Package 'scrutiny'

August 22, 2022

Title Error Detection in Science

Version 0.2.2

Maintainer Lukas Jung <jung-lukas@gmx.net>

Description Test published summary statistics for consistency

(Brown and Heathers, 2017, <a href="https://example.com/https://ex

//journals.sagepub.com/doi/10.1177/1948550616673876/>; Allard, 2018, https://aurelienallard.netlify.app/post/

anaytic-grimmer-possibility-standard-deviations/>; Heathers and Brown, 2019, https://osf.io/5vb3u/).

The package also provides infrastructure for implementing new error detection techniques.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Imports cli, dplyr, glue, magrittr, methods, purrr, rlang (>= 1.0.2), stringr, tibble

Collate 'import-reexport.R' 'utils.R' 'mapper-function-helpers.R' 'audit-cols-minimal.R' 'audit.R' 'before-inside-parens.R' 'function-factory-helpers.R' 'round-ceil-floor.R' 'round.R' 'reround.R' 'unround.R' 'sd-binary.R' 'decimal-places.R' 'debit-table.R' 'debit.R' 'grim.R' 'function-map.R' 'grimmer.R' 'grimmer-map.R' 'duplicate-detect.R' 'debit-map.R' 'restore-zeros.R' 'seq-decimal.R' 'manage-extra-cols.R' 'grim-map.R' 'data-doc.R' 'function-map-seq.R' 'debit-map-seq.R' 'disperse.R' 'function-map-total-n.R' 'debit-map-total-n.R' 'debit-plot.R' 'duplicate-count.R' 'grim-base.R' 'grim-explain.R' 'grim-granularity.R' 'grim-map-seq.R' 'grim-map-total-n.R' 'grim-plot.R' 'grimmer-map-seq.R' 'grimmer-map-total-n.R' 'method-debit-map.R' 'method-detect.R' 'method-dup-count.R' 'method-grim-map.R' 'method-grim-sequence.R' 'method-grimmer-map.R' 'reround-to-fraction.R'

'reverse-map-seq.R' 'reverse-map-total-n.R' 'rivets-perfect-mean-sd.R' 'rivets-plot-cols.R' 'rivets-plot-lines.R' 'rivets-t-test.R' 'rivets_new.R' 'rounding-bias.R' 'row-to-colnames.R' 'seq-disperse.R' 'seq-predicates.R' 'split-by-parens.R' 'subset-superset.R' 'utils-pipe.R' 'utils-tidy-eval.R' 'write-doc-audit.R' Suggests covr, devtools, ellipsis, ggplot2, ggrepel, janitor, knitr, rmarkdown, roxygen2, stats, testthat (>= 3.0.0), tidyr, tidyselect Config/testthat/edition 3 **Depends** R (>= 3.4.0) VignetteBuilder knitr URL https://lhdjung.github.io/scrutiny/, https://github.com/lhdjung/scrutiny/ BugReports https://github.com/lhdjung/scrutiny/issues NeedsCompilation no Author Lukas Jung [aut, cre], Aurélien Allard [ctb]

R topics documented:

Date/Publication 2022-08-22 09:40:02 UTC

Repository CRAN

audit
audit_cols_minimal
before_parens
check_audit_special
check_mapper_input_colnames
debit
debit_map
debit_map_seq
debit_map_total_n
debit_plot
decimal_places
disperse
duplicate_count
duplicate_detect
function_map
function_map_seq
function_map_total_n
grim
grimmer
grimmer_map
grimmer_map_seq

audit 3

٤	grimmer_map_total_n	41
٤	grim_granularity	43
٤	grim_map	45
٤	grim_map_seq	47
٤	grim_map_total_n	49
٤	grim_plot	52
٤	grim_total	54
i	s_seq_linear	56
i	s_subset_of	57
1	manage_helper_col	60
	manage_key_colnames	
ŗ	oigs1	62
•	. c pigs2	62
•	. c pigs3	63
ľ	pigs4	64
•	. c pigs5	64
ľ	reround	65
r	reround_to_fraction	66
r	restore_zeros	68
	reverse_map_seq	
	reverse_map_total_n	70
r	ounding_bias	71
r	ound_ceiling	72
ľ	ound_up_from	73
ľ	row_to_colnames	75
S	sd_binary_groups	76
	seq_disperse	78
S	eq_endpoint	80
S	seq_test_ranking	82
S	pplit_by_parens	83
ι	unnest_consistency_cols	85
ι	unround	86
١	write_doc_audit	88
	write_doc_audit_seq	
	write_doc_audit_total_n	90
	write_doc_factory_map_conventions	91
		93

4 audit

Description

audit() is an S3 generic to follow up on those scrutiny functions that perform tests on data frames. It summarizes results of those tests and presents the summaries in a tibble. audit_seq() and audit_total_n() summarize the results of functions that end on _seq and _total_n, respectively.

Below is a list of functions that return objects with classes for which there are audit() methods. This means you can run audit() on the output returned by any of these functions. The same is true for audit_seq() and audit_total_n().

Go to the documentation of any function named below to learn about its audit() method, or about the way its output is processed by audit_seq() or audit_total_n().

Usage

```
audit(data)
audit_seq(data)
audit_total_n(data)
```

Arguments

data

A data frame that inherits one of the classes named below.

Value

A tibble (data frame) with test summary statistics.

audit()

Function	Class	
<pre>grim_map()</pre>	"scr_grim_map"	
<pre>grimmer_map()</pre>	"scr_grimmer_map"	
<pre>debit_map()</pre>	"scr_debit_map"	
<pre>duplicate_count()</pre>	"scr_dup_count"	
<pre>duplicate_detect()</pre>	"scr_dup_detect"	

audit_seq()

```
Function Class

grim_map_seq() "scr_grim_map_seq"

grimmer_map_seq() "scr_grimmer_map_seq"

debit_map_seq() "scr_debit_map_seq"
```

audit_cols_minimal 5

```
audit_total_n()
```

```
Function Class

grim_map_total_n() "scr_grim_map_total_n"

grimmer_map_total_n() "scr_grimmer_map_total_n"

debit_map_total_n() "scr_debit_map_total_n"
```

Examples

```
# For GRIM-testing:
pigs1 %>%
    grim_map() %>%
    audit()

# For detecting duplicates:
pigs4 %>%
    duplicate_detect() %>%
    audit()
```

audit_cols_minimal

Compute minimal audit() summaries

Description

Call audit_cols_minimal() within your audit() methods for the output of consistency test mapper functions such as grim_map(). It will create a tibble with the three minimal, required columns:

- 1. incons_cases counts the inconsistent cases, i.e., the number of rows in the mapper's output where "consistency" is FALSE.
- 2. all_cases is the total number of rows in the mapper's output.
- 3. incons_rate is the ratio of incons_cases to all_cases.

You can still add other columns to this tibble. Either way, make sure to name your method correctly. See examples.

Usage

```
audit_cols_minimal(data, name_test)
```

Arguments

data Data frame returned by a mapper function, such asgrim_map().

name_test String (length 1). Short, plain-text name of the consistency test, such as "GRIM".

Only needed for a potential alert.

6 before_parens

Value

A tibble (data frame) with the columns listed above.

See Also

For context, see vignette("consistency-tests"). In case you don't call audit_cols_minimal(), you should call check_audit_special().

Examples

```
# For a mapper function called `schlim_map()`
# that applies a test called SCHLIM and returns
# a data frame with the `"scr_schlim_map"` class:
audit.scr_schlim_map <- function(data) {
   audit_cols_minimal(data, name_test = "SCHLIM")
}
# If you like, add other summary columns
# with `dplyr::mutate()` or similar.</pre>
```

before_parens

Extract substrings from before and inside parentheses

Description

Two functions that extract substrings from before or inside parentheses (or brackets, or curly braces): before_parens() and inside_parens().

See split_by_parens() to split some or all columns in a data frame into both parts.

Usage

```
before_parens(string, sep = "parens")
inside_parens(string, sep = "parens")
```

Arguments

string Vector of strings with parentheses, brackets, or curly braces.

sep String. What to split by. Either "parens", "brackets", or "braces". Default

is "parens".

Value

String. The part of string before or inside the separating elements, respectively.

check_audit_special 7

check_audit_special

Alert user if more specific audit_*() summaries are available

Description

(Note: Ignore this function if your audit() method calls audit_cols_minimal().)

Call check_audit_special() within an audit() method for a consistency test mapper function, such as audit.scr_grim_map(). It checks if the input data frame was the product of a function produced by function_map_seq() or function_map_total_n().

If so, the function issues a gentle alert to the user that points to audit_seq() or audit_total_n(), respectively.

Usage

```
check_audit_special(data, name_test)
```

Arguments

data The audit() method's input data frame.

name_test String (length 1). Short, plain-text name of the consistency test, such as "GRIM".

Value

No return value. Might print an alert.

See Also

```
vignette("consistency-tests"), for context.
```

```
check_mapper_input_colnames
```

Check that a mapper's input has correct column names

Description

When called within a consistency test mapper function, check_mapper_input_colnames() makes sure that the input data frame has correct column names:

- They include all the key columns corresponding to the test applied by the mapper.
- They don't already include "consistency".

If either check fails, the function throws an informative error.

Usage

```
check_mapper_input_colnames(data, reported, name_test)
```

8 debit

Arguments

data Data frame. Input to the mapper function.

reported String vector of the "key" column names that data needs to have, such as c("x",

"n") for grim_map().

name_test String (length 1). Short, plain-text name of the consistency test that the mapper

function applies, such as "GRIM".

Value

No return value. Might throw an error.

See Also

vignette("consistency-tests"), for context and the "key columns" terminology.

debit

The DEBIT (descriptive binary) test

Description

debit() tests summaries of binary data for consistency: If the mean and the standard deviation of binary data are given, are they consistent with the reported sample size?

The function is vectorized, but it is recommended to use debit_map() for testing multiple cases.

Usage

```
debit(
   x,
   sd,
   n,
   formula = "mean_n",
   rounding = "up_or_down",
   threshold = 5,
   symmetric = FALSE
)
```

Arguments

x String. Mean of a binary distribution.

sd String. Sample standard deviation of a binary distribution.

n Integer. Total sample size.

formula String. Formula used to compute the SD of the binary distribution. Currently,

only the default, "mean_n", is supported.

debit_map 9

rounding String. Rounding method or methods to be used for reconstructing the SD values to which sd will be compared. Default is "up_or_down" (from 5). For more options, see documentation for grim(), section Details.

threshold Integer. If rounding is set to "up_from", "down_from", or "up_from_or_down_from", set threshold to the number from which the reconstructed values should then be rounded up or down. Otherwise irrelevant. Default is 5.

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up",

"down", "up_from", or "down_from" should mirror that of positive numbers so

that their absolute values are always equal. Default is FALSE.

Value

Boolean. TRUE if x, sd, and n are mutually consistent, FALSE if not.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.

See Also

debit_map() applies debit() to any number of cases at once.

Examples

```
# Check single cases of binary
# summary data:
debit(x = "0.36", sd = "0.11", n = 20)
```

 $debit_map$

Apply DEBIT to many cases

Description

Call debit_map() to use DEBIT on multiple combinations of mean, standard deviation, and sample size of binary distributions. Mapping function for debit().

For summary statistics, call audit() on the results.

Usage

```
debit_map(
  data,
  x = NULL,
  sd = NULL,
  n = NULL,
  rounding = "up_or_down",
  threshold = 5,
```

10 debit_map

```
symmetric = FALSE,
show_rec = TRUE,
extra = Inf
)
```

Arguments

data Data frame.

x, sd, n Optionally, specify these arguments as column names in data.

rounding, threshold, symmetric

Arguments passed on to debit(), with the same defaults.

show_rec If set to FALSE, the resulting tibble only includes the columns x, sd, n, and

consistency. Default is TRUE.

extra Not currently used.

Value

A tibble with (at least) these columns -

- x, sd, n: the inputs.
- consistency: DEBIT consistency of x, sd, and n.

By default, the tibble also includes the rounding method, boundary values, and Boolean information about the boundary values being inclusive or not. The tibble has the scr_debit_map class, which is recognized by the audit() generic.

Summaries with audit()

There is an S3 method for the audit() generic, so you can call audit() following debit_map(). It returns a tibble with these columns —

- 1. incons_cases: the number of DEBIT-inconsistent cases.
- 2. all_cases: the total number of cases.
- 3. incons_rate: the rate of inconsistent cases.
- 4. mean_x: the mean x (mean) value.
- 5. mean_sd: the mean sd value.
- 6. distinct_n: the number of distinct n values.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.

debit_map_seq 11

Examples

```
# Call `debit_map()` on binary summary
# data such as these:
pigs3
# The `consistency` column shows
# whether the values to its left
# are DEBIT-consistent:
pigs3 %>%
   debit_map()
# Get test summaries with `audit()`:
pigs3 %>%
   debit_map() %>%
   audit()
```

debit_map_seq

Using DEBIT with dispersed inputs

Description

debit_map_seq() applies DEBIT with values surrounding the input values. This provides an easy and powerful way to assess whether small errors in computing or reporting may be responsible for DEBIT-inconsistencies in published statistics.

Usage

```
debit_map_seq(
  data,
  x = NULL,
  sd = NULL,
  n = NULL,
  var = .var,
  dispersion = .dispersion,
  out_min = .out_min,
  out_max = .out_max,
  include_reported = .include_reported,
  include_consistent = .include_consistent,
  ...
)
```

Arguments

12 debit_map_seq

dispersion

Numeric. Sequence with steps up and down from the var inputs. It will be adjusted to these values' decimal levels. For example, with a reported 8.34, the step size is 0.01. Default is 1:5, for five steps up and down.

out_min, out_max

If specified, output will be restricted so that it's not below out_min or above out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal unit above zero; and NULL for out_max, i.e., no maximum.

include_reported

Boolean. Should the reported values themselves be included in the sequences originating from them? Default is FALSE because this might be redundant and bias the results.

include_consistent

Boolean. Should the function also process consistent cases (from among those reported), not just inconsistent ones? Default is FALSE because the focus should be on clarifying inconsistencies.

.. Arguments passed down to debit_map().

Value

A tibble (data frame) with detailed test results.

