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pomdp-package pomdp: Infrastructure for Partially Observable Markov Decision Pro-
cesses (POMDP)

Description

Provides the infrastructure to define and analyze the solutions of Partially Observable Markov De-
cision Process (POMDP) models. Interfaces for various exact and approximate solution algorithms
are available including value iteration, Point-Based Value Iteration (PBVI) and Successive Approx-
imations of the Reachable Space under Optimal Policies (SARSOP).

Key functions

• Problem specification: POMDP, MDP

• Solvers: solve_POMDP(), solve_MDP(), solve_SARSOP()
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Author(s)

Michael Hahsler

Maze Steward Russell’s 4x3 Maze MDP

Description

The 4x3 maze described in Chapter 17 of the the textbook: "Artificial Intelligence: A Modern
Approach" (AIMA).

Format

An object of class MDP.

Details

The simple maze has the following layout:

1234 Transition model:
###### .8 (action direction)
3# +# ^
2# # -# |
1# # .1 <-|-> .1
######

We represent the maze states as a matrix with 3 rows (north/south) and 4 columns (east/west). The
states are labeled s_1 through s_12 and are fully observable. The # (state s_5) in the middle of
the maze is an obstruction and not reachable. Rewards are associated with transitions. The default
reward (penalty) is -0.04. Transitioning to + (state s_12) gives a reward of 1.0, transitioning to -
(state s_11) has a reward of -1.0. States s_11 and s_12 are terminal (absorbing) states.

Actions are movements (north, south, east, west). The actions are unreliable with a .8 chance
to move in the correct direction and a 0.1 chance to instead to move in a perpendicular direction
leading to a stochastic transition model.

Note that the problem has reachable terminal states which leads to a proper policy (that is guar-
anteed to reach a terminal state). This means that the solution also converges without discounting
(discount = 1).

References

Russell, S. J. and Norvig, P., & Davis, E. (2021). Artificial intelligence: a modern approach. 4rd
ed.
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Examples

# The problem can be loaded using data(Maze).

# Here is the complete problem definition:

S <- paste0("s_", seq_len(3 * 4))
s2rc <- function(s) {

if(is.character(s)) s <- match(s, S)
c((s - 1) %% 3 + 1, (s - 1) %/% 3 + 1)

}
rc2s <- function(rc) S[rc[1] + 3 * (rc[2] - 1)]

A <- c("north", "south", "east", "west")

T <- function(action, start.state, end.state) {
action <- match.arg(action, choices = A)

if (start.state %in% c('s_11', 's_12', 's_5')) {
if (start.state == end.state) return(1)
else return(0)

}

if(action %in% c("north", "south")) error_direction <- c("east", "west")
else error_direction <- c("north", "south")

rc <- s2rc(start.state)
delta <- list(north = c(+1, 0), south = c(-1, 0),

east = c(0, +1), west = c(0, -1))
P <- matrix(0, nrow = 3, ncol = 4)

add_prob <- function(P, rc, a, value) {
new_rc <- rc + delta[[a]]
if (new_rc[1] > 3 || new_rc[1] < 1 || new_rc[2] > 4 || new_rc[2] < 1

|| (new_rc[1] == 2 && new_rc[2]== 2))
new_rc <- rc

P[new_rc[1], new_rc[2]] <- P[new_rc[1], new_rc[2]] + value
P

}

P <- add_prob(P, rc, action, .8)
P <- add_prob(P, rc, error_direction[1], .1)
P <- add_prob(P, rc, error_direction[2], .1)
P[rbind(s2rc(end.state))]

}

T("n", "s_1", "s_2")

R <- rbind(
R_(end.state = '*', value = -0.04),
R_(end.state = 's_11', value = -1),
R_(end.state = 's_12', value = +1),
R_(start.state = 's_11', value = 0),
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R_(start.state = 's_12', value = 0),
R_(start.state = 's_5', value = 0)

)

Maze <- MDP(
name = "Stuart Russell's 3x4 Maze",
discount = 1,
horizon = Inf,
states = S,
actions = A,
transition_prob = T,
reward = R

)

Maze
str(Maze)

maze_solved <- solve_MDP(Maze, method = "value")
policy(maze_solved)

# show the utilities and optimal actions organized in the maze layout (like in the AIMA textbook)
matrix(policy(maze_solved)[[1]]$U, nrow = 3, dimnames = list(1:3, 1:4))[3:1, ]
matrix(policy(maze_solved)[[1]]$action, nrow = 3, dimnames = list(1:3, 1:4))[3:1, ]

# Note: the optimal actions for the states with a utility of 0 are artefacts and should be ignored.

MDP Define an MDP Problem

Description

Defines all the elements of a MDP problem.

Usage

MDP(
states,
actions,
transition_prob,
reward,
discount = 0.9,
horizon = Inf,
start = "uniform",
name = NA

)

MDP2POMDP(x)
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Arguments

states a character vector specifying the names of the states.

actions a character vector specifying the names of the available actions.
transition_prob

Specifies the transition probabilities between states.

reward Specifies the rewards dependent on action, states and observations.

discount numeric; discount rate between 0 and 1.

horizon numeric; Number of epochs. Inf specifies an infinite horizon.

start Specifies in which state the MDP starts.

name a string to identify the MDP problem.

x a MDP object.

Details

MDPs are similar to POMDPs, however, states are completely observable and observations are not
necessary. The model is defined similar to POMDP models, but observations are not specified and
the 'observations' column in the the reward specification is always '*'.

MDP2POMDP() reformulates a MDP as a POMDP with one observation per state that reveals the
current state. This is achieved by defining identity observation probability matrices.

More details on specifying the model components can be found in the documentation for POMDP.

Value

The function returns an object of class MDP which is list with the model specification. solve_MDP()
reads the object and adds a list element called 'solution'.

Author(s)

Michael Hahsler

See Also

Other MDP: simulate_MDP(), solve_MDP()

Examples

# Michael's Sleepy Tiger Problem is like the POMDP Tiger problem, but
# has completely observable states because the tiger is sleeping in front
# of the door. This makes the problem an MDP.

STiger <- MDP(
name = "Michael's Sleepy Tiger Problem",
discount = .9,

states = c("tiger-left" , "tiger-right"),
actions = c("open-left", "open-right", "do-nothing"),
start = "uniform",
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# opening a door resets the problem
transition_prob = list(

"open-left" = "uniform",
"open-right" = "uniform",
"do-nothing" = "identity"),

# the reward helper R_() expects: action, start.state, end.state, observation, value
reward = rbind(

R_("open-left", "tiger-left", v = -100),
R_("open-left", "tiger-right", v = 10),
R_("open-right", "tiger-left", v = 10),
R_("open-right", "tiger-right", v = -100),
R_("do-nothing", v = 0)

)
)

STiger

sol <- solve_MDP(STiger, eps = 1e-7)
sol

policy(sol)
plot_value_function(sol)

# convert the MDP into a POMDP and solve
STiger_POMDP <- MDP2POMDP(STiger)
sol2 <- solve_POMDP(STiger_POMDP)
sol2

policy(sol2)
plot_value_function(sol2)

optimal_action Optimal action for a belief

Description

Determines the optimal action for a policy (solved POMDP) for a given belief at a given epoch.

Usage

optimal_action(model, belief = NULL, epoch = 1)

Arguments

model a solved POMDP.
belief The belief (probability distribution over the states) as a vector or a matrix with

multiple belief states as rows. If NULL, then the initial belief of the model is
used.

epoch what epoch of the policy should be used. Use 1 for converged policies.
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Value

The name of the optimal action.

