Using mudata objects

Dewey Dunnington

2020-03-20

The mudata2 package is designed to be used as little as possible. That is, if you need use data that is currently in mudata format, the functions in this package are designed to let you spend as little time as possible reading, subsetting, and inspecting your data. The steps are generally as follows:

In this vignette we will use the ns_climate dataset within the mudata2 package, which is a collection of monthly climate observations from Nova Scotia (Canada), sourced from Environment Canada using the rclimateca package.

library(mudata2)
data("ns_climate")
ns_climate
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
##   distinct_params():    "dir_of_max_gust", "extr_max_temp" ... and 9 more
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset        location       param      date       value flag  flag_text
##   <chr>          <chr>          <chr>      <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-01-01    NA M     Missing  
## 2 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-02-01    NA M     Missing  
## 3 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-03-01    NA M     Missing  
## 4 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-04-01    NA M     Missing  
## 5 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-05-01    NA M     Missing  
## 6 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-06-01    NA M     Missing

Reading an object

The ns_climate object is already an object in R, but if it wasn’t, you would need to use read_mudata() to read it in. If you’re curious what a mudata object looks like on disk, you could try using write_mudata() to find out. I tend to prefer writing to a directory rather than a JSON or ZIP file, but you can take your pick.

# write to directory
write_mudata(ns_climate, "ns_climate.mudata")
# write to ZIP
write_mudata(ns_climate, "ns_climate.mudata.zip")
# write to JSON
write_mudata(ns_climate, "ns_climate.mudata.json")

Then, you can read in the object using read_mudata():

# read from directory
read_mudata("ns_climate.mudata")
# read from ZIP
read_mudata("ns_climate.mudata.zip")
# read from JSON
read_mudata("ns_climate.mudata.json")

Inspecting an object

The three main ways to quickly inspect a mudata object are print() and summary(). The print() function is what you get when you type the name of the object at the prompt, and gives a short summary of the object. The output suggests a couple of other ways to inspect the object, including distinct_locations(), which returns a character vector of location identifiers, and distinct_params(), which returns a character vector of parameter identifiers.

print(ns_climate)
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
##   distinct_params():    "dir_of_max_gust", "extr_max_temp" ... and 9 more
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset        location       param      date       value flag  flag_text
##   <chr>          <chr>          <chr>      <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-01-01    NA M     Missing  
## 2 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-02-01    NA M     Missing  
## 3 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-03-01    NA M     Missing  
## 4 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-04-01    NA M     Missing  
## 5 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-05-01    NA M     Missing  
## 6 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-06-01    NA M     Missing

The summary() function provides some numeric summaries by dataset, location, and parameter if the value column of the data table is numeric (if it isn’t, it provides counts instead).

summary(ns_climate)
## # A tibble: 137 x 7
##    param       location        dataset      mean_value sd_value     n  n_NA
##    <chr>       <chr>           <chr>             <dbl>    <dbl> <int> <int>
##  1 dir_of_max… SABLE ISLAND 6… ecclimate_m…       19.8    10.2    299     0
##  2 extr_max_t… ANNAPOLIS ROYA… ecclimate_m…       19.9     7.24   995    28
##  3 extr_max_t… BADDECK 6297    ecclimate_m…       18.9     8.58   901    43
##  4 extr_max_t… BEAVERBANK 6301 ecclimate_m…       17.2    10.4     24    17
##  5 extr_max_t… COLLEGEVILLE 6… ecclimate_m…       20.3     8.54  1061    34
##  6 extr_max_t… DIGBY 6338      ecclimate_m…       19.0     6.92   624    20
##  7 extr_max_t… KENTVILLE CDA … ecclimate_m…       21.0     8.27  1002     3
##  8 extr_max_t… MAHONE BAY 6396 ecclimate_m…       20.8     8.35   108    11
##  9 extr_max_t… MOUNT UNIACKE … ecclimate_m…       19.7     8.21   972    30
## 10 extr_max_t… NAPPAN CDA 6414 ecclimate_m…       19.3     8.04  1121    19
## # … with 127 more rows

Inspecting metadata

You can have a look at the embedded documentation using tbl_params(), and tbl_locations(), which contain any additional information about parameters and locations for which data are available. The identifiers (i.e., param and location columns) of these can be used to subset the object using select_*() functions; the tables themselves can be used to subset the object using the filter_*() functions.