Summaries with audit_seq()

You can call audit_seq() following debit_map_seq(). It will return a data frame with these columns:

- x, sd, and n are the original inputs, tested for consistency here.
- hits_total is the total number of DEBIT-consistent value sets found within the specified dispersion range.
- hits_x is the number of DEBIT-consistent value sets found by varying x.
- Accordingly with sd and hits_sd as well as n and hits_n.
- (Note that any consistent reported cases will be counted by the hits_* columns if both include_reported and include_consistent are set to TRUE.)
- diff_x reports the absolute difference between x and the next consistent dispersed value (in dispersion steps, not the actual numeric difference). diff_x_up and diff_x_down report the difference to the next higher or lower consistent value, respectively.
- diff_sd, diff_sd_up, and diff_sd_down do the same for sd.
- Likewise with diff_n, diff_n_up, and diff_n_down.

Examples

```
# `debit_map_seq()` can take any input
# that `debit_map()` can take:
pigs3
# Results from testing the first two rows:
out <- pigs3 %>%
```

debit_map_total_n 13

```
dplyr::slice(1:2) %>%
  debit_map_seq(include_consistent = TRUE)

out

# Case-wise summaries with `audit_seq()`
# can be more important than the raw results:
audit_seq(out)
```

debit_map_total_n

Use DEBIT with hypothetical group sizes

Description

debit_map_total_n() extends DEBIT to cases where only group means and standard deviations (SDs) were reported, not group sizes.

The function is analogous to grim_map_total_n() and grimmer_map_total_n(), relying on the same infrastructure.

Usage

```
debit_map_total_n(
  data,
  x1 = NULL,
  x2 = NULL,
  sd1 = NULL,
  sd2 = NULL,
  dispersion = .dispersion,
  n_min = .n_min,
  n_max = .n_max,
  constant = .constant,
  constant_index = .constant_index,
  ...
)
```

Arguments

data

Data frame with string columns x1, x2, sd1, and sd2, as well as numeric column n. The first two are reported group means. sd1 and sd2 are reported group SDs. n is the reported total sample size. It is not very important whether a value is in x1 or in x2 because, after the first round of tests, the function switches roles between x1 and x2, and reports the outcomes both ways. The same applies to sd1 and sd2. However, do make sure the x* and sd* values are paired accurately, as reported.

```
x1, x2, sd1, sd2
```

Optionally, specify these arguments as column names in data.

14 debit_map_total_n

dispersion Numeric. Steps up and down from half the n values. Default is 0:5, i.e., half n

itself followed by five steps up and down.

n_min Numeric. Minimal group size. Default is 1.

n_max Numeric. Maximal group size. Default is NULL, i.e., no maximum.

constant Optionally, add a length-2 vector or a list of length-2 vectors (such as a data

frame with exactly two rows) to accompany the pairs of dispersed values. De-

fault is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output

tibble. If NULL (the default), constant will go to the right of n_change.

... Arguments passed down to debit_map().

Value

A tibble with these columns:

- x and sd, the group-wise reported input statistics, are repeated in row pairs.
- n is dispersed from half the input n, with n_change tracking the differences.
- both_consistent flags scenarios where both reported x and sd values are consistent with the hypothetical n values.
- case corresponds to the row numbers of the input data frame.
- dir is "forth" in the first half of rows and "back" in the second half. "forth" means that x2 and sd2 from the input are paired with the larger dispersed n, whereas "back" means that x1 and sd1 are paired with the larger dispersed n.
- Other columns from debit_map() are preserved.

Summaries with audit_total_n()

You can call audit_total_n() following up on debit_map_total_n() to get a tibble with summary statistics. It will have these columns:

- x1, x2, sd1, sd2, and n are the original inputs.
- hits_forth is the number of scenarios in which all of x1, x2, sd1, and sd2 are DEBIT-consistent with the dispersed n values when x2 and sd2 are paired with the larger dispersed n.
- hits_back is the same, except x1 and sd1 are paired with the larger dispersed n value.
- hits_total is the sum of hits_forth and hits_back, i.e., the total number of both-consistent scenarios.
- scenarios_total is the total number of test scenarios, whether or not all of x1, x2, sd1, and sd2 are consistent.
- hit_rate is the ratio of hits_total to scenarios_total.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. *Psychological Science*, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.11 Heathers, J. A. J., & Brown, N. J. L. (2019). DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.

debit_plot 15

See Also

function_map_total_n(), which created the present function using debit_map().

Examples

```
# Run `debit_map_total_n()` on data like these:
df <- tibble::tribble(</pre>
  ~x1, ~x2, ~sd1, ~sd2, ~n,
  "0.30", "0.28", "0.17", "0.10", 70,
  "0.41", "0.39", "0.09", "0.15", 65
)
df
debit_map_total_n(df)
# `audit_total_n()` summaries can be more important than
# the detailed results themselves.
# The `hits_total` column shows all scenarios in
# which both divergent `n` values are DEBIT-consistent
# with the `x*` values when paired with them both ways:
  debit_map_total_n(dispersion = 0:2) %>%
  audit_total_n()
# By default ('dispersion = 0:5'), the function goes
# five steps up and down from `n`. The longer this
# sequence, the larger the number of hits tends to be:
df %>%
  debit_map_total_n() %>%
  audit_total_n()
```

debit_plot

Visualize DEBIT results

Description

Plot a distribution of binary data and their mutual DEBIT consistency. Call this function only on a data frame that resulted from a call to debit_map().

Various parameters of the individual geoms can be controlled via arguments.

Usage

```
debit_plot(
  data,
  show_outer_boxes = TRUE,
  show_labels = TRUE,
  show_full_scale = TRUE,
  show_theme_other = TRUE,
```

16 debit_plot

color_cons = "royalblue1",

```
color_incons = "red",
      line_alpha = 1,
      line_color = "black",
      line_linetype = 1,
      line_size = 0.5,
      rect_alpha = 1,
      tile_alpha = 0.15,
      tile_height_offset = 0.025,
      tile_width_offset = 0.025,
      tile_height_min = 0.0375,
      tile_width_min = 0.0385,
      label_alpha = 0.5,
      label_linetype = 3,
      label_size = 3.5,
      label_linesize = 0.75,
      label_force = 175,
      label_force_pull = 0.75,
      label_padding = 0.5
Arguments
    data
                     Data frame. Result of a call to debit_map().
    show_outer_boxes
                     Boolean. Should outer tiles surround the actual data points, making it easier to
                     spot them and to assess their overlap? Default is TRUE.
    show_labels
                     Boolean. Should the data points have labels (of the form "mean; SD")? Default
                     is TRUE.
    show_full_scale
                     Boolean. Should the plot be fixed to full scale, showing the entire consistency
                     line independently of the data? Default is TRUE.
    show_theme_other
                     Boolean. Should the theme be modified in a way fitting the plot structure? De-
                     fault is TRUE.
    color_cons, color_incons
                     Strings. Colors of the geoms representing consistent and inconsistent values,
                     respectively.
    line_alpha, line_color, line_linetype, line_size
                     Parameters of the curved DEBIT line.
                     Parameter of the DEBIT rectangles. (Due to the nature of the data mapping,
    rect_alpha
                     there can be no leeway regarding the shape or size of this particular geom.)
    tile_alpha, tile_height_offset, tile_width_offset, tile_height_min, tile_width_min
                     Parameters of the outer tiles surrounding the DEBIT rectangles. Offset refers to
                     the distance from the rectangles within.
    label_alpha, label_linetype, label_size, label_linesize, label_force, label_force_pull, label_padding
                     Parameters of the labels showing mean and SD values. Passed on to ggrepel::geom_text_repel();
```

see there for more information.

decimal_places 17

Details

The labels are created via ggrepel::geom_text_repel(), so the algorithm is designed to minimize overlap with the tiles and other labels. Yet, they don't take the DEBIT line into account, and their locations are ultimately random. You might therefore have to resize the plot or run the function a few times until the labels are localized in a satisfactory way.

An alternative to the present function would be an S3 method for ggplot2::autoplot(). However, a standalone function such as this allows for customizing geom parameters and might perhaps provide better accessibility overall.

Value

A ggplot object.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.

Examples

```
# Run `debit_plot()` on the output
# of `debit_map()`:
pigs3 %>%
   debit_map() %>%
   debit_plot()
```

decimal_places

Count decimal places

Description

decimal_places() counts the decimal places in a numeric vector, or in a string vector that can be coerced to numeric.

decimal_places_scalar() is much faster but only takes a single input. It is useful as a helper within other single-case functions.

Usage

```
decimal_places(x, sep = "\\.")
decimal_places_scalar(x, sep = "\\.")
```

Arguments

X	Numeric (or string that can be coerced to numeric). Object with decimal places
	to count.

sep Substring that separates the mantissa from the integer part. Default is "\\.", which renders a decimal point.

18 decimal_places

Details

Decimal places in numeric values can't be counted accurately if the number has 15 or more characters in total, including the integer part and the decimal point. A possible solutions is to enter the number as a string to count all digits. (Converting to string is not sufficient – those numbers need to be *entered* in quotes.)

The functions ignore any whitespace at the end of a string, so they won't mistake spaces for decimal places.

Value

Integer. Number of decimal places in x.

Trailing zeros

If trailing zeros matter, don't convert numeric values to strings: In numeric values, any trailing zeros have already been dropped, and any information about them was lost (e.g., 3.70 returns 3.7). Enter those values as strings instead, such as "3.70" instead of 3.70. However, you can restore lost trailing zeros with restore_zeros() if the original number of decimal places is known.

If you need to enter many such values as strings, consider using tibble::tribble() and drawing quotation marks around all values in a tribble() column at once via RStudio's multiple cursors.

See Also

Rounding functions:

- round_up() and round_down() round up or down from 5, respectively.
- round_up_from() and round_down_from() allow users to specify custom thresholds for rounding up or down.
- round_ceiling() and round_floor() work like ceiling() or floor(), but for decimal numbers instead of just integers.
- round_trunc() and round_anti_trunc() always round towards zero or away from it.

Furthermore, unround() takes a rounded number and returns the range of the original value.

Examples

```
# `decimal_places()` works on both numeric values
# and strings...
decimal_places(x = 2.851)
decimal_places(x = "2.851")

# ... but trailing zeros are only counted within
# strings:
decimal_places(x = c(7.3900, "7.3900"))

# This doesn't apply to non-trailing zeros; these
# behave just like any other digit would:
decimal_places(x = c(4.08, "4.08"))
```

disperse 19

```
# Whitespace at the end of a string is not counted:
decimal_places(x = "6.0 ")

# `decimal_places_scalar()` is much faster,
# but only works with a single number or string:
decimal_places_scalar(x = 8.13)
decimal_places_scalar(x = "5.024")
```

disperse

Vary hypothetical group sizes

Description

Some published studies only report a total sample size but no group sizes. However, group sizes are crucial for consistency tests such as GRIM. Call disperse() to generate possible group sizes that all add up to the total sample size, if that total is even.

disperse2() is a variant for odd totals. It takes two consecutive numbers and generates decreasing values from the lower as well as increasing values from the upper. In this way, all combinations still add up to the total.

disperse_total() directly takes the total sample size, checks if it's even or odd, splits it up accordingly, and applies disperse() or disperse2(), respectively.

These functions are primarily intended as helpers. They form the backbone of grim_map_total_n() and all other functions created with function_map_total_n().

Usage

```
disperse(
  dispersion = 0:5,
  n_{\min} = 1,
  n_max = NULL,
  constant = NULL,
  constant_index = NULL
)
disperse2(
  n,
  dispersion = 0:5,
  n_{min} = 1,
  n_max = NULL,
  constant = NULL,
  constant_index = NULL
)
disperse_total(
```

20 disperse

```
n,
  dispersion = 0:5,
  n_min = 1,
  n_max = NULL,
  constant = NULL,
  constant_index = NULL)
```

Arguments

n Numeric:

- In disperse(), single number from which to go up and down. This should be half of an even total sample size.
- In disperse2(), the two consecutive numbers closest to half of an odd total sample size (e.g., c(25, 26) for a total of 51).
- In disperse_total(), the total sample size.

dispersion Numeric. Vector that determines the steps up and down from n (or, in disperse_total(),

from half n). Default is 0:5.

n_min Numeric. Minimal group size. Default is 1.

n_max Numeric. Maximal group size. Default is NULL, i.e., no maximum.

constant Optionally, add a length-2 vector or a list of length-2 vectors (such as a data

frame with exactly two rows) to accompany the pairs of dispersed values. De-

fault is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output

tibble. If NULL (the default), constant will go to the right of n_change.

Details

If any group size is less than n_min or greater than n_max, it is removed. The complementary size of the other group is also removed.

constant values are pairwise repeated. That is why constant needs to be a length-2 atomic vector or a list of such vectors. If constant is a data frame or some other named list, the resulting columns will have the same names as the list-element names. If the list is not named, the new column names will be "constant1", "constant2", etc; or just "constant", for a single pair.

Value

A tibble (data frame) with these columns:

- n includes the dispersed n values. Every pair of consecutive rows has n values that each add up to the total.
- n_change records how the input n was transformed to the output n. In disperse2(), the n_change strings label the lower of the input n values n1 and the higher one n2.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. *Psychological Science*, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.11

duplicate_count 21

See Also

```
function_map_total_n(), grim_map_total_n(), seq_distance_df()
```

Examples

```
# For a total sample size of 40,
# set `n` to `20`:
disperse(n = 20)
# Specify `dispersion` to control
# the steps up and down from `n`:
disperse(n = 20, dispersion = c(3, 6, 10))
# In 'disperse2()', specify 'n' as two
# consecutive numbers -- i.e., group sizes:
disperse2(n = c(25, 26))
# Use the total sample size directly
# with `disperse_total()`. An even total
# internally triggers `disperse()`...
disperse_total(n = 40)
# ...whereas an odd total triggers `disperse2()`:
disperse_total(n = 51)
# You may add values that repeat along with the
# dispersed ones but remain constant themselves.
# Such values can be stored in a length-2 vector
# for a single column...
disperse_total(37, constant = c("5.24", "3.80"))
# ... or a list of length-2 vectors for multiple
# columns. This includes data frames with 2 rows:
df_constant <- tibble::tibble(</pre>
  name = c("Paul", "Mathilda"), age = 27:28,
  registered = c(TRUE, FALSE)
disperse_total(37, constant = df_constant)
```

duplicate_count

Count duplicate values

Description

duplicate_count() returns a frequency table. When searching a data frame, it includes values from all columns for each frequency count.

