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nanonext-package nanonext: NNG (Nanomsg Next Gen) Lightweight Messaging Library

Description

R binding for NNG (Nanomsg Next Gen), a successor to ZeroMQ. NNG is a socket library provid-
ing high-performance scalability protocols, implementing a cross-platform standard for messaging
and communications. Serves as a concurrency framework for building distributed applications,
utilising ’Aio’ objects which automatically resolve upon completion of asynchronous operations.

Usage notes

Call nano_init after package load to set global options such as causing warnings to print immedi-
ately as they occur.

{nanonext} offers 2 equivalent interfaces: an object-oriented interface, and a functional interface.

The primary object in the object-oriented interface is the nano object. Use nano to create a nano
object which encapsulates a Socket and Dialer/Listener. Methods such as $send() or $recv() can
then be accessed directly from the object.

The primary object in the functional interface is the Socket. Use socket to create a socket, and
optionally dial or listen at an address. The socket is then passed as the first argument of subsequent
actions such as send() or recv().

Documentation

Guide to the implemented protocols for sockets: protocols

Guide to the supported transports for dialers and listeners: transports

Options that can be set using setopt(): options

Conceptual overview

NNG presents a socket view of networking. The sockets are constructed using protocol-specific
functions, as a given socket implements precisely one protocol.

Each socket can be used to send and receive messages (if the protocol supports it, and implements
the appropriate protocol semantics). For example, sub sockets automatically filter incoming mes-
sages to discard those for topics that have not been subscribed.

NNG sockets are message oriented, so that messages are either delivered wholly, or not at all.
Partial delivery is not possible. Furthermore, NNG does not provide any other delivery or ordering
guarantees; messages may be dropped or reordered (some protocols, such as req may offer stronger
guarantees by performing their own retry and validation schemes).

Each socket can have zero, one, or many endpoints, which are either listeners or dialers (a given
socket may freely choose whether it uses listeners, dialers, or both). These endpoints provide access
to underlying transports, such as TCP, etc.

Each endpoint is associated with a URL, which is a service address. For dialers, this will be the
service address that will be contacted, whereas for listeners this is where the listener will accept
new connections.
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Links

nanonext website: https://shikokuchuo.net/nanonext/
nanonext on CRAN: https://cran.r-project.org/package=nanonext

NNG website: https://nng.nanomsg.org/
Mbed TLS website: https://www.trustedfirmware.org/projects/mbed-tls/

Author(s)

Charlie Gao <charlie.gao@shikokuchuo.net> (ORCID)

call_aio Call the Value of an Asynchronous AIO Operation

Description

Retrieve the value of an asynchronous AIO operation, waiting for the AIO operation to complete if
still in progress.

Usage

call_aio(aio)

Arguments

aio An Aio (object of class ’sendAio’ or ’recvAio’).

Details

For a ’recvAio’, the received raw vector may be retrieved at $raw (unless ’keep.raw’ was set to
FALSE when receiving), and the converted R object at $data.

For a ’sendAio’, the send result may be retrieved at $result. This will be zero on success, or else
an integer error code.

To access the values directly, use for example on a ’recvAio’ x: call_aio(x)$data.

For a ’recvAio’, in case of an error in unserialisation or data conversion (for example if the incorrect
mode was specified), the received raw vector will be stored at $data to allow for the data to be
recovered.

Once the value has been successfully retrieved, the Aio is deallocated and only the value is stored
in the Aio object.

Note this function operates silently and does not error even if ’aio’ is not an active Aio, always
returning invisibly the passed object.

Value

The passed object (invisibly).

https://shikokuchuo.net/nanonext/
https://cran.r-project.org/package=nanonext
https://nng.nanomsg.org/
https://www.trustedfirmware.org/projects/mbed-tls/
https://orcid.org/0000-0002-0750-061X
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Alternatively

Aio values may be accessed directly at $result for a ’sendAio’, and $raw or $data for a ’recvAio’.
If the Aio operation is yet to complete, an ’unresolved’ logical NA will be returned. Once complete,
the resolved value will be returned instead.

unresolved may also be used, which returns TRUE only if an Aio or Aio value has yet to resolve
and FALSE otherwise. This is suitable for use in control flow statements such as while or if.

Examples

s1 <- socket("pair", listen = "inproc://nanonext")
s2 <- socket("pair", dial = "inproc://nanonext")

res <- send_aio(s1, data.frame(a = 1, b = 2), timeout = 100)
res
call_aio(res)
res$result

msg <- recv_aio(s2, timeout = 100)
msg
call_aio(msg)$data

close(s1)
close(s2)

close.nanoContext Close Connection

Description

Close Connection on a Socket, Context, Dialer or Listener.

Usage

## S3 method for class 'nanoContext'
close(con, ...)

## S3 method for class 'nanoDialer'
close(con, ...)

## S3 method for class 'nanoListener'
close(con, ...)

## S3 method for class 'nanoSocket'
close(con, ...)

## S3 method for class 'nanoStream'
close(con, ...)



6 context

Arguments

con a Socket, Context, Dialer or Listener.

... not used.

Details

Closing an object explicitly frees its resources. An object can also be removed directly in which
case its resources are freed when the object is garbage collected.

Dialers and Listeners are implicitly closed when the socket they are associated with is closed.

Closing a socket associated with a context also closes the context.

When closing a socket or a context: messages that have been submitted for sending may be flushed
or delivered, depending upon the transport. Closing the socket while data is in transmission will
likely lead to loss of that data. There is no automatic linger or flush to ensure that the socket send
buffers have completely transmitted.

Value

Invisibly, an integer exit code (zero on success).

context Open Context

Description

Open a new Context to be used with a Socket. The purpose of a Context is to permit applications to
share a single socket, with its underlying dialers and listeners, while still benefiting from separate
state tracking.

Usage

context(socket)

Arguments

socket a Socket.

Details

Contexts allow the independent and concurrent use of stateful operations using the same socket. For
example, two different contexts created on a rep socket can each receive requests, and send replies
to them, without any regard to or interference with each other.

Only the following protocols support creation of contexts: req, rep, sub (in a pub/sub pattern),
surveyor, respondent.

To send and receive over a context use send and recv or their async counterparts send_aio and
recv_aio.

For nano objects, use the $context() method, which will return a new context.
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Value

A new Context (object of class ’nanoContext’ and ’nano’).

Examples

s <- socket("req", listen = "inproc://nanonext")
ctx <- context(s)
ctx
close(ctx)
close(s)

n <- nano("req", listen = "inproc://nanonext")
ctx <- n$context()
ctx
close(ctx)
n$close()

device Create Device

Description

Creates a device which is a socket forwarder or proxy. Provides for improved horizontal scalability,
reliability, and isolation.

Usage

device(s1, s2)

Arguments

s1 a raw mode Socket.
s2 a raw mode Socket.

Details

Only raw mode sockets may be used with this function. Sockets s1 and s2 must be compatible with
each other, i.e. be opposite halves of a two protocol pattern, or both the same protocol for a single
protocol pattern.

Value

Invisibly, an integer exit code. If the device was successfully created, this function does not return.

Usage

Warning: this function is designed to be called in an isolated process with the two sockets. Once
called, it will block with no ability to interrupt. Kill the process to terminate the device.
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dial Dial an Address from a Socket

Description

Creates a new Dialer and binds it to a Socket.

Usage

dial(socket, url = "inproc://nanonext", autostart = TRUE)

Arguments

socket a Socket or nano object.

url [default ’inproc://nanonext’] a URL to dial, specifying the transport and address
as a character string e.g. ’inproc://anyvalue’ or ’tcp://127.0.0.1:5555’ (see trans-
ports).

autostart [default TRUE] whether to start the dialer. Set to FALSE if you wish to set
configuration options on the dialer as it is not generally possible to change these
once started.

Details

To view all Dialers bound to a socket use $dialer on the socket, which returns a list of Di-
aler objects. To access any individual Dialer (e.g. to set options on it), index into the list e.g.
$dialer[[1]] to return the first Dialer.

This function may be used to bind a new Dialer to a Socket, or else a nano object. If called on
a nano object, the dialer is attached to the object rather than the socket for ease of access, e.g.
$dialer[[1]] rather than $socket$dialer[[1]], but is otherwise equivalent to calling dial()
on the object’s socket directly.

A Dialer is an external pointer to a dialer object, which creates a single outgoing connection at a
time. If the connection is broken, or fails, the dialer object will automatically attempt to reconnect,
and will keep doing so until the dialer or socket is destroyed.

Value

Invisibly, an integer exit code (zero on success). A new Dialer (object of class ’nanoDialer’ and
’nano’) is created and bound to the Socket or nano object if successful.

Further details

Dialers and Listeners are always associated with a single socket. A given socket may have multiple
Listeners and/or multiple Dialers.

The client/server relationship described by dialer/listener is completely orthogonal to any similar
relationship in the protocols. For example, a rep socket may use a dialer to connect to a listener
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on an req socket. This orthogonality can lead to innovative solutions to otherwise challenging
communications problems.

