
How to use mvMORPH?

Contents
1 Trees and Time series 2

1.1 Phylogenetic trees . 2
1.2 Time series . 3

2 Data and Errors 4

3 Simulating data 4

4 Optimization methods 5

5 Likelihood computation methods 5

6 Multivariate GLS models and High-Dimensional datasets 6

7 Model comparison 7

8 Treatment of the root 9
8.1 Ancestral state and primary optimum . 9
8.2 Multiple phylogenetic means . 10
8.3 Directional trends . 11

9 Constraints 12
9.1 Overview of the various constraint parameterizations in mvMORPH 12
9.2 “User-defined” constraints . 13

10 The “param” list 15
10.1 The “decomp” and “decompSigma” options . 15
10.2 the “vcv” argument . 18

11 Functions 19
11.1 The loglikelihood function . 19
11.2 The matrix parameterization functions . 20

12 Fossil data 20
12.1 Overview of the functions . 20
12.2 Imputing missing values . 21
12.3 Ancestral state reconstructions . 21

13 Tweak mvMORPH 22
13.1 Make your own model! . 22
13.2 Reuse of the returned log-likelihood functions . 24

14 Bayesian mcmc 26

1

1 Trees and Time series

1.1 Phylogenetic trees

The trees used by the mvMORPH functions must be objects of class “phylo” as provided by the ape
package. Such trees are directly used with the “EB”, “BM1”, and “OU1” models (and also with the SHIFT
model if the shift age is given in the param list; see ?mvSHIFT). To fit models with multiple groups (or
selective regimes) such as the “BMM” and “OUM” models (functions mvBM and mvOU), the evolutionary
history of the selective regimes (i.e., the ancestral state reconstruction - see the next vignette) must be
“painted” on the tree. For this purpose mvMORPH uses trees in SIMMAP format as provided by the
phytools package. Several functions allows creating SIMMAP trees:

• make.simmap (Ancestral state reconstruction using stochastic mapping)
• make.era.map (Creates temporal map on the tree)
• paintBranches (Assigns a given discrete state to a particular branch)
• paintSubTree (Assigns a given discrete state to a particular sub-tree)

For instance, a users may be interested in directly using prior knowledge to specify different states on
particular parts of the tree (or use results from other ancestral reconstructions methods). The user must
refer to the phytools documentation for more details.
Load the package and dependencies (ape, phytools, corpcor, subplex)
library(mvMORPH)

Use a specified random number seed for reproducibility
set.seed(14)
par(mfrow=c(1,3))
tree <- pbtree(n=10)

Set a different regime to the monophyletic group on node "12"
tree2 <- paintSubTree(tree, node=12, state="group_2", anc.state="group_1")
plot(tree2);nodelabels(,cex=0.8)

We can set the character state to the stem branch leading to the subtree
tree3 <- paintSubTree(tree, node=12, state="group_2", anc.state="group_1", stem=TRUE)
plot(tree3)

Finally we can also set a different regime to the branch leading to the tip "t10"
branch_1 <- match("t10",tree3$tip.label) # alternatively: which(tree$tip.label=="t10")
tree4 <- paintBranches(tree3, branch_1, state="group_1")

set also a change to a third state along the branch
leading to "t2" using the "stem" argument
branch_2 <- match("t2",tree3$tip.label)
tree4 <- paintSubTree(tree4, branch_2, state="group_3", stem=0.5)
plot(tree4)

2

t5

t6

t2

t9

t10

t3

t1

t4

t7

t8

11

12

13

14

15

16

17

18

19

t5

t6

t2

t9

t10

t3

t1

t4

t7

t8

t5

t6

t2

t9

t10

t3

t1

t4

t7

t8

Note that the tree length can be scaled to unity using the “scale.height = TRUE” option. Why? Scaling
the tree will not change the value of the maximum log-likelihood (or AIC), but will change the scale of the
parameter estimates. This is particularly useful to compare analyses on different trees or to directly interpret
estimates such as the phylogenetic halflife in % of the tree height (see ?halflife). Besides, working on scaled
trees can sometimes speed up the computations.

1.2 Time series

The mvRWTS and mvOUTS functions allow fitting multivariate models of continuous traits evolution with
time-series data (such as ancestor-descendent fossil lineages). Such models can be used, for instance, to
compare how traits evolve within an ancestor-descendent lineage or between lineages. The times-series must
be provided as vectors of ordered ages relative to the starting point (i.e., the oldest, which should be “0”).

For instance:
Make a tiny time-series object from fossil ages within [55; 32.5] Ma
fossil_ages <- c(55,46,43,38,35,32.5)

The time-series becomes:
timeseries <- max(fossil_ages)-fossil_ages
timeseries

> [1] 0.0 9.0 12.0 17.0 20.0 22.5

The “scale.height=TRUE” option will scale the time series between 0 and 1 to provide the relative ages.
Similarly to the analysis on phylogenetic trees, this changes the scale of the parameter estimates (such as
sigma or alpha) but not the log-likelihood.

3

2 Data and Errors

Matrix or data frame must have species in rows and continuous traits (variables) in columns, rownames
must match tip names. Missing cases are currently allowed as NA values with the “rpf”, “inverse”, and
“pseudoinverse” methods. The measurement error or sampling variance is a matrix of similar size (note that
the sampling variance is given by the square of the standard-errors of species mean estimates). Measurement
error missing values (NA or “0”) are allowed.

For some time-series models (mvOUTS with fixed root vcv and mvRWTS ; see the “param” list section below)
the sampling variance for the first obsevations in the time-series must be provided otherwise an arbitrary
value of 0.01 is set automatically to avoid singularity issues.

3 Simulating data

The mvSIM function can be used to simulate multivariate (and univariate) datasets.
set.seed(14)
Generating a random tree with 50 species
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree, sta , model="ER", nsim=1)

Number of simulated datasets
nsim<-1

Rates matrices for the "Forest" and the "Savannah" regimes
Note: use lists for multiple rates (matrices or scalars)
sigma<-list(Forest=matrix(c(2,0.5,0.5,1),2), Savannah=matrix(c(5,3,3,4),2))

ancestral states for each traits
theta<-c(0,0)

Simulate the "BMM" model
simul_1<-mvSIM(tree, nsim=nsim, model="BMM", param=list(sigma=sigma, theta=theta))

head(simul_1)

The simulate function directly generate datasets from estimated parameters of fitted models. This is useful
for assessing uncertainty of estimated parameters through parametric bootstrap for instance.
fit the BMM model on simulated data
fit <- mvBM(tree, simul_1)

simulate 100 datasets from the fitted object
simul_2 <- simulate(fit, tree=tree, nsim=100)

parametric bootstrap; e.g.:
bootstrap <- lapply(simul_2, function(x) mvBM(tree, x, echo=F, diagnostic=F))

retrieve results; e.g. for the log-likelihood

4

log_distribution <- sapply(bootstrap, logLik)

hist(log_distribution, main="Log-likelihood distribution")
abline(v=fit$LogLik, lty=2, lwd=5, col="red")

See also the following sections examples.

