
Package ‘respR’
March 23, 2022

Type Package

Title Import, Process, Analyse, and Calculate Rates from Respirometry
Data

Date 2022-03-23

Version 2.0.2

Maintainer Nicholas Carey <nicholascarey@gmail.com>

Description Provides a structural, reproducible workflow for the
processing and analysis of respirometry data. It contains analytical
functions and utilities for working with oxygen time-series to determine
respiration or oxygen production rates, and to make it easier to report and
share analyses.

URL https://github.com/januarharianto/respr,

https://doi.org/10.5281/zenodo.2548601,

https://januarharianto.github.io/respR/

Depends R (>= 3.3)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Imports data.table, dplyr, glue, graphics, grDevices, lubridate,
magrittr, marelac, purrr, readxl, roll, segmented, stats,
stringr, utils, xml2

Suggests knitr, rmarkdown, rMR, DiagrammeR, FishResp, respirometry,
testthat, covr

NeedsCompilation no

Author Januar Harianto [aut],
Nicholas Carey [aut, cre]

Repository CRAN

Date/Publication 2022-03-23 15:50:02 UTC

1

https://github.com/januarharianto/respr
https://doi.org/10.5281/zenodo.2548601
https://januarharianto.github.io/respR/

2 R topics documented:

R topics documented:
adjust_rate . 3
adjust_rate.ft . 8
algae.rd . 11
auto_rate . 12
background_con.rd . 16
background_exp.rd . 16
background_lin.rd . 17
calc_rate . 18
calc_rate.bg . 20
calc_rate.ft . 22
convert_DO . 26
convert_rate . 28
convert_rate.ft . 31
convert_val . 34
flowthrough.rd . 36
flowthrough_mult.rd . 37
flowthrough_sim.rd . 38
format_time . 39
import_file . 41
inspect . 43
inspect.ft . 47
intermittent.rd . 52
mean.adjust_rate . 53
mean.adjust_rate.ft . 54
mean.auto_rate . 54
mean.calc_rate . 55
mean.calc_rate.bg . 55
mean.calc_rate.ft . 56
mean.convert_DO . 56
mean.convert_rate . 57
mean.convert_rate.ft . 57
mean.inspect . 58
mean.inspect.ft . 58
mean.oxy_crit . 59
oxy_crit . 59
plot.adjust_rate . 63
plot.adjust_rate.ft . 64
plot.auto_rate . 64
plot.calc_rate . 65
plot.calc_rate.bg . 66
plot.calc_rate.ft . 66
plot.convert_DO . 67
plot.convert_rate . 67
plot.convert_rate.ft . 68
plot.inspect . 68
plot.inspect.ft . 69

adjust_rate 3

plot.oxy_crit . 70
plot_ar . 70
print.adjust_rate . 71
print.adjust_rate.ft . 72
print.auto_rate . 72
print.calc_rate . 73
print.calc_rate.bg . 73
print.calc_rate.ft . 74
print.convert_DO . 74
print.convert_rate . 75
print.convert_rate.ft . 75
print.inspect . 76
print.inspect.ft . 76
print.oxy_crit . 77
sardine.rd . 77
squid.rd . 78
subsample . 79
subset_data . 80
subset_rate . 82
summary.adjust_rate . 87
summary.adjust_rate.ft . 88
summary.auto_rate . 88
summary.calc_rate . 89
summary.calc_rate.bg . 89
summary.calc_rate.ft . 90
summary.convert_DO . 90
summary.convert_rate . 91
summary.convert_rate.ft . 91
summary.inspect . 92
summary.inspect.ft . 92
summary.oxy_crit . 93
test_lin_data . 93
unit_args . 94
urchins.rd . 95
zeb_intermittent.rd . 96

Index 98

adjust_rate Adjust rates to account for background respiration or oxygen flux.

Description

The adjust_rate function adjusts an oxygen uptake or production rate (for example, as determined
in calc_rate() or auto_rate()) for background oxygen use by microbial organisms, or for other
removal or input of oxygen during a respirometry experiment. The function accepts numeric val-
ues, as well as regular respR objects, and data frames. See calc_rate.bg() for determining

4 adjust_rate

background rates, which is the recommended way of passing background rates to adjust_rate.
Rates determined in calc_rate are also accepted as background rates.

Usage

adjust_rate(
x,
by,
method = NULL,
by2 = NULL,
time_x = NULL,
time_by = NULL,
time_by2 = NULL

)

Arguments

x numeric. A single numeric value, numeric vector, or object of class calc_rate
or auto_rate. This contains the experimental rate value(s) to be adjusted.

by numeric. A single numeric value, numeric vector, or object of class calc_rate.bg
or calc_rate. This is the background rate(s) used to perform the adjustment to
x. Can also be a data.frame or inspect object for "concurrent", "linear"
or "exponential" adjustments. See Details.

method string. Method of background adjustment. Defaults to "mean". Other inputs are:
"value", "paired", "concurrent", "linear", "exponential". See Details.

by2 numeric. Either a single numeric value, a calc_rate.bg or calc_rate ob-
ject, a data.frame, or inspect object. This is the source of the second back-
ground adjustment rate, and used only for dynamic adjustments ("linear" or
"exponential"). See Details.

time_x numeric. The timestamp(s) for the rate(s) in x, if it was entered as a numeric
(otherwise it is extracted from the x input object). Generally this is the midpoint
of the time range over which each x rate was calculated. Used only in dynamic
adjustments ("linear" or "exponential"). See Details.

time_by numeric. The timestamp of the background correction rate in by, if it was en-
tered as a numeric (otherwise it is extracted from the by input object). Generally
the midpoint of the time range over which it was calculated. Used only in dy-
namic adjustments ("linear" or "exponential"). See Details.

time_by2 numeric. The timestamp of the background correction rate in by2, if it was
entered as a numeric (otherwise it is extracted from the by2 input object). Gen-
erally the midpoint of the time range over which it was calculated. Used only in
dynamic adjustments ("linear" or "exponential"). See Details.

Details

adjust_rate allows the rate, or multiple rates, in x to be adjusted in a number of ways, as detailed
below. Note that for those methods which accept them, by and by2 inputs of class calc_rate,
calc_rate.bg, data.frame or inspect can contain multiple columns of background oxygen

adjust_rate 5

data, as long as they share the same numeric time data in column 1. In this case, the mean of
all rates calculated for all oxygen columns is used to perform adjustments (see inspect() and
calc_rate.bg() to coerce data to this form). The exception to this is the "paired" method, where
each rate in by (i.e. rate in each oxygen column) is paired with the rate at the same position in x and
used to adjust it.

Note: take special care with the sign of the rate used for adjustments. In respR oxygen uptake
rates are negative, as they represent a negative slope of oxygen against time. Background rates will
normally also be a negative value, while any input of oxygen would be positive. See Examples.

Methods
There are six methods of adjustment, briefly summarised here, with more detail below:

"value" - All experimental rates in x are adjusted by a single background rate value in by.

"mean" - This is the default method. All experimental rates in x are adjusted by the mean of all
background rate values in by.

"paired" - Experimental rates in x are adjusted by the background rate value at the same position
in by. Therefore requires x and by to have the same number of rates.

"concurrent" - Experimental rates in x are adjusted by a background rate calculated over the same
time window in the data in by. Therefore requires x and by to share the same time data and length
(broadly speaking).

"linear" - The time values for experimental rates in x are used to calculate an adjustment value
based on a background rate that changes linearly with respect to time over the course of an exper-
iment. Requires two background recordings or values (by, by2), and that all data share the same
time data or scale.

"exponential" - The time values for experimental rates in x are used to calculate an adjustment
value based on a background rate that changes exponentially with respect to time over the course of
an experiment. Requires two background recordings or values (by, by2), and that all data share the
same time data or scale.

More Detail
"value" - For experiments in which the rate from a single background experiment (or any single
background value) is being used to adjust one or more specimen rates. Each rate in x is adjusted
by the subtracting the single value in by. x can be a numeric value, numeric vector, auto_rate, or
calc_rate object. by can be a single numeric value, a calc_rate.bg object containing a single
$rate.bg (i.e. calculated from a 2-column data frame of time~oxygen), or a calc_rate object
containing a single $rate. All other inputs should be NULL.

"mean" - For experiments in which the mean rate from multiple background experiments is being
used to adjust one or more specimen rates. Each rate in x is adjusted by subtracting the mean of all
background rates in by. x can be a numeric value, numeric vector, auto_rate, or calc_rate object.
by can be a numeric value, numeric vector, calc_rate.bg object containing multiple $rate.bg, or a
calc_rate object containing multiple $rate. All other inputs should be NULL. If by is a single value,
this will obviously have the same output as the "value" method.

"paired" - For experiments where multiple specimen experiments are being adjusted by multiple
different background rates. This is a vectorised adjustment operation: rates in x are adjusted by the
background rates at the same position in by. That is, the first x adjusted by the first by, second x by
second by, etc. x can be a numeric value, numeric vector, auto_rate, or calc_rate object. by can
be a numeric vector of the same length, a calc_rate.bg or calc_rate object where the $rate.bg
or $rate element is the same length as the rates in x to be adjusted. All other inputs should be NULL.

6 adjust_rate

"concurrent" - For experiments in which one or more concurrent "blanks" or background ex-
periments are run alongside specimen experiments. Rates in x are adjusted by a background rate
calculated over the same time window in the data in by. That is, the start and end time of each
x rate is used to fit a linear regression and calculate a background rate in the $dataframe in by. x
must be an auto_rate, or calc_rate object. by must be a data.frame, inspect, calc_rate.bg,
or calc_rate object containing time~oxygen data. If there are multiple columns of background
oxygen the mean rate across the same time window in all columns is used. In calc_rate.bg and
calc_rate objects the $rate.bg or $rate element is not used, only the $dataframe. The x and by
data must share (broadly) the same time data or scale in the same units. If the x and by data differ
in length by more than 5% or some time values are not shared between the two datasets, a warning
is given, but the adjustment is nevertheless performed using the available data, by using the closest
matching time window in the background data.

"linear" - This is a dynamic adjustment, intended for experiments in which the background oxy-
gen rate changes over the course of the experiment linearly with respect to time. This is typical
of long duration respirometry experiments in high temperatures, where a "blank" is conducted at
the start of the experiment before the specimen is put in, and again at the end after it is taken out.
It requires therefore two background recordings sharing the same numeric time data or time scale,
in the same units as the experiment to be adjusted. These can also be entered as two rate values
with associated timestamps, which again must share the same time scale and units as the rate to be
adjusted. This method can also be used in experiments in which a concurrent blank experiment is
conducted alongside specimen experiments (as described in the concurrent method above), but in
which the background data is deemed too noisy to fit reliable regressions over the short timescales
specimen rates are determined. In this case, any two reliable segments of the background data of
any duration can be used to determine how the background rate changes over the course of the
experiment, and then this used to adjust specimen rates using the appropriate rate timestamps. The
time~background rate linear relationship is calculated using the midpoint of the time range of the
by and by2 rate regressions (or values plus timestamps). The adjustments to x rates are calcu-
lated by taking the midpoint of the time range over which it was determined and applying it to the
by~by2 linear relationship. The x input can be a numeric value, numeric vector, or a calc_rate or
auto_rate object containing single or multiple rates. The by input is the first background recording
or rate value, and by2 the second background recording or rate value.

While it is typical, the x rates do not necessarily need to be at intermediate timepoints to the by/by2
times. these are used only to establish a time~background rate linear relationship, which can be
extrapolated before or after the time values used to calculate it. The by and by2 inputs can be a
data.frame, inspect or calc_rate.bg object containing background time~oxygen data. Alter-
natively, the rate x, and background rates by and by2 can be entered as values, in which case the
associated timepoints at which these were determined (generally the midpoint of the time range over
which the linear regression was fit) must be entered as time_x, time_by, and time_by2 (these time-
points are otherwise automatically extracted from the input objects). Multiple x rates with multiple
time_x timepoints can be entered and adjusted, but only one linear background rate relationship
applied, that is by, by2, time_by, and time_by2 must be single numeric values in the correct units.

"exponential" - This is a dynamic adjustment, intended for experiments in which the background
oxygen rate changes over the course of the experiment exponentially with respect to time. This is
typical of long duration respirometry experiments in high temperatures, where a "blank" is con-
ducted at the start of the experiment before the specimen is put in, and again at the end after it
is taken out, and the background rate is found to increase exponentially. This is identical to the
"linear" method (see above for requirements), except the adjustment is calculated as an exponen-
tial relationship of the form - lm(log(c(by,by2)) ~ c(time_by,time_by2)).

adjust_rate 7

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first adjusted rate. Others can be printed by
passing the pos input. e.g. print(x,pos = 2)

• summary(): prints summary table of all results and metadata, or those specified by the pos
input. e.g. summary(x,pos = 1:5). The summary can be exported as a separate dataframe
by passing export = TRUE.

• mean(): calculates the mean of all adjusted rates, or those specified by the pos input. e.g.
mean(x,pos = 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class adjust_rate containing all inputs, input rates, adjustment values,
adjustment method and model (if relevant), and the primary output of interest $rate.adjusted.

Examples

Note that oxygen uptake rates are negative in respR since they represent a
decrease in dissolved oxygen and negative slope. Typically both
specimen rate and background rate values are negative.

Simple background adjustment to a single rate
This is (-7.44) - (-0.04) = -7.40
adjust_rate(x = -7.44, by = -0.04, method = "value")

Oxygen input adjustment
This is (-7.44) - (0.1) = -7.54
adjust_rate(x = -7.44, by = 0.1, method = "value")

Mean background respiration correction to a single rate.
adjust_rate(x = -7.44, by = c(-0.04, -0.05, -0.06),

method = "mean")

Mean background respiration correction to multiple rates.
out <- adjust_rate(x = c(-7.44, -7.20, -7.67),

by = c(-0.04, -0.05, -0.06),
method = "mean")

summary(out)

Paired background respiration correction to multiple rates.
out <- adjust_rate(x = c(-7.44, -7.20, -7.67),

by = c(-0.04, -0.05, -0.06),
method = "paired")

summary(out)

Dynamic linear adjustment
With a linear relationship between the 'by' and 'by2' rates,

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

8 adjust_rate.ft

at the midpoint time value the adjustment to 'x' should be -0.5
adjust_rate(x = -10,

time_x = 500,
by = 0, by2 = -1,
time_by = 0, time_by2 = 1000,
method = "linear")

Same operation to multiple rates
out <- adjust_rate(x = c(-10, -11, -12),

time_x = c(500, 600, 700),
by = 0, by2 = -1,
time_by = 0, time_by2 = 1000,
method = "linear")

summary(out)

A complete workflow using objects instead of values.

Extract a single replicate from the middle of the zebrafish data
and calculate rates
zeb_rate <- subset_data(zeb_intermittent.rd,

from = 38300,
to = 38720,
by = "time") %>%

inspect() %>%
auto_rate()

Calculate background rate at start of experiment
bg_start <- subset_data(zeb_intermittent.rd, 1, 4999, "time") %>%

inspect() %>%
calc_rate.bg() %>%
print()

Calculate background rate at end of experiment
bg_end <- subset_data(zeb_intermittent.rd, 75140, 79251, "time") %>%

inspect() %>%
calc_rate.bg() %>%
print()

Perform a dynamic linear adjustment
adjust_rate(zeb_rate, by = bg_start, by2 = bg_end,

method = "linear") %>%
summary()

Note the adjustment values applied are somewhere between the
start and end background rate values

adjust_rate.ft Adjust rates in flowthrough respirometry to account for background
respiration or oxygen flux.

adjust_rate.ft 9

Description

The adjust_rate.ft function adjusts an oxygen uptake or production rate (for example, as deter-
mined in calc_rate.ft()) for background oxygen use by microbial organisms, or other removal
or input of oxygen during flowthrough respirometry experiments. The function accepts numeric
values, as well as calc_rate.ft objects. Numeric x and by inputs should be rates calculated as the
oxygen delta * flowrate. Units will be specified in convert_rate.ft() when rates are converted
to specific output units.

Usage

adjust_rate.ft(x, by)

Arguments

x numeric. A single numeric value, numeric vector, or object of class calc_rate.ft.
This is the experimental rate value(s) to be adjusted.

by numeric. A numeric value, numeric vector, or object of class calc_rate.ft.
This contains the background rate used to perform the adjustment to x. If the
vector or calc_rate.ft object contains multiple rates, they will be averaged to
produce a single adjustment value.

Details

adjust_rate.ft allows the rate, or multiple rates, in x to be adjusted by the background rate in by.
There are several ways of determining the background rate, or performing background corrections
depending on the setup of the experiment.

For experiments in which an empty "blank" experiment has been run, and the background rate gen-
erally does not change over the course of the experiment (that is, the oxygen delta between inflow
and outflow concentrations remains consistent), it is recommended the rate be determined and saved
via the inspect.ft() and calc_rate.ft() functions and then entered as the by input as either a
value or the saved calc_rate.ft object. In this case, the $rate element of the calc_rate.ft object
is used to adjust all rates in x. If there are multiple background rates in $rate, the mean value is
used. In this way, a single blank experiment can be applied to several specimen experiments. Al-
ternatively, the rate from several blank experiments can be averaged to provide a single adjustment
value, and this entered via by as a numeric value.

For experiments in which an empty "blank" experiment has been run alongside actual experiments
in parallel, and background rate may increase or decrease over time (or there may be other variations
for example in the inflow oxygen concentrations), it is recommended you NOT use this function.
Instead, the paired blank oxygen concentration data should be used in inspect.ft as the in.oxy
input. In this way, the calculated specimen delta oxygen values take account of whatever back-
ground or other variation in oxygen is occurring in the blank chamber with respect to time. See
examples in the vignettes on the website.

For adjustments, all rates in x, whether entered as values or as a calc_rate.ft object, are adjusted
by subtracting the mean of all background rates in by.

Note: take special care with the sign of the rate used for adjustments. In respR oxygen uptake
rates are negative, as they represent a negative slope of oxygen against time. Background rates will
normally also be a negative value (though not always). See Examples.

10 adjust_rate.ft

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first adjusted rate. Others can be printed by
passing the pos input. e.g. print(x,pos = 2)

• summary(): prints summary table of all results and metadata, or those specified by the pos
input. e.g. summary(x,pos = 1:5). The summary can be exported as a separate dataframe
by passing export = TRUE.

• mean(): calculates the mean of all adjusted rates, or those specified by the pos input. e.g.
mean(x,pos = 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output: If the x input is a calc_rate.ft object, the output will be identical in structure, but of
class adjust_rate.ft and containing the additional elements $adjustment and $rate.adjusted, with
these also added to $summary metadata.

If x is a numeric value or vector, the output is a list object of class adjust_rate.ft containing
four elements: a $summary table, $rate, $adjustment, and $rate.adjusted.

For all outputs, the $rate.adjusted element will be the one converted when the object is passed to
convert_rate.ft.

Examples

Note that oxygen uptake rates are negative in respR
since they represent a decrease in dissolved oxygen
and negative slope. Typically both specimen rate and
background rate values are negative.

--
Simple background respiration correction to a single
rate.

Note, 'x' and 'by' should both be rates calculated as
the delta oxygen value, the difference between inflow
and outflow oxygen, multiplied by the flowrate.

