Package ‘netgen’

January 8, 2020
Type Package

Title Network Generator for Combinatorial Graph Problems

Description Methods for the generation of a wide range of network geographies,
e.g., grid networks or clustered networks. Useful for the generation of
benchmarking instances for the investigation of, e.g., Vehicle-Routing-Problems
or Travelling Salesperson Problems.

Version 1.3.2
Date 2020-01-08

Maintainer Jakob Bossek <j.bossek@gmail.com>
URL https://github.com/jakobbossek/netgen

BugReports https://github.com/jakobbossek/netgen/issues
License BSD_3_clause + file LICENSE

Depends BBmisc (>= 1.6), mvtnorm (>= 1.0-2), lhs (>= 0.10), checkmate
(>=1.8.0)

Imports ggplot2, igraph (>=0.7.1), stringr (>= 0.6.2)
Suggests testthat, IpSolve

LazyData yes

ByteCompile yes

RoxygenNote 6.1.1

NeedsCompilation no

Author Jakob Bossek [aut, cre]

Repository CRAN

Date/Publication 2020-01-08 17:50:02 UTC

R topics documented:

addNodeWeights L
as.character.Network
as.data.frame Network

https://github.com/jakobbossek/netgen
https://github.com/jakobbossek/netgen/issues

2 addNodeWeights
as.matrix. Network Lo 4
autoplot.Network 5
dynamise e e 6
exportToFile L e 7
exportToTSPlibFormat 7
filterTSPInstances e 8
generateClusteredNetwork L oL L 9
generateGridNetwork L e 11
generateRandomNetwork L oL 12
getDepotCoordinates e e e 13
getNumberOfClusters 13
getNumberOfDepots 14
getNumberOfNodes e 14
getOptimalPointMatching oL 15
getPointDistributionStrategies 16
getTSPInstancesOVerviewo e 16
getValidEdgeWeightTypes o i e 17
hasDepots e 17
importFromFile e 18
importFromTSPlibFormat L o 18
isEuclidean 19
isNetwork e 19
makeNetwork 20
morphlnstances 21
rescaleNetwork 22
visualizeMorphing e e 23
visualizePointMatching oL 24

Index 26

addNodeWeights Add node weights.

Description

This function adds node weights to an edge-weighted graph. This is of interest in the study of
weighted TSP, where the distance between two nodes is not based on the actual distance but addi-
tionally is influenced by the weight of the starting node or all nodes prior in the permutation. This
is indeed of practical interest. E.g. consider a garbage collecting vehicle which requires the more
gas per mile the heavier its load.

Usage

addNodeWeights(x, weights = NULL)

as.character.Network

Arguments
X [Network]
Network.
weights [numeric(1)]
Numeric vector of weights.
See Also

generateRandomNetwork, generateClusteredNetwork, generateGridNetwork

as.character.Network Get basic network information as a string.

Description

Get basic network information as a string.

Usage

S3 method for class 'Network'
as.character(x, ...)

Arguments

X [Network]
Network.

[any]
Not used at the moment.

Value

character (1)

as.data.frame.Network Convert network to data frame.

Description

Convert network to data frame.

Usage

S3 method for class 'Network!'
as.data.frame(x, row.names = NULL, optional = FALSE,
include.extras = TRUE, ...)

4 as.matrix.Network

Arguments
X [Network]
Network.
row.names [character]
Row names for the result. Default is NULL.
optional [any]

Currently not used.

include.extras [logical(1)]
Include additional information like cluster membership and node type as specific
columns? Default is TRUE.

[any]
Currently not used.

Value

data.frame

Note

If the instance contains of n depots, the depot coordinates fill the first n rows of the data frame.

as.matrix.Network Convert network to matrix.

Description

Convert network to matrix.

Usage
S3 method for class 'Network'
as.matrix(x, ...)
Arguments
X [Network]
Network.
[any]

Currently not used.

Value

matrix

Note

If the instance contains of n depots, the depot coordinates fill the first n rows of the matrix.

autoplot.Network 5

autoplot.Network Autoplot function.

Description

Generates a ggplot object. Nice possibility to visualize 2-dimensional (clustered) networks in the
euclidean plane.