4 Optimization methods

mvMORPH rely on the optim and subplex functions to optimize the log-likelihood of the models. The
“L-BFGS-B” and “Nelder-Mead” algorithms are used by default for most models. The “L-BFGS-B” algorithm
is generally faster and seems to be more efficient, but when the optimizer doesn’t converge or if the fit seems
unreliable (i.e., when $convergence or the $hess.value in the results are not 0) it may help to switch between
these methods or to change the options of these methods in the “control” argument (see ?optim or ?subplex).
The subplex algorithm seems particularly efficient for the user-defined models. When the optimization is
turned to “fixed” only the log-likelihood function is returned without evaluation (see 9.1 - log-likelihood
function section).

5 Likelihood computation methods

mvMORPH uses various methods based on generalized least squares (GLS) or the prunning algorithm
(contrasts) to compute the log-likelihood. While GLS-based approaches are very flexible and allow fitting
almost all models, to deal with missing cases and measurement errors very easily, and are particularly safe for
optimization (e.g., the “pseudoinverse” method), their naive implementations are computationally intensive
(e.g., “inverse” and “pseudoinverse” methods). Two alternative and efficient algorithms also based on GLS
are proposed (“rpf” and “sparse”). The “sparse” method is both efficient in terms of computational time
and memory use, but is limited by the sparsity structure of the variance-covariance (vcv) matrix of the
phylogenetic tree while the “rpf” is not. While these approaches are up to ten times faster than the “inverse”
or “pseudoinverse” methods, they may suffer from singularity issues during optimization in some cases. The
“pic” method is the fastest one (thousands of time faster than the GLS-based methods implemented here),
but is currently available only for a couple of models and dichotomic trees.

The various methods for each model currently available on mvMORPH (stay tuned on gitHub) are presented
in the table below (from the fastest to the slowest)

functions pic sparse univarpf rpf inverse pseudoinv.
mvBM :BM1 X X - X X X
mvBM :BMM U X - X X X
mvOU :OU1 U X U X X X
mvOU :OUM - X U X X X
mvEB X X - X X X
mvSHIFT - X - X X X
mvOUTS - - - X X X
mvRWTS - - - X X X
NA values - - X X X X
error - X X X X X

Notes: the “sparse” method can be used only with the “fixedRoot” vcv for the “OU1” and “OUM” models.
This is because the “randomRoot” vcv is not sparse. This is also the case for the time-serie models. U =
method currently implemented for the univariate case.

5

6 Multivariate GLS models and High-Dimensional datasets

The function mvgls allows estimating multivariate linear models with a time-series or a phylogenetic structure
by Generalized Least Squares (GLS). This is the multivariate counterpart to the gls function in nlme package
and the phylolm function in phylolm when using method=“LL”. For the high-dimensional case (where
the number of variables/traits p is approaching or is larger than the number of observations/species n) a
regularization approach by penalized likelihood is used. Several penalties (option penalty: “RidgeArch”,
“RidgeAlt” and “LASSO”) can be used to estimate the model parameters by maximizing a cross-validated
log-likelihood (option method: “LOOCV”, “H&L” and “Mahalanobis”). The default method is “LOOCV”,
the “H&L” and “Mahalanobis” are efficient and approximate methods that can be used to speed up the
computations in very high-dimensional cases (but must be used for intercepts models only as their performances
are decreasing with multiple predictors). As for the lm function, the extractors functions residuals, coef, fitted
and vcov can be used on objects of class ‘mvgls’.
set.seed(1)
n <- 32 # number of species
p <- 50 # number of traits (p>n)

tree <- pbtree(n=n, scale=1) # phylogenetic tree
R <- crossprod(matrix(runif(p*p), ncol=p)) # a random symmetric matrix (covariance)
simulate a BM dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R, theta=rep(0,p)))
data=list(Y=Y)

High dimensional model fit
fit1 <- mvgls(Y~1, data=data, tree, model="BM", penalty="RidgeArch")
fit2 <- mvgls(Y~1, data=data, tree, model="OU", penalty="RidgeArch")
fit3 <- mvgls(Y~1, data=data, tree, model="EB", penalty="RidgeArch")

GIC(fit1); GIC(fit2); GIC(fit3) # BM have the lowest GIC value (see # Model comparison)

> -- Generalized Information Criterion --

> GIC: 4143.144 | Log-likelihood -1885.745

> -- Generalized Information Criterion --

> GIC: 4145.138 | Log-likelihood -1885.742

> -- Generalized Information Criterion --

> GIC: 4144.951 | Log-likelihood -1885.521
We can also use the model fit to perform a phylogenetic PCA
mvgls.pca(fit1)

Regression model with Pagel's lambda estimation
data=list(Y=Y, X=rnorm(n))
mvgls(Y~X, data=data, tree, model="lambda", penalty="RidgeArch")

>
> Call:
> mvgls(formula = Y ~ X, data = data, tree = tree, model = "lambda",
> penalty = "RidgeArch")
>
>
> Generalized least squares fit by penalized REML
> LOOCV of the log-restricted-likelihood: -2342.602

6

>
>
> Parameter estimate(s):
> lambda: 0.9997
>
> Regularization parameter (gamma): 0.1987
>
>
> Covariance matrix of size: 50 by 50
> for 32 observations
>
> Coefficients (truncated):
> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
> (Intercept) 1.727 1.10113 3.5545 1.0848 2.1987 1.63783 -1.05664 1.8868 0.1086
> X 0.233 0.09321 0.1914 0.2892 0.3323 -0.07944 0.02958 0.1233 0.1301
> [,10]
> (Intercept) 5.5728
> X -0.1172
> Use "coef" to display all the coefficients

Note: for the “RidgeArch” and “RidgeAlt” penalizations, various target matrices for the covariance matrix
can be specified through the target argument (e.g. target=“unitVariance”, target=“Variance” or target=“null”
(for RidgeAlt only)). The “Variance” target matrix and the LASSO penalty are not rotation-invariant
(and should not be used with geometric morphometric data for instance). See also the fit_t_pl function in
RPANDA package.