This is (-0.98) - (-0.04) = -0.94
adjust_rate.ft(x = -0.98, by = -0.04)

--
Mean background adjustment to a single rate.
adjust_rate.ft(x = -0.98, by = c(-0.04, -0.05, -0.06))

--
Mean background adjustment to multiple rates.
out <- adjust_rate.ft(x = c(-0.98, -0.87, -0.91),

by = c(-0.04, -0.05, -0.06))

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

algae.rd 11

summary(out)

--
Adjustment using calc_rate.ft objects
Specimen rate
sp_rate <- flowthrough_mult.rd %>%

inspect.ft(time = 1, out.oxy = 2, in.oxy = 6) %>%
calc_rate.ft(from = 30, flowrate = 0.1)

Background rate
bg_rate <- flowthrough_mult.rd %>%

inspect.ft(time = 1, out.oxy = 5, in.oxy = 9) %>%
calc_rate.ft(flowrate = 0.1)

Perform adjustment
adj_rate <- adjust_rate.ft(sp_rate, by = bg_rate)
print(adj_rate)
summary(adj_rate)
--

algae.rd Oxygen production respirometry data

Description

Data from a respirometry experiment on algae which shows oxygen production over time.

Usage

algae.rd

Format

A data frame object consisting of 1200 rows (20 h of data),and 2 columns: $Time in hours, $Oxygen
in % air saturation.

Details

• Dissolved oxygen units: % Air Saturation

• Time units: hours

• Respirometer volume (L): 0.1

• Temperature (°C): 12

• Salinity: 30

Author(s)

Nicholas Carey

12 auto_rate

auto_rate Automatically determine most linear, highest, lowest and rolling oxy-
gen uptake or production rates

Description

auto_rate performs rolling regressions on a dataset to determine the most linear, highest, lowest,
maximum, minimum, rolling, and interval rates of change in oxygen against time. A rolling regres-
sion of the specified width is performed on the entire dataset, then based on the "method" input, the
resulting regressions are ranked or ordered, and the output summarised.

Usage

auto_rate(x, method = "linear", width = NULL, by = "row", plot = TRUE, ...)

Arguments

x data frame, or object of class inspect containing oxygen~time data.

method string. "linear", "highest", "lowest", "maximum", "minimum", "rolling"
or "interval". Defaults to "linear". See Details.

width numeric. Width of the rolling regression. For by = "row", either a value be-
tween 0 and 1 representing a proportion of the data length, or an integer of 2
or greater representing an exact number of rows. If by = "time" it represents a
time window in the units of the time data. If NULL, it defaults to 0.2 or a window
of 20% of the data length. See Details.

by string. "row" or "time". Defaults to "row". Metric by which to apply the width
input if it is above 1.

plot logical. Defaults to TRUE. Plot the results.

... Allows additional plotting controls to be passed, such as pos, panel, and quiet
= TRUE.

Details

Ranking and ordering algorithms:
Currently, auto_rate contains seven ranking and ordering algorithms that can be applied using
the method input:

• linear: Uses kernel density estimation (KDE) to learn the shape of the entire dataset and
automatically identify the most linear regions of the timeseries. This is achieved by using
the smoothing bandwidth of the KDE to re-sample the "peaks" in the KDE to determine
linear regions of the data. The summary output will contain only the regressions identified as
coming from linear regions of the data, ranked by order of the KDE density analysis. This is
present in the $summary component of the output as $density. Under this method, the width
input is used as a starting seed value, but the resulting regressions may be of any width. See
here for full details.

https://januarharianto.github.io/respR/articles/auto_rate

auto_rate 13

• highest: Every regression of the specified width across the entire timeseries is calculated,
then ordered using absolute rate values from highest to lowest. Essentially, this option ig-
nores the sign of the rate, and can only be used when rates all have the same sign. Rates
will be ordered from highest to lowest in the $summary table regardless of if they are oxygen
uptake or oxygen production rates.

• lowest: Every regression of the specified width across the entire timeseries is calculated,
then ordered using absolute rate values from lowest to highest. Essentially, this option ig-
nores the sign of the rate, and can only be used when rates all have the same sign. Rates
will be ordered from lowest to highest in the $summary table regardless of if they are oxygen
uptake or oxygen production rates.

• maximum: Every regression of the specified width across the entire timeseries is calculated,
then ordered using numerical rate values from maximum to minimum. Takes full account
of the sign of the rate. Therefore, oxygen uptake rates, which in respR are negative, would
be ordered from lowest (least negative), to highest (most negative) in the summary table in
numerical order. Therefore, generally this method should only be used when rates are a mix
of oxygen consumption and production rates, such as when positive rates may result from
regressions fit over flush periods in intermittent-flow respirometry. Generally, for most anal-
yses where maximum or minimum rates are of interest the "highest" or "lowest" methods
should be used.

• minimum: Every regression of the specified width across the entire timeseries is calculated,
then ordered using numerical rate values from minimum to maximum. Takes full account
of the sign of the rate. Therefore, oxygen uptake rates, which in respR are negative, would
be ordered from highest (most negative) to lowest (least negative) in the summary table in
numerical order. Therefore, generally this method should only be used when rates are a mix
of oxygen consumption and production rates, such as when positive rates may result from
regressions fit over flush periods in intermittent-flow respirometry. Generally, for most anal-
yses where maximum or minimum rates are of interest the "highest" or "lowest" methods
should be used.

• rolling: A rolling regression of the specified width is performed across the entire time-
series. No reordering of results is performed.

• interval: multiple, successive, non-overlapping regressions of the specified width are ex-
tracted from the rolling regressions, ordered by time.

• NOTE: max, min: These methods were used in previous versions of respR but have been
deprecated. They were intended to order oxygen uptake (negative) rates by magnitude, but
this resulted in incorrect ordering of oxygen production (positive) rates. They have been
retained for code compatibility, but will be removed in a future version of respR, and so
should not be used.

Further selection and filtering of results:
For further selection or subsetting of auto_rate results, see the dedicated subset_rate() func-
tion, which allows subsetting of rates by various criteria, including r-squared, data region, per-
centiles, and more.

Units:
There are no units involved in auto_rate. This is a deliberate decision. The units of oxygen
concentration and time will be specified later in convert_rate() when rates are converted to
specific output units.

14 auto_rate

The width and by inputs:
If by = "time", the width input represents a time window in the units of the time data.
If by = "row" and between 0 and 1, width represents a proportion of the total data length, as in
the equation floor(width * number of data rows). For example, 0.2 represents a rolling window of
20% of the data width. Otherwise, if entered as an integer of 2 or greater, the width represents
the number of rows.
For both by inputs, if left as width = NULL it defaults to 0.2 or a window of 20% of the data length.
In most cases, by should be left as the default "row", and the width chosen with this in mind,
as it is considerably more computationally efficient. Changing to "time" causes the function to
perform checks for irregular time intervals at every iteration of the rolling regression, which adds
to computation time. This is to ensure the specified width input is honoured in the time units and
rates correctly calculated, even if the data is unevenly spaced or has gaps.

Plot:
A plot is produced (provided plot = TRUE) showing the original data timeseries of oxygen against
time (bottom blue axis) and row index (top red axis), with the rate result region highlighted.
Second panel is a close-up of the rate region with linear model coefficients. Third panel is a
rolling rate plot (note the reversed y-axis so that higher oxygen uptake rates are plotted higher), of
a rolling rate of the input width across the whole dataset. Each rate is plotted against the middle
of the time and row range used to calculate it. The dashed line indicates the value of the current
rate result plotted in panels 1 and 2. The fourth and fifth panels are summary plots of fit and
residuals, and for the linear method the sisth panel the results of the kernel density analysis,
with the dashed line again indicating the value of the current rate result plotted in panels 1 and 2.

Additional plotting options:
If multiple rates have been calculated, by default the first (pos = 1) is plotted. Others can be
plotted by changing the pos input either in the main function call, or by plotting the output, e.g.
plot(object,pos = 2). In addition, each sub-panel can be examined individually by using the
panel input, e.g. plot(object,panel = 2).
Console output messages can be suppressed using quiet = TRUE. If axis labels or other text boxes
obscure parts of the plot they can be suppressed using legend = FALSE. The rate in the rolling
rate plot can be plotted not reversed by passing rate.rev = FALSE, for instance when examin-
ing oxygen production rates so that higher production rates appear higher. If axis labels (par-
ticularly y-axis) are difficult to read, las = 2 can be passed to make axis labels horizontal, and
oma (outer margins, default oma = c(0.4,1,1.5,0.4)), and mai (inner margins, default mai =
c(0.3,0.15,0.35,0.15)) used to adjust plot margins.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first rate. Others can be printed by passing the
pos input. e.g. print(x,pos = 2)

• summary(): prints summary table of all results and metadata, or those specified by the pos
input. e.g. summary(x,pos = 1:5). The summary can be exported as a separate data frame
by passing export = TRUE.

• mean(): calculates the mean of all rates, or those specified by the pos input. e.g. mean(x,pos
= 1:5) The mean can be exported as a separate value by passing export = TRUE.

auto_rate 15

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class auto_rate containing input parameters and data, various summary
data, metadata, linear models, and the primary output of interest $rate, which can be background
adjusted in adjust_rate or converted to units in convert_rate.

Examples

Most linear section of an entire dataset
inspect(sardine.rd, time = 1, oxygen =2) %>%
auto_rate()

What is the lowest oxygen consumption rate over a 10 minute (600s) period?
inspect(sardine.rd, time = 1, oxygen =2) %>%
auto_rate(method = "lowest", width = 600, by = "time") %>%
summary()

What is the highest oxygen consumption rate over a 10 minute (600s) period?
inspect(sardine.rd, time = 1, oxygen =2) %>%
auto_rate(method = "highest", width = 600, by = "time") %>%
summary()

What is the NUMERICAL minimum oxygen consumption rate over a 5 minute (300s)
period in intermittent-flow respirometry data?
NOTE: because uptake rates are negative, this would actually be
the HIGHEST uptake rate.
auto_rate(intermittent.rd, method = "minimum", width = 300, by = "time") %>%
summary()

What is the NUMERICAL maximum oxygen consumption rate over a 20 minute
(1200 rows) period in respirometry data in which oxygen is declining?
NOTE: because uptake rates are negative, this would actually be
the LOWEST uptake rate.
sardine.rd |>

inspect() |>
auto_rate(method = "maximum", width = 1200, by = "row") |>
summary()

Perform a rolling regression of 10 minutes width across the entire dataset.
Results are not ordered under this method.
sardine.rd |>

inspect() |>
auto_rate(method = "rolling", width = 600, by = "time") |>
summary()

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

16 background_exp.rd

background_con.rd Background respirometry data (constant)

Description

Background oxygen consumption data. After the initial 30 minutes, data shows a generally constant
background rate. Taken from a Loligo swim tunnel background recording. Oxygen recorded via
a Witrox sensor in % air saturation over nearly 6 hours at 1 second intervals. Data is from a real
experiment.

Usage

background_con.rd

Format

A data frame object consisting of 20664 rows (approx 6 h of data),and 2 columns: $Time in seconds,
$Oxygen in % air saturation.

Details

• Dissolved oxygen units: % Air Saturation

• Time units: seconds

• Swim tunnel volume (L): 12.3

• Temperature (°C): 14.5

• Salinity: 34

• Atm. Pressure (bar): 1.013253

Author(s)

Nicholas Carey

background_exp.rd Background respirometry data (exponential)

Description

Background oxygen consumption data. Data shows a background rate which increases exponen-
tially with respect to time. Taken from a Loligo swim tunnel background recording. Oxygen
recorded via a Witrox sensor in % air saturation over nearly 6 hours at 1 second intervals. Data
is from a real experiment, but oxygen decrease curve has been exaggerated to impose an exponen-
tial increase in background consumption for testing purposes.

background_lin.rd 17

Usage

background_exp.rd

Format

A data frame object consisting of 20664 rows (approx 6 h of data),and 2 columns: $Time in seconds,
$Oxygen in % air saturation.

Details

• Dissolved oxygen units: % Air Saturation

• Time units: seconds

• Swim tunnel volume (L): 12.3

• Temperature (°C): 14.5

• Salinity: 34

• Atm. Pressure (bar): 1.013253

Author(s)

Nicholas Carey

background_lin.rd Background respirometry data (linear)

Description

Background oxygen consumption data. After initial 30 minutes, data shows a background rate
which increases linearly with respect to time. Taken from a Loligo swim tunnel background record-
ing. Oxygen recorded via a Witrox sensor in % air saturation over nearly 6 hours at 1 second
intervals. Data is from a real experiment, but has been manipulated to show a linear increase in
background rate for testing purposes.

Usage

background_lin.rd

Format

A data frame object consisting of 20664 rows (approx 6 h of data),and 2 columns: $Time in seconds,
$Oxygen in % air saturation.

18 calc_rate

Details

• Dissolved oxygen units: % Air Saturation

• Time units: seconds

• Swim tunnel volume (L): 12.3

• Temperature (°C): 14.5

• Salinity: 34

• Atm. Pressure (bar): 1.013253

Author(s)

Nicholas Carey

calc_rate Calculate rate of change in oxygen over time

Description

Calculates rate of oxygen uptake or production from respirometry data. A rate can be determined
over the whole dataset, or on subsets of the data using the from and to inputs to specify data
regions in terms of oxygen or time units, row numbers of the input data, or over a proportion
of the total oxygen used or produced (note, this last option works poorly with noisy or fluctuating
data). Multiple rates can be extracted from the same dataset by using these inputs to enter vectors
of paired values in the appropriate metric. See Examples.

Usage

calc_rate(x, from = NULL, to = NULL, by = "time", plot = TRUE, ...)

Arguments

x object of class inspect or data.frame. This is the timeseries of paired values
of oxygen against time from which to calculate rates.

from numeric value or vector. Defaults to NULL. The start of the region(s) over which
you want to calculate the rate in the units specified in by. If a vector, each value
must have a paired value in to.

to numeric value or vector. Defaults to NULL. The end of the region(s) over which
you want to calculate the rate in the units specified in by. If a vector, each value
must have a paired value in from.

by string. "time", "row", "oxygen" or "proportion" Defaults to "time".This is
the method used to subset the data region between from and to.

plot logical. Defaults to TRUE. Plot the results.

... Allows additional plotting controls to be passed, such as pos, panel, and quiet
= TRUE.

calc_rate 19

Details

The function calculates rates by fitting a linear model of oxygen against time, with the slope of this
regression being the rate. There are no units involved in calc_rate. This is a deliberate decision.
The units of oxygen concentration and time will be specified later in convert_rate() when rates
are converted to specific output units.

For continuous data recordings, it is recommended a data.frame containing the data be prepared
via inspect(), and entered as the x input. For data not prepared like this, x can be a 2-column
data.frame containing numeric values of time (col 1) and oxygen (col 2). If multiple columns are
found in either an inspect or data frame input, only the first two columns are used.

Specifying regions:
For calculating rates over specific regions of the data, the from and to inputs in the by units of
"time" (the default), "oxygen", "row", or "proportion" can be used. The from and to inputs
do not need to be precise; the function will use the closest values found.
Multiple regions can be examined within the same dataset by entering from and to as vectors
of paired values to specify different regions. In this case, $rate in the output will be a vector of
multiple rates with each result corresponding to the position of the paired from and to inputs. If
from and to are NULL (the default), the rate is determined over the entire dataset.

Plot:
A plot is produced (provided plot = TRUE) showing the original data timeseries of oxygen against
time (bottom blue axis) and row index (top red axis), with the region specified via the from and
to inputs highlighted. Second panel is a close-up of the rate region with linear model coefficients.
Third and fourth panels are summary plots of fit and residuals.

Additional plotting options:
If multiple rates have been calculated, by default the first (pos = 1) is plotted. Others can be
plotted by changing the pos input either in the main function call, or by plotting the output, e.g.
plot(object,pos = 2). In addition, each sub-panel can be examined individually by using the
panel input, e.g. plot(object,panel = 2).
Console output messages can be suppressed using quiet = TRUE. If axis labels (particularly y-
axis) are difficult to read, las = 2 can be passed to make axis labels horizontal, and oma (outer mar-
gins, default oma = c(0.4,1,1.5,0.4)), and mai (inner margins, default mai = c(0.3,0.15,0.35,0.15))
used to adjust plot margins.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first rate. Others can be printed by passing the
pos input. e.g. print(x,pos = 2)

• summary(): prints summary table of all results and metadata, or those specified by the pos
input. e.g. summary(x,pos = 1:5). The summary can be exported as a separate dataframe
by passing export = TRUE.

• mean(): calculates the mean of all rates, or those specified by the pos input. e.g. mean(x,pos
= 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

20 calc_rate.bg

Value

Output is a list object of class calc_rate containing input parameters and data, various summary
data, metadata, linear models, and the primary output of interest $rate, which can be background
adjusted in adjust_rate or converted to units in convert_rate.

Examples

Subset by 'time' (the default)
inspect(sardine.rd, time = 1, oxygen = 2, plot = FALSE) %>%

calc_rate(from = 200, to = 1800)

Subset by oxygen
inspect(sardine.rd, time = 1, oxygen = 2, plot = FALSE) %>%

calc_rate(94, 91, by = "oxygen")

Subset by row
inspect(sardine.rd, time = 1, oxygen = 2, plot = FALSE) %>%

calc_rate(1000, 2000, by = "row")

Use a data frame input, and calculate rate from multiple regions by
using a vector in the 'from' and 'to' inputs
x <- calc_rate(intermittent.rd,

from = c(200,2300,4100),
to = c(1800,3200,4600),
by = 'time',
plot = FALSE)

Print and summary of results
print(x)
summary(x)
Plot the third of these results
plot(x, pos = 3)
Plot only the timeseries plot and hide the legend
plot(x, pos = 3, panel = 1, legend = FALSE)

calc_rate.bg Calculate background oxygen uptake or input rates

Description

This function calculates the rate of change of oxygen over time from "blank" or control respirometry
experiments, to allow for background adjustments of experimental data. It accepts background
oxygen~time data as data frames and inspect objects. The data must be in the same time and
oxygen units as the data from which the rate which will be adjusted was extracted. Multiple columns
of background oxygen measurements can be entered as long as they share the same time data. In
this case the function returns rates for all columns, and also calculates a mean rate.

Usage

calc_rate.bg(x, time = NULL, oxygen = NULL, plot = TRUE, ...)

calc_rate.bg 21

Arguments

x data.frame or inspect object. This is the data to extract background rate(s)
from.

time integer. Defaults to 1. This specifies the column number of the time data.

oxygen integer value or vector. This specifies the column number(s) of the oxygen data.
Multiple columns of oxygen can be specified. If NULL, function assumes oxy-
gen data are in all columns of the data frame except the time column.

plot logical. Defaults to TRUE. Plots the data. See Details.

... Allows additional plotting controls to be passed, such as pos, legend = FALSE,
and quiet = TRUE.

Details

The main difference between calc_rate.bg and calc_rate, is that this function allows a rate to
be determined from the same region of multiple oxygen data columns, whereas calc_rate allows
multiple rates to be determined from different regions of a single dataset.

Units:
There are no units involved in calc_rate.bg. This is a deliberate decision. The units of oxygen
concentration and time will be specified later in convert_rate() when rates are converted to
specific output units. It is important however, the background time~oxygen data is in the same
time and oxygen units as the data used to determine the rate which will be adjusted.

Subsetting data regions:
calc_rate.bg does not have internal subsetting of data regions. If you need to subset the data
to specific regions you don’t want to use, see subset_data(), which allows for easy passing (or
piping) of subsets to calc_rate.bg.

Background respiration vs background input of oxygen:
Most users will be using this function to account for background oxygen consumption rates from
microbial activity that need to be quantified and their effects removed from experimental speci-
men rates. However, there are some experiments where oxygen input rates may be of interest, for
example in open tank or open arena respirometry where the input of oxygen from the water surface
has been calculated or quantified. There are also cases in closed respirometry where there may be
an input of oxygen via leaks or oxygen production from photosynthesis which need to be quan-
tified. calc_rate.bg is readily capable of quantifying production rates as well as consumption,
and these can also be used for adjustments in adjust_rate().

