Package 'politeness'

June 28, 2022

Type Package

Title Detecting Politeness Features in Text

Version 0.8.7

Author Mike Yeomans, Alejandro Kantor, Dustin Tingley

Maintainer Mike Yeomans <mk.yeomans@gmail.com>

Description Detecting markers of politeness in English natural language. This package allows researchers to easily visualize and quantify politeness between groups of documents. This package combines prior research on the linguistic markers of politeness. We thank the Spencer Foundation, the Hewlett Foundation, and Harvard's Institute for Quantitative Social Science for support.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports tm, quanteda, ggplot2, parallel, spacyr, textir, glmnet, data.table, stringr, stringi

RoxygenNote 7.2.0

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-28 19:30:02 UTC

R topics documented:

bowl_offers	2
feature_table	3
findPoliteTexts	3
hedge_list	4
negative_list	5
phone_offers	5

bowl_offers

1	4
ık2us	.3
receptive_train	
receptive_polite	2
receptiveness	1
positive_list	. 1
polite_dicts	0
politenessProjection	9
politenessPlot	7
politeness	6

Index

bowl_offers

Purchase offers for bowl

Description

A dataset containing the purchase offer message and a label indicating if the writer was assigned to be warm (1) or tough (0)

Usage

bowl_offers

Format

A data frame with 70 rows and 2 variables:

message character of purchase offer message

condition binary label indicating if message is warm or tough

Source

Jeong, M., Minson, J., Yeomans, M. & Gino, F. (2019).

"Communicating Warmth in Distributed Negotiations is Surprisingly Ineffective." Study 3. Study 3. https://osf.io/t7sd6/

feature_table Table of Politeness Features

Description

This table describes all the text features extracted in this package. See vignette for details.

Usage

feature_table

Format

A data.frame with information about the politeness features.

findPoliteTexts Find polite text

Description

Finds examples of most or least polite text in a corpus

Usage

```
findPoliteTexts(
  text,
  df_polite,
  covar,
  type = c("most", "least", "both"),
  num_docs = 5L,
  ...
)
```

Arguments

text	a character vector of texts.
df_polite	a data.frame with politeness features, as outputed by politeness, used to train model.
covar	a vector of politeness labels, or other covariate.
type	a string indicating if function should return the most or least polite texts or both. If length > 1 only first value is used.
num_docs	integer of number of documents to be returned. Default is 5.
	additional parameters to be passed to politenessProjection.

Details

Function returns a data.frame ranked by (more or least) politeness. If type == 'most', the num_docs most polite texts will be returned. If type == 'least', the num_docs least polite texts will be returned. If type == 'both', both most and least polite text will be returned. if num_docs is even, half will be most and half least polite else half + 1 will be most polite.

df_polite must have the same number of rows as the length(text) and length(covar).

Value

data.frame with texts ranked by (more or least) politeness. See details for more information.

Examples

pointe.uata, phone_offers\$condition, type = "most", num_docs = 5)

hedge_list

Hedge Words List

Description

Hedges

Usage

hedge_list

Format

A list of 72 hedging words.

negative_list Negative Emotions List

Description

Negative words.

Usage

negative_list

Format

A list of 4783 negatively-valenced words

phone_offers Purchase offers for phone

Description

A dataset containing the purchase offer message and a label indicating if the writer was assigned to be warm (1) or tough (0)

Usage

phone_offers

Format

A data frame with 355 rows and 2 variables:

message character of purchase offer message

condition binary label indicating if message is warm or tough

Source

Jeong, M., Minson, J., Yeomans, M. & Gino, F. (2019).

"Communicating Warmth in Distributed Negotiations is Surprisingly Ineffective." Study 1. https://osf.io/t7sd6/ politeness

Description

Detects linguistic markers of politeness in natural language. This function is the workhorse of the politeness package, taking an N-length vector of text documents and returning an N-row data.frame of feature counts.

Usage

```
politeness(
   text,
   parser = c("none", "spacy"),
   metric = c("count", "binary", "average"),
   drop_blank = FALSE,
   uk_english = FALSE,
   num_mc_cores = 1
)
```

Arguments

text	character A vector of texts, each of which will be tallied for politeness features.
parser	character Name of dependency parser to use (see details). Without a dependency parser, some features will be approximated, while others cannot be calculated at all.
metric	character What metric to return? Raw feature count totals, Binary presence/absence of features, or feature counts per word Default is "count".
drop_blank	logical Should features that were not found in any text be removed from the data.frame? Default is FALSE
uk_english	logical Does the text contain any British English spelling? Including variants (e.g. Canadian). Default is FALSE
num_mc_cores	integer Number of cores for parallelization. Default is 1, but we encourage users to try parallel::detectCores() if possible.