Usage

S3 method for class 'Network'
autoplot(object, path = NULL, close.path = FALSE,

path.colour = "gray"”, use.opt.tour = FALSE, ...)
Arguments
object [Network]
Network.
path [integer]

An integer vector containing the order of cities of a path or a list of multiple
paths. Keep in mind that instances with n nodes and m depots have n + m
coordinates, with the 1, ..., m first coordinates belonging to the depots.

close.path [logical(1)]
Logical indicating whether the path passed by path should be closed to a cycle.
Default is FALSE.

path.colour [character(1)]
Colour of the lines linking nodes on a path. Default is “gray”.

use.opt.tour [logical(1)]
If the given network knows its optimal tour, should it be plotted? If this is
the case and path is given additionally, the optimal tour is ignored. Default is
FALSE.

[any]
Currently not used.

Value

ggplot

Examples

Not run:

here we have no depots ...

x = generateClusteredNetwork(n.points = 30L, n.cluster = 2L)

pl = autoplot(x, path = 1:3)

... and here we have two depots: the path visits the depots in this case
x = generateRandomNetwork(n.points = 30L, n.depots = 2L)

6 dynamise

pl = autoplot(x, path = 1:3, path.colour = "tomato")

End(Not run)

dynamise Add dynamic arrival times to nodes.

Description

Some variants of the Vehicle Routing Problem (VRP) consider static as well as dynamic customers
(nodes). This function takes a Network and dynamises it, i. e., it adds dynamic arrival times to the
customers via a Poisson process.

Usage

dynamise(x, n.dynamic = NULL, dyn.customers.ratio = NULL,
arrival.limit)

Arguments
X [Network]
Network.
n.dynamic [integer(1) | NULL] Number of nodes, which should become dynamic. Ignored

if dyn.customers.ratio is not NULL.
dyn.customers.ratio

[numeric(1) | NULL] Ratio of dynamic nodes. If this is set to a numeric value
in (0, 1), the parameter n.dynamic is ignored.

arrival.limit [numeric(1)]
Maximal arrival time.

Value

Network Modified network (now has an additional list element ’arrival.times’) and the ratio of dynamic
customers as an attribute.

See Also

generateRandomNetwork, generateClusteredNetwork, generateGridNetwork

Examples

x = generateClusteredNetwork(n.points = 100L, n.cluster = 4L, upper = 100, n.depots = 2L)
x = dynamise(x, dyn.customers.ratio = 0.3, arrival.limit = 400)
print(x)

exportToFile 7

exportToFile Exports a network to an proprietary format.

Description

The format used is similar to the TSPlib format (see exportToTSPlibFormat), but it saves not only
the point coordinates. It also saves the arrival times of dynamic customers.

Usage

exportToFile(x, filename, digits = 2L)

Arguments
X [Network]
Network to export.
filename [character(1)]
File name.
digits [integer(1)]
Round coordinates to this number of digits. Default is 2.
Value
Nothing

exportToTSPlibFormat Exports a network to the TSPIib format.

Description

Exports a network to the TSPlib format.

Usage

exportToTSPlibFormat(x, filename, name = NULL, comment = NULL,
use.extended.format = TRUE, full.matrix = FALSE, digits = 10L)

Arguments
X [Network]
Network to export.
filename [character(1)]

File name.

8 filterTSPInstances
name [character(1) I NULL]
Character string describing the instance. Used for the NAME field in the TSPIib
file format. Otherwise, the name of the instance is used. If the latter is NULL,
this parameter is mandatory.
comment [character (1) I NULL]
Optional string with additional information about the instance. Used for the
COMMENT field. If not provided the comment field of the instance is used. If
the latter is NULL, no comment at all is saved
use.extended. format
[logical(1)]
Use the “extended tsplib format” with additional information like cluster mem-
bership and bounds? Default is TRUE.
full.matrix [logical(1)]
Make use of “FULL_MATRIX” “EDGE_WEIGHT_FORMAT" instead of
node coordinates? Default is FALSE.
digits [integer(1)]
Round coordinates to this number of digits. Default is 10.
Value
Nothing
Note
Currently we only support euclidean 2D instances. Furthermore note, that if use. extended. format
is TRUE, most alternative TSPIib parsers will most probably not be able to parse the generated file.
filterTSPInstances Filter TSPIib instances according to its specifications.
Description
Given a directory of TSP problems in the TSPIlib format with file extension .tsp, this function reads
the specifications of each TSPIib instance in that directory and returns a data frame with rowwise
information about each instance.
Basically the function is a wrapper around getTSPInstancesOverview.
Usage

