gao@shikokuchuo.net> (ORCID)

call_mirai mirai (Call Value)

Description

Call the value of a 'mirai’, waiting for the the asynchronous operation to resolve if it is still in
progress.

Usage

call_mirai(aio)

Arguments

aio a’mirai’ (mirai are also aio objects).

https://shikokuchuo.net/mirai/
https://cran.r-project.org/package=mirai
https://shikokuchuo.net/nanonext/
https://cran.r-project.org/package=nanonext
https://nng.nanomsg.org/
https://orcid.org/0000-0002-0750-061X

call _mirai 3

Details

This function will wait for the async operation to complete if still in progress (blocking).

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error may be used to test for this, otherwise is_error_value
will also include other errors such as timeouts.

The *mirai’ updates itself in place, so to access the value of a 'mirai’ x directly, use call_mirai(x)$data.

Value

The passed 'mirai’ (invisibly). The retrieved value is stored at $data.

Alternatively

The value of a *mirai’ may be accessed at any time at $data, and if yet to resolve, an "unresolved’
logical NA will be returned instead.

unresolved may also be used on a ’mirai’, and returns TRUE only if a 'mirai’ has yet to resolve
and FALSE otherwise. This is suitable for use in control flow statements such as while or if.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m<-mirai(x +y + 1, x =2,y =3)
m

m$data

Sys.sleep(0.2)

m$data

df1 <- data.frame(a =1, b = 2)

df2 <- data.frame(a = 3, b = 1)

m <- mirai(as.matrix(rbind(df1, df2)), .args = list(df1, df2), .timeout = 1000)
call_mirai(m)$data

m <- mirai({
res <- rnorm(n)
res / rev(res)

}, n = 1eb)

while (unresolved(m)) {
cat("unresolved\n")
Sys.sleep(0.1)

3

str(m$data)

}

4 daemons

daemons daemons (Background Processes)

Description

Set or view the number of daemons (background processes). Create persistent background pro-
cesses to receive mirai requests. This provides a potentially more efficient solution for async
operations as new processes no longer need to be created on an ad hoc basis.

Usage

daemons(...)

Arguments

either an integer to set the number of daemons, or ’view’ to view the number of
currently active daemons.

Details

{mirai} will revert to the default behaviour of creating a new background process for each request
if the number of daemons is set to 0.

The current implementation is low-level and ensures tasks are evenly-distributed amongst daemons
without actively managing a task queue. This approach provides a robust and resource-light solu-
tion, particularly well-suited to working with similar-length tasks, or where the number of concur-
rent tasks typically does not exceed the number of available daemons.

Value
Depending on the specified . .. parameter:

* integer: integer change in number of daemons (created or destroyed).
* ’view’: integer number of currently set daemons.
* missing: the nanoSocket’ for connecting to the daemons, or NULL if it is yet to be created.

Examples

if (interactive()) {
Only run examples in interactive R sessions

Create 4 daemons

daemons (4)

View the number of active daemons
daemons ("view")

Reset to zero

daemons (0)

eval _mirai 5

eval_mirai mirai (Evaluate Async)

Description

Evaluate an expression asynchronously in a new background R process. This function will return
immediately with a *mirai’, which will resolve to the evaluated result once complete.

Usage
eval_mirai(.expr, ..., .args = list(), .timeout = NULL)
mirai(.expr, ..., .args = list(), .timeout = NULL)
Arguments
.expr an expression to evaluate in a new R process. This may be of arbitrary length,
wrapped in {} if necessary.
(optional) named arguments specifying variables contained in *.expr’.
.args (optional) list supplying arguments to ’.expr’ (used in addition to or instead of
named arguments specified as ’...").
.timeout (optional) integer value in milliseconds or NULL for no timeout. A *mirai’ will
resolve to an ’errorValue’ 5 (timed out) if evaluation exceeds this limit.
Details

This function will return a *mirai’ object immediately.

The value of a *mirai’ may be accessed at any time at $data, and if yet to resolve, an ’unresolved’
logical NA will be returned instead.

unresolved may also be used on a *mirai’, which returns TRUE only if a *mirai’ has yet to resolve
and FALSE otherwise. This is suitable for use in control flow statements such as while or if.

Alternatively, to call (and wait for) the result, use call_mirai on the returned 'mirai’ object. This
will block until the result is returned.

The expression *.expr’ will be evaluated in a new R process in a clean environment consisting of
the named objects passed as ’..." only (along with objects in the list *.args’, if supplied).

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error may be used to test for this, otherwise is_error_value
will also include other errors such as timeouts.

mirai is an alias for eval_mirai.

Value

A ’mirai’ object.