Plot:
A plot is produced (provided plot = TRUE) showing all examined columns of oxygen against time
(bottom blue axis) and row index (top red axis), with the rate and linear model coefficients. Single
rates can be plotted by changing the pos input either in the main function call, or by plotting the
output, e.g. plot(object,pos = 2). Console output messages can be suppressed using quiet =
TRUE. If equations obscure the plot they can be suppressed using legend = FALSE.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

22 calc_rate.ft

• print(): prints all background rates, plus the mean background rate.

• summary(): prints summary table of all results and metadata, or those specified by the pos
input. e.g. summary(x,pos = 1:5). The summary can be exported as a separate dataframe
by passing export = TRUE.

• mean(): calculates the mean of all rates, or those specified by the pos input. e.g. mean(x,pos
= 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class calc_rate.bg containing original data, linear models, summary
information, and the primary output of interest $rate.bg, which contains a rate for each oxygen
column present in the input data. There is also $rate.bg.mean containing the mean of all background
rates. Note, this is not used in adjust_rate, where the method input there determines how $rate.bg
is applied, but can easily be extracted and applied as an adjustment value if desired.

Examples

Inspect and calculate background rate from two columns
inspect(urchins.rd, time = 1, oxygen = 18:19) %>%

calc_rate.bg()

Same example but enter as a data frame, save as an object and use
in adjust_rate
bg_rate <- calc_rate.bg(urchins.rd,

time = 1,
oxygen = 18:19,
plot = FALSE)

inspect(urchins.rd, 1, 2, plot = FALSE) %>%
calc_rate(from = 10, to = 30, by = "time", plot = FALSE) %>%
adjust_rate(by = bg_rate)

Subset single column data first before calculating background rate
subset_data(background_con.rd, from = 5000, to = 20000, by = "time") %>%

calc_rate.bg()

calc_rate.ft Calculate rate of change in oxygen from flowthrough respirometry
data

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

calc_rate.ft 23

Description

Calculates rate of oxygen uptake or production in flowthrough respirometry data given a flowrate
and delta oxygen values, which can either be directly entered, or be calculated from inflow and
outflow oxygen. The function returns a single rate value from the whole dataset or a subset of it,
by averaging delta oxygen values. Alternatively, multiple rate values can be returned from different
regions of continuous data, or a rolling rate of a specific window size performed across the whole
dataset.

Usage

calc_rate.ft(
x = NULL,
flowrate = NULL,
from = NULL,
to = NULL,
by = NULL,
width = NULL,
plot = TRUE,
...

)

Arguments

x numeric value or vector of delta oxygen values, a 2-column data.frame of out-
flow (col 1) and inflow (col 2) oxygen values, or an object of class inspect.ft.

flowrate numeric value. The flow rate through the respirometer in volume (ul,ml,L) per
unit time (s,m,h,d). The units are not necessary here, but will be specified in
convert_rate.ft.

from numeric value or vector. Defaults to NULL. The start of the region(s) over which
you want to calculate the rate in either time or row units. If a vector, each value
must have a paired value in to. For use with inspect.ft inputs only.

to numeric value or vector. Defaults to NULL. The end of the region(s) over which
you want to calculate the rate in either time or row units. If a vector, each value
must have a paired value in from. For use with inspect.ft inputs only.

by "time" or "row". Defaults to "time". Specifies the units of the from and by, or
width value. For use with inspect.ft inputs only.

width numeric. Calculates a rolling rate across the whole dataset of the specified width
in the units specified in by. For use with inspect.ft inputs only.

plot logical. Defaults to TRUE. Plots the data.

... Allows additional plotting controls to be passed such as pos, quiet = TRUE,
legend = FALSE, and rate.rev = FALSE.

Details

calc_rate.ft calculates rates by averaging delta oxygen values across the whole dataset, or from
specified subsets of the data. The flowrate is then used to convert these average delta values to

24 calc_rate.ft

rates. There are no units involved in calc_rate.ft. This is a deliberate decision. The units of
oxygen concentration and flowrate will be specified later in convert_rate.ft() when rates are
converted to specific output units.

For continuous data recordings, it is recommended a data.frame containing the data be prepared
via inspect.ft(), and entered as the x input.

For data not prepared like this, x can be a 2-column data.frame containing numeric values of
outflow (col 1) and inflow (col 2) oxygen concentrations in that order. Alternatively, if x is a
numeric value or vector it is treated as delta oxygen values (outflow oxygen concentration minus
inflow oxygen concentration in the same units). In both these cases, the from, to, and by inputs
are are ignored, and all delta oxygen values whether as entered or calculated from the inflow and
outflow oxygen columns are converted to rates.

Specifying regions:
For calculating rates over specific regions of the data, the from and to inputs in the by units of
"time" (the default) or "row" can be used for inspect.ft() inputs. All delta oxygen values
within this region are converted to rates, and averaged to produce a overall rate for the region
($rate in the output). Multiple regions can be examined within the same dataset by entering from
and to as vectors of paired values to specify different regions. In this case, $rate in the output will
be a vector of multiple rates with each result corresponding to the position of the paired from and
to inputs. If from and to are NULL (the default), the rate is determined over the entire dataset.
Alternatively a width input can be specified, in which case a rolling rate is calculated using this
window size (in the relevant by units) across the entire dataset, and returned as a vector of rate
values in $rate.

Flowrate:
In order to convert delta oxygen values to a oxygen uptake or production rate, the flowrate input
is required. This must be in a volume (L, ml, or ul) per unit time (s,m,h,d), for example in L/s.
The units are not required to be entered here; they will be specified in [convert_rate.ft()] to convert
rates to specific units of oxygen uptake or production.

Plot:
For rates calculated from inspect.ft inputs, a plot is produced (provided plot = TRUE) showing
the original data timeseries of inflow and outflow oxygen (if present, top plot), oxygen delta values
(middle or top plot) with the region specified via the from and to inputs highlighted in orange,
and a close-up of this region with calculated rate value (bottom plot). If multiple rates have been
calculated, by default the first is plotted. Others can be plotted by changing the pos input, e.g.
plot(object,pos = 2).
Important: Since respR is primarily used to examine oxygen consumption, the delta oxygen and
rate plots are by default plotted on a reverse y-axis. In respR oxygen uptake rates are negative
since they represent a negative slope of oxygen against time. In these plots the axis is reversed
so that higher uptake rates (i.e. more negative rates) will be higher on these plots. If you are
interested instead in oxygen production rates, which are positive, the rate.rev = FALSE input can
be passed in either the inspect.ft call, or when using plot() on the output object. In this case,
the delta and rate values will be plotted numerically, with higher oxygen production rates higher
on the plot.

Additional plotting options:

calc_rate.ft 25

If the legend or labels obscure part of the plot, they can be suppressed via legend = FALSE in
either the inspect.ft call, or when using plot() on the output object. Console output messages
can be suppressed using quiet = TRUE. Console output messages can be suppressed using quiet
= TRUE. If axis labels or other text boxes obscure parts of the plot they can be suppressed using
legend = FALSE. If axis labels (particularly y-axis) are difficult to read, las = 2 can be passed to
make axis labels horizontal, andoma (outer margins, default oma = c(0.4,1,1.5,0.4)), and mai
(inner margins, default mai = c(0.3,0.15,0.35,0.15)) used to adjust plot margins.

Background control or "blank" experiments:
calc_rate.ft can also be used to determine background rates from empty control experiments
in the same way specimen rates are determined. The saved objects can be used as the by in-
put in adjust_rate.ft(). For experiments in which the specimen data is to be corrected by a
concurrently-run control experiment, best option is to use this as the in.oxy input in inspect.ft().
See help file for that function, or the vignettes on the website for examples.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first rate. Others can be printed by passing the
pos input. e.g. print(x,pos = 2)

• summary(): prints summary table of all results and metadata, or those specified by the pos
input. e.g. summary(x,pos = 1:5). The summary can be exported as a separate data frame
by passing export = TRUE.

• mean(): calculates the mean of all rates, or those specified by the pos input. e.g. mean(x,pos
= 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class calc_rate.ft containing input parameters and data, various sum-
mary data, metadata, and the primary output of interest $rate, which can be background adjusted
in adjust_rate.ft or converted to units in convert_rate.ft. Note the $summary table contains
linear regression coefficients alongside other metadata. These should not be confused with those
in other functions such as calc_rate where slopes represent rates and coefficients such as a high
r-squared are important. Here, they represent the stability of the data region, in that the closer the
slope is to zero the less the delta oxygen values, and therefore rates, in that region vary. These are
included to enable possible future functionality where stable regions may be automatically identi-
fied.

Examples

Single numeric delta oxygen value. The delta oxygen is the difference
between inflow and outflow oxygen.
calc_rate.ft(-0.8, flowrate = 1.6)

Numeric vector of multiple delta oxygen values
ft_rates <- calc_rate.ft(c(-0.8, -0.88, -0.9, -0.76), flowrate = 1.6)

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

26 convert_DO

print(ft_rates)
summary(ft_rates)

Calculate rate from entire dataset
inspect.ft(flowthrough.rd, time = 1, out.oxy = 2, in.oxy = 3,) %>%

calc_rate.ft(flowrate = 2.34)

Calculate rate from a region based on time
inspect.ft(flowthrough.rd, time = 1, out.oxy = 2, in.oxy = 3,) %>%

calc_rate.ft(flowrate = 2.34, from = 200, to = 400, by = "time")

Calculate rate from multiple regions
inspect.ft(flowthrough.rd, time = 1, out.oxy = 2, in.oxy = 3,) %>%

calc_rate.ft(flowrate = 2.34,
from = c(200, 400, 600),
to = c(300, 500, 700),
by = "row") %>%

summary()

Calculate rate from existing delta oxygen values
inspect.ft(flowthrough.rd, time = 1, delta.oxy = 4) %>%

calc_rate.ft(flowrate = 2.34, from = 200, to = 400, by = "time")

Calculate rate from a background recording
inspect.ft(flowthrough_mult.rd,

time = 1,
out.oxy = 5,
in.oxy = 9) %>%

calc_rate.ft(flowrate = 0.1, from = 20, to = 40, by = "time") %>%
summary()

Calculate a rolling rate
inspect.ft(flowthrough_mult.rd,

time = 1,
out.oxy = 2,
in.oxy = 6) %>%

calc_rate.ft(flowrate = 0.1, width = 500, by = "row") %>%
summary()

convert_DO Convert between units of dissolved oxygen

Description

This is a conversion function that performs conversions between concentration and pressure units
of dissolved oxygen (DO).

Usage

convert_DO(

convert_DO 27

x,
from = NULL,
to = NULL,
S = NULL,
t = NULL,
P = NULL,
simplify = TRUE

)

Arguments

x numeric. The dissolved oxygen (DO) value(s) to be converted.

from string. The DO unit to convert from. See unit_args() for details.

to string. The DO unit to convert to. See unit_args() for details.

S numeric. Salinity (ppt). Defaults to NULL. Required for conversion of some
units. See unit_args() for details.

t numeric. Temperature(°C). Defaults to NULL. Required for conversion of some
units. See unit_args() for details.

P numeric. Pressure (bar). Defaults to 1.013253. Required for conversion of some
units. See unit_args() for details.

simplify logical. Defaults to TRUE in which case the converted values are returned as a
numeric vector. if FALSE a list object of class convert_DO is returned.

Details

The function uses an internal database and a fuzzy string matching algorithm to accept various unit
formatting styles. For example, "mg/l", "mg/L", "mgL-1", "mg l-1", "mg.l-1" are all parsed the
same. See [unit_args()] for details of accepted units.

Oxygen concentration units should use SI units (L or kg) for the denominator.

Some DO units require temperature (t), salinity (S), and atmospheric pressure (P) to be specified; if
this is the case the function will stop and prompt for them. For the atmospheric pressure input (P),
a default value of 1.013 bar (standard pressure at sea level) is applied if not otherwise entered. For
freshwater experiments, salinity should be set to zero (i.e. S = 0).

S3 Generic Functions:
Saved output objects (if simplify = FALSE is used) can be entered in the generic S3 functions
print() and summary().

• print(): prints input and converted values (up to first 20), plus input and output units.
• summary(): simple wrapper for print() function. See above.

Value

By default (simplify = TRUE) the output is a numeric vector of converted values. If simplify =
FALSE output is a list object of class convert_DO containing five elements: $call the function call,
$input values, $output converted values, $input.unit and $output.unit.

28 convert_rate

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Examples

Convert a numeric value from & to units which do not require t, S and P
convert_DO(8.21, from = "mg/L", to = "umol/L")

Convert a numeric value from & to units which require t, S and P
convert_DO(100, from = "%Air", to = "mg L-1", S = 33, t = 18)
convert_DO(214, from = "hPa", to = "mL/kg", S = 33, t = 18)

Convert a vector of values
convert_DO(urchins.rd[[5]], from = "mg/L", to = "umol/L")
convert_DO(c(8.01, 8.03, 8.05), from = "mg per litre", to = "%Air",

t = 15, S = 35)
convert_DO(sardine.rd[[2]], from = "%Air", to = "torr",

t = 15, S = 35)

convert_rate Convert a unitless oxygen rate value to absolute, mass-specific or
area-specific rate

Description

Converts a unitless rate derived from calc_rate(), auto_rate(), adjust_rate(), or calc_rate.bg()
into an absolute rate (i.e. whole chamber or whole specimen), or mass-specific rate (i.e. normalised
by specimen mass), or area-specific rate (i.e. normalised by specimen surface area) in any common
unit.

Usage

convert_rate(
x,
oxy.unit = NULL,
time.unit = NULL,
output.unit = NULL,
volume = NULL,
mass = NULL,
area = NULL,
S = NULL,
t = NULL,
P = 1.013253

)

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

convert_rate 29

Arguments

x numeric value or vector, or object of class auto_rate, calc_rate, adjust_rate,
or calc_rate.bg. Contains the rate(s) to be converted.

oxy.unit string. The dissolved oxygen unit of the original raw data used to determine the
rate in x.

time.unit string. The time unit of the original raw data used to determine the rate in x.

output.unit string. The output unit to convert the input rate to. Should be in the correct
order: "Oxygen/Time" or "Oxygen/Time/Mass" or "Oxygen/Time/Area".

volume numeric. Volume of water in litres in the respirometer or respirometer loop.

mass numeric. Mass/weight in kg. This is the mass of the specimen if you wish to
calculate mass-specific rates.

area numeric. Surface area in m^2. This is the surface area of the specimen if you
wish to calculate surface area-specific rates.

S numeric. Salinity (ppt). Defaults to NULL. Used in conversion of some oxygen
units. Freshwater should be entered as S = 0.

t numeric. Temperature(°C). Defaults to NULL. Used in conversion of some oxy-
gen units.

P numeric. Pressure (bar). Used in conversion of some oxygen units. Defaults to
a standard value of 1.013253 bar.

Details

By default, convert_rate converts the primary $rate element from calc_rate and auto_rate
objects, the $rate.adjusted from adjust_rate objects, and the $rate.bg from calc_rate.bg objects.
Additionally, any numeric value or vector of rates can be input as x.

Respirometer volume:
The volume of the respirometer is required and should be in litres (L). Note, the volume represents
the effective volume of the respirometer, that is volume of water in the respirometry chamber. This
is not necessarily the same as the volume of the respirometer. Typically, it is the volume of
the respirometer minus the volume of the specimen. See here for help with calculating effective
volumes. It also does not refer to the specimen volume.

Units:
The oxy.unit of the original raw data used to calculate the rate is required. Concentration units
should use only SI units (L or kg) for the denominator, e.g. "mg/L", "mmol/kg". Percentage
saturation of air (%Air) or oxygen (%Oxy) is supported, as are oxygen pressure units. See
unit_args() for details.
The time.unit of the original raw data used to calculate the rate is also required (seconds, min-
utes, hours, or days).
An output.unit is also required and must be in the sequence Oxygen-Time (e.g. "mg/h") for
absolute rates, Oxygen-Time-Mass (e.g. "mg/h/kg") for mass-specific rates, and Oxygen-Time-
Area (e.g. "mg/h/cm2") for surface area-specific rates. If left NULL, the default of "mgO2/h" is
used, or "mgO2/h/kg" or "mgO2/h/m2" if a mass or area respectively has been entered.
Note, some oxygen input or output units require temperature (t) and salinity (S) to perform con-
versions. For freshwater experiments, salinity should be entered as zero (i.e. S = 0).

https://github.com/nicholascarey/respfun#eff_vol

30 convert_rate

Strictly speaking, the atmospheric pressure (P) should also be entered. If not, the default value
of 1.013253 bar (standard pressure at sea level) is used. In most locations which have a normal
range (outside extreme weather events) of around 20 millibars, any variability in pressure will
have a relatively minor effect on dissolved oxygen, and even less on calculated rates. However,
we would encourage users to enter the actual value if they know it, or use historical weather data
to find out what it was on the day. See unit_args() for details.
The function uses an internal database and a fuzzy string matching algorithm to accept vari-
ous unit formatting styles. For example, "mg/l", "mg/L", "mgL-1", "mg l-1", "mg.l-1" are all
parsed the same. See unit_args() for details of accepted units and their formatting. See also
convert_val() for simple conversion between non-oxygen units.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first converted rate. Others can be printed by
passing the pos input. e.g. print(x,pos = 2)

• summary(): prints a condensed version of the output $summary table of converted rates and
metadata. Specific rows can be specified with the pos input. e.g. summary(x,pos = 1:5).
This can be exported as a separate data frame by passing export = TRUE. This will be the full
summary table, not the one printed to the console, including all rate regression parameters,
and data locations, adjustments if applied, units, and more.

• mean(): calculates the mean of all converted rates, or those specified by the pos input. e.g.
mean(x,pos = 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class convert_rate containing the $rate.input, and converted rate(s)
in $rate.output in the $output.unit, as well as inputs and summary elements. Note, $rate.abs is
the absolute rate in the output unit minus the mass- or area-specific component. The $summary
table element contains all rate regression parameters and data locations (depending on what class
of object was entered), adjustments (if applied), units, and more.

Examples

Convert a single numeric rate to an absolute rate
convert_rate(0.09, oxy.unit = 'mg/l', time.unit = 's',

output.unit = 'mg/min', volume = 1.2)

Convert a single numeric rate to a mass-specific rate
convert_rate(0.09, oxy.unit = 'mg/l', time.unit = 's',

output.unit = 'mg/min/kg', volume = 1.2, mass = 0.5)

Convert a single numeric rate to an area-specific rate
convert_rate(0.09, oxy.unit = 'mg/l', time.unit = 's',

output.unit = 'mg/min/cm2', volume = 1.2, area = 0.0002)

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

convert_rate.ft 31

Convert a single rate derived via calc_rate to mass-specific
x <- calc_rate(sardine.rd, from = 200, to = 1800, by = "time")
convert_rate(x, oxy.unit = '%Air', time.unit = 's',

output.unit = 'mg/h/g', volume = 12.3, mass = 0.05,
S =35, t = 15, P = 1.013)

Convert multiple rates derived via auto_rate to area-specific
x <- auto_rate(sardine.rd)
rates <- convert_rate(x, oxy.unit = '%Air', time.unit = 's',

output.unit = 'mg/h/cm2', volume = 12.3, area = 0.00005,
S =35, t = 15, P = 1.013)

summary(rates)

convert_rate.ft Convert a unitless oxygen rate value from flowthrough respirometry to
absolute, mass-specific or area-specific rates

Description

convert_rate.ft converts a unitless rate derived from calc_rate.ft() or adjust_rate.ft()
into an absolute rate (i.e. whole specimen or whole chamber), mass-specific rate (i.e. normalised
by specimen mass), or area-specific rate (i.e. normalised by specimen surface area) in any common
unit. These should be rates calculated as an oxygen delta (inflow minus outflow oxygen) multiplied
by the flowrate.