This function is a blunt tool designed for initial data checking. Don't put too much weight on its results.

For summary statistics, call audit() on the results.

22 duplicate_count

Usage

```
duplicate_count(x, numeric_only = TRUE)
```

Arguments

x Vector or data frame.

numeric_only

Boolean. If TRUE (the default), and if x is a data frame, the function includes only numeric columns and string columns coercible to numeric. *Note*: Be careful when setting it to FALSE. This can lead to all kinds of coercion issues.

Details

duplicate_count() is a thin wrapper around janitor::get_dupes(). Use get_dupes() to search for duplicate rows.

The function is not too informative if the values have few characters.

Value

A tibble with two columns —

- value includes all the values from x.
- count is the frequency of each value in x, in descending order. The tibble has the scr_dup_count class, which is recognized by the audit() generic.

Summaries with audit()

There is an S3 method for the audit() generic, so you can call audit() following duplicate_count() to get summary statistics. These are mostly self-explaining, but count_max and count_min only directly apply to count and display their respective value numbers, not the minimal and maximal value numbers.

See Also

duplicate_detect() checks if values have duplicates.

Examples

```
# Count duplicate values...
BJsales %>%
   duplicate_count()

# ...and compute summaries:
BJsales %>%
   duplicate_count() %>%
   audit()
```

duplicate_detect 23

duplicate_detect	Detect duplicate values

Description

For every value in a vector or data frame, duplicate_detect() tests whether there is at least one identical value. Test results are presented next to every value.

By default, only numeric columns and string columns coercible to numeric are tested (if x is a data frame). Any other columns are silently dropped.

This function is a blunt tool designed for initial data checking. Don't put too much weight on its results.

For summary statistics, call audit() on the results.

Usage

```
duplicate_detect(x, numeric_only = TRUE, colname_end = "dup")
```

Arguments

x	Vector or data frame.
numeric_only	Boolean. If TRUE (the default) and if x is a data frame, the function will only test numeric columns and string columns coercible to numeric. <i>Note</i> : Be careful when setting it to FALSE. This can lead to all kinds of coercion issues.
colname_end	String. Name ending of the Boolean test result columns. Default is "dup".

Details

This function is not very informative with many input values that only have a few characters each. Many of them may have duplicates just by chance. For example, in R's built-in iris data set, 99% of values have duplicates.

In general, the fewer values and the more characters per value there are, the more significant duplicate_detect()'s results will be.

Value

A tibble (data frame) —

- If x is a vector, there are two columns: the input value and the Boolean has_duplicates.
- If x is a data frame, the output tibble has (some of) the columns from x, and to each of these columns' right, the corresponding Boolean column with an index value.

The tibble has the scr_dup_detect class, which is recognized by the audit() generic.

24 function_map

Summaries with audit()

There is an S3 method for the audit() generic, so you can call audit() following duplicate_detect(). It returns a tibble with these columns —

- variable: The original data frame's variables with at least one "duplicated" value: one that has at least one duplicate anywhere else in the data frame. For a vector, x.
- n_duplicated: Number of "duplicated" values of that variable: those that have at least one duplicate anywhere in the data frame.
- dup_rate: Rate of "duplicated" values of that variable.

The final row, .total, summarizes across all other rows: It adds up the n_duplicated and n_total columns, and calculates the average of the dup_rate column.

See Also

duplicate_count() provides a frequency table.

Examples

```
# Find duplicate values in a data frame...
duplicate_detect(x = pigs4)
# ...or in a single vector:
duplicate_detect(x = pigs4$snout)
# Summary statistics with `audit()`:
pigs4 %>%
 duplicate_detect() %>%
 audit()
# If there are many values and/or few
# characters per value, `duplicate_detect()`
# can be misleading:
iris %>%
 duplicate_detect()
iris %>%
 duplicate_detect() %>%
 audit()
```

function_map

Create new *_map() functions

Description

function_map() creates new basic mapper functions for consistency tests, such as grim_map() or debit_map().

For context, see vignette("consistency-tests"), section Creating mappers with function_map().

function_map 25

Usage

```
function_map(
    .fun,
    .reported,
    .name_test,
    .name_class = NULL,
    .args_disabled = NULL,
    .col_names = NULL,
    .col_control = NULL,
    .col_filler = NULL
)
```

Arguments

. fun	Single-case consistency testing function that will be applied to each row in a data frame, such as the (non-exported) scrutiny functions grim_scalar() and debit_scalar(). It needs to return a Boolean value of length 1, i.e., TRUE or FALSE.
.reported	String. Names of the columns to be tested.
.name_test	String (length 1). Plain-text name of the consistency test, such as "GRIM".
.name_class	String. Optionally, one or more classes to be added to the output data frame. Default is NULL, i.e., no extra class (but see <i>Details</i>).
.args_disabled	Optionally, a string vector with names of arguments of the *_scalar() function that don't work with the factory-made function. If the user tries to specify these arguments, an informative error will be thrown.
.col_names	(Experimental) Optionally, a string vector with the names of additional columns that are derived from the *_scalar() function. Requires .col_control and .col_filler specifications.
.col_control	(Experimental) Optionally, a single string with the name of the *_scalar() function's Boolean argument that controls if the columns named in .col_names will be displayed.
.col_filler	(Experimental) Optionally, a vector specifying the values of .col_names columns in rows where the $*_scalar()$ function only returned the consistency value.

Details

The output tibble returned by the factory-made function will inherit one or two classes independently of the .name_class argument:

- It will inherit a class named "scr_{tolower(.name_test)}_map"; for example, "scr_grim_map" if .name_test is "GRIM".
- If a rounding argument is specified via ..., or else if .fun has a rounding argument with a default, the output tibble will inherit a class named "scr_rounding_{rounding}"; for example, "scr_rounding_up_or_down".

Value

A factory-made function with these arguments:

• data: Data frame with all the columns named in .reported. It needs to have columns named after the key arguments in .fun. Other columns are permitted.

- Arguments named after the .reported values. They can be specified as the names of data columns so that the function will rename that column using the .reported name.
- reported, fun, name_class: Same as when calling function_map() but spelled without dots. You can override these defaults when calling the factory-made function.
- ...: Arguments passed down to .fun. This does not include the column-identifying arguments derived from .reported.

Value returned by the factory-made function

A tibble that includes "consistency": a Boolean column showing whether the values to its left are mutually consistent (TRUE) or not (FALSE).

Examples

```
# Basic test implementation for "SCHLIM",
# a mock test with no real significance:
schlim_scalar <- function(y, n) {</pre>
  (y / 3) > n
}
# Let the function factory produce
# a mapper function for SCHLIM:
schlim_map <- function_map(</pre>
  .fun = schlim_scalar,
  .reported = c("y", "n"),
  .name_test = "SCHLIM"
)
# Example data:
df1 \leftarrow tibble::tibble(y = 16:25, n = 3:12)
# Call the "factory-made" function:
schlim_map(df1)
```

function_map_seq

Create new *_map_seq() functions

Description

function_map_seq() is the engine that powers grim_map_seq() and debit_map_seq(). It creates new, "manufactured" functions that apply consistency tests such as GRIM or DEBIT to sequences of specified variables. The sequences are centered around the reported values of those variables.

By default, only inconsistent values are dispersed from and tested. This provides an easy and powerful way to assess whether small errors in computing or reporting may be responsible for inconsistencies in published statistics.

All arguments here set the defaults for the arguments in the manufactured function. They can still be specified differently when calling the latter.

If functions created this way are exported from other packages, they should be written as if they were created with purrr adverbs; see explanations there and examples at vignette("consistency-tests"), section *Creating mappers with* function_map().

Usage

```
function_map_seq(
    .fun,
    .var = Inf,
    .reported,
    .name_test,
    .name_class = NULL,
    .args_disabled = NULL,
    .dispersion = 1:5,
    .out_min = "auto",
    .out_max = NULL,
    .include_reported = FALSE,
    .include_consistent = FALSE)
```

Arguments

.out_min, .out_max

.fun	Function such as <code>grim_map()</code> : It will be used to test columns in a data frame for consistency. Test results are Boolean and need to be contained in a column called "consistency" that is added to the input data frame. This modified data frame is then returned by . fun.
.var	String. Variables that will be dispersed by the manufactured function. Defaults to .reported.
.reported	String. All variables the manufactured function can disperse in principle.
.name_test	String (length 1). The name of the consistency test, such as "GRIM", to be optionally shown in a message when using the manufactured function.
.name_class	String. If specified, the tibbles returned by the manufactured function will inherit this string as an S3 class. Default is NULL, i.e., no extra class.
.args_disabled	String. Optionally, names of the basic *_map() function's arguments. These arguments will throw an error if specified when calling the factory-made function.
.dispersion	Numeric. Sequence with steps up and down from the reported values. It will be adjusted to these values' decimal level. For example, with a reported 8.34, the step size is 0.01. Default is 1:5, for five steps up and down.

If specified when calling a factory-made function, output will be restricted so that it's not below .out_min or above .out_max. Defaults are "auto" for

.out_min, i.e., a minimum of one decimal unit above zero; and NULL for .out_max, i.e., no maximum.

.include_reported

Boolean. Should the reported values themselves be included in the sequences originating from them? Default is FALSE because this might be redundant and bias the results.

.include_consistent

Boolean. Should the function also process consistent cases (from among those reported), not just inconsistent ones? Default is FALSE because the focus should be on clarifying inconsistencies.

Details

This function is a so-called function factory: It produces other functions, such as grim_map_seq(). More specifically, it is a function operator (a.k.a. decorator) because it also takes functions as inputs, such as grim_map(). See Wickham (2019, ch. 10-11).

Value

A function such as those below. ("Testable statistics" are variables that can be selected via var, and are then varied. All variables except for those in parentheses are selected by default.)

Manufactured function	Testable statistics	Test vignette
<pre>grim_map_seq()</pre>	"x", "n",("items")	<pre>vignette("grim")</pre>
<pre>grimmer_map_seq()</pre>	"x", "sd", "n", ("items")	<pre>vignette("grimmer")</pre>
<pre>debit_map_seq()</pre>	"x", "sd", "n"	<pre>vignette("debit")</pre>

The factory-made function will also have dots, \dots , to pass arguments down to .fun, i.e., the basic mapper function.

Conventions

The name of a function manufactured with function_map_seq() should mechanically follow from that of the input function. For example, grim_map_seq() derives from grim_map(). This pattern fits best if the input function itself is named after the test it performs on a data frame, followed by _map: grim_map() applies GRIM, debit_map() applies DEBIT, etc.

Much the same is true for the classes of data frames returned by the manufactured function via the .name_class argument of function_map_seq(). It should be the function's own name preceded by the name of the package that contains it or by an acronym of that package's name. In this way, existing classes are scr_grim_map_seq and scr_debit_map_seq.

References

Wickham, H. (2019). *Advanced R* (Second Edition). CRC Press/Taylor and Francis Group. https://advr.hadley.nz/index.html

Examples

```
# Function definition of `grim_map_seq()`:
grim_map_seq <- function_map_seq(</pre>
  .fun = grim_map,
  .reported = c("x", "n"),
  .name_test = "GRIM",
# Case study of SCHLIM, a new consistency test -----
# (Note: This is a mock test without any real significance.
# Its only purpose is to show the minimal steps necessary
# for implementing a serious consistency test, and to use
# it as a starting point for `function_map_total_n()`.)
# The "SCHLIM test" is analogous to GRIM as implemented
# in scrutiny. This is also true for the function names.
# Note that the analogue to `schlim_scalar()`, a function
# called `grim_scalar()`, is not exported from scrutiny,
# but used internally for `grim()`, `grim_map()`, and,
# indirectly, `grim_map_seq()`.
# Basic test implementation:
schlim_scalar <- function(y, n) {</pre>
  (y / 3) > n
}
# This step is not needed below, but
# included for completeness:
schlim <- Vectorize(schlim_scalar)</pre>
# This will be the input function for
# `function_map_total_n()`:
schlim_map <- function_map(</pre>
  .fun = schlim_scalar,
  .reported = c("y", "n"),
  .name_test = "SCHLIM"
)
# Fire up the function factory:
schlim_map_seq <- function_map_seq(</pre>
  .fun = schlim_map,
  .reported = c("y", "n"),
  .name_test = "SCHLIM",
)
# Create some example data:
df1 <- tibble::tibble(y = 16:25, n = 3:12)
# Call the manufactured function:
out <- schlim_map_seq(df1)</pre>
```

```
out
# Summarize the results:
audit_seq(out)
```

function_map_total_n Create new *_map_total_n() functions

Description

function_map_total_n() is the engine that powers functions such as grim_map_total_n(). It creates new, "manufactured" functions for consistency tests. The new functions take reported summary statistics such as means and apply those tests in cases where only a total sample size is known, not group sizes.

This works by making disperse_total() create multiple pairs of hypothetical group sizes, all of which add up to the reported total. There need to be exactly two groups.

If functions created this way are exported from other packages, they should be written as if they were created with purrr adverbs; see explanations there and examples at vignette("consistency-tests"), section *Creating mappers with* function_map().

Usage

```
function_map_total_n(
    .fun,
    .reported,
    .name_test,
    .name_class = NULL,
    .dispersion = 0:5,
    .n_min = 1,
    .n_max = NULL,
    .constant = NULL,
    .constant_index = NULL)
```

Arguments

. fun

Function such as grim_map: It will be used to test columns in a data frame for consistency. Test results are Boolean and need to be contained in a column called consistency that is added to the input data frame. This modified data frame is then returned by . fun.

.reported

String. Names of the columns containing group-specific statistics that were reported alongside the total sample size(s). They will be tested for consistency with the hypothetical group sizes. Examples are "x" for GRIM and c("x", "sd") for DEBIT. In the data frame with reported group statistics that the manufactured function takes as an input, each will need to fan out like "x1", "x2", "sd1", and "sd2".

function_map_total_n 31

.name_test	String (length 1). The name of the consistency test, such as "GRIM", to be optionally shown in a message when using the manufactured function.	
.name_class	String. If specified, the tibbles returned by the manufactured function will inherit this string as an S3 class. Default is NULL, i.e., no extra class.	
<pre>.dispersion, .n_min, .n_max, .constant, .constant_index</pre>		
	Arguments passed down to disperse_total(), using defaults from there.	

