
Package ‘neighbours’
August 23, 2022

Type Package

Title Neighbourhood Functions for Local-Search Algorithms

Version 0.1-2

Date 2022-08-22

Maintainer Enrico Schumann <es@enricoschumann.net>

Description Neighbourhood functions are key components of
local-search algorithms such as Simulated Annealing or
Threshold Accepting. These functions take a solution and
return a slightly-modified copy of it, i.e. a neighbour.
The package provides a function neighbourfun() that
constructs such neighbourhood functions, based on
parameters such as admissible ranges for elements in a
solution. Supported are numeric and logical solutions.
The algorithms were originally created for
portfolio-optimisation applications, but can be used for
other models as well. Several recipes for neighbour
computations are taken from ``Numerical Methods and
Optimization in Finance'' by M. Gilli, D. Maringer and
E. Schumann (2019, ISBN:978-0128150658).

License GPL-3

URL http://enricoschumann.net/R/packages/neighbours/ ,

https://sr.ht/~enricoschumann/neighbours/ ,

https://github.com/enricoschumann/neighbours

Suggests NMOF, quadprog, tinytest

NeedsCompilation no

Author Enrico Schumann [aut, cre] (<https://orcid.org/0000-0001-7601-6576>)

Repository CRAN

Date/Publication 2022-08-23 10:40:08 UTC

1

http://enricoschumann.net/R/packages/neighbours/
https://sr.ht/~enricoschumann/neighbours/
https://github.com/enricoschumann/neighbours
https://orcid.org/0000-0001-7601-6576


2 compare_vectors

R topics documented:

compare_vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
neighbourfun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Index 7

compare_vectors Compare Vectors

Description

Compare numeric or logical vectors.

Usage

compare_vectors(..., sep = "", diff.char = "|")

Arguments

... vectors of the same length

sep a string

diff.char a single character

Details

The function compares vectors with one another. The main purpose is to print a useful representa-
tion of differences (and return differences, usually invisibly).

The function is still experimental and will likely change.

Value

depends on how the function is called; typically a list

Author(s)

Enrico Schumann

See Also

neighbourfun



neighbourfun 3

Examples

x <- runif(5) > 0.5
nb <- neighbourfun(type = "logical")

compare_vectors(x, nb(x))
## 01010
## |
## 00010
## The vectors differ in 1 place.

nb <- neighbourfun(type = "logical", stepsize = 2)
compare_vectors(x, nb(x))
## 01010
## | |
## 11011
## The vectors differ in 2 places.

neighbourfun Neighbourhood Functions

Description

Create neighbourhood functions, including constraints.

Usage

neighbourfun(min = 0, max = 1, kmin = NULL, kmax = NULL,
stepsize, sum = TRUE, random = TRUE, update = FALSE,
type = "numeric", active = TRUE, length = NULL,
A = NULL, ...)

neighborfun (min = 0, max = 1, kmin = NULL, kmax = NULL,
stepsize, sum = TRUE, random = TRUE, update = FALSE,
type = "numeric", active = TRUE, length = NULL,
A = NULL, ...)

Arguments

min a numeric vector. A scalar is recycled to length, if specified.

max a numeric vector. A scalar is recycled to length, if specified.

kmin NULL or integer: the minimum number of TRUE values in logical vectors

kmax NULL or integer: the maximum number of TRUE values in logical vectors

stepsize numeric. For numeric neighbourhoods, the (average) stepsize. For logical neigh-
bourhoods, the number of elements that are changed.

sum logical or numeric. If specified and of length 1, only zero-sum changes will be
applied to a numeric vector (i.e. the sum over all elements in a solution remains
unchanged).



4 neighbourfun

random logical. Should the stepsize be random or fixed?

active a vector: either the positions of elements that may be changed, or a logical
vector. The default is a length-one logical vector, which means that all elements
may be changed.

update either logical (the default FALSE) or a string, specifying the type of updating.
Currently supported is "Ax", in which case the matrix A must be specified. See
Examples.