6 is_error_value

Examples

if (interactive()) {
Only run examples in interactive R sessions

m<-mirai(x +y + 1, x =2, y =3)
m

m$data

Sys.sleep(0.2)

m$data

df1 <- data.frame(a = 1, b = 2)

df2 <- data.frame(a = 3, b = 1)

m <- mirai(as.matrix(rbind(df1, df2)), .args = list(df1, df2), .timeout = 1000)
call_mirai(m)$data

m <- mirai({
res <- rnorm(n)
res / rev(res)

}, n = 1eb)

while (unresolved(m)) {
cat("unresolved\n")
Sys.sleep(0.1)

3

str(m$data)

}

is_error_value Is Error Value

Description
Is the object an error value generated by the system or a ‘miraiError’ from failed execution within
a mirai. Includes user-specified errors such as mirai timeouts.

Usage

is_error_value(x)

Arguments

X an object.

Value

Logical value TRUE if ’x’ is of class ’errorValue’, FALSE otherwise.

is_mirai 7

Examples

is_error_value(1L)

is_mirai Is mirai

Description

Is the object a mirai.

Usage

is_mirai(x)

Arguments

X an object.

Value

Logical value TRUE or FALSE.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(as.matrix(df), df = data.frame())
is_mirai(m)
is_mirai(df)

is_mirai_error Is mirai Error

Description

Is the object a *miraiError’. When execution in a mirai process fails, the error message is returned
as a character string of class 'miraiError’ and ’errorValue’. To test for all errors, including timeouts
etc., is_error_value should be used instead.

Usage

is_mirai_error(x)

8 stop_mirai

Arguments

X an object.

Value

Logical value TRUE if ’x’ is of class *miraiError’, FALSE otherwise.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(stop())

call_mirai(m)
is_mirai_error(m$data)

}

stop_mirai mirai (Stop Evaluation)

Description

Stop evaluation of a mirai that is in progress.

Usage

stop_mirai(aio)

Arguments

aio a’mirai’ (mirai are also aio objects).

Details

Stops the asynchronous operation associated with mirai’ by aborting, and then waits for it to com-
plete or to be completely aborted. The *mirai’ is then deallocated and attempting to access the value
at $data will result in an error.

Value

Invisible NULL.

unresolved 9

Examples

if (interactive()) {
Only run examples in interactive R sessions

s <- mirai(Sys.sleep(n), n = 5)
stop_mirai(s)

unresolved Query if a Mirai is Unresolved

Description

Query whether a mirai or mirai value remains unresolved. Unlike call_mirai, this function does
not wait for completion.

Usage

unresolved(aio)

Arguments

aio A ’mirai’ or mirai value stored in $data (mirai are also aio objects).

Details
Returns TRUE for unresolved mirai or mirai values, FALSE otherwise.

Suitable for use in control flow statements such as while or if.

Note: querying resolution may cause a previously unresolved mirai to resolve.

Value

Logical TRUE or FALSE.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai(Sys.sleep(0.1))
unresolved(m)
Sys.sleep(0.5)
unresolved(m)

10 %>>%

%>>% Deferred Evaluation Pipe

Description

Pipe a possibly unresolved value forward into a function.

Usage

X %>>% f

Arguments
X a value that is possibly an 'unresolvedValue’.
f a function that accepts x’ as its first argument.
Details

An ’unresolvedExpr’ encapsulates the eventual evaluation result. Query its $data element for res-
olution. Once resolved, the object changes into a ‘resolvedExpr’ and the evaluated result will be
available at $data.

Supports stringing together a series of piped expressions (as per the below example).

unresolved may be used on an ’unresolvedExpr’ or its $data element to test for resolution.

Value

The evaluated result, or if x is an "unresolvedValue’, an "unresolvedExpr’.

Usage
Usage is similar to R’s native |> pipe.
x %>>% f is equivalent to f (x)
x %>>% f () is equivalent to f (x)
x %>>% f (y) is equivalent to f(x, y)

Please note that other usage is not supported and it is not a drop-in replacement for magrittr’s %>%
pipe.

Examples

if (interactive()) {
Only run examples in interactive R sessions

m <- mirai({Sys.sleep(0.5); 13})

b <- m$data %>>% c(2, 3) %>>% as.character()
b

b$data

%>>%

Sys.sleep(1)
b$data
b

}

11

Index

%>>%, 10
call_mirai, 2, 5,9
daemons, 4
eval_mirai, 5,5
is_error_value, 3,5,6,7
is_mirai, 7
is_mirai_error,3,5,7
mirai, 4, 5

mirai (eval_mirai), 5
mirai-package, 2

stop_mirai, 8

unresolved, 3, 5,9, 10

12

	mirai-package
	call_mirai
	daemons
	eval_mirai
	is_error_value
	is_mirai
	is_mirai_error
	stop_mirai
	unresolved
	%>>%
	Index