Any configuration options on the dialer/listener should be set by setopt before starting the di-
aler/listener with start.

Dialers/Listeners may be destroyed by close. They are also closed when their associated socket is
closed.

Examples

socket <- socket("rep")
dial(socket, url = "tcp://127.0.0.1:6545", autostart = FALSE)
socket$dialer
start(socket$dialer[[1]])
socket$dialer
close(socket$dialer[[1]])
close(socket)

nano <- nano("bus")
dial(nano, url = "tcp://127.0.0.1:6546", autostart = FALSE)
nano$dialer
start(nano$dialer[[1]])
nano$dialer
close(nano$dialer[[1]])
nano$close()

is_aio Is Aio

Description

Is the object an Aio (sendAio or recvAio).

Usage

is_aio(x)

Arguments

x an object.

Value

Logical value TRUE or FALSE.
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Examples

sock <- socket(listen = "inproc://isaio")
r <- recv_aio(sock)
s <- send_aio(sock, "test")

is_aio(r)
is_aio(s)

close(sock)

is_error_value Is Error Value

Description

Is the object an error value generated by NNG. All returned integer error codes are classed as
’errorValue’ to be distinguishable from integer message values. Includes user-specified errors such
as ’aio’ timeouts.

Usage

is_error_value(x)

Arguments

x an object.

Value

Logical value TRUE if ’x’ is of class ’errorValue’, FALSE otherwise.

Warnings

A warning is generated every time an ’errorValue’ is returned.

nano_init may be used to set the value of option ’warn’ and automatically reverts it upon package
unload. The default, applied by calling nano_init() with no arguments, is ’immediate’, which
prints warnings as they occur.

Further options for warnings may be set manually via options:

• warning.expression - an R code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of option warn.

• warning.length - sets the truncation limit in bytes for error and warning messages. A non-
negative integer, with allowed values 100...8170, default 1000.

• nwarnings - the limit for the number of warnings kept when warn = 0, default 50. This will
discard messages if called whilst they are being collected. If you increase this limit, be aware
that the current implementation pre-allocates the equivalent of a named list for them.
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Examples

is_error_value(1L)

is_nano Is Nano

Description

Is the object an object created by the nanonext package i.e. a nanoSocket, nanoContext, nanoS-
tream, nanoListener, nanoDialer or nano Object.

Usage

is_nano(x)

Arguments

x an object.

Details

Note: does not include Aio objects, for which there is a separate function is_aio.

Value

Logical value TRUE or FALSE.

Examples

s <- socket()
is_nano(s)
n <- nano()
is_nano(n)

close(s)
n$close()
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is_nul_byte Is Nul Byte

Description

Is the object a nul byte.

Usage

is_nul_byte(x)

Arguments

x an object.

Value

Logical value TRUE or FALSE.

Examples

is_nul_byte(as.raw(0L))
is_nul_byte(raw(length = 1L))
is_nul_byte(writeBin("", con = raw()))

is_nul_byte(0L)
is_nul_byte(NULL)
is_nul_byte(NA)

listen Listen to an Address from a Socket

Description

Creates a new Listener and binds it to a Socket.

Usage

listen(socket, url = "inproc://nanonext", autostart = TRUE)
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Arguments

socket a Socket or nano object.

url [default ’inproc://nanonext’] a URL to dial or listen at, specifying the transport
and address as a character string e.g. ’inproc://anyvalue’ or ’tcp://127.0.0.1:5555’
(see transports).

autostart [default TRUE] whether to start the listener. Set to FALSE if you wish to set
configuration options on the listener as it is not generally possible to change
these once started.

Details

To view all Listeners bound to a socket use $listener on the socket, which returns a list of Lis-
tener objects. To access any individual Listener (e.g. to set options on it), index into the list e.g.
$listener[[1]] to return the first Listener.

This function may be used to bind a new Listener to a Socket, or else a nano object. If called
on a nano object, the listener is attached to the object rather than the socket for ease of access,
e.g. $listener[[1]] rather than $socket$listener[[1]], but is otherwise equivalent to calling
listen() on the object’s socket directly.

A listener is an external pointer to a listener object, which accepts incoming connections. A given
listener object may have many connections at the same time, much like an HTTP server can have
many connections to multiple clients simultaneously.

Value

Invisibly, an integer exit code (zero on success). A new Listener (object of class ’nanoListener’ and
’nano’) is created and bound to the Socket or nano object if successful.

Further details

Dialers and Listeners are always associated with a single socket. A given socket may have multiple
Listeners and/or multiple Dialers.

The client/server relationship described by dialer/listener is completely orthogonal to any similar
relationship in the protocols. For example, a rep socket may use a dialer to connect to a listener
on an req socket. This orthogonality can lead to innovative solutions to otherwise challenging
communications problems.

Any configuration options on the dialer/listener should be set by setopt before starting the di-
aler/listener with start.

Dialers/Listeners may be destroyed by close. They are also closed when their associated socket is
closed.

Examples

socket <- socket("req")
listen(socket, url = "tcp://127.0.0.1:6547", autostart = FALSE)
socket$listener
start(socket$listener[[1]])
socket$listener
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close(socket$listener[[1]])
close(socket)

nano <- nano("bus")
listen(nano, url = "tcp://127.0.0.1:6548", autostart = FALSE)
nano$listener
start(nano$listener[[1]])
nano$listener
close(nano$listener[[1]])
nano$close()

mclock Clock Utility

Description

Provides the number of elapsed milliseconds since an arbitrary reference time in the past. The
reference time will be the same for a given program, but may differ between programs.

Usage

mclock()

Details

A convenience function for building concurrent applications. The resolution of the clock depends
on the underlying system timing facilities and may not be particularly fine-grained. This utility
should however be faster than using base Sys.time().

Value

A double.

Examples

time <- mclock(); msleep(100); mclock() - time
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messenger Messenger

Description

Multi-threaded, console-based, 2-way instant messaging system with authentication, based on NNG
scalability protocols.

Usage

messenger(url, auth = NULL)

Arguments

url a URL to connect to, specifying the transport and address as a character string
e.g. ’tcp://127.0.0.1:5555’ (see transports).

auth [default NULL] an R object (possessed by both parties) which serves as a pre-
shared key on which to authenticate the communication. Note: the object is
never sent, only a random subset of its SHA256 hash.

Value

Invisible NULL.

Usage

Type outgoing messages and hit return to send.

The timestamps of outgoing messages are prefixed by > and that of incoming messages by <.

:q is the command to quit.

Both parties must supply the same argument for ’auth’, otherwise the party trying to connect will
receive an ’authentication error’ and be disconnected immediately.

NOTE: This is currently a proof of concept with an experimental authentication protocol and should
not be used for critical applications.

msleep Sleep Utility

Description

Sleep function. May block for longer than requested, with the actual wait time determined by the
capabilities of the underlying system.

Usage

msleep(msec)
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Arguments

msec integer number of milliseconds to block the caller.

Details

If ’msec’ is non-integer, it will be coerced to integer. Non-numeric input will be ignored and return
immediately.

Value

Invisible NULL.

Examples

time <- mclock(); msleep(100); mclock() - time

nano Create Nano Object

Description

Create a nano object, encapsulating a Socket along with an associated Dialer/Listener.

Usage

nano(
protocol = c("bus", "pair", "push", "pull", "pub", "sub", "req", "rep", "surveyor",

"respondent"),
dial = NULL,
listen = NULL,
autostart = TRUE

)

Arguments

protocol [default ’bus’] choose protocol - ’bus’, ’pair’, ’push’, ’pull’, ’pub’, ’sub’, ’req’,
’rep’, ’surveyor’, or ’respondent’ - see protocols.

dial (optional) a URL to dial, specifying the transport and address as a character
string e.g. ’inproc://anyvalue’ or ’tcp://127.0.0.1:5555’ (see transports).

listen (optional) a URL to listen at, specifying the transport and address as a character
string e.g. ’inproc://anyvalue’ or ’tcp://127.0.0.1:5555’ (see transports).

autostart [default TRUE] whether to start the dialer/listener. Set to FALSE if you wish to
set configuration options on the dialer/listener as it is not generally possible to
change these once started.
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Details

This function encapsulates a Socket and a single Dialer and/or Listener.

The Socket may be accessed by $socket, and the Dialer or Listener by $dialer[[1]] or $listener[[1]]
respectively.

The object’s methods may be accessed by $ e.g. $send() or $recv(). These methods mirror their
functional equivalents, with the same arguments and defaults, apart from that the first argument of
the functional equivalent is mapped to the object’s encapsulated socket and does not need to be
supplied.

More complex network topologies may be created by binding further dialers or listeners using the
object’s $dial() and $listen() methods. The new dialer/listener will be attached to the object
e.g. if the object already has a dialer, then at $dialer[[2]] etc.

Note that $dialer_setopt() and $listener_setopt() methods will be available once dialers/listeners
are attached to the object. These methods apply settings to all dialers or listeners equally. To apply
settings to individual dialers/listeners, access them directly via $dialer[[2]] or $listener[[2]]
etc.

Value

An nano object of class ’nanoObject’.

Examples

nano <- nano("bus", listen = "inproc://nanonext")
nano
nano$socket
nano$listener[[1]]

nano$socket_setopt("ms", "send-timeout", 1000)

nano$listen(url = "inproc://nanonextgen")
nano$listener

nano1 <- nano("bus", dial = "inproc://nanonext")
nano$send("example test", mode = "raw")
nano1$recv("character")

nano$close()
nano1$close()

nano_init nanonext Initialise

Description

Initialise global options - intended to be called immediately after package load.
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Usage

nano_init(warn = c("immediate", "deferred", "error", "none"))

Arguments

warn [default ’immediate’] character string defining how to treat warnings generated
by the package. ’immediate’ to print warnings as they occur, ’deferred’ to print
warnings when evaluation returns to the top level, ’error’ to upgrade all warnings
to errors (stops execution), and ’none’ to ignore all warnings.

Value

Invisibly, the integer code applied to options(warn = code).

Warnings

A warning is generated every time an ’errorValue’ is returned.

This function sets the global option ’warn’ to the appropriate value and automatically reverts it upon
package unload. The default, applied by calling nano_init() with no arguments, is ’immediate’,
which prints warnings as they occur.

Further options for warnings may be set manually via options:

• warning.expression - an R code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of option warn.

• warning.length - sets the truncation limit in bytes for error and warning messages. A non-
negative integer, with allowed values 100...8170, default 1000.

• nwarnings - the limit for the number of warnings kept when warn = 0, default 50. This will
discard messages if called whilst they are being collected. If you increase this limit, be aware
that the current implementation pre-allocates the equivalent of a named list for them.

ncurl ncurl

Description

nano cURL - a minimalist http(s) client.

Usage

ncurl(
url,
async = FALSE,
convert = TRUE,
method = NULL,
headers = NULL,
data = NULL,
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request = NULL,
pem = NULL

)

Arguments

url the URL address.

async [default FALSE] logical value whether to perform actions async.

convert [default TRUE] logical value whether to attempt conversion of the received raw
bytes to a character vector.

method (optional) the HTTP method (defaults to ’GET’ if not specified).

headers (optional) a named list or character vector specifying the HTTP request headers
e.g. list(`Content-Type` = "text/plain") or c(Authorization = "Bearer
APIKEY").

data (optional) the request data to be submitted.

request (optional) a character vector or list specifying the response headers to request
e.g. c("date", "server") or list("Date", "Server"). These are case-insensitive
and will return NULL if not present.

pem (optional) applicable to secure HTTPS sites only. The path to a file containing
X.509 certificate(s) in PEM format, comprising the certificate authority certifi-
cate chain (and revocation list if present). If missing or NULL, certificates are
not validated.

Value

Named list of 4 elements:

• $status - integer HTTP repsonse status code (200 - OK).

• $headers - named list of response headers supplied in ’request’ or NULL if unspecified.

• $raw - raw vector of the received resource (use writeBin to save to a file).

• $data - converted character string (if 'convert' = TRUE and content is a recognised text for-
mat), or NULL otherwise. Other tools can be used to further parse this as html, json, xml etc.
if required.

Or else, if async = TRUE, an ’ncurlAio’ (object of class ’ncurlAio’ and ’recvAio’).

Redirects

In interactive sessions: will prompt upon receiving a redirect location whether to follow or not
(default: yes).

In non-interactive sessions: redirects are never followed.

For async requests, the redirect address will be returned as a character string at $raw and $data will
be NULL.
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Examples

ncurl("https://httpbin.org/get", request = c("date", "server"))
ncurl("http://httpbin.org/put",,,"PUT", list(Authorization = "Bearer APIKEY"), "hello world")
ncurl("http://httpbin.org/post",,,"POST", c(`Content-Type` = "application/json"),'{"k":"v"}')

nng_error Translate Error Codes

Description

Translate integer exit code to human readable form. All package functions return an integer exit
code on error rather than the expected return value. These are classed ’errorValue’ and may be
checked by the function is_error_value.

Usage

nng_error(xc)

Arguments

xc integer exit code to translate.

Value

A character vector.

Warnings

A warning is generated every time an ’errorValue’ is returned.

nano_init may be used to set the value of option ’warn’ and automatically reverts it upon package
unload. The default, applied by calling nano_init() with no arguments, is ’immediate’, which
prints warnings as they occur.

Further options for warnings may be set manually via options:

• warning.expression - an R code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of option warn.

• warning.length - sets the truncation limit in bytes for error and warning messages. A non-
negative integer, with allowed values 100...8170, default 1000.

• nwarnings - the limit for the number of warnings kept when warn = 0, default 50. This will
discard messages if called whilst they are being collected. If you increase this limit, be aware
that the current implementation pre-allocates the equivalent of a named list for them.

Examples

nng_error(1L)
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nng_version NNG Library Version

Description

Returns the versions of the ’libnng’ and ’libmbedtls’ libraries used.

Usage

nng_version()

Value

A character vector of length 2.

Examples

nng_version()

opts Opts [Documentation]

Description

Options that can be set on Sockets, Contexts, Dialers or Listeners.

Some options are only meaningful or supported in certain contexts; for example there is no single
meaningful address for a socket, since sockets can have multiple dialers and endpoints associated
with them.

For an authoritative guide please refer to the online documentation for the NNG library at <https://nng.nanomsg.org/man/>.

Global Options

• ’reconnect-time-min’ [type ’ms’]
This is the minimum amount of time (milliseconds) to wait before attempting to establish a
connection after a previous attempt has failed. This can be set on a socket, but it can also be
overridden on an individual dialer. The option is irrelevant for listeners.

• ’reconnect-time-max’ [type ’ms’]
This is the maximum amount of time (milliseconds) to wait before attempting to establish
a connection after a previous attempt has failed. If this is non-zero, then the time between
successive connection attempts will start at the value of ’reconnect-time-min’, and grow expo-
nentially, until it reaches this value. If this value is zero, then no exponential back-off between
connection attempts is done, and each attempt will wait the time specified by ’reconnect-time-
min’. This can be set on a socket, but it can also be overridden on an individual dialer. The
option is irrelevant for listeners.
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• ’recv-size-max’ [type ’size’]
This is the maximum message size that the will be accepted from a remote peer. If a peer
attempts to send a message larger than this, then the message will be discarded. If the value
of this is zero, then no limit on message sizes is enforced. This option exists to prevent
certain kinds of denial-of-service attacks, where a malicious agent can claim to want to send
an extraordinarily large message, without sending any data. This option can be set for the
socket, but may be overridden for on a per-dialer or per-listener basis. NOTE: Applications
on hostile networks should set this to a non-zero value to prevent denial-of-service attacks.
NOTE: Some transports may have further message size restrictions.

• ’recv-buffer’ [type ’int’]
This is the depth of the socket’s receive buffer as a number of messages. Messages received
by a transport may be buffered until the application has accepted them for delivery. This value
must be an integer between 0 and 8192, inclusive. NOTE: Not all protocols support buffering
received messages. For example req can only deal with a single reply at a time.

• ’recv-timeout’ [type ’ms’]
This is the socket receive timeout in milliseconds. When no message is available for receiving
at the socket for this period of time, receive operations will fail with a return value of 5L
(’timed out’).

• ’send-buffer’ [type ’int’]
This is the depth of the socket send buffer as a number of messages. Messages sent by an
application may be buffered by the socket until a transport is ready to accept them for delivery.
This value must be an integer between 0 and 8192, inclusive. NOTE: Not all protocols support
buffering sent messages; generally multicast protocols like pub will simply discard messages
when they cannot be delivered immediately.

• ’send-timeout’ [type ’ms’]
This is the socket send timeout in milliseconds. When a message cannot be queued for delivery
by the socket for this period of time (such as if send buffers are full), the operation will fail
with a return value of 5L (’timed out’).

• ’socket-name’ [type ’string’]
This is the socket name. By default this is a string corresponding to the value of the socket.
The string must fit within 64-bytes, including the terminating NUL byte. The value is intended
for application use, and is not used for anything in the library itself.

Protocol-specific Options

• ’req:resend-time’ [type ’ms’]
(Request protocol) When a new request is started, a timer of this duration is also started. If no
reply is received before this timer expires, then the request will be resent. (Requests are also
automatically resent if the peer to whom the original request was sent disconnects, or if a peer
becomes available while the requester is waiting for an available peer.)

• ’sub:subscribe’ [type ’string’]
(Subscribe protocol) This option registers a topic that the subscriber is interested in. Each
incoming message is checked against the list of subscribed topics. If the body begins with the
entire set of bytes in the topic, then the message is accepted. If no topic matches, then the
message is discarded. To receive all messages, set the topic to NULL.
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• ’sub:unsubscribe’ [type ’string’]
(Subscribe protocol) This option removes a topic from the subscription list. Note that if the
topic was not previously subscribed to with ’sub:subscribe’ then an ’entry not found’ error
will result.