7 Model comparison

Models can be compared using Akaike criterions (AIC) and Akaike weights or likelihood ratio test (LRT)
when they are nested. Several functions are available on mvMORPH: LRT, AIC, logLik, and aicw. For
models estimated by penalized likelihood (function mvgls), a Generalized Information Criterion is computed
using the function GIC (see above). Note this criterion has not been tested for comparing models with
varying number of fixed effects.
set.seed(1)
tree <- pbtree(n=50)
Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,0)
data<-mvSIM(tree, param=list(sigma=sigma, theta=theta), model="BM1", nsim=1)

Fit three nested models
fit_1 <- mvBM(tree, data, model="BM1")
fit_2 <- mvBM(tree, data, model="BM1", param=list(constraint="equal"))
fit_3 <- mvBM(tree, data, model="BM1", param=list(constraint="diagonal"))

Compare their AIC values
AIC(fit_1); AIC(fit_2); AIC(fit_3)

> [1] 44.95452

> [1] 42.95779

> [1] 48.01843

7

Likelihood Ratio Test:
LRT(fit_1, fit_2) # test non-significant as expected!

> -- Log-likelihood Ratio Test --
> Model BM1 versus BM1 equal variance/rates
> Number of degrees of freedom : 1
> LRT statistic: 0.003272743 p-value: 0.9543796
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LRT(fit_1, fit_3)

> -- Log-likelihood Ratio Test --
> Model BM1 versus BM1 diagonal
> Number of degrees of freedom : 1
> LRT statistic: 5.063913 p-value: 0.02442902 *
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Compute the Akaike weights:
results <- list(fit_1,fit_2,fit_3)
weights <- aicw(results)
weights

> -- Akaike weights --
> Rank AIC diff wi AICw
> BM1 equal 2 1 43 0.00 1.0000 0.691
> BM1 default 1 2 45 2.00 0.3685 0.254
> BM1 diagonal 3 3 48 5.06 0.0796 0.055
Model averaging of the evolutionary covariance
mdavg <- lapply(1:3, function(x) results[[x]]$sigma*weights$aicw[x])
Evol_cov <- Reduce('+',mdavg)
Evol_cov

>
> 0.09662155 0.02826968
> 0.02826968 0.09616274
Is the model averaging better than the best fitting model in this example?
which.min(c(mean((sigma-fit_2$sigma)^2),mean((sigma-Evol_cov)^2)))

Get the evolutionary correlations:
cov2cor(Evol_cov)

>
> 1.0000000 0.2932787
> 0.2932787 1.0000000
with more than 2 traits you can compute the conditional (or partial) correlations
cor2pcor(Evol_cov)

> [,1] [,2]
> [1,] 1.0000000 0.2932787
> [2,] 0.2932787 1.0000000
Model averaging for the root state
mdavg <- lapply(1:3, function(x) results[[x]]$theta*weights$aicw[x])

8

Evol_theta <- Reduce('+',mdavg)

8 Treatment of the root

8.1 Ancestral state and primary optimum

The “root” argument in the “param” list of the mvOU function allows specifying if the root state and the
optimum must be estimated (root=TRUE), unless we assume that the root state and the primary optimum
are distributed according to the stationary distribution of the process (root=FALSE; Fig. 1). Indeed, the
root state and the primary optimum are not identifiable separately on extant species. A slight variant of
root=FALSE is root=“stationary” where the root state is explicitely dropped and we assume the optimum is
stationary (e.g., the implementation used in the OUwie package).

Fig. 1. Treatment of the root state options in the mvOU and mvBM functions. For the OU process, when
root=FALSE the ancestral state at the root is directly derived from the oldest regime state (the ancestral state
and the optimum are not estimated separately). With root=TRUE the ancestral state and the optimum are
explicitely estimated. It should be noted that the root=TRUE option provides unreliable estimates without
fossil data. For the BM model, the smean=TRUE option estimates a single ancestral state (the phylogenetic
mean) while smean=FALSE estimates separates phylogenetic means
set.seed(100)
tree<-rtree(100)

Simulate the traits
alpha<-matrix(c(0.2,0.05,0.05,0.1),2)
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,2,0,1.3)
data<-mvSIM(tree, param=list(sigma=sigma, alpha=alpha,

theta=theta, root=TRUE), model="OU1", nsim=1)

mvOU(tree, data, model="OU1", param=list(root=TRUE))

For the mvOUTS function, the path from the initial state to the optimum is explicitely estimated (root=TRUE,
the default value), otherwise the ancestral (initial) state and the optimum are assumed to be the same
(root=FALSE).
timeseries
ts <- 0:49
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
alpha <- matrix(c(1,0.5,0.5,0.8),2,2)

9

theta<-c(0,2,0,1)
data<-mvSIM(ts, param=list(sigma=sigma, alpha=alpha,

theta=theta, root=TRUE), model="OUTS", nsim=1)

mvOUTS(ts, data, param=list(root=TRUE))
mvOUTS(ts, data, param=list(root=FALSE))

8.2 Multiple phylogenetic means

The “smean” argument in the “param” list of the mvBM function allows estimating either one ancestral state
(smean=TRUE) for the whole tree (even if there are multiple regime states) or multiple ancestral states (one
for each regimes; smean=FALSE). Note: contrary to the OU model, the reconstructed history of the discrete
state doesn’t affect the model fit.