Usage

convert_rate.ft(
x,
oxy.unit = NULL,
flowrate.unit = NULL,
output.unit = NULL,
mass = NULL,
area = NULL,
S = NULL,
t = NULL,
P = 1.013253

)

Arguments

x numeric value or vector, or object of class calc_rate.ft() or adjust_rate.ft().
Contains the rate(s) to be converted.

oxy.unit string. The dissolved oxygen units of the original raw data used to determine
the rate in x.

flowrate.unit string. The units of the flowrate through the respirometer. See Details.

output.unit string. The output unit to convert the input rate to. Should be in the correct
order: "Oxygen/Time" or "Oxygen/Time/Mass" or "Oxygen/Time/Area".

32 convert_rate.ft

mass numeric. Mass/weight in kg. This is the mass of the specimen if you wish to
calculate mass-specific rates.

area numeric. Surface area in m^2. This is the surface area of the specimen if you
wish to calculate surface area-specific rates.

S numeric. Salinity (ppt). Defaults to NULL. Used in conversion of some oxygen
units. Fresh water should be entered as S = 0.

t numeric. Temperature(°C). Defaults to NULL. Used in conversion of some oxy-
gen units.

P numeric. Pressure (bar). Used in conversion of some oxygen units. Defaults to
a standard value of 1.013253 bar.

Details

By default, convert_rate.ft converts the $rate element from calc_rate.ft objects, or the $rate.adjusted
element from adjust_rate.ft objects if these are entered as the x input. Alternatively, a numeric
value or vector of rates can be input as x.

Units:
The oxy.unit of the original raw data used to calculated the rate is required. Concentration
units should use only SI units (L or kg) for the denominator, e.g. "mg/L", "mmol/kg". Percentage
saturation of air or oxygen is accepted, as are oxygen pressure units. See unit_args() for details.
An output.unit is also required. If left NULL, The default of "mgO2/h" is used, or "mgO2/h/kg"
or "mgO2/h/m2" if a mass or area respectively has been entered. The output.unit must be in
the sequence Oxygen-Time (e.g. "mg/h") for absolute rates, Oxygen-Time-Mass (e.g. "mg/h/kg")
for mass-specific rates, and Oxygen-Time-Area (e.g. "mg/h/cm2") for surface area-specific rates.
Note, some oxygen input or output units require temperature (t) and salinity (S) to perform con-
versions. For freshwater experiments, salinity should be entered as zero (i.e. S = 0).
Strictly speaking the atmospheric pressure (P) should also be supplied. If not, the default value
of 1.013253 bar (standard pressure at sea level) is used. In most locations which have a normal
range (outside extreme weather events) of around 20 millibars, any variability in pressure will
have a relatively minor effect on dissolved oxygen, and even less on calculated rates. However,
we would encourage users to enter the actual value if they know it, or use historical weather data
to find out what it was on the day. See unit_args() for details.
The flowrate.unit is required and should be the units of the flowrate used in calc_rate.ft
to calculate the rate, and should be in the form of volume (L, ml, or ul) per unit time (s,m,h,d), for
example in "L/s". Note, the volume component does NOT represent the volume of the respirom-
eter, and the time component does NOT represent the units or recording interval of the original
raw data.
The function uses an internal database and a fuzzy string matching algorithm to accept vari-
ous unit formatting styles. For example, "mg/l", "mg/L", "mgL-1", "mg l-1", "mg.l-1" are all
parsed the same. See unit_args() for details of accepted units and their formatting. See also
convert_val() for simple conversion between non-oxygen units.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print(), summary(), and mean().

• print(): prints a single result, by default the first converted rate. Others can be printed by
passing the pos input. e.g. print(x,pos = 2)

convert_rate.ft 33

• summary(): prints a condensed version of the output $summary table of converted rates
and metadata. Specific rows can be specified with the pos input. e.g. summary(x,pos =
1:5). This can be exported as a separate data frame by passing export = TRUE. This will
be the full summary table, not the one printed to the console, including all rate parameters,
data locations, adjustments if applied, units, and more. Note, the summary table contains
linear regression coefficients alongside other metadata. These should not be confused with
those in other functions such as calc_rate where slopes represent rates and coefficients
such as a high r-squared are important. Here, slope represents the stability of the data region,
in that the closer the slope is to zero, the less the delta oxygen values in that region vary,
which is an indication of a region of stable rates. They are included to enable possible future
functionality where stable regions may be automatically identified, and should generally be
ignored. However, advanced users can use regular R syntax to explore and subset the results
using these if they wish.

• mean(): calculates the mean of all converted rates, or those specified by the pos input. e.g.
mean(x,pos = 1:5) The mean can be exported as a separate value by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object containing the $rate.input, and converted rate(s) in $rate.output in the $out-
put.unit, as well as inputs and summary elements. Note, $rate.abs is the absolute rate in the output
unit minus the mass- or area-specific component. The $summary table element contains all rate
parameters and data locations (depending on what class of object was entered), adjustments (if
applied), units, and more.

Examples

Convert a single numeric rate to an absolute rate
convert_rate.ft(-0.09, oxy.unit = 'mg/l', flowrate.unit = 'L/s',

output.unit = 'mg/min')

Convert a single numeric rate to a mass-specific rate
convert_rate.ft(-0.09, oxy.unit = 'mg/l', flowrate.unit = 'L/s',

output.unit = 'mg/min/kg', mass = 0.5)

Convert a single numeric rate to an area-specific rate
convert_rate.ft(-0.09, oxy.unit = 'mg/l', flowrate.unit = 'L/s',

output.unit = 'mg/min/cm2', area = 0.0002)

Full object-oriented workflow
Inspect, calculate rate, adjust rate, and convert
to a final mass-specific rate
inspect.ft(flowthrough_mult.rd,

time = 1,
out.oxy = 2,
in.oxy = 6) %>%

calc_rate.ft(flowrate = 0.1,
from = 30,

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

34 convert_val

to = 60,
by = "time") %>%

adjust_rate.ft(by = -0.032) %>%
convert_rate.ft(oxy.unit = '%Air',

flowrate.unit = 'L/min',
output.unit = 'mg/h/g',
mass = 0.05,
S =35, t = 15, P = 1.013)

convert_val Convert values of temperature, volume, mass, area, and atmospheric
pressure to different units

Description

This is a basic function that converts values of temperature, volume, mass, area, and atmospheric
pressure to different units. This can be useful in convert_DO(), convert_rate(), and convert_rate.ft()
where some inputs must be in specific units (e.g. temperature in °C, atmospheric pressure in bar,
area in m2). See Examples.

Usage

convert_val(x, from = NULL, to = NULL)

Arguments

x numeric value or vector. Values to be converted to a different unit.

from string. Unit of the original values.

to string. Unit to be converted to. These defaults are applied if left NULL: volume
"L", temperature "C", mass "kg", area "m2", pressure "bar".

Details

Note the type of unit does not need to be specified. The function will automatically recognise it
using the from unit.

If the 'to' input is left NULL, the following defaults are applied depending on the unit type of the
from input:

• volume: "L"

• temperature: "C"

• mass: "kg"

• area: "m2"

• pressure: "bar"

A fuzzy string matching algorithm is used to accept different unit formatting styles. For example,
"msq" "m2", "M2", "sqm" are all parsed as metres squared of area.

convert_val 35

Accepted Units:
Temperature:

• "C", "K", "F"

Pressure:

• "kPa", "hPa", "Pa", "ubar", "mbar", "bar", "Torr", "atm" (note, this is standard atmo-
spheres).

Volume:

• "uL", "mL", "L"

Mass:

• "ug", "mg", "g", "kg"

Area:

• "mm2", "cm2", "m2", "km2"

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a numeric vector of converted values.

Examples

Convert volume
convert_val(10, "ml", "L")
convert_val(10:15, "ml", "L")

Convert temperature
convert_val(-273.15, "C", "K")
convert_val(-40, "C", "F")
convert_val(c(2,4,6,8), "C", "F")

Convert pressure
convert_val(1, "atm", "bar")
convert_val(1010, "hpa", "bar")
convert_val(735, "torr", "kpa")

Convert area
convert_val(100, "cm2", "m2")
convert_val(10000, "mm2", "cm2")

Convert mass
convert_val(200, "g", "kg")
convert_val(10000, "ug", "mg")

Use directly in a respR function which requires inputs to be
in a specific unit. For example, in convert_rate() pressure
must be in 'bar' and respirometer volume in 'L'.

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

36 flowthrough.rd

Here, we know chamber volume is 200 ml, and pressure measured in mbar.
x <- suppressWarnings(inspect(urchins.rd, 1, 2))

rate <- calc_rate(x, from = 20, to = 30)

convert_rate(rate,
oxy.unit = "ml/l",
time.unit = "min",
output.unit = "mg/h",
volume = convert_val(200, "ml", "L"),
S = 35,
t = 15,
P = convert_val(1010, "mbar", "bar"))

Note, the default 'to' units are set to those respR requires in
these functions ('L' and 'bar' here), so do not necessarily need
to be specified:
convert_rate(rate,

oxy.unit = "ml/l",
time.unit = "min",
output.unit = "mg/h",
volume = convert_val(200, "ml"),
S = 35,
t = 15,
P = convert_val(1010, "mbar"))

flowthrough.rd Flowthrough respirometry data on the chiton, Mopalia lignosa

Description

A single experiment on the chiton species Mopalia lignosa in a custom-built flowthrough respirom-
etry system. Conducted at University of British Columbia, Vancouver, BC, Canada.

Usage

flowthrough.rd

Format

A data frame object consisting of 935 rows (approx 16 mins of data),and 4 columns: time, oxygen
inflow and outflow concentrations, and oxygen delta (the outflow minus inflow concentrations).

Details

• Dissolved oxygen units: mg/L

• Time units: seconds

• Flow rate (mL/min): 2.34

• Inflow oxygen concentration (calculated assuming 100% air saturated, mg/L): 8.919

flowthrough_mult.rd 37

• Specimen ash-free dry mass (kg): 0.000070

• Temperature (°C): t = 12

• Salinity: S = 30

• Atm. Pressure (bar): P = 1.013

Author(s)

Nicholas Carey

flowthrough_mult.rd Multi-column flowthrough respirometry data

Description

A semi-simulated dataset for testing and demonstrating flowthrough respirometry analyses. Con-
tains one column of numeric time data (col 1 in mins), four columns of outflow oxygen concentra-
tions (cols 2:5), four columns of inflow oxygen concentrations (cols 6:9), and four columns of delta
oxygen concentrations (cols 10:13, which is simply the numeric difference between paired columns
of outflow and inflow). There is also a column of inflow oxygen concentrations as recorded from a
shared header tank (col 14, $oxy.header) supplying all chambers, to use as an alternative to the indi-
vidual inflow oxygen recordings. Lastly, there is a column of temperature data (col 15, $temperature
in °C).

Usage

flowthrough_mult.rd

Format

A data frame object consisting of 3740 rows (approx 62 mins of data),and 15 columns: time (col 1),
oxygen outflow concentrations (cols 2,3,4,5), inflow concentrations (cols 6,7,8,9 each paired with
the respective outflow column, the fourth being a control), delta oxygen values (cols 10,11,12,13 or
difference between outflow and inflow concentrations), inflow concentrations recorded in a shared
header tank (col 14), and temperature (col 15).

Details

Outflow (2:5) and inflow (6:9) columns are paired, with the first three containing specimens, and
the fourth an empty control respirometer, or "blank" experiment (oxy.out.blank, oxy.in.blank) to
determine background respiration.

The third paired dataset (col 4 and col 8 pair) has a period of higher rates at around the 40 minute
timepoint, where the specimen increases its activity then slowly recovers to routine respiration
levels.

• Dissolved oxygen units: %Air

• Time units: mins

38 flowthrough_sim.rd

• Flow rate (L/min): 0.1

• Specimen masses: (kg): 0.013, 0.015, 0.020

• Mean temperature (°C): t = 18

• Salinity: S = 0, i.e. freshwater

• Atmospheric pressure (bar): P = 1.013

Author(s)

Nicholas Carey

flowthrough_sim.rd Flowthrough respirometry data with increasing background rate

Description

A simulated dataset for testing and demonstrating flowthrough respirometry analyses and back-
ground adjustment when the background respiration rate increases over the course of the experi-
ment. Contains one column of numeric time data ($num.time), one column of specimen outflow
oxygen concentrations ($oxy.out.spec), one column of control or "blank" chamber outflow oxygen
concentrations ($oxy.out.blank), and one column of inflow oxygen concentrations as recorded from
a shared header tank ($oxy.header) supplying both chambers.

Usage

flowthrough_sim.rd

Format

A data frame object consisting of 3740 rows (approx 62 mins of data),and 4 columns: time (col 1),
specimen oxygen outflow concentrations (col 2), control/blank chamber oxygen outflow concentra-
tions (col 3), and inflow concentrations recorded from a shared header tank (col 4).

Details

• Dissolved oxygen units: mg/L

• Time units: seconds

Author(s)

Nicholas Carey

format_time 39

format_time Parse date-time data to numeric time for use in respR functions

Description

A function to parse class POSIX.ct or text strings of date-time data to numeric time for use in respR
functions.

Usage

format_time(x, time = 1, format = "ymdHMS", start = 1)

Arguments

x vector or data frame containing strings or class POSIX.ct date-time data to be
converted to numeric.

time numeric value or vector. Specifies column(s) containing date-time data. Default
is 1.

format string. Code describing structure of date-time data. See Details.
start numeric. At what time (in seconds) should the formatted time data start? Default

is 1.

Details

Regardless of input, all data are parsed to numeric time data in seconds duration from the first entry
starting at 1. If you want the times to start at a different time, a start value can be specified, in
which case the series starts at that number (in seconds) and all subsequent times are shifted forward
by the same amount.

Input:
Input can be a vector, or data frame. If a data frame, the column(s) of the date-time data are
specified using the time input. By default the first column is assumed to contain the date-time
data (i.e. time = 1).
If the date-time data is split over several columns (e.g. date in one column, time in another),
multiple columns can be specified (e.g. time = c(1,2)). In this case, the format setting should
reflect the correct order as entered in time.

Time only data:
Time-only data, that is times which lack an associated date, can also be parsed. Normally, parsing
time-only data will cause problems when the times cross midnight (i.e. 00:00:00). However, the
function attempts to identify when this occurs and parse the data correctly.

Formatting:
See the lubridate package for more detail on acceptable formatting.
Date-time data can be unspaced or separated by any combination of spaces, forward slashes, hy-
phens, dots, commas, colons, semicolons, or underscores. E.g. all these are parsed as the same
date-time: "2010-02-28 13:10:23", "20100228131023", "2010,02/28 13.10;23", "2010 02 28 13_10-
23".

40 format_time

• Times can be in 24H or 12H with AM/PM
E.g. "2010-02-28 13:10:23" or "2010-02-28 1:10:23 PM"

• Times without initial zero are parsed as 24H time
E.g. "1:10:23" is same as "1:10:23 AM" or "01:10:23"

• AM/PM take precedence over 24H formatting for 01-12h
E.g. "1:10:23 PM" and "01:10:23 PM" are both same as "13:10:23"

• However, 24H formatting for 13-24h takes precedence over AM/PM
E.g. "13:10:23 AM" is identified as "1:10:23 PM" or "13:10:23"

Syntax of ’format’ input:
Specify the order of year, month, day, and time in your date-time input.
d - Day of the month as decimal number (01–31 or 1–31).
m - Month of the year as decimal number (01–12 or 1–12).
y - Year (2010, 2001, 1989).
H - Hour as decimal number (00–24 or 0–24 or 00-12 (see p)).
M - Minute as decimal number (00–59 or 0–59).
S - Second as decimal number (00–59 or 0–59).
p - AM/PM indicator for 12-h date-time format (e.g. "01/12/2020 1:30:44 PM " would be
"dmyHMSp").
Specify the order using the format input, using separators or not (optional): "dmyHMS"; "dmy_HMS"
and "d m y H M S" are all the same. See Examples.
Single experimental datasets should never span different time zones, so if a time zone is present
it is ignored for the purposes of calculating numeric times.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output: If the input is a vector, output is a vector of equal length containing the numeric time data.
For data frame inputs, an identical data frame is returned, with a new column named time_num
added as the final column.

See Also

lubridate

Examples

Convert year-month-day hour-min-sec
x <- c("09-02-03 01:11:11", "09-02-03 02:11:11","09-02-03 02:25:11")
format_time(x)

Convert day-month-year hour-min, and use a separator in the format
x <- c("03-02-09 01:11", "03-02-09 02:11","03-02-09 02:25")
format_time(x, format = "dmy_HM")

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

import_file 41

Convert when AM/PM is present
x <- c("09-02-03 11:11:11 AM", "09-02-03 12:11:11 PM","09-02-03 01:25:11 PM")
This is WRONG - the AM/PM indicator is missing
format_time(x, format = "dmyHMS")
This is correct
format_time(x, format = "dmyHMSp")

Convert dataframe with year-month-day hour-min-sec (ymdHMS default)
x <- data.frame(

x = c("09-02-03 01:11:11", "09-02-03 02:11:11","09-02-03 02:25:11"),
y = c(23, 34, 45))

format_time(x, time = 1)

Convert dataframe with time in a different column and non-default format
x <- data.frame(

x = c(23, 34, 45),
y = c("09-02-2018 11:11:11 AM", "09-02-2018 12:11:11 PM","09-02-2018 01:25:11 PM"),
z = c(56, 67, 78))

format_time(x, time = 2, format = "dmyHMSp")

Convert dataframe with separate date and time columns, and times crossing midnight
x <- data.frame(

w = c("09-02-18", "09-02-18","10-02-18"),
x = c("22:11:11", "23:11:11","00:25:11"),
y = c(23, 34, 45),
z = c(56, 67, 78))

Crosses midnight, but parses correctly even without dates
format_time(x, time = 2, format = "HMS")
Include dates to double check
format_time(x, time = 1:2, format = "dmyHMS")
Input same as different column order & appropriate format order
format_time(x, time = 2:1, format = "HMSdmy")

Convert a data frame with date and time split over multiple columns
x <- data.frame(

u = c("09", "09","10"),
v = c("02", "02","02"),
w = c("2018", "2018","2018"),
x = c("22:11:11", "23:11:11","00:25:11"),
y = c(23, 34, 45),
z = c(56, 67, 78))

format_time(x, time = 1:4, format = "dmyHMS")

import_file Import respirometry system raw data files

Description

Automatically import data from different respirometry hardware and software systems. The aim
is to work with most commercial oxygen sensors available in the market with minimal input from

42 import_file

the user. The function extracts data columns from the file, removes redundant rows of metadata,
and generally cleans up column names (e.g. removes whitespace and characters which cause text
encoding issues) to make the data easier to work with. Files should be sensor system raw output
files where possible; files opened and re-saved in a different format will likely fail to import.

Usage

import_file(path, export = FALSE)

Arguments

path string. Path to file.

export logical. If TRUE, exports the data as a csv to the same directory, as determined
by the path parameter.

Details

Note that use of this function to import data is optional. respR only requires data be put into a
simple structure for further analyses, which is paired values of time and oxygen amount in any
common units in a data.frame. If you are comfortable importing data into R via functions such as
read.csv() you may find those more reliable and customisable.

Currently tested and working for:

• Firesting

• Pyro (another name for Firesting)

• PreSens OXY10

• PreSens OXY4

• PreSens (OxyView generic, including multiplate systems)

• PreSens/Loligo 24-Well Multiplate System (output Excel files)

• MiniDOT

• Loligo AutoResp (’_raw’ files output, not metadata files)

• Loligo Witrox (same as AutoResp, without metadata)

• Vernier (raw qmbl, csv, or txt, (gmbl not yet supported))

• NeoFox

• Qbox Aqua

Files with European numeric formatting (i.e. commas instead of points to denote decimals) are
supported, and will be converted to point decimals on import. This is new functionality, so please
provide feedback for any files for which this might fail.