• ’sub:prefnew’ [type ’bool’]
(Subscribe protocol) This option specifies the behavior of the subscriber when the queue is
full. When TRUE (the default), the subscriber will make room in the queue by removing the
oldest message. When FALSE, the subscriber will reject messages if the message queue does
not have room.

• ’surveyor:survey-time’ [type ’ms’]
(Surveyor protocol) Duration of surveys. When a new survey is started, a timer of this duration
is also started. Any responses arriving after this time will be discarded. Attempts to receive
after the timer expires with no other surveys started will result in an ’incorrect state’ error.
Attempts to receive when this timer expires will result in a ’timed out’ error.

Transport-specific Options

• ’ipc:permissions’ [type ’int’]
(IPC transport) This option may be applied to a listener to configure the permissions that are
used on the UNIX domain socket created by that listener. This property is only supported on
POSIX systems. The value is of type int, representing the normal permission bits on a file,
such as 0600 (typically meaning read-write to the owner, and no permissions for anyone else.)
The default is system-specific, most often 0644.

• ’tcp-nodelay’ [type ’bool’]
(TCP transport) This option is used to disable (or enable) the use of Nagle’s algorithm for TCP
connections. When TRUE (the default), messages are sent immediately by the underlying TCP
stream without waiting to gather more data. When FALSE, Nagle’s algorithm is enabled, and
the TCP stream may wait briefly in an attempt to coalesce messages. Nagle’s algorithm is
useful on low-bandwidth connections to reduce overhead, but it comes at a cost to latency.
When used on a dialer or a listener, the value affects how newly created connections will be
configured.

• ’tcp-keepalive’ [type ’bool’]
(TCP transport) This option is used to enable the sending of keep-alive messages on the un-
derlying TCP stream. This option is FALSE by default. When enabled, if no messages are
seen for a period of time, then a zero length TCP message is sent with the ACK flag set in an
attempt to tickle some traffic from the peer. If none is still seen (after some platform-specific
number of retries and timeouts), then the remote peer is presumed dead, and the connection is
closed. When used on a dialer or a listener, the value affects how newly created connections
will be configured. This option has two purposes. First, it can be used to detect dead peers
on an otherwise quiescent network. Second, it can be used to keep connection table entries in
NAT and other middleware from expiring due to lack of activity.

• ’ws:request-headers’ [type ’string’]
(WebSocket transport) Concatenation of multiple lines terminated by CRLF sequences, that
can be used to add further headers to the HTTP request sent when connecting. This option can
be set on dialers, and must be done before the transport is started.
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• ’ws:response-headers’ [type ’string’]
(WebSocket transport) Concatenation of multiple lines terminated by CRLF sequences, that
can be used to add further headers to the HTTP response sent when connecting. This option
can be set on listeners, and must be done before the transport is started.

protocols Protocols [Documentation]

Description

Protocols implemented by {nanonext}.

For an authoritative guide please refer to the online documentation for the NNG library at <https://nng.nanomsg.org/man/>.

Bus (mesh networks)

[protocol, bus] The bus protocol is useful for routing applications or for building mesh networks
where every peer is connected to every other peer. In this protocol, each message sent by a node
is sent to every one of its directly connected peers. This socket may be used to send and receive
messages. Sending messages will attempt to deliver to each directly connected peer.

Messages are only sent to directly connected peers. This means that in the event that a peer is
connected indirectly, it will not receive messages. When using this protocol to build mesh networks,
it is therefore important that a fully-connected mesh network be constructed.

All message delivery in this pattern is best-effort, which means that peers may not receive messages.
Furthermore, delivery may occur to some, all, or none of the directly connected peers (messages
are not delivered when peer nodes are unable to receive). Hence, send operations will never block;
instead if the message cannot be delivered for any reason it is discarded.

Pair (two-way radio)

[protocol, pair] The pair protocol implements a peer-to-peer pattern, where relationships between
peers are one-to-one. Only one peer may be connected to another peer at a time, but both may speak
freely.

Normally, this pattern will block when attempting to send a message if no peer is able to receive the
message.

Push/Pull (one-way pipeline)

In the pipeline pattern, pushers distribute messages to pullers, hence useful for solving producer/consumer
problems.

If multiple peers are connected, the pattern attempts to distribute fairly. Each message sent by a
pusher will be sent to one of its peer pullers, chosen in a round-robin fashion. This property makes
this pattern useful in load-balancing scenarios.

[protocol, push] The push protocol is one half of a pipeline pattern. The other side is the pull
protocol.

[protocol, pull] The pull protocol is one half of a pipeline pattern. The other half is the push protocol.
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Publisher/Subscriber (topics & broadcast)

In a publisher/subscriber pattern, a publisher sends data, which is broadcast to all subscribers. The
subscribing applications only see the data to which they have subscribed.

[protocol, pub] The pub protocol is one half of a publisher/subscriber pattern. This socket may be
used to send messages, but is unable to receive them.

[protocol, sub] The sub protocol is one half of a publisher/subscriber pattern. This socket may be
used to receive messages, but is unable to send them.

Request/Reply (RPC)

In a request/reply pattern, a requester sends a message to one replier, who is expected to reply with
a single answer. This is used for synchronous communications, for example remote procedure calls
(RPCs).

The request is resent automatically if no reply arrives, until a reply is received or the request times
out.

[protocol, req] The req protocol is one half of a request/reply pattern. This socket may be used to
send messages (requests), and then to receive replies. Generally a reply can only be received after
sending a request.

[protocol, rep] The rep protocol is one half of a request/reply pattern. This socket may be used
to receive messages (requests), and then to send replies. Generally a reply can only be sent after
receiving a request.

Surveyor/Respondent (voting & service discovery)

In a survey pattern, a surveyor sends a survey, which is broadcast to all peer respondents. The
respondents then have a chance to reply (but are not obliged to reply). The survey itself is a timed
event, so that responses received after the survey has finished are discarded.

[protocol, surveyor] The surveyor protocol is one half of a survey pattern. This socket may be
used to send messages (surveys), and then to receive replies. A reply can only be received after
sending a survey. A surveyor can normally expect to receive at most one reply from each responder.
(Messages can be duplicated in some topologies, so there is no guarantee of this.)

[protocol, respondent] The respondent protocol is one half of a survey pattern. This socket may be
used to receive messages, and then to send replies. A reply can only be sent after receiving a survey,
and generally the reply will be sent to the surveyor from whom the last survey was received.

random NNG Random Number Generator

Description

Strictly not for statistical analysis. Not reproducible. No ability to set a seed value. Provides random
numbers suitable for system functions such as cryptographic key generation. Random values are
obtained using platform-specific strong cryptographic random number facilities where available.
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Usage

random(n = 1L)

Arguments

n [default 1L] length of vector to return.

Details

If ’n’ is non-integer, it will be coerced to integer; if a vector, only the first element will be used.

Value

A length ’n’ vector of random positive doubles.

Examples

random()
random(n = 3L)

recv Receive

Description

Receive data over a connection (Socket, Context or Stream).

Usage

recv(
con,
mode = c("serial", "character", "complex", "double", "integer", "logical", "numeric",

"raw"),
block,
keep.raw = TRUE,
...,
n = 65536L

)

## S3 method for class 'nanoSocket'
recv(
con,
mode = c("serial", "character", "complex", "double", "integer", "logical", "numeric",

"raw"),
block = FALSE,
keep.raw = TRUE,
...
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)

## S3 method for class 'nanoContext'
recv(
con,
mode = c("serial", "character", "complex", "double", "integer", "logical", "numeric",

"raw"),
block = TRUE,
keep.raw = TRUE,
...

)

## S3 method for class 'nanoStream'
recv(
con,
mode = c("character", "complex", "double", "integer", "logical", "numeric", "raw"),
block = TRUE,
keep.raw = TRUE,
n = 65536L,
...

)

Arguments

con a Socket, Context or Stream.

mode [default ’serial’] mode of vector to be received - one of ’serial’, ’character’,
’complex’, ’double’, ’integer’, ’logical’, ’numeric’, or ’raw’. The default ’serial’
means a serialised R object, for the other modes, the raw vector received will
be converted into the respective mode. For Streams, ’serial’ is not an option and
the default is ’character’.

block logical TRUE to block until successful or FALSE to return immediately even if
unsuccessful (e.g. if no messages are available), or else an integer value speci-
fying the maximum time to block in milliseconds, after which the operation will
time out.

keep.raw [default TRUE] logical flag whether to keep the received raw vector (useful for
verification e.g. via hashing). If FALSE, will return the converted data only.

... currently unused.

n [default 65536L] applicable to Streams only, the maximum number of bytes to
receive. Can be an over-estimate, but note that a buffer of this size is reserved.

