library(saeHB.zinb)
data("dataZINB")
<- ZinbHB(formula = y ~ x1 + x2, data = dataZINB)
result #> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 50
#> Unobserved stochastic nodes: 210
#> Total graph size: 1189
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 50
#> Unobserved stochastic nodes: 210
#> Total graph size: 1189
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 50
#> Unobserved stochastic nodes: 210
#> Total graph size: 1189
#>
#> Initializing model
$Est
result#> MEAN SD 2.5% 25% 50% 75%
#> mu.eff[1] 0.5319623 0.5091742 0.0159903304 0.18235828 0.41158386 0.7176172
#> mu.eff[2] 0.6080960 0.5207012 0.0129893535 0.22883237 0.47255824 0.8479520
#> mu.eff[3] 0.5687280 0.5584321 0.0010013181 0.19767561 0.42520202 0.7740716
#> mu.eff[4] 0.5424982 0.4564776 0.0204658461 0.21053622 0.42737840 0.7306423
#> mu.eff[5] 0.1817977 0.2288011 0.0031215580 0.04024682 0.11403184 0.2280207
#> mu.eff[6] 0.1857321 0.2549162 0.0007344892 0.03714686 0.10619828 0.2255654
#> mu.eff[7] 0.6242856 0.6103206 0.0140817571 0.22131858 0.45956139 0.8255584
#> mu.eff[8] 0.6496963 0.6357295 0.0142173003 0.21210243 0.46523788 0.9100737
#> mu.eff[9] 0.6263615 0.5681446 0.0205390568 0.21998962 0.47757355 0.8533958
#> mu.eff[10] 0.1540020 0.2048374 0.0023955151 0.03643043 0.08733989 0.1979550
#> mu.eff[11] 0.5837980 0.5638456 0.0103358970 0.19686433 0.39598336 0.8005146
#> mu.eff[12] 0.5435010 0.5613475 0.0240973101 0.17099182 0.39488540 0.6846546
#> mu.eff[13] 0.1646801 0.1900611 0.0015966703 0.04541541 0.10273789 0.2145357
#> mu.eff[14] 0.1640676 0.2345500 0.0017647085 0.03746754 0.09266819 0.1963442
#> mu.eff[15] 0.1652787 0.1964141 0.0024709002 0.03737098 0.10377322 0.2165996
#> mu.eff[16] 2.0654585 1.5055379 0.3703388125 0.97838457 1.72900942 2.7016649
#> mu.eff[17] 0.5976574 0.5426888 0.0245108700 0.21695574 0.44121449 0.7816309
#> mu.eff[18] 0.5676297 0.5587597 0.0204898836 0.19528671 0.39143039 0.7720024
#> mu.eff[19] 0.1590409 0.1749464 0.0023252610 0.04139995 0.10950873 0.2087721
#> mu.eff[20] 0.1489267 0.1756256 0.0020238376 0.03290800 0.09144005 0.1988805
#> mu.eff[21] 0.5794251 0.4798464 0.0103011980 0.22998086 0.47861197 0.7879888
#> mu.eff[22] 0.1641345 0.1928636 0.0018738662 0.04066155 0.11155480 0.2187274
#> mu.eff[23] 2.3881127 2.1333112 0.2792562939 0.85119876 1.70762432 3.4057348
#> mu.eff[24] 1.3931749 0.9161865 0.2943728840 0.73729211 1.20904930 1.7574623
#> mu.eff[25] 0.1455279 0.1931993 0.0019306874 0.03177060 0.09022826 0.1826015
#> mu.eff[26] 0.5526791 0.4889143 0.0109695089 0.21489410 0.42164062 0.7521532
#> mu.eff[27] 1.9865518 1.4514852 0.2614743104 0.93895430 1.58231451 2.6581695
#> mu.eff[28] 0.1591355 0.1806672 0.0040250199 0.04457302 0.09922785 0.2060917
#> mu.eff[29] 0.1572302 0.2177706 0.0041059190 0.03450929 0.09005598 0.1917825
#> mu.eff[30] 0.1536300 0.1762969 0.0025907923 0.04107635 0.09602251 0.2011541
#> mu.eff[31] 0.5951125 0.5825271 0.0134327847 0.18539022 0.44084897 0.8396297
#> mu.eff[32] 1.9970283 1.4911825 0.2647027421 0.92636261 1.56782513 2.6629995
#> mu.eff[33] 0.1672653 0.1802892 0.0073004778 0.04974977 0.11246006 0.2156530
#> mu.eff[34] 0.1543039 0.1904484 0.0019683616 0.04583426 0.10169219 0.2049032
