This function can be very handy is you maintain a list of countries and parameters in a table like the one below. Note: This function only works with survey years. There is no fill_gaps
option available
# Read values from a table
data("sample_input")
sample_input
#> # A tibble: 5 x 5
#> country poverty_line year ppp coverage_type
#> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 ALB 3.2 1996 50 national
#> 2 AGO 1.9 2008 50 national
#> 3 KAZ 3.2 1993 50 national
#> 4 BOL 3.2 1992 50 urban
#> 5 ZAF 5.5 1993 50 national
# Use table values to send a request to the API
# Only works for survey years
povcalnet_cl(country = sample_input$country,
povline = sample_input$poverty_line,
year = sample_input$year,
ppp = sample_input$ppp)
#> # A tibble: 5 x 31
#> countrycode countryname regioncode coveragetype year datayear datatype
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
#> 1 ALB Albania ECA N 1996 1996 consump~
#> 2 AGO Angola SSA N 2008 2008. consump~
#> 3 KAZ Kazakhstan ECA N 1993 1993 income
#> 4 BOL Bolivia LAC N 1992 1992 income
#> 5 ZAF South Afri~ SSA N 1993 1993 consump~
#> # ... with 24 more variables: isinterpolated <dbl>, usemicrodata <dbl>,
#> # ppp <dbl>, povertyline <dbl>, mean <dbl>, headcount <dbl>,
#> # povertygap <dbl>, povertygapsq <dbl>, watts <dbl>, gini <dbl>,
#> # median <dbl>, mld <dbl>, polarization <dbl>, population <dbl>,
#> # decile1 <dbl>, decile2 <dbl>, decile3 <dbl>, decile4 <dbl>, decile5 <dbl>,
#> # decile6 <dbl>, decile7 <dbl>, decile8 <dbl>, decile9 <dbl>, decile10 <dbl>
povcalnet_info() %>%
glimpse()
#> Rows: 180
#> Columns: 9
#> $ country_code <chr> "ALB", "DZA", "AGO", "ARG", "ARM", "AUS", "AUT", "AZ...
#> $ country_name <chr> "Albania", "Algeria", "Angola", "Argentina", "Armeni...
#> $ wb_region <chr> "ECA", "MNA", "SSA", "LAC", "ECA", "OHI", "OHI", "EC...
#> $ un_region <chr> "EUS", "AFN", "AFM", "LAS", "ASW", "OCA", "EUW", "AS...
#> $ income_region <chr> "UMC", "UMC", "LMC", "HIC", "UMC", "HIC", "HIC", "UM...
#> $ coverage_level <chr> "national", "national", "national", "urban", "nation...
#> $ coverage_type <chr> "national", "national", "national", "urban", "nation...
#> $ coverage_code <chr> "3", "3", "3", "2", "3", "3", "3", "3", "3", "3", "3...
#> $ year <list> [<1996, 2002, 2005, 2008, 2012, 2014, 2015, 2016, 2...
income_groups <- c("LIC", "LMC", "UMC")
poverty_lines <- c(1.9, 3.2, 5.5)
map2_df(income_groups, poverty_lines, ~povcalnet(country = get_countries(.x),
povline = .y,
year = 2015,
aggregate = TRUE)
)
#> # A tibble: 3 x 9
#> regiontitle regioncode year povertyline mean headcount povertygap
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 XX XX 2015 1.9 88.3 0.448 0.171
#> 2 XX XX 2015 3.2 150. 0.439 0.139
#> 3 XX XX 2015 5.5 400. 0.245 0.0772
#> # ... with 2 more variables: povertygapsq <dbl>, population <dbl>