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accumulate Accumulate intermediate results of a vector reduction

Description

accumulate() sequentially applies a 2-argument function to elements of a vector. Each application
of the function uses the initial value or result of the previous application as the first argument. The
second argument is the next value of the vector. The results of each application are returned in a
list. The accumulation can optionally terminate before processing the whole vector in response to a
done() signal returned by the accumulation function.



accumulate 3

By contrast to accumulate(), reduce() applies a 2-argument function in the same way, but dis-
cards all results except that of the final function application.

accumulate2() sequentially applies a function to elements of two lists, .x and .y.

Usage

accumulate(.x, .f, ..., .init, .dir = c("forward", "backward"))

accumulate2(.x, .y, .f, ..., .init)

Arguments

.x A list or atomic vector.

.f For accumulate() .f is 2-argument function. The function will be passed the
accumulated result or initial value as the first argument. The next value in se-
quence is passed as the second argument.
For accumulate2(), a 3-argument function. The function will be passed the
accumulated result as the first argument. The next value in sequence from .x is
passed as the second argument. The next value in sequence from .y is passed as
the third argument.
The accumulation terminates early if .f returns a value wrapped in a done().

... Additional arguments passed on to the mapped function.

.init If supplied, will be used as the first value to start the accumulation, rather than
using .x[[1]]. This is useful if you want to ensure that reduce returns a correct
value when .x is empty. If missing, and .x is empty, will throw an error.

.dir The direction of accumulation as a string, one of "forward" (the default) or
"backward". See the section about direction below.

.y For accumulate2() .y is the second argument of the pair. It needs to be 1
element shorter than the vector to be accumulated (.x). If .init is set, .y needs
to be one element shorted than the concatenation of the initial value and .x.

Value

A vector the same length of .x with the same names as .x.

If .init is supplied, the length is extended by 1. If .x has names, the initial value is given the name
".init", otherwise the returned vector is kept unnamed.

If .dir is "forward" (the default), the first element is the initial value (.init if supplied, or the
first element of .x) and the last element is the final reduced value. In case of a right accumulation,
this order is reversed.

The accumulation terminates early if .f returns a value wrapped in a done(). If the done box is
empty, the last value is used instead and the result is one element shorter (but always includes the
initial value, even when terminating at the first iteration).

Life cycle

accumulate_right() is soft-deprecated in favour of the .dir argument as of rlang 0.3.0. Note that
the algorithm has slightly changed: the accumulated value is passed to the right rather than the left,
which is consistent with a right reduction.
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Direction

When .f is an associative operation like + or c(), the direction of reduction does not matter. For
instance, reducing the vector 1:3 with the binary function + computes the sum ((1 + 2) + 3) from
the left, and the same sum (1 + (2 + 3)) from the right.

In other cases, the direction has important consequences on the reduced value. For instance, reduc-
ing a vector with list() from the left produces a left-leaning nested list (or tree), while reducing
list() from the right produces a right-leaning list.

See Also

reduce() when you only need the final reduced value.

Examples

# With an associative operation, the final value is always the
# same, no matter the direction. You'll find it in the last element for a
# backward (left) accumulation, and in the first element for forward
# (right) one:
1:5 %>% accumulate(`+`)
1:5 %>% accumulate(`+`, .dir = "backward")

# The final value is always equal to the equivalent reduction:
1:5 %>% reduce(`+`)

# It is easier to understand the details of the reduction with
# `paste()`.
accumulate(letters[1:5], paste, sep = ".")

# Note how the intermediary reduced values are passed to the left
# with a left reduction, and to the right otherwise:
accumulate(letters[1:5], paste, sep = ".", .dir = "backward")

# `accumulate2()` is a version of `accumulate()` that works with
# 3-argument functions and one additional vector:
paste2 <- function(x, y, sep = ".") paste(x, y, sep = sep)
letters[1:4] %>% accumulate(paste2)
letters[1:4] %>% accumulate2(c("-", ".", "-"), paste2)

# You can shortcircuit an accumulation and terminate it early by
# returning a value wrapped in a done(). In the following example
# we return early if the result-so-far, which is passed on the LHS,
# meets a condition:
paste3 <- function(out, input, sep = ".") {

if (nchar(out) > 4) {
return(done(out))

}
paste(out, input, sep = sep)

}
letters %>% accumulate(paste3)

# Note how we get twice the same value in the accumulation. That's
# because we have returned it twice. To prevent this, return an empty
# done box to signal to accumulate() that it should terminate with the
# value of the last iteration:
paste3 <- function(out, input, sep = ".") {
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if (nchar(out) > 4) {
return(done())

}
paste(out, input, sep = sep)

}
letters %>% accumulate(paste3)

# Here the early return branch checks the incoming inputs passed on
# the RHS:
paste4 <- function(out, input, sep = ".") {

if (input == "f") {
return(done())

}
paste(out, input, sep = sep)

}
letters %>% accumulate(paste4)

# Simulating stochastic processes with drift
## Not run:
library(dplyr)
library(ggplot2)

rerun(5, rnorm(100)) %>%
set_names(paste0("sim", 1:5)) %>%
map(~ accumulate(., ~ .05 + .x + .y)) %>%
map_dfr(~ tibble(value = .x, step = 1:100), .id = "simulation") %>%
ggplot(aes(x = step, y = value)) +

geom_line(aes(color = simulation)) +
ggtitle("Simulations of a random walk with drift")

## End(Not run)

array-coercion Coerce array to list

Description

array_branch() and array_tree() enable arrays to be used with purrr’s functionals by turning
them into lists. The details of the coercion are controlled by the margin argument. array_tree()
creates an hierarchical list (a tree) that has as many levels as dimensions specified in margin, while
array_branch() creates a flat list (by analogy, a branch) along all mentioned dimensions.

Usage

array_branch(array, margin = NULL)

array_tree(array, margin = NULL)

Arguments

array An array to coerce into a list.
margin A numeric vector indicating the positions of the indices to be to be enlisted. If

NULL, a full margin is used. If numeric(0), the array as a whole is wrapped in a
list.



6 as_mapper

Details

When no margin is specified, all dimensions are used by default. When margin is a numeric vector
of length zero, the whole array is wrapped in a list.

Examples

# We create an array with 3 dimensions
x <- array(1:12, c(2, 2, 3))

# A full margin for such an array would be the vector 1:3. This is
# the default if you don't specify a margin

# Creating a branch along the full margin is equivalent to
# as.list(array) and produces a list of size length(x):
array_branch(x) %>% str()

# A branch along the first dimension yields a list of length 2
# with each element containing a 2x3 array:
array_branch(x, 1) %>% str()

# A branch along the first and third dimensions yields a list of
# length 2x3 whose elements contain a vector of length 2:
array_branch(x, c(1, 3)) %>% str()

# Creating a tree from the full margin creates a list of lists of
# lists:
array_tree(x) %>% str()

# The ordering and the depth of the tree are controlled by the
# margin argument:
array_tree(x, c(3, 1)) %>% str()

as_mapper Convert an object into a mapper function

Description

as_mapper is the powerhouse behind the varied function specifications that most purrr functions
allow. It is an S3 generic. The default method forwards its arguments to rlang::as_function().

Usage

as_mapper(.f, ...)

## S3 method for class 'character'
as_mapper(.f, ..., .null, .default = NULL)

## S3 method for class 'numeric'
as_mapper(.f, ..., .null, .default = NULL)

## S3 method for class 'list'
as_mapper(.f, ..., .null, .default = NULL)
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Arguments

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to methods.

.default, .null

Optional additional argument for extractor functions (i.e. when .f is character,
integer, or list). Returned when value is absent (does not exist) or empty (has
length 0). .null is deprecated; please use .default instead.

Examples

as_mapper(~ . + 1)
as_mapper(1)

as_mapper(c("a", "b", "c"))
# Equivalent to function(x) x[["a"]][["b"]][["c"]]

as_mapper(list(1, "a", 2))
# Equivalent to function(x) x[[1]][["a"]][[2]]

as_mapper(list(1, attr_getter("a")))
# Equivalent to function(x) attr(x[[1]], "a")

as_mapper(c("a", "b", "c"), .default = NA)

as_vector Coerce a list to a vector

Description

as_vector() collapses a list of vectors into one vector. It checks that the type of each vector is
consistent with .type. If the list can not be simplified, it throws an error. simplify will simplify a
vector if possible; simplify_all will apply simplify to every element of a list.

Usage

as_vector(.x, .type = NULL)

simplify(.x, .type = NULL)

simplify_all(.x, .type = NULL)
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Arguments

.x A list of vectors

.type A vector mold or a string describing the type of the input vectors. The latter can
be any of the types returned by typeof(), or "numeric" as a shorthand for either
"double" or "integer".

Details

.type can be a vector mold specifying both the type and the length of the vectors to be concatenated,
such as numeric(1) or integer(4). Alternatively, it can be a string describing the type, one of:
"logical", "integer", "double", "complex", "character" or "raw".