filterTSPInstances(directory = NULL, expr, paths.only = FALSE,

opt.known

FALSE)

generateClusteredNetwork 9

Arguments
directory [character(1)]
Readable directory path.
expr [expression]
Expression wrapped with the quote function.
paths.only [logical(1)]
Should only the full file names of the instances be returned? Default is FALSE.
opt.known [logical(1)]
Filter instances x with unknown optimal tour length (given in file Xx.tsp.tour)?
Default is FALSE.
Value
data.frame
See Also

getTSPInstancesOverview

Examples

Not run:

Get a data frame of instances and its properties for all instances
with more than 4000 nodes

filterTSPInstances("path/to/instances”, quote(dimension > 4000))

Now get only the full file names of all instances with edge weight type
EUC_2D or CEIL_2D (see tsplib documentation for details)
filterTSPInstances("path/to/instances”,

expr = quote(edge_weight_type %in% c("EUC_2D", "CEIL_2D")),

paths.only = TRUE
)

End(Not run)

generateClusteredNetwork
Function for generation of clustered networks

Description

This function generates clustered networks. It first generates n cluster centeres via a latin hypercube
design to ensure space-filling property, i. e., to ensure, that the clusters are placed far from each
other. It then distributes points to the clusters according to gaussian distributions using the cluster
centers as the mean vector and the distance to the nearest neighbour cluster center as the variance.
This procedure works well if the box constraints of the hypercube are not too low (see the lower
bound for the upper parameter).

10

Usage

generateClusteredNetwork

generateClusteredNetwork(n.cluster, n.points, n.dim = 2L,

generator = lhs::maximinLHS, lower = @, upper = 100,
sigmas = NULL, n.depots = NULL,
distribution.strategy = "equally.distributed”,
cluster.centers = NULL, out.of.bounds.handling = "mirror",
name = L)
Arguments
n.cluster [integer(1)]
Desired number of clusters. This is ignored if cluster.centers is provided.
n.points [integer(1)]
Number of points for the network.
n.dim [integer(1)]
Number of dimensions. Default ist 2.
generator [function]
Function which generates cluster centers. Default is maximinLHS.
lower [numeric(1)]
Lower box constaint for cube. Default is 0.
upper [numeric(1)]
Upper box constaint for cube. Default is 100.
sigmas [list I NULL]
Unnamed list of length n. cluster containing a covariance matrix for each clus-
ter. Default is NULL. In this case the covariance matrix is a diagonal matrix
containing the distances to the nearest neighbour cluster center as diagonal ele-
ments.
n.depots [integer(1)]

Number of depots in instances for the Vehicle Routing Problem (VRP). Default
is NULL, i. e., no depots. The proceeding is as follows: If n.depots is 1L, a
random cluster center is defined to be the depot. If n.depots is 2L, the second
depot has maximal distance to the first. At the moment at most two depots are
possible.

distribution.strategy

cluster.centers

[character(1)]
Define the strategy to distribute n.points on the n.cluster clusters. Default
is “equally.distributed”, which is the only option at the moment.

[matrix]
Matrix of cluster centres of dimension n.cluster x n.dim. If this is set, cluster
centres are not generated automatically. Default is NULL.

out.of.bounds.handling

[character(1)]
Clusters are generated on base of a multivariate gaussian distribution with the
cluster center as the mean vector. Possibly some of the points might fall out of

generateGridNetwork 11

bounds, i. e., get coordinates larger than upper or lower than lower. There are
two strategies to force them to stick to the bounds:

“reset” Set the violating coordinates to the bounds.
“mirror” Mirror the coordinates at the violated axis.

Default is “mirror”.

name [character (1) I NULL]
Optional name for the generated network. Default is NULL. In this case a random
name is generated.