Details

This function is a so-called function factory: It produces other functions, such as grim_map_total_n(). More specifically, it is a function operator (a.k.a. decorator) because it also takes functions as inputs, such as grim_map(). See Wickham (2019, ch. 10-11).

Value

A function such as these:

Manufactured function	Reported statistics	Test vignette
grim_map_total_n()	"x"	<pre>vignette("grim")</pre>
<pre>grimmer_map_total_n()</pre>	"x", "sd"	<pre>vignette("grimmer")</pre>
<pre>debit_map_total_n()</pre>	"x", "sd"	<pre>vignette("debit")</pre>

The factory-made function will also have dots, ..., to pass arguments down to .fun, i.e., the basic mapper function.

Conventions

The name of a function manufactured with function_map_total_n() should mechanically follow from that of the input function. For example, grim_map_total_n() derives from grim_map(). This pattern fits best if the input function itself is named after the test it performs on a data frame, followed by _map: grim_map() applies GRIM, debit_map() applies DEBIT, etc.

Much the same is true for the classes of data frames returned by the manufactured function via the .name_class argument of function_map_total_n(). It should be the function's own name preceded by the name of the package that contains it or by an acronym of that package's name. In this way, existing classes are scr_grim_map_total_n and scr_debit_map_total_n.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. *Psychological Science*, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.11

Wickham, H. (2019). *Advanced R* (Second Edition). CRC Press/Taylor and Francis Group. https://advr.hadley.nz/index.html

See Also

```
disperse_total()
```

Examples

```
# Function definition of `grim_map_total_n()`:
grim_map_total_n <- function_map_total_n(</pre>
  .fun = grim_map,
  .reported = "x",
  .name_test = "GRIM",
  .name_class = "scr_grim_map_total_n"
# Case study of SCHLIM, a new consistency test ------
# (Note: This is a mock test without any real significance.
# Its only purpose is to show the minimal steps necessary
# for implementing a serious consistency test, and to use
# it as a starting point for `function_map_total_n()`.)
# The "SCHLIM test" is analogous to GRIM as implemented
# in scrutiny. This is also true for the function names.
# Note that the analogue to `schlim_scalar()`, a function
# called `grim_scalar()`, is not exported from scrutiny,
# but used internally for `grim()`, `grim_map()`, and,
# indirectly, `grim_map_total_n()`.
# Basic test implementation:
schlim_scalar <- function(y, n) {</pre>
  (y / 3) > n
# This step is not needed below, but
# included for completeness:
schlim <- Vectorize(schlim_scalar)</pre>
# This will be the input function for
# `function_map_total_n()`:
schlim_map <- function_map(</pre>
  .fun = schlim_scalar,
  .reported = c("y", "n"),
  .name_test = "SCHLIM"
)
# Fire up the function factory:
schlim_map_total_n <- function_map_total_n(</pre>
  .fun = schlim_map,
  .reported = "y",
  .name_test = "SCHLIM",
# Create some example data:
df1 <- tibble::tibble(</pre>
 y1 = 16:25,
  y2 = 26:35,
```

grim 33

```
n = 12:21
)
df1

# Call the manufactured function:
out <- schlim_map_total_n(df1)
out

# Summarize the results:
audit_total_n(out)</pre>
```

grim

The GRIM test (granularity-related inconsistency of means)

Description

grim() checks if a reported mean value of integer data is mathematically consistent with the reported sample size and the number of items that compose the mean value.

Set percent to TRUE if x is a percentage. This will convert x to a decimal number and adjust the decimal count accordingly.

The function is vectorized, but it is recommended to use grim_map() for testing multiple cases.

Usage

```
grim(
    x,
    n,
    items = 1,
    percent = FALSE,
    show_rec = FALSE,
    rounding = "up_or_down",
    threshold = 5,
    symmetric = FALSE,
    tolerance = .Machine$double.eps^0.5
)
```

Arguments

x String. The reported mean or percentage value.

n Integer. The reported sample size.

items Numeric. The number of items composing x. Default is 1, the most common

case.

percent Boolean. Set percent to TRUE if x is a percentage. This will convert it to a

decimal number and adjust the decimal count (i.e., increase it by 2). Default is

FALSE.

34 grim

show_re	Boolean. For internal use only. If set to TRUE, the output is a matrix that also contains intermediary values from GRIM-testing. Don't specify this manually; instead, use show_rec in grim_map(). Default is FALSE.
rounding	String. Rounding method or methods to be used for reconstructing the values to which x will be compared. Default is "up_or_down" (from 5).
thresho	Numeric. If rounding is set to "up_from", "down_from", or "up_from_or_down_from" set threshold to the number from which the reconstructed values should then be rounded up or down. Otherwise, this argument plays no role. Default is 5.
symmetr	Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up", "down", "up_from", or "down_from" should mirror that of positive numbers so that their absolute values are always equal. Default is FALSE.
toleran	Numeric. Tolerance of comparison between x and the possible mean or percentage values. Default is circa 0.000000015 (1.490116e-08), as in dplyr::near().

Details

The x values need to be strings because only strings retain trailing zeros, which are as important for the GRIM test as any other decimal digits.

Use restore_zeros() on numeric values (or values that were numeric values at some point) to easily supply the trailing zeros they might once have had. See documentation there.

Browse the source code in the grim.R file. grim() is a vectorized version of the internal grim_scalar() function found there.

Value

Boolean. TRUE if x, n, and items are mutually consistent, FALSE if not.

Rounding

Here are the options for the rounding argument. Reconstructed mean or percentage values can be rounded in either of these ways:

- Rounded to "even" using base R's own round().
- Rounded "up" or "down" from 5. (Note that SAS, SPSS, Stata, Matlab, and Excel round "up" from 5, whereas Python rounds "down" from 5.)
- Rounded "up_from" or "down_from" some number, which then needs to be specified via the threshold argument.
- Given a "ceiling" or "floor" at the respective decimal place.
- Rounded towards zero with "trunc" or away from zero with "anti_trunc". The default, "up_or_down", allows for numbers rounded either "up" or "down" from 5 when GRIM-testing; and likewise for "up_from_or_down_from" and "ceiling_or_floor".

With rounding = "up_or_down", if n is 40 or 80 and x has two decimal places, very few values will test as inconsistent; but note that many will be with either of rounding = "up" and rounding = "down", or indeed with any other rounding method. This is part of a more general pattern: n is 400 or 800 and x has three decimal places, etc.

grimmer 35

For more information about these methods, see documentation for round(), round_up(), and round_ceiling(). These include all of the above ways of rounding. How the reconstructed values are rounded can also be calibrated by the threshold and symmetric arguments.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numerous Anomalies in the Reporting of Results in Psychology. *Social Psychological and Personality Science*, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

See Also

grim_map() applies grim() to any number of cases at once.

Examples

```
# A mean of 5.19 is not consistent with a sample size of 28:
grim(x = "5.19", n = 28)  # `x` in quotes!

# However, it is consistent with a sample size of 32:
grim(x = "5.19", n = 32)

# For a scale composed of two items:
grim(x = "2.84", n = 16, items = 2)

# With percentages instead of means -- here, 71%:
grim(x = "71", n = 43, percent = TRUE)
```

grimmer

The GRIMMER test (granularity-related inconsistency of means mapped to error repeats)

Description

grimmer() checks if reported mean and SD values of integer data are mathematically consistent with the reported sample size and the number of items that compose the mean value. It works much like grim().

The function is vectorized, but it is recommended to use grimmer_map() for testing multiple cases.

Usage

```
grimmer(
    x,
    sd,
    n,
    items = 1,
    show_reason = FALSE,
```

36 grimmer

```
rounding = "up_or_down",
threshold = 5,
symmetric = FALSE,
tolerance = .Machine$double.eps^0.5
```

Arguments

x	String. The reported mean value.
sd	String. The reported standard deviation.
n	Integer. The reported sample size.
items	Numeric. The number of items composing x. Default is 1, the most common case.
show_reason	Boolean. For internal use only. If set to TRUE, the output is a list of length-2 lists which also contain the reasons for inconsistencies. Don't specify this manually; instead, use show_reason in grimmer_map(). Default is FALSE.
rounding	String. Rounding method or methods to be used for reconstructing the values to which x will be compared. Default is "up_or_down" (from 5).
threshold	Numeric. If rounding is set to "up_from", "down_from", or "up_from_or_down_from", set threshold to the number from which the reconstructed values should then be rounded up or down. Otherwise, this argument plays no role. Default is 5.
symmetric	Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up", "down", "up_from", or "down_from" should mirror that of positive numbers so that their absolute values are always equal. Default is FALSE.

Numeric. Tolerance of comparison between x and the possible mean or percent-

age values. Default is circa 0.000000015 (1.490116e-08), as in dplyr::near().

Details

tolerance

GRIMMER was originally devised by Anaya (2016). The present implementation follows Allard's (2018) refined Analytic-GRIMMER (A-GRIMMER) algorithm. It adapts the R function aGrimmer() provided by Allard and modifies it to accord with scrutiny's standards, as laid out in vignette("consistency-tests"), sections 1-2. The resulting grimmer() function, then, is a vectorized version of this basic implementation. For more context and variable name translations, see the top of the R/grimmer.R, the source file.

The present implementation can differ from Allard's in a small number of cases. In most cases, this means that the original flags a value set as inconsistent, but scrutiny's grimmer*() functions don't. For details, see the end of tests/testthat/test-grimmer.R, the grimmer() test file.

Value

Boolean. TRUE if x, sd, n, and items are mutually consistent, FALSE if not.

grimmer_map 37

References

Allard, A. (2018). Analytic-GRIMMER: a new way of testing the possibility of standard deviations. https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/

Anaya, J. (2016). The GRIMMER test: A method for testing the validity of reported measures of variability. *PeerJ Preprints*. https://peerj.com/preprints/2400v1/

Examples

```
# A mean of 5.23 is not consistent with an SD of 2.55
# and a sample size of 35:
grimmer(x = "5.23", sd = "2.55", n = 35)
# However, mean and SD are consistent with a
# sample size of 31:
grimmer(x = "5.23", sd = "2.55", n = 31)
# For a scale composed of two items:
grimmer(x = "2.74", sd = "0.96", n = 63, items = 2)
```

grimmer_map

GRIMMER-test many cases at once

Description

Call grimmer_map() to GRIMMER-test any number of combinations of mean, standard deviation, sample size, and number of items. Mapping function for GRIMMER-testing.

For summary statistics, call audit() on the results. Visualize results using grim_plot(), as with GRIM results.

Usage

```
grimmer_map(
  data,
  items = 1,
  merge_items = TRUE,
  x = NULL,
  sd = NULL,
  n = NULL,
  show_reason = TRUE,
  rounding = "up_or_down",
  threshold = 5,
  symmetric = FALSE,
  tolerance = .Machine$double.eps^0.5
```

38 grimmer_map

Arguments

data	Data frame with columns x , sd, n, and optionally items (see documentation for $grim()$). Any other columns in data will be returned alongside GRIMMER test results.
items	Integer. If there is no items column in data, this specifies the number of items composing the x values. Default is 1, the most common case.
merge_items	Boolean. If TRUE (the default), there will be no items column in the output. Instead, values from an items column or argument will be multiplied with values in the n column. This does not affect GRIM- or GRIMMER-testing.
x, sd, n	Optionally, specify these arguments as column names in data.
show_reason	Boolean (length 1). Should there be a reason column that shows the reasons for inconsistencies (and NA for consistent values)? Default is FALSE.
nounding threehold summetrie televanes	

rounding, threshold, symmetric, tolerance

Further parameters of GRIMMER-testing; see documentation for grimmer().

Value

A tibble with these columns -

- x, sd, n: the inputs.
- consistency: GRIMMER consistency of x, n, and items.
- <extra>: any columns from data other than x, n, and items.

The tibble has the scr_grimmer_map class, which is recognized by the audit() generic. It also has the scr_grim_map class, so it can be visualized by grim_plot().

Summaries with audit()

There is an S3 method for audit(), so you can call audit() following grimmer_map() to get a summary of grimmer_map()'s results. It is a tibble with a single row and these columns –

- 1. incons_cases: number of GRIMMER-inconsistent value sets.
- 2. all_cases: total number of value sets.
- 3. incons_rate: proportion of GRIMMER-inconsistent value sets.
- 4. fail_grim: number of value sets that fail the GRIM test.
- 5. fail_test1: number of value sets that fail the first GRIMMER test (sum of squares is a whole number)
- 6. fail_test2: number of value sets that fail the second GRIMMER test (matching SDs)
- 7. fail_test3: number of value sets that fail the third GRIMMER test (equal parity)

References

Allard, A. (2018). Analytic-GRIMMER: a new way of testing the possibility of standard deviations. https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/

Anaya, J. (2016). The GRIMMER test: A method for testing the validity of reported measures of variability. *PeerJ Preprints*. https://peerj.com/preprints/2400v1/

grimmer_map_seq 39

Examples

```
# Use `grimmer_map()` on data like these:
pigs5

# The `consistency` column shows whether
# the values to its left are GRIMMER-consistent.
# If they aren't, the `reason` column says why:
pigs5 %>%
   grimmer_map()

# Get summaries with `audit()`:
pigs5 %>%
   grimmer_map() %>%
   audit()
```

grimmer_map_seq

GRIMMER-testing with dispersed inputs

Description

grimmer_map_seq() performs GRIMMER-testing with values surrounding the input values. This provides an easy and powerful way to assess whether small errors in computing or reporting may be responsible for GRIMMER-inconsistencies in published statistics.

Call audit_seq() on the results for summary statistics.

Usage

```
grimmer_map_seq(
  data,
  x = NULL,
  sd = NULL,
  n = NULL,
  var = .var,
  dispersion = .dispersion,
  out_min = .out_min,
  out_max = .out_max,
  include_reported = .include_reported,
  include_consistent = .include_consistent,
  ...
)
```

Arguments

```
A data frame that grimmer_map() could take.

x, sd, n

Optionally, specify these arguments as column names in data.

var

String. Names of the columns that will be dispersed. Default is c("x", "sd", "n").
```

40 grimmer_map_seq

dispersion

Numeric. Sequence with steps up and down from the var inputs. It will be adjusted to these values' decimal levels. For example, with a reported 8.34, the step size is 0.01. Default is 1:5, for five steps up and down.

out_min, out_max

If specified, output will be restricted so that it's not below out_min or above out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal unit above zero; and NULL for out_max, i.e., no maximum.

include_reported

Boolean. Should the reported values themselves be included in the sequences originating from them? Default is FALSE because this might be redundant and bias the results.

include_consistent

Boolean. Should the function also process consistent cases (from among those reported), not just inconsistent ones? Default is FALSE because the focus should be on clarifying inconsistencies.

... Arguments passed down to grimmer_map().

Value

A tibble (data frame) with detailed test results.

Summaries with audit_seq()

You can call audit_seq() following grimmer_map_seq(). It will return a data frame with these columns:

- x, sd, and n are the original inputs, tested for consistency here.
- hits_total is the total number of GRIMMER-consistent value sets found within the specified dispersion range.
- hits_x is the number of GRIMMER-consistent value sets found by varying x.
- Accordingly with sd and hits_sd as well as n and hits_n.
- (Note that any consistent reported cases will be counted by the hits_* columns if both include_reported and include_consistent are set to TRUE.)
- diff_x reports the absolute difference between x and the next consistent dispersed value (in dispersion steps, not the actual numeric difference). diff_x_up and diff_x_down report the difference to the next higher or lower consistent value, respectively.
- diff_sd, diff_sd_up, and diff_sd_down do the same for sd.
- Likewise with diff_n, diff_n_up, and diff_n_down.

grimmer_map_total_n

GRIMMER-testing with hypothetical group sizes

Description

When reporting group means, some published studies only report the total sample size but no group sizes corresponding to each mean. However, group sizes are crucial for GRIMMER-testing.

In the two-groups case, grimmer_map_total_n() helps in these ways:

- It creates hypothetical group sizes. With an even total sample size, it incrementally moves up and down from half the total sample size. For example, with a total sample size of 40, it starts at 20, goes on to 19 and 21, then to 18 and 22, etc. With odd sample sizes, it starts from the two integers around half.
- It GRIMMER-tests all of these values together with the group means.
- It reports all the scenarios in which both "dispersed" hypothetical group sizes are GRIMMER-consistent with the group means.

All of this works with one or more total sample sizes at a time. Call audit_total_n() for summary statistics.

Usage

```
grimmer_map_total_n(
  data,
  x1 = NULL,
  x2 = NULL,
  sd1 = NULL,
  sd2 = NULL,
  dispersion = .dispersion,
  n_min = .n_min,
  n_max = .n_max,
  constant = .constant,
  constant_index = .constant_index,
  ...
)
```

Arguments

data

Data frame with string columns x1, x2, sd1, and sd2, as well as numeric column n. The first two are reported group means. sd1 and sd2 are reported group SDs. n is the reported total sample size. It is not very important whether a value is in x1 or in x2 because, after the first round of tests, the function switches roles between x1 and x2, and reports the outcomes both ways. The same applies to sd1 and sd2. However, do make sure the x* and sd* values are paired accurately, as reported.

```
x1, x2, sd1, sd2
```

Optionally, specify these arguments as column names in data.

42 grimmer_map_total_n

Numeric. Steps up and down from half the n values. Default is 0:5, i.e., half n itself followed by five steps up and down.

Numeric. Minimal group size. Default is 1.

Numeric. Maximal group size. Default is NULL, i.e., no maximum.

Optionally, add a length-2 vector or a list of length-2 vectors (such as a data frame with exactly two rows) to accompany the pairs of dispersed values. Default is NULL, i.e., no constant values.

constant_index Integer (length 1). Index of constant or the first constant column in the output tibble. If NULL (the default), constant will go to the right of n_change.

Arguments passed down to grimmer_map().

Value

A tibble with these columns:

- x, the group-wise reported input statistic, is repeated in row pairs.
- n is dispersed from half the input n, with n_change tracking the differences.
- both_consistent flags scenarios where both reported x values are consistent with the hypothetical n values.
- case corresponds to the row numbers of the input data frame.
- dir is "forth" in the first half of rows and "back" in the second half. "forth" means that x2 from the input is paired with the larger dispersed n, whereas "back" means that x1 is paired with the larger dispersed n.
- Other columns from grimmer_map() are preserved

Summaries with audit_total_n()

You can call audit_total_n() following up on grimmer_map_total_n() to get a tibble with summary statistics. It will have these columns:

- x1, x2, sd1, sd2, and n are the original inputs.
- hits_total is the number of scenarios in which all of x1, x2, sd1, and sd2 are GRIMMER-consistent. It is the sum of hits_forth and hits_back below.
- hits_forth is the number of both-consistent cases that result from pairing x2 and sd2 with the larger dispersed n value.
- hits_back is the same, except x1 and sd1 are paired with the larger dispersed n value.
- scenarios_total is the total number of test scenarios, whether or not both x1 and sd1 as well as x2 and sd2 are GRIMMER-consistent.
- hit_rate is the ratio of hits_total to scenarios_total.

grim_granularity 43

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. *Psychological Science*, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.11 Allard, A. (2018). Analytic-GRIMMER: a new way of testing the possibility of standard deviations. https://aurelienallard.netlify.app/post/anaytic-grimmer-possibility-standard-deviations/

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. *Psychological Science*, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.11

See Also

function_map_total_n(), which created the present function using grimmer_map().

Examples

```
# Run `grimmer_map_total_n()` on data like these:
df <- tibble::tribble(</pre>
 ~x1, ~x2, ~sd1,
                           ~sd2,
                                    ~n,
 "3.43", "5.28", "1.09", "2.12", 70, 
"2.97", "4.42", "0.43", "1.65", 65
)
df
grimmer_map_total_n(df)
# `audit_total_n()` summaries can be more important than
# the detailed results themselves.
# The `hits_total` column shows all scenarios in
# which both divergent `n` values are GRIMMER-consistent
# with the `x*` values when paired with them both ways:
 grimmer_map_total_n() %>%
 audit_total_n()
# By default ('dispersion = 0:5'), the function goes
# five steps up and down from `n`. If this sequence
# gets longer, the number of hits tends to increase:
 grimmer_map_total_n(dispersion = 0:10) %>%
 audit_total_n()
```

grim_granularity

Granularity of non-continuous scales

Description

grim_granularity() computes the minimal difference between two means or proportions of ordinal or interval data.

grim_items() is the reverse: It converts granularity values to the number of scale items, which might then be used for consistency testing functions such as grim().

44 grim_granularity

Usage

```
grim_granularity(n, items = 1)
grim_items(n, gran, tolerance = .Machine$double.eps^0.5)
```

Arguments

n Numeric. Sample size.

items Numeric. Number of items composing the scale. Default is 1, which will hold

for most non-Likert scales.

gran Numeric. Granularity.

tolerance Numeric. In grim_items(), tolerance is the maximal amount by which results

may differ from being whole numbers. If they exceed that amount, a warning

will be shown.

Details

These two functions differ only in the names of their arguments — the underlying formula is the same (and it's very simple). However, for clarity, they are presented as distinct.

The output of grim_items() should be whole numbers, because scale items have a granularity of 1. If they differ from the next whole number by more than a numeric tolerance (which is determined by the argument by that name), a warning will be shown.

It would be wrong to determine a scale's granularity from the minimal distance between two values in a given distribution. This would only signify how those values actually do differ, not how they *can* differ *a priori* based on scale design. Also, keep in mind that continuous scales have no granularity at all.

Value

Numeric. Granularity or number of items.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numerous Anomalies in the Reporting of Results in Psychology. *Social Psychological and Personality Science*, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

Examples

```
# If a non-Likert scale ranges from 0 to 3
# and measures 16 cases:
grim_granularity(n = 16)  # `items = 1` by default
# Same but Likert scale with 2 items:
grim_granularity(n = 16, items = 2)
# If a scale is applied to a single case
# and has a granularity of 0.5:
```

grim_map 45

```
grim_items(n = 1, gran = 0.5)

# With more cases, a warning appears
# because items can only be whole numbers:
grim_items(n = c(10, 15, 20), gran = 0.5)
```

grim_map

GRIM-test many cases at once

Description

Call grim_map() to GRIM-test any number of combinations of mean/proportion, sample size, and number of items. Mapping function for GRIM-testing.

Set percent to TRUE if the x values are percentages. This will convert x values to decimals and adjust the decimal count accordingly.

Display intermediary numbers from GRIM-testing in columns by setting show_rec to TRUE.

For summary statistics, call audit() on the results.

Usage

```
grim_map(
 data,
  items = 1,
 merge_items = TRUE,
 percent = FALSE,
 x = NULL,
 n = NULL,
  show_rec = FALSE,
  show_prob = FALSE,
  rounding = "up_or_down",
  threshold = 5,
  symmetric = FALSE,
  tolerance = .Machine$double.eps^0.5,
  testables_only = FALSE,
  extra = Inf
)
```

Arguments

data	Data frame with columns x, n, and optionally items (see documentation for grim(). By default, any other columns in data will be returned alongside GRIM test results (see extra below).
items	Integer. If there is no items column in data, this specifies the number of items composing the x values. Default is 1, the most common case.
merge_items	Boolean. If TRUE (the default), there will be no items column in the output. Instead, values from an items column or argument will be multiplied with values in the n column. This does not affect GRIM-testing.

46 grim_map

percent Boolean. Set percent to TRUE if the x values are percentages. This will convert them to decimal numbers and adjust the decimal count (i.e., increase it by 2). It

also affects the ratio column. Default is FALSE.

x, n Optionally, specify these arguments as column names in data.

show_rec Boolean. If set to TRUE, the reconstructed numbers from GRIM-testing are

shown as columns. See section Reconstructed numbers below. Default is FALSE.

show_prob Boolean. If set to TRUE, adds a prob column that contains the probability of

GRIM inconsistency. This is simply the ratio column censored to range be-

tween 0 and 1. Default is FALSE.

rounding, threshold, symmetric, tolerance

Further parameters of GRIM-testing; see documentation for grim().

testables_only Boolean. If testables_only is set to TRUE, only GRIM-testable cases (i.e.,

those with a positive GRIM ratio) are included. Default is FALSE.

extra String or integer. The other column(s) from data to be returned in the output

tibble alongside test results, referenced by their name(s) or number(s). Default is Inf, which returns all columns. To return none of them, set extra to 0.

Value

A tibble with these columns -

- x, n: the inputs.
- consistency: GRIM consistency of x, n, and items.
- <extra>: any columns from data other than x, n, and items.
- ratio: the GRIM ratio; see grim_ratio().

The tibble has the scr_grim_map class, which is recognized by the audit() generic.

Reconstructed numbers

If show_rec is set to TRUE, the output includes the following additional columns:

- rec_sum: the sum total from which the mean or proportion was ostensibly derived.
- rec_x_upper: the upper reconstructed x value.
- rec_x_lower: the lower reconstructed x value.
- rec_x_upper_rounded: the rounded rec_x_upper value.
- rec_x_lower_rounded: the rounded rec_x_lower value.

With the default for rounding, "up_or_down", each of the last two columns is replaced by two columns that specify the rounding procedures (i.e., "_up" and "_down").

Summaries with audit()

There is an S3 method for audit(), so you can call audit() following grim_map() to get a summary of grim_map()'s results. It is a tibble with a single row and these columns –

1. incons_cases: number of GRIM-inconsistent value sets.

grim_map_seq 47

- 2. all_cases: total number of value sets.
- 3. incons_rate: proportion of GRIM-inconsistent value sets.
- 4. mean_grim_ratio: average of GRIM ratios.
- 5. incons_to_ratio: ratio of incons_rate to mean_grim_ratio.
- 6. testable_cases: number of GRIM-testable value sets (i.e., those with a positive ratio).
- 7. testable_rate: proportion of GRIM-testable value sets.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numerous Anomalies in the Reporting of Results in Psychology. *Social Psychological and Personality Science*, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

Examples

```
# Use `grim_map()` on data like these:
pigs1

# The `consistency` column shows
# whether the values to its left
# are GRIM-consistent:
pigs1 %>%
    grim_map()

# Display intermediary numbers from
# GRIM-testing with `show_rec = TRUE`:
pigs1 %>%
    grim_map(show_rec = TRUE)

# Get summaries with `audit()`:
pigs1 %>%
    grim_map() %>%
    audit()
```

grim_map_seq

GRIM-testing with dispersed inputs

Description

grim_map_seq() performs GRIM-testing with values surrounding the input values. This provides an easy and powerful way to assess whether small errors in computing or reporting may be responsible for GRIM-inconsistencies in published statistics.

Call audit_seq() on the results for summary statistics.

48 grim_map_seq

Usage

```
grim_map_seq(
  data,
  x = NULL,
  n = NULL,
  var = .var,
  dispersion = .dispersion,
  out_min = .out_min,
  out_max = .out_max,
  include_reported = .include_reported,
  include_consistent = .include_consistent,
  ...
)
```

Arguments

data A data frame that grim_map() could take.

x, n Optionally, specify these arguments as column names in data.

var String. Names of the columns that will be dispersed. Default is c("x", "n").

dispersion Numeric. Sequence with steps up and down from the var inputs. It will be

adjusted to these values' decimal levels. For example, with a reported 8.34, the step size is 0.01. Default is 1:5, for five steps up and down.

out_min, out_max

If specified, output will be restricted so that it's not below out_min or above out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal unit above zero; and NULL for out_max, i.e., no maximum.

include_reported

Boolean. Should the reported values themselves be included in the sequences originating from them? Default is FALSE because this might be redundant and bias the results.

include_consistent

Boolean. Should the function also process consistent cases (from among those reported), not just inconsistent ones? Default is FALSE because the focus should be on clarifying inconsistencies.

.. Arguments passed down to grim_map().

Value

A tibble (data frame) with detailed test results.

Summaries with audit_seq()

You can call audit_seq() following grim_map_seq(). It will return a data frame with these columns:

• x and n are the original inputs, tested for consistency here.

grim_map_total_n 49

• hits_total is the total number of GRIM-consistent value sets found within the specified dispersion range.