We are always looking for sample files to improve the function. Please send them to us via email,
or via a Github issue.

While the devices listed above are supported, the import functionality is experimental due to limited
access to sample files. This should improve over time as users provide feedback and samples. Users
should however be aware we have not been able to test very variation of file formats, carefully check
the imported data, and be prepared to import data by other functions such as read.csv().

mailto:nicholascarey@gmail.com
https://github.com/januarharianto/respR/issues

inspect 43

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

A data.frame object of all columned data

Examples

Not run:
Import a file
import_file("path/to/file)

Import a file and export it to same directory as a csv
import_file("path/to/file, export = TRUE)

End(Not run)

inspect Explore and visualise respirometry data and check for common errors

Description

inspect() is a data exploration and preparation function that visualises respirometry data and
checks it for errors that may affect the use of further functions in respR. It also subsets specified
columns into a new list object that can be used in subsequent functions, reducing the need for
additional inputs. Note, use of inspect to prepare data for the subsequent functions is optional.
Functions in respR can accept regular R data objects including data frames, data tables, tibbles,
vectors, etc. It is a quality control and exploratory step to help users view and prepare their data
prior to analysis.

Usage

inspect(
x,
time = NULL,
oxygen = NULL,
width = 0.1,
plot = TRUE,
add.data = NULL,
...

)

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

44 inspect

Arguments

x data.frame. Any object of class data.frame (incl. data.table, tibble, etc.).

time integer. Defaults to 1. Specifies the column number of the Time data.

oxygen integer or vector of integers. Defaults to 2. Specifies the column number(s) of
the Oxygen data.

width numeric, 0.01 to 1. Defaults to 0.1. Width used in the rolling regression plot as
proportion of total length of data.

plot logical. Defaults to TRUE. Plots the data. If time and single oxygen columns
selected, plots timeseries data, plus plot of rolling rate. If multiple oxygen
columns, plots all timeseries data only.

add.data integer. Defaults to NULL. Specifies the column number of an optional additional
data source that will be plotted in blue alongside the full oxygen timeseries.

... Allows additional plotting controls to be passed, such as legend = FALSE, quiet
= TRUE, rate.rev = FALSE and pos. A different width can also be passed in
plot() commands on output objects.

Details

Given an input data frame, x, the function scans the time and oxygen columns. If these are left
NULL, by default it is assumed column 1 is time data, and column 2 is oxygen data.

Check for numeric data:
respR requires data be in the form of paired values of numeric time and oxygen. All columns
are checked that they contain numeric data before any other checks are performed. If any of the
inspected columns do not contain numeric data the remaining checks for that column are skipped,
and the function exits returning NULL, printing the summary of the checks. No plot is produced.
Only when all inspected columns pass this numeric check can the resulting output object be saved
and passed to other respR functions.

Other checks:
The time column is checked for missing (NA/NaN) values, infinite values both positive and neg-
ative (Inf/-Inf), that values are sequential, that there are no duplicate times, and that it is nu-
merically evenly-spaced. Oxygen columns are checked for missing (NA/NaN) and infinite values
(Inf/-Inf). See Failed Checks section for what it means for analyses if these checks result in
warnings. If the output is assigned, the specified columns are saved to a list object for use in
later functions such as calc_rate() and auto_rate(). A plot is also produced.

Plot:
A plot of the data is produced (unless plot = FALSE), of the data timeseries, plus a rolling regres-
sion plot. This plot shows the rate of change in oxygen across a rolling window specified using
the width operator (default is width = 0.1, or 10% of the entire dataset). This plot provides a
quick visual inspection of how the rate varies over the course of the experiment. Regions of stable
and consistent rates can be identified on this plot as flat or level areas. This plot is for exploratory
purposes only; later functions allow rate to be calculated over specific regions. Each rate value is
plotted against the centre of the time window used to calculate it.
Note: Since respR is primarily used to examine oxygen consumption, the oxygen rate plot is
by default plotted on a reverse y-axis. In respR oxygen uptake rates are negative since they

inspect 45

represent a negative slope of oxygen against time. In these plots the axis is reversed so that higher
uptake rates (i.e. more negative) will be higher on these plots. If you are interested instead in
oxygen production rates, which are positive, the rate.rev = FALSE input can be passed in either
the inspect call, or when using plot() on the output object. In this case, the rate values will be
plotted numerically, and higher oxygen production rates will be higher on the plot.

Plot an additional data source:
Using the add.data input an additional data source, for example temperature, can be plotted
alongside the oxygen timeseries. This input should be an integer indicating a column in the input
x data frame sharing the same time data. None of the data checks are performed on this column;
it is simply to give a basic visual aid in the plot to, for example, help decide if regions of the data
should be used or not used because this parameter was variable. It is saved in the output as a
vector under $add.data. It is plotted in blue on a separate y-axis on the main timeseries plot. It is
not plotted if multiple oxygen columns are inspected. See examples.

Additional plotting options:
A different width value can be passed to see how it affects estimation of the rolling rate. If axis
labels obscure parts of the plot they can be suppressed using legend = FALSE. Suppress console
output messages with quiet = TRUE. If multiple columns have been inspected, the pos input can
be used to examine each time~oxygen dataset. If axis labels (particularly y-axis) are difficult to
read, las = 2 can be passed to make axis labels horizontal, and oma (outer margins, default oma =
c(0.4,1,1.5,0.4)) or mai (inner margins, default mai = c(0.3,0.15,0.35,0.15)) can be used
to adjust plot margins. See examples.

Multiple Columns of Oxygen Data:
For a quick overview of larger datasets, multiple oxygen columns can be inspected for errors and
plotted by using the oxygen input to select multiple columns. These must share the same time
column. In this case, data checks are performed, with a plot of each oxygen time series, but no
rolling rate plot is produced. All data are plotted on the same axis range of both time and oxygen
(total range of data). This is chiefly exploratory functionality to allow for a quick overview of a
dataset, and it should be noted that while the output inspect object will contain all columns in its
$dataframe element, subsequent functions in respR (calc_rate, auto_rate, etc.) will by default
only use the first two columns (time, and the first specified oxygen column). To analyse multiple
columns and determine rates, best practice is to inspect and assign each time-oxygen column pair
as separate inspect objects. See Examples.

Flowthrough Respirometry Data:
For flowthrough respirometry data, see the specialised inspect.ft() function.

Failed Checks:
The most important data check in inspect is that all data columns are numeric. If any column fails
this check, the function skips the remaining checks for that column, the function exits returning
NULL, and no output object or plot is produced.
The other failed check that requires action is the check for infinite values (Inf/-Inf). Some
oxygen sensing systems add these in error when interference or data dropouts occur. Infinite
values will cause problems when it comes to calculating rates, so need to be removed. If found,
locations of these are printed and can be found in the output object under $locs. Note, these values
are not plotted, so special note should be taken of the warnings and console printout.

46 inspect

The remaining data checks in inspect are mainly exploratory and help diagnose and flag potential
issues with the data that might affect rate calculations. For instance, long experiments may have
had sensor dropouts the user is unaware of. Some might not be major issues. For instance, an
uneven time warning can result from using decimalised minutes, which is a completely valid time
metric, but happens to be numerically unevenly spaced. As an additional check, if uneven time is
found, the minimum and maximum intervals in the time data are in the console output, so a user
can see immediately if there are large gaps in the data.
If some of these checks produce warnings, it should generally not hinder analysis of the data.
respR has been coded to rely on linear regressions on exact data values, and not make assumptions
about data spacing or order. Therefore issues such as missing or NA/NaN values, duplicate or
non-sequential time values, or uneven time spacing should not cause any erroneous rate results, as
long as they do not occur over large regions of the data. inspect however outputs locations (row
numbers) of where these issues occur (located in the $locs element of the output), allowing users
to amend them before analysis. We would strongly recommend that to be completely confident in
any results from analysis of such data, and avoid obscure errors, these issues be addressed before
proceeding.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions plot(), print() and summary().

• plot(): plots the result.
• print(): prints a summary of the checks performed on the data. If issues are found, locations

(row numbers) are printed (up to first 20 occurrences).
• summary(): simple wrapper for print() function. See above.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class inspect, with a $dataframe containing the specified time and
oxygen columns, inputs, and metadata which can be passed to calc_rate() or auto_rate() to
determine rates. If there are failed checks or warnings, the row locations of the potentially prob-
lematic data can be found in $locs.

Examples

By default, assumes time is col 1 and oxygen col2:
inspect(sardine.rd)

Instead, specify time and oxygen columns
inspect(sardine.rd, time = 1, oxygen = 2)

Use add.data input to plot an additional data type
(this column is not checked)
inspect(sardine.rd, time = 1, oxygen = 2, add.data = 3)

Adjust the width of the rolling rate plot:
inspect(sardine.rd, 1, 2, width = 0.2)

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

inspect.ft 47

Inspect specific columns in multicolumn datasets:
inspect(urchins.rd, time = 1, oxygen = 4)

Inspect multiple columns for a quick overview
of a large dataset:
inspect(urchins.rd, time = 1, oxygen = c(11:19))

Inspect oxygen production data, use a width that gives
a better rolling rate, and use extra plotting options to
suppress legend, and ensure rates are plotted not reversed:
inspect(algae.rd, time = 1, oxygen = 2, width = 0.4,

legend = FALSE, rate.rev = FALSE)

Pass additional plotting inputs to override defaults and
allow better y-axis label visibility
inspect(sardine.rd, time = 1, oxygen = 2,

las = 1, mai = c(0.3, 0.35, 0.35, 0.15))

inspect.ft Explore and visualise flowthrough respirometry data and check for er-
rors

Description

inspect.ft is a data exploration and preparation function that visualises flowthrough respirometry
data, checks it for common issues, and prepares it for use in later functions in respR, such as
calc_rate.ft().

Usage

inspect.ft(
x,
time = NULL,
out.oxy = NULL,
in.oxy = NULL,
in.oxy.value = NULL,
delta.oxy = NULL,
plot = TRUE,
add.data = NULL,
...

)

Arguments

x data.frame containing columns of time and out.oxy or delta.oxy concen-
trations, and optionally in.oxy.

time integer. Defaults to 1. Specifies the column number of the time data.

48 inspect.ft

out.oxy integer(s). Defaults to NULL. Specifies the column number(s) of outflow oxygen
data.

in.oxy integer(s). Defaults to NULL. Specifies the column number(s) of inflow oxygen
data.

in.oxy.value numeric value. Defaults to NULL. If there is no continuous in.oxy data, this
specifies a fixed value of oxygen concentration for inflowing water in same units
as out.oxy, and is used with out.oxy to calculate a delta.oxy.

delta.oxy integer(s). Defaults to all non-time columns if no other inputs given. Speci-
fies the column number(s) of delta oxygen data, for when the user has already
calculated the difference between outflow and inflow oxygen (should be nega-
tive values for oxygen uptake). If this is used, out.oxy and in.oxy should be
NULL.

plot logical. Defaults to TRUE. Plots the data. See Details.

add.data integer. Defaults to NULL. Specifies the column number of an optional additional
data source that will be plotted in blue alongside the full oxygen timeseries.

... Allows additional plotting controls to be passed, such as legend = FALSE, quiet
= TRUE, rate.rev = FALSE and pos.

Details

inspect.ft is intended to be specific to flowthrough respirometry data. In flowthrough respirom-
etry (also known as ’open flow’ or ’continuous flow’ respirometry) rather than calculating a rate
from a changing oxygen concentration recording in a sealed chamber, instead the difference (i.e.
’oxygen delta’) between the inflowing and outflowing oxygen concentrations of a respirometer re-
ceiving water at a constant flow rate is used to calculate an oxygen consumption or production rate,
typically after it has reached a steady state. Therefore, in general, regions of stable oxygen delta
values (difference between outflow and inflow oxygen) are of interest. inspect.ft visualises and
prepares the data for use in calc_rate.ft(). By specifying data types in this function and saving
the output, they do not need to be specified in later functions.

Inputs:
inspect.ft requires at least two data inputs; a single column of numeric time data, with either a
column of paired out.oxy concentrations (i.e. the exhalent or ’downstream’ concentrations), or a
column of already calculated delta.oxy values, that is the difference between outflow and inflow
concentrations, or the outflow concentration corrected by a background recording from a ’blank’
or empty chamber.
out.oxy input option: If an out.oxy column has been specified, in order to calculate the oxygen
delta (and therefore a rate in calc_rate.ft()) there must also be an inflow oxygen concentra-
tion input (i.e. the inhalent or ’upstream’ concentration). This will generally be a column of
paired in.oxy concentrations, in which case the paired values of out.oxy and in.oxy are used
to calculate the oxygen delta.oxy, which is saved in the output and used to determine a rate in
calc_rate.ft(). Alternatively, if the inflow oxygen concentration is a known, generally unvary-
ing value (such as fully air-saturated water from a header tank) this can be entered as a single
value via in.oxy.value and this is used to calculate the delta.oxy.
delta.oxy input option: If delta oxygen values have already been calculated, these can be entered
via the delta.oxy input, and these are prepared and saved for rate calculations in calc_rate.ft.

inspect.ft 49

Given an input data frame x, the function scans the columns specified via the time, out.oxy,
in.oxy or delta.oxy inputs. If no columns are specified, by default the function assumes the
first column is time, and all others are delta.oxy oxygen data. However, best practice is to use
the inputs to specify particular columns.

Check for numeric data:
respR requires data be in the form of paired values of numeric time and oxygen. All columns
are checked that they contain numeric data before any other checks are performed. If any of the
inspected columns do not contain numeric data the remaining checks for that column are skipped,
and the function exits returning NULL, printing the summary of the checks. No plot is produced.
Only when all inspected columns pass this numeric check can the resulting output object be saved
and passed to other respR functions.

Other checks:
The time column is checked for missing (NA/NaN) values, infinite values both positive and neg-
ative (Inf/-Inf), that values are sequential, that there are no duplicate times, and that it is nu-
merically evenly-spaced. Oxygen columns are checked for missing (NA/NaN) and infinite values
(Inf/-Inf). See Failed Checks section for what it means for analyses if these checks result in
warnings. If the output is assigned, the specified columns are saved to a list object for use in
later functions such as calc_rate.ft(). A plot is also produced.

Plot:
If plot = TRUE, entered data is plotted against both time (bottom, blue axis) and row index (top,
red axis), depending on the inputs:

• a single out.oxy column with either a paired in.oxy column or in.oxy.value: a two panel
plot. The top plot is both outflow (green points) and inflow (turquoise points) oxygen. The
bottom plot is the oxygen delta (black points) between outflow and inflow oxygen, essentially
a unitless oxygen uptake or production rate.

• a single delta.oxy column: a one panel plot of oxygen delta values.
• multiple out.oxy or delta.oxy columns: a grid plot of all delta.oxy data (either as entered

or calculated from out.oxy and in.oxy). Specific delta plots can be examined individually
by using the pos input (e.g. plot(x,pos = 2)). Y-axes are not equal.

• unspecified columns: all columns are plotted assuming time is in column 1, and all others
are oxygen delta.oxy data. Y-axes are not equal.

In delta plots, that is those plotting delta.oxy values, either directly entered or calculated, con-
sistent oxygen uptake or production rates will be represented by flat or level regions. The width
input may help with selecting regions from which to extract rates, and can be passed in the main
function call or using plot() on the output object. This smooths delta oxygen values by calculat-
ing a rolling mean across the data. See Additional plotting options below.
Note: Since respR is primarily used to examine oxygen consumption, the delta oxygen and rate
plots are by default plotted on a reverse y-axis. In respR oxygen uptake rates are negative since
they represent a negative slope of oxygen against time. In these plots the axis is reversed so
that higher uptake rates (i.e. more negative) will be higher on these plots. If you are interested
instead in oxygen production rates, which are positive, the rate.rev = FALSE input can be passed
in either the inspect.ft call, or when using plot() on the output object. In this case, the delta
and rate values will be plotted numerically, and higher oxygen production rates will be higher on
the plot.

50 inspect.ft

Plot an additional data source:
Using the add.data input an additional data source, for example temperature, can be plotted
alongside the oxygen timeseries. This input should be an integer indicating a column in the input
x data frame sharing the same time data. None of the data checks are performed on this column;
it is simply to give a basic visual aid in the plot to, for example, help decide if regions of the data
should be used or not used because this parameter was variable. It is saved in the output as a
vector under $add.data. It is plotted in blue on a separate y-axis on the main timeseries plot. It is
not plotted if multiple oxygen columns are inspected. See examples.

Additional plotting options:
The width input may help with selecting regions from which to extract rates. This smooths delta
oxygen values by calculating a rolling mean across the data, and should be a value between 0 and
1 representing a proportion of the total data width. If left as the default NULL no smoothing is
performed. This is a visual aid which only affects plotted values and does not alter output delta
oxygen values.
If the legend or labels obscure part of the plot, they can be suppressed via legend = FALSE
in either the inspect.ft call, or when using plot() on the output object. Suppress console
output messages with quiet = TRUE. If multiple columns have been inspected, the pos input
can be used to examine each out.oxy~in.oxy~del.oxy dataset. If axis labels (particularly y-
axis) are difficult to read, las = 2 can be passed to make axis labels horizontal. In addition,
oma (outer margins, default oma = c(0.4,1,1.5,0.4)), and mai (inner margins, default mai =
c(0.3,0.15,0.35,0.15)) can be used to adjust plot margins.

Multiple data columns:
For a quick overview of larger experiments, multiple columns of out.oxy, in.oxy and delta.oxy
can be inspected, but must share the same numeric time data column specified by the time input.
Note, multiple column inspection is chiefly intended to be exploratory functionality to provide a
quick overview of larger datasets. While the output will contain all data columns in $dataframe
and $data, subsequent functions such as calc_rate.ft() will use only the first delta.oxy col-
umn for calculating rates. Best practice is to inspect and assign each individual experiment or
column pair as separate inspect.ft objects. See Examples.
If multiple out.oxy columns are specified, in.oxy can be a single column (if for example all
chambers are supplied from the same header tank), in which case it is used to calculate an oxygen
delta for all out.oxy columns. A single in.oxy.value in the same units as out.oxy can also
be specified. There can also be multiple in.oxy columns, in which case it is assumed each
out.oxy column is paired with each in.oxy at the same position, and used to calculate the oxygen
delta.oxy. In this case, out.oxy and in.oxy must have equal numbers of columns.

Failed Checks:
The most important data check in inspect.ft is that all data columns are numeric. If any col-
umn fails this check, the function skips the remaining checks for that column, the function exits
returning NULL, and no output object or plot is produced.
The other failed check that requires action is the check for infinite values (Inf/-Inf). Some
oxygen sensing systems add these in error when interference or data dropouts occur. Infinite
values will cause problems when it comes to calculating rates, so need to be removed. If found,
locations of these are printed and can be found in the output object under $locs. Note, these values
are not plotted, so special note should be taken of the warnings and console printout.

inspect.ft 51

The remaining data checks in inspect.ft are mainly exploratory and help diagnose and flag po-
tential issues with the data that might affect rate calculations. For instance, long experiments may
have had sensor dropouts the user is unaware of. Some might not be major issues. For instance,
an uneven time warning can result from using decimalised minutes, which is a completely valid
time metric, but happens to be numerically unevenly spaced. As an additional check, if uneven
time is found, the minimum and maximum intervals in the time data are in the console output, so
a user can see immediately if there are large gaps in the data.
If some of these checks produce warnings, it should generally not hinder analysis of the data.
respR has been coded to rely on linear regressions on exact data values, and not make assumptions
about data spacing or order. Therefore issues such as missing or NA/NaN values, duplicate or
non-sequential time values, or uneven time spacing should not cause any erroneous results, as
long as they do not occur over large regions of the data. inspect.ft however outputs locations
(row numbers) of where these issues occur (located in the $locs element of the output), allowing
users to amend them before analysis. We would recommend that to be completely confident in
any results from analysis of such data, and avoid obscure errors, these issues be addressed before
proceeding.