When differences between group/regime states are only related to the phylogenetic mean, a multiple rate
model can be misleadingly preferred over a single rate model:
BM model with two selective regimes
set.seed(1)
tree<-pbtree(n=50)

Setting the regime states of tip species
sta<-as.vector(c(rep("Forest",20),rep("Savannah",30))); names(sta)<-tree$tip.label

Making the simmap tree with mapped states
tree<-make.simmap(tree,sta , model="ER", nsim=1)

Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,2,0,2)
data<-mvSIM(tree, param=list(sigma=sigma, theta=theta, smean=FALSE), model="BM1", nsim=1)

fit the models with and without multiple phylogenetic mean, and different rates matrix
fit_1 <- mvBM(tree, data, model="BM1")
fit_2 <- mvBM(tree, data, model="BMM")
fit_3 <- mvBM(tree, data, model="BM1", param=list(smean=FALSE))
fit_4 <- mvBM(tree, data, model="BMM", param=list(smean=FALSE))

Unless we consider the multiple mean models, the multiple rate matrix is misleadingly preferred (∆AIC>4)
over the single rate matrix (the generating) model.
Compare the fitted models.
results <- list(fit_1,fit_2,fit_3,fit_4)
aicw(results, aicc=TRUE)

> -- Akaike weights --
> Rank AIC diff wi AICw
> BM1 default 3 1 43.6 0.00 1.00e+00 8.20e-01
> BMM default 4 2 46.6 3.03 2.20e-01 1.80e-01
> BMM default 2 3 67.3 23.72 7.07e-06 5.80e-06
> BM1 default 1 4 72.1 28.49 6.50e-07 5.33e-07

10

8.3 Directional trends

The “trend” argument in the “param” list allows estimating a BM model with a trend (in either mvBM or
mvRWTS). It should be noted that with mvBM, a trend can be estimated reliably only on non-ultrametric
trees.
Simulated dataset
set.seed(1)
Generating a random non-ultrametric tree
tree<-rtree(100)

Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,0)
trend<-c(0.2,0.2)
data<-mvSIM(tree, param=list(sigma=sigma, trend=trend, theta=theta,

names_traits=c("head.size","mouth.size")), model="BM1", nsim=1)

model without trend
fit_1 <- mvBM(tree, data, param=list(trend=FALSE), model="BM1")
model with independent trends
fit_2 <- mvBM(tree, data, param=list(trend=TRUE), model="BM1")
model with similar trend for both traits
fit_3 <- mvBM(tree, data, param=list(trend=c(1,1)), model="BM1")

results <- list(fit_1,fit_2,fit_3)
aicw(results)

> -- Akaike weights --
> Rank AIC diff wi AICw
> BM1 default 3 1 114 0.000 1.00000 0.61471
> BM1 default 2 2 115 0.944 0.62375 0.38343
> BM1 default 1 3 125 11.600 0.00303 0.00186
are the differences between trends significant?
LRT(fit_2,fit_3) # No... as expected

> -- Log-likelihood Ratio Test --
> Model BM1 versus BM1
> Number of degrees of freedom : 1
> LRT statistic: 1.055977 p-value: 0.3041346
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the same way we can fit a directional random walk on time-series data.
Simulate the time serie and data
timeseries <- 0:49
error <- matrix(0, nrow=50, ncol=2); error[1,] <- 0.001
data<-mvSIM(timeseries , error=error, model="RWTS",

param=list(sigma=sigma, theta=theta, trend=trend), nsim=1)

plot the time serie
matplot(data, type="o", pch=1, xlab="Time (relative)")

11

0 10 20 30 40 50

0
2

4
6

8
10

Time (relative)

da
ta

model fit
fit1 <- mvRWTS(timeseries , data, error)
fit2 <- mvRWTS(timeseries , data, error, param=list(trend=c(1,1)))

LRT(fit2,fit1)

> -- Log-likelihood Ratio Test --
> Model RWTS versus RWTS
> Number of degrees of freedom : 1
> LRT statistic: 13.65591 p-value: 0.0002195495 ***
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the theta parameters cannot be estimated analytically for the “trend” model (i.e., option
root.mle=TRUE in the returned log-likelihood function)

9 Constraints

9.1 Overview of the various constraint parameterizations in mvMORPH

Comparison of constrained models allows testing various evolutionary hypotheses such as independent
evolution, comparing evolutionary rates between traits, common structure, phenotypic integration, . . . etc.
The constraint methods currently available on mvMORPH are the following (see also Fig. 2):

12

Fig. 2. Bivariate representation of the covariance constraints used in mvMORPH.

• “default”: no constraint imposed on the structure of the rate (evolutionary variance and covariance)
matrix

• “diagonal”: there are no evolutionary covariance between traits → the rate matrix is diagonal.
• “equaldiagonal”: there are no evolutionary covariance and the traits share the same variance.
• “equal”: the traits covaries and share the same variance (or evolutionary rate).
• “proportional” (only with “BMM”): the rate matrices are proportional for different regimes/states

mapped on the tree.
• “correlation” (only with “BMM”): the rate matrices share the same correlations between traits for

different regimes/states mapped on the tree.
• “variance” (only with “BMM”): the rate matrices share the same variances (rates) between

regimes/states mapped on the tree.
• “shared” (only with “BMM”): the rate matrices share the same eigen-vectors (orientations) between

regimes/states mapped on the tree.
• “user”: the design of the rate matrix is directly defined by the user. Note that for 2 traits, all the

combinations are readily available from the default methods. See example below.

9.2 “User-defined” constraints

User-defined constraints are done by providing a symmetric square matrix with integer values taken as
indices of the parameters. To constrain covariance values to zero, the user must use NA values as indices.
Because a covariance matrix must be symmetric positive definite, negative eigenvalues are automatically
shrunk to a specified tolerance value (=1). This value can be changed through the “param” list with the
“tol” argument. This value must be changed with various estimates (e.g. 1e-5, 10. . .) if convergence of
the optimizer has not been achieved. The alternative optimization methods may help. The “subplex”
optimization method is advised.
set.seed(14)
Generating a random tree
tree<-pbtree(n=50)

Simulate 3 traits
sigma <- matrix(c(0.01,0.005,0.003,0.005,0.01,0.003,0.003,0.003,0.01),3)
theta<-c(0,0,0)

13

data<-mvSIM(tree, model="BM1", nsim=1, param=list(sigma=sigma, theta=theta))

Fit user-defined contrained model
user_const <- matrix(c(1,4,4,4,2,5,4,5,3),3)
fit1 <- mvBM(tree, data, model="BM1", method="pic"

, param=list(constraint=user_const), optimization="subplex")

only rates/variances are changing
user_const <- matrix(c(1,3,3,3,2,3,3,3,2),3)
fit2 <- mvBM(tree, data, model="BM1", param=list(constraint=user_const)

, method="pic", optimization="subplex")

Some covariances constrained to zero
user_const <- matrix(c(1,4,4,4,2,NA,4,NA,3),3)

print(user_const)

> [,1] [,2] [,3]
> [1,] 1 4 4
> [2,] 4 2 NA
> [3,] 4 NA 3
fit3 <- mvBM(tree, data, model="BM1", method="pic"

, param=list(constraint=user_const), optimization="subplex")

> Efficient parameterization is not yet implemented for user-defined constraints
> Please check the results carefully!!