- hits_x is the number of GRIM-consistent value sets found by varying x.
- Accordingly with n and hits_n.
- (Note that any consistent reported cases will be counted by the hits_* columns if both include_reported and include_consistent are set to TRUE.)
- diff_x reports the absolute difference between x and the next consistent dispersed value (in dispersion steps, not the actual numeric difference). diff_x_up and diff_x_down report the difference to the next higher or lower consistent value, respectively.
- diff_n, diff_n_up, and diff_n_down do the same for n.

Examples

```
# `grim_map_seq()` can take any input
# that `grim_map()` can take:
pigs1

# All the results:
out <- grim_map_seq(pigs1, include_consistent = TRUE)
out

# Case-wise summaries with `audit_seq()`
# can be more important than the raw results:
audit_seq(out)</pre>
```

grim_map_total_n

GRIM-testing with hypothetical group sizes

Description

When reporting group means, some published studies only report the total sample size but no group sizes corresponding to each mean. However, group sizes are crucial for GRIM-testing.

In the two-groups case, grim_map_total_n() helps in these ways:

- It creates hypothetical group sizes. With an even total sample size, it incrementally moves up and down from half the total sample size. For example, with a total sample size of 40, it starts at 20, goes on to 19 and 21, then to 18 and 22, etc. With odd sample sizes, it starts from the two integers around half.
- It GRIM-tests all of these values together with the group means.
- It reports all the scenarios in which both "dispersed" hypothetical group sizes are GRIM-consistent with the group means.

All of this works with one or more total sample sizes at a time. Call audit_total_n() for summary statistics.

grim_map_total_n

Usage

```
grim_map_total_n(
  data,
  x1 = NULL,
  x2 = NULL,
  dispersion = .dispersion,
  n_min = .n_min,
  n_max = .n_max,
  constant = .constant,
  constant_index = .constant_index,
  ...
)
```

Arguments

data	Data frame with string columns x1 and x2, and numeric column n. The first two are group mean or percentage values with unknown group sizes, and n is the total sample size. It is not very important whether a value is in x1 or in x2 because, after the first round of tests, the function switches roles between x1 and x2, and reports the outcomes both ways.
x1, x2	Optionally, specify these arguments as column names in data.
dispersion	Numeric. Steps up and down from half the n values. Default is $0:5$, i.e., half n itself followed by five steps up and down.
n_min	Numeric. Minimal group size. Default is 1.
n_max	Numeric. Maximal group size. Default is NULL, i.e., no maximum.
constant	Optionally, add a length-2 vector or a list of length-2 vectors (such as a data frame with exactly two rows) to accompany the pairs of dispersed values. Default is NULL, i.e., no constant values.
constant_index	Integer (length 1). Index of constant or the first constant column in the output tibble. If NULL (the default), constant will go to the right of n_change.
	Arguments passed down to grim_map().

Value

A tibble with these columns:

- x, the group-wise reported input statistic, is repeated in row pairs.
- n is dispersed from half the input n, with n_change tracking the differences.
- both_consistent flags scenarios where both reported x values are consistent with the hypothetical n values.
- case corresponds to the row numbers of the input data frame.
- dir is "forth" in the first half of rows and "back" in the second half. "forth" means that x2 from the input is paired with the larger dispersed n, whereas "back" means that x1 is paired with the larger dispersed n.
- Other columns from grim_map() are preserved.

grim_map_total_n 51

Summaries with audit_total_n()

You can call audit_total_n() following up on grim_map_total_n() to get a tibble with summary statistics. It will have these columns:

- x1, x2, and n are the original inputs.
- hits_forth is the number of scenarios in which both x1 and x2 are GRIM-consistent with the dispersed n values when x2 is paired with the larger dispersed n.
- hits_back is the same, except x1 is paired with the larger dispersed n value.
- hits_total is the sum of hits_forth and hits_back, i.e., the total number of both-consistent scenarios.
- scenarios_total is the total number of test scenarios, whether or not both x1 and x2 are consistent.
- hit_rate is the ratio of hits_total to scenarios_total.

References

Bauer, P. J., & Francis, G. (2021). Expression of Concern: Is It Light or Dark? Recalling Moral Behavior Changes Perception of Brightness. *Psychological Science*, 32(12), 2042–2043. https://journals.sagepub.com/doi/10.11 Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numer-

ous Anomalies in the Reporting of Results in Psychology. *Social Psychological and Personality Science*, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

See Also

function_map_total_n(), which created the present function using grim_map().

Examples

```
# Run `grim_map_total_n()` on data like these:
df <- tibble::tribble(</pre>
  ~x1, ~x2, ~n,
  "3.43", "5.28", 90,
  "2.97", "4.42", 103
)
df
grim_map_total_n(df)
# `audit_total_n()` summaries can be more important than
# the detailed results themselves.
# The `hits_total` column shows all scenarios in
# which both divergent `n` values are GRIM-consistent
# with the `x*` values when paired with them both ways:
df %>%
  grim_map_total_n() %>%
  audit_total_n()
# By default ('dispersion = 0:5'), the function goes
# five steps up and down from `n`. If this sequence
```

52 grim_plot

```
# gets longer, the number of hits tends to increase:
df %>%
  grim_map_total_n(dispersion = 0:10) %>%
  audit_total_n()
```

grim_plot

Visualize GRIM test results

Description

grim_plot() visualizes summary data and their mutual GRIM consistency. Call this function only on a data frame that resulted from a call to grim_map().

Consistent and inconsistent value pairs from the input data frame are shown in distinctive colors. By default, consistent value pairs are blue and inconsistent ones are red. These and other parameters of the underlying geoms can be controlled via arguments.

The background raster follows the rounding argument from the grim_map() call (unless any of the plotted mean or proportion values has more than 2 decimal places, in which case a gradient is shown, not a raster).

Usage

```
grim_plot(
  data = NULL,
  show_data = TRUE,
  show_gradient = TRUE,
  n = NULL,
  digits = NULL,
  rounding = "up_or_down",
  color_cons = "royalblue1",
  color_incons = "red",
  tile_alpha = 1,
  tile_size = 1.5,
  raster_alpha = 1,
  raster_color = "grey75"
)
```

Arguments

data Data frame. Result of a call to grim_map().

show_data Boolean. If set to FALSE, test results from the data are not displayed. Choose

this if you only want to show the background raster. You can then control plot parameters directly via the n, digits, and rounding arguments. Default is

TRUE.

show_raster Boolean. If TRUE (the default), the plot has a background raster.

grim_plot 53

show_gradient Boolean. If the number of decimal places is 3 or greater, should a gradient be

shown to signal the overall probability of GRIM inconsistency? Default is TRUE.

n Integer. Maximal value on the x-axis. Default is NULL, in which case n becomes

10 ^ digits (e.g., 100 if digits is 2).

digits Integer. Only relevant if show_data is set to FALSE. The plot will then be con-

structed as it would be for data where all x values have this many decimal places.

Default is 2.

rounding String. Only relevant if show_data is set to FALSE. The plot will then be con-

structed as it would be for data rounded in this particular way. Default is

"up_or_down".

color_cons, color_incons

Strings. Fill colors of the consistent and inconsistent scatter points. Defaults are

"royalblue1" (consistent) and "red" (inconsistent).

tile_alpha, tile_size

Numeric. Further parameters of the scatter points: opacity and, indirectly, size.

Defaults are 1 and 1.5.

raster_alpha, raster_color

Numeric and string, respectively. Parameters of the background raster: opacity

and fill color. Defaults are 1 and "grey75".

Value

A ggplot object.

Background raster

The background raster shows the probability of GRIM-inconsistency for random means or proportions, from 0 (all inconsistent) to the greatest number on the x-axis (all consistent). If the number of decimal places in the inputs – means or percentages – is 3 or greater, individual points would be too small to display. In these cases, there will not be a raster but a gradient, showing the overall trend.

As any raster only makes sense with respect to one specific number of decimal places, the function will throw an error if these numbers differ among input x values (and show_raster is TRUE). You can avoid the error and force plotting by specifying digits as the number of decimal places for which the raster or gradient should be displayed.

For 1 or 2 decimal places, the raster will be specific to the rounding procedure. As the raster varies by rounding procedure, it will automatically correspond to the rounding argument specified in the preceding grim_map() call. This works fast because the raster is based on data saved in the package itself, so these data don't need to be generated anew every time the function is called. Inconsistent value sets are marked with dark boxes. All other places in the raster denote consistent value sets. The raster is independent of the data – it only follows the rounding specification in the grim_map() call and the digits argument in grim_plot().

Display an "empty" plot, one without empirical test results, by setting show_data to FALSE. You can then control key parameters of the plot with digits and rounding.

With grim_map()'s default for rounding, "up_or_down", strikingly few values are flagged as inconsistent for sample sizes 40 and 80 (or 4 and 8). This effect disappears if rounding is set to any other value. For a list of values that rounding can take, see documentation for grim(), section Rounding.

54 grim_total

The 4/8 leniency effect arises because accepting values rounded either up or down is more careful and conservative than any other rounding procedure. In any case, grim_plot() doesn't cause this effect — it only reveals it.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numerous Anomalies in the Reporting of Results in Psychology. *Social Psychological and Personality Science*, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

Examples

```
# Call `grim_plot()` following `grim_map()`:
pigs1 %>%
  grim_map() %>%
  grim_plot()
# If you change the rounding procedure
# in `grim_map()`, the plot will
# follow automatically if there is
# a difference:
pigs1 %>%
  grim_map(rounding = "ceiling") %>%
  grim_plot()
# For percentages, the y-axis
# label also changes automatically:
pigs2 %>%
  grim_map(percent = TRUE) %>%
  grim_plot()
```

grim_total

Count possible GRIM inconsistencies

Description

Count the GRIM-inconsistencies that are possible given the mean or percentage's number of decimal places (D) and the corresponding sample size.

grim_total() returns the absolute number. grim_ratio() returns a proportion that is normalized by 10^D and therefore comparable across mean or percentage values reported to varying D.

Usage

```
grim_total(x, n, items = 1, percent = FALSE)
grim_ratio(x, n, items = 1, percent = FALSE)
```

grim_total 55

Arguments

х	String or numeric. Mean or percentage value computed from data with inte-
	ger units (e.g., mean scores on a Likert scale or percentage of study partic-
	ipants in some condition). Note: Numeric inputs don't include trailing ze-
	ros, although these are important for both functions. See documentation for
	<pre>decimal_places().</pre>

n Integer. Sample size corresponding to x.

items Integer. Number of items composing the mean or percentage value in question.

Default is 1.

percent Boolean. Set percent to TRUE if x is expressed as a proportion of 100 rather than

1. The functions will then account for this fact through increasing the decimal

count by 2. Default is FALSE.

Value

Integer or numeric. The number or proportion of possible GRIM inconsistencies.

References

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects Numerous Anomalies in the Reporting of Results in Psychology. *Social Psychological and Personality Science*, 8(4), 363–369. https://journals.sagepub.com/doi/10.1177/1948550616673876

See Also

grim() for the GRIM test itself; as well as grim_map() for applying it to multiple cases at once.

Examples

```
# Many value sets are inconsistent here:
grim_total(x = "83.29", n = 21)
grim_ratio(x = "83.29", n = 21)

# No sets are inconsistent in this case...
grim_total(x = "5.14", n = 83)
grim_ratio(x = "5.14", n = 83)

# ... but most would be if `x` was a percentage:
grim_total(x = "5.14", n = 83, percent = TRUE)
grim_ratio(x = "5.14", n = 83, percent = TRUE)
```

is_seq_linear

is_seq_linear

Is a vector a certain kind of sequence?

Description

Predicate functions that test whether x is a numeric vector (or coercible to numeric) with some special properties:

- is_seq_linear() tests whether every two consecutive elements of x differ by some constant amount.
- is_seq_ascending() and is_seq_descending() test whether the difference between every two consecutive values is positive or negative, respectively. is_seq_dispersed() tests whether x values are grouped around a specific central value, from, with the same distance to both sides per value pair. By default (test_linear = TRUE), these functions also test for linearity, like is_seq_linear().

NA elements of x are handled in a nuanced way. See *Value* section here and the examples in vignette("infrastructure"), section *NA handling*.

Usage

```
is_seq_linear(x, tolerance = .Machine$double.eps^0.5)
is_seq_ascending(x, test_linear = TRUE, tolerance = .Machine$double.eps^0.5)
is_seq_descending(x, test_linear = TRUE, tolerance = .Machine$double.eps^0.5)
is_seq_dispersed(
    x,
    from,
    test_linear = TRUE,
    tolerance = .Machine$double.eps^0.5
)
```

Arguments

X	Numeric or coercible to numeric. Vector to be tested.
tolerance	Numeric. Tolerance of comparison between numbers such as the difference between individual x values and the minimal difference in linearity testing. Default is circa 0.000000015 (1.490116e-08), as in dplyr::near().
test_linear	Boolean. Should x be tested for linearity, as in $is_seq_linear()$? Default is TRUE.
from	Numeric or coercible to numeric. Only in is_seq_dispersed(). It will test whether from is at the center of x, and if every pair of other values is equidistant to it.

is_subset_of 57

Value

Boolean. If x contains at least one NA value, the functions return NA or FALSE, depending on the context:

- If all elements of x are NA, the functions return NA.
- If some but not all elements are NA, they check if x *might* be a linear sequence; i.e., if it is linear after the NAs were replaced by appropriate values. If so, they return NA; otherwise, they return FALSE.

See Also

validate::is_linear_sequence(), which is much like is_seq_linear() but more permissive with NA values. It comes with some other features, such as support for date-times.

