Package 'rticulate'

September 4, 2022

Type Package

Title Ultrasound Tongue Imaging

Version 1.7.3

Date 2022-09-04

Maintainer Stefano Coretta < stefano.coretta@gmail.com>

Description A tool for processing Articulate

Assistant Advanced $^{\text{TM}}$ (AAA) export files and plot tongue contour data from any system.

URL https://github.com/stefanocoretta/rticulate

 $\pmb{BugReports} \ \text{https://github.com/stefanocoretta/rticulate/issues}$

Depends R (>= 3.0.0)

Encoding UTF-8

LazyData true

Imports dplyr, ggplot2, glue, magrittr, mgcv, purrr, readr, rlang, stats, tibble, tidymv, tidyr, tidyselect

RoxygenNote 7.2.1

Suggests knitr, rmarkdown, stringr

VignetteBuilder knitr

Language en_GB

License MIT + file LICENSE

NeedsCompilation no

Author Stefano Coretta [aut, cre]

Repository CRAN

Date/Publication 2022-09-04 16:20:02 UTC

get_origin

R topics documented:

get_origin							 												2
palate							 												3
plot_polar_smooths							 												4
plot_tongue							 												5
polar_gam							 												6
predict_polar_gam							 												7
read_aaa							 												8
stimuli							 												9
tongue							 												10
$transform_coord\ .\ .$							 												11

Index 12

get_origin

Get the origin of spline data

Description

It returns the Cartesian x, y coordinates of the virtual origin of the ultrasonic waves/probe surface (see Details).

Usage

```
get_origin(data, fan_lines = c(10, 25))
```

Arguments

data The spline data (the cartesian coordinates must be in two columns named X and

Y).

fan_lines A numeric vector with two fan lines (the default is c(10, 25)).

Details

The function estimates the origin of the ultrasond waves from the probe using the spline data and the provided fan lines. The estimation method is based on Heyne, Matthias & Donald Derrick (2015) Using a radial ultrasound probe's virtual origin to compute midsagittal smoothing splines in polar coordinates. *The Journal of the Acoustical Society of America* 138(6), EL509–EL514, DOI:10.1121/1.4937168.

Value

A numeric vector with the Cartesian (x, y) coordinates of the virtual origin of the ultrasonic waves/probe surface.

palate 3

Origin estimation

The equations of the two fan lines (10 and 25 by default) are set equal to find their intersection. The intersection is the origin. In some cases, the linear estimation of the equation fails, and an error related to fit is returned. In these cases, try different fan lines by increasing the minimum fan line and/or changing the maximum fan line (for example, if c(10, 25) returns an error, try c(15, 30)).

palate

Palate profile dataset.

Description

A dataset containing the palate profile of a single speaker.

Usage

palate

Format

A data frame with 42 rows and 14 variables.

speaker speaker ID

seconds time of coordinate, in seconds

rec_date date and time of recording

prompt prompt string

label label of annotation

TT_displacement smoothed displacement of tongue tip

TT_velocity velocity of tongue tip displacement

TT_abs_velocity absolute velocity of tongue tip displacement

TD_displacement smoothed displacement of tongue dorsum

TD_velocity velocity of tongue dorsum displacement

TD_abs_velocity absolute velocity of tongue dorsum displacement

fan_line fan line number

X horizontal coordinate at time seconds

Y vertical coordinate at time seconds

4 plot_polar_smooths

plot_polar_smooths

Plot smooths from a polar gam

Description

It plots the smooths of a polar GAM fitted with polar_gam().

Usage

```
plot_polar_smooths(
   model,
   series,
   comparison = NULL,
   origin = NULL,
   facet_terms = NULL,
   conditions = NULL,
   exclude_random = TRUE,
   series_length = 100,
   split = NULL,
   sep = "\\.",
   time_series
)
```

Arguments

model A gam or bam model object.

series An unquoted expression indicating the model term that defines the series on

which smoothing is applied. This is the term that is displayed on the x-axis

when plotting.

comparison An unquoted expression indicating the model term for which the comparison

will be plotted.

origin The coordinates of the origin as a vector of c(x, y) coordinates.

conditions A list of quosures with quos specifying the levels to plot from the model terms

not among series, comparison, or facet_terms.

exclude_random Whether to exclude random smooths (the default is TRUE).

series_length An integer indicating how many values along the time series to use for predicting

the outcome term.

split Columns to separate as a named list.

sep Separator between columns (default is "\.", which is the default with). If

character, it is interpreted as a regular expression.

time_series Deprecated, use series instead.

plot_tongue 5

Value

An object of class ggplot.