[any]
Currently not used.
Value

ClusteredNetwork Object of type ClusteredNetwork.

See Also

generateRandomNetwork

Examples

x = generateClusteredNetwork(n.points = 20L, n.cluster = 2L)
y = generateClusteredNetwork(n.points = 40L, n.cluster = 3L, n.depots = 2L)
z = generateClusteredNetwork(n.points = 200L, n.cluster = 10L, out.of.bounds.handling = "reset")

generateGridNetwork Generates a grid network.

Description

Generates a grid network.

Usage

generateGridNetwork(n.points.per.dim = NULL, n.dim = 2L, lower = 0,
upper = 100, name = NULL)

Arguments
n.points.per.dim
[integer(1)]
Number of points in each dimension.
n.dim [integer(1)]
Number of dimensions. Default ist 2.

lower [numeric(1)]
Lower box constaint for cube. Default is 0.

12 generateRandomNetwork

upper [numeric(1)]
Upper box constaint for cube. Default is 100.
name [character (1) | NULL]

Optional name for the generated network. Default is NULL. In this case a random
name is generated.

Value

Network

Note

Grid networks with depots are not supported at the moment.

Examples

x = generateGridNetwork(n.points.per.dim = 10L, upper = 50)

generateRandomNetwork Generates a random graph in a hypercube.

Description

Generates a random graph in a hypercube.

Usage

generateRandomNetwork(n.points, n.dim = 2L, n.depots = NULL,
lower = @, upper = 100, name = NULL)

Arguments

n.points [integer(1)]
Number of points.

n.dim [integer(1)]
Number of dimensions. Default ist 2.

n.depots [integer(1)]
Number of depots in instances for the Vehicle Routing Problem (VRP). Default
is NULL, i. e., no depots. The proceeding is as follows: If n.depotsis 1, a
random cluster center is defined to be the depot. If n.depots is 2, the second
depot has maximal distance to the first. By convention the depots are placed as
the first nodes in the coordinates matrix.

lower [numeric(1)]
Lower box constraint of cube.

upper [numeric(1)]

Upper box constraint of cube. Default is 100.

getDepotCoordinates 13

name [character(1) I NULL]
Optional name for the generated network. Default is NULL. In this case a random
name is generated.

Value

Network

Examples

X = generateRandomNetwork(n.points = 100L, n.depots = 2L, upper = 50)

getDepotCoordinates Get coordinates of depots.

Description

Get coordinates of depots.

Usage

getDepotCoordinates(x)

Arguments
X [Network]
Network.
Value
matrix

getNumberOfClusters Get the number of clusters of a network.

Description

Get the number of clusters of a network.

Usage

getNumberOfClusters(x)

Arguments

X [Network]
Network.

14

Value

integer (1) Number of clusters.

Note

For simple random or grid networks this function always returns 1.

getNumberOfNodes

getNumberOfDepots Returns the number of depots of a network.

Description

Returns the number of depots of a network.

Usage
getNumberOfDepots(x)

Arguments
X [Network]
Network.
Value

integer (1)

getNumberOfNodes Returns number of nodes of a network.

Description

Returns number of nodes of a network.

Usage
getNumberOfNodes (x)
Arguments
X [Network]
Network.
Value

integer (1) Number of nodes of the network.

getOptimalPointMatching 15

getOptimalPointMatching
Computes optimal point assignment for two sets of points of equal size.

Description

Internally it handles the points and the possible matchings as a bi-partite graphs and finds an optimal
matching due to euclidean distance by an efficient linear programming solver.

Usage

getOptimalPointMatching(x, y, method = "1p”, full.output = FALSE)

Arguments

X [Network I matrix]
First network or matrix of coordinates of the first point set.

y [Network I matrix]
Second network or matrix of coordinates of the second point set.

method [character(1)]
Method used to solve the assignment problem. There are currently two methods
available:

Ip Solves the problem be means of linear programming with the IpSolve pack-
age to optimality. This is the default.

push_relabel The assignment problem can be formulated as a matching prob-
lem on bipartite graphs. This method makes use of the push-relabel algo-
rithm from the igraph. Solves to optimality.

random Random point matching. Just for comparisson.
greedy Greedy point matching, i.e., iterativeely assign two unmatched points
with minimal euclidean distance.

full.output [logical(1)]
Should optimization process information, e.g., the weight of the best matching,
be returned? Default is FALSE.