Examples

```
# These are linear sequences...
is\_seq\_linear(x = 3:7)
is\_seq\_linear(x = c(3:7, 8))
# ...but this isn't:
is\_seq\_linear(x = c(3:7, 9))
# All other `is_seq_*()` functions
# test for linearity by default
# besides conducting their
# individual tests:
is\_seq\_ascending(x = c(1, 2, 5))
is\_seq\_ascending(x = c(1, 2, 5), test\_linear = FALSE)
is\_seq\_descending(x = c(9, 7, 2))
is\_seq\_descending(x = c(9, 7, 2), test\_linear = FALSE)
is\_seq\_dispersed(x = c(2, 3, 5, 7, 8), from = 5)
is_seq_dispersed(x = c(2, 3 ,5, 7, 8), from = 5, test_linear = FALSE)
# These fail the respective
# individual test even
# without linearity testing:
is\_seq\_ascending(x = c(1, 7, 4), test\_linear = FALSE)
is\_seq\_descending(x = c(9, 15, 3), test\_linear = FALSE)
is_seq_dispersed(1:10, from = 5, test_linear = FALSE)
```

58 is_subset_of

Description

Predicate functions that take a vector and test whether it has some particular relation to another vector. That second vector is entered in either of three ways –

Enter it directly (basic functions):

is_subset_of() tests if a vector is a subset of another vector; i.e., if all its elements are contained in the second one. is_superset_of() does the reverse: It tests if the first vector contains all elements of the second one. is_equal_set() tests if both vectors have exactly the same values.

Enter its values:

is_subset_of_vals(), is_superset_of_vals(), and is_equal_set_vals() are variants that each take a single vector plus any number of other arguments. These are treated like elements of the second vector in the basic functions above.

Enter multiple vectors that jointly contain its values:

Finally, is_subset_of_vecs(), is_superset_of_vecs(), and is_equal_set_vecs() take one vector plus any number of other vectors and treat their elements (!) like elements of a second vector in the basic functions above.

Each is_subset*() function has an is_proper_subset*() variant. These variants also test whether the sets are unequal, so that x is a subset of y but y is not a subset of x. The same applies to is_superset*() functions and their is_proper_superset*() variants.

Usage

```
is_subset_of(x, y)
is_superset_of(x, y)
is_equal_set(x, y)
is_proper_subset_of(x, y)
is_proper_superset_of(x, y)
is_subset_of_vals(x, ...)
is_superset_of_vals(x, ...)
is_equal_set_vals(x, ...)
is_proper_subset_of_vals(x, ...)
is_proper_subset_of_vals(x, ...)
is_proper_superset_of_vals(x, ...)
is_subset_of_vecs(x, ...)
is_superset_of_vecs(x, ...)
```

is_subset_of 59

```
is_proper_subset_of_vecs(x, ...)
is_proper_superset_of_vecs(x, ...)
```

Arguments

```
    A vector.
    A vector. Only in the basic functions, not those with *_vals() or *_vecs().
    In the *_vals() functions, any number of values x might contain; in the *_vecs() functions, any number of vectors the elements of which x might contain.
```

Details

The *_vals() variants are meant for flexible, interactive subset/superset testing. That is, in order to test whether certain values collectively fulfill the role of the second vector, you can just add them to the function call.

The *_vecs() variants likewise offer flexibility, but also bridge the gap between vectors and values contained in them.

All functions simply check if values are present, regardless of how often a value occurs. In other words, they look for types but don't count tokens.

Value

A single Boolean value. TRUE if the respective test was passed, FALSE otherwise.

Examples

```
# Define example vectors:
ab <- c("a", "b")
abc <- c("a", "b", "c")
abcde <- c("a", "b", "c", "d", "e")
# `is_subset_of()` tests if a vector is
# completely covered by another one:
abc %>% is_subset_of(ab)
abc %>% is_subset_of(abc)
abc %>% is_subset_of(abcde)
# To the contrary, `is_superset_of()` tests if the
# first vector completely covers the second one:
abc %>% is_superset_of(ab)
abc %>% is_superset_of(abc)
abc %>% is_superset_of(abcde)
# `is_equal_set()` tests both of the above --
# i.e., if both vectors have exactly the
# same values:
abc %>% is_equal_set(ab)
abc %>% is_equal_set(abc)
```

60 manage_helper_col

```
abc %>% is_equal_set(abcde)

# Each of the three functions has a `*_vals()` variant
# that doesn't take a second vector like the first
# one, but any number of other arguments. These are
# jointly treated like the elements of the second
# vector in the basic functions:
abc %>% is_subset_of_vals("a", "b")
abc %>% is_subset_of_vals("a", "b", "c")
abc %>% is_subset_of_vals("a", "b", "c", "d", "e")

# (... and likewise for supersets and equal sets.)
```

manage_helper_col

Helper column operations

Description

If your consistency test mapper function supports helper columns, call manage_helper_col() internally; once for every such column. It will check whether a helper column is compatible with its eponymous argument, i.e., if the argument was not specified by the user but has its default value.

By default (affix = TRUE), the function will add the column to the mapper's input data frame. It returns the input data frame, so reassign its output to that variable.

All of this only works in mapper functions that were "handwritten" using function(), as opposed to those produced by function_map(). See vignette("consistency-tests"), section *Writing mappers manually*.

Usage

```
manage_helper_col(data, var_arg, default, affix = TRUE)
```

Arguments

data	The data frame that is the mapper function's first argument.
var_arg	The argument to the mapper function that has the same name as the helper column you want to manage.
default	The default for the argument that was specified in var_arg.
affix	Boolean (length 1). If data doesn't include the helper column already, should var_arg be added to data, bearing its proper name? Default is TRUE.

Value

The input data frame, data, possibly modified (see affix argument).

manage_key_colnames

manage_key_colnames

Enable name-independent key column identification

Description

A handwritten mapper function for consistency tests, such as grim_map(), may include arguments named after the key columns in its input data frame. When such an argument is specified by the user as a column name of the input data frame, it identifies a differently-named column as that key column.

Create such functionality in three steps:

- 1. Add arguments to your mapper function named after the respective key columns. They should be NULL by default; e.g., x = NULL, n = NULL.
- 2. Within the mapper, capture the user input by quoting it using rlang::enexpr(). Reassign these values to the argument variables; e.g., x <- rlang::enexpr(x) and n <- rlang::enexpr(n).
- 3. For every such argument, call manage_key_colnames() and reassign its value to the input data frame variable, adding a short description; e.g.,data <- manage_key_colnames(data, x, "mean/proportion") and data <- manage_key_colnames(data, n, "sample size").

Usage

```
manage_key_colnames(data, arg, description = NULL)
```

Arguments

data The mapper function's input data frame.

arg Symbol. The quoted input variable, captured by rlang::enexpr().

description String (length 1). Short description of the column in question, to be inserted into

an error message.

Value

The input data frame, data, possibly modified.

See Also

```
vignette("consistency-tests"), for context.
```

62 pigs2

pigs1

Means and sample sizes for GRIM-testing

Description

A fictional dataset with means and sample sizes of flying pigs. It can be used to demonstrate the functionality of grim_map() and functions building up on it.

Usage

pigs1

Format

A tibble (data frame) with 12 rows and 2 columns. The columns are:

- x String. Means.
- n Numeric. Sample sizes.

Value

A tibble (data frame).

See Also

pigs2 for GRIM-testing percentages instead of means, pigs3 for DEBIT-testing, and pigs4 for detecting duplicates.

pigs2

Percentages and sample sizes for GRIM-testing

Description

A fictional dataset with percentages and sample sizes of flying pigs. It can be used to demonstrate the functionality of grim_map(), particularly its percent argument, and functions building up on it.

Usage

pigs2

Format

A tibble (data frame) with 6 rows and 2 columns. The columns are:

- x String. Percentages.
- n Numeric. Sample sizes.

pigs3

Value

A tibble (data frame).

See Also

pigs1 for GRIM-testing means instead of percentages, pigs3 for DEBIT-testing, and pigs4 for detecting duplicates.

pigs3

Binary means and standard deviations for using DEBIT

Description

A fictional dataset with means and standard deviations from a binary distribution related to flying pigs. It can be used to demonstrate the functionality of debit_map() and functions building up on it.

Usage

pigs3

Format

A tibble (data frame) with 7 rows and 3 columns. The columns are:

- x String. Means.
- sd String. Standard deviations.
- n Numeric. Sample sizes.

Value

A tibble (data frame).

See Also

pigs1 for GRIM-testing means, pigs2 for GRIM-testing percentages, and pigs4 for detecting duplicates.

pigs5

pigs4

Data with duplications

Description

A fictional dataset with observations of flying pigs. Two pairs of values are duplicates. The dataset can be used to demonstrate the functionality of duplicate_detect() and functions building up on it.

Usage

pigs4

Format

A tibble (data frame) with 7 rows and 3 columns. The columns are:

- x String. Means.
- sd String. Standard deviations.
- n Numeric. Sample sizes.

Value

A tibble (data frame).

See Also

pigs1 for GRIM-testing means, pigs2 for GRIM-testing percentages, and pigs3 for using DEBIT.

pigs5

Means, SDs, and sample sizes for GRIMMER-testing

Description

A fictional dataset with means, standard deviations (SDs), and sample sizes of flying pigs. It can be used to demonstrate the functionality of grimmer_map() and functions building up on it.

Usage

pigs5

Format

A tibble (data frame) with 12 rows and 3 columns. The columns are:

- x String. Means.
- sd String. Standard deviations.
- n Numeric. Sample sizes.

reround 65

Value

A tibble (data frame).

See Also

pigs1 for (only) GRIM-testing the same means as here, pigs2 for GRIM-testing percentages instead of means, pigs3 for DEBIT-testing, and pigs4 for detecting duplicates.

reround

General interface to reconstructing rounded numbers

Description

reround() takes one or more intermediate reconstructed values and rounds them in some specific way - namely, the way they are supposed to have been rounded originally, in the process that generated the reported values.

This function provides an interface to all of scrutiny's rounding functions as well as base::round(). It is used as a helper within grim() and debit(), and it might find use in other places for consistency testing or reconstruction of statistical analyses.

Usage

```
reround(
  х,
  digits = 0,
  rounding = "up_or_down",
  threshold = 5,
  symmetric = FALSE
)
```

Arguments

X	Numeric. Vector of possibly original values.
digits	Integer. Number of decimal places in the reported key values (i.e., mean or percentage within grim(), or standard deviation within debit()).
rounding	String. The rounding method that is supposed to have been used originally. See documentation for grim(), section Rounding. Default is "up_or_down", which returns two values: x rounded up <i>and</i> down.
threshold	Integer. If rounding is set to "up_from", "down_from", or "up_from_or_down_from", threshold needs to be set to the number from which the reconstructed values should then be rounded up or down. Otherwise irrelevant. Default is 5.
symmetric	Boolean. Set symmetric to TRUE if the rounding of negative numbers with "up_or_down", "up", "down", "up_from_or_down_from", "up_from", or "down_from" should mirror that of positive numbers so that their absolute values are always

should mirror that of positive numbers so that their absolute values are always

equal. Otherwise irrelevant. Default is FALSE.

66 reround_to_fraction

Details

reround() internally calls the appropriate rounding function(s) determined by the rounding argument. See documentation for grim(), section Rounding, for a complete list of values that rounding can take.

For the nine rounding functions themselves, see documentation at round_up(), round_ceiling(), and base::round().

Value

Numeric vector of length 1 or 2. (It has length 1 unless rounding is "up_or_down", "up_from_or_down_from", or"ceiling_or_floor", in which case it has length 2.)

reround_to_fraction Generalized rounding to the nearest fraction of a specified denomina-

Description

Two functions that round numbers to specific fractions, not just to the next higher decimal level. They are inspired by janitor::round_to_fraction() but feature all the options of reround():

- reround_to_fraction() closely follows janitor::round_to_fraction() by first rounding to fractions of a whole number, then optionally rounding the result to a specific number of digits in the usual way.
- reround_to_fraction_level() rounds to the nearest fraction of a number at the specific decimal level (i.e., number of digits), without subsequent rounding. This is closer to conventional rounding functions.

Usage

```
reround_to_fraction(
  x = NULL,
  denominator = 1,
  digits = Inf,
  rounding = "up_or_down",
  threshold = 5,
  symmetric = FALSE
)
reround_to_fraction_level(
  x = NULL,
  denominator = 1,
  digits = 0,
  rounding = "up_or_down",
  threshold = 5,
  symmetric = FALSE
)
```

reround_to_fraction 67

Arguments

x Numeric. Vector of numbers to be rounded.

denominator Numeric (>= 1). x will be rounded to the nearest fraction of denominator.

Default is 1.

digits Numeric (whole numbers).

• In reround_to_fraction(): If digits is specified, the values resulting from fractional rounding will subsequently be rounded to that many decimal places. If set to "auto", it internally becomes ceiling(log10(denominator)) + 1, as in janitor::round_to_fraction(). Default is Inf, in which case there is no subsequent rounding.

• In reround_to_fraction_level(): This function will round to a fraction of the number at the decimal level specified by digits. Default is 0.

rounding, threshold, symmetric

More arguments passed down to reround().

Value

Numeric vector of the same length as x unless rounding is either of "up_or_down", "up_from_or_down_from", and "ceiling_or_floor". In these cases, it will always have length 2.

See Also

reround(), which the functions wrap, and janitor::round_to_fraction(), part of which they copy.

Examples

```
#`reround_to_fraction()` rounds `0.4`
# to `0` if `denominator` is `1`, which
# is the usual integer rounding...
reround_to_fraction(0.4, denominator = 1, rounding = "even")
# ...but if `denominator` is `2`, it rounds to the nearest
# fraction of 2, which is `0.5`:
reround_to_fraction(0.4, denominator = 2, rounding = "even")
# Likewise with fractions of 3:
reround_to_fraction(0.25, denominator = 3, rounding = "even")
# The default for `rounding` is to round
# both up and down, as in `reround()`:
reround_to_fraction(0.4, denominator = 2)
# These two rounding procedures differ
# at the tie points:
reround_to_fraction(0.25, denominator = 2)
# `reround_to_fraction_level()`, in contrast,
# uses `digits` to determine some decimal level,
```

68 restore_zeros

```
# and then rounds to the closest fraction at
# that level:
reround_to_fraction_level(0.12345, denominator = 2, digits = 0)
reround_to_fraction_level(0.12345, denominator = 2, digits = 1)
reround_to_fraction_level(0.12345, denominator = 2, digits = 2)
```

restore_zeros

Restore trailing zeros

Description

restore_zeros() takes a vector with values that might have lost trailing zeros, most likely from being registered as numeric. It turns each value into a string and adds trailing zeros until the mantissa hits some limit.

The default for that limit is the number of digits in the longest mantissa of the vector's values. The length of the integer part plays no role.

Don't rely on the default limit without checking: The original width could have been larger because the longest extant mantissa might itself have lost trailing zeros.