Details

Some politeness features depend on part-of-speech tagged sentences (e.g. "bare commands" are a particular verb class). To include these features in the analysis, a POS tagger must be initialized beforehand - we currently support SpaCy which must be installed separately in Python (see example for implementation).

Value

a data.frame of politeness features, with one row for every item in 'text'. Possible politeness features are listed in feature_table

politenessPlot

References

Brown, P., & Levinson, S. C. (1987). Politeness: Some universals in language usage (Vol. 4). Cambridge university press.

Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., & Potts, C. (2013). A computational approach to politeness with application to social factors. arXiv preprint arXiv:1306.6078.

Voigt, R., Camp, N. P., Prabhakaran, V., Hamilton, W. L., ... & Eberhardt, J. L. (2017). Language from police body camera footage shows racial disparities in officer respect. Proceedings of the National Academy of Sciences, 201702413.

Examples

data("phone_offers")

politeness(phone_offers\$message, parser="none",drop_blank=FALSE)

colMeans(politeness(phone_offers\$message, parser="none", metric="binary", drop_blank=FALSE))
colMeans(politeness(phone_offers\$message, parser="none", metric="count", drop_blank=FALSE))

```
dim(politeness(phone_offers$message, parser="none",drop_blank=FALSE))
dim(politeness(phone_offers$message, parser="none",drop_blank=TRUE))
```

```
## Not run:
# Detect multiple cores automatically for parallel processing
politeness(phone_offers$message, num_mc_cores=parallel::detectCores())
```

```
# Connect to SpaCy installation for part-of-speech features
install.packages("spacyr")
spacyr::spacy_initialize(python_executable = PYTHON_PATH)
politeness(phone_offers$message, parser="spacy",drop_blank=FALSE)
```

End(Not run)

politenessPlot Politeness plot

Description

Plots the prevalence of politeness features in documents, divided by a binary covariate.

Usage

```
politenessPlot(
    df_polite,
    split = NULL,
```

```
split_levels = NULL,
split_name = NULL,
split_cols = c("firebrick", "navy"),
top_title = "",
drop_blank = 0.05,
middle_out = 0.5,
CI = 0.68
```

Arguments

df_polite	a data.frame with politeness features calculated from a document set, as output by politeness.
split	a vector of covariate values. must have a length equal to the number of documents included in df_polite. No NA values allowed.
split_levels	character vector of length 2 default NULL. Labels for covariate levels for legend. If NULL, this will be inferred from split.
split_name	character default NULL. Name of the covariate for legend.
split_cols	character vector of length 2. Name of colors to use.
top_title	character default "". Title of plot.
drop_blank	Features less prevalent than this in the sample value are excluded from the plot. To include all features, set to ${\tt 0}$
middle_out	Features less distinctive than this value (measured by p-value of t-test) are excluded. Defaults to 1 (i.e. include all).
CI	Coverage of error bars. Defaults to 0.68 (i.e. standard error).

Details

Length of split must be the same as number of rows of df_polite. Typically split should be a two-category variable. However, if a continuous covariate is given, then the top and bottom terciles of that distribution are treated as the two categories (while dropping data from the middle tercile).

Value

a ggplot of the prevalence of politeness features, conditional on split. Features are sorted by variance-weighted log odds ratio.

Examples

8

```
top_title = "Average Feature Counts")
```

polite.data<-politeness(phone_offers\$message, parser="none", metric="binary", drop_blank=FALSE)</pre>

```
politeness::politenessPlot(polite.data,
```

```
split=phone_offers$condition,
split_levels = c("Tough","Warm"),
split_name = "Condition",
top_title = "Binary Feature Use")
```

politenessProjection Politeness projection

Description

Training and projecting a regression model of politeness.

Usage

```
politenessProjection(
    df_polite_train,
    covar = NULL,
    df_polite_test = NULL,
    classifier = c("glmnet", "mnir"),
    cv_folds = NULL,
    ...
)
```

Arguments

df_polite_train	
	a data.frame with politeness features as outputed by politeness used to train model.
covar	a vector of politeness labels, or other covariate.
df_polite_test	optional data.frame with politeness features as outputed by politeness used for out-of-sample fitting. Must have same feature set as polite_train (most easily achieved by setting dropblank=FALSE in both calls to politeness).
classifier	name of classification algorithm. Defaults to "glmnet" (see glmnet) but "mnir" (see mnlm) is also available.
cv_folds	Number of outer folds for projection of training data. Default is NULL (i.e. no nested cross-validation). However, positive values are highly recommended (e.g. 10) for in-sample accuracy estimation.
	additional parameters to be passed to the classification algorithm.

Details

List:

- train_proj projection of politeness model within training set.
- test_proj projection of politeness model onto test set (i.e. out-of-sample).
- train_coef coefficients from the trained model.

Value

List of df_polite_train and df_polite_test with projection. See details.

Examples

```
data("phone_offers")
data("bowl_offers")
```

polite.data<-politeness(phone_offers\$message, parser="none",drop_blank=FALSE)</pre>

```
polite.holdout<-politeness(bowl_offers$message, parser="none",drop_blank=FALSE)</pre>
```

Difference in average politeness across conditions in the new sample.

```
mean(project$test_proj[bowl_offers$condition==1])
mean(project$test_proj[bowl_offers$condition==0])
```

polite_dicts

Feature Dictionaries

Description

Six dictionary-like features for the detector: Negations; Pauses; Swearing; Pronouns; Formal Titles; and Informal Titles.

Usage

```
polite_dicts
```

Format

A list of six quanteda::dictionary objects

positive_list Positive Emotions List

Description

Positive words.

Usage

positive_list

Format

A list of 2006 positively-valenced words

receptiveness Conversational Receptiveness

Description

Pre-trained model to detect conversational receptiveness

Usage

```
receptiveness(texts, num_mc_cores = 1)
```

Arguments

texts	character A vector of texts, each of which will be tallied for politeness features.
num_mc_cores	integer Number of cores for parallelization.

Details

This is a wrapper around a pre-trained model of "conversational receptiveness". The model trained from Study 1 of that paper can be applied to new text with a single function. This model requires grammar parsing via SpaCy. Please see spacyr for details on installation.

Value

a vector with receptiveness scores

References

Yeomans, M., Minson, J., Collins, H., Chen, F. & Gino, F. (2020). Conversational Receptiveness: Improving Engagement with Opposing Views. OBHDP.

Examples

```
## Not run:
data("phone_offers")
receptiveness(phone_offers$message)
```

End(Not run)

receptive_polite Pre-Trained Receptiveness Data

Description

A dataset to train a model for detecting conversational receptiveness.

Usage

receptive_polite

Format

Pre-calculated politeness features for the receptive_train dataset

receptive_train Pre-Trained Receptiveness Data

Description

A dataset to train a model for detecting conversational receptiveness.

Usage

receptive_train

Format

A data frame with 2860 rows and 2 variables:

text character written response about policy disagreement

receptive numeric standardized average of annotator ratings for "receptiveness"

Primarily for use within the receptiveness() function. The data was compiled from Studies 1 and 4 of the original paper, as well as an unpublished study with a very similar design, in which text responses were rated by disagreeing others.

12

uk2us

Source

Yeomans, M., Minson, J., Collins, H., Chen, F. & Gino, F. (2020). "Conversational Receptiveness: Improving Engagement with Opposing Views" https://osf.io/2n59b/

uk2us

UK to US Conversion dictionary

Description

For internal use only. This dataset contains a quanted dictionary for converting UK words to US words. The models in this package were all trained on US English.

Usage

uk2us

Format

A quanteda dictionary with named entries. Names are the US version, and entries are the UK version.

Source

Borrowed from the quanteda.dictionaries package on github (from user kbenoit)

Index

```
* datasets
    bowl_offers, 2
    feature_table, 3
    hedge_list, 4
    negative_list, 5
    phone_offers, 5
    polite_dicts, 10
    positive_list, 11
    receptive_polite, 12
    receptive_train, 12
    uk2us, 13
bowl_offers, 2
feature_table, 3, 6
findPoliteTexts, 3
hedge_list, 4
negative_list, 5
phone_offers, 5
polite_dicts, 10
politeness, 3, 6, 8, 9
{\tt politenessPlot}, {\tt 7}
politenessProjection, 9
positive_list, 11
receptive_polite, 12
receptive_train, 12
receptiveness, 11
spacyr, 11
```

uk2us, 13