Background control or "blank" experiments:
For experiments in which the specimen data is to be background corrected by a concurrently-run
control experiment, inspect.ft can be used by specifying the specimen experiment as out.oxy,
and the "blank" as the in.oxy input. In this way, any variations in oxygen in the specimen
data due to background microbial activity, or for any other reason such as fluctuations in inflow
oxygen, are accounted for in the delta oxygen calculations, and therefore in the rate calculated in
calc_rate.ft(). See the vignettes on the website for examples.
If the background recordings are experiments with their own outflow and inflow recordings,
which show a generally consistent oxygen delta due to microbial activity, this can be saved as
a separate inspect.ft object, a background rate calculated in calc_rate.ft(), and this used in
adjust_rate.ft() as the by input to perform background adjustments to specimen rates.
Note: All background calculations should be from experiments done at the same flow rate as the
specimen experiments to be corrected.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions plot(), print() and summary().

• plot(): plots the result.
• print(): prints a summary of the checks performed on the data. If issues are found, locations

(row numbers) are printed (up to first 20 occurrences).
• summary(): simple wrapper for print() function. See above.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class inspect.ft containing input parameters and data, data check
summaries, and metadata, which can be passed to calc_rate.ft() to determine rates. If there are
failed checks or warnings, the row locations of the potentially problematic data can be found in
$locs.

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

52 intermittent.rd

Examples

Inspect outflow and inflow oxygen data
x <- inspect.ft(flowthrough.rd, time = 1, out.oxy = 2,

in.oxy = 3)
print(x)
plot(x)

Inspect outflow oxygen data with inflow oxygen as a known value in
the same units
x <- inspect.ft(flowthrough.rd, time = 1, out.oxy = 2,

in.oxy.value = 8.90)

Inspect already calculated delta oxygen data
inspect.ft(flowthrough.rd, time = 1, delta.oxy = 4)

inspect multiple columns for a quick overview
inspect.ft(flowthrough_mult.rd, time = 1, delta.oxy = 10:12)

Inspect outflow and use a blank control chamber as background
correction
#
This experiment has increasing background respiration over time.
Inspecting outflow oxygen with inflow header tank concentrations
suggests specimen rates (bottom delta.oxy plot) are increasing.
inspect.ft(flowthrough_sim.rd, time = 1,

out.oxy = 2, in.oxy = 4)

However, inspecting with recordings from a concurrent blank
control accounts for this and shows specimen rates are level
when background is taken into account.
inspect.ft(flowthrough_sim.rd, time = 1,

out.oxy = 2, in.oxy = 3)

Inspect and plot an additional data type

intermittent.rd Respirometry data of the sea urchin, Heliocidaris Erythrogramma

Description

Multiple measurements of oxygen consumption in a single sea urchin, Heliocidaris erythrogramma,
obtained using intermittent flow respirometry. The experiment was conducted at the Sydney Insti-
tute of Marine Science in Sydney, Australia. There are a total of 3 replicates showing declining
oxygen, separated by flushes where new water was added showing increasing oxygen. Data was
collected using a Vernier Optical DO probe (ODO-BTA).

mean.adjust_rate 53

Usage

intermittent.rd

Format

A data frame object consisting of 2 columns (time and dissolved oxygen) and 4831 rows (approx
80 min of data).

Details

• Dissolved oxygen units: mg/L

• Time units: seconds

• Chamber volume (L): 2.379

• Specimen ash-free dry mass (kg): 0.006955

Author(s)

Nicholas Carey

mean.adjust_rate Average adjust_rate object rates

Description

Average adjust_rate object rates

Usage

S3 method for class 'adjust_rate'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x adjust_rate object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

54 mean.auto_rate

mean.adjust_rate.ft Average adjust_rate.ft rates

Description

Average adjust_rate.ft rates

Usage

S3 method for class 'adjust_rate.ft'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x adjust_rate.ft object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

mean.auto_rate Average auto_rate object rates

Description

Average auto_rate object rates

Usage

S3 method for class 'auto_rate'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x auto_rate object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

mean.calc_rate 55

mean.calc_rate Average calc_rate object rates

Description

Average calc_rate object rates

Usage

S3 method for class 'calc_rate'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x calc_rate object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

mean.calc_rate.bg Average calc_rate.bg object rates

Description

Average calc_rate.bg object rates

Usage

S3 method for class 'calc_rate.bg'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x calc_rate.bg object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

56 mean.convert_DO

mean.calc_rate.ft Average calc_rate.ft object rates

Description

Average calc_rate.ft object rates

Usage

S3 method for class 'calc_rate.ft'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x calc_rate.ft object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

mean.convert_DO Average convert_DO object values

Description

Average convert_DO object values

Usage

S3 method for class 'convert_DO'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x convert_DO object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

mean.convert_rate 57

mean.convert_rate Average convert_rate object rates

Description

Average convert_rate object rates

Usage

S3 method for class 'convert_rate'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x convert_rate object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

mean.convert_rate.ft Average convert_rate.ft object rates

Description

Average convert_rate.ft object rates

Usage

S3 method for class 'convert_rate.ft'
mean(x, pos = NULL, export = FALSE, ...)

Arguments

x convert_rate.ft object

pos integer(s). Which result(s) to average.

export logical. Export averaged values as single value.

... Pass additional inputs

Value

Print to console. No returned value.

58 mean.inspect.ft

mean.inspect Average inspect object rates

Description

Average inspect object rates

Usage

S3 method for class 'inspect'
mean(x, ...)

Arguments

x inspect object

... Pass additional inputs

Value

Print to console. No returned value.

mean.inspect.ft Average inspect.ft object rates

Description

Average inspect.ft object rates

Usage

S3 method for class 'inspect.ft'
mean(x, ...)

Arguments

x calc_rate.bg object

... Pass additional inputs

Value

Print to console. No returned value.

mean.oxy_crit 59

mean.oxy_crit Average oxy_crit object rates

Description

Average oxy_crit object rates

Usage

S3 method for class 'oxy_crit'
mean(x, ...)

Arguments

x oxy_crit object

... Pass additional inputs

Value

Print to console. No returned value.

oxy_crit Calculate critical oxygen values, such as PCrit

Description

A function to calculate critical oxygen values, the oxygen tension or concentration below which
an uptake rate transitions from independent to dependent on the oxygen supply, typically known as
PCrit.

Usage

oxy_crit(
x,
method = "bsr",
time = NULL,
oxygen = NULL,
rate = NULL,
width = 0.1,
parallel = FALSE,
thin = 5000,
plot = TRUE,
...

)

60 oxy_crit

Arguments

x object of class inspect or a data.frame containing either paired oxygen~time
values, or paired rate~oxygen values. See Details.

method string. Defaults to "bsr". Critical oxygen value analysis method. Either "bsr"
or "segmented". See Details.

time integer. Defaults to 1. Specifies column number of the time data.

oxygen integer. Defaults to 2. Specifies column number of the oxygen data.

rate integer. Defaults to NULL. Specifies column number of the rate data.

width numeric value between 0 and 1 representing proportion of the total data length.
Determines the width of the rolling regression used to determine the rolling rate
and the rolling mean of oxygen values the rate is paired with. Defaults to 0.1,
representing 10% of total rows.

parallel logical. Defaults to FALSE. Enables parallel processing for computationally
intensive analyses of large datasets.

thin integer. Defaults to 5000. Number of rows to subsample x data to before
running "bsr" analysis. No effect on datasets smaller than this value or with
"segmented" method. To perform no subsampling enter as NULL. See Details.

plot logical. Defaults to TRUE.

... Allows additional plotting controls to be passed, such as legend = FALSE, quiet
= TRUE, rate.rev = FALSE, and panel. See Plotting section.

Details

In earlier versions of respR, this function was known as pcrit or calc_pcrit. It was renamed to
avoid conflicts with functions of the same name in another package, and also because technically
the P in PCrit stands for the partial pressure of oxygen. Since the function returns the value in
the units of the data as entered, whether they are concentration or pressure units, this terminology
can be technically in error. Instead, for the purposes of the documentation we refer to this as the
Critical Oxygen Value, or "COV". If the units of oxygen are partial pressure units (e.g. kPa), this is
equivalent to PCrit, otherwise they should be reported with this in mind.

Methods:
The oxy_crit() function provides two methods (one of which outputs two results) to calculate
the COV. These are selected using the method input.

Broken Stick Regression: method = "bsr":
This is the default method, adapted from the “Broken-Stick” regression (BSR) approach, of Yea-
ger & Ultsch (1989), in which two segments of the data are iteratively fitted and the intersection
with the smallest sum of the residual sum of squares between the two linear models is the es-
timated COV. Two slightly different ways of reporting this breakpoint are detailed by Yeager
& Ultsch (1989); the intercept and midpoint. These are usually very close in value, and the
function returns both.
The thin input influences the BSR analysis. The method is very computationally intensive, so to
speed up analyses the thin input will subsample datasets longer than this input to this number or
rows before analysis. The default value of 5000 has in testing provided a good balance between
speed and results accuracy and repeatability. However, results may vary with different datasets,

oxy_crit 61

so users should experiment with varying the value. To perform no subsampling and use the
entire dataset enter thin = NULL. It has no effect on datasets shorter than the thin input.

Segmented Regression: method = "segmented":
The second method is a wrapper for the "Segmented" regression approach, available as part of
the segmented R package (Muggeo 2008), which estimates the COV by iteratively fitting two
intersecting models and selecting the value that minimises the “gap” between the fitted lines.

Inputs:
The data input x should be an inspect object or data.frame containing oxygen~time data, or a
data.frame containing rate~oxygen data.

Oxygen ~ Time data:
This is the typical input, where a timeseries of oxygen concentrations or partial pressures against
time has been recorded, generally down to a very low value of oxygen. A column of time and
a column of oxygen should be specified. The function defaults to time = 1 and oxygen = 2 if
no other inputs are entered. If an inspect object is entered as the x input, the data frame is
extracted automatically and column identifiers are not required since these were already entered
in inspect. Note, if multiple oxygen columns were entered in inspect only the first entered
one will be used in oxy_crit.
To calculate the COV, the function requires data in the form of oxygen uptake rate against
oxygen value. Therefore, the function performs a rolling regression on the oxygen~time data to
determine rates, and pairs these against a rolling mean of the oxygen data. The function then
performs the selected analysis method on these data. The width of the rolling regression and
rolling mean is determined by the width input. The default is 0.1, representing 10% of the
length of the data. This performs well in testing, however performance may vary with data that
has abrupt changes in rate, or is particularly noisy. Users should experiment with different width
values to see how it affects results, and report this with their results and analysis parameters.

Rate ~ Oxygen data:
Alternatively, if existing rolling oxygen uptake rates have been calculated, and have appropriate
paired oxygen concentration or partial pressure values, these can be entered with the rate and
oxygen inputs specifying the respective columns. In this case the function performs the selected
analysis method on these data directly without any processing. The width input in this case is
not relevant and is ignored.
This option can only be used with data frame x inputs. Note, other columns such as time data
may be present in the input, but are not required so need not be specified.

Plot:
A plot is produced (provided plot = TRUE) of the input data and results. The top panel is the
input data, either the oxygen~time timeseries, or the rate~oxygen series, depending on what was
entered in x. If the former, the critical oxygen value is indicated by a horizontal line, or two lines
in the case of the Broken-Stick analysis. Note, since the two BSR results are usually close in value
these may overlay each other.
The bottom plot is the rate~oxygen series upon which the analysis was conducted, either as input
or as calculated. Critical oxygen values are indicated by vertical lines, and regression fits upon
which the analysis was based by black dashed lines.
Note, that in respR oxygen uptake rates are negative since they represent a negative slope of
oxygen against time, therefore by default rates are plotted on a reverse y-axis so higher rates
appear higher on the plot. If analysing already calculated rates which are positive values this

62 oxy_crit

behaviour can be reversed by passing rate.rev = FALSE in either the main function call or when
calling plot() on the output object. There is no issue with using positive rate values; they will
give identical critical value results in the analysis.

Additional plotting options:
If the legend obscures parts of the plot they can be suppressed using legend = FALSE. Suppress
console output messages with quiet = TRUE. Each panel can be plotted on its own using panel
= 1 or panel = 2. If using already-calculated, positive rate values to identify critical oxygen
values, the y-axis of the rolling rate plot can be plotted not reversed by passing rate.rev =
FALSE These inputs can be passed in either the main oxy_crit call or when calling plot() on
the output object. If axis labels (particularly y-axis) are difficult to read, las = 2 can be passed
to make axis labels horizontal, and oma (outer margins, default oma = c(0.4,1,1.5,0.4)), and
mai (inner margins, default mai = c(0.3,0.15,0.35,0.15)) used to adjust plot margins.

S3 Generic Functions:
Saved output objects can be used in the generic S3 functions print() and summary().

• print(): prints the critical oxygen value for the particular method used.
• summary(): prints critical oxygen value, plus additional coefficients and metadata for the

particular method used. See Yeager & Ultsch (1989) and Muggeo (2008) for what these
represent. The summary can be exported as a separate data frame by passing export = TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output is a list object of class oxy_crit containing input parameters and data, various summary
data, metadata, and the primary output of interest $crit, which is the critical oxygen value in the
units of the oxygen data as entered. This can be converted to additional units using convert_DO().
Note, if the Broken-Stick analysis (method == "bsr") has been used, $crit will contain two results;
$crit.intercept and $crit.midpoint. For full explanation of the difference between these see Yeager
& Ultsch (1989), however they are generally very close in value.

References

Yeager DP, Ultsch GR (1989) Physiological regulation and conformation: A BASIC program
for the determination of critical points. Physiological Zoology 62:888–907. doi: 10.1086/phys-
zool.62.4.30157935

Muggeo V (2008) Segmented: an R package to fit regression models with broken-line relationships.
R News 8:20–25.

Examples

Run on oxygen~time data.frame with default inputs
oxy_crit(squid.rd)

Try a lower 'thin' input to speed up analysis
oxy_crit(squid.rd, thin = 1000)

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

plot.adjust_rate 63

Experiment with different 'width' input
Higher widths tend to oversmooth data
oxy_crit(squid.rd, width = 0.2)
Lower width in this case gives very similar result to default 0.1
oxy_crit(squid.rd, width = 0.05)

Run on oxygen~time data in 'inspect' object
insp <- inspect(squid.rd, time = 1, oxygen = 2)
oxy_crit(insp)

Run on already calculated rate~oxygen data
Calculate a rolling rate
rate <- auto_rate(squid.rd,

method = "rolling",
width = 0.1,
plot = FALSE)$rate

Calculate a rolling mean oxygen
oxy <- na.omit(roll::roll_mean(squid.rd[[2]],

width = 0.1 * nrow(squid.rd)))
Combine to data.frame
squid_rate_oxy <- data.frame(oxy, rate)
Perform COV analysis
oxy_crit(squid_rate_oxy, oxygen = 1, rate = 2)

plot.adjust_rate Plot adjust_rate objects

Description

Plot adjust_rate objects

Usage

S3 method for class 'adjust_rate'
plot(x, ...)

Arguments

x calc_rate.bg object

... Pass additional plotting parameters

Value

A plot. No returned value.

64 plot.auto_rate

plot.adjust_rate.ft Plot adjust_rate.ft objects

Description

Plot adjust_rate.ft objects

Usage

S3 method for class 'adjust_rate.ft'
plot(x, ...)

Arguments

x adjust_rate.ft object

... Pass additional plotting parameters

Value

A plot. No returned value.

plot.auto_rate Plot auto_rate objects

Description

Plot auto_rate objects

Usage

S3 method for class 'auto_rate'
plot(
x,
pos = 1,
panel = FALSE,
quiet = FALSE,
legend = TRUE,
rate.rev = TRUE,
...

)

plot.calc_rate 65

Arguments

x auto_rate object

pos integer. Which result to plot.

panel integer. Which panel to plot individually.

quiet logical. Suppress console output.

legend logical. Suppress labels and legends.

rate.rev logical. Control direction of y-axis in rolling rate plot.

... Pass additional plotting parameters

Value

A plot. No returned value.

plot.calc_rate Plot calc_rate objects

Description

Plot calc_rate objects

Usage

S3 method for class 'calc_rate'
plot(x, pos = 1, quiet = FALSE, panel = NULL, legend = TRUE, ...)

Arguments

x calc_rate.bg object

pos integer. Which result to plot.

quiet logical. Suppress console output.

panel integer. Which panel to plot individually.

legend logical. Suppress labels and legends.

... Pass additional plotting parameters

Value

A plot. No returned value.

66 plot.calc_rate.ft

plot.calc_rate.bg Plot calc_rate.bg objects

Description

Plot calc_rate.bg objects

Usage

S3 method for class 'calc_rate.bg'
plot(x, pos = NULL, quiet = FALSE, legend = TRUE, ...)

Arguments

x calc_rate.bg object

pos integer. Which result to plot.

quiet logical. Suppress console output.

legend logical. Suppress labels and legends.

... Pass additional plotting parameters

Value

A plot. No returned value.

plot.calc_rate.ft Plot calc_rate.ft objects

Description

Plot calc_rate.ft objects

Usage

S3 method for class 'calc_rate.ft'
plot(x, pos = NULL, quiet = FALSE, legend = TRUE, rate.rev = TRUE, ...)

Arguments

x calc_rate.bg object

pos integer. Which result to plot.

quiet logical. Suppress console output.

legend logical. Suppress labels and legends.

rate.rev logical. Control direction of y-axis in rolling rate plot.

... Pass additional plotting parameters

plot.convert_DO 67

Value

A plot. No returned value.

plot.convert_DO Plot convert_DO objects

Description

Plot convert_DO objects

Usage

S3 method for class 'convert_DO'
plot(x, ...)

Arguments

x convert_DO object

... Pass additional plotting parameters

Value

A plot. No returned value.

plot.convert_rate Plot convert_rate objects

Description

Plot convert_rate objects

Usage

S3 method for class 'convert_rate'
plot(x, ...)

Arguments

x convert_rate object

... Pass additional plotting parameters

Value

A plot. No returned value.

68 plot.inspect

plot.convert_rate.ft Plot convert_rate.ft objects

Description

Plot convert_rate.ft objects

Usage

S3 method for class 'convert_rate.ft'
plot(x, ...)

Arguments

x convert_rate.ft object

... Pass additional plotting parameters

Value

A plot. No returned value.

plot.inspect Plot inspect objects

Description

Plot inspect objects

Usage

S3 method for class 'inspect'
plot(
x,
width = NULL,
pos = NULL,
quiet = FALSE,
legend = TRUE,
rate.rev = TRUE,
...

)

plot.inspect.ft 69

Arguments

x inspect object

width numeric. Width of rolling regression to determine rates in rolling rate plot as
proportion of total data length (0 to 1)

pos integer. Which result to plot.

quiet logical. Suppress console output.

legend logical. Suppress labels and legends.

rate.rev logical. Control direction of y-axis in rolling rate plot.

... Pass additional plotting parameters

Value

A plot. No returned value.

plot.inspect.ft Plot inspect.ft objects

Description

Plot inspect.ft objects

Usage

S3 method for class 'inspect.ft'
plot(
x,
width = NULL,
pos = NULL,
quiet = FALSE,
legend = TRUE,
rate.rev = TRUE,
...