Value

matrix | list Either a matrix where each row consists of the indizes of the pairwise assigned points. If
full.output = TRUE a list is returned with the assignment matrix “pm”, the method “method” and
the optimal weight “opt.weight”.
See Also

visualizePointMatching

16 getTSPInstancesOverview

getPointDistributionStrategies
Returns the available strategies for distributing points around clusters.

Description

Returns the available strategies for distributing points around clusters.

Usage

getPointDistributionStrategies()

Value

character

getTSPInstancesOverview
Get an overview of instances in a directory.

Description

This function expects a directory and returns a data frame containing the most important properties,
e. g., dimension, edge weight type, of all TSPlib instances (with file extensions tsp) in that directory.
Moreover, the data frame contains information on the availiability of the optimal tour length (files
tsp.opt) and optimal tour (tsp.tour).

Usage

getTSPInstancesOverview(directory, append.filename = FALSE)

Arguments

directory [character(1)]
Readable directory path.

append. filename
[logical(1)]
Should the full file names be appended to the data frame? Default is FALSE.
Value

data.frame

getValidEdge WeightTypes

getValidEdgeWeightTypes
Get TSPIib edge weight types.

Description

Get TSPIlib edge weight types.

Usage

getValidEdgeWeightTypes()

hasDepots Check if network has depots.

Description

Check if network has depots.

Usage
hasDepots(x)
Arguments
X [Network]
Network.
Value

logical(1)

18 importFromTSPlibFormat

importFromFile Import a network from proprietary format.

Description

Import a network from proprietary format.

Usage

importFromFile(filename)

Arguments
filename [character(1)]
File name.
Value
Nothing

importFromTSPlibFormat
Import network from (extended) TSPlib format.

Description

Import network from (extended) TSPlib format.

Usage

importFromTSPlibFormat(filename, round.distances = TRUE,
read.opt = TRUE)

Arguments

filename [character(1)]
Path to TSPIib file.

round.distances
[logical(1)]
Should the distances of EUC_2D instances be rounded to the nearest integer
value? Default is TRUE.

read.opt [logical(1)]

Should the optimal tour length (in file filename.opt) and the optimal tour (in file
filename.tour) be loaded if avialable? Default is TRUE.

isEuclidean

Value

Network Network object.

Note

19

The extended TSPIib contains additional specification parts and a cluster membership section. Cur-

rently only the import of symmetric TSP instances is possible.

isEuclidean Check if network is euclidean.

Description

Check if a Network object has euclidean coordinates.

Usage

isEuclidean(x)

Arguments
X [Network]
Network.
Value

logical(1)

isNetwork Check if object is Network.

Description

Check if object is Network.

Usage
isNetwork(x)
Arguments
X [any]
Arbitrary R object.
Value

logical(1)

20 makeNetwork

makeNetwork Generate network based on coordinates.

Description

Create a (clustered) network object.

Usage

makeNetwork(coordinates, distance.matrix = NULL, name = NULL,
comment = NULL, membership = NULL, edge.weight.type = NULL,
depot.coordinates = NULL, lower = NULL, upper = NULL,
opt.tour.length = NULL, opt.tour = NULL, node.weights = NULL)

Arguments

coordinates [matrix]
Numeric matrix of 2D coordinates.
distance.matrix

[matrix]
Optional distance matrix.
name [character (1) I NULL]

Optional name of the network.

comment [character | NULL]
Optional additional comments on instance.

membership [numeric | NULL]
Optional vector of memberships for clustered networks.
edge.weight.type
[character(1) | NULL] The edge weight type indicates how edge weights are
represented in the TSPlib format. If distance.matrix is NULL, the passed value
is ignored and EUC_2D is assigned. Otherwise the edge weight type must be
one of the following {EUC_2D,EUC_3D,MAX_2D,MAX_3D,MAN_2D,MAN_3D,CEIL_2D,GEOQ,ATT,EXPLICIT
depot.coordinates
[matrix | NULL]
Numeric matrix of 2D coordinates of depots. Default is NULL, which means no
depots at all.