Details

In case of an error, an integer ’errorValue’ is returned (to be distiguishable from an integer message
value). This can be verified using is_error_value.

If the raw data was successfully received but an error occurred in unserialisation or data conversion
(for example if the incorrect mode was specified), the received raw vector will always be returned
to allow for the data to be recovered.
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Value

Named list of 2 elements: ’raw’ containing the received raw vector and ’data’ containing the con-
verted object, or else the converted object if ’keep.raw’ is set to FALSE.

Blocking

For Sockets: the default behaviour is non-blocking with block = FALSE. This will return immedi-
ately with an error if no messages are available.

For Contexts and Streams: the default behaviour is blocking with block = TRUE. This will wait until
a message is received. Set a timeout in this case to ensure that the function returns under all scenar-
ios. As the underlying implementation uses an asynchronous send with a wait, it is recommended
to set a positive integer value for block rather than FALSE.

Examples

s1 <- socket("pair", listen = "inproc://nanonext")
s2 <- socket("pair", dial = "inproc://nanonext")

send(s1, data.frame(a = 1, b = 2))
res <- recv(s2)
res
send(s1, data.frame(a = 1, b = 2), echo = FALSE)
recv(s2, keep.raw = FALSE)

send(s1, c(1.1, 2.2, 3.3), mode = "raw")
res <- recv(s2, mode = "double", block = 100)
res
send(s1, "example message", mode = "raw", echo = FALSE)
recv(s2, mode = "character", keep.raw = FALSE)

close(s1)
close(s2)

req <- socket("req", listen = "inproc://nanonext")
rep <- socket("rep", dial = "inproc://nanonext")

ctxq <- context(req)
ctxp <- context(rep)
send(ctxq, data.frame(a = 1, b = 2), block = 100)
recv(ctxp, block = 100)

send(ctxq, c(1.1, 2.2, 3.3), mode = "raw", block = 100)
recv(ctxp, mode = "double", block = 100)

close(req)
close(rep)
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recv_aio Receive Async

Description

Receive data asynchronously over a connection (Socket, Context or Stream).

Usage

recv_aio(
con,
mode = c("serial", "character", "complex", "double", "integer", "logical", "numeric",

"raw"),
timeout = NULL,
keep.raw = TRUE,
...,
n = 65536L

)

## S3 method for class 'nanoSocket'
recv_aio(
con,
mode = c("serial", "character", "complex", "double", "integer", "logical", "numeric",

"raw"),
timeout = NULL,
keep.raw = TRUE,
...

)

## S3 method for class 'nanoContext'
recv_aio(
con,
mode = c("serial", "character", "complex", "double", "integer", "logical", "numeric",

"raw"),
timeout = NULL,
keep.raw = TRUE,
...

)

## S3 method for class 'nanoStream'
recv_aio(
con,
mode = c("character", "complex", "double", "integer", "logical", "numeric", "raw"),
timeout = NULL,
keep.raw = TRUE,
n = 65536L,
...
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)

Arguments

con a Socket, Context or Stream.

mode [default ’serial’] mode of vector to be received - one of ’serial’, ’character’,
’complex’, ’double’, ’integer’, ’logical’, ’numeric’, or ’raw’. The default ’serial’
means a serialised R object, for the other modes, the raw vector received will
be converted into the respective mode. For Streams, ’serial’ is not an option and
the default is ’character’.

timeout [default NULL] integer value in milliseconds or NULL, which applies a socket-
specific default, usually the same as no timeout.

keep.raw [default TRUE] logical flag whether to keep the received raw vector (useful for
verification e.g. via hashing). If FALSE, will return the converted data only.

... currently unused.

n [default 65536L] applicable to Streams only, the maximum number of bytes to
receive. Can be an over-estimate, but note that a buffer of this size is reserved.

Details

Async receive is always non-blocking and returns a ’recvAio’ immediately.

For a ’recvAio’, the received message is available at $data, and the raw message at $raw (if kept).
An ’unresolved’ logical NA is returned if the async operation is yet to complete.

To wait for the async operation to complete and retrieve the received message, use call_aio on the
returned ’recvAio’ object.

Alternatively, to stop the async operation, use stop_aio.

In case of an error, an integer ’errorValue’ is returned (to be distiguishable from an integer message
value). This can be verified using is_error_value.

If the raw data was successfully received but an error occurred in unserialisation or data conversion
(for example if the incorrect mode was specified), the received raw vector will be stored at $data
to allow for the data to be recovered.

Value

A ’recvAio’ (object of class ’recvAio’).

Examples

s1 <- socket("pair", listen = "inproc://nanonext")
s2 <- socket("pair", dial = "inproc://nanonext")

res <- send_aio(s1, data.frame(a = 1, b = 2), timeout = 100)
msg <- recv_aio(s2, timeout = 100, keep.raw = FALSE)
msg
msg$data

res <- send_aio(s1, c(1.1, 2.2, 3.3), mode = "raw", timeout = 100)
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msg <- recv_aio(s2, mode = "double", timeout = 100)
msg
msg$raw
msg$data

res <- send_aio(s1, "example message", mode = "raw", timeout = 100)
msg <- recv_aio(s2, mode = "character", timeout = 100)
call_aio(msg)
msg$raw
msg$data

close(s1)
close(s2)

reply Reply over Context (RPC Server for Req/Rep Protocol)

Description

Implements an executor/server for the rep node of the req/rep protocol. Awaits data, applies an
arbitrary specified function, and returns the result to the caller/client.

Usage

reply(
context,
execute,
recv_mode = c("serial", "character", "complex", "double", "integer", "logical",

"numeric", "raw"),
send_mode = c("serial", "raw"),
timeout = NULL,
...

)

Arguments

context a Context.

execute a function which takes the received (converted) data as its first argument. Can be
an anonymous function of the form function(x) do(x). Additional arguments
can also be passed in through ’...’.

recv_mode [default ’serial’] mode of vector to be received - one of ’serial’, ’character’,
’complex’, ’double’, ’integer’, ’logical’, ’numeric’, or ’raw’. The default ’serial’
means a serialised R object, for the other modes, the raw vector received will be
converted into the respective mode.
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send_mode [default ’serial’] whether data will be sent serialized or as a raw vector. Use
’serial’ for sending and receiving within R to ensure perfect reproducibility. Use
’raw’ for sending vectors of any type (will be converted to a raw byte vector for
sending) - essential when interfacing with external applications.

timeout [default NULL] integer value in milliseconds or NULL, which applies a socket-
specific default, usually the same as no timeout. Note that this applies to receiv-
ing the request. The total elapsed time would also include performing ’execute’
on the received data. The timeout then also applies to sending the result (in the
event that the requestor has become unavailable since sending the request).

... additional arguments passed to the function specified by ’execute’.

Details

Receive will block while awaiting a message to arrive and is usually the desired behaviour. Set a
timeout to allow the function to return if no data is forthcoming.

In the event of an error in either processing the messages or in evaluation of the function with
respect to the data, a nul byte 00 (or serialized nul byte) will be sent in reply to the client to signal
an error. This is to be distinguishable from a possible return value. is_nul_byte can be used to
test for a nul byte.

Value

Invisibly, an integer exit code (zero on success).

Examples

req <- socket("req", listen = "tcp://127.0.0.1:6546")
rep <- socket("rep", dial = "tcp://127.0.0.1:6546")

ctxq <- context(req)
ctxp <- context(rep)

send(ctxq, 2022, block = 100, echo = FALSE)
reply(ctxp, execute = function(x) x + 1, send_mode = "raw", timeout = 100)
recv(ctxq, mode = "double", block = 100, keep.raw = FALSE)

send(ctxq, 100, mode = "raw", block = 100, echo = FALSE)
reply(ctxp, recv_mode = "double", execute = log, base = 10, timeout = 100)
recv(ctxq, block = 100, keep.raw = FALSE)

close(req)
close(rep)



request 33

request Request over Context (RPC Client for Req/Rep Protocol)

Description

Implements a caller/client for the req node of the req/rep protocol. Sends data to the rep node
(executor/server) and returns an Aio, which can be called when the result is required.

Usage

request(
context,
data,
send_mode = c("serial", "raw"),
recv_mode = c("serial", "character", "complex", "double", "integer", "logical",

"numeric", "raw"),
timeout = NULL,
keep.raw = TRUE

)

Arguments

context a Context.

data an object (if send_mode = ’raw’, a vector).

send_mode [default ’serial’] whether data will be sent serialized or as a raw vector. Use
’serial’ for sending and receiving within R to ensure perfect reproducibility. Use
’raw’ for sending vectors of any type (will be converted to a raw byte vector for
sending) - essential when interfacing with external applications.

recv_mode [default ’serial’] mode of vector to be received - one of ’serial’, ’character’,
’complex’, ’double’, ’integer’, ’logical’, ’numeric’, or ’raw’. The default ’serial’
means a serialised R object, for the other modes, the raw vector received will be
converted into the respective mode.

timeout [default NULL] integer value in milliseconds or NULL, which applies a socket-
specific default, usually the same as no timeout. Note that this applies to receiv-
ing the result.

keep.raw [default TRUE] logical flag whether to keep the received raw vector (useful for
verification e.g. via hashing). If FALSE, will return the converted data only.