A a numeric matrix

type string: either "numeric", "logical" or "permute"

length integer: the length of a vector

... other arguments

Details

The function returns a closure with arguments x and ..., which can be used for local-search algo-
rithms.

Three types of solution vectors are supported:

numeric a neighbour is created by adding or subtracting typically small numbers to random ele-
ments of a solution

logical TRUE and FALSE values are switched

permute elements of x are exchanged. Works with atomic and generic vectors (aka lists).

neighborfun is an alias for neighbourfun.

Value

A function (closure) with arguments x and ....

Note on algorithms

There are different strategies to implement constraints in local-search algorithms, and ultimately
only experiments show which strategy works well for a given problem class. The algorithms used
by neighbourfun always require a feasible initial solution, and then remain within the space of
feasible solutions. See Gilli et al. (2019), Section 12.5, for a brief discussion.

Author(s)

Maintainer: Enrico Schumann <es@enricoschumann.net>

References

Gilli, M., Maringer, D. and Schumann, E. (2019) Numerical Methods and Optimization in Finance.
2nd edition. Elsevier.
https://www.elsevier.com/books/numerical-methods-and-optimization-in-finance/gilli/
978-0-12-815065-8

Schumann, E. (2019) Financial Optimisation with R (NMOF Manual).
http://enricoschumann.net/NMOF.htm#NMOFmanual

https://www.elsevier.com/books/numerical-methods-and-optimization-in-finance/gilli/978-0-12-815065-8
https://www.elsevier.com/books/numerical-methods-and-optimization-in-finance/gilli/978-0-12-815065-8
http://enricoschumann.net/NMOF.htm#NMOFmanual


neighbourfun 5

See Also

implementations of algorithms of the local-search family, such as Simulated Annealing (SAopt in
NMOF) or Threshold Accepting (TAopt in NMOF)

Examples

## a LOGICAL neighbourhood
x <- logical(8)
x[1:3] <- TRUE

N <- neighbourfun(type = "logical", kmin = 3, kmax = 3)

cat(ifelse(x, "o", "."), " | initial solution ",
sep = "", fill = TRUE)

for (i in 1:5) {
x <- N(x)
cat(ifelse(x, "o", "."), sep = "", fill = TRUE)

}
## ooo..... | initial solution
## oo....o.
## o...o.o.
## o.o.o...
## oo..o...
## oo....o.

## UPDATING a numeric neighbourhood
## the vector is 'x' is used in the product 'Ax'
A <- array(rnorm(100*25), dim = c(100, 25))
N <- neighbourfun(type = "numeric",

stepsize = 0.05,
update = "Ax",
A = A)

x <- rep(1/25, 25)
attr(x, "Ax") <- A %*% x
for (i in 1:10)

x <- N(x, A)

all.equal(A %*% x, attr(x, "Ax"))

## a PERMUTATION neighbourhood
x <- 1:5

N <- neighbourfun(type = "permute")
N(x)
## [1] 1 2 5 4 3
## ^ ^

N <- neighbourfun(type = "permute", stepsize = 5)



6 neighbourfun

N(x)

## 'x' is not restricted to integers
x <- letters[1:5]
N(x)

## a useful way to STORE/SPECIFY PARAMETERS, e.g. in config files
settings <- list(type = "numeric",

min = 0.0,
max = 0.2)

do.call(neighbourfun, settings)



Index

∗ optimize
neighbourfun, 3

compare_vectors, 2

FALSE, 4

neighborfun (neighbourfun), 3
neighbors (neighbourfun), 3
neighbourfun, 2, 3, 4
neighbours (neighbourfun), 3
neighbours-package (neighbourfun), 3
NULL, 3

SAopt, 5

TAopt, 5
TRUE, 3, 4

7


	compare_vectors
	neighbourfun
	Index