lower [numeric(1)]
Lower box constraint of cube.
upper [numeric(1)]
Upper box constraint of cube.
opt.tour.length
[numeric(1)]
Optional length of the optimal roundtrip tour. Default is NULL, which means the
tour length is unknown.

morphlnstances 21

opt.tour [integer]
Optional optimal permutation of node indizes. Default is NULL, which means
the optimal tour is unknown.

node.weights [numeric]
Vector of node weights (for weighted version of TSP). Default is NULL, i.e., no
node weights at all.

Value
Network
morphInstances Morphing of two networks with a convex combination of the coordi-
nates.
Description

This function takes two (clustered) networks with equal number of nodes and, if present, equal
number of depots, and generates another instance by applying a convex combination to the coor-
dinates of node pairs. The node pairs are determined by a point matching algorithm, which solves
this assignement problem via a integer programming procedure. If both instances contain depots,
point matching is done separately on depots and the remaining nodes.

Usage

morphInstances(x, y, alpha, point.matching = NULL,
point.matching.algorithm = "push_relabel”)

Arguments
X [Network]
First network.
y [Network]
Second network.
alpha [numeric(1)]

Coeffiecient alpha for convex combination.

point.matching [matrix | NULL]
Point matching which shall be used for morphing. If NULL, an optimal point
matching is generated via function getOptimalPointMatching. Defaultis NULL.
Currently it is just possible to pass a point matching for instances without depots.
point.matching.algorithm

[function]
Algorithm used to find a point matching. . See argument method of getOptimalPointMatching.

Value

Network Morphed network.

22 rescaleNetwork

See Also

visualizeMorphing, visualizePointMatching

Examples

x = generateRandomNetwork(n.points = 40L, n.depots = 2L)

y = generateClusteredNetwork(n.points = 40L, n.cluster = 2L, n.depots = 2L)

z = morphInstances(x, y, alpha = 0.2, point.matching.algorithm = "push_relabel"”)
Not run:

library(gridExtra)

plot.list = list(autoplot(x), autoplot(z), autoplot(y))
plot.list$nrow = 1
do.call(grid.arrange, plot.list)

End(Not run)

rescaleNetwork Rescale network

Description

Normalize network coordinates to the unit cube while maintaining its geography.

Usage

rescaleNetwork(x, method = "global2")

Arguments

X [Network]
Network.

method [character(1)]
Rescaling method which actually modifies the coordinates. Currently there are
three methods available:
by.dimension Scaling is performed for each dimension independently.

global Here we shift all the points toward the origin by the minimum of both
x and y coordiantes and devide by the range of global maximim and mini-
mum.

global2 Here wer shift - analogously to the by . dimension strategy - dimension
wise and devide by the maximum of the ranges in x respectivly y direction.

Default is global2, which leads to the most “natural” rescaling.

Value

Network

visualizeMorphing 23

Examples

Not run:
library(gridExtra)
x = generateClusteredNetwork(n.points = 100L, n.cluster = 4L, name = "Rescaling Demo")

here we "stretch” the instance x direction to visualize the differences of

the rescaling mehtods

x$coordinates[, 1] = x$coordinates[, 1] * 10L

x$upper = x$upper * 10L

pls = list(
autoplot(x) + ggtitle("Original”),
autoplot(rescaleNetwork(x, method = "by.dimension”)) + ggtitle("By dimension"”),
autoplot(rescaleNetwork(x, method = "global")) + ggtitle("Global"),
autoplot(rescaleNetwork(x, method = "global2")) + ggtitle("Global2")

)

pls$nrow = 1L

do.call(grid.arrange, pls)

End(Not run)

visualizeMorphing Fancy visualization of morphing.

Description

Takes two instances of equal size and some alpha values. Computes the point matching and mor-
phings for the alpha values and visualizes the transition of points of the first instance towards their
matched counterparts of the second instance with two different methods.