Details

Sending the request and receiving the result are both performed async, hence the function will return
immediately with a ’recvAio’ object. Access the return value at $data.

This is designed so that the process on the server can run concurrently without blocking the client.

Optionally use call_aio on the ’recvAio’ to call (and wait for) the result.
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If an error occured in the server process, a nul byte 00 will be received (as $data if ’recv_mode’
= ’serial’, as $raw otherwise). This allows an error to be easily distinguished from a NULL return
value. is_nul_byte can be used to test for a nul byte.

Value

A ’recvAio’ (object of class ’recvAio’).

Examples

req <- socket("req", listen = "tcp://127.0.0.1:6546")
rep <- socket("rep", dial = "tcp://127.0.0.1:6546")

ctxq <- context(req)
ctxp <- context(rep)

# works if req and rep are running in parallel in different processes
reply(ctxp, execute = function(x) x + 1, timeout = 10)
aio <- request(ctxq, data = 2022, timeout = 10)
call_aio(aio)

close(req)
close(rep)

send Send

Description

Send data over a connection (Socket, Context or Stream).

Usage

send(con, data, mode = c("serial", "raw"), block, echo = TRUE)

## S3 method for class 'nanoSocket'
send(con, data, mode = c("serial", "raw"), block = FALSE, echo = TRUE)

## S3 method for class 'nanoContext'
send(con, data, mode = c("serial", "raw"), block = TRUE, echo = TRUE)

## S3 method for class 'nanoStream'
send(con, data, mode = "raw", block = TRUE, echo = TRUE)
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Arguments

con a Socket, Context or Stream.

data an object (a vector, if mode = ’raw’).

mode [default ’serial’] for sending serialised R objects, or ’raw’ for sending vectors
of any type (converted to a raw byte vector for sending). For Streams, ’raw’ is
the only option and any other value is ignored. Use ’serial’ for perfect repro-
ducibility within R, although ’raw’ must be used when interfacing with external
applications that do not understand R serialisation.

block logical TRUE to block until successful or FALSE to return immediately even if
unsuccessful (e.g. if no connection is available), or else an integer value speci-
fying the maximum time to block in milliseconds, after which the operation will
time out.

echo [default TRUE] logical TRUE to return the raw vector of sent data, or FALSE to
return an integer exit code (invisibly).

Value

Raw vector of sent data, or (invisibly) an integer exit code (zero on success) if ’echo’ is set to
FALSE.

Blocking

For Sockets: the default behaviour is non-blocking with block = FALSE. This will return immedi-
ately with an error if the message could not be queued for sending. Certain protocol / transport
combinations may limit the number of messages that can be queued if they have yet to be received.

For Contexts and Streams: the default behaviour is blocking with block = TRUE. This will wait until
the send has completed. Set a timeout in this case to ensure that the function returns under all scenar-
ios. As the underlying implementation uses an asynchronous send with a wait, it is recommended
to set a positive integer value for block rather than FALSE.

Examples

pub <- socket("pub", dial = "inproc://nanonext")

send(pub, data.frame(a = 1, b = 2))
send(pub, c(10.1, 20.2, 30.3), mode = "raw", block = 100)

close(pub)

req <- socket("req", listen = "inproc://nanonext")
rep <- socket("rep", dial = "inproc://nanonext")

ctx <- context(req)
send(ctx, data.frame(a = 1, b = 2), block = 100)

msg <- recv_aio(rep, timeout = 100)
send(ctx, c(1.1, 2.2, 3.3), mode = "raw", block = 100)
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close(req)
close(rep)

send_aio Send Async

Description

Send data asynchronously over a connection (Socket, Context or Stream).

Usage

send_aio(con, data, mode = c("serial", "raw"), timeout = NULL)

## S3 method for class 'nanoSocket'
send_aio(con, data, mode = c("serial", "raw"), timeout = NULL)

## S3 method for class 'nanoContext'
send_aio(con, data, mode = c("serial", "raw"), timeout = NULL)

## S3 method for class 'nanoStream'
send_aio(con, data, mode = "raw", timeout = NULL)

Arguments

con a Socket, Context or Stream.

data an object (a vector, if mode = ’raw’).

mode [default ’serial’] for sending serialised R objects, or ’raw’ for sending vectors
of any type (converted to a raw byte vector for sending). For Streams, ’raw’ is
the only option and any other value is ignored. Use ’serial’ for perfect repro-
ducibility within R, although ’raw’ must be used when interfacing with external
applications that do not understand R serialisation.

timeout [default NULL] integer value in milliseconds or NULL, which applies a socket-
specific default, usually the same as no timeout.

Details

Async send is always non-blocking and returns a ’sendAio’ immediately.

For a ’sendAio’, the send result is available at $result. An ’unresolved’ logical NA is returned if
the async operation is yet to complete, The resolved value will be zero on success, or else an integer
error code.

To wait for and check the result of the send operation, use call_aio on the returned ’sendAio’
object.

Alternatively, to stop the async operation, use stop_aio.
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Value

A ’sendAio’ (object of class ’sendAio’).

Examples

pub <- socket("pub", dial = "inproc://nanonext")

res <- send_aio(pub, data.frame(a = 1, b = 2), timeout = 100)
res
res$result

res <- send_aio(pub, "example message", mode = "raw", timeout = 100)
call_aio(res)$result

close(pub)

setopt Set Option on Socket, Context, Dialer, Listener or Stream

Description

Set opts on a Socket, Context, Dialer, Listener or Stream.

Usage

setopt(
object,
type = c("bool", "int", "ms", "size", "string", "uint64"),
opt,
value

)

## S3 method for class 'nanoSocket'
setopt(
object,
type = c("bool", "int", "ms", "size", "string", "uint64"),
opt,
value

)

## S3 method for class 'nanoContext'
setopt(
object,
type = c("bool", "int", "ms", "size", "string", "uint64"),
opt,
value

)
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## S3 method for class 'nanoDialer'
setopt(
object,
type = c("bool", "int", "ms", "size", "string", "uint64"),
opt,
value

)

## S3 method for class 'nanoListener'
setopt(
object,
type = c("bool", "int", "ms", "size", "string", "uint64"),
opt,
value

)

## S3 method for class 'nanoStream'
setopt(
object,
type = c("bool", "int", "ms", "size", "string", "uint64"),
opt,
value

)

Arguments

object a Socket, Context, Listener, Dialer or Stream.

type [default ’bool’] type of option - either ’bool’, ’int’, ’ms’ (duration), ’size’, ’string’
or ’uint64’.

opt name of option, e.g. ’reconnect-time-min’, as a character string. See opts.

value value of option.

Details

Note: once a dialer or listener has started, it is not generally possible to change its configuration.
Hence create the dialer or listener with ’autostart = FALSE’ if configuration needs to be set.

To set options on a Listener or Dialer attached to a Socket or nano object, you must pass in the
objects directly via for example $listener[[1]] for the first Listener.

Value

Invisibly, an integer exit code (zero on success).

Examples

s <- socket("pair")
setopt(s, "ms", "recv-timeout", 2000)
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close(s)

s <- socket("req")
ctx <- context(s)
setopt(ctx, "ms", "send-timeout", 2000)
close(ctx)
close(s)

s <- socket("pair", dial = "inproc://nanonext", autostart = FALSE)
setopt(s$dialer[[1]], "ms", "reconnect-time-min", 2000)
start(s$dialer[[1]])
close(s)

s <- socket("pair", listen = "inproc://nanonext", autostart = FALSE)
setopt(s$listener[[1]], "size", "recv-size-max", 1024)
start(s$listener[[1]])
close(s)

sha224 Cryptographic Hashing Using the SHA-224 Algorithm

Description

Returns a SHA-224 hash or HMAC of the supplied R object. Uses the optimised implementation
from the Mbed TLS library.

Usage

sha224(x, key = NULL)

Arguments

x an object.

key (optional) supply a secret key to generate an HMAC. If missing or NULL, the
SHA-224 hash of ’x’ is returned.

Details

For arguments ’x’ and ’key’, a raw vector is hashed directly, a character string is converted using
charToRaw, whilst other objects are serialised first.

Use as.character() to convert the returned raw vector to a single character string.

Value

A ’nanoHash’ object - raw vector of length 28.
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Examples

sha224("hello world!")

# Converts to a character string:
as.character(sha224("hello world!"))

# Obtain HMAC:
sha224("hello world!", "SECRET_KEY")

sha256 Cryptographic Hashing Using the SHA-256 Algorithm

Description

Returns a SHA-256 hash or HMAC of the supplied R object. Uses the optimised implementation
from the Mbed TLS library.