Author(s)

Michael Hahsler

See Also

Other policy: plot_value_function(), policy_graph(), policy(), reward(), solve_POMDP(),
solve_SARSOP()

Examples

data("Tiger")
Tiger

sol <- solve_POMDP(model = Tiger)

# these are the states
sol$states

# belief that tiger is to the left
optimal_action(sol, c(1, 0))
optimal_action(sol, "tiger-left")

# belief that tiger is to the right
optimal_action(sol, c(0, 1))
optimal_action(sol, "tiger-right")

# belief is 50/50
optimal_action(sol, c(.5, .5))
optimal_action(sol, "uniform")

# the POMDP is converged, so all epoch give the same result.
optimal_action(sol, "tiger-right", epoch = 10)

plot_belief_space Plot a 2D or 3D Projection of the Belief Space

Description

Plots the optimal action, the node in the policy graph or the reward for a given set of belief points
on a line (2D) or on a ternary plot (3D). If no points are given, points are sampled using a regular
arrangement or randomly from the (projected) belief space.
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Usage

plot_belief_space(
model,
projection = NULL,
epoch = 1,
sample = "regular",
n = 100,
what = c("action", "pg_node", "reward"),
legend = TRUE,
pch = 20,
col = NULL,
jitter = 0,
...

)

Arguments

model a solved POMDP.

projection a vector with state IDs or names to project on. Allowed are projections on two
or three states. NULL uses the first two or three states. All other states are held at
a belief of 0 (seesample_belief_space())

epoch display this epoch.

sample a matrix with belief points as rows or a character string specifying the method
used for sample_belief_space().

n number of points sampled.

what what to plot.

legend logical; add a legend? If the legend is covered by the plot then you need to
increase the plotting region of the plotting device.

pch plotting symbols.

col plotting colors.

jitter y jitter amount for 2D belief spaces (good values are between 0 and 4).

... additional arguments are passed on to plot for 2D or TerneryPlot for 3D.

Value

Returns invisibly the sampled points.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), sample_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(),
transition_matrix(), update_belief(), write_POMDP()
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Examples

# two-state POMDP
data("Tiger")
sol <- solve_POMDP(Tiger)

plot_belief_space(sol)
plot_belief_space(sol, n = 10)
plot_belief_space(sol, n = 10, sample = "random")

# plot the belief points used by the grid-based solver
plot_belief_space(sol, sample = sol$solution$belief_states)

# plot different measures
plot_belief_space(sol, what = "pg_node")
plot_belief_space(sol, what = "reward")

# three-state POMDP
# Note: If the plotting region is too small then the legend might run into the plot
data("Three_doors")
sol <- solve_POMDP(Three_doors)
sol

plot_belief_space(sol)
plot_belief_space(sol, sample = "random", n = 1000)
plot_belief_space(sol, what = "pg_node")
plot_belief_space(sol, what = "reward", sample = "random", n = 1000)

# plot the belief points used by the grid-based solver
plot_belief_space(sol, sample = sol$solution$belief_states)

# plot the belief points obtained using simulated trajectories with an epsilon-greedy policy.
# Note that we only use n = 50 to save time.
plot_belief_space(sol, sample = simulate_POMDP(sol, n = 50, horizon = 100,

epsilon = 0.1, visited_beliefs = TRUE))

# plot a 3-state belief space using ggtern (ggplot2)
# library(ggtern)
# samp <- sample_belief_space(sol, n = 1000)
# df <- cbind(as.data.frame(samp), reward = reward(sol, belief = samp))
#
# ggtern(df, aes(x = `tiger-left`, y = `tiger-center`, z = `tiger-right`)) +
# geom_point(aes(color = reward))

plot_value_function Plot the Value Function of a POMDP Solution

Description

Plots the value function of a POMDP solution as a line plot. The solution is projected on two states
(i.e., the belief for the other states is held constant at zero).
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Usage

plot_value_function(
model,
projection = 1:2,
epoch = 1,
ylim = NULL,
legend = TRUE,
col = NULL,
lwd = 1,
lty = 1,
...

)

Arguments

model a solved POMDP.

projection index or name of two states for the projection.

epoch the value function of what epoch should be plotted? Use 1 for converged poli-
cies.

ylim the y limits of the plot.

legend logical; add a legend?

col potting colors.

lwd line width.

lty line type.

... additional arguments are passed on to stats::line()‘.

Value

the function has no return value.

Author(s)

Michael Hahsler

See Also

Other policy: optimal_action(), policy_graph(), policy(), reward(), solve_POMDP(), solve_SARSOP()

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)
sol

plot_value_function(sol, ylim = c(0,20))

## finite-horizon
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sol <- solve_POMDP(model = Tiger, horizon = 3, discount = 1,
method = "enum")

sol

plot_value_function(sol, epoch = 1, ylim = c(-5, 25))
plot_value_function(sol, epoch = 2, ylim = c(-5, 25))
plot_value_function(sol, epoch = 3, ylim = c(-5, 25))

# using ggplot2
# library(ggplot2)
# pol <- policy(sol)[[3]]
# ggplot(pol) +
# geom_segment(aes(x = 0, y = `tiger-left`, xend=1, yend=`tiger-right`, color = action)) +
# coord_cartesian(ylim = c(-5, 15)) + ylab("Reward") + xlab("Belief")

policy Extract the Policy from a POMDP/MDP

Description

Extracts the policy from a solved POMDP/MDP.

Usage

policy(x)

Arguments

x A solved POMDP object.

Details

A list (one entry per epoch) with the optimal policy. For converged, infinite-horizon problems
solutions, a list with only the converged solution is produced. The policy is a data.frame consisting
o:

• Part 1: The value function with one column per state. For POMDPs these are alpha vectors
and for MDPs this is just one column with the state.

• Part 2: One column with the optimal action.

Value

A list with the policy for each epoch.

Author(s)

Michael Hahsler
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See Also

Other policy: optimal_action(), plot_value_function(), policy_graph(), reward(), solve_POMDP(),
solve_SARSOP()

Examples

data("Tiger")

# Infinite horizon
sol <- solve_POMDP(model = Tiger)
sol

# policy with value function, optimal action and transitions for observations.
policy(sol)
plot_value_function(sol)

# Finite horizon (we use incremental pruning because grid does not converge)
sol <- solve_POMDP(model = Tiger, method = "incprune", horizon = 3, discount = 1)
sol

policy(sol)
# Note: We see that it is initially better to listen till we make a decision in the final epoch.

policy_graph POMDP Policy Graphs

Description

The function creates and plots the POMDP policy graph in a converged POMDP solution and the
policy tree for a finite-horizon solution. uses plot in igraph with appropriate plotting options.

Usage

policy_graph(x, belief = NULL, show_belief = TRUE, col = NULL, ...)

plot_policy_graph(
x,
belief = NULL,
show_belief = TRUE,
legend = TRUE,
engine = c("igraph", "visNetwork"),
col = NULL,
...

)

estimate_belief_for_nodes(x, epoch = 1, ...)
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Arguments

x object of class POMDP containing a solved and converged POMDP problem.

belief the initial belief is used to mark the initial belief state in the grave of a converged
solution and to identify the root node in a policy graph for a finite-horizon solu-
tion. If NULL then the belief is taken from the model definition.

show_belief logical; estimate belief proportions? If TRUE then estimate_belief_for_nodes()
is used and the belief is visualized as a pie chart in each node.

col colors used for the states.

... parameters are passed on to policy_graph(), estimate_belief_for_nodes()
and the functions they use. Also, plotting options are passed on to the plotting
engine igraph::plot.igraph() or visNetwork::visIgraph().

legend logical; display a legend for colors used belief proportions?

engine The plotting engine to be used. For "visNetwork", flip.y = FALSE can be used
to show the root node on top.

epoch estimate the belief for nodes in this epoch. Use 1 for converged policies.