Examples

```
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
pgam <- polar_gam(Y ~ s(X, by = as.factor(label)), data = tongue_it01)
plot_polar_smooths(pgam, X, label)</pre>
```

plot_tongue

Plot tongue contours from spline data.

Description

It plots tongue contours from data imported from AAA.

Usage

```
plot_tongue(data, geom = "line", ..., palate = NULL, palate_col = "green")
```

Arguments

A data frame with splines data.

geom Type of geom to plot. Possible values are: line (the default), point, path.

List of arguments to be passed to geom.

An optional data frame with the palate spline. If provided, the palate is plotted.

palate_col The colour of the palate spline (the default is green).

Value

An object of class ggplot.

Examples

```
plot_tongue(tongue, geom = "point")
```

6 polar_gam

polar_gam

Polar generalised additive model (polar GAM)

Description

It fits a generalised additive model (GAM) to transformed polar tongue data and it returns a model in polar coordinates. Use plot_polar_smooths() for plotting.

Usage

```
polar_gam(
  formula,
  data,
  origin = NULL,
  fan_lines = c(10, 25),
  AR_start = NULL,
  ...
)
```

Arguments

formula	A GAM formula.
data	A data set containing the spline coordinates (cartesian coordinates must be in columns named X and Y, polar coordinates in columns named angle and radius; these are the defaults in data imported with read_aaa()).
origin	The coordinates of the origin as a vector of $c(x, y)$ coordinates.
fan_lines	A numeric vector with two fan lines (the default is c(10, 25)).
AR_start	The AR.start argument to be passed to mgcv::bam().
	Arguments to be passed to mgcv::bam().

Details

It is advised to fit a separate model per speaker, unless you have a working method for inter-speaker normalisation of the coordinates.

Value

An object of class "gam" as described in gamObject.

Examples

```
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
pgam <- polar_gam(Y ~ s(X, by = c2_place) + s(X, word, bs = "fs"),
data = tongue_it01)</pre>
```

predict_polar_gam 7

predict_polar_gam

Get all predictions from a polar GAM model

Description

It returns a tibble with the predictions from all the terms in a polar_gam model.

Usage

```
predict_polar_gam(
  model,
  origin = NULL,
  exclude_terms = NULL,
  length_out = 50,
  values = NULL,
  return_ci = FALSE,
  ci_z = 1.96
)
```

Arguments

model A polar_gam model object.

origin The coordinates of the origin as a vector of c(x, y) coordinates.

exclude_terms Terms to be excluded from the prediction. Term names should be given as they

appear in the model summary (for example, "s(x0, x1)").

length_out An integer indicating how many values along the numeric predictors to use for

predicting the outcome term (the default is 50).

values User supplied values for numeric terms as a named list.

return_ci Whether to return a tibble with cartesian confidence intervals (for use with

geom_polar_ci).

ci_z The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).

Details

The function behaves like predict_gam but it converts the coordinates from polar to cartesian automatically. Check vignette("predict-gam", package = "tidymv") to an overview of the predict method.

To see an example of plotting, see the examples in geom_polar_ci.

Value

A tibble with predictions from a polar_gam model.

8 read_aaa

Examples

```
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
it01_pol <- polar_gam(Y ~ s(X, by = c2_place) + s(X, word, bs = "fs"),
data = tongue_it01)

# get predictions
it01_pred <- predict_polar_gam(it01_pol)

# get predictions excluding the random smooth for word (the coefficient for # the random smooth is set to 0)
it01_excl_rand <- predict_polar_gam(it01_pol, exclude_terms = "s(X,word)")</pre>
```

read_aaa

Read tab separated files with AAA spline data.

Description

It reads a file or a list of files with data exported from AAA. The data are automatically transformed from a wide to a long format (each row has values of X or Y axes for each fan line). The imported tibble can then be used for plotting and statistical analysis.

Usage

```
read_aaa(
    file,
    column_names,
    fan_lines = 42,
    coordinates = "cartesian",
    na_rm = FALSE,
    format = "long"
)
```

Arguments

The path of the file with AAA data. It can also be a character vector with multi-

ple paths as separate strings...

fan_lines The number of fan lines (the default is 42).

coordinates A string specifying the coordinate system. Possible values are "cartesian"

(the default) and "polar".

na_rm Remove NAs (the default is FALSE).

format A string specifying the data format. Possible values are "long" and "wide" (the

default is "long").

stimuli 9

Value

A tibble. An . index column is added which indexes (groups) each tongue contour.