Usage

sha256(x, key = NULL)

Arguments

x an object.

key (optional) supply a secret key to generate an HMAC. If missing or NULL, the
SHA-256 hash of ’x’ is returned.

Details

For arguments ’x’ and ’key’, a raw vector is hashed directly, a character string is converted using
charToRaw, whilst other objects are serialised first.

Use as.character() to convert the returned raw vector to a single character string.

Value

A ’nanoHash’ object - raw vector of length 32.

Examples

sha256("hello world!")

# Converts to a character string:
as.character(sha256("hello world!"))

# Obtain HMAC:
sha256("hello world!", "SECRET_KEY")
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sha384 Cryptographic Hashing Using the SHA-384 Algorithm

Description

Returns a SHA-384 hash or HMAC of the supplied R object. Uses the optimised implementation
from the Mbed TLS library.

Usage

sha384(x, key = NULL)

Arguments

x an object.

key (optional) supply a secret key to generate an HMAC. If missing or NULL, the
SHA-384 hash of ’x’ is returned.

Details

For arguments ’x’ and ’key’, a raw vector is hashed directly, a character string is converted using
charToRaw, whilst other objects are serialised first.

Use as.character() to convert the returned raw vector to a single character string.

Value

A ’nanoHash’ object - raw vector of length 48.

Examples

sha384("hello world!")

# Converts to a character string:
as.character(sha384("hello world!"))

# Obtain HMAC:
sha384("hello world!", "SECRET_KEY")
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sha512 Cryptographic Hashing Using the SHA-512 Algorithm

Description

Returns a SHA-512 hash or HMAC of the supplied R object. Uses the optimised implementation
from the Mbed TLS library.

Usage

sha512(x, key = NULL)

Arguments

x an object.

key (optional) supply a secret key to generate an HMAC. If missing or NULL, the
SHA-512 hash of ’x’ is returned.

Details

For arguments ’x’ and ’key’, a raw vector is hashed directly, a character string is converted using
charToRaw, whilst other objects are serialised first.

Use as.character() to convert the returned raw vector to a single character string.

Value

A ’nanoHash’ object - raw vector of length 64.

Examples

sha512("hello world!")

# Converts to a character string:
as.character(sha512("hello world!"))

# Obtain HMAC:
sha512("hello world!", "SECRET_KEY")
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socket Open Socket

Description

Open a Socket implementing ’protocol’, and optionally dial (establish an outgoing connection) or
listen (accept an incoming connection) at an address.

Usage

socket(
protocol = c("bus", "pair", "push", "pull", "pub", "sub", "req", "rep", "surveyor",

"respondent"),
dial = NULL,
listen = NULL,
autostart = TRUE,
raw = FALSE

)

Arguments

protocol [default ’bus’] choose protocol - ’bus’, ’pair’, ’push’, ’pull’, ’pub’, ’sub’, ’req’,
’rep’, ’surveyor’, or ’respondent’ - see protocols.

dial (optional) a URL to dial, specifying the transport and address as a character
string e.g. ’inproc://anyvalue’ or ’tcp://127.0.0.1:5555’ (see transports).

listen (optional) a URL to listen at, specifying the transport and address as a character
string e.g. ’inproc://anyvalue’ or ’tcp://127.0.0.1:5555’ (see transports).

autostart [default TRUE] whether to start the dialer/listener. Set to FALSE if you wish to
set configuration options on the dialer/listener as it is not generally possible to
change these once started.

raw [default FALSE] whether to open raw mode sockets. Note: not for general use -
do not enable unless you have a specific need, such as for use with device (refer
to NNG documentation).

Details

NNG presents a socket view of networking. The sockets are constructed using protocol-specific
functions, as a given socket implements precisely one protocol.

Each socket may be used to send and receive messages (if the protocol supports it, and imple-
ments the appropriate protocol semantics). For example, sub sockets automatically filter incoming
messages to discard those for topics that have not been subscribed.

This function (optionally) binds a single Dialer and/or Listener to a Socket. More complex network
topologies may be created by binding further Dialers/Listeners to the Socket as required using dial
and listen. New contexts can also be created using context if the protocol supports it.
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Value

A Socket (object of class ’nanoSocket’ and ’nano’).

Protocols

The following Scalability Protocols (communication patterns) are implemented:

• Bus (mesh networks) - protocol: ’bus’

• Pair (two-way radio) - protocol: ’pair’

• Pipeline (one-way pipe) - protocol: ’push’, ’pull’

• Publisher/Subscriber (topics & broadcast) - protocol: ’pub’, ’sub’

• Request/Reply (RPC) - protocol: ’req’, ’rep’

• Survey (voting & service discovery) - protocol: ’surveyor’, ’respondent’

Please see protocols for further documentation.

Examples

socket <- socket("pair")
socket
close(socket)

start Start Listener/Dialer

Description

Start a Listener/Dialer.

Usage

## S3 method for class 'nanoListener'
start(x, ...)

## S3 method for class 'nanoDialer'
start(x, async = TRUE, ...)

Arguments

x a Listener or Dialer.

... not used.

async [default TRUE] logical flag whether the connection attempt, including any name
resolution, is to be made asynchronously. This helps an application be more re-
silient, but it also generally makes diagnosing failures somewhat more difficult.
If FALSE, failure, such as if the connection is refused, will be returned immedi-
ately, and no further action will be taken.
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Value

Invisibly, an integer exit code (zero on success).

stop_aio Stop Asynchronous AIO Operation

Description

Stop an asynchronous AIO operation.

Usage

stop_aio(aio)

Arguments

aio An Aio (object of class ’sendAio’ or ’recvAio’).

Details

Stops the asynchronous I/O operation associated with ’aio’ by aborting, and then waits for it to
complete or to be completely aborted. The Aio is then deallocated and no further operations may
be performed on it.

Note this function operates silently and does not error even if ’aio’ is not an active Aio, always
returning invisible NULL.

Value

Invisible NULL.

stream Open Stream

Description

Open a Stream by either dialing (establishing an outgoing connection) or listening (accepting an
incoming connection) at an address. This is a low-level interface intended for communicating with
non-NNG endpoints.

Usage

stream(dial = NULL, listen = NULL, textframes = FALSE, pem = NULL)
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Arguments

dial a URL to dial, specifying the transport and address as a character string e.g.
’ipc:///tmp/anyvalue’ or ’tcp://127.0.0.1:5555’ (not all transports are supported).

listen a URL to listen at, specifying the transport and address as a character string e.g.
’ipc:///tmp/anyvalue’ or ’tcp://127.0.0.1:5555’ (not all transports are supported).

textframes [default FALSE] applicable to the websocket transport only, enables sending
and receiving of TEXT frames (ignored otherwise).

pem (optional) applicable to secure websockets only. The path to a file containing
X.509 certificate(s) in PEM format, comprising the certificate authority certifi-
cate chain (and revocation list if present). If missing or NULL, certificates are
not validated.

Details

A Stream is used for raw byte stream connections. Byte streams are reliable in that data will not be
delivered out of order, or with portions missing.

Can be used to dial a (secure) websocket address starting ’ws://’ or ’wss://’. It is often the case that
’textframes’ needs to be set to TRUE.

Specify only one of ’dial’ or ’listen’. If both are specified, ’listen’ will be ignored.

Value

A Stream (object of class ’nanoStream’ and ’nano’).

Examples

# will succeed only if there is an open connection at the address:
s <- stream(dial = "tcp://127.0.0.1:5555")

subscribe Subscribe Topic

Description

For a socket or context using the sub protocol in a publisher/subscriber pattern. Set a topic to
subscribe to.

Usage

subscribe(con, topic = NULL)

## S3 method for class 'nanoSocket'
subscribe(con, topic = NULL)

## S3 method for class 'nanoContext'
subscribe(con, topic = NULL)
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Arguments

con a Socket or Context using the ’sub’ protocol.

topic [default NULL] an atomic type or NULL. The default NULL subscribes to all
topics.

Details

To use pub/sub the publisher must:

• specify mode = 'raw' when sending.

• ensure the sent vector starts with the topic.

The subscriber should then receive specifying the correct mode.

Value

Invisibly, an integer exit code (zero on success).

Examples

pub <- socket("pub", listen = "inproc://nanonext")
sub <- socket("sub", dial = "inproc://nanonext")

subscribe(sub, "examples")

send(pub, c("examples", "this is an example"), mode = "raw")
recv(sub, "character")
send(pub, "examples will also be received", mode = "raw")
recv(sub, "character")
send(pub, c("other", "this other topic will not be received"), mode = "raw")
recv(sub, "character")

subscribe(sub, 2)
send(pub, c(2, 10, 10, 20), mode = "raw")
recv(sub, "double", keep.raw = FALSE)

close(pub)
close(sub)

survey_time Set Survey Time

Description

For a socket or context using the surveyor protocol in a surveyor/respondent pattern. Set a survey
timeout in ms (remains valid for all subsequent surveys). Messages received by the surveyor after
the timer has ended are discarded.
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Usage

survey_time(con, time)

## S3 method for class 'nanoSocket'
survey_time(con, time)

## S3 method for class 'nanoContext'
survey_time(con, time)

Arguments

con a Socket or Context using the ’surveyor’ protocol.

time the survey timeout in ms.