Usage

```
restore_zeros(x, width = NULL, sep_in = "\\.", sep_out = sep_in, sep = NULL)
```

Arguments

X	Numeric (or string coercible to numeric). Vector of numbers that might have lost trailing zeros.
width	Integer. Number of decimal places the mantissas should have, including the restored zeros. Default is NULL, in which case the number of characters in the longest mantissa will be used instead.
sep_in	Substring that separates the input's mantissa from its integer part. Default is "\\.", which renders a decimal point.
sep_out	Substring that will be returned in the output to separate the mantissa from the integer part. By default, sep_out is the same as sep_in.
sep	[Deprecated] Use sep_in, not sep. If sep is specified nonetheless, sep_in takes on sep's value.

Details

This function exploits the fact that groups of summary values such as means or percentages are often reported to the same number of decimal places. If such a number is known but values were not entered as strings, trailing zeros will be lost. In this case, restore_zeros() will be helpful to prepare data for consistency testing functions such as grim_map() or debit_map(). Otherwise, it should probably not be used.

reverse_map_seq 69

Value

A string vector. At least some of the strings will have newly restored zeros, unless (1) all input values had the same number of decimal places, and (2) width was not specified as a number greater than that single number of decimal places.

Displaying decimal places

You might not see all decimal places of numeric values in a vector, and consequently wonder if restore_zeros(), when applied to the vector, adds too many zeros. That is because displayed numbers, unlike stored numbers, are often rounded.

For a vector x, you can count the characters of the longest mantissa from among its values like this: $x \% \% decimal_places() \% \% max()$

See Also

Wrapped functions: sprintf() and decimal_places().

Examples

```
# By default, the target width is that of
# the longest mantissa:
vec <- c(212, 75.38, 4.9625)
vec %>% restore_zeros()

# Alternatively, supply a number via `width`:
vec %>% restore_zeros(width = 6)
```

reverse_map_seq

Reverse the *_map_seq() process

Description

reverse_map_seq() takes the output of a function created by function_map_seq() and reconstructs the original data frame.

See audit_seq(), which takes reverse_map_seq() as a basis.

Usage

```
reverse_map_seq(data)
```

Arguments

data

Data frame that inherits the "scr_map_seq" class.

Value

The reconstructed tibble (data frame) which a factory-made *_map_seq() function took as its data argument.

70 reverse_map_total_n

Examples

```
# Originally reported summary data...
pigs1

# ...GRIM-tested with varying inputs...
out <- grim_map_seq(pigs1, include_consistent = TRUE)

# ...and faithfully reconstructed:
reverse_map_seq(out)</pre>
```

reverse_map_total_n Reverse the *_map_total_n() process

Description

reverse_map_total_n() takes the output of a function created by function_map_total_n() and reconstructs the original data frame.

See audit_total_n(), which takes reverse_map_total_n() as a basis.

Usage

```
reverse_map_total_n(data)
```

Arguments

data

Data frame that inherits the "scr_map_total_n" class.

Value

The reconstructed tibble (data frame) which a factory-made *_map_total_n() function took as its data argument.

Examples

rounding_bias 71

rounding_bias

Compute rounding bias

Description

Rounding often leads to bias, such that the mean of a rounded distribution is different from the mean of the original distribution. Call rounding_bias() to compute the amount of this bias.

Usage

```
rounding_bias(
    x,
    digits,
    rounding = "up",
    threshold = 5,
    symmetric = FALSE,
    mean = TRUE
)
```

Arguments

x Numeric or string coercible to numeric.

digits Integer. Number of decimal digits to which x will be rounded.

rounding String. Rounding procedure that will be applied to x. See documentation for

grim(), section Rounding. Default is "up".

threshold, symmetric

Further arguments passed down to reround().

mean Boolean. If TRUE (the default), the mean total of bias will be returned. Set mean

to FALSE to get a vector of individual biases the length of x.

Details

Bias is calculated by subtracting the original vector, x, from a vector rounded in the specified way.

The function passes all arguments except for mean down to reround(). Other than there, however, rounding is "up" by default, and it can't be set to "up_or_down", "up_from_or_down_from", or"ceiling_or_floor".

Value

Numeric. By default of mean, the length is 1; otherwise, it is the same length as x.

72 round_ceiling

Examples

```
# Define example vector:
vec <- seq_distance(0.01, string_output = FALSE)
vec

# The default rounds `x` up from 5:
rounding_bias(x = vec, digits = 1)

# Other rounding procedures are supported,
# such as rounding down from 5...
rounding_bias(x = vec, digits = 1, rounding = "down")
# ...or rounding to even with `base::round()`:
rounding_bias(x = vec, digits = 1, rounding = "even")</pre>
```

round_ceiling

Always round up, down, toward zero, or away from it

Description

Uncommon rounding procedures:

- round_ceiling() always rounds up.
- round_floor() always rounds down.
- round_trunc() always rounds toward zero.
- round_anti_trunc() always rounds away from zero. (0 itself is rounded to 1.)

Despite not being widely used, they are featured here in case they are needed for reconstruction.

Usage

```
round_ceiling(x, digits = 0)
round_floor(x, digits = 0)
round_trunc(x, digits = 0)
anti_trunc(x)
round_anti_trunc(x, digits = 0)
```

Arguments

x Numeric. The decimal number to round.

digits Integer. Number of digits to round x to. Default is 0.

round_up_from 73

Details

round_ceiling(), round_floor(), and round_trunc() generalize the base functions ceiling(), floor(), and trunc(), and include them as special cases: With the default value for digits, 0, these round_* functions are equivalent to their respective base counterparts.

The last round_* function, round_anti_trunc(), generalizes another function presented here: anti_trunc() works like trunc() except it moves away from 0, rather than towards it. That is, whereas trunc() minimizes the absolute value of x (as compared to the other rounding functions), anti_trunc() maximizes it. anti_trunc(x) is therefore equal to trunc(x) + 1 if x is positive, and to trunc(x) - 1 if x is negative.

round_anti_trunc(), then, generalizes anti_trunc() just as round_ceiling() generalizes ceiling(),
etc.

Moreover, round_trunc() is equivalent to round_floor() for positive numbers and to round_ceiling() for negative numbers. The reverse is again true for round_anti_trunc(): It is equivalent to round_ceiling() for positive numbers and to round_floor() for negative numbers.

Value

Numeric. x rounded to digits (except for anti_trunc(), which has no digits argument).

See Also

round_up() and round_down() round up or down from 5, respectively. round_up_from() and round_down_from() allow users to specify custom thresholds for rounding up or down.

```
# Always round up:
round_ceiling(x = 4.52, digits = 1)  # 2 cut off

# Always round down:
round_floor(x = 4.67, digits = 1)  # 7 cut off

# Always round toward 0:
round_trunc(8.439, digits = 2)  # 9 cut off
round_trunc(-8.439, digits = 2)  # 9 cut off

# Always round away from 0:
round_anti_trunc(x = 8.421, digits = 2)  # 1 cut off
round_anti_trunc(x = -8.421, digits = 2)  # 1 cut off
```

74 round_up_from

Description

round_up() rounds up from 5, round_down() rounds down from 5. Otherwise, both functions work like base::round().

round_up() and round_down() are special cases of round_up_from() and round_down_from(), which allow users to choose custom thresholds for rounding up or down, respectively.

Usage

```
round_up_from(x, digits = 0, threshold, symmetric = FALSE)
round_down_from(x, digits = 0, threshold, symmetric = FALSE)
round_up(x, digits = 0, symmetric = FALSE)
round_down(x, digits = 0, symmetric = FALSE)
```

Arguments

x Numeric. The decimal number to round.

digits Integer. Number of digits to round x to. Default is 0.

threshold Integer. Only in round_up_from() and round_down_from(). Threshold for

rounding up or down, respectively. Value is 5 in round_up()'s internal call to round_up_from() and in round_down()'s internal call to round_down_from().

symmetric Boolean. Set symmetric to TRUE if the rounding of negative numbers should

mirror that of positive numbers so that their absolute values are equal. Default

is FALSE.

Details

These functions differ from base::round() mainly insofar as the decision about rounding 5 up or down is not based on the integer portion of x (i.e., no "rounding to even"). Instead, in round_up_from(), that decision is determined by the threshold argument for rounding up, and likewise with round_down_from(). The threshold is constant at 5 for round_up() and round_down().

As a result, these functions are more predictable and less prone to floating-point number quirks than base::round(). Compare round_down() and base::round() in the data frame for rounding 5 created in the Examples section below: round_down() yields a continuous sequence of final digits from 0 to 9, whereas base::round() behaves in a way that can only be explained by floating point issues.

However, this surprising behavior on the part of base::round() is not necessarily a flaw (see its documentation, or this vignette: https://rpubs.com/maechler/Rounding). In the present version of R (4.0.0 or later), base::round() works fine, and the functions presented here are not meant to replace it. Their main purpose as helpers within scrutiny is to reconstruct the computations of researchers who might have used different software. For example, SAS, SPSS, Stata, Matlab, and Excel round up from 5, whereas Python rounds down from 5. Other use cases might possibly include journal requirements.

row_to_colnames 75

Value

Numeric. x rounded to digits.

See Also

round_ceiling() always rounds up, round_floor() always rounds down, round_trunc() always rounds toward 0, and round_anti_trunc() always round away from 0.

Examples

```
# Both `round_up()` and `round_down()` work like
# `base::round()` unless the closest digit to be
# cut off by rounding is 5:
   round_up(x = 9.273, digits = 1)
                                       # 7 cut off
 round_down(x = 9.273, digits = 1)
                                       # 7 cut off
base::round(x = 9.273, digits = 1)
                                       # 7 cut off
   round_up(x = 7.584, digits = 2)
                                       # 4 cut off
 round_down(x = 7.584, digits = 2)
                                       # 4 cut off
base::round(x = 7.584, digits = 2)
                                       # 4 cut off
# Here is the borderline case of 5 rounded by
# `round_up()`, `round_down()`, and `base::round()`:
original <- c(
                  # Define example values
   0.05, 0.15, 0.25, 0.35, 0.45,
   0.55, 0.65, 0.75, 0.85, 0.95
tibble::tibble(
                       # Output table
   original,
    round_up = round_up(x = original, digits = 1),
   round_down = round_down(x = original, digits = 1),
   base_round = base::round(x = original, digits = 1)
# (Note: Defining 'original' as 'seq(0.05:0.95, by = 0.1)'
# would lead to wrong results unless `original` is rounded
# to 2 or so digits before it's rounded to 1.)
```

row_to_colnames

Turn row values into column names

Description

Data frames sometimes have wrong column names, while the correct column names are stored in one or more rows in the data frame itself. To remedy this issue, call row_to_colnames() on the data frame: It replaces the column names by the values of the specified rows (by default, only the first one). These rows are then dropped by default.

76 sd_binary_groups

Usage

```
row_to_colnames(data, row = 1, collapse = " ", drop = TRUE)
```

Arguments

Data frame or matrix.

Integer. Position of the rows (one or more) that jointly contain the correct column names. Default is 1.

String. If the length of row is greater than 1, each new column name will be that many row values pasted together. collapse, then, is the substring between two former row values in the final column names. Default is "" (a space).

Boolean. If TRUE (the default), the rows specified with row are removed.

Details

If multiple rows are specified, the row values for each individual column are pasted together. Some special characters might then be missing.

This function might be useful when importing tables from PDF, e.g. with tabulizer. In R, these data frames (converted from matrices) do sometimes have the issue described above.

Value

A tibble (data frame).

See Also

unheadr::mash_colnames(), a more sophisticated solution to the same problem.

sd_binary_groups	Standard deviation of binary data	

Description

Compute the sample SD of binary data (i.e., only 0 and 1 values) in either of four ways, each based on different inputs:

- sd_binary_groups() takes the cell sizes of both groups, those coded as 0 and those coded as 1.
- sd_binary_0_n() takes the cell size of the group coded as 0 and the total sample size.
- sd_binary_1_n() takes the cell size of the group coded as 1 and the total sample size.
- sd_binary_mean_n() takes the mean and the total sample size.

These functions are used as helpers inside debit(), and consequently debit_map().

sd_binary_groups 77

Usage

```
sd_binary_groups(group_0, group_1)
sd_binary_0_n(group_0, n)
sd_binary_1_n(group_1, n)
sd_binary_mean_n(mean, n)
```

Arguments

group_0 Integer. Cell size of the group coded as 0.
group_1 Integer. Cell size of the group coded as 1.
n Integer. Total sample size.

mean Numeric. Mean of the binary data.

Value

Numeric. Sample standard deviation.

References

Heathers, James A. J., and Brown, Nicholas J. L. 2019. DEBIT: A Simple Consistency Test For Binary Data. https://osf.io/5vb3u/.

See Also

is_subset_of_vals(x, 0, 1) checks whether x (a list or atomic vector) contains nothing but binary numbers.

```
# If 127 values are coded as 0 and 153 as 1...
sd_binary_groups(group_0 = 127, group_1 = 153)
# ...so that n = 280:
sd_binary_0_n(group_0 = 127, n = 280)
sd_binary_1_n(group_1 = 153, n = 280)
# If only the mean and total sample size are
# given, or these are more convenient to use,
# they still lead to the same result as above
# if the mean is given with a sufficiently
# large number of decimal places:
sd_binary_mean_n(mean = 0.5464286, n = 280)
```

78 seq_disperse

seq_disperse

Sequence generation with dispersion at decimal level

Description

seq_disperse() creates a sequence around a given number. It goes a specified number of steps up and down from it. Step size depends on the number's decimal places. For example, 7.93 will be surrounded by values like 7.91, 7.92, and 7.94, 7.95, etc.

seq_disperse_df() is a variant that creates a data frame. Further columns can be added as in tibble::tibble(). Regular arguments are the same as in seq_disperse(), but with a dot before each.

Usage

```
seq_disperse(
  from,
  dispersion = 1:5,
 offset_from = 0,
 out_min = "auto",
  out_max = NULL,
  string_output = TRUE,
  include_reported = TRUE,
  track_var_change = FALSE
)
seq_disperse_df(
  .from,
  .dispersion = 1:5,
  .offset_from = 0,
  .out_min = "auto",
  .out_max = NULL,
  .string_output