#> mu.eff[35] 0.1554768 0.1902546 0.0014694183 0.03617242 0.09058661 0.1832078
#> mu.eff[36] 0.5385656 0.4894114 0.0091393239 0.17210273 0.39319662 0.7592182
#> mu.eff[37] 1.3664128 0.8769277 0.3216562882 0.77205993 1.15190085 1.7349289
#> mu.eff[38] 0.1474087 0.1883269 0.0017844933 0.03929346 0.09588124 0.2024875
#> mu.eff[39] 0.1555057 0.2485421 0.0015816550 0.03251724 0.09193072 0.1919131
#> mu.eff[40] 0.1743937 0.2010708 0.0029082836 0.04563054 0.10854181 0.2287702
#> mu.eff[41] 0.6225509 0.5508369 0.0151107543 0.23969174 0.45528487 0.8625678
#> mu.eff[42] 0.5551267 0.4756766 0.0163850712 0.21582489 0.42656503 0.7424436
#> mu.eff[43] 0.1745522 0.2240357 0.0034342624 0.04112618 0.10218723 0.2167075
#> mu.eff[44] 1.5705348 1.0782399 0.3362897319 0.81392070 1.29748977 2.0600981
#> mu.eff[45] 0.1550744 0.1839735 0.0007156914 0.03947127 0.09834896 0.1940974
#> mu.eff[46] 0.6195342 0.6056644 0.0136481854 0.20520292 0.43504891 0.8269761
#> mu.eff[47] 0.6264812 0.5744236 0.0078339732 0.21395355 0.45784690 0.8585637
#> mu.eff[48] 0.6362658 0.5989698 0.0301504804 0.23525604 0.47543801 0.8277377
#> mu.eff[49] 0.6224021 0.5592159 0.0068754142 0.22366916 0.46335853 0.8373341
#> mu.eff[50] 0.5692473 0.5042087 0.0068970628 0.20357428 0.42566544 0.8080149
#> 97.5%
#> mu.eff[1] 1.9573579
#> mu.eff[2] 1.9954752
#> mu.eff[3] 2.1537962
#> mu.eff[4] 1.7375547
#> mu.eff[5] 0.8582117
#> mu.eff[6] 0.9274242
#> mu.eff[7] 1.9453500
#> mu.eff[8] 2.3808434
#> mu.eff[9] 1.9793859
#> mu.eff[10] 0.7218821
#> mu.eff[11] 2.1058322
#> mu.eff[12] 2.0266184
#> mu.eff[13] 0.6493547
#> mu.eff[14] 0.7500177
#> mu.eff[15] 0.7415128
#> mu.eff[16] 5.5164026
#> mu.eff[17] 2.2001360
#> mu.eff[18] 2.1972356
#> mu.eff[19] 0.6133425
#> mu.eff[20] 0.6048097
#> mu.eff[21] 1.8415657
#> mu.eff[22] 0.6263306
#> mu.eff[23] 8.3619260
#> mu.eff[24] 3.6492381
#> mu.eff[25] 0.6792417
#> mu.eff[26] 1.8246656
#> mu.eff[27] 5.4667780
#> mu.eff[28] 0.6823994
#> mu.eff[29] 0.7185606
#> mu.eff[30] 0.6455158
#> mu.eff[31] 2.1533277
#> mu.eff[32] 5.7906653
#> mu.eff[33] 0.5961500
#> mu.eff[34] 0.5669290
#> mu.eff[35] 0.7078945
#> mu.eff[36] 1.7458185
#> mu.eff[37] 3.6093331
#> mu.eff[38] 0.5323295
#> mu.eff[39] 0.5987598
#> mu.eff[40] 0.7188755
#> mu.eff[41] 2.0922558
#> mu.eff[42] 1.7205511
#> mu.eff[43] 0.8221324
#> mu.eff[44] 4.2108399
#> mu.eff[45] 0.6401188
#> mu.eff[46] 2.3369113
#> mu.eff[47] 2.0804495
#> mu.eff[48] 2.3431765
#> mu.eff[49] 2.0444318
#> mu.eff[50] 1.7895052
$coefficient
result#> MEAN SD 2.5% 25% 50% 75%
#> b[0] -1.19788782 0.3315551 -1.8271906 -1.42989571 -1.20871758 -0.9943913
#> b[1] 0.16196364 0.4358311 -0.7069089 -0.12071896 0.14844144 0.4492443
#> b[2] 1.35762498 0.3830010 0.5595790 1.11372948 1.36506338 1.6075528
#> g[0] 0.48516460 0.8577895 -1.1912712 -0.09367666 0.52928123 1.0886324
#> g[1] 0.05735642 0.9103014 -1.6325532 -0.53820730 0.05240735 0.6310810
#> g[2] -0.82687877 0.9103167 -2.6601776 -1.44485378 -0.73929050 -0.1958326
#> 97.5%
#> b[0] -0.5062877
#> b[1] 1.1027407
#> b[2] 2.1174048
#> g[0] 2.0595143
#> g[1] 1.9307115
#> g[2] 0.8106469
$refVar
result#> Mean SD
#> a.var.u 0.5832722 0.2494271
#> a.var.v 3.7807381 5.2474993