> successful convergence of the optimizer
> a reliable solution has been reached
>
> -- Summary results for user-defined BM1 constrained model --
> LogLikelihood: 163.4535
> AIC: -312.907
> AICc: -312.1183
> 7 parameters
>
> Estimated rate matrix
> ______________________
>
> 0.008666919 0.002160788 0.002160788
> 0.002160788 0.007599502 0.000000000
> 0.002160788 0.000000000 0.008832866
>
> Estimated root state
> ______________________
>
> theta: 0.01480659 -0.1104121 0.0512424

Note: the user-defined option can also be used with the decomp or decompSigma argument for the OU
processes (see below). The diagonal elements are automatically squared to obtain positive definite matrices
or positive eigenvalues.

14

10 The “param” list

The “param” list argument allows specifying multiple options in mvMORPH functions (starting value
estimate for the optimization, constraints, matrix parameterization. . .)

10.1 The “decomp” and “decompSigma” options

These options allow specifying the matrix parameterization used for the alpha (A) and dispersion (R)
(R = ΣT Σ) matrices of parameters for the Ornstein-Uhlenbeck process:

dX(t) = A(θ(t)−X(t))dt+ ΣdW (t)

and Brownian motion:
dX(t) = ΣdW (t)

For symmetric matrices (e.g., the variance-covariance matrix of the multivariate Brownian motion R = ΣT Σ),
mvMORPH uses various parameterizations to ensure the positive definiteness such as decomp=“cholesky”,
decomp=“spherical” or decomp=“eigen+”. The decomp=“eigen” option parameterizes a symmetric matrix.
For the mvOU function, the sigma matrix parameterization is controlled by the decompSigma argument; e.g.,
decompSigma=“cholesky”.

Symmetric matrices are parameterized by p(p+1)/2 parameters. The first p(p-1)/2 parameters are used to
compute the cholesky factors of spherical angles, or the orthogonal matrices; the next p parameters are the
eigenvalues (in “eigen”) or the standard deviations (in “spherical”). The bivariate case is illustrated here:

Cholesky decomposition: decomp=“cholesky”

R/A =
[
l11 0
l21 l22

] [
l11 0
l21 l22

]T

Separation strategy: decomp=“spherical”

R/A =
[√

ν1 0
0 √

ν2

] ([
1 cos(θ1)
0 sin(θ1)

]T [
1 cos(θ1)
0 sin(θ1)

]) [√
ν1 0
0 √

ν2

]

Eigen decomposition: decomp=“eigen”

R/A =
[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
λ1 0
0 λ2

] [
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]T

or to force the eigenvalues to be positive (mandatory for the sigma matrix):

R/A =
[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
log (λ1) 0

0 log (λ2)

] [
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]T

For the OU process, the alpha matrix can be more general. Matrix parameterization such as singular
value decomposition (decomp=“svd”), QR (decomp=“qr”), or Schur decomposition (decomp=“schur”) are
nevertheless used to generate decomposable and real matrices. The decomp=“svd+”, decomp=“qr+”, and
decomp=“schur+” options forces the eigenvalues to be positive by taking their logarithm, and ensure
uniqueness for the QR factorization. These matrices are parameterized by p2 parameters. The first p(p-1)/2
parameters are used to compute the first orthogonal matrix, while the next p parameters are used for the
eigenvalues (“svd”) or diagonal values of the upper triangular matrix (“qr” and “schur”). The last p(p-1)/2
parameters are used to compute the second othogonal matrix (“svd”), or to fill the upper off-diagonal of the
triangular matrix in the “schur” and “qr” parameterizations.

15

Singular Value Decomposition (SVD): decomp=“svd”

A =
[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
λ1 0
0 λ2

] [
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]T

QR decomposition: decomp=“qr”

A =
[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
λ1 θ2
0 λ2

]

Schur decomposition: decomp=“Schur”

A =
[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

] [
λ1 θ2
0 λ2

] [
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]T

Finally, the alpha matrix can be diagonal (independent effects) or triangular. Triangular parameterizations
are for instance used on time-series forecasting to determine if a given variable is helpful in predicting a second
one (the so-called Granger causality; e.g., the lower process drives the upper one for an upper triangular
matrix). Similarly to symmetric matrices, upper and lower triangular matrices are parameterized by p(p+1)/2
parameters. The first p(p-1)/2 parameters are used for the upper or lower off-diagonal of the matrices, while
the next p parameters are in the diagonal.

Diagonal: decomp=“diagonal”

R/A =
[√

d11 0
0

√
d22

] [√
d11 0
0

√
d22

]T

Upper triangular: decomp=“upper”

A =
[
log (d11) u12

0 log (d22)

]

Lower triangular: decomp=“lower”

A =
[
log (d11) 0
l21 log (d22)

]

Note: so far, the package can’t handle matrices with similar eigenvalues (e.g., the diagonal values must be
slightly different in a triangular matrix).

Non-symmetric matrices can be used to test, for example, hypotheses of evolutionary lag (see chunk of code
below). That is, one trait is chasing the optimum of the second one with a sufficient lag to be detected (a
triangular matrix), while if the tracking is fast enough a “symmetric” model will be preferred. It should
be noted that on ultrametric trees it’s difficult to estimate accurately the path from the ancestral state
toward the primary optimum and therefore it’s hard to test such kind of process with the “OU1” model. For
the “OUM” model on ultrametric trees, the path from the first optimum to the other one between traits is
compared, which makes the model identifiable.
set.seed(14)
tree <- rtree(50)
alpha<-matrix(c(0.6,0,-0.6,0.3),2)
sigma<-matrix(c(0.01,0.005,0.005,0.01),2)
theta <- matrix(c(0,1,0,1.3),2)
Simulate two correlated traits evolving along the phylogeny
e.g. brain size is lagging behind body-size

16

as in Deaner & Nunn 1999 - PRSB
data<-mvSIM(tree,nsim=1, model="OU1",

param=list(sigma=sigma, alpha=alpha, theta=theta, root=TRUE,
names_traits=c("brain-size","body-size")))

No detectable lag:
fit_1 <- mvOU(tree, data, model="OU1", param=list(root=TRUE))
Brain size lag behind body size (the simulated model!)
fit_2 <- mvOU(tree, data, model="OU1", param=list(decomp="upper", root=TRUE))
Body size lag behind brain-size
fit_3 <- mvOU(tree, data, model="OU1", param=list(decomp="lower", root=TRUE))

results <- list(fit_1, fit_2, fit_3)
aicw(results)

> -- Akaike weights --
> Rank AIC diff wi AICw
> OU1 2 1 -216 0.00 1.0000 0.9452
> OU1 3 2 -209 6.50 0.0388 0.0367
> OU1 1 3 -208 7.91 0.0191 0.0181

User-defined constraints on the matrix parameterizations are allowed (but user should check convergence and
try with different methods; see the “constraints” section above):
try user defined constraints
set.seed(100)
ts <- 50
timeseries <- 0:ts

sigma <- matrix(c(0.01,0.005,0.003,0.005,0.01,0.003,0.003,0.003,0.01),3)
upper triangular matrix with effect of trait 2 on trait 1.
alpha <- matrix(c(0.4,0,0,-0.5,0.3,0,0,0,0.2),3,3)
theta <- matrix(c(0,0,0,1,0.5,0.5),byrow=T, ncol=3); root=TRUE

data <- mvSIM(timeseries , model="OUTS", param=list(alpha=alpha,
sigma=sigma, theta=theta, root=root,
names_traits=c("sp 1", "sp 2", "sp 3")))

plot
matplot(data, type="o", pch=1, xlab="Time (relative)")
legend("bottomright", inset=.05, legend=colnames(data), pch=19, col=c(1,2,3), horiz=TRUE)

17

0 10 20 30 40 50

0.
0

0.
5

1.
0

Time (relative)

da
ta

sp 1 sp 2 sp 3

Then provide a matrix of integer indices specifying the target structure:
define an user constrained drift matrix
indice <- matrix(NA,3,3)
diag(indice) <- c(1,2,3)
indice[1,2] <- 4

fit the models
fit_1 <- mvOUTS(timeseries , data, param=list(vcv="fixedRoot", decomp=indice))
fit_2 <- mvOUTS(timeseries , data, param=list(vcv="fixedRoot", decomp="diagonal"))

LRT(fit_1, fit_2)

10.2 the “vcv” argument

For the Ornstein-Uhlenbeck process (OU), the variance-covariance matrix (vcv) is conditioned depending on
how the root is treated. The vcv=“randomRoot” option assumes that the root is a random variable with
the distribution of the stationary process; the vcv=“fixedRoot” option assumes that the root state is a fixed
parameter. While the computation of the “randomRoot” variance-covariance is faster, we cannot use it with
the method=“sparse” option to compute the log-likelihood. However when the process is stationary (i.e.,
when the alpha value/eigenvalues are large enough) both approaches should converge to the same results:
set.seed(1)
simulate a tree scaled to unit length
tree <- pbtree(n=100, scale=1)

theta <- c(0,2) # the ancestral state and the optimum
sigma <- 1
alpha <- 0.1 # large half-life
trait <- mvSIM(tree, nsim=1, model="OU1",

param=list(theta=theta, sigma=sigma, alpha=alpha, root=TRUE))

18

fit the models
fit_1 <- mvOU(tree, trait, model="OU1", param=list(vcv="randomRoot"))
fit_2 <- mvOU(tree, trait, model="OU1", param=list(vcv="fixedRoot"))

Simulate with a stronger effect
alpha <- 6 # small half-life ~10% of the tree height
trait <- mvSIM(tree, nsim=1, model="OU1",

param=list(theta=theta, sigma=sigma, alpha=alpha, root=TRUE))

fit the models
fit_3 <- mvOU(tree, trait, model="OU1", param=list(vcv="randomRoot"))
fit_4 <- mvOU(tree, trait, model="OU1", param=list(vcv="fixedRoot"))

compare the log-likelihood
abs(logLik(fit_1))-abs(logLik(fit_2)) # large half-life

> [1] 0.4415878
abs(logLik(fit_3))-abs(logLik(fit_4)) # small half-life

> [1] -0.01066365

Note: when the strength of selection is high the theta/alpha estimates may be aberrant when using the
“fixedRoot” option, particularly on ultrametric trees.

11 Functions

11.1 The loglikelihood function

The log-likelihood function evaluated during the model fit can be accessed on objects of class “mvmorph”
with the $llik() expression.
set.seed(1)
tree <- pbtree(n=50)
Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,0)
data<-mvSIM(tree, param=list(sigma=sigma, theta=theta), model="BM1", nsim=1)

Fit the model
fit <- mvBM(tree, data, model="BM1")

the loglik function (the order of parameter is printed:)
fit$llik

Use the maximum likelihood parameters from the optimizer
par <- fit$param$opt$par
fit$llik(par)

> [1] -17.47726
all.equal(fit$llik(par),logLik(fit)) # similar results

> [1] TRUE

19

Return also the analytic MLE for theta
fit$llik(par, theta=TRUE)

> $logl
> [1] -17.47726
>
> $theta
> [1] -0.06805689 -0.50171028

On all mvMORPH models, the ancestral states (optimum or theta) are the maximum likelihood estimate
(mle) analytic solutions (conditioned on the other parameters). Nevertheless, the user can specify manually
the values for the root state (e.g., for mcmc evaluation):
Use the maximum likelihood parameters from the optimizer
fit$llik(c(par,fit$theta), root.mle=FALSE)

> [1] -17.47726

11.2 The matrix parameterization functions

The model object also returns functions in the “param” list. The sigmafun and alphafun functions return the
parameterization functions used to fit the models (see the “parameterization” section).
Reconstruct sigma with the untransformed values of the optimizer
sigma <- fit$param$sigmafun(par)

all.equal(as.vector(sigma), as.vector(fit$sigma))

> [1] TRUE

Note that all these functions are available without maximum likelihood evaluation by using the “fixed”
optimization option.
Return the log-likelihood function only
fit <- mvBM(tree, data, model="BM1", optimization="fixed")

> No optimization performed, only the Log-likelihood function is returned with default parameters.

