missMDA: Handling Missing Values with Multivariate Data Analysis
Imputation of incomplete continuous or categorical datasets; Missing values are imputed with a principal component analysis (PCA), a multiple correspondence analysis (MCA) model or a multiple factor analysis (MFA) model; Perform multiple imputation with and in PCA or MCA.
Version: |
1.18 |
Depends: |
R (≥ 3.3.0) |
Imports: |
FactoMineR (≥
2.3), ggplot2, graphics, grDevices, mice, mvtnorm, stats, utils, doParallel, parallel, foreach |
Suggests: |
knitr, markdown |
Published: |
2020-12-11 |
Author: |
Francois Husson, Julie Josse |
Maintainer: |
Francois Husson <husson at agrocampus-ouest.fr> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
http://factominer.free.fr/missMDA/index.html |
NeedsCompilation: |
no |
Citation: |
missMDA citation info |
Materials: |
README |
In views: |
MissingData, Psychometrics |
CRAN checks: |
missMDA results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=missMDA
to link to this page.