Examples

```
columns <- c("speaker", "seconds", "rec_date", "prompt", "label",
"TT_displacement", "TT_velocity", "TT_abs_velocity", "TD_displacement",
"TD_velocity", "TD_abs_velocity")
file_path <- system.file("extdata", "it01.tsv", package = "rticulate")
tongue <- read_aaa(file_path, columns, na_rm = TRUE)</pre>
```

stimuli

Stimuli dataset.

Description

A dataset with linguistic information on the stimuli.

Usage

stimuli

Format

A data frame with 12 rows and 11 variables.

item item ID

word words of the form CVCV

ipa IPA transcription of the words

c1 first consonant

c1_phonation phonation of the first consonant, voiceless

vowel first and second vowel

anteropost backness of the vowel, back or central

height height of the vowel, high, mid or low

c2 second consonant

c2_phonation phonation of the second consonant, voiceless or voiced

c2_place place of the second consonant, coronal or velar

10 tongue

tongue

Tongue contours dataset.

Description

A dataset containing tongue contour coordinates of a single speaker.

Usage

tongue

Format

A data frame with 3612 rows and 28 variables.

speaker speaker ID

seconds time of coordinate, in seconds

rec_date date and time of recording

prompt prompt string

label label of annotation

TT_displacement smoothed displacement of tongue tip

TT_velocity velocity of tongue tip displacement

TT_abs_velocity absolute velocity of tongue tip displacement

TD_displacement smoothed displacement of tongue dorsum

TD_velocity velocity of tongue dorsum displacement

TD abs velocity absolute velocity of tongue dorsum displacement

TR_displacement smoothed displacement of tongue root

TR_velocity velocity of tongue root displacement

TR_abs_velocity absolute velocity of tongue root displacement

fan_line fan line number

X horizontal coordinate at time seconds

Y vertical coordinate at time seconds

word words of the form CVCV

item item ID

ipa IPA transcription of the words

c1 first consonant

c1_phonation phonation of the first consonant, voiceless

vowel first and second vowel

anteropost backness of the vowel, back or central

height height of the vowel, high, mid or low

c2 second consonant

c2_phonation phonation of the second consonant, voiceless or voiced

c2_place place of the second consonant, coronal or velar

transform_coord 11

_	
transform	coord
LI alisi Olill	COOLU

Transform the coordinates of spline data

Description

This function transforms the coordinates of spline data between Cartesian and polar coordinate systems. The origin x and y coordinates can be supplied by the user, or calculated automatically (see Details).

Usage

```
transform_coord(
  data,
  to = "polar",
  origin = NULL,
  fan_lines = c(10, 25),
  use_XY = FALSE
)
```

Arguments

data	A data set containing the spline coordinates (cartesian coordinates must be in columns named X and Y, polar coordinates in columns named angle and radius; these are the defaults in data imported with read_aaa()).
to	Which system to convert to, as a string, either "polar" or "cartesian" (the default is "polar").
origin	The coordinates of the origin as a vector of c(x, y) coordinates.
fan_lines	A numeric vector with two fan lines (the default is c(10, 25)).
use_XY	Whether to use the column names X and Y when converting to and from polar coordinates, rather than the default angle and radius (the default is FALSE. If TRUE, the columns X and Y are overwritten with the converted values. If converting to polar, X is the angle and Y the radius.

Details

The transformation between the coordinate systems require the selection of an origin in Cartesian coordinates (x and y). The origin ideally corresponds to the virtual origin of the ultrasound waves from the probe. The origin coordinates can be supplied by the user as a vector with the origin argument, or they can be estimated automatically if origin = NULL (the default). The estimation is performed by get_origin (see that function documentation for details).

Value

An object of class tbl_df-class (a tibble).

Index

```
\ast datasets
    palate, 3
    stimuli, 9
    tongue, 10
gamObject, 6
geom_polar_ci, 7
get_origin, 2, 11
ggplot, 5
palate, 3
plot_polar_smooths, 4
plot_tongue, 5
polar_gam, 6, 7
predict_gam, 7
predict_polar_gam, 7
read_aaa, 8
stimuli, 9
tongue, 10
{\tt transform\_coord}, 11
```