Details

Each policy graph node represent a segment (or part of a hyperplane) of the value function. Each
node represents one or more believe states. If available, a pie chart (or the color) in each node rep-
resent the central belief of the belief states belonging to the node (i.e., the center of the hyperplane
segment). This can help with interpreting the policy graph.

For converged POMDP solution a graph is produced, for finite-horizon solution a policy tree is
produced. The levels of the tree and the first number in the node label represent the epochs. Many
algorithms produce unused policy graph nodes which are filtered to produce a clean tree structure.
Non-converged policies depend on the initial belief and if an initial belief is specified, then different
nodes will be filtered and the tree will look different.

First, the policy in the solved POMDP is converted into an igraph object using policy_graph().
Average beliefs for the graph nodes are estimated using estimate_belief_for_node() and then
the igraph object is visualized using the plotting function igraph::plot.igraph() or, for interac-
tive graphs, visNetwork::visIgraph().

estimate_belief_for_nodes() estimated the central belief for each node/segment of the value
function by generating/sampling a large set of possible belief points, assigning them to the segments
and then averaging the belief over the points assigned to each segment. Additional parameters like
method and the sample size n are passed on to sample_belief_space(). If no belief point is
generated for a segment, then a warning is produced. In this case, the number of sampled points
can be increased.

Value

• policy_graph() returns the policy graph as an igraph object.

• plot_policy_graph() returns invisibly what the plotting engine returns.

• estimate_belief_for_nodes() returns a matrix with the central belief for each node.
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See Also

Other policy: optimal_action(), plot_value_function(), policy(), reward(), solve_POMDP(),
solve_SARSOP()

Examples

data("Tiger")

## policy graphs for converged solutions
sol <- solve_POMDP(model = Tiger)
sol

policy_graph(sol)

## visualization
plot_policy_graph(sol)

## use a different graph layout (circle and manual; needs igraph)
library("igraph")
plot_policy_graph(sol, layout = layout.circle)
plot_policy_graph(sol, layout = rbind(c(1,1), c(1,-1), c(0,0), c(-1,-1), c(-1,1)))

## hide labels and legend
plot_policy_graph(sol, edge.label = NA, vertex.label = NA, legend = FALSE)

## add a plot title
plot_policy_graph(sol, main = sol$name)

## custom larger vertex labels (A, B, ...)
plot_policy_graph(sol,

vertex.label = LETTERS[1:nrow(policy(sol)[[1]])],
vertex.label.cex = 2,
vertex.label.color = "white")

## plotting the igraph object directly
## (e.g., using the graph in the layout and to change the edge curvature)
pg <- policy_graph(sol)
plot(pg,

layout = layout_as_tree(pg, root = 3, mode = "out"),
edge.curved = curve_multiple(pg, .2))

## changes labels
plot(pg,

edge.label = abbreviate(E(pg)$label),
vertex.label = V(pg)$label,
vertex.size = 20)

## plot interactive graphs using the visNetwork library.
## Note: the pie chart representation is not available, but colors are used instead.
plot_policy_graph(sol, engine = "visNetwork")

## add smooth edges and a layout (note, engine can be abbreviated)
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plot_policy_graph(sol, engine = "visNetwork", layout = "layout_in_circle", smooth = TRUE)

## estimate the central belief for the graph nodes. We use the default random sampling method with
## a sample size of n = 100.
estimate_belief_for_nodes(sol, n = 100)

## policy trees for finite-horizon solutions
sol <- solve_POMDP(model = Tiger, horizon = 4, method = "incprune")

policy_graph(sol)

plot_policy_graph(sol)
# Note: the first number in the node id is the epoch.

# plot the policy tree for an initial belief of 90% that the tiger is to the left
plot_policy_graph(sol, belief = c(0.9, 0.1))

POMDP Define a POMDP Problem

Description

Defines all the elements of a POMDP problem including the discount rate, the set of states, the
set of actions, the set of observations, the transition probabilities, the observation probabilities, and
rewards.

Usage

POMDP(
states,
actions,
observations,
transition_prob,
observation_prob,
reward,
discount = 0.9,
horizon = Inf,
terminal_values = NULL,
start = "uniform",
name = NA

)

O_(action = "*", end.state = "*", observation = "*", probability)

T_(action = "*", start.state = "*", end.state = "*", probability)

R_(action = "*", start.state = "*", end.state = "*", observation = "*", value)
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Arguments

states a character vector specifying the names of the states. Note that state names have
to start with a letter.

actions a character vector specifying the names of the available actions. Note that action
names have to start with a letter.

observations a character vector specifying the names of the observations. Note that observa-
tion names have to start with a letter.

transition_prob

Specifies action-dependent transition probabilities between states. See Details
section.

observation_prob

Specifies the probability that an action/state combination produces an observa-
tion. See Details section.

reward Specifies the rewards structure dependent on action, states and observations. See
Details section.

discount numeric; discount factor between 0 and 1.

horizon numeric; Number of epochs. Inf specifies an infinite horizon.
terminal_values

a vector with the terminal values for each state or a matrix specifying the termi-
nal rewards via a terminal value function (e.g., the alpha component produced
by solve_POMDP). A single 0 specifies that all terminal values are zero.

start Specifies the initial belief state of the agent. A vector with the probability for
each state is supplied. Also the string 'uniform' (default) can be used. The
belief is used to calculate the total expected cumulative reward. It is also used
by some solvers. See Details section for more information.

name a string to identify the POMDP problem.
action, start.state, end.state, observation, probability, value

Values used in the helper functions O_(), R_(), and T_() to create an entry
for observation_prob, reward, or transition_prob above, respectively. The
default value '*"' matches any action/state/observation.

Details

In the following we use the following notation. The POMDP is a 7-duple:

(S,A, T,R,Ω, O, γ).

S is the set of states; A is the set of actions; T are the conditional transition probabilities between
states; R is the reward function; Ω is the set of observations; O are the conditional observation
probabilities; and γ is the discount factor. We will use lower case letters to represent a member of a
set, e.g., s is a specific state. To refer to the size of a set we will use cardinality, e.g., the number of
actions is |A|.
Names used for mathematical symbols in code

• S, s, s′: 'states', start.state', 'end.state'

• A, a: 'actions', 'action'
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• Ω, o: 'observations', 'observation'

State names, actions and observations can be specified as strings or index numbers (e.g., start.state
can be specified as the index of the state in states). For the specification as data.frames below, '*'
or NA can be used to mean any start.state, end.state, action or observation. Note that '*'
is internally always represented as an NA.

The specification below map to the format used by pomdp-solve (see http://www.pomdp.org).

Specification of transition probabilities: T (s′|s, a)

Transition probability to transition to state s′ from given state s and action a. The transition proba-
bilities can be specified in the following ways:

• A data.frame with columns exactly like the arguments of T_(). You can use rbind() with
helper function T_() to create this data frame.

• A named list of matrices, one for each action. Each matrix is square with rows representing
start states s and columns representing end states s′. Instead of a matrix, also the strings
'identity' or 'uniform' can be specified.

• A function with the same arguments are T_(), but no default values that returns the transition
probability.

Specification of observation probabilities: O(o|s′, a)

The POMDP specifies the probability for each observation o given an action a and that the system
transitioned to the end state s′. These probabilities can be specified in the following ways:

• A data frame with columns named exactly like the arguments of O_(). You can use rbind()
with helper function O_() to create this data frame.

• A named list of matrices, one for each action. Each matrix has rows representing end states s′

and columns representing an observation o. Instead of a matrix, also the strings 'identity'
or 'uniform' can be specified.

• A function with the same arguments are O_(), but no default values that returns the observation
probability.

Specification of the reward function: R(s, s′, o, a)

The reward function can be specified in the following ways:

• A data frame with columns named exactly like the arguments of R_(). You can use rbind()
with helper function R_() to create this data frame.

• A list of lists. The list levels are 'action' and 'start.state'. The list elements are matrices
with rows representing end states s′ and columns representing an observation o.

• A function with the same arguments are R_(), but no default values that returns the reward.

Start Belief
The initial belief state of the agent is a distribution over the states. It is used to calculate the total
expected cumulative reward printed with the solved model. The function reward() can be used to
calculate rewards for any belief.

Some methods use this belief to decide which belief states to explore (e.g., the finite grid method).

Options to specify the start belief state are:

http://www.pomdp.org
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• A probability distribution over the states. That is, a vector of |S| probabilities, that add up to
1.

• The string "uniform" for a uniform distribution over all states.

• An integer in the range 1 to n to specify the index of a single starting state.

• A string specifying the name of a single starting state.

The default initial belief is a uniform distribution over all states.

Time-dependent POMDPs
Time dependence of transition probabilities, observation probabilities and reward structure can be
modeled by considering a set of episodes representing epoch with the same settings. The length of
each episode is specified as a vector for horizon, where the length is the number of episodes and
each value is the length of the episode in epochs. Transition probabilities, observation probabilities
and/or reward structure can contain a list with the values for each episode. See solve_POMDP() for
more details and an example.

Value

The function returns an object of class POMDP which is list of the model specification. solve_POMDP()
reads the object and adds a list element named 'solution'.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

pomdp-solve website: http://www.pomdp.org

See Also

Other POMDP: plot_belief_space(), sample_belief_space(), simulate_POMDP(), solve_POMDP(),
solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

## Defining the Tiger Problem (it is also available via data(Tiger), see ? Tiger)

Tiger <- POMDP(
name = "Tiger Problem",
discount = 0.75,
states = c("tiger-left" , "tiger-right"),
actions = c("listen", "open-left", "open-right"),
observations = c("tiger-left", "tiger-right"),
start = "uniform",

transition_prob = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"

),

http://www.pomdp.org


20 POMDP

observation_prob = list(
"listen" = rbind(c(0.85, 0.15),

c(0.15, 0.85)),
"open-left" = "uniform",
"open-right" = "uniform"

),

# the reward helper expects: action, start.state, end.state, observation, value
# missing arguments default to '*' matching any value.
reward = rbind(

R_("listen", v = -1),
R_("open-left", "tiger-left", v = -100),
R_("open-left", "tiger-right", v = 10),
R_("open-right", "tiger-left", v = 10),
R_("open-right", "tiger-right", v = -100)

)
)

Tiger

# Defining the Tiger problem using functions

trans_f <- function(action, start.state, end.state) {
if(action == 'listen')
if(end.state == start.state) return(1)
else return(0)

return(1/2) ### all other actions have a uniform distribution
}

obs_f <- function(action, end.state, observation) {
if(action == 'listen')

if(end.state == observation) return(0.85)
else return(0.15)

return(1/2)
}

rew_f <- function(action, start.state, end.state, observation) {
if(action == 'listen') return(-1)
if(action == 'open-left' && start.state == 'tiger-left') return(-100)
if(action == 'open-left' && start.state == 'tiger-right') return(10)
if(action == 'open-right' && start.state == 'tiger-left') return(10)
if(action == 'open-right' && start.state == 'tiger-right') return(-100)
stop('Not possible')

}

Tiger_func <- POMDP(
name = "Tiger Problem",
discount = 0.75,
states = c("tiger-left" , "tiger-right"),
actions = c("listen", "open-left", "open-right"),
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observations = c("tiger-left", "tiger-right"),
start = "uniform",
transition_prob = trans_f,
observation_prob = obs_f,
reward = rew_f

)

Tiger_func

reward Calculate the Reward for a POMDP Solution

Description

This function calculates the expected total reward for a POMDP solution given a starting belief
state. The value is calculated using the value function stored in the POMDP solution. In addition,
the policy graph node that represents the belief state and the optimal action can also be returned
using reward_node_action().

Usage

reward(x, belief = NULL, epoch = 1)

reward_node_action(x, belief = NULL, epoch = 1)

Arguments

x a solved POMDP object.

belief specification of the current belief state (see argument start in POMDP for de-
tails). By default the belief state defined in the model as start is used. Multiple
belief states can be specified as rows in a matrix.

epoch return reward for this epoch. Use 1 for converged policies.

Value

reward() returns a vector of reward values, one for each belief if a matrix is specified.

reward_node_action() returns a list with the components

belief_state the belief state specified in belief.

reward the total expected reward given a belief and epoch.

pg_node the policy node that represents the belief state.

action the optimal action.

Author(s)

Michael Hahsler
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See Also

Other policy: optimal_action(), plot_value_function(), policy_graph(), policy(), solve_POMDP(),
solve_SARSOP()

Examples

data("Tiger")
sol <- solve_POMDP(model = Tiger)

# if no start is specified, a uniform belief is used.
reward(sol)

# we have additional information that makes us believe that the tiger
# is more likely to the left.
reward(sol, belief = c(0.85, 0.15))

# we start with strong evidence that the tiger is to the left.
reward(sol, belief = "tiger-left")

# Note that in this case, the total discounted expected reward is greater
# than 10 since the tiger problem resets and another game staring with
# a uniform belief is played which produces additional reward.

# return reward, the initial node in the policy graph and the optimal action for
# two beliefs.
reward_node_action(sol, belief = rbind(c(.5, .5), c(.9, .1)))

# manually combining reward with belief space sampling to show the value function
# (color signifies the optimal action)
samp <- sample_belief_space(sol, n = 200)
rew <- reward_node_action(sol, belief = samp)
plot(rew$belief[,"tiger-right"], rew$reward, col = rew$action, ylim = c(0, 15))
legend(x = "top", legend = levels(rew$action), title = "action", col = 1:3, pch = 1)

# this is the piecewise linear value function from the solution
plot_value_function(sol, ylim = c(0, 10))

round_stochastic Round a stochastic vector or a row-stochastic matrix

Description

Rounds a vector such that the sum of 1 is preserved. Rounds a matrix such that the rows still sum
up to 1.

Usage

round_stochastic(x, digits = getOption("digits"))
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Arguments

x a stochastic vector or a row-stochastic matrix.

digits number of digits for rounding.

Details

Rounds and adjusts one entry such that the rounding error is the smallest.

Value

The rounded vector or matrix.

See Also

round

Examples

# a vector that is off by 1e-8
x <- c(0.25 + 1e-8, 0.25, 0.5)

round_stochastic(x)
round_stochastic(x, digits = 2)
round_stochastic(x, digits = 1)
round_stochastic(x, digits = 0)

sample_belief_space Sample from the Belief Space

Description

Sample points from belief space using a several sampling strategies.

Usage

sample_belief_space(model, projection = NULL, n = 1000, method = "random", ...)

Arguments

model a unsolved or solved POMDP.

projection Sample in a projected belief space. All states not included in the projection are
held at a belief of 0. NULL means no projection.

n size of the sample. For trajectories, it is the number of trajectories.

method character string specifying the sampling strategy. Available are "random", "regular",
"vertices", and "trajectories".

... for the trajectory method, further arguments are passed on to simulate_POMDP().
Further arguments are ignored for the other methods.
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Details

The purpose of sampling from the belief space is to provide good coverage or to sample belief points
that are more likely to be encountered (see trajectory method). The following sampling methods
are available:

• 'random' samples uniformly sample from the projected belief space using the method de-
scribed by Luc Devroye (1986).

• 'regular' samples points using a regularly spaced grid. This method is only available for
projections on 2 or 3 states.

• 'vertices' only samples from the vertices of the belief space.

• "trajectories" returns the belief states encountered in n trajectories of length horizon
starting at the model’s initial belief. Thus it returns n x horizon belief states and will contain
duplicates. Projection is not supported for trajectories. Additional arguments can include the
simulation horizon and the start belief which are passed on to simulate_POMDP().

Value

Returns a matrix. Each row is a sample from the belief space.

Author(s)

Michael Hahsler

References

Luc Devroye, Non-Uniform Random Variate Generation, Springer Verlag, 1986.

See Also

Other POMDP: POMDP(), plot_belief_space(), simulate_POMDP(), solve_POMDP(), solve_SARSOP(),
transition_matrix(), update_belief(), write_POMDP()

Examples

data("Tiger")

sample_belief_space(Tiger, n = 5)
sample_belief_space(Tiger, n = 5, method = "regular")
sample_belief_space(Tiger, n = 5, horizon = 5, method = "trajectories")

# sample and calculate the reward for a solved POMDP
sol <- solve_POMDP(Tiger)
samp <- sample_belief_space(sol, n = 5, method = "regular")
rew <- reward(sol, belief = samp)
cbind(samp, rew)
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simulate_MDP Simulate Trajectories in a MDP

Description

Simulate trajectories through a MDP. The start state for each trajectory is randomly chosen using
the specified belief. The belief is used to choose actions from an epsilon-greedy policy and then
update the state.

Usage

simulate_MDP(
model,
n = 100,
start = NULL,
horizon = NULL,
visited_states = FALSE,
epsilon = NULL,
verbose = FALSE

)

Arguments

model a MDP model.

n number of trajectories.

start probability distribution over the states for choosing the starting states for the
trajectories. Defaults to "uniform".

horizon number of epochs for the simulation. If NULL then the horizon for the model is
used.

visited_states logical; Should all visited states on the trajectories be returned? If FALSE then
only the final state is returned.

epsilon the probability of random actions for using an epsilon-greedy policy. Default
for solved models is 0 and for unsolved model 1.

verbose report used parameters.

Value

A vector with state ids (in the final epoch or all). Attributes containing action counts, and rewards
for each trajectory may be available.

Author(s)

Michael Hahsler
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See Also

Other MDP: MDP(), solve_MDP()

Examples

data(Maze)

# solve the POMDP for 5 epochs and no discounting
sol <- solve_MDP(Maze, discount = 1)
sol
policy(sol)

## Example 1: simulate 10 trajectories, only the final belief state is returned
sim <- simulate_MDP(sol, n = 10, horizon = 10, verbose = TRUE)
head(sim)

# additional data is available as attributes
names(attributes(sim))
attr(sim, "avg_reward")
colMeans(attr(sim, "action"))

## Example 2: simulate starting always in state s_1
sim <- simulate_MDP(sol, n = 100, start = "s_1", horizon = 10)
sim

# the average reward is an estimate of the utility in the optimal policy:
policy(sol)[[1]][1,]

simulate_POMDP Simulate Trajectories in a POMDP

Description

Simulate trajectories through a POMDP. The start state for each trajectory is randomly chosen using
the specified belief. The belief is used to choose actions from the the epsilon-greedy policy and then
updated using observations.

Usage

simulate_POMDP(
model,
n = 100,
belief = NULL,
horizon = NULL,
visited_beliefs = FALSE,
epsilon = NULL,
digits = 7,
verbose = FALSE

)
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Arguments

model a POMDP model.

n number of trajectories.

belief probability distribution over the states for choosing the starting states for the
trajectories. Defaults to the start belief state specified in the model or "uniform".

horizon number of epochs for the simulation. If NULL then the horizon for the model is
used.

visited_beliefs

logical; Should all belief points visited on the trajectories be returned? If FALSE
then only the belief at the final epoch is returned.

epsilon the probability of random actions for using an epsilon-greedy policy. Default
for solved models is 0 and for unsolved model 1.

digits round belief points.

verbose report used parameters.

Value

A matrix with belief points (in the final epoch or all) as rows. Attributes containing action counts,
and rewards for each trajectory may be available.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), solve_POMDP(), solve_SARSOP(),
transition_matrix(), update_belief(), write_POMDP()

Examples

data(Tiger)

# solve the POMDP for 5 epochs and no discounting
sol <- solve_POMDP(Tiger, horizon = 5, discount = 1, method = "enum")
sol
policy(sol)

## Example 1: simulate 10 trajectories, only the final belief state is returned
sim <- simulate_POMDP(sol, n = 100, verbose = TRUE)
head(sim)

# plot the final belief state, look at the average reward and how often different actions were used.
plot_belief_space(sol, sample = sim)

# additional data is available as attributes
names(attributes(sim))
attr(sim, "avg_reward")
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colMeans(attr(sim, "action"))

## Example 2: look at all belief states in the trajectory starting with an initial start belief.
sim <- simulate_POMDP(sol, n = 100, belief = c(.5, .5), visited_beliefs = TRUE)

# plot with added density
plot_belief_space(sol, sample = sim, ylim = c(0,5), jitter = 1)
lines(density(sim[, 1], bw = .02)); axis(2); title(ylab = "Density")

## Example 3: simulate trajectories for an unsolved POMDP which uses a epsilon of 1
# (i.e., all randomized actions)
sim <- simulate_POMDP(Tiger, n = 100, horizon = 5, visited_beliefs = TRUE)
plot_belief_space(sol, sample = sim, ylim = c(0,6))
lines(density(sim[, 1], bw = .05)); axis(2); title(ylab = "Density")

solve_MDP Solve an MDP Problem

Description

A simple implementation of value iteration and modified policy iteration.

Usage

solve_MDP(
model,
horizon = NULL,
discount = NULL,
terminal_values = NULL,
method = "value",
eps = 0.01,
max_iterations = 1000,
k_backups = 10,
verbose = FALSE

)

q_values_MDP(model, U = NULL)

random_MDP_policy(model, prob = NULL)

approx_MDP_policy_evaluation(pi, model, U = NULL, k_backups = 10)

Arguments

model a POMDP problem specification created with POMDP(). Alternatively, a POMDP
file or the URL for a POMDP file can be specified.
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horizon an integer with the number of epochs for problems with a finite planning hori-
zon. If set to Inf, the algorithm continues running iterations till it converges to
the infinite horizon solution. If NULL, then the horizon specified in model will be
used. For time-dependent POMDPs a vector of horizons can be specified (see
Details section).

discount discount factor in range [0, 1]. If NULL, then the discount factor specified in
model will be used.

terminal_values

a vector with terminal utilities for each state. If NULL, then a vector of all 0s is
used.

method string; one of the following solution methods: 'value', 'policy'.

eps maximum error allowed in the utility of any state (i.e., the maximum policy
loss).

max_iterations maximum number of iterations allowed to converge. If the maximum is reached
then the non-converged solution is returned with a warning.

k_backups number of look ahead steps used for approximate policy evaluation used by
method 'policy'.

verbose logical, if set to TRUE, the function provides the output of the pomdp solver in
the R console.

U a vector with state utilities (expected sum of discounted rewards from that point
on).

prob probability vector for actions.

pi a policy as a data.frame with columns state and action.

Value

solve_MDP() returns an object of class POMDP which is a list with the model specifications
(model), the solution (solution). The solution is a list with the elements:

• policy a list representing the policy graph. The list only has one element for converged
solutions.

• converged did the algorithm converge (NA) for finite-horizon problems.

• delta final delta (infinite-horizon only)

• iterations number of iterations to convergence (infinite-horizon only)

q_values_MDP() returns a state by action matrix specifying the Q-function, i.e., the utility value of
executing each action in each state.

random_MDP_policy() returns a data.frame with columns state and action to define a policy.

approx_MDP_policy_evaluation() is used by the modified policy iteration algorithm and returns
an approximate utility vector U estimated by evaluating policy pi.

Author(s)

Michael Hahsler
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See Also

Other solver: solve_POMDP(), solve_SARSOP()

Other MDP: MDP(), simulate_MDP()

Examples

data(Maze)
Maze

# use value iteration
maze_solved <- solve_MDP(Maze, method = "value")
policy(maze_solved)

# value function (utility function U)
plot_value_function(maze_solved)

# Q-function (states times action)
q_values_MDP(maze_solved)

# use modified policy iteration
maze_solved <- solve_MDP(Maze, method = "policy")
policy(maze_solved)

# finite horizon
maze_solved <- solve_MDP(Maze, method = "value", horizon = 3)
policy(maze_solved)

# create a random policy where action n is very likely and approximate
# the value function. We change the discount factor to .9 for this.
Maze_discounted <- Maze
Maze_discounted$discount <- .9
pi <- random_MDP_policy(Maze_discounted, prob = c(n = .7, e = .1, s = .1, w = 0.1))
pi

# compare the utility function for the random policy with the function for the optimal
# policy found by the solver.
maze_solved <- solve_MDP(Maze)

approx_MDP_policy_evaluation(pi, Maze, k_backup = 100)
approx_MDP_policy_evaluation(policy(maze_solved)[[1]], Maze, k_backup = 100)

# Note that the solver already calculates the utility function and returns it with the policy
policy(maze_solved)

solve_POMDP Solve a POMDP Problem using pomdp-solver
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Description

This function utilizes the C implementation of ’pomdp-solve’ by Cassandra (2015) to solve prob-
lems that are formulated as partially observable Markov decision processes (POMDPs). The result
is an optimal or approximately optimal policy.

Usage

solve_POMDP(
model,
horizon = NULL,
discount = NULL,
terminal_values = NULL,
method = "grid",
digits = 7,
parameter = NULL,
verbose = FALSE

)

solve_POMDP_parameter()

Arguments

model a POMDP problem specification created with POMDP(). Alternatively, a POMDP
file or the URL for a POMDP file can be specified.

horizon an integer with the number of epochs for problems with a finite planning hori-
zon. If set to Inf, the algorithm continues running iterations till it converges to
the infinite horizon solution. If NULL, then the horizon specified in model will be
used. For time-dependent POMDPs a vector of horizons can be specified (see
Details section).

discount discount factor in range [0, 1]. If NULL, then the discount factor specified in
model will be used.

terminal_values

a vector with the terminal utility values for each state or a matrix specifying
the terminal rewards via a terminal value function (e.g., the alpha components
produced by solve_POMDP()). If NULL, then, if available, the terminal values
specified in model will be used or a vector with all 0s otherwise.

method string; one of the following solution methods: "grid", "enum", "twopass",
"witness", or "incprune". The default is "grid" implementing the finite grid
method.

digits precision used when writing POMDP files (see write_POMDP()).

parameter a list with parameters passed on to the pomdp-solve program.

verbose logical, if set to TRUE, the function provides the output of the pomdp solver in
the R console.
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Details

solve_POMDP_parameter() displays available solver parameter options.

Horizon: Infinite-horizon POMDPs (horizon = Inf) converge to a single policy graph. Finite-
horizon POMDPs result in a policy tree of a depth equal to the smaller of the horizon or the number
of epochs to convergence. The policy (and the associated value function) are stored in a list by
epoch. The policy for the first epoch is stored as the first element.

Policy: Each policy is a data frame where each row representing a policy graph node with an
associated optimal action and a list of node IDs to go to depending on the observation (specified as
the column names). For the finite-horizon case, the observation specific node IDs refer to nodes in
the next epoch creating a policy tree. Impossible observations have a NA as the next state.

Value function: The value function is stored as a matrix. Each row is associated with a node (row)
in the policy graph and represents the coefficients (alpha vector) of a hyperplane. An alpha vector
contains one value per state and is the value for the belief state that has a probability of 1 for that
state and 0s for all others.

Precision:* The POMDP solver uses various epsilon values to control precision for comparing
alpha vectors to check for convergence, and solving LPs. Overall precision can be changed using
parameter = list(epsilon = 1e-3).

Methods: Several algorithms for dynamic-programming updates are available:

• Enumeration (Sondik 1971).

• Two pass (Sondik 1971).

• Witness (Littman, Cassandra, Kaelbling, 1996).

• Incremental pruning (Zhang and Liu, 1996, Cassandra et al 1997).

• Grid implements a variation of point-based value iteration to solve larger POMDPs (PBVI;
see Pineau 2003) without dynamic belief set expansion.

Details can be found in (Cassandra, 2015).

Note on method grid: The grid method implements a version of Point Based Value Iteration
(PBVI). The used belief points are by default created using points that are reachable from the initial
belief (start) by following all combinations of actions and observations. The size of the grid can
be set via parameter = list(fg_points = 100). Alternatively, different strategies can be chosen
using the parameter fg_type. In this implementation, the user can also specify manually a grid of
belief states by providing a matrix with belief states as produced by sample_belief_space() as
the parameter grid.

To guarantee convergence in point-based (finite grid) value iteration, the initial value function must
be a lower bound on the optimal value function. If all rewards are strictly non-negative, an initial
value function with an all zero vector can be used and results will be similar to other methods.
However, if there are negative rewards, lower bounds can be guaranteed by setting a single vector
with the values min(reward)/(1 − discount). The value function is guaranteed to converge to
the true value function, but finite-horizon value functions will not be as expected. solve_POMDP()
produces a warning in this case.

Time-dependent POMDPs: Time dependence of transition probabilities, observation probabilities
and reward structure can be modeled by considering a set of episodes representing epochs with
the same settings. In the scared tiger example (see Examples section), the tiger has the normal
behavior for the first three epochs (episode 1) and then becomes scared with different transition
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probabilities for the next three epochs (episode 2). The episodes can be solved in reverse order
where the value function is used as the terminal values of the preceding episode. This can be done
by specifying a vector of horizons (one horizon for each episode) and then lists with transition
matrices, observation matrices, and rewards. If the horizon vector has names, then the lists also
need to be named, otherwise they have to be in the same order (the numeric index is used). Only the
time-varying matrices need to be specified. An example can be found in Example 4 in the Examples
section. The procedure can also be done by calling the solver multiple times (see Example 5).

Note: The parser for POMDP files is experimental. Please report problems here: https://github.
com/mhahsler/pomdp/issues.

Value

The solver returns an object of class POMDP which is a list with the model specifications (model),
the solution (solution), and the solver output (solver_output). The solution is a list with ele-
ments:

• converged did the solution converge?

• initial_belief used initial beliefs.

• total_expected_reward reward from the initial beliefs.

• pg, initial_pg_node a list representing the policy graph. The epochs are the list entries. A
converged infinite-horizon solution has only a single list elements. Finite-horizon solutions
may converge early resulting in a shorter list.

• belief_states used belief states.