Details

After using this function, to start a new survey, the surveyor must:

• send a message.

• switch to receiving responses.

To respond to a survey, the respondent must:

• receive the survey message.

• send a reply using send_aio before the survey has timed out (a reply can only be sent after
receiving a survey).

Value

Invisibly, an integer exit code (zero on success).

Examples

sur <- socket("surveyor", listen = "inproc://nanonext")
res <- socket("respondent", dial = "inproc://nanonext")

survey_time(sur, 1000)
send(sur, "reply to this survey")
aio <- recv_aio(sur)

recv(res)
s <- send_aio(res, "replied")

call_aio(aio)$data

close(sur)
close(res)
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transports Transports [Documentation]

Description

Transports supported by {nanonext}.

For an authoritative guide please refer to the online documentation for the NNG library at <https://nng.nanomsg.org/man/>.

Inproc

The inproc transport provides communication support between sockets within the same process.
This may be used as an alternative to slower transports when data must be moved within the same
process. This transport tries hard to avoid copying data, and thus is very light-weight.

[URI, inproc://] This transport uses URIs using the scheme inproc://, followed by an arbitrary
string of text, terminated by a NUL byte. inproc://nanonext is a valid example URL.

• Multiple URIs can be used within the same application, and they will not interfere with one
another.

• Two applications may also use the same URI without interfering with each other, and they will
be unable to communicate with each other using that URI.

IPC

The ipc transport provides communication support between sockets within different processes on
the same host. For POSIX platforms, this is implemented using UNIX domain sockets. For Win-
dows, this is implemented using Windows Named Pipes. Other platforms may have different im-
plementation strategies.

Traditional Names

[URI, ipc://] This transport uses URIs using the scheme ipc://, followed by a path name in the file
system where the socket or named pipe should be created.

• On POSIX platforms, the path is taken literally, and is relative to the current directory, unless
it begins with /, in which case it is relative to the root directory. For example, ipc://nanonext
refers to the name nanonext in the current directory, whereas ipc:///tmp/nanonext refers to
nanonext located in /tmp.

• On Windows, all names are prefixed by \.\ pipe\ and do not reside in the normal file system
- the required prefix is added automatically by NNG, so a URL of the form ipc://nanonext is
fine.

UNIX Aliases

[URI, unix://] The unix:// scheme is an alias for ipc:// and can be used inter-changeably, but only
on POSIX systems. The purpose of this scheme is to support a future transport making use of
AF_UNIX on Windows systems, at which time it will be necessary to discriminate between the
Named Pipes and the AF_UNIX based transports.

Abstract Names
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[URI, abstract://] On Linux, this transport also can support abstract sockets. Abstract sockets use
a URI-encoded name after the scheme, which allows arbitrary values to be conveyed in the path,
including embedded NUL bytes. abstract://nanonext is a valid example URL.

• Abstract sockets do not have any representation in the file system, and are automatically freed
by the system when no longer in use. Abstract sockets ignore socket permissions, but it is still
possible to determine the credentials of the peer.

TCP/IP

The tcp transport provides communication support between sockets across a TCP/IP network. Both
IPv4 and IPv6 are supported when the underlying platform also supports it.

[URI, tcp://] This transport uses URIs using the scheme tcp://, followed by an IP address or host-
name, followed by a colon and finally a TCP port number. For example, to contact port 80 on the
localhost either of the following URIs could be used: tcp://127.0.0.1:80 or tcp://localhost:80.

• A URI may be restricted to IPv6 using the scheme tcp6://, and may be restricted to IPv4 using
the scheme tcp4://

• Note: Specifying tcp6:// may not prevent IPv4 hosts from being used with IPv4-in-IPv6 ad-
dresses, particularly when using a wildcard hostname with listeners. The details of this varies
across operating systems.

• Note: both tcp6:// and tcp4:// are specific to NNG, and might not be understood by other
implementations.

• It is recommended to use either numeric IP addresses, or names that are specific to either IPv4
or IPv6 to prevent confusion and surprises.

• When specifying IPv6 addresses, the address must be enclosed in square brackets ([]) to avoid
confusion with the final colon separating the port. For example, the same port 80 on the IPv6
loopback address (::1) would be specified as tcp://[::1]:80.

• The special value of 0 (INADDR_ANY) can be used for a listener to indicate that it should
listen on all interfaces on the host. A short-hand for this form is to either omit the address,
or specify the asterisk (*) character. For example, the following three URIs are all equivalent,
and could be used to listen to port 9999 on the host: (1) tcp://0.0.0.0:9999 (2) tcp://*:9999 (3)
tcp://:9999

WebSocket

The ws transport provides communication support between peers across a TCP/IP network using
WebSockets. Both IPv4 and IPv6 are supported when the underlying platform also supports it.

[URI, ws://] This transport uses URIs using the scheme ws://, followed by an IP address or host-
name, optionally followed by a colon and a TCP port number, optionally followed by a path. (If
no port number is specified then port 80 is assumed. If no path is specified then a path of / is as-
sumed.) For example, the URI ws://localhost/app/pubsub would use port 80 on localhost, with the
path /app/pubsub.

• When specifying IPv6 addresses, the address must be enclosed in square brackets ([]) to avoid
confusion with the final colon separating the port. For example, the same path and port on the
IPv6 loopback address (::1) would be specified as ws://[::1]/app/pubsub.
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• Note: The value specified as the host, if any, will also be used in the Host: HTTP header
during HTTP negotiation.

• To listen to all ports on the system, the host name may be elided from the URL on the listener.
This will wind up listening to all interfaces on the system, with possible caveats for IPv4 and
IPv6 depending on what the underlying system supports. (On most modern systems it will
map to the special IPv6 address ::, and both IPv4 and IPv6 connections will be permitted, with
IPv4 addresses mapped to IPv6 addresses.)

• This transport makes use of shared HTTP server instances, permitting multiple sockets or
listeners to be configured with the same hostname and port. When creating a new listener, it is
registered with an existing HTTP server instance if one can be found. Note that the matching
algorithm is somewhat simple, using only a string based hostname or IP address and port
to match. Therefore it is recommended to use only IP addresses or the empty string as the
hostname in listener URLs.

• All sharing of server instances is only typically possible within the same process.

• The server may also be used by other things (for example to serve static content), in the same
process.

unresolved Query if an Aio is Unresolved

Description

Query whether an Aio or Aio value remains unresolved. Unlike call_aio, this function does not
wait for completion.

Usage

unresolved(aio)

Arguments

aio An Aio (object of class ’sendAio’ or ’recvAio’), or Aio value stored in $result,
$raw or $data as the case may be.

Details

Returns TRUE for unresolved Aios or Aio values, FALSE otherwise. Suitable for use in control
flow statements such as while or if.

Note: querying resolution may cause a previously unresolved Aio to resolve.

Value

Logical TRUE or FALSE.
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Examples

s1 <- socket("pair", listen = "inproc://nanonext")
aio <- send_aio(s1, "test", timeout = 100)

while (unresolved(aio)) {
# do stuff before checking resolution again
cat("unresolved\n")
s2 <- socket("pair", dial = "inproc://nanonext")
Sys.sleep(0.01)

}

unresolved(aio)

close(s1)
close(s2)

unsubscribe Unsubscribe Topic

Description

For a socket or context using the sub protocol in a publisher/subscriber pattern. Remove a topic
from the subscription list.

Usage

unsubscribe(con, topic = NULL)

## S3 method for class 'nanoSocket'
unsubscribe(con, topic = NULL)

## S3 method for class 'nanoContext'
unsubscribe(con, topic = NULL)

Arguments

con a Socket or Context using the ’sub’ protocol.
topic [default NULL] an atomic type or NULL. The default NULL unsubscribes from

all topics (if all topics were previously subscribed).

Details

Note that if the topic was not previously subscribed to then an ’entry not found’ error will result.

To use pub/sub the publisher must:

• specify mode = 'raw' when sending.
• ensure the sent vector starts with the topic.

The subscriber should then receive specifying the correct mode.
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Value

Invisibly, an integer exit code (zero on success).

Examples

pub <- socket("pub", listen = "inproc://nanonext")
sub <- socket("sub", dial = "inproc://nanonext")

subscribe(sub, NULL)

send(pub, c("examples", "this is an example"), mode = "raw")
recv(sub, "character")
send(pub, "examples will also be received", mode = "raw")
recv(sub, "character")
unsubscribe(sub, NULL)
send(pub, c("examples", "this example will not be received"), mode = "raw")
recv(sub, "character")

subscribe(sub, 2)
send(pub, c(2, 10, 10, 20), mode = "raw")
recv(sub, "double", keep.raw = FALSE)

close(pub)
close(sub)
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