# extract the parameters table
ns_climate %>% tbl_params()
## # A tibble: 11 x 4
##    dataset           param              label                      unit    
##    <chr>             <chr>              <chr>                      <chr>   
##  1 ecclimate_monthly mean_max_temp      Mean Max Temp (C)          C       
##  2 ecclimate_monthly mean_min_temp      Mean Min Temp (C)          C       
##  3 ecclimate_monthly mean_temp          Mean Temp (C)              C       
##  4 ecclimate_monthly extr_max_temp      Extr Max Temp (C)          C       
##  5 ecclimate_monthly extr_min_temp      Extr Min Temp (C)          C       
##  6 ecclimate_monthly total_rain         Total Rain (mm)            mm      
##  7 ecclimate_monthly total_snow         Total Snow (cm)            cm      
##  8 ecclimate_monthly total_precip       Total Precip (mm)          mm      
##  9 ecclimate_monthly snow_grnd_last_day Snow Grnd Last Day (cm)    cm      
## 10 ecclimate_monthly dir_of_max_gust    Dir of Max Gust (10's deg) 10's deg
## 11 ecclimate_monthly spd_of_max_gust    Spd of Max Gust (km/h)     km/h
# exract the locations table
ns_climate %>% tbl_locations()
## # A tibble: 15 x 19
##    dataset location name  province climate_id station_id wmo_id tc_id
##    <chr>   <chr>    <chr> <chr>    <chr>           <int>  <int> <chr>
##  1 ecclim… ANNAPOL… ANNA… NOVA SC… 8200100          6289     NA ""   
##  2 ecclim… BADDECK… BADD… NOVA SC… 8200300          6297     NA ""   
##  3 ecclim… BEAVERB… BEAV… NOVA SC… 8200550          6301     NA ""   
##  4 ecclim… COLLEGE… COLL… NOVA SC… 8201000          6329     NA ""   
##  5 ecclim… DIGBY 6… DIGBY NOVA SC… 8201600          6338     NA ""   
##  6 ecclim… KENTVIL… KENT… NOVA SC… 8202800          6375     NA ""   
##  7 ecclim… MAHONE … MAHO… NOVA SC… 8203300          6396     NA ""   
##  8 ecclim… MOUNT U… MOUN… NOVA SC… 8203600          6413     NA ""   
##  9 ecclim… NAPPAN … NAPP… NOVA SC… 8203700          6414     NA ""   
## 10 ecclim… PARRSBO… PARR… NOVA SC… 8204400          6428     NA ""   
## 11 ecclim… PORT HA… PORT… NOVA SC… 8204480          6441     NA ""   
## 12 ecclim… SABLE I… SABL… NOVA SC… 8204700          6454  71600 "ESA"
## 13 ecclim… ST MARG… ST M… NOVA SC… 8204800          6456     NA ""   
## 14 ecclim… SPRINGF… SPRI… NOVA SC… 8205200          6473     NA ""   
## 15 ecclim… UPPER S… UPPE… NOVA SC… 8206200          6495     NA ""   
## # … with 11 more variables: latitude <dbl>, longitude <dbl>,
## #   elevation <dbl>, first_year <int>, last_year <int>,
## #   hly_first_year <int>, hly_last_year <int>, dly_first_year <int>,
## #   dly_last_year <int>, mly_first_year <int>, mly_last_year <int>

Subsetting an object

You can subset mudata objects using select_params() and select_locations(), which use dplyr-like selection syntax to quickly subset mudata objects using the identifiers from distinct_locations() and distinct_params() (respectively).