• alpha value function as hyperplanes representing the nodes in the policy graph.

• policy the policy.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

Cassandra, A. (2015). pomdp-solve: POMDP Solver Software, http://www.pomdp.org.

Sondik, E. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D. Disser-
tation, Stanford University.

Cassandra, A., Littman M.L., Zhang L. (1997). Incremental Pruning: A Simple, Fast, Exact Algo-
rithm for Partially Observable Markov Decision Processes. UAI’97: Proceedings of the Thirteenth
conference on Uncertainty in artificial intelligence, August 1997, pp. 54-61.

Monahan, G. E. (1982). A survey of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science 28(1):1-16.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. (1996). Efficient dynamic-programming
updates in partially observable Markov decision processes. Technical Report CS-95-19, Brown
University, Providence, RI.

Zhang, N. L., and Liu, W. (1996). Planning in stochastic domains: Problem characteristics and
approximation. Technical Report HKUST-CS96-31, Department of Computer Science, Hong Kong
University of Science and Technology.

https://github.com/mhahsler/pomdp/issues
https://github.com/mhahsler/pomdp/issues
http://www.pomdp.org
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Pineau J., Geoffrey J Gordon G.J., Thrun S.B. (2003). Point-based value iteration: an anytime algo-
rithm for POMDPs. IJCAI’03: Proceedings of the 18th international joint conference on Artificial
Intelligence. Pages 1025-1030.

See Also

Other policy: optimal_action(), plot_value_function(), policy_graph(), policy(), reward(),
solve_SARSOP()

Other solver: solve_MDP(), solve_SARSOP()

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(),
solve_SARSOP(), transition_matrix(), update_belief(), write_POMDP()

Examples

################################################################
# Example 1: Solving the simple infinite-horizon Tiger problem
data("Tiger")
Tiger

# look at the model as a list
unclass(Tiger)

# inspect an individual field of the model (e.g., the reward)
Tiger$reward

sol <- solve_POMDP(model = Tiger)
sol

# look at solver output
sol$solver_output

# look at the solution
sol$solution

# policy (value function (alpha vectors), optimal action and observation dependent transitions)
policy(sol)

# plot the policy graph of the infinite-horizon POMDP
plot_policy_graph(sol)

# value function
plot_value_function(sol, ylim = c(0,20))

# display available solver options which can be passed on to the solver as parameters.
solve_POMDP_parameter()

################################################################
# Example 2: Solve a problem specified as a POMDP file
# using a grid of size 10
sol <- solve_POMDP("http://www.pomdp.org/examples/cheese.95.POMDP",

method = "grid", parameter = list(fg_points = 10))
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sol

policy(sol)

# Example 3: Solving a finite-horizon POMDP using the incremental
# pruning method (without discounting)
sol <- solve_POMDP(model = Tiger,

horizon = 3, discount = 1, method = "incprune")
sol

# look at the policy tree
policy(sol)
# note: it does not make sense to open the door in epochs 1 or 2 if you only have 3 epochs.

reward(sol) # listen twice and then open the door or listen 3 times
reward(sol, belief = c(1,0)) # listen twice (-2) and then open-left (10)
reward(sol, belief = c(1,0), epoch = 3) # just open the right door (10)
reward(sol, belief = c(.95,.05), epoch = 3) # just open the right door (95% chance)

################################################################
# Example 3: Using terminal values (state-dependent utilities after the final epoch)
#
# Specify 1000 if the tiger is right after 3 (horizon) epochs
sol <- solve_POMDP(model = Tiger,

horizon = 3, discount = 1, method = "incprune",
terminal_values = c(0, 1000))

sol

policy(sol)
# Note: The optimal strategy is to never open the left door. If we think the
# Tiger is behind the right door, then we just wait for the final payout. If
# we think the tiger might be behind the left door, then we open the right
# door, are likely to get a small reward and the tiger has a chance of 50\% to
# move behind the right door. The second episode is used to gather more
# information for the more important # final action.

################################################################
# Example 4: Model time-dependent transition probabilities

# The tiger reacts normally for 3 epochs (goes randomly two one
# of the two doors when a door was opened). After 3 epochs he gets
# scared and when a door is opened then he always goes to the other door.

# specify the horizon for each of the two different episodes
Tiger_time_dependent <- Tiger
Tiger_time_dependent$name <- "Scared Tiger Problem"
Tiger_time_dependent$horizon <- c(normal_tiger = 3, scared_tiger = 3)
Tiger_time_dependent$transition_prob <- list(

normal_tiger = list(
"listen" = "identity",
"open-left" = "uniform",
"open-right" = "uniform"),

scared_tiger = list(
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"listen" = "identity",
"open-left" = rbind(c(0, 1), c(0, 1)),
"open-right" = rbind(c(1, 0), c(1, 0))

)
)

# Tiger_time_dependent (a higher value for verbose will show more messages)

sol <- solve_POMDP(model = Tiger_time_dependent, discount = 1,
method = "incprune", verbose = 1)

sol

policy(sol)

################################################################
# Example 5: Alternative method to solve time-dependent POMDPs

# 1) create the scared tiger model
Tiger_scared <- Tiger
Tiger_scared$transition_prob <- list(

"listen" = "identity",
"open-left" = rbind(c(0, 1), c(0, 1)),
"open-right" = rbind(c(1, 0), c(1, 0))

)

# 2) Solve in reverse order. Scared tiger without terminal values first.
sol_scared <- solve_POMDP(model = Tiger_scared,

horizon = 3, discount = 1, method = "incprune")
sol_scared
policy(sol_scared)

# 3) Solve the regular tiger with the value function of the scared tiger as terminal values
sol <- solve_POMDP(model = Tiger,

horizon = 3, discount = 1, method = "incprune",
terminal_values = sol_scared$solution$alpha[[1]])

sol
policy(sol)
# Note: it is optimal to mostly listen till the Tiger gets in the scared mood. Only if
# we are extremely sure in the first epoch, then opening a door is optimal.

################################################################
# Example 6: PBVI with a custom grid

# Create a search grid by sampling from the belief space in
# 10 regular intervals
custom_grid <- sample_belief_space(Tiger, n = 10, method = "regular")
custom_grid

# Visualize the search grid
plot_belief_space(sol, sample = custom_grid)

# Solve the POMDP using the grid for approximation
sol <- solve_POMDP(Tiger, method = "grid", parameter = list(grid = custom_grid))
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policy(sol)

solve_SARSOP Solve a POMDP Problem using SARSOP

Description

This function uses the C++ implementation of the SARSOP algorithm by Kurniawati, Hsu and Lee
(2008) interfaced in package sarsop to solve infinite horizon problems that are formulated as par-
tially observable Markov decision processes (POMDPs). The result is an optimal or approximately
optimal policy.

Usage

solve_SARSOP(
model,
horizon = Inf,
discount = NULL,
terminal_values = NULL,
method = "sarsop",
digits = 7,
parameter = NULL,
verbose = FALSE

)

Arguments

model a POMDP problem specification created with POMDP(). Alternatively, a POMDP
file or the URL for a POMDP file can be specified.

horizon need to be Inf.

discount discount factor in range [0, 1]. If NULL, then the discount factor specified in
model will be used.

terminal_values

needs to be NULL. SARSOP does not use terminal values.

method string; there is only one method available called "sarsop".

digits precision used when writing POMDP files (see write_POMDP()).

parameter a list with parameters passed on to the function sarsop in package sarsop.

verbose logical, if set to TRUE, the function provides the output of the solver in the R
console.