Examples

# Supply the type either with a string:
as.list(letters) %>% as_vector("character")

# Or with a vector mold:
as.list(letters) %>% as_vector(character(1))

# Vector molds are more flexible because they also specify the
# length of the concatenated vectors:
list(1:2, 3:4, 5:6) %>% as_vector(integer(2))

# Note that unlike vapply(), as_vector() never adds dimension
# attributes. So when you specify a vector mold of size > 1, you
# always get a vector and not a matrix

attr_getter Create an attribute getter function

Description

attr_getter() generates an attribute accessor function; i.e., it generates a function for extracting
an attribute with a given name. Unlike the base R attr() function with default options, it doesn’t
use partial matching.

Usage

attr_getter(attr)

Arguments

attr An attribute name as string.

See Also

pluck()
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Examples

# attr_getter() takes an attribute name and returns a function to
# access the attribute:
get_rownames <- attr_getter("row.names")
get_rownames(mtcars)

# These getter functions are handy in conjunction with pluck() for
# extracting deeply into a data structure. Here we'll first
# extract by position, then by attribute:
obj1 <- structure("obj", obj_attr = "foo")
obj2 <- structure("obj", obj_attr = "bar")
x <- list(obj1, obj2)

pluck(x, 1, attr_getter("obj_attr")) # From first object
pluck(x, 2, attr_getter("obj_attr")) # From second object

compose Compose multiple functions

Description

Compose multiple functions

Usage

compose(..., .dir = c("backward", "forward"))

Arguments

... Functions to apply in order (from right to left by default). Formulas are con-
verted to functions in the usual way.
These dots support tidy dots features. In particular, if your functions are stored
in a list, you can splice that in with !!!.

.dir If "backward" (the default), the functions are called in the reverse order, from
right to left, as is conventional in mathematics. If "forward", they are called
from left to right.

Value

A function

Examples

not_null <- compose(`!`, is.null)
not_null(4)
not_null(NULL)

add1 <- function(x) x + 1
compose(add1, add1)(8)

# You can use the formula shortcut for functions:
fn <- compose(~ paste(.x, "foo"), ~ paste(.x, "bar"))
fn("input")
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# Lists of functions can be spliced with !!!
fns <- list(

function(x) paste(x, "foo"),
~ paste(.x, "bar")

)
fn <- compose(!!!fns)
fn("input")

cross Produce all combinations of list elements

Description

cross2() returns the product set of the elements of .x and .y. cross3() takes an additional .z
argument. cross() takes a list .l and returns the cartesian product of all its elements in a list,
with one combination by element. cross_df() is like cross() but returns a data frame, with one
combination by row.

Usage

cross(.l, .filter = NULL)

cross2(.x, .y, .filter = NULL)

cross3(.x, .y, .z, .filter = NULL)

cross_df(.l, .filter = NULL)

Arguments

.l A list of lists or atomic vectors. Alternatively, a data frame. cross_df() re-
quires all elements to be named.

.filter A predicate function that takes the same number of arguments as the number of
variables to be combined.

.x, .y, .z Lists or atomic vectors.

Details

cross(), cross2() and cross3() return the cartesian product is returned in wide format. This
makes it more amenable to mapping operations. cross_df() returns the output in long format just
as expand.grid() does. This is adapted to rowwise operations.

When the number of combinations is large and the individual elements are heavy memory-wise,
it is often useful to filter unwanted combinations on the fly with .filter. It must be a predicate
function that takes the same number of arguments as the number of crossed objects (2 for cross2(),
3 for cross3(), length(.l) for cross()) and returns TRUE or FALSE. The combinations where the
predicate function returns TRUE will be removed from the result.

Value

cross2(), cross3() and cross() always return a list. cross_df() always returns a data frame.
cross() returns a list where each element is one combination so that the list can be directly mapped
over. cross_df() returns a data frame where each row is one combination.
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See Also

expand.grid()

Examples

# We build all combinations of names, greetings and separators from our
# list of data and pass each one to paste()
data <- list(

id = c("John", "Jane"),
greeting = c("Hello.", "Bonjour."),
sep = c("! ", "... ")

)

data %>%
cross() %>%
map(lift(paste))

# cross() returns the combinations in long format: many elements,
# each representing one combination. With cross_df() we'll get a
# data frame in long format: crossing three objects produces a data
# frame of three columns with each row being a particular
# combination. This is the same format that expand.grid() returns.
args <- data %>% cross_df()

# In case you need a list in long format (and not a data frame)
# just run as.list() after cross_df()
args %>% as.list()

# This format is often less pratical for functional programming
# because applying a function to the combinations requires a loop
out <- vector("list", length = nrow(args))
for (i in seq_along(out))

out[[i]] <- map(args, i) %>% invoke(paste, .)
out

# It's easier to transpose and then use invoke_map()
args %>% transpose() %>% map_chr(~ invoke(paste, .))

# Unwanted combinations can be filtered out with a predicate function
filter <- function(x, y) x >= y
cross2(1:5, 1:5, .filter = filter) %>% str()

# To give names to the components of the combinations, we map
# setNames() on the product:
seq_len(3) %>%

cross2(., ., .filter = `==`) %>%
map(setNames, c("x", "y"))

# Alternatively we can encapsulate the arguments in a named list
# before crossing to get named components:
seq_len(3) %>%

list(x = ., y = .) %>%
cross(.filter = `==`)
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detect Find the value or position of the first match

Description

Find the value or position of the first match

Usage

detect(
.x,
.f,
...,
.dir = c("forward", "backward"),
.right = NULL,
.default = NULL

)

detect_index(.x, .f, ..., .dir = c("forward", "backward"), .right = NULL)

Arguments

.x A list or atomic vector.

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to the mapped function.

.dir If "forward", the default, starts at the beginning of the vector and move towards
the end; if "backward", starts at the end of the vector and moves towards the
beginning.

.right Soft-deprecated. Please use .dir instead.

.default The value returned when nothing is detected.

Value

detect the value of the first item that matches the predicate; detect_index the position of the
matching item. If not found, detect returns NULL and detect_index returns 0.
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See Also

keep() for keeping all matching values.

Examples

is_even <- function(x) x %% 2 == 0

3:10 %>% detect(is_even)
3:10 %>% detect_index(is_even)

3:10 %>% detect(is_even, .dir = "backward")
3:10 %>% detect_index(is_even, .dir = "backward")

# Since `.f` is passed to as_mapper(), you can supply a
# lambda-formula or a pluck object:
x <- list(

list(1, foo = FALSE),
list(2, foo = TRUE),
list(3, foo = TRUE)

)

detect(x, "foo")
detect_index(x, "foo")

# If you need to find all values, use keep():
keep(x, "foo")

# If you need to find all positions, use map_lgl():
which(map_lgl(x, "foo"))

done Done box

Description

These objects are imported from other packages. Follow the links below to see their documentation.

rlang done

every Do every, some, or none of the elements of a list satisfy a predicate?

Description

Do every, some, or none of the elements of a list satisfy a predicate?
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Usage

every(.x, .p, ...)

some(.x, .p, ...)

none(.x, .p, ...)

Arguments

.x A list or atomic vector.

.p A predicate function to apply on each element of .x. some() returns TRUE when
.p is TRUE for at least one element. every() returns TRUE when .p is TRUE for
all elements. none() returns TRUE when .p is FALSE for all elements.‘

... Additional arguments passed on to .p.

Value

A logical vector of length 1.

Examples

y <- list(0:10, 5.5)
y %>% every(is.numeric)
y %>% every(is.integer)
y %>% some(is.integer)
y %>% none(is.character)

exec Execute a function

Description

These objects are imported from other packages. Follow the links below to see their documentation.

rlang exec

faq-adverbs-export Best practices for exporting adverb-wrapped functions

Description

Functions like insistently(), safely(), slowly(), and quietly() help resolve challenging
issues in programming. For example, safely() modifies a function to return both an error and a
result. These functions work by returning an enhanced version of the original function. They are
often called adverb functions and are typically named with an informative prefix such as safe_ or
insist_. For instance, an insistent variant of scrape_data() created with insistently() might
be called insist_scrape_data().

Exporting functions created with purrr adverbs in your package requires some precautions. Because
the functions created by adverbs contain internal purrr code, creating them once and for all when
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the package is built might cause problems when purrr is updated. Instead, the function must be
created by the purrr adverb each time the package is loaded in memory via the .onLoad() hook of
the package. This prevents the generated functions to contain outdated internal purrr code (which
could even refer to functions that no longer exist in the purrr namespace).

An example if provided below for insist, but it would be very similar for functions generated by
other adverbs.

#' My function
insist_my_function <- function(...) "dummy"

my_function <- function(...) {
# Implementation

}

.onLoad <- function(lib, pkg) {
insist_my_function <<- purrr::insistently(my_function)

}

flatten Flatten a list of lists into a simple vector.

Description

These functions remove a level hierarchy from a list. They are similar to unlist(), but they only
ever remove a single layer of hierarchy and they are type-stable, so you always know what the type
of the output is.

Usage

flatten(.x)

flatten_lgl(.x)

flatten_int(.x)

flatten_dbl(.x)

flatten_chr(.x)

flatten_raw(.x)

flatten_dfr(.x, .id = NULL)

flatten_dfc(.x)

Arguments

.x A list to flatten. The contents of the list can be anything for flatten() (as a list
is returned), but the contents must match the type for the other functions.
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.id Either a string or NULL. If a string, the output will contain a variable with that
name, storing either the name (if .x is named) or the index (if .x is unnamed)
of the input. If NULL, the default, no variable will be created.
Only applies to _dfr variant.

Value

flatten() returns a list, flatten_lgl() a logical vector, flatten_int() an integer vector, flatten_dbl()
a double vector, and flatten_chr() a character vector.

flatten_dfr() and flatten_dfc() return data frames created by row-binding and column-binding
respectively. They require dplyr to be installed.

Examples

x <- rerun(2, sample(4))
x
x %>% flatten()
x %>% flatten_int()

# You can use flatten in conjunction with map
x %>% map(1L) %>% flatten_int()
# But it's more efficient to use the typed map instead.
x %>% map_int(1L)

has_element Does a list contain an object?

Description

Does a list contain an object?

Usage

has_element(.x, .y)

Arguments

.x A list or atomic vector.

.y Object to test for

Examples

x <- list(1:10, 5, 9.9)
x %>% has_element(1:10)
x %>% has_element(3)
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head_while Find head/tail that all satisfies a predicate.

Description

Find head/tail that all satisfies a predicate.

Usage

head_while(.x, .p, ...)

tail_while(.x, .p, ...)

Arguments

.x A list or atomic vector.

.p A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as .x. Alternatively, if the elements of .x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where .p evaluates to TRUE will be modified.

... Additional arguments passed on to the mapped function.

Value

A vector the same type as .x.

Examples

pos <- function(x) x >= 0
head_while(5:-5, pos)
tail_while(5:-5, negate(pos))

big <- function(x) x > 100
head_while(0:10, big)
tail_while(0:10, big)

imap Apply a function to each element of a vector, and its index

Description

imap_xxx(x,...), an indexed map, is short hand for map2(x,names(x),...) if x has names, or
map2(x,seq_along(x),...) if it does not. This is useful if you need to compute on both the value
and the position of an element.
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Usage

imap(.x, .f, ...)

imap_lgl(.x, .f, ...)

imap_chr(.x, .f, ...)

imap_int(.x, .f, ...)

imap_dbl(.x, .f, ...)

imap_raw(.x, .f, ...)

imap_dfr(.x, .f, ..., .id = NULL)

imap_dfc(.x, .f, ...)

iwalk(.x, .f, ...)

Arguments

.x A list or atomic vector.

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to the mapped function.

.id Either a string or NULL. If a string, the output will contain a variable with that
name, storing either the name (if .x is named) or the index (if .x is unnamed)
of the input. If NULL, the default, no variable will be created.
Only applies to _dfr variant.

Value

A vector the same length as .x.

See Also

Other map variants: invoke(), lmap(), map2(), map_if(), map(), modify()
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Examples

# Note that when using the formula shortcut, the first argument
# is the value, and the second is the position
imap_chr(sample(10), ~ paste0(.y, ": ", .x))
iwalk(mtcars, ~ cat(.y, ": ", median(.x), "\n", sep = ""))

insistently Transform a function to make it run insistently or slowly

Description

• insistently() takes a function and modifies it to retry a given amount of time on error.

• slowly() takes a function and modifies it to wait a given amount of time between each call.

The number and rate of attempts is determined by a rate object (by default a jittered exponential
backoff rate for insistently(), and a constant rate for slowly()).

If you would like to include a function created with safely, slowly, or insistently in a package,
see faq-adverbs-export.

Usage

insistently(f, rate = rate_backoff(), quiet = TRUE)

slowly(f, rate = rate_delay(), quiet = TRUE)

Arguments

f A function to modify.

rate A rate object determining the waiting time.

quiet If FALSE, prints a message displaying how long until the next request.

See Also

httr::RETRY() is a special case of insistently() for HTTP verbs. rate_backoff() and rate_delay()
for creating custom backoff rates. rate_sleep() for the function powering insistently() and
slowly(). safely() for another useful function operator.

Examples

# For the purpose of this example, we first create a custom rate
# object with a low waiting time between attempts:
rate <- rate_delay(0.1)

# slowly() causes a function to sleep for a given time between calls:
slow_runif <- slowly(~ runif(1), rate = rate, quiet = FALSE)
map(1:5, slow_runif)

# insistently() makes a function repeatedly try to work
risky_runif <- function(lo = 0, hi = 1) {

y <- runif(1, lo, hi)
if(y < 0.9) {
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stop(y, " is too small")
}
y

}

# Let's now create an exponential backoff rate with a low waiting
# time between attempts:
rate <- rate_backoff(pause_base = 0.1, pause_min = 0.005, max_times = 4)

# Modify your function to run insistently.
insistent_risky_runif <- insistently(risky_runif, rate, quiet = FALSE)

set.seed(6) # Succeeding seed
insistent_risky_runif()

set.seed(3) # Failing seed
try(insistent_risky_runif())

# You can also use other types of rate settings, like a delay rate
# that waits for a fixed amount of time. Be aware that a delay rate
# has an infinite amount of attempts by default:
rate <- rate_delay(0.2, max_times = 3)
insistent_risky_runif <- insistently(risky_runif, rate = rate, quiet = FALSE)
try(insistent_risky_runif())

# insistently() and possibly() are a useful combination
rate <- rate_backoff(pause_base = 0.1, pause_min = 0.005)
possibly_insistent_risky_runif <- possibly(insistent_risky_runif, otherwise = -99)

set.seed(6)
possibly_insistent_risky_runif()

set.seed(3)
possibly_insistent_risky_runif()

keep Keep or discard elements using a predicate function.

Description

keep() and discard() are opposites. compact() is a handy wrapper that removes all empty ele-
ments.

Usage

keep(.x, .p, ...)

discard(.x, .p, ...)

compact(.x, .p = identity)
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Arguments

.x A list or vector.

.p For keep() and discard(), a predicate function. Only those elements where
.p evaluates to TRUE will be kept or discarded.
For compact(), a function that is applied to each element of .x. Only those
elements where .p evaluates to an empty vector will be discarded.

... Additional arguments passed on to .p.

Details

These are usually called select or filter and reject or drop, but those names are already taken.
keep() is similar to Filter(), but the argument order is more convenient, and the evaluation of
the predicate function .p is stricter.

Examples

rep(10, 10) %>%
map(sample, 5) %>%
keep(function(x) mean(x) > 6)

# Or use a formula
rep(10, 10) %>%

map(sample, 5) %>%
keep(~ mean(.x) > 6)

# Using a string instead of a function will select all list elements
# where that subelement is TRUE
x <- rerun(5, a = rbernoulli(1), b = sample(10))
x
x %>% keep("a")
x %>% discard("a")

# compact() discards elements that are NULL or that have length zero
list(a = "a", b = NULL, c = integer(0), d = NA, e = list()) %>%

compact()

lift Lift the domain of a function

Description

lift_xy() is a composition helper. It helps you compose functions by lifting their domain from a
kind of input to another kind. The domain can be changed from and to a list (l), a vector (v) and
dots (d). For example, lift_ld(fun) transforms a function taking a list to a function taking dots.

Usage

lift(..f, ..., .unnamed = FALSE)

lift_dl(..f, ..., .unnamed = FALSE)

lift_dv(..f, ..., .unnamed = FALSE)
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lift_vl(..f, ..., .type)

lift_vd(..f, ..., .type)

lift_ld(..f, ...)

lift_lv(..f, ...)

Arguments

..f A function to lift.

... Default arguments for ..f. These will be evaluated only once, when the lifting
factory is called.

.unnamed If TRUE, ld or lv will not name the parameters in the lifted function signature.
This prevents matching of arguments by name and match by position instead.

.type A vector mold or a string describing the type of the input vectors. The latter can
be any of the types returned by typeof(), or "numeric" as a shorthand for either
"double" or "integer".

Details

The most important of those helpers is probably lift_dl() because it allows you to transform a
regular function to one that takes a list. This is often essential for composition with purrr functional
tools. Since this is such a common function, lift() is provided as an alias for that operation.

Value

A function.

from ... to list(...) or c(...)

Here dots should be taken here in a figurative way. The lifted functions does not need to take dots
per se. The function is simply wrapped a function in do.call(), so instead of taking multiple
arguments, it takes a single named list or vector which will be interpreted as its arguments. This
is particularly useful when you want to pass a row of a data frame or a list to a function and don’t
want to manually pull it apart in your function.

from c(...) to list(...) or ...

These factories allow a function taking a vector to take a list or dots instead. The lifted function
internally transforms its inputs back to an atomic vector. purrr does not obey the usual R casting
rules (e.g., c(1,"2") produces a character vector) and will produce an error if the types are not
compatible. Additionally, you can enforce a particular vector type by supplying .type.

from list(...) to c(...) or ...

lift_ld() turns a function that takes a list into a function that takes dots. lift_vd() does the
same with a function that takes an atomic vector. These factory functions are the inverse operations
of lift_dl() and lift_dv().

lift_vd() internally coerces the inputs of ..f to an atomic vector. The details of this coercion can
be controlled with .type.
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See Also

invoke()

Examples

### Lifting from ... to list(...) or c(...)

x <- list(x = c(1:100, NA, 1000), na.rm = TRUE, trim = 0.9)
lift_dl(mean)(x)

# Or in a pipe:
mean %>% lift_dl() %>% invoke(x)

# You can also use the lift() alias for this common operation:
lift(mean)(x)

# Default arguments can also be specified directly in lift_dl()
list(c(1:100, NA, 1000)) %>% lift_dl(mean, na.rm = TRUE)()

# lift_dl() and lift_ld() are inverse of each other.
# Here we transform sum() so that it takes a list
fun <- sum %>% lift_dl()
fun(list(3, NA, 4, na.rm = TRUE))

# Now we transform it back to a variadic function
fun2 <- fun %>% lift_ld()
fun2(3, NA, 4, na.rm = TRUE)

# It can sometimes be useful to make sure the lifted function's
# signature has no named parameters, as would be the case for a
# function taking only dots. The lifted function will take a list
# or vector but will not match its arguments to the names of the
# input. For instance, if you give a data frame as input to your
# lifted function, the names of the columns are probably not
# related to the function signature and should be discarded.
lifted_identical <- lift_dl(identical, .unnamed = TRUE)
mtcars[c(1, 1)] %>% lifted_identical()
mtcars[c(1, 2)] %>% lifted_identical()
#

### Lifting from c(...) to list(...) or ...

# In other situations we need the vector-valued function to take a
# variable number of arguments as with pmap(). This is a job for
# lift_vd():
pmap(mtcars, lift_vd(mean))

# lift_vd() will collect the arguments and concatenate them to a
# vector before passing them to ..f. You can add a check to assert
# the type of vector you expect:
lift_vd(tolower, .type = character(1))("this", "is", "ok")
#

### Lifting from list(...) to c(...) or ...
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# cross() normally takes a list of elements and returns their
# cartesian product. By lifting it you can supply the arguments as
# if it was a function taking dots:
cross_dots <- lift_ld(cross)
out1 <- cross(list(a = 1:2, b = c("a", "b", "c")))
out2 <- cross_dots(a = 1:2, b = c("a", "b", "c"))
identical(out1, out2)

# This kind of lifting is sometimes needed for function
# composition. An example would be to use pmap() with a function
# that takes a list. In the following, we use some() on each row of
# a data frame to check they each contain at least one element
# satisfying a condition:
mtcars %>% pmap(lift_ld(some, partial(`<`, 200)))

# Default arguments for ..f can be specified in the call to
# lift_ld()
lift_ld(cross, .filter = `==`)(1:3, 1:3) %>% str()

# Here is another function taking a list and that we can update to
# take a vector:
glue <- function(l) {

if (!is.list(l)) stop("not a list")
l %>% invoke(paste, .)

}

## Not run:
letters %>% glue() # fails because glue() expects a list
## End(Not run)

letters %>% lift_lv(glue)() # succeeds

list_modify Modify a list

Description

list_modify() and list_merge() recursively combine two lists, matching elements either by
name or position. If a sub-element is present in both lists list_modify() takes the value from y,
and list_merge() concatenates the values together.

update_list() handles formulas and quosures that can refer to values existing within the input list.
Note that this function might be deprecated in the future in favour of a dplyr::mutate() method
for lists.

Usage

list_modify(.x, ...)

list_merge(.x, ...)



lmap 25

Arguments

.x List to modify.

... New values of a list. Use zap() to remove values.
These values should be either all named or all unnamed. When inputs are all
named, they are matched to .x by name. When they are all unnamed, they are
matched positionally.
These dots support tidy dots features. In particular, if your functions are stored
in a list, you can splice that in with !!!.

Examples

x <- list(x = 1:10, y = 4, z = list(a = 1, b = 2))
str(x)

# Update values
str(list_modify(x, a = 1))
# Replace values
str(list_modify(x, z = 5))
str(list_modify(x, z = list(a = 1:5)))

# Remove values
str(list_modify(x, z = zap()))

# Combine values
str(list_merge(x, x = 11, z = list(a = 2:5, c = 3)))

# All these functions support tidy dots features. Use !!! to splice
# a list of arguments:
l <- list(new = 1, y = zap(), z = 5)
str(list_modify(x, !!!l))

lmap Apply a function to list-elements of a list

Description

lmap(), lmap_at() and lmap_if() are similar to map(), map_at() and map_if(), with the dif-
ference that they operate exclusively on functions that take and return a list (or data frame). Thus,
instead of mapping the elements of a list (as in .x[[i]]), they apply a function .f to each subset
of size 1 of that list (as in .x[i]). We call those elements list-elements).

Usage

lmap(.x, .f, ...)

lmap_if(.x, .p, .f, ..., .else = NULL)

lmap_at(.x, .at, .f, ...)
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Arguments

.x A list or data frame.

.f A function that takes and returns a list or data frame.

... Additional arguments passed on to the mapped function.

.p A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as .x. Alternatively, if the elements of .x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where .p evaluates to TRUE will be modified.

.else A function applied to elements of .x for which .p returns FALSE.

.at A character vector of names, positive numeric vector of positions to include, or
a negative numeric vector of positions to exlude. Only those elements corre-
sponding to .at will be modified. If the tidyselect package is installed, you
can use vars() and the tidyselect helpers to select elements.

Details

Mapping the list-elements .x[i] has several advantages. It makes it possible to work with functions
that exclusively take a list or data frame. It enables .f to access the attributes of the encapsulating
list, like the name of the components it receives. It also enables .f to return a larger list than the
list-element of size 1 it got as input. Conversely, .f can also return empty lists. In these cases, the
output list is reshaped with a different size than the input list .x.

Value

If .x is a list, a list. If .x is a data frame, a data frame.

See Also

Other map variants: imap(), invoke(), map2(), map_if(), map(), modify()

Examples

# Let's write a function that returns a larger list or an empty list
# depending on some condition. This function also uses the names
# metadata available in the attributes of the list-element
maybe_rep <- function(x) {

n <- rpois(1, 2)
out <- rep_len(x, n)
if (length(out) > 0) {

names(out) <- paste0(names(x), seq_len(n))
}
out

}

# The output size varies each time we map f()
x <- list(a = 1:4, b = letters[5:7], c = 8:9, d = letters[10])
x %>% lmap(maybe_rep)

# We can apply f() on a selected subset of x
x %>% lmap_at(c("a", "d"), maybe_rep)

# Or only where a condition is satisfied
x %>% lmap_if(is.character, maybe_rep)
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# A more realistic example would be a function that takes discrete
# variables in a dataset and turns them into disjunctive tables, a
# form that is amenable to fitting some types of models.

# A disjunctive table contains only 0 and 1 but has as many columns
# as unique values in the original variable. Ideally, we want to
# combine the names of each level with the name of the discrete
# variable in order to identify them. Given these requirements, it
# makes sense to have a function that takes a data frame of size 1
# and returns a data frame of variable size.
disjoin <- function(x, sep = "_") {

name <- names(x)
x <- as.factor(x[[1]])

out <- lapply(levels(x), function(level) {
as.numeric(x == level)

})

names(out) <- paste(name, levels(x), sep = sep)
out

}

# Now, we are ready to map disjoin() on each categorical variable of a
# data frame:
iris %>% lmap_if(is.factor, disjoin)
mtcars %>% lmap_at(c("cyl", "vs", "am"), disjoin)

map Apply a function to each element of a list or atomic vector

Description

The map functions transform their input by applying a function to each element of a list or atomic
vector and returning an object of the same length as the input.

• map() always returns a list. See the modify() family for versions that return an object of the
same type as the input.

• map_lgl(), map_int(), map_dbl() and map_chr() return an atomic vector of the indicated
type (or die trying).

• map_dfr() and map_dfc() return a data frame created by row-binding and column-binding
respectively. They require dplyr to be installed.

• The returned values of .f must be of length one for each element of .x. If .f uses an extractor
function shortcut, .default can be specified to handle values that are absent or empty. See
as_mapper() for more on .default.

• walk() calls .f for its side-effect and returns the input .x.
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Usage

map(.x, .f, ...)

map_lgl(.x, .f, ...)

map_chr(.x, .f, ...)

map_int(.x, .f, ...)

map_dbl(.x, .f, ...)

map_raw(.x, .f, ...)

map_dfr(.x, .f, ..., .id = NULL)

map_dfc(.x, .f, ...)

walk(.x, .f, ...)

Arguments

.x A list or atomic vector.

