library(rPBK)
data("dataMaleGammarusSingle")
# work only when replicate have the same length !!!
<- dataMaleGammarusSingle[dataMaleGammarusSingle$replicate == 1,] data_MGS
<- dataPBK(
modelData_MGS object = data_MGS,
col_time = "time",
col_replicate = "replicate",
col_exposure = "expw",
col_compartment = "conc",
time_accumulation = 4,
nested_model = NA)
<- fitPBK(modelData_MGS)
fitPBK_MGS #>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 5.6e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.56 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.50999 seconds (Warm-up)
#> Chain 1: 0.728038 seconds (Sampling)
#> Chain 1: 1.23803 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 6.7e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.67 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.734457 seconds (Warm-up)
#> Chain 2: 0.241297 seconds (Sampling)
#> Chain 2: 0.975754 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 0.000104 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.04 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.504274 seconds (Warm-up)
#> Chain 3: 0.200824 seconds (Sampling)
#> Chain 3: 0.705098 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 4.7e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.47 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.570427 seconds (Warm-up)
#> Chain 4: 0.252717 seconds (Sampling)
#> Chain 4: 0.823144 seconds (Total)
#> Chain 4:
#> Warning: There were 2462 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is NA, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
plot(fitPBK_MGS)
library(loo)
#> This is loo version 2.5.1
#> - Online documentation and vignettes at mc-stan.org/loo
#> - As of v2.0.0 loo defaults to 1 core but we recommend using as many as possible. Use the 'cores' argument or set options(mc.cores = NUM_CORES) for an entire session.
<- loo::extract_log_lik(fitPBK_MGS$stanfit, merge_chains = FALSE)
log_lik_MGS <- waic(log_lik_MGS)
WAIC_MGS #> Warning:
#> 2 (25.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
data("dataCompartment4")
<- dataCompartment4 data_C4
<- dataPBK(
modelData_C4 object = data_C4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7)
You can have a look at the assumption on the interaction
nested_model(modelData_C4)
#> $ku_nest
#> uptake intestin uptake reste uptake caecum uptake cephalon
#> 1 1 1 1
#>
#> $ke_nest
#> excretion intestin excretion reste excretion caecum excretion cephalon
#> 1 1 1 1
#>
#> $k_nest
#> intestin reste caecum cephalon
#> intestin 0 1 1 1
#> reste 1 0 1 1
#> caecum 1 1 0 1
#> cephalon 1 1 1 0
<- fitPBK(modelData_C4, chains = 1, iter = 1000)
fitPBK_C4 #>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000512 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 5.12 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 19.92 seconds (Warm-up)
#> Chain 1: 25.5699 seconds (Sampling)
#> Chain 1: 45.4899 seconds (Total)
#> Chain 1:
#> Warning: There were 467 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is NA, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
plot(fitPBK_C4)
Compute WAIC with loo
library:
library(loo)
<- loo::extract_log_lik(fitPBK_C4$stanfit, merge_chains = FALSE)
log_lik_C4 <- waic(log_lik_C4)
WAIC_C4 #> Warning:
#> 5 (6.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
print(WAIC_C4)
#>
#> Computed from 500 by 84 log-likelihood matrix
#>
#> Estimate SE
#> elpd_waic -290.6 16.7
#> p_waic 7.3 1.7
#> waic 581.2 33.5
#>
#> 5 (6.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
Compute LOO:
<- relative_eff(exp(log_lik_C4))
r_eff_C4 <- loo(log_lik_C4, r_eff = r_eff_C4, cores = 2)
LOO_C4 #> Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.
print(LOO_C4)
#>
#> Computed from 500 by 84 log-likelihood matrix
#>
#> Estimate SE
#> elpd_loo -290.6 16.7
#> p_loo 7.3 1.7
#> looic 581.2 33.4
#> ------
#> Monte Carlo SE of elpd_loo is NA.
#>
#> Pareto k diagnostic values:
#> Count Pct. Min. n_eff
#> (-Inf, 0.5] (good) 71 84.5% 2
#> (0.5, 0.7] (ok) 3 3.6% 5
#> (0.7, 1] (bad) 1 1.2% 23
#> (1, Inf) (very bad) 9 10.7% 4
#> See help('pareto-k-diagnostic') for details.
You can have a look at the assumption on the interaction
= nested_model(modelData_C4) nm_C4
We want to change the interaction between organs. For now, all organs interact with each other but not with themselve, the the interaction matrix look like:
$k_nest
nm_C4#> intestin reste caecum cephalon
#> intestin 0 1 1 1
#> reste 1 0 1 1
#> caecum 1 1 0 1
#> cephalon 1 1 1 0
which can be written like:
matrix(c(
c(0,1,1,1),
c(1,0,1,1),
c(1,1,0,0),
c(1,1,1,0)),
ncol=4,nrow=4,byrow=TRUE)
#> [,1] [,2] [,3] [,4]
#> [1,] 0 1 1 1
#> [2,] 1 0 1 1
#> [3,] 1 1 0 0
#> [4,] 1 1 1 0
Let assume interaction are only one way, so a triangular matrix:
matrix(c(
c(0,1,1,1),
c(0,0,1,1),
c(0,0,0,0),
c(0,0,0,0)),
ncol=4,nrow=4,byrow=TRUE)
#> [,1] [,2] [,3] [,4]
#> [1,] 0 1 1 1
#> [2,] 0 0 1 1
#> [3,] 0 0 0 0
#> [4,] 0 0 0 0
<- dataPBK(
modelData_C42 object = data_C4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7,
ku_nest = c(1,1,1,1), # No Change here
ke_nest = c(1,1,1,1), # No Change here
k_nest = matrix(c(
c(0,1,1,1),
c(0,0,1,1),
c(0,0,0,0),
c(0,0,0,0)),
ncol=4,nrow=4,byrow=TRUE) # Remove
)
nested_model(modelData_C42)
#> $ku_nest
#> uptake intestin uptake reste uptake caecum uptake cephalon
#> 1 1 1 1
#>
#> $ke_nest
#> excretion intestin excretion reste excretion caecum excretion cephalon
#> 1 1 1 1
#>
#> $k_nest
#> intestin reste caecum cephalon
#> intestin 0 1 1 1
#> reste 0 0 1 1
#> caecum 0 0 0 0
#> cephalon 0 0 0 0
<- fitPBK(modelData_C42, chains = 1, iter = 1000)
fitPBK_C42 #>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000614 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 6.14 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 7.39238 seconds (Warm-up)
#> Chain 1: 5.607 seconds (Sampling)
#> Chain 1: 12.9994 seconds (Total)
#> Chain 1:
#> Warning: There were 500 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is NA, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
plot(fitPBK_C42)
<- loo::extract_log_lik(fitPBK_C42$stanfit, merge_chains = FALSE)
log_lik_C42 <- waic(log_lik_C42)
WAIC_C42 #> Warning:
#> 4 (4.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
print(WAIC_C42)
#>
#> Computed from 500 by 84 log-likelihood matrix
#>
#> Estimate SE
#> elpd_waic -233.2 14.0
#> p_waic 7.8 1.1
#> waic 466.4 28.0
#>
#> 4 (4.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
Compare WAIC with previous model
<- loo_compare(WAIC_C4, WAIC_C42)
comp_C4_C42 print(comp_C4_C42)
#> elpd_diff se_diff
#> model2 0.0 0.0
#> model1 -57.4 9.1
The first column shows the difference in ELPD relative to the model with the largest ELPD. In this case, the difference in elpd and its scale relative to the approximate standard error of the difference) indicates a preference for the second model (model2).