)

Arguments

x inspect.ft object

width numeric. Smoothing factor (rolling mean) for delta oxygen values as proportion
of total data length (0 to 1)

pos integer. Which result to plot.

quiet logical. Suppress console output.

legend logical. Suppress labels and legends.

rate.rev logical. Control direction of y-axis in delta oxygen plot.

... Pass additional plotting parameters

70 plot_ar

Value

A plot. No returned value.

plot.oxy_crit Plot oxy_crit objects

Description

Plot oxy_crit objects

Usage

S3 method for class 'oxy_crit'
plot(x, legend = TRUE, quiet = FALSE, panel = NULL, rate.rev = TRUE, ...)

Arguments

x oxy_crit object

legend logical. Suppress labels and legends.

quiet logical. Suppress console output.

panel integer. Which panel to plot individually.

rate.rev logical. Control direction of y-axis in rolling rate plot.

... Pass additional plotting parameters

Value

A plot. No returned value.

plot_ar Plot auto_rate summary tables

Description

Plots auto_rate summary table regressions in a way that visualises how they are positioned within
the data timeseries. If it is an auto_rate_subset object, it will plot the subset regressions using
the ranks of the original results, so you can compare the subset and original.

Usage

plot_ar(x, highlight = NULL, pos = NULL, legend = TRUE, ...)

print.adjust_rate 71

Arguments

x auto_rate or auto_rate_subset object

highlight integer. Which result in the summary table to highlight on the plots. Defaults to
1. If it is outside the range of the pos input it will be shown on the top plot, but
will not be visible on the bottom plot.

pos integer(s). What range of original summary table rows to plot in lower plot.
Defaults to all.

legend logical. Suppress plot legends.

... Allows additional plotting controls to be passed.

Value

A plot of the auto_rate object results

print.adjust_rate Print adjust_rate objects

Description

Print adjust_rate objects

Usage

S3 method for class 'adjust_rate'
print(x, pos = 1, ...)

Arguments

x adjust_rate object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

72 print.auto_rate

print.adjust_rate.ft Print adjust_rate.ft objects

Description

Print adjust_rate.ft objects

Usage

S3 method for class 'adjust_rate.ft'
print(x, pos = 1, ...)

Arguments

x adjust_rate.ft object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

print.auto_rate Print auto_rate objects

Description

Print auto_rate objects

Usage

S3 method for class 'auto_rate'
print(x, pos = 1, ...)

Arguments

x auto_rate object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

print.calc_rate 73

print.calc_rate Print calc_rate objects

Description

Print calc_rate objects

Usage

S3 method for class 'calc_rate'
print(x, pos = 1, ...)

Arguments

x calc_rate object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

print.calc_rate.bg Print calc_rate.bg objects

Description

Print calc_rate.bg objects

Usage

S3 method for class 'calc_rate.bg'
print(x, ...)

Arguments

x calc_rate.bg object

... Pass additional inputs

Value

Print to console. No returned value.

74 print.convert_DO

print.calc_rate.ft Print calc_rate.ft objects

Description

Print calc_rate.ft objects

Usage

S3 method for class 'calc_rate.ft'
print(x, pos = 1, ...)

Arguments

x calc_rate.ft object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

print.convert_DO Print convert_DO objects

Description

Print convert_DO objects

Usage

S3 method for class 'convert_DO'
print(x, ...)

Arguments

x convert_DO object

... Pass additional inputs

Value

Print to console. No returned value.

print.convert_rate 75

print.convert_rate Print convert_rate objects

Description

Print convert_rate objects

Usage

S3 method for class 'convert_rate'
print(x, pos = 1, ...)

Arguments

x convert_rate object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

print.convert_rate.ft Print convert_rate.ft objects

Description

Print convert_rate.ft objects

Usage

S3 method for class 'convert_rate.ft'
print(x, pos = NULL, ...)

Arguments

x convert_rate.ft object

pos integer. Which result to print.

... Pass additional inputs

Value

Print to console. No returned value.

76 print.inspect.ft

print.inspect Print inspect objects

Description

Print inspect objects

Usage

S3 method for class 'inspect'
print(x, ...)

Arguments

x inspect object

... Pass additional inputs

Value

Print to console. No returned value.

print.inspect.ft Print inspect.ft objects

Description

Print inspect.ft objects

Usage

S3 method for class 'inspect.ft'
print(x, ...)

Arguments

x inspect.ft object

... Pass additional inputs

Value

Print to console. No returned value.

print.oxy_crit 77

print.oxy_crit Print oxy_crit objects

Description

Print oxy_crit objects

Usage

S3 method for class 'oxy_crit'
print(x, ...)

Arguments

x oxy_crit object

... Pass additional inputs

Value

Print to console. No returned value.

sardine.rd Respirometry data of the sardine, Sardinops sagax

Description

A single experiment on the sardine species Sardinops sagax in a Loligo Systems swim tunnel
and Witrox oxygen probe system. There are three columns: $Time in seconds, $Oxygen con-
tent recorded in percent air saturation, and $Temperature in °C. Mean temperature, salinity and
atmospheric pressure are supplied below to allow for conversion to oxygen concentration units.

Usage

sardine.rd

Format

A data frame object consisting of 3 columns (time, % air saturation and temperature) and 7513 rows
(approx 2.1h of data).

78 squid.rd

Details

Experiment conducted at Hopkins Marine Station, Stanford University, Pacific Grove, California.

• Dissolved oxygen units: % air saturation

• Time units: seconds

• Chamber volume (L): 12.3

• Specimen wet mass (kg): 0.0477

• Temperature (°C): 14.8

• Salinity: 35

• Atm. Pressure (bar): 1.013253

Author(s)

Nicholas Carey

squid.rd Respirometry data of the squid, Doryteuthis opalescens

Description

A single experiment on the squid species Doryteuthis opalescens in a Loligo Systems swim tunnel
and Witrox oxygen probe system. Oxygen was recorded to very low concentrations, making this
dataset suitable for determining PCrit. Experiment conducted at Hopkins Marine Station, Stanford
University, Pacific Grove, California. Mean temperature, salinity and atmospheric pressure are
supplied below to allow for conversion to oxygen concentration units.

Usage

squid.rd

Format

A data frame object consisting of 2 columns ($Time and $Oxygen) and 34120 rows (approx 9.5h of
data).

Details

• Dissolved oxygen units: mg/L

• Time units: seconds

• Chamber volume (L): 12.3

• Specimen wet mass (kg): 0.02141

• Temperature (°C): 14

• Salinity: 35

• Atm. Pressure (bar): 1.013253

Data kindly supplied by Ben Burford, Hopkins Marine Station, Stanford University.

subsample 79

Author(s)

Ben Burford

subsample Subsample a data frame object

Description

A simple function that subsamples a data frame or numeric vector in order to "thin" large datasets.

Usage

subsample(x, n = NULL, length.out = NULL, random_start = FALSE, plot = TRUE)

Arguments

x data frame or vector. The data to subsample.

n numeric. Subsample every n elements or rows.

length.out numeric. Subsample to a specific length or number of rows.

random_start logical. Defaults to FALSE. If TRUE, randomises the start position from which
to start the subsample (applies to n input only).

plot logical. Defaults to TRUE. Plots the data. If there are multiple columns in the
data frame, only the first two are plotted. Vectors are plotted against a position
index.

Details

Two subsampling methods are provided. The n input selects every n’th element or row, or alterna-
tively the length.out input uniformly subsamples the data to the desired length.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Returns a subsampled data frame or vector object depending on input.

Examples

Subsample by every 200th row:
subsample(squid.rd, n = 200)

Subsample to 100 rows:
subsample(sardine.rd, length.out = 100)

Subsample with random starting position:

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

80 subset_data

subsample(sardine.rd, n = 20, random_start = TRUE)

Subsample a vector
subsample(sardine.rd[[2]], n = 20)

subset_data Subset a data.frame, inspect, or inspect.ft object

Description

subset_data subsets a data.frame, inspect, or inspect.ft object based on a given set of cri-
teria. The function is ideal for passing only selected regions of data to other functions such as
calc_rate() and auto_rate(), either by saving the output as a new object or via the use of pipes
(%>% or |>). It is also very useful in analysis of intermittent-flow data, where in a loop each repli-
cate can be extracted and passed to an analytical function such as calc_rate or auto_rate. See
examples and vignettes.

Usage

subset_data(x, from = NULL, to = NULL, by = "time", quiet = FALSE)

Arguments

x data.frame, inspect, or inspect.ft object. The data from which to produce
a subset.

from numeric. The lower bounds of the subset based on the by input.

to numeric. The upper bounds of the subset based on the by input.

by string. "time", "row", "oxygen"or"proportion". Method by which to apply the fromandto‘
inputs.

quiet logical. Controls if a summary of the output is printed to the console. Default is
FALSE.

Details

The function can subset data based on ranges of "time", "oxygen", "row" , or "proportion" of
total oxygen used or produced (note, this last option works poorly with noisy or fluctuating data).
For data frames, to subset by "time", "oxygen", or "proportion", the time data is assumed to
be in the first column, and oxygen data in the second column. For inspect() and inspect.ft()
objects, the data will have been coerced to this structure already. In these cases the $dataframe
element in the output is replaced by the subset, and in inspect.ft the $data element is also subset
and replaced. Note for inspect.ft objects, the oxygen data in column 2 will be either out.oxy
data or delta.oxy data depending on what was inspected. The function can subset any data frame
by row.

When multiple columns are present, for example time in column 1, and multiple columns of oxygen
data, the subset object will include all columns. In the case of subsetting by = "oxygen" or by =

subset_data 81

"proportion", subsetting is based on the first column of oxygen data (i.e. column 2), and all
subsequent columns are subset between the same rows regardless of oxygen values.

For all methods, if exact matching values of from and to are not present in the data, the closest
values are used. For "time" and "row" subsetting, from and to should be in the correct order. No
warning or messages are given if the input values are outside those in the data frame. For instance,
if to = 100 and there are only 50 rows in the data, the last row (50) will be used instead. The same
for from and to time values outside those in the data frame.

For "oxygen" or "proportion" subsetting, from and to are generally interchangeable, and the
function will subset data between the first and last occurrences (or closest occurrences) of these
values. It works best with generally increasing or decreasing oxygen data, and results may vary
with other data such as intermittent flow data or those in inspect.ft objects.

Note for inspect and inspect.ft object inputs: after subsetting the locations of any data issues
highlighted when the object was originally inspected will no longer be accurate. If these are impor-
tant, best practice is to subset the original dataframe, and then process the subset through inspect
or inspect.ft.

A summary of the subset is printed to the console, to check it has subset the data as expected. To
suppress this changing the default quiet = FALSE to TRUE.

More:
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

Output: If the input is an inspect, or inspect.ft object, the output is an object of the same class
containing the subset data. For data.frame inputs the output is a data.table of the subset.

Examples

Subset by time:
x <- subset_data(squid.rd, from = 2000, to = 4000, by = "time")

Subset by oxygen:
subset_data(sardine.rd, from = 94, to = 91, by = "oxygen")

Subset by row:
subset_data(flowthrough.rd, from = 10, to = 750, by = "row")

Subset multiple columns:
In this case subsetting is based on the first two columns
subset_data(flowthrough.rd, from = 50, to = 600, by = "time")

Pass (via piping) only a subset of a dataset to inspect() and auto_rate()
subset_data(sardine.rd, from = 94, to = 91, by = "oxygen") %>%

inspect(time = 1, oxygen = 2) %>%
auto_rate()

https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

82 subset_rate

subset_rate Subset auto_rate results based on a range of criteria

Description

The auto_rate function is powerful, but the output can be large and difficult to explore, especially
when there are hundreds to thousands of results. In addition, the "linear" method may identify
linear regions, but from areas of the data that are not of experimental interest. As an advanced, ma-
chine learning based process, it can be somewhat fallible and on occasion may return questionable
results.

The subset_rate function helps explore, reorder, and filter auto_rate results according to various
criteria. For example, extracting only positive or negative rates, only the highest or lowest rates, only
those from certain data regions, and numerous other methods that allow advanced filtering of results
so the rates extracted are well-defined towards the research question of interest. This also allows
for highly consistent reporting of results and rate selection criteria.

Multiple subsetting criteria can be applied by assigning the output and processing it through the
function multiple times using different methods, or alternatively via %>% piping. See Examples.

Note: when choosing a method, keep in mind that to remain mathematically consistent, respR
outputs oxygen consumption (i.e. respiration) rates as negative values. This is particularly important
in the difference between highest/lowest and minimum/maximum methods. See Details.

When a rate result is omitted by the subsetting criteria, it is removed from the $rate element of the
auto_rate object, and all associated data in $summary (i.e. the associated row) is removed. Some
methods can be used with an n = NULL input to reorder the $rate and $summary elements in various
ways. See Examples.

Generally speaking, for most large datasets we recommend using subset_data() and then running
auto_rate on the subset(s) of the data you are interested in, rather than run it on the whole dataset
and relying on subset_rate to filter out results afterwards.

Usage

subset_rate(x, method = NULL, n = NULL, plot = FALSE)

Arguments

x list. An object of class auto_rate or auto_rate_subset.

method string. Method by which to subset rate results. Matching results are retained in
the output. See Details.

n numeric. Number, percentile, or range of results to return depending on method.
See Details.

plot logical. Default FALSE. Plots a summary of subset locations within data (up to
a maximum of the first 20 ranked results).

subset_rate 83

Details

These are the current methods by which rates in auto_rate objects can be subset. Matching results
are retained in the output. Some methods can also be used to reorder the results.

positive, negative:
Subsets all positive (>0) or negative (<0) rates. n is ignored. Useful, for example, in inter-
mittent respirometry where auto_rate may output rates from regions of oxygen increase during
flushes. Note, respR outputs oxygen consumption (i.e. respiration) rates as negative values, pro-
duction rates as positive.

nonzero, zero:
Retains all nonzero rates (i.e. removes any zero rates), or retains only zero rates (i.e. removes all
rates with any value). n is ignored.

lowest, highest:
These methods can only be used when rates all have the same sign, that is are all negative or
all positive. These subset the highest and lowest absolute rate values. For example, if rates are
all negative, method = 'highest' will retain the highest magnitude rates regardless of the sign.
n should be an integer indicating the number of lowest/highest rates to retain. If n = NULL the
results will instead be reordered by lowest or highest rate without any removed. See minimum and
maximum options for extracting numerically lowest and highest rates.

lowest_percentile, highest_percentile:
These methods can also only be used when rates all have the same sign. These retain the n’th
lowest or highest percentile of absolute rate values. For example, if rates are all negative method
= 'highest_percentile' will retain the highest magnitude n’th percentile regardless of the sign.
n should be a percentile value between 0 and 1. For example, to extract the lowest 10th percentile
of absolute rate values, you would enter method = 'lowest_percentile', n = 0.1.

minimum, maximum:
In contrast to lowest and highest, these are strictly numerical options which take full account of
the sign of the rate, and can be used where rates are a mix of positive and negative. For example,
method = 'minimum' will retain the minimum value numerical rates, which in the case of negative
rates will actually be the highest uptake rates. n is an integer indicating how many of the min/max
rates to retain. If n = NULL the results will instead be reordered by minimum or maximum rate
without any removed.

minimum_percentile, maximum_percentile:
Like min and max these are strictly numerical inputs which retain the n’th minimum or maximum
percentile of the rates and take full account of the sign. Here n should be a percentile value
between 0 and 1. For example, if rates are all negative (i.e. typical uptake rates), to extract the
lowest 10th percentile of rates, you would enter method = 'maximum_percentile', n = 0.1. This is
because the lowest negative rates are numerically the maximum rates (highest/lowest percentile
methods would be a better option in this case however).

rate, rsq, rank, row, time, density:
These methods refer to the respective columns of the $summary data frame. For these, n should
be a vector of two values. Matching regressions in which the respective parameter falls within

84 subset_rate

the n range (inclusive) are retained. For example, to retain only rates where the rate value is
between 0.05 and 0.08: method = 'rate', n = c(0.05, 0.08). To retain all rates with a R-Squared
0.90 or above: method = 'rsq', n = c(0.9, 1). The row and time ranges refer to the $row-$endrow
or $time-$endtime columns and the original raw data ($dataframe element of the input), and can
be used to constrain results to rates from particular regions of the data (although usually a better
option is to subset_data prior to analysis). rank refers to the first column of the summary table,
which denotes the rank or ordering of the results as determined by the selected method input in the
original auto_rate analysis. This rank value is retained unchanged regardless of how the results
are subsequently subset or reordered. Note, time is not the same as duration - see later section -
and row does not refer to rows of the summary table - see manual method for this. For all of these
methods (except rate), if n = NULL the results will instead be reordered by that respective column
with none removed.

time_omit, row_omit:
These methods refer to the original data, and are intended to exclude rates determined over particu-
lar data regions. This is useful in the case of, for example, a data anomaly such as a spike or sensor
dropout. For these inputs, n are values (a single value or multiple) indicating data timepoints or
rows of the original data to exclude. Only rates (i.e. regressions) which do not utilise those par-
ticular values are retained in the output. For example, if an anomaly occurs precisely at timepoint
3000, time_omit = 3000 means only rates determined solely over regions before and after this
will be retained. If it occurs over a range this can be entered as, time_omit = c(3000:3200). If
you want to exclude a regular occurrence, for example the flushes in intermittent-flow respirom-
etry they can be entered as a vector, e.g. row_omit = c(1000,2000,3000). Values must match
exactly to a value present in the dataset.

oxygen:
This can be used to constrain rate results to regions of the data based on oxygen values. n should
be a vector of two values in the units of oxygen in the raw data. Only rate regressions in which
all datapoints occur within this range (inclusive) are retained. Any which use even a single value
outside of this range are excluded. Note the summary table columns oxy and endoxy refer to the
first and last oxygen values in the rate regression, which should broadly indicate which results
will be removed or retained, but this method examines every oxygen value in the regression, not
just first and last.

oxygen_omit:
Similar to time_omit and row_omit above, this can be used to omit rate regressions which use
particular oxygen values. For this n are values (single or multiple) indicating oxygen values in the
original raw data to exclude. Every oxygen value used by each regression is checked, and to be
excluded an n value must match exactly to one in the data. Therefore, note that if a regression is fit
across the data region where that value would occur, it is not necessarily excluded unless that exact
value occurs. You need to consider the precision of the data values recorded. For example, if you
wanted to exclude any rate using an oxygen value of 7.0, but your data are recorded to two dec-
imals, any rates fit across these data would be retained: c(7.03,7.02,7.01,6.99,6.98,...).
To get around this you can use regular R syntax to input vectors at the correct precision, such as
seq, e.g. seq(from = 7.05,to = 6.96,by = -0.01). Similarly, this can be used to input ranges of
oxygen values to exclude.

duration:

subset_rate 85

This method allows subsetting of rates which occur within a duration range. Here, n should be
a numeric vector of two values indicating the duration range you are interested in retaining. Use
this to set minimum and maximum durations in the time units of the original data. For example,
n = c(0,500) will retain only rates determined over a maximum of 500 time units. To retain
rates over a minimum duration, set this using the minimum value plus the maximum duration (or
simply infinity, e.g. n = c(500,Inf)).

manual:
This method simply allows particular rows of the $summary data frame to be manually selected
to be retained. For example, to keep only the top row (usually the top ranked result according to
the method, but note some methods can be used to reorder the table): method = 'manual', n = 1.
To keep multiple rows use regular R selection syntax: n = 1:3, n = c(1,2,3), n = c(5,8,10), etc.
No value of n should exceed the number of rows in the $summary data frame.

overlap:
This method removes rates which overlap, that is, linear regions or regressions calculated by
auto_rate which partly or completely share the same rows of the original data. The auto_rate
linear method may identify multiple linear regions, some of which may substantially overlap,
or even be completely contained within others. In such cases summary operations such as taking
an average of the rate values may be questionable, as certain values will be weighted higher
due to these multiple, overlapping results. This method removes overlapping rates, using n as a
threshold to determine degree of permitted overlap. It is recommended this method be used after
other selection criteria have been applied, as it is quite aggressive about removing rates, and can
be very computationally intensive when there are many results.
While it can be used with auto_rate results determined via the rolling, lowest, or highest
methods, by their nature these methods produce all possible overlapping regressions, ordered in
various ways, so other subsetting methods are more appropriate. The overlap method is generally
intended to be used in combination with the auto_rate linear results, but may prove useful in
other analyses.
The plot_ar() function is very useful for plotting auto_rate objects, and the results of subset_rate
operations upon them, to visualise where regression results in the summary table occur in relation
to the original dataset. See Examples.
Permitted overlap is determined by n, which indicates the proportion of each particular regression
which must overlap with another for it to be regarded as overlapping. For example, n = 0.2 means
a regression would have to overlap with at least one other by at least 20% of its total length to be
regarded as overlapping.
The overlap method performs two operations:
First, regardless of the n value, any rate regressions which are completely contained within another
are removed (this is also the only operation if n = 1).
Secondly, for each regression in $summary starting from the bottom of the summary table (usually
the lowest ranked result, but this depends on the auto_rate analysis method used and if any
reordering has been performed), the function checks if it overlaps with any others (accounting for
n). If not, the next lowest is checked, and the function progresses up the summary table until it
finds one that does. The first to be found overlapping is then removed, and the process repeats
starting again from the bottom of the summary table. This means lower ranked results are removed
first. This is repeated iteratively until only non-overlapping rates (accounting for n) remain.
If n = 0, only rates which do not overlap at all, that is share no data, are retained. If n = 1, only
rates which are 100% contained within at least one other are removed.