12 Fossil data

All the functions inmvMORPH can handle datasets with fossil species, either from time-series or phylogenetic
trees. Fossil data added to extant ones in non-ultrametric trees frequently greatly improve the reliability and
accuracy of parameter estimates and are mandatory for detecting changes in evolutionary modes such as
with the mvSHIFT model or with mvBM and mvRWTS with “trend”. See also “treatment of the root state”
above.

12.1 Overview of the functions

Methods specifically dedicated to work with fossil data:

• mvSHIFT models
• mvBM param=list(trend=TRUE)
• mvOU param=list(root=TRUE)
• mvOUTS multivariate OU for time-series (coevolution, causal links. . .)

20

• mvRWTS multivariate random walk (=BM process) for time series
• mvRWTS param=list(trend=TRUE) directional random walk

12.2 Imputing missing values

Fossil remains are often altered by post-mortem taphonomic processes such as weathering or distortion. The
estim function can be used to estimate missing phenotypic values for incomplete fossil specimens according to
an evolutionary model.
Simulated dataset
set.seed(14)
Generating a random tree
tree<-rtree(50)

Simulate two correlated traits evolving along the phylogeny
sigma<-matrix(c(0.1,0.05,0.05,0.1),2); theta<-c(0,2)
traits<-mvSIM(tree, model="BM1", param=list(sigma=sigma, theta=theta))

Introduce some missing cases (NA values)
data<-traits
data[8,2]<-NA
data[25,1]<-NA

Fit of model 1
fit_1<-mvBM(tree,data,model="BM1")

Estimate the missing cases
imp<-estim(tree, data, fit_1, asr=FALSE)

Check the imputed data
imp$estim[1:10,]

> [,1] [,2]
> t5 -0.6786515 1.694069
> t6 -0.5199128 2.681879
> t26 -0.6250005 2.630684
> t8 -0.7604932 2.741597
> t36 -1.6387992 2.278030
> t32 -1.2949566 2.631705
> t23 -0.5439427 2.466073
> t28 -0.7203421 2.295284
> t50 -0.7281317 2.163822
> t22 -0.2363978 1.214542

12.3 Ancestral state reconstructions

Note that if the asr argument is TRUE, the ancestral states at each node are returned instead of the imputed
values. If there is missing cases in the dataset, they are first imputed before estimating the ancestral values.
plot(tree, cex=0.6)
nodelabels(, cex=0.6)

21

t5 t6 t26t8 t36t32t23t28 t50t22t17t9 t10t49 t43 t34 t24t19t42 t13 t41t35t2t33 t45t38 t18t44t16t14t37 t11t1t27 t48 t21t29 t20 t30t7t40t4 t39t31 t12t46 t47t15t3 t25

51

52
53

54 55

56
57 58

59

60

61
62 63
64

65
66

67
68 69

70
71

72 73

74

75
76

77
78 79

80
81

82 83

84

85
86 87

88

89
90

91 92

93
94

95 96

97 98
99

Estimate the ancestral states
asr<-estim(tree, data, fit_1, asr=TRUE)

> Warning in estim(tree, data, fit_1, asr = TRUE): Missing cases were first
> imputed before estimating the ancestral values!!
asr$estim[1:10,]

> [,1] [,2]
> 51 -0.4808148 1.848187
> 52 -0.6113839 1.876056
> 53 -0.6643540 2.275969
> 54 -0.6424807 2.590755
> 55 -0.5897833 2.635715
> 56 -0.7593304 2.339656
> 57 -0.8071625 2.408130
> 58 -1.1718089 2.475170
> 59 -0.7366468 2.286504
> 60 -0.3058156 1.810833

13 Tweak mvMORPH

We can use the returned log-likelihood of the mvMORPH functions, or the mvLL function to fit user-defined
models. Here we show two simple examples of how the architecture of the package can be used.

13.1 Make your own model!

set.seed(123)
Here I show a simple example of model fitting using mvMORPH
tree <- pbtree(n=100)

1) Create a model, e.g. the Kappa model of Pagel 1999
phylo_kappa <- function(tree, kappa){

tree$edge.length <- tree$edge.length ^ kappa
return(tree)

}

22

just to compare the trees
par(mfrow=c(1,2))
plot(tree, show.tip.label=FALSE, main="untransformed tree")
plot(phylo_kappa(tree, 0.5), show.tip.label=FALSE, main="Kappa model")

untransformed tree Kappa model

2) Create the log-likelihood function

log_lik <- function(par, tree, data){
tree_transf <- phylo_kappa(tree, par)
result <- mvLL(tree_transf, data, method="pic")
return(list(logl=result$logl, theta=result$theta, sigma=result$sigma))

}

3) optimize it!

create fake data
trait <- rTraitCont(phylo_kappa(tree, 0.7))

guess for the optimization
guess_value <- 0.5

optimize the model!
fit <- optim(guess_value, function(par){log_lik(par, tree, trait)$logl},

method="L-BFGS-B", lower=0, upper=1, control=list(fnscale=-1))

result <- data.frame(logLik=fit$value, kappa=fit$par, sigma2=log_lik(fit$par, tree,
trait)$sigma, theta=log_lik(fit$par, tree, trait)$theta)

rownames(result) <- "Model fit"

print the result
print(result)

> logLik kappa sigma2 theta
> Model fit 91.51378 0.493005 0.006776875 -0.06029173

23

Do the same for a multivariate model:
simulate traits independently
trait <-cbind(rTraitCont(phylo_kappa(tree, 0.7)), rTraitCont(phylo_kappa(tree, 0.7)))

log_lik <- function(par, tree, data){
transform the tree for each traits
tree_transf <- list(phylo_kappa(tree, par[1]), phylo_kappa(tree, par[2]))
result <- mvLL(tree_transf, data, method="pic")
return(list(logl=result$logl, theta=result$theta, sigma=result$sigma))

}

fit
guess_value <- c(0.5,0.5)
fit <- optim(guess_value, function(par){log_lik(par, tree, trait)$logl},

method="L-BFGS-B", lower=0, upper=1, control=list(fnscale=-1))

result <- list(logLik=fit$value, kappa=fit$par, sigma2=log_lik(fit$par, tree,
trait)$sigma, theta=log_lik(fit$par, tree, trait)$theta)

as expected the covariances are low
print(result)