# find out which parameters are available
ns_climate %>% distinct_params()
##  [1] "dir_of_max_gust"    "extr_max_temp"      "extr_min_temp"     
##  [4] "mean_max_temp"      "mean_min_temp"      "mean_temp"         
##  [7] "snow_grnd_last_day" "spd_of_max_gust"    "total_precip"      
## [10] "total_rain"         "total_snow"
# subset by parameter
ns_climate %>% select_params(mean_temp, total_precip)
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
##   distinct_params():    "mean_temp", "total_precip"
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset         location        param    date       value flag  flag_text
##   <chr>           <chr>           <chr>    <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mont… SABLE ISLAND 6… mean_te… 1897-01-01    NA M     Missing  
## 2 ecclimate_mont… SABLE ISLAND 6… mean_te… 1897-02-01    NA M     Missing  
## 3 ecclimate_mont… SABLE ISLAND 6… mean_te… 1897-03-01    NA M     Missing  
## 4 ecclimate_mont… SABLE ISLAND 6… mean_te… 1897-04-01    NA M     Missing  
## 5 ecclimate_mont… SABLE ISLAND 6… mean_te… 1897-05-01    NA M     Missing  
## 6 ecclimate_mont… SABLE ISLAND 6… mean_te… 1897-06-01    NA M     Missing

You can also use the dplyr select helpers to select related params/locations…

ns_climate %>% select_params(contains("temp"))
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
##   distinct_params():    "extr_max_temp", "extr_min_temp" ... and 3 more
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset        location       param      date       value flag  flag_text
##   <chr>          <chr>          <chr>      <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-01-01    NA M     Missing  
## 2 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-02-01    NA M     Missing  
## 3 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-03-01    NA M     Missing  
## 4 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-04-01    NA M     Missing  
## 5 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-05-01    NA M     Missing  
## 6 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-06-01    NA M     Missing

…and rename params/locations on the fly.

ns_climate %>% select_locations(Kentville = starts_with("KENT"))
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "Kentville"
##   distinct_params():    "extr_max_temp", "extr_min_temp" ... and 7 more
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset           location  param        date       value flag  flag_text
##   <chr>             <chr>     <chr>        <date>     <dbl> <chr> <chr>    
## 1 ecclimate_monthly Kentville mean_max_te… 1913-01-01  NA   M     Missing  
## 2 ecclimate_monthly Kentville mean_max_te… 1913-02-01  NA   M     Missing  
## 3 ecclimate_monthly Kentville mean_max_te… 1913-03-01  NA   M     Missing  
## 4 ecclimate_monthly Kentville mean_max_te… 1913-04-01   9.7 <NA>  <NA>     
## 5 ecclimate_monthly Kentville mean_max_te… 1913-05-01  12.5 <NA>  <NA>     
## 6 ecclimate_monthly Kentville mean_max_te… 1913-06-01  19.9 <NA>  <NA>

To select params/locations based on the tbl_params() and tbl_locations() tables, you can use the filter_*() functions (note that last_year is a column in tbl_locations(), and unit is a column in tbl_params()):

# only use locations whose last data point was after 2000
ns_climate %>%
  filter_locations(last_year > 2000)
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "COLLEGEVILLE 6329" ... and 7 more
##   distinct_params():    "dir_of_max_gust", "extr_max_temp" ... and 9 more
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset        location       param      date       value flag  flag_text
##   <chr>          <chr>          <chr>      <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-01-01    NA M     Missing  
## 2 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-02-01    NA M     Missing  
## 3 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-03-01    NA M     Missing  
## 4 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-04-01    NA M     Missing  
## 5 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-05-01    NA M     Missing  
## 6 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-06-01    NA M     Missing
# use only params measured in mm
ns_climate %>%
  filter_params(unit == "mm")
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
##   distinct_params():    "total_precip", "total_rain"
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset         location        param    date       value flag  flag_text
##   <chr>           <chr>           <chr>    <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mont… SABLE ISLAND 6… total_r… 1891-01-01  NA   M     Missing  
## 2 ecclimate_mont… SABLE ISLAND 6… total_r… 1891-02-01  40.4 <NA>  <NA>     
## 3 ecclimate_mont… SABLE ISLAND 6… total_r… 1891-03-01  32   <NA>  <NA>     
## 4 ecclimate_mont… SABLE ISLAND 6… total_r… 1891-04-01 132.  <NA>  <NA>     
## 5 ecclimate_mont… SABLE ISLAND 6… total_r… 1891-05-01  44.7 <NA>  <NA>     
## 6 ecclimate_mont… SABLE ISLAND 6… total_r… 1891-06-01 106.  <NA>  <NA>

Similarly, we can subset parameters, locations, and the data table all at once using filter_data().