Usage

visualizeMorphing(x, y, point.matching = NULL, alphas = c(@.25, 0.5,
@©.75), arrows = TRUE, in.one.plot = TRUE, point.colour = NULL)

Arguments
X [Network]
First network.
y [Network]

Second network.

point.matching [matrix]
Point matching which shall be used for morphing. If NULL, an optimal point
matching is generated via function getOptimalPointMatching. Defaultis NULL.

alphas [numeric]
Vector of coefficients "alpha’ for convex combinations.

arrows [logical(1)]
Draw arrows originating in the points of x and ending in the points matched in
y. Default is TRUE.

24 visualizePointMatching

in.one.plot [logical(1)]
Currently the function offers two different types of plot. If in.one.plot is
TRUE, which is the default value, the morphing is dipicted in one plot. This
is in particular useful for small instances. If set to FALSE, a matrix of plots is
generated via facet_grid. One plot for each alpha value in alphas.

point.colour [character(1)]
Which colour to use for the non-depot points? Default is NULL. In this case the

points are coloured by membership. Only considered if in.one.plot is FALSE.
Value
ggplot

See Also

morphInstances

visualizePointMatching
Visualize point matching.

Description

Visualize a point matchings. Points and lines between the matched points are drawn in order to
visualize the assignment.

Usage

visualizePointMatching(x, y, point.matching, highlight.longest = QL)

Arguments
X [Network | matrix]
Network or (n X 2) matrix.
y [Network | matrix]

Network or (n X 2) matrix.

point.matching [matrix]
Point matching received via getOptimalPointMatching for example.

highlight.longest
[integer(1)]
Number of longest distances which should be particularly highlighted. Default
is 0.

Value

ggplot

visualizePointMatching

See Also

getOptimalPointMatching, morphInstances, visualizeMorphing

Examples

point matching on networks

x = generateRandomNetwork(n.points = 20L, upper = 100)

y = generateClusteredNetwork(n.points = 20L, n.cluster = 2L, upper = 100)
Not run:

pm = getOptimalPointMatching(x$coordinates, y$coordinates)
print(visualizePointMatching(x, y, pm, highlight.longest = 2L))

End(Not run)

point matching on point clouds

x = matrix(runif(20L), 2L)

y = matrix(runif(2eL), 2L)

Not run:

pm = getOptimalPointMatching(x, y)
print(visualizePointMatching(x, y, pm))

End(Not run)

Index

addNodeWeights, 2
as.character.Network, 3
as.data.frame.Network, 3
as.matrix.Network, 4
autoplot.Network, 5

dynamise, 6

exportToFile, 7
exportToTSPlibFormat, 7,7

facet_grid, 24
filterTSPInstances, 8

generateClusteredNetwork, 3, 6, 9
generateGridNetwork, 3, 6, 11
generateRandomNetwork, 3,6, 11, 12
getDepotCoordinates, 13
getNumberOfClusters, 13
getNumberOfDepots, 14
getNumberOfNodes, 14
getOptimalPointMatching, 15, 21, 23, 25
getPointDistributionStrategies, 16
getTSPInstancesOverview, 8, 9, 16
getValidEdgeWeightTypes, 17
ggplot, 5, 24

hasDepots, 17

importFromFile, 18
importFromTSPlibFormat, 18
isEuclidean, 19
isNetwork, 19

makeNetwork, 20
maximinLHS, 10
morphInstances, 21, 24, 25

rescaleNetwork, 22

visualizeMorphing, 22, 23, 25
visualizePointMatching, 15, 22, 24

26

	addNodeWeights
	as.character.Network
	as.data.frame.Network
	as.matrix.Network
	autoplot.Network
	dynamise
	exportToFile
	exportToTSPlibFormat
	filterTSPInstances
	generateClusteredNetwork
	generateGridNetwork
	generateRandomNetwork
	getDepotCoordinates
	getNumberOfClusters
	getNumberOfDepots
	getNumberOfNodes
	getOptimalPointMatching
	getPointDistributionStrategies
	getTSPInstancesOverview
	getValidEdgeWeightTypes
	hasDepots
	importFromFile
	importFromTSPlibFormat
	isEuclidean
	isNetwork
	makeNetwork
	morphInstances
	rescaleNetwork
	visualizeMorphing
	visualizePointMatching
	Index