> $logLik
> [1] 161.602
>
> $kappa
> [1] 0.8067459 0.6786095
>
> $sigma2
> [,1] [,2]
> [1,] 0.0106994205 0.0003400595
> [2,] 0.0003400595 0.0115382264
>
> $theta
> [1] 0.177825022 -0.003083168

13.2 Reuse of the returned log-likelihood functions

We can also use the likelihood returned by the mvMORPH functions to fit custom models using joint
optimizations. Here is an example with time-series data to fit a shift in rates and covariances.
set.seed(123)
Simulate the time serie
timeseries <- 0:99

Simulate the traits
sigma_1 <- matrix(c(0.015,0.005,0.005,0.01),2)
sigma_2 <- matrix(c(0.03,0.01,0.01,0.02),2)
theta <- c(0.5,1)
error <- matrix(0,ncol=2,nrow=100);error[1,]=0.001
data_1<-mvSIM(timeseries , error=error,

param=list(sigma=sigma_1, theta=theta), model="RWTS", nsim=1)
data_2<-mvSIM(timeseries +100, error=error,

param=list(sigma=sigma_2, theta=data_1[100,]), model="RWTS", nsim=1)

24

data <- rbind(data_1,data_2)

plot the time serie
matplot(data, type="o", pch=1, xlab="Time (relative)", cex=0.8)

0 50 100 150 200

0.
0

1.
0

2.
0

3.
0

Time (relative)

da
ta

1) log-likelihood function
fun_ts_1 <- mvRWTS(timeseries , data_1, error=error, optimization="fixed")

> No optimization performed, only the Log-likelihood function is returned.
fun_ts_2 <- mvRWTS(timeseries +100, data_2, error=error, optimization="fixed")

> No optimization performed, only the Log-likelihood function is returned.
a model of shift
log_lik_RWshift <- function(par){

compute the log-likelihood for the first bin
part1 <- fun_ts_1$llik(par[1:3], theta=TRUE)
compute the log-likelihood for the second bin using the
expectation of the first bin and sigma2
part2 <- fun_ts_2$llik(c(par[4:6],part1$theta), root.mle=FALSE)

the log-likelihood
ll1 <- part1$logl; ll2 <- part2
return(ll1+ll2)

}

2) starting values (only for sigma because theta is computed analytically)
guess_value <- c(chol(sigma_1)[upper.tri(sigma_1, diag=TRUE)],

chol(sigma_2)[upper.tri(sigma_2, diag=TRUE)])

optimize the model!
fit <- optim(guess_value, function(par){log_lik_RWshift(par)},

25

method="Nelder-Mead", control=list(fnscale=-1))

plot the results
results <- list(sigma_1=fun_ts_1$param$sigmafun(fit$par[1:3]),

sigma_2=fun_ts_2$param$sigmafun(fit$par[4:6]),
theta=fun_ts_1$llik(fit$par[1:3], theta=TRUE)$theta,
llik=fit$value)

print(results)

> $sigma_1
> [,1] [,2]
> [1,] 0.012569443 0.003547747
> [2,] 0.003547747 0.008824665
>
> $sigma_2
> [,1] [,2]
> [1,] 0.025662850 0.007850675
> [2,] 0.007850675 0.020154634
>
> $theta
> [1] 0.4803513 0.9819471
>
> $llik
> [1] 277.1485

14 Bayesian mcmc

mvMORPH models can be estimated using Bayesian mcmc. For instance we can use weakly informative
priors using the various parameterizations in mvMORPH, or directly put priors on the final parameters
(e.g., the inverse Wishart for the rate matrix sigma). Here is an example using the separation strategy based
on the spherical parameterization (angles in the interval [0, π] to ensure the uniqueness of the spherical
parameterization; and standard deviations expressed as uniform priors on [1e-5, 0.4] (but half-t or inverse
Gamma should be preferred); see for instance Lu & Ades 2009; and the matrix parameterization section
above).
set.seed(1)
tree <- pbtree(n=50)
Simulate the traits
sigma<-matrix(c(0.1,0.05,0.05,0.1),2)
theta<-c(0,0)
data<-mvSIM(tree, param=list(sigma=sigma, theta=theta), model="BM1", nsim=1)

Retrieve the log-likelihood of the model (we can use optimization="fixed")
bm_model <- mvBM(tree, data, model="BM1", method="pic")

define weakly informative prior for the correlations and standard deviations separately
prior <- function(x){

a <- dunif(x[1],min=0, max=pi, TRUE) # prior for the angles
b <- dunif(x[2],min=1e-5, max=0.4, TRUE) # prior for the standard deviations of trait 1
c <- dunif(x[3],min=1e-5, max=0.4, TRUE) # prior for the standard deviations of trait 2
return(a+b+c)

}

26

define the log-likelihood distribution
log_lik <- function(par){

ll <- bm_model$llik(par)
pr <- prior(par)
return(ll+pr)

}

Use an mcmc sampler
require(spBayes)
require(coda)
start_val <- bm_model$param$opt$par #the ML values
n.batch <- 500
l.batch <- 25

run the mcmc
fit <- adaptMetropGibbs(log_lik, starting=start_val, batch=n.batch, batch.length=l.batch)

plot the results
chain <- mcmc(fit$p.theta.samples)
plot(chain)

check the distribution of the transformed values
rate_matrix <- t(apply(fit$p.theta.samples, 1, bm_model$param$sigmafun))
colnames(rate_matrix) <- c("Sigma [1,1]","Sigma [1,2]","Sigma [2,1]","Sigma [2,2]")
chain2 <- mcmc(rate_matrix)
plot(chain2)

27

	Trees and Time series
	Phylogenetic trees
	Time series

	Data and Errors
	Simulating data
	Optimization methods
	Likelihood computation methods
	Multivariate GLS models and High-Dimensional datasets
	Model comparison
	Treatment of the root
	Ancestral state and primary optimum
	Multiple phylogenetic means
	Directional trends

	Constraints
	Overview of the various constraint parameterizations in mvMORPH
	``User-defined'' constraints

	The ``param'' list
	The ``decomp'' and ``decompSigma'' options
	the ``vcv'' argument

	Functions
	The loglikelihood function
	The matrix parameterization functions

	Fossil data
	Overview of the functions
	Imputing missing values
	Ancestral state reconstructions

	Tweak mvMORPH
	Make your own model!
	Reuse of the returned log-likelihood functions

	Bayesian mcmc