86 subset_rate

Reordering results:
Several methods can be used to reorder results rather than subset them, by not entering an n input
(that is, letting the n = NULL default be applied). Several of these methods are named the same as
those in auto_rate and have equivalent outcomes, so this allows results to be reordered without
re-running the analysis.
The row and rolling methods reorder sequentially by the starting row of each regression ($row
column).
The time method reorders sequentially by the starting time of each regression ($time column).
linear and density are essentially identical, reordering by the $density column. This metric is
only produced by the auto_rate linear method. These will have no effect on results originating
from other auto_rate methods where the density column is all NA.
rank reorders by $rank, the first column of the summary table, which denotes the rank or position
of each result as determined by the selected method in the original auto_rate analysis. This rank
value is retained unchanged regardless of how the results are subsequently subset or reordered.
Essentially this method will restore the original auto_rate method ordering after other reordering
methods have been applied.
rsq reorders by $rsq from highest value to lowest.
highest and lowest reorder by absolute values of the $rate column, that is highest or lowest in
magnitude regardless of the sign. They can only be used when rates all have the same sign.
maximum and minimum reorder by numerical values of the $rate column, that is maximum or
minimum in numerical value taking account of the sign, and can be used when rates are a mix of
negative and positive.
Note that after reordering, outputs of print(), summary(), plot() etc. will still refer to the
original ordering or analysis method used in the auto_rate analysis (the $method element of the
auto_rate object).

Plot:
While output objects are plotted as normal auto_rate objects if used in plot(), subset_rate
has its own plotting functionality. This simply plots a grid of the remaining rates in $summary up
to the first 20. This is simple functionality to give the user an idea of how subsetting is reducing
the number of rates, and where the remaining rates occur within the data. It is really only useful
once rates are down to fewer than 20 remaining, or for examining the effects of different subsetting
options on a small selection of rates. Therefore, the default is plot = FALSE to prevent this being
produced for every single subsetting operation.

More:
This help file can be found online here, where it is much easier to read.
For additional help, documentation, vignettes, and more visit the respR website at https://
januarharianto.github.io/respR/

Value

The output of subset_rate is a list object which retains the auto_rate class, with an additional
auto_rate_subset class applied.

It contains two additional elements: $original contains the original, unaltered auto_rate object,
which will be retained unaltered through multiple subsetting operations, that is even after processing
through the function multiple times. $subset_calls contains the calls for every subsetting operation

https://januarharianto.github.io/respR/reference/subset_rate.html
https://januarharianto.github.io/respR/
https://januarharianto.github.io/respR/

summary.adjust_rate 87

that has been applied to the $original object, from the first to the most recent. If using piping (%>%
or |>), the x input in these appears as "x = ." where it has been piped from the previous call. These
additional elements ensure the output contains the complete, reproducible history of the auto_rate
object having been subset.

The $summary table contains a $rank column and the original rank of each result is retained. A
$subset_regs value is added to $metadata indicating the number of regressions remaining after sub-
setting.

Examples

Subset only negative rates
ar_obj <- inspect(intermittent.rd, plot = FALSE) %>%
auto_rate(plot = FALSE)

ar_subs_neg <- subset_rate(ar_obj, method = "negative", plot = FALSE)

summary.adjust_rate Summarise adjust_rate objects

Description

Summarise adjust_rate objects

Usage

S3 method for class 'adjust_rate'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object adjust_rate object

pos integer(s). Which summary row(s) to print.

export logical. Export summary table as data frame.

... Pass additional inputs

Value

Print to console. No returned value.

88 summary.auto_rate

summary.adjust_rate.ft

Summarise adjust_rate.ft objects

Description

Summarise adjust_rate.ft objects

Usage

S3 method for class 'adjust_rate.ft'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object adjust_rate.ft object
pos integer(s). Which summary row(s) to print.
export logical. Export summary table as data frame.
... Pass additional inputs

Value

Print to console. No returned value.

summary.auto_rate Summarise auto_rate objects

Description

Summarise auto_rate objects

Usage

S3 method for class 'auto_rate'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object auto_rate object
pos integer(s). Which summary row(s) to print.
export logical. Export summary table as data frame.
... Pass additional inputs

Value

Print to console. No returned value.

summary.calc_rate 89

summary.calc_rate Summarise calc_rate objects

Description

Summarise calc_rate objects

Usage

S3 method for class 'calc_rate'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object calc_rate object

pos integer(s). Which summary row(s) to print.

export logical. Export summary table as data frame.

... Pass additional inputs

Value

Print to console. No returned value.

summary.calc_rate.bg Summarise calc_rate.bg objects

Description

Summarise calc_rate.bg objects

Usage

S3 method for class 'calc_rate.bg'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object calc_rate.bg object

pos integer(s). Which summary row(s) to print.

export logical. Export summary table as data frame.

... Pass additional inputs

Value

Print to console. No returned value.

90 summary.convert_DO

summary.calc_rate.ft Summarise calc_rate.ft objects

Description

Summarise calc_rate.ft objects

Usage

S3 method for class 'calc_rate.ft'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object calc_rate.ft object

pos integer(s). Which summary row(s) to print.

export logical. Export summary table as data frame.

... Pass additional inputs

Value

Print to console. No returned value.

summary.convert_DO Summarise convert_DO objects

Description

Summarise convert_DO objects

Usage

S3 method for class 'convert_DO'
summary(object, ...)

Arguments

object convert_DO object

... Pass additional inputs

Value

Print to console. No returned value.

summary.convert_rate 91

summary.convert_rate Summarise convert_rate objects

Description

Summarise convert_rate objects

Usage

S3 method for class 'convert_rate'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object convert_rate object
pos integer(s). Which summary row(s) to print.
export logical. Export summary table as data frame.
... Pass additional inputs

Value

Print to console. No returned value.

summary.convert_rate.ft

Summarise convert_rate.ft objects

Description

Summarise convert_rate.ft objects

Usage

S3 method for class 'convert_rate.ft'
summary(object, pos = NULL, export = FALSE, ...)

Arguments

object convert_rate.ft object
pos integer(s). Which summary row(s) to print.
export logical. Export summary table as data frame.
... Pass additional inputs

Value

Print to console. No returned value.

92 summary.inspect.ft

summary.inspect Summarise inspect objects

Description

Summarise inspect objects

Usage

S3 method for class 'inspect'
summary(object, ...)

Arguments

object inspect object

... Pass additional inputs

Value

Print to console. No returned value.

summary.inspect.ft Summarise inspect.ft objects

Description

Summarise inspect.ft objects

Usage

S3 method for class 'inspect.ft'
summary(object, ...)

Arguments

object inspect.ft object

... Pass additional inputs

Value

Print to console. No returned value.

summary.oxy_crit 93

summary.oxy_crit Summarise oxy_crit objects

Description

Summarise oxy_crit objects

Usage

S3 method for class 'oxy_crit'
summary(object, export = FALSE, ...)

Arguments

object oxy_crit object

export logical. Export result as data frame.

... Pass additional inputs

Value

Print to console. No returned value.

test_lin_data Output objects for the function test_lin

Description

This data contains the results of 9 separate performance checks on the auto_rate() linear de-
tection algorithm (i.e. method = "linear"). These test results are used to assess and discuss the
performance of auto_rate in the online vignette found here: .

Usage

test_lin_data

Format

List of multiple output objects of class test_lin.

Author(s)

Januar Harianto

94 unit_args

unit_args Print examples of unit inputs for use in convert_DO, convert_rate, and
convert_rate.ft

Description

This is a basic function with no inputs. It prints to the console the units that can be used in the
functions convert_DO(), convert_rate(), and convert_rate.ft().

Usage

unit_args()

Details

Note that some oxygen unit conversions require temperature (t), salinity (S), and atmospheric pres-
sure (P) to be specified.

Note the difference between percent air saturation (%Air), where air saturated water is ~100%, and
percent oxygen saturation (%Oxy), where air saturated water is ~20.946% oxygen saturated. In
other words, %Oxy = %Air x 0.20946.

For most units a fuzzy string matching algorithm is used to accept different formatting styles. For
example, "mg/l", "mg/L", "mgL-1", "mg l-1", "mg.l-1" are all parsed the same.

Value

A print out to the console of accepted units

convert_DO()

Oxygen concentration or pressure units for from and to::
Oxygen concentration units should use SI units (L or kg) for the denominator.
Do NOT require t, S and P for conversions:

• "mg/L", "ug/L", "mol/L", "mmol/L", "umol/L"

Require t, S and P for conversions:

• "mL/L", "cm3/L", "mg/kg", "ug/kg", "mol/kg", "mmol/kg", "umol/kg", "mL/kg", "%Air"
(i.e. % Air Saturation), "%Oxy" (i.e. % Oxygen Saturation), "Torr", "hPa", "kPa", "mmHg", "inHg"

convert_rate() and convert_rate.ft()

Oxygen concentration or pressure units for oxy.unit::
Oxygen concentration units should use SI units (L or kg) for the denominator.
Do NOT require t, S and P for conversions:

• "mg/L", "ug/L", "mmol/L", "umol/L"

Require t, S and P for conversions:

urchins.rd 95

• "mL/L", "cm3/L", "mg/kg", "ug/kg", "mmol/kg", "umol/kg", "mL/kg", "%Air" (i.e. % Air
Saturation), "%Oxy" (i.e. % Oxygen Saturation), "Torr", "hPa", "kPa", "mmHg", "inHg"

Time units for time.unit or as part of flowrate.unit::
• "sec", "min", "hour", "day"

Volume units for use as part of flowrate.unit (convert_rate.ft only)::
For example, in 'ml/min', 'L/s', etc.

• "uL", "mL", "L"

Combining units for output.unit::
Must be in correct order, with no special characters other than the separator:

• Absolute rates: Oxygen/Time e.g. "mg/s", "umol/min", "mL/h"
• Mass-specific rates: Oxygen/Time/Mass e.g. "mg/s/ug", "umol/min/g", "mL/h/kg"
• Area-specific rates: Oxygen/Time/Area e.g. "mg/s/mm2", "umol/min/cm2", "mL/h/m2"

Oxygen amount units for use in output.unit:
• "ug", "mg", "umol", "mmol", "mol", "mL"

Time units for use in output.unit:
• "sec", "min", "hour", "day"

Mass units for use in output.unit in mass-specific rates:
• "ug", "mg", "g", "kg"

Area units for use in output.unit in area-specific rates:
• "mm2", "cm2", "m2", "km2"

Examples

unit_args()

urchins.rd Multi-column respirometry data of the sea urchin, Heliocidaris Ery-
throgramma, including background respiration

Description

Oxygen consumption data of 16 individual Heliocidaris erythrogramma specimens. In addition,
there are two columns of background respiration.

Usage

urchins.rd

Format

A data frame object consisting of one column of time, 16 columns of urchin oxygen consumption
(a to p) and 2 columns of background oxygen consumption (b1 & b2). There are 271 rows of data
spanning 45 minutes.

96 zeb_intermittent.rd

Details

• Dissolved oxygen units: mg/L

• Time units: minutes

• Volume (L): 1.09

• Temperature (°C): 20

• Salinity: 30

• Atm. Pressure (bar): 1.01

Author(s)

Januar Harianto

zeb_intermittent.rd Respirometry data of a zebrafish, Danio rerio

Description

Multiple measurements (106 replicates, plus initial and end background measurements) of oxygen
consumption in a zebrafish, Danio rerio, obtained using intermittent flow respirometry. Data kindly
provided by Davide Thambithurai (University of Glasgow). Note, the data has been injected with
random noise, and volume and mass below are not the actual values from the experiment.

Usage

zeb_intermittent.rd

Format

A data frame object consisting of 2 columns (time and dissolved oxygen) and 79251 rows (approx
22h of data).

Details

• Dissolved oxygen units: mg/L

• Time units: seconds

• Chamber volume (L): 0.12

• Specimen wet mass (kg): ‘0.0009

• Temperature (°C): 25

• Salinity: 0

• Atm. Pressure (bar): 1.013253

Replicate structure (Rows - Experiment section):

• 1:4999 - Start background recording

zeb_intermittent.rd 97

• 5000:5839 - First replicate for MMR (14 mins duration)

• 5840:75139 - 105 further replicates of 11 minutes duration each (660 rows)

• 75140:79251 - End background recording

Each replicate comprises a measurement period (12 minutes for replicate 1, 9 minutes for all others)
plus 2 minutes flush.

Author(s)

Davide Thambithurai, University of Glasgow

Index

∗ datasets
algae.rd, 11
background_con.rd, 16
background_exp.rd, 16
background_lin.rd, 17
flowthrough.rd, 36
flowthrough_mult.rd, 37
flowthrough_sim.rd, 38
intermittent.rd, 52
sardine.rd, 77
squid.rd, 78
test_lin_data, 93
urchins.rd, 95
zeb_intermittent.rd, 96

adjust_rate, 3, 15, 20
adjust_rate(), 21, 28
adjust_rate.ft, 8, 25
adjust_rate.ft(), 25, 31, 51
algae.rd, 11
auto_rate, 12
auto_rate(), 3, 28, 44, 46, 80, 93

background_con.rd, 16
background_exp.rd, 16
background_lin.rd, 17

calc_rate, 18
calc_rate(), 3, 28, 44, 46, 80
calc_rate.bg, 20
calc_rate.bg(), 3, 5, 28
calc_rate.ft, 22
calc_rate.ft(), 9, 31, 47–51
convert_DO, 26
convert_DO(), 34, 62, 94
convert_rate, 15, 20, 28
convert_rate(), 13, 19, 21, 34, 94
convert_rate.ft, 23, 25, 31
convert_rate.ft(), 9, 24, 34, 94
convert_val, 34

convert_val(), 30, 32

flowthrough.rd, 36
flowthrough_mult.rd, 37
flowthrough_sim.rd, 38
format_time, 39

import_file, 41
inspect, 43
inspect(), 5, 19, 80
inspect.ft, 9, 47
inspect.ft(), 9, 24, 25, 45, 80
intermittent.rd, 52

lubridate, 39, 40

mean.adjust_rate, 53
mean.adjust_rate.ft, 54
mean.auto_rate, 54
mean.calc_rate, 55
mean.calc_rate.bg, 55
mean.calc_rate.ft, 56
mean.convert_DO, 56
mean.convert_rate, 57
mean.convert_rate.ft, 57
mean.inspect, 58
mean.inspect.ft, 58
mean.oxy_crit, 59

oxy_crit, 59

plot.adjust_rate, 63
plot.adjust_rate.ft, 64
plot.auto_rate, 64
plot.calc_rate, 65
plot.calc_rate.bg, 66
plot.calc_rate.ft, 66
plot.convert_DO, 67
plot.convert_rate, 67
plot.convert_rate.ft, 68
plot.inspect, 68

98

INDEX 99

plot.inspect.ft, 69
plot.oxy_crit, 70
plot_ar, 70
plot_ar(), 85
print.adjust_rate, 71
print.adjust_rate.ft, 72
print.auto_rate, 72
print.calc_rate, 73
print.calc_rate.bg, 73
print.calc_rate.ft, 74
print.convert_DO, 74
print.convert_rate, 75
print.convert_rate.ft, 75
print.inspect, 76
print.inspect.ft, 76
print.oxy_crit, 77

sardine.rd, 77
squid.rd, 78
subsample, 79
subset_data, 80, 84
subset_data(), 21, 82
subset_rate, 82
subset_rate(), 13
summary.adjust_rate, 87
summary.adjust_rate.ft, 88
summary.auto_rate, 88
summary.calc_rate, 89
summary.calc_rate.bg, 89
summary.calc_rate.ft, 90
summary.convert_DO, 90
summary.convert_rate, 91
summary.convert_rate.ft, 91
summary.inspect, 92
summary.inspect.ft, 92
summary.oxy_crit, 93

test_lin_data, 93

unit_args, 94
unit_args(), 27, 29, 30, 32
urchins.rd, 95

zeb_intermittent.rd, 96

	adjust_rate
	adjust_rate.ft
	algae.rd
	auto_rate
	background_con.rd
	background_exp.rd
	background_lin.rd
	calc_rate
	calc_rate.bg
	calc_rate.ft
	convert_DO
	convert_rate
	convert_rate.ft
	convert_val
	flowthrough.rd
	flowthrough_mult.rd
	flowthrough_sim.rd
	format_time
	import_file
	inspect
	inspect.ft
	intermittent.rd
	mean.adjust_rate
	mean.adjust_rate.ft
	mean.auto_rate
	mean.calc_rate
	mean.calc_rate.bg
	mean.calc_rate.ft
	mean.convert_DO
	mean.convert_rate
	mean.convert_rate.ft
	mean.inspect
	mean.inspect.ft
	mean.oxy_crit
	oxy_crit
	plot.adjust_rate
	plot.adjust_rate.ft
	plot.auto_rate
	plot.calc_rate
	plot.calc_rate.bg
	plot.calc_rate.ft
	plot.convert_DO
	plot.convert_rate
	plot.convert_rate.ft
	plot.inspect
	plot.inspect.ft
	plot.oxy_crit
	plot_ar
	print.adjust_rate
	print.adjust_rate.ft
	print.auto_rate
	print.calc_rate
	print.calc_rate.bg
	print.calc_rate.ft
	print.convert_DO
	print.convert_rate
	print.convert_rate.ft
	print.inspect
	print.inspect.ft
	print.oxy_crit
	sardine.rd
	squid.rd
	subsample
	subset_data
	subset_rate
	summary.adjust_rate
	summary.adjust_rate.ft
	summary.auto_rate
	summary.calc_rate
	summary.calc_rate.bg
	summary.calc_rate.ft
	summary.convert_DO
	summary.convert_rate
	summary.convert_rate.ft
	summary.inspect
	summary.inspect.ft
	summary.oxy_crit
	test_lin_data
	unit_args
	urchins.rd
	zeb_intermittent.rd
	Index