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc
This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to the mapped function.

.id Either a string or NULL. If a string, the output will contain a variable with that
name, storing either the name (if .x is named) or the index (if .x is unnamed)
of the input. If NULL, the default, no variable will be created.
Only applies to _dfr variant.

Value

• map() Returns a list the same length as .x.
• map_lgl() returns a logical vector, map_int() an integer vector, map_dbl() a double vector,

and map_chr() a character vector.
• map_df(), map_dfc(), map_dfr() all return a data frame.
• If .x has names(), the return value preserves those names.
• The output of .f will be automatically typed upwards, e.g. logical -> integer -> double ->

character.

• walk() returns the input .x (invisibly). This makes it easy to use in pipe.
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See Also

map_if() for applying a function to only those elements of .x that meet a specified condition.

Other map variants: imap(), invoke(), lmap(), map2(), map_if(), modify()

Examples

# Compute normal distributions from an atomic vector
1:10 %>%

map(rnorm, n = 10)

# You can also use an anonymous function
1:10 %>%

map(function(x) rnorm(10, x))

# Or a formula
1:10 %>%

map(~ rnorm(10, .x))

# Simplify output to a vector instead of a list by computing the mean of the distributions
1:10 %>%

map(rnorm, n = 10) %>% # output a list
map_dbl(mean) # output an atomic vector

# Using set_names() with character vectors is handy to keep track
# of the original inputs:
set_names(c("foo", "bar")) %>% map_chr(paste0, ":suffix")

# Working with lists
favorite_desserts <- list(Sophia = "banana bread", Eliott = "pancakes", Karina = "chocolate cake")
favorite_desserts %>% map_chr(~ paste(.x, "rocks!"))

# Extract by name or position
# .default specifies value for elements that are missing or NULL
l1 <- list(list(a = 1L), list(a = NULL, b = 2L), list(b = 3L))
l1 %>% map("a", .default = "???")
l1 %>% map_int("b", .default = NA)
l1 %>% map_int(2, .default = NA)

# Supply multiple values to index deeply into a list
l2 <- list(

list(num = 1:3, letters[1:3]),
list(num = 101:103, letters[4:6]),
list()

)
l2 %>% map(c(2, 2))

# Use a list to build an extractor that mixes numeric indices and names,
# and .default to provide a default value if the element does not exist
l2 %>% map(list("num", 3))
l2 %>% map_int(list("num", 3), .default = NA)

# Working with data frames
# Use map_lgl(), map_dbl(), etc to return a vector instead of a list:
mtcars %>% map_dbl(sum)

# A more realistic example: split a data frame into pieces, fit a
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# model to each piece, summarise and extract R^2
mtcars %>%

split(.$cyl) %>%
map(~ lm(mpg ~ wt, data = .x)) %>%
map(summary) %>%
map_dbl("r.squared")

# If each element of the output is a data frame, use
# map_dfr to row-bind them together:
mtcars %>%

split(.$cyl) %>%
map(~ lm(mpg ~ wt, data = .x)) %>%
map_dfr(~ as.data.frame(t(as.matrix(coef(.)))))

# (if you also want to preserve the variable names see
# the broom package)

map2 Map over multiple inputs simultaneously.

Description

These functions are variants of map() that iterate over multiple arguments simultaneously. They are
parallel in the sense that each input is processed in parallel with the others, not in the sense of mul-
ticore computing. They share the same notion of "parallel" as base::pmax() and base::pmin().
map2() and walk2() are specialised for the two argument case; pmap() and pwalk() allow you to
provide any number of arguments in a list. Note that a data frame is a very important special case,
in which case pmap() and pwalk() apply the function .f to each row. map_dfr(), pmap_dfr()
and map2_dfc(), pmap_dfc() return data frames created by row-binding and column-binding re-
spectively. They require dplyr to be installed.

Usage

map2(.x, .y, .f, ...)

map2_lgl(.x, .y, .f, ...)

map2_int(.x, .y, .f, ...)

map2_dbl(.x, .y, .f, ...)

map2_chr(.x, .y, .f, ...)

map2_raw(.x, .y, .f, ...)

map2_dfr(.x, .y, .f, ..., .id = NULL)

map2_dfc(.x, .y, .f, ...)

walk2(.x, .y, .f, ...)

pmap(.l, .f, ...)
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pmap_lgl(.l, .f, ...)

pmap_int(.l, .f, ...)

pmap_dbl(.l, .f, ...)

pmap_chr(.l, .f, ...)

pmap_raw(.l, .f, ...)

pmap_dfr(.l, .f, ..., .id = NULL)

pmap_dfc(.l, .f, ...)

pwalk(.l, .f, ...)

Arguments

.x, .y Vectors of the same length. A vector of length 1 will be recycled.

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to the mapped function.

.id Either a string or NULL. If a string, the output will contain a variable with that
name, storing either the name (if .x is named) or the index (if .x is unnamed)
of the input. If NULL, the default, no variable will be created.
Only applies to _dfr variant.

.l A list of vectors, such as a data frame. The length of .l determines the number
of arguments that .f will be called with. List names will be used if present.

Details

Note that arguments to be vectorised over come before .f, and arguments that are supplied to every
call come after .f.

Value

An atomic vector, list, or data frame, depending on the suffix. Atomic vectors and lists will be
named if .x or the first element of .l is named.

If all input is length 0, the output will be length 0. If any input is length 1, it will be recycled to the
length of the longest.
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See Also

Other map variants: imap(), invoke(), lmap(), map_if(), map(), modify()

Examples

x <- list(1, 1, 1)
y <- list(10, 20, 30)
z <- list(100, 200, 300)

map2(x, y, ~ .x + .y)
# Or just
map2(x, y, `+`)

pmap(list(x, y, z), sum)

# Matching arguments by position
pmap(list(x, y, z), function(first, second, third) (first + third) * second)

# Matching arguments by name
l <- list(a = x, b = y, c = z)
pmap(l, function(c, b, a) (a + c) * b)

# Split into pieces, fit model to each piece, then predict
by_cyl <- mtcars %>% split(.$cyl)
mods <- by_cyl %>% map(~ lm(mpg ~ wt, data = .))
map2(mods, by_cyl, predict)

# Vectorizing a function over multiple arguments
df <- data.frame(

x = c("apple", "banana", "cherry"),
pattern = c("p", "n", "h"),
replacement = c("P", "N", "H"),
stringsAsFactors = FALSE
)

pmap(df, gsub)
pmap_chr(df, gsub)

# Use `...` to absorb unused components of input list .l
df <- data.frame(

x = 1:3,
y = 10:12,
z = letters[1:3]

)
plus <- function(x, y) x + y
## Not run:
# this won't work
pmap(df, plus)

## End(Not run)
# but this will
plus2 <- function(x, y, ...) x + y
pmap_dbl(df, plus2)

# The "p" for "parallel" in pmap() is the same as in base::pmin()
# and base::pmax()
df <- data.frame(
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x = c(1, 2, 5),
y = c(5, 4, 8)

)
# all produce the same result
pmin(df$x, df$y)
map2_dbl(df$x, df$y, min)
pmap_dbl(df, min)

# If you want to bind the results of your function rowwise, use:
# map2_dfr() or pmap_dfr()
ex_fun <- function(arg1, arg2){
col <- arg1 + arg2
x <- as.data.frame(col)
}
arg1 <- 1:4
arg2 <- 10:13
map2_dfr(arg1, arg2, ex_fun)
# If instead you want to bind by columns, use map2_dfc() or pmap_dfc()
map2_dfc(arg1, arg2, ex_fun)

map_if Apply a function to each element of a vector conditionally

Description

The functions map_if() and map_at() take .x as input, apply the function .f to some of the
elements of .x, and return a list of the same length as the input.

• map_if() takes a predicate function .p as input to determine which elements of .x are trans-
formed with .f.

• map_at() takes a vector of names or positions .at to specify which elements of .x are trans-
formed with .f.

• map_depth() allows to apply .f to a specific depth level of a nested vector.

Usage

map_if(.x, .p, .f, ..., .else = NULL)

map_at(.x, .at, .f, ...)

map_depth(.x, .depth, .f, ..., .ragged = FALSE)

Arguments

.x A list or atomic vector.

.p A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as .x. Alternatively, if the elements of .x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where .p evaluates to TRUE will be modified.
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.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc
This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to the mapped function.

.else A function applied to elements of .x for which .p returns FALSE.

.at A character vector of names, positive numeric vector of positions to include, or
a negative numeric vector of positions to exlude. Only those elements corre-
sponding to .at will be modified. If the tidyselect package is installed, you
can use vars() and the tidyselect helpers to select elements.

.depth Level of .x to map on. Use a negative value to count up from the lowest level of
the list.

• map_depth(x,0,fun) is equivalent to fun(x).
• map_depth(x,1,fun) is equivalent to x <-map(x,fun)

• map_depth(x,2,fun) is equivalent to x <-map(x,~ map(.,fun))

.ragged If TRUE, will apply to leaves, even if they’re not at depth .depth. If FALSE, will
throw an error if there are no elements at depth .depth.

See Also

Other map variants: imap(), invoke(), lmap(), map2(), map(), modify()

Examples

# Use a predicate function to decide whether to map a function:
map_if(iris, is.factor, as.character)

# Specify an alternative with the `.else` argument:
map_if(iris, is.factor, as.character, .else = as.integer)

# Use numeric vector of positions select elements to change:
iris %>% map_at(c(4, 5), is.numeric)

# Use vector of names to specify which elements to change:
iris %>% map_at("Species", toupper)

# Use `map_depth()` to recursively traverse nested vectors and map
# a function at a certain depth:
x <- list(a = list(foo = 1:2, bar = 3:4), b = list(baz = 5:6))
str(x)
map_depth(x, 2, paste, collapse = "/")

# Equivalent to:
map(x, map, paste, collapse = "/")
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modify Modify elements selectively

Description

Unlike map() and its variants which always return a fixed object type (list for map(), integer vector
for map_int(), etc), the modify() family always returns the same type as the input object.

• modify() is a shortcut for x[[i]] <- f(x[[i]]); return(x).

• modify_if() only modifies the elements of x that satisfy a predicate and leaves the others
unchanged. modify_at() only modifies elements given by names or positions.

• modify2() modifies the elements of .x but also passes the elements of .y to .f, just like
map2(). imodify() passes the names or the indices to .f like imap() does.

• modify_depth() only modifies elements at a given level of a nested data structure.

• modify_in() modifies a single element in a pluck() location.

Usage

modify(.x, .f, ...)

## Default S3 method:
modify(.x, .f, ...)

modify_if(.x, .p, .f, ..., .else = NULL)

## Default S3 method:
modify_if(.x, .p, .f, ..., .else = NULL)

modify_at(.x, .at, .f, ...)

## Default S3 method:
modify_at(.x, .at, .f, ...)

modify2(.x, .y, .f, ...)

imodify(.x, .f, ...)

modify_depth(.x, .depth, .f, ..., .ragged = .depth < 0)

## Default S3 method:
modify_depth(.x, .depth, .f, ..., .ragged = .depth < 0)

Arguments

.x A list or atomic vector.

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:
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• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

... Additional arguments passed on to the mapped function.

.p A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as .x. Alternatively, if the elements of .x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where .p evaluates to TRUE will be modified.

.else A function applied to elements of .x for which .p returns FALSE.

.at A character vector of names, positive numeric vector of positions to include, or
a negative numeric vector of positions to exlude. Only those elements corre-
sponding to .at will be modified. If the tidyselect package is installed, you
can use vars() and the tidyselect helpers to select elements.

.y Vectors of the same length. A vector of length 1 will be recycled.

.depth Level of .x to map on. Use a negative value to count up from the lowest level of
the list.

• modify_depth(x,0,fun) is equivalent to x[] <-fun(x).
• modify_depth(x,1,fun) is equivalent to x <-modify(x,fun)

• modify_depth(x,2,fun) is equivalent to x <-modify(x,~ modify(.,fun))

.ragged If TRUE, will apply to leaves, even if they’re not at depth .depth. If FALSE, will
throw an error if there are no elements at depth .depth.

Details

Since the transformation can alter the structure of the input; it’s your responsibility to ensure that
the transformation produces a valid output. For example, if you’re modifying a data frame, .f must
preserve the length of the input.

Value

An object the same class as .x

Genericity

modify() and variants are generic over classes that implement length(), [[ and [[<- methods. If
the default implementation is not compatible for your class, you can override them with your own
methods.

If you implement your own modify() method, make sure it satisfies the following invariants:

modify(x, identity) === x
modify(x, compose(f, g)) === modify(x, g) %>% modify(f)

These invariants are known as the functor laws in computer science.

https://wiki.haskell.org/Functor#Functor_Laws
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See Also

Other map variants: imap(), invoke(), lmap(), map2(), map_if(), map()

Examples

# Convert factors to characters
iris %>%

modify_if(is.factor, as.character) %>%
str()

# Specify which columns to map with a numeric vector of positions:
mtcars %>% modify_at(c(1, 4, 5), as.character) %>% str()

# Or with a vector of names:
mtcars %>% modify_at(c("cyl", "am"), as.character) %>% str()

list(x = rbernoulli(100), y = 1:100) %>%
transpose() %>%
modify_if("x", ~ update_list(., y = ~ y * 100)) %>%
transpose() %>%
simplify_all()

# Use modify2() to map over two vectors and preserve the type of
# the first one:
x <- c(foo = 1L, bar = 2L)
y <- c(TRUE, FALSE)
modify2(x, y, ~ if (.y) .x else 0L)

# Use a predicate function to decide whether to map a function:
modify_if(iris, is.factor, as.character)

# Specify an alternative with the `.else` argument:
modify_if(iris, is.factor, as.character, .else = as.integer)

# Modify at specified depth ---------------------------
l1 <- list(

obj1 = list(
prop1 = list(param1 = 1:2, param2 = 3:4),
prop2 = list(param1 = 5:6, param2 = 7:8)

),
obj2 = list(

prop1 = list(param1 = 9:10, param2 = 11:12),
prop2 = list(param1 = 12:14, param2 = 15:17)

)
)

# In the above list, "obj" is level 1, "prop" is level 2 and "param"
# is level 3. To apply sum() on all params, we map it at depth 3:
l1 %>% modify_depth(3, sum) %>% str()

# Note that vectorised operations will yield the same result when
# applied at the list level as when applied at the atomic result.
# The former is more efficient because it takes advantage of
# vectorisation.
l1 %>% modify_depth(3, `+`, 100L)
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l1 %>% modify_depth(4, `+`, 100L)

# modify() lets us pluck the elements prop1/param2 in obj1 and obj2:
l1 %>% modify(c("prop1", "param2")) %>% str()

# But what if we want to pluck all param2 elements? Then we need to
# act at a lower level:
l1 %>% modify_depth(2, "param2") %>% str()

# modify_depth() can be with other purrr functions to make them operate at
# a lower level. Here we ask pmap() to map paste() simultaneously over all
# elements of the objects at the second level. paste() is effectively
# mapped at level 3.
l1 %>% modify_depth(2, ~ pmap(., paste, sep = " / ")) %>% str()

modify_in Modify a pluck location

Description

• assign_in() takes a data structure and a pluck location, assigns a value there, and returns the
modified data structure.

• modify_in() applies a function to a pluck location, assigns the result back to that location
with assign_in(), and returns the modified data structure.

The pluck location must exist.

Usage

modify_in(.x, .where, .f, ...)

assign_in(x, where, value)

Arguments

.x A vector or environment

.where, where A pluck location, as a numeric vector of positions, a character vector of names,
or a list combining both. The location must exist in the data structure.

.f A function to apply at the pluck location given by .where.

... Arguments passed to .f.

x A vector or environment

value A value to replace in .x at the pluck location.

See Also

pluck()
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Examples

# Recall that pluck() returns a component of a data structure that
# might be arbitrarily deep
x <- list(list(bar = 1, foo = 2))
pluck(x, 1, "foo")

# Use assign_in() to modify the pluck location:
assign_in(x, list(1, "foo"), 100)

# modify_in() applies a function to that location and update the
# element in place:
modify_in(x, list(1, "foo"), ~ .x * 200)

# Additional arguments are passed to the function in the ordinary way:
modify_in(x, list(1, "foo"), `+`, 100)

negate Negate a predicate function.

Description

Negate a predicate function.

Usage

negate(.p)

Arguments

.p A single predicate function, a formula describing such a predicate function, or a
logical vector of the same length as .x. Alternatively, if the elements of .x are
themselves lists of objects, a string indicating the name of a logical element in
the inner lists. Only those elements where .p evaluates to TRUE will be modified.

Value

A new predicate function.

Examples

negate("x")
negate(is.null)
negate(~ .x > 0)

x <- transpose(list(x = 1:10, y = rbernoulli(10)))
x %>% keep("y") %>% length()
x %>% keep(negate("y")) %>% length()
# Same as
x %>% discard("y") %>% length()
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null-default Default value for NULL

Description

These objects are imported from other packages. Follow the links below to see their documentation.

rlang %||%

partial Partial apply a function, filling in some arguments.

Description

Partial function application allows you to modify a function by pre-filling some of the arguments.
It is particularly useful in conjunction with functionals and other function operators.

Note that an argument can only be partialised once.

Usage

partial(.f, ..., .env = NULL, .lazy = NULL, .first = NULL)

Arguments

.f a function. For the output source to read well, this should be a named function.

... named arguments to .f that should be partially applied.
Pass an empty ... = argument to specify the position of future arguments rela-
tive to partialised ones. See rlang::call_modify() to learn more about this
syntax.
These dots support quasiquotation and quosures. If you unquote a value, it is
evaluated only once at function creation time. Otherwise, it is evaluated each
time the function is called.

.env Soft-deprecated as of purrr 0.3.0. The environments are now captured via quo-
sures.

.lazy Soft-deprecated as of purrr 0.3.0. Please unquote the arguments that should be
evaluated once at function creation time.

.first Soft-deprecated as of purrr 0.3.0. Please pass an empty argument ... = to specify
the position of future arguments.

Examples

# Partial is designed to replace the use of anonymous functions for
# filling in function arguments. Instead of:
compact1 <- function(x) discard(x, is.null)

# we can write:
compact2 <- partial(discard, .p = is.null)
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# partial() works fine with functions that do non-standard
# evaluation
my_long_variable <- 1:10
plot2 <- partial(plot, my_long_variable)
plot2()
plot2(runif(10), type = "l")

# Note that you currently can't partialise arguments multiple times:
my_mean <- partial(mean, na.rm = TRUE)
my_mean <- partial(my_mean, na.rm = FALSE)
try(my_mean(1:10))

# The evaluation of arguments normally occurs "lazily". Concretely,
# this means that arguments are repeatedly evaluated across invocations:
f <- partial(runif, n = rpois(1, 5))
f
f()
f()

# You can unquote an argument to fix it to a particular value.
# Unquoted arguments are evaluated only once when the function is created:
f <- partial(runif, n = !!rpois(1, 5))
f
f()
f()

# By default, partialised arguments are passed before new ones:
my_list <- partial(list, 1, 2)
my_list("foo")

# Control the position of these arguments by passing an empty
# `... = ` argument:
my_list <- partial(list, 1, ... = , 2)
my_list("foo")

pluck Pluck or chuck a single element from a vector or environment

Description

pluck() and chuck() implement a generalised form of [[ that allow you to index deeply and
flexibly into data structures. pluck() consistently returns NULL when an element does not exist,
chuck() always throws an error in that case.

Usage

pluck(.x, ..., .default = NULL)

chuck(.x, ...)

pluck(.x, ...) <- value
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Arguments

.x, x A vector or environment

... A list of accessors for indexing into the object. Can be an integer position, a
string name, or an accessor function (except for the assignment variants which
only support names and positions). If the object being indexed is an S4 object,
accessing it by name will return the corresponding slot.
These dots support tidy dots features. In particular, if your accessors are stored
in a list, you can splice that in with !!!.

.default Value to use if target is empty or absent.

value A value to replace in .x at the pluck location.

Details

• You can pluck or chuck with standard accessors like integer positions and string names, and
also accepts arbitrary accessor functions, i.e. functions that take an object and return some
internal piece.
This is often more readable than a mix of operators and accessors because it reads linearly and
is free of syntactic cruft. Compare: accessor(x[[1]])$foo to pluck(x,1,accessor,"foo").

• These accessors never partial-match. This is unlike $ which will select the disp object if you
write mtcars$di.

See Also

attr_getter() for creating attribute getters suitable for use with pluck() and chuck(). modify_in()
for applying a function to a pluck location.

Examples

# Let's create a list of data structures:
obj1 <- list("a", list(1, elt = "foo"))
obj2 <- list("b", list(2, elt = "bar"))
x <- list(obj1, obj2)

# pluck() provides a way of retrieving objects from such data
# structures using a combination of numeric positions, vector or
# list names, and accessor functions.

# Numeric positions index into the list by position, just like `[[`:
pluck(x, 1)
x[[1]]

pluck(x, 1, 2)
x[[1]][[2]]

# Supply names to index into named vectors:
pluck(x, 1, 2, "elt")
x[[1]][[2]][["elt"]]

# By default, pluck() consistently returns `NULL` when an element
# does not exist:
pluck(x, 10)
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try(x[[10]])

# You can also supply a default value for non-existing elements:
pluck(x, 10, .default = NA)

# If you prefer to consistently fail for non-existing elements, use
# the opinionated variant chuck():
chuck(x, 1)
try(chuck(x, 10))
try(chuck(x, 1, 10))

# The map() functions use pluck() by default to retrieve multiple
# values from a list:
map(x, 2)

# Pass multiple indexes with a list:
map(x, list(2, "elt"))

# This is equivalent to:
map(x, pluck, 2, "elt")

# You can also supply a default:
map(x, list(2, "elt", 10), .default = "superb default")

# Or use the strict variant:
try(map(x, chuck, 2, "elt", 10))

# You can also assign a value in a pluck location with pluck<-:
pluck(x, 2, 2, "elt") <- "quuux"
x

# This is a shortcut for the prefix function assign_in():
y <- assign_in(x, list(2, 2, "elt"), value = "QUUUX")
y

# pluck() also supports accessor functions:
my_element <- function(x) x[[2]]$elt

# The accessor can then be passed to pluck:
pluck(x, 1, my_element)
pluck(x, 2, my_element)

# Even for this simple data structure, this is more readable than
# the alternative form because it requires you to read both from
# right-to-left and from left-to-right in different parts of the
# expression:
my_element(x[[1]])

# If you have a list of accessors, you can splice those in with `!!!`:
idx <- list(1, my_element)
pluck(x, !!!idx)



44 rate-helpers

prepend Prepend a vector

Description

This is a companion to append() to help merging two lists or atomic vectors. prepend() is a
clearer semantic signal than c() that a vector is to be merged at the beginning of another, especially
in a pipe chain.

Usage

prepend(x, values, before = NULL)

Arguments

x the vector to be modified.

values to be included in the modified vector.

before a subscript, before which the values are to be appended. If NULL, values will be
appended at the beginning even for x of length 0.

Value

A merged vector.

Examples

x <- as.list(1:3)

x %>% append("a")
x %>% prepend("a")
x %>% prepend(list("a", "b"), before = 3)
prepend(list(), x)

rate-helpers Create delaying rate settings

Description

These helpers create rate settings that you can pass to insistently(). You can also use them in
your own functions with rate_sleep().

Usage

rate_delay(pause = 1, max_times = Inf)

rate_backoff(
pause_base = 1,
pause_cap = 60,
pause_min = 1,
max_times = 3,
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jitter = TRUE
)

is_rate(x)

Arguments

pause Delay between attempts in seconds.

max_times Maximum number of requests to attempt.
pause_base, pause_cap

rate_backoff() uses an exponential back-off so that each request waits pause_base
* 2^i seconds, up to a maximum of pause_cap seconds.

pause_min Minimum time to wait in the backoff; generally only necessary if you need
pauses less than one second (which may not be kind to the server, use with
caution!).

jitter Whether to introduce a random jitter in the waiting time.

x An object to test.

See Also

rate_sleep(), insistently()

Examples

# A delay rate waits the same amount of time:
rate <- rate_delay(0.02)
for (i in 1:3) rate_sleep(rate, quiet = FALSE)

# A backoff rate waits exponentially longer each time, with random
# jitter by default:
rate <- rate_backoff(pause_base = 0.2, pause_min = 0.005)
for (i in 1:3) rate_sleep(rate, quiet = FALSE)

rate_sleep Wait for a given time

Description

If the rate’s internal counter exceeds the maximum number of times it is allowed to sleep, rate_sleep()
throws an error of class purrr_error_rate_excess.

Usage

rate_sleep(rate, quiet = TRUE)

rate_reset(rate)

Arguments

rate A rate object determining the waiting time.

quiet If FALSE, prints a message displaying how long until the next request.
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Details

Call rate_reset() to reset the internal rate counter to 0.

See Also

rate_backoff(), insistently()

rbernoulli Generate random sample from a Bernoulli distribution

Description

Generate random sample from a Bernoulli distribution

Usage

rbernoulli(n, p = 0.5)

Arguments

n Number of samples
p Probability of getting TRUE

Value

A logical vector

Examples

rbernoulli(10)
rbernoulli(100, 0.1)

rdunif Generate random sample from a discrete uniform distribution

Description

Generate random sample from a discrete uniform distribution

Usage

rdunif(n, b, a = 1)

Arguments

n Number of samples to draw.
a, b Range of the distribution (inclusive).

Examples

table(rdunif(1e3, 10))
table(rdunif(1e3, 10, -5))
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reduce Reduce a list to a single value by iteratively applying a binary function

Description

reduce() is an operation that combines the elements of a vector into a single value. The combina-
tion is driven by .f, a binary function that takes two values and returns a single value: reducing f
over 1:3 computes the value f(f(1,2),3).

Usage

reduce(.x, .f, ..., .init, .dir = c("forward", "backward"))

reduce2(.x, .y, .f, ..., .init)

Arguments

.x A list or atomic vector.

.f For reduce(), and accumulate(), a 2-argument function. The function will be
passed the accumulated value as the first argument and the "next" value as the
second argument.
For reduce2() and accumulate2(), a 3-argument function. The function will
be passed the accumulated value as the first argument, the next value of .x as
the second argument, and the next value of .y as the third argument.
The reduction terminates early if .f returns a value wrapped in a done().

... Additional arguments passed on to the mapped function.

.init If supplied, will be used as the first value to start the accumulation, rather than
using .x[[1]]. This is useful if you want to ensure that reduce returns a correct
value when .x is empty. If missing, and .x is empty, will throw an error.

.dir The direction of reduction as a string, one of "forward" (the default) or "backward".
See the section about direction below.

.y For reduce2() and accumulate2(), an additional argument that is passed to
.f. If init is not set, .y should be 1 element shorter than .x.

Direction

When .f is an associative operation like + or c(), the direction of reduction does not matter. For
instance, reducing the vector 1:3 with the binary function + computes the sum ((1 + 2) + 3) from
the left, and the same sum (1 + (2 + 3)) from the right.

In other cases, the direction has important consequences on the reduced value. For instance, reduc-
ing a vector with list() from the left produces a left-leaning nested list (or tree), while reducing
list() from the right produces a right-leaning list.

Life cycle

reduce_right() is soft-deprecated as of purrr 0.3.0. Please use the .dir argument of reduce()
instead. Note that the algorithm has changed. Whereas reduce_right() computed f(f(3,2),1),
reduce(.dir = \"backward\") computes f(1,f(2,3)). This is the standard way of reducing from the
right.
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To update your code with the same reduction as reduce_right(), simply reverse your vector and
use a left reduction:

# Before:
reduce_right(1:3, f)

# After:
reduce(rev(1:3), f)

reduce2_right() is soft-deprecated as of purrr 0.3.0 without replacement. It is not clear what
algorithmic properties should a right reduction have in this case. Please reach out if you know
about a use case for a right reduction with a ternary function.

See Also

accumulate() for a version that returns all intermediate values of the reduction.

Examples

# Reducing `+` computes the sum of a vector while reducing `*`
# computes the product:
1:3 %>% reduce(`+`)
1:10 %>% reduce(`*`)

# When the operation is associative, the direction of reduction
# does not matter:
reduce(1:4, `+`)
reduce(1:4, `+`, .dir = "backward")

# However with non-associative operations, the reduced value will
# be different as a function of the direction. For instance,
# `list()` will create left-leaning lists when reducing from the
# right, and right-leaning lists otherwise:
str(reduce(1:4, list))
str(reduce(1:4, list, .dir = "backward"))

# reduce2() takes a ternary function and a second vector that is
# one element smaller than the first vector:
paste2 <- function(x, y, sep = ".") paste(x, y, sep = sep)
letters[1:4] %>% reduce(paste2)
letters[1:4] %>% reduce2(c("-", ".", "-"), paste2)

x <- list(c(0, 1), c(2, 3), c(4, 5))
y <- list(c(6, 7), c(8, 9))
reduce2(x, y, paste)

# You can shortcircuit a reduction and terminate it early by
# returning a value wrapped in a done(). In the following example
# we return early if the result-so-far, which is passed on the LHS,
# meets a condition:
paste3 <- function(out, input, sep = ".") {

if (nchar(out) > 4) {
return(done(out))

}
paste(out, input, sep = sep)
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}
letters %>% reduce(paste3)

# Here the early return branch checks the incoming inputs passed on
# the RHS:
paste4 <- function(out, input, sep = ".") {

if (input == "j") {
return(done(out))

}
paste(out, input, sep = sep)

}
letters %>% reduce(paste4)

rep_along Repeat a value with matching length

Description

These objects are imported from other packages. Follow the links below to see their documentation.

rlang rep_along

rerun Re-run expressions multiple times.

Description

Questioning
This is a convenient way of generating sample data. It works similarly to replicate(...,simplify
= FALSE).

Usage

rerun(.n, ...)

Arguments

.n Number of times to run expressions

... Expressions to re-run.

Value

A list of length .n. Each element of ... will be re-run once for each .n.

There is one special case: if there’s a single unnamed input, the second level list will be dropped.
In this case, rerun(n,x) behaves like replicate(n,x,simplify = FALSE).

Lifecycle

rerun() is in the questioning lifecycle stage because we are no longer convinced NSE functions
are a good fit for purrr. Also, rerun(n,x) can just as easily be expressed as map(1:n,~ x) (with
the added benefit of being passed the current index as argument to the lambda).
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Examples

10 %>% rerun(rnorm(5))
10 %>%

rerun(x = rnorm(5), y = rnorm(5)) %>%
map_dbl(~ cor(.x$x, .x$y))

safely Capture side effects.

Description

These functions wrap functions so that instead of generating side effects through printed output,
messages, warnings, and errors, they return enhanced output. They are all adverbs because they
modify the action of a verb (a function).

Usage

safely(.f, otherwise = NULL, quiet = TRUE)

quietly(.f)

possibly(.f, otherwise, quiet = TRUE)

auto_browse(.f)

Arguments

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

otherwise Default value to use when an error occurs.

quiet Hide errors (TRUE, the default), or display them as they occur?

Details

If you would like to include a function created with safely, slowly, or insistently in a package,
see faq-adverbs-export.
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Value

safely: wrapped function instead returns a list with components result and error. If an error
occurred, error is an error object and result has a default value (otherwise). Else error is
NULL.

quietly: wrapped function instead returns a list with components result, output, messages and
warnings.

possibly: wrapped function uses a default value (otherwise) whenever an error occurs.

Examples

safe_log <- safely(log)
safe_log(10)
safe_log("a")

list("a", 10, 100) %>%
map(safe_log) %>%
transpose()

# This is a bit easier to work with if you supply a default value
# of the same type and use the simplify argument to transpose():
safe_log <- safely(log, otherwise = NA_real_)
list("a", 10, 100) %>%

map(safe_log) %>%
transpose() %>%
simplify_all()

# To replace errors with a default value, use possibly().
list("a", 10, 100) %>%

map_dbl(possibly(log, NA_real_))

# For interactive usage, auto_browse() is useful because it automatically
# starts a browser() in the right place.
f <- function(x) {

y <- 20
if (x > 5) {
stop("!")

} else {
x

}
}
if (interactive()) {

map(1:6, auto_browse(f))
}

# It doesn't make sense to use auto_browse with primitive functions,
# because they are implemented in C so there's no useful environment
# for you to interact with.

set_names Set names in a vector
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Description

These objects are imported from other packages. Follow the links below to see their documentation.

rlang set_names

splice Splice objects and lists of objects into a list

Description

Questioning

This splices all arguments into a list. Non-list objects and lists with a S3 class are encapsulated in a
list before concatenation.

Usage

splice(...)

Arguments

... Objects to concatenate.

Value

A list.

Life cycle

splice() is in the questioning lifecycle stage as of purrr 0.3.0. We are now favouring the !!! syntax
enabled by rlang::list2().

Examples

inputs <- list(arg1 = "a", arg2 = "b")

# splice() concatenates the elements of inputs with arg3
splice(inputs, arg3 = c("c1", "c2")) %>% str()
list(inputs, arg3 = c("c1", "c2")) %>% str()
c(inputs, arg3 = c("c1", "c2")) %>% str()
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transpose Transpose a list.

Description

Transpose turns a list-of-lists "inside-out"; it turns a pair of lists into a list of pairs, or a list of pairs
into pair of lists. For example, if you had a list of length n where each component had values a and
b, transpose() would make a list with elements a and b that contained lists of length n. It’s called
transpose because x[[1]][[2]] is equivalent to transpose(x)[[2]][[1]].

Usage

transpose(.l, .names = NULL)

Arguments

.l A list of vectors to transpose. The first element is used as the template; you’ll
get a warning if a subsequent element has a different length.

.names For efficiency, transpose() bases the return structure on the first component of
.l by default. Specify .names to override this.

Details

Note that transpose() is its own inverse, much like the transpose operation on a matrix. You can
get back the original input by transposing it twice.

Value

A list with indexing transposed compared to .l.

Examples

x <- rerun(5, x = runif(1), y = runif(5))
x %>% str()
x %>% transpose() %>% str()
# Back to where we started
x %>% transpose() %>% transpose() %>% str()

# transpose() is useful in conjunction with safely() & quietly()
x <- list("a", 1, 2)
y <- x %>% map(safely(log))
y %>% str()
y %>% transpose() %>% str()

# Use simplify_all() to reduce to atomic vectors where possible
x <- list(list(a = 1, b = 2), list(a = 3, b = 4), list(a = 5, b = 6))
x %>% transpose()
x %>% transpose() %>% simplify_all()

# Provide explicit component names to prevent loss of those that don't
# appear in first component
ll <- list(

list(x = 1, y = "one"),
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list(z = "deux", x = 2)
)
ll %>% transpose()
nms <- ll %>% map(names) %>% reduce(union)
ll %>% transpose(.names = nms)

vec_depth Compute the depth of a vector

Description

The depth of a vector is basically how many levels that you can index into it.

Usage

vec_depth(x)

Arguments

x A vector

Value

An integer.

Examples

x <- list(
list(),
list(list()),
list(list(list(1)))

)
vec_depth(x)
x %>% map_int(vec_depth)

zap Zap an element

Description

These objects are imported from other packages. Follow the links below to see their documentation.

rlang zap
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