library(lubridate)
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
# extract only June temperature from the data table
ns_climate %>%
  filter_data(month(date) == 6)
## A mudata object aligned along "date"
##   distinct_datasets():  "ecclimate_monthly"
##   distinct_locations(): "ANNAPOLIS ROYAL 6289", "BADDECK 6297" ... and 13 more
##   distinct_params():    "dir_of_max_gust", "extr_max_temp" ... and 9 more
##   src_tbls():           "data", "locations" ... and 3 more
## 
## tbl_data() %>% head():
## # A tibble: 6 x 7
##   dataset        location       param      date       value flag  flag_text
##   <chr>          <chr>          <chr>      <date>     <dbl> <chr> <chr>    
## 1 ecclimate_mon… SABLE ISLAND … mean_max_… 1897-06-01  NA   M     Missing  
## 2 ecclimate_mon… SABLE ISLAND … mean_max_… 1898-06-01  13.4 <NA>  <NA>     
## 3 ecclimate_mon… SABLE ISLAND … mean_max_… 1899-06-01  14.4 <NA>  <NA>     
## 4 ecclimate_mon… SABLE ISLAND … mean_max_… 1900-06-01  14.6 <NA>  <NA>     
## 5 ecclimate_mon… SABLE ISLAND … mean_max_… 1901-06-01  15.3 <NA>  <NA>     
## 6 ecclimate_mon… SABLE ISLAND … mean_max_… 1902-06-01  13.6 <NA>  <NA>

Extracting data

The data is stored in the data table (i.e., tbl_data()) in parameter-long form (that is, one row per measurement rather than one row per observation). This has advantages in that information about each measurement can be stored next to the value (e.g., standard deviation, notes, etc.), however it is rarely the form required for analysis. To extract data in parameter-long form, you can use tbl_data():

ns_climate %>% tbl_data()
## # A tibble: 115,541 x 7
##    dataset        location      param      date       value flag  flag_text
##    <chr>          <chr>         <chr>      <date>     <dbl> <chr> <chr>    
##  1 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-01-01  NA   M     Missing  
##  2 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-02-01  NA   M     Missing  
##  3 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-03-01  NA   M     Missing  
##  4 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-04-01  NA   M     Missing  
##  5 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-05-01  NA   M     Missing  
##  6 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-06-01  NA   M     Missing  
##  7 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-07-01  NA   M     Missing  
##  8 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-08-01  NA   M     Missing  
##  9 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-09-01  NA   M     Missing  
## 10 ecclimate_mon… SABLE ISLAND… mean_max_… 1897-10-01  12.2 <NA>  <NA>     
## # … with 115,531 more rows

To extract data in a more standard parameter-wide form, you can use tbl_data_wide():

ns_climate %>% tbl_data_wide()
## # A tibble: 14,311 x 14
##    dataset location date       dir_of_max_gust extr_max_temp extr_min_temp
##    <chr>   <chr>    <date>               <dbl>         <dbl>         <dbl>
##  1 ecclim… ANNAPOL… 1914-01-01              NA          NA            NA  
##  2 ecclim… ANNAPOL… 1914-02-01              NA          NA            NA  
##  3 ecclim… ANNAPOL… 1914-03-01              NA          NA            NA  
##  4 ecclim… ANNAPOL… 1914-04-01              NA          19.4         -11.1
##  5 ecclim… ANNAPOL… 1914-05-01              NA          30            -3.9
##  6 ecclim… ANNAPOL… 1914-06-01              NA          26.7          -1.7
##  7 ecclim… ANNAPOL… 1914-07-01              NA          30             3.9
##  8 ecclim… ANNAPOL… 1914-08-01              NA          NA            NA  
##  9 ecclim… ANNAPOL… 1914-09-01              NA          NA            NA  
## 10 ecclim… ANNAPOL… 1914-10-01              NA          NA            NA  
## # … with 14,301 more rows, and 8 more variables: mean_max_temp <dbl>,
## #   mean_min_temp <dbl>, mean_temp <dbl>, snow_grnd_last_day <dbl>,
## #   spd_of_max_gust <dbl>, total_precip <dbl>, total_rain <dbl>,
## #   total_snow <dbl>