Value

The solver returns an object of class POMDP which is a list with the model specifications ('model'),
the solution ('solution'), and the solver output ('solver_output').
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Author(s)

Michael Hahsler

References

Carl Boettiger, Jeroen Ooms and Milad Memarzadeh (2020). sarsop: Approximate POMDP Plan-
ning Software. R package version 0.6.6. https://CRAN.R-project.org/package=sarsop

H. Kurniawati, D. Hsu, and W.S. Lee (2008). SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In Proc. Robotics: Science and Systems.

See Also

Other policy: optimal_action(), plot_value_function(), policy_graph(), policy(), reward(),
solve_POMDP()

Other solver: solve_MDP(), solve_POMDP()

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(),
solve_POMDP(), transition_matrix(), update_belief(), write_POMDP()

Examples

## Not run:
# Solving the simple infinite-horizon Tiger problem with SARSOP
# You need to install package "sarsop"
data("Tiger")
Tiger

sol <- solve_SARSOP(model = Tiger)
sol

# look at solver output
sol$solver_output

# policy (value function (alpha vectors), optimal action and observation dependent transitions)
policy(sol)

# value function
plot_value_function(sol, ylim = c(0,20))

# plot the policy graph
plot_policy_graph(sol)

# reward of the optimal policy
reward(sol)

# Solve a problem specified as a POMDP file
sol <- solve_SARSOP("http://www.pomdp.org/examples/cheese.95.POMDP")
sol

## End(Not run)
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Tiger Tiger Problem POMDP Specification

Description

The model for the Tiger Problem introduces in Cassandra et al (1994).

Format

An object of class POMDP.

Details

The original Tiger problem was published in Cassandra et al (1994) as follows:

An agent is facing two closed doors and a tiger is put with equal probability behind one of the
two doors represented by the states tiger-left and tiger-right, while treasure is put behind the
other door. The possible actions are listen for tiger noises or opening a door (actions open-left
and open-right). Listening is neither free (the action has a reward of -1) nor is it entirely accurate.
There is a 15\ probability that the agent hears the tiger behind the left door while it is actually
behind the right door and vice versa. If the agent opens door with the tiger, it will get hurt (a
negative reward of -100), but if it opens the door with the treasure, it will receive a positive reward
of 10. After a door is opened, the problem is reset(i.e., the tiger is randomly assigned to a door with
chance 50/50) and the the agent gets another try.

The three doors problem is an extension of the Tiger problem where the tiger is behind one of three
doors represented by three states (tiger-left, tiger-center, and tiger-right) and treasure is
behind the other two doors. There are also three open actions and three different observations for
listening.

References

Anthony R. Cassandra, Leslie P Kaelbling, and Michael L. Littman (1994). Acting Optimally in
Partially Observable Stochastic Domains. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pp. 1023-1028.

Examples

data("Tiger")
Tiger

data("Three_doors")
Three_doors
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transition_matrix Extract the Transition, Observation or Reward Information from a
POMDP

Description

Converts the description of transition probabilities and observation probabilities in a POMDP into
a list of matrices. Individual values or parts of the matrices can be more efficiently retrieved using
the functions ending _prob and _val.

Usage

transition_matrix(x, episode = 1, action = NULL)

transition_prob(x, action, start.state, end.state, episode = 1)

observation_matrix(x, episode = 1, action = NULL)

observation_prob(x, action, end.state, observation, episode = 1)

reward_matrix(x, episode = 1, action = NULL, start.state = NULL)

reward_val(x, action, start.state, end.state, observation, episode = 1)

Arguments

x A POMDP object.

episode Episode used for time-dependent POMDPs (POMDP).

action only return the matrix/value for a given action.
start.state, end.state, observation

name of the state or observation.

Details

See Details section in POMDP for details.

Value

A list or a list of lists of matrices.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(),
solve_POMDP(), solve_SARSOP(), update_belief(), write_POMDP()
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Examples

data("Tiger")

# List of |A| transition matrices. One per action in the from states x states
Tiger$transition_prob
transition_matrix(Tiger)
transition_prob(Tiger, action = "listen", start.state = "tiger-left")

# List of |A| observation matrices. One per action in the from states x observations
Tiger$observation_prob
observation_matrix(Tiger)
observation_prob(Tiger, action = "listen", end.state = "tiger-left")

# List of list of reward matrices. 1st level is action and second level is the
# start state in the form end state x observation
Tiger$reward
reward_matrix(Tiger)
reward_val(Tiger, action = "listen", start.state = "tiger")

# Visualize transition matrix for action 'open-left'
library("igraph")
g <- graph_from_adjacency_matrix(transition_matrix(Tiger)$"open-left", weighted = TRUE)
edge_attr(g, "label") <- edge_attr(g, "weight")

igraph.options("edge.curved" = TRUE)
plot(g, layout = layout_on_grid, main = "Transitions for action 'open=left'")

## Use a function for the Tiger transition model
trans <- function(action, end.state, start.state) {

## listen has an identity matrix
if(action == 'listen')
if(end.state == start.state) return(1)
else return(0)

# other actions have a uniform distribution
return(1/2)

}

Tiger$transition_prob <- trans
transition_matrix(Tiger)

update_belief Belief Update

Description

Update the belief given a taken action and observation.
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Usage

update_belief(
model,
belief = NULL,
action = NULL,
observation = NULL,
episode = 1,
digits = 7,
drop = TRUE

)

Arguments

model a POMDP object.

belief the current belief state. Defaults to the start belief state specified in the model or
"uniform".

action the taken action. Can also be a vector of multiple actions or, if missing, then all
actions are evaluated.

observation the received observation. Can also be a vector of multiple observations or, if
missing, then all observations are evaluated.

episode Use transition and observation matrices for the given episode for time-dependent
POMDPs (see POMDP).

digits round decimals.

drop logical; drop the result to a vector if only a single belief state is returned.

Details

Update the belief state b (belief) with an action a and observation o. The new belief state b′ is:

b′(s′) = ηO(o|s′, a)
∑
s∈S

T (s′|s, a)b(s)

where η = 1/
∑

s′∈S [O(o|s′, a)
∑

s∈S T (s′|s, a)b(s)] normalizes the new belief state so the prob-
abilities add up to one.

Value

returns the updated belief state as a named vector. If action or observations is a vector with
multiple elements ot missing, then a matrix with all resulting belief states is returned.

Author(s)

Michael Hahsler

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(),
solve_POMDP(), solve_SARSOP(), transition_matrix(), write_POMDP()
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Examples

data(Tiger)

update_belief(c(.5,.5), model = Tiger)
update_belief(c(.5,.5), action = "listen", observation = "tiger-left", model = Tiger)
update_belief(c(.15,.85), action = "listen", observation = "tiger-right", model = Tiger)

write_POMDP Read and write a POMDP Model to a File in POMDP Format

Description

Reads and write a POMDP file suitable for the pomdp-solve program. Note: read POMDP files
are intended to be used in solve_POMDP() and do not support all auxiliary functions. Fields like
the transition matrix, the observation matrix and the reward structure are not parsed.

Usage

write_POMDP(x, file, digits = 7)

read_POMDP(file)

Arguments

x an object of class POMDP.

file a file name.

digits precision for writing numbers (digits after the decimal point).

Value

read_POMDP() returns a POMDP object.

Author(s)

Hossein Kamalzadeh, Michael Hahsler

References

POMDP solver website: http://www.pomdp.org

See Also

Other POMDP: POMDP(), plot_belief_space(), sample_belief_space(), simulate_POMDP(),
solve_POMDP(), solve_SARSOP(), transition_matrix(), update_belief()
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Examples

data(Tiger)

## show the POMDP file that would be written.
write_POMDP(Tiger, file = stdout())
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