mlsjunkgen
is a pseudo-random number generator.
For any seed values of w, x, y, z:
ri = 5.980217w2 + 9.446377x0.25 + 4.81379y0.33 + 8.91197z0.5
ri = ri - Int(ri)
For ri+1:
w = x
x = y
y = z
z = ri
This generator tends to do well with various tests for randomness (K-S, Chi Square, test for runs up and down). It may not perform as well on other tests (e.g., tests for runs above and below the mean), but that could relate to my choice of seeds. As a point of reference, the period of Excel’s built-in random number generator is 16,777,216 and the MLS Junk Generator’s period is something greater than 9.9 billion (the point at which I gave up on trying to determine it).
mlsjunkgen
is available on CRAN and can be installed accordingly:mlsjunkgen
from GitHub using the devtools
package:install.packages("devtools")
library("devtools")
install_github("scumdogsteev/mlsjunkgen")
library(mlsjunkgen)
The package consists of four functions:
junkgen
- generates a pseudo-random number from user-specified seedsmlsjunkgenv
- generates a vector of pseudo-random numbers by calling junkgen
a user-specified number of timesmlsjunkgend
- generates a data frame of pseudo-random numbers by calling junkgen
a user-specified number of timesmlsjunkgenm
- generates a user-specified size matrix of pseudo-random numbers by calling mlsjunkgenv
and assigning the results to a matrixjunkgen
generates a single pseudo-random number based on four user-specified seeds:
mlsjunkgenv
generates a vector containing a stream of n
(default = 1) user-specified pseudo-random numbers based on four user-specified seeds rounded to a specified (default = 5) number of decimal places:
mlsjunkgenv(n = 10, w = w, x = x, y = y, z = z, round = 2)
#> [1] 0.96 0.67 0.21 0.34 0.12 0.56 0.59 0.11 0.34 0.70
The same example with default rounding:
mlsjunkgenv(n = 10, w = w, x = x, y = y, z = z)
#> [1] 0.95516 0.66908 0.21235 0.34488 0.11995 0.56398 0.59235 0.11432 0.33525
#> [10] 0.70271
mlsjunkgend
generates a data frame containing a stream of n
user-specified pseudo-random numbers based on four user-specified seeds:
mlsjunkgend(n = 10, w = w, x = x, y = y, z = z, round = 2)
#> RN
#> 1 0.96
#> 2 0.67
#> 3 0.21
#> 4 0.34
#> 5 0.12
#> 6 0.56
#> 7 0.59
#> 8 0.11
#> 9 0.34
#> 10 0.70
The same example with default rounding:
mlsjunkgend(n = 10, w = w, x = x, y = y, z = z)
#> RN
#> 1 0.95516
#> 2 0.66908
#> 3 0.21235
#> 4 0.34488
#> 5 0.11995
#> 6 0.56398
#> 7 0.59235
#> 8 0.11432
#> 9 0.33525
#> 10 0.70271
mlsjunkgenm
generates a matrix of user-specified size containing a stream of pseudo-random numbers based on four user-specified seeds: