saeHB.zinb
We designed this package to provide function and datasets for area
level of Small Area Estimation under Zero Inflated Negative Binomial
Model using Hierarchical Bayesian (HB) Method. This package provides
model using Univariate Zero Inflated Negative Binomial Distribution for
variable of interest. The ‘rjags’ package is employed to obtain
parameter estimates. Model-based estimators involves the HB estimators
which include the mean, the variation of mean, and the quantile of mean.
For the reference, see Rao, J.N.K & Molina (2015).
Author
Hayun , Azka Ubaidillah
Maintaner
Hayun
221810327@stis.ac.id
Installation
You can install the development version of saeHB.zinb
from GitHub with:
# install.packages("devtools")
devtools::install_github("hayunbuto/saeHB.zinb")
Function
ZinbHB()
This function gives small area estimator under
Zero Inflated Negative Binomial Model and is implemented to variable of
interest (y) that assumed to be a Zero Inflated Negative Binomial
Distribution. The range of data is (y >= 0)
Example
This is a basic example of using ZinbHB()
function to
make an estimate based on synthetic data in this package
```{r example} library(saeHB.zinb) ## For data without any
non-sampled area data(dataZINB) # Load dataset
For data with
non-sampled area use dataHNBNs
Fitting model
result <- ZinbHB(y ~ x1 + x2, data=dataZINB)
Small Area mean Estimates
```r
result$Est
Estimated model coefficient
Estimated random effect variances
References
- Desjardins, C. D. (2013). Evaluating the performance of two
competing models of school suspension under simulation the zero-inflated
negative binomial and the negative binomial hurdle (thesis). Minnesota
(US): Minnesota University. <purl.umn.edu/152995>
- Emille E. O. Ishida, Joseph M. Hilbe, and Rafael S. de Souza (2017).
Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan.
Cambridge : Cambridge University Press.
<bayesianmodelsforastrophysicaldata.com>
- Garray, A. M., Hashimoto, E. M., Ortega, E. M. M., dan Lachos, V. H.
(2011). On Estimation and Influence Diagnostics For Zero Inflated
Negative Binomial Regression Models. Computational Statistics and Data
Analysis, 55 (3), p.1304-1318.
<doi.org/10.1016/j.csda.2010.09.019>
- Hilbe, J. M. (2011). Negative Binomial Regression 2nd Edition. New
York : Cambridge University Press.
<doi.org/10.1017/CBO9780511973420>
- Nadhiroh, I. M. (2009). Zero-Inflated Negative Binomial Models in
Small Area Estimation. Bogor: Bogor Agricultural University.
- Ntzoufras, I. (2009). Bayesian Modelling Using WinBUGS. New Jersey :
John Wiley & Sons, Inc. <doi.org/10.1002/9780470434567>
- Rao, J.N.K & Molina. (2015). Small Area Estimation 2nd Edition.
New Jersey : John Wiley & Sons,
Inc. <doi.org/10.1002/9781118735855>
- S. Krieg, H. J. Boonstra, and M. Smeets. (2016). Small-area
estimation with zero-inflated data – a simulation study. J. Off. Stat.,
vol. 32, no. 4, pp. 963–986, 2016. <doi.org/10.1515/jos-2016-0051>
# saeHB.zinb