The tbl_data_wide() function isn’t limited to parameter-wide data - data can be anything-wide (Edzer Pebesma has a great discussion on this). Using tbl_data_wide() is identical to using tbl_data() and tidyr::spread(), with context-specific defaults.

ns_climate %>% 
  select_params(mean_temp) %>%
  filter_data(year(date) == 1960) %>%
  tbl_data_wide(key = location)
## # A tibble: 12 x 16
##    dataset param date       `BADDECK 6297` `COLLEGEVILLE 6… `DIGBY 6338`
##    <chr>   <chr> <date>              <dbl>            <dbl>        <dbl>
##  1 ecclim… mean… 1960-01-01           -3.8             -6           -2.6
##  2 ecclim… mean… 1960-02-01           -1.2             -2.5          0.3
##  3 ecclim… mean… 1960-03-01           -1.3             -3.1          0  
##  4 ecclim… mean… 1960-04-01            3                2.1          6.5
##  5 ecclim… mean… 1960-05-01           11.7             10.9         12.8
##  6 ecclim… mean… 1960-06-01           14.4             14.7         16.4
##  7 ecclim… mean… 1960-07-01           17.1             18           18.9
##  8 ecclim… mean… 1960-08-01           NA               18.5         18.6
##  9 ecclim… mean… 1960-09-01           15.2             14           14.8
## 10 ecclim… mean… 1960-10-01            8.7              6.9          9.1
## 11 ecclim… mean… 1960-11-01            4.6              3.2          6.7
## 12 ecclim… mean… 1960-12-01           -0.8             -3.5         -0.4
## # … with 10 more variables: `KENTVILLE CDA 6375` <dbl>, `MAHONE BAY
## #   6396` <dbl>, `MOUNT UNIACKE 6413` <dbl>, `NAPPAN CDA 6414` <dbl>,
## #   `PARRSBORO 6428` <dbl>, `PORT HASTINGS 6441` <dbl>, `SABLE ISLAND
## #   6454` <dbl>, `SPRINGFIELD 6473` <dbl>, `ST MARGARET'S BAY 6456` <dbl>,
## #   `UPPER STEWIACKE 6495` <dbl>

Putting it all together

Using the pipe (%>%), we can string all the steps together concisely:

temp_1960 <- ns_climate %>%
  # pick parameters
  select_params(contains("temp")) %>%
  # pick locations
  select_locations(
    `Sable Island` = starts_with("SABLE"),
    `Kentville` = starts_with("KENT"),
    `Badeck` = starts_with("BADD")
  ) %>%
  # filter data table
  filter_data(year(date) == 1960) %>%
  # extract data in wide format
  tbl_data_wide()

temp_1960
## # A tibble: 36 x 8
##    dataset location date       extr_max_temp extr_min_temp mean_max_temp
##    <chr>   <chr>    <date>             <dbl>         <dbl>         <dbl>
##  1 ecclim… Badeck   1960-01-01           8.9         -16.7          -0.6
##  2 ecclim… Badeck   1960-02-01           6.1         -13.3           1.7
##  3 ecclim… Badeck   1960-03-01           7.2          -9.4           0.9
##  4 ecclim… Badeck   1960-04-01          16.7          -7.8           6.1
##  5 ecclim… Badeck   1960-05-01          26.7           2.2          17.2
##  6 ecclim… Badeck   1960-06-01          30.6           0            19.6
##  7 ecclim… Badeck   1960-07-01          28.3           8.9          22.6
##  8 ecclim… Badeck   1960-08-01          33.3           8.9          24.3
##  9 ecclim… Badeck   1960-09-01          25.6           4.4          19.8
## 10 ecclim… Badeck   1960-10-01          18.3          -0.6          12.3
## # … with 26 more rows, and 2 more variables: mean_min_temp <dbl>,
## #   mean_temp <dbl>

We can then use this data with ggplot2 to lead us to the conclusion that three locations in the same province had more or less the same monthly temperature characteristics in 1960.

library(ggplot2)
ggplot(
  temp_1960, 
  aes(
    x = date, 
    y = mean_temp, 
    ymin = extr_min_temp, 
    ymax = extr_max_temp,
    col = location, 
    fill = location
  )
) +
  geom_ribbon(alpha = 0.2, col = NA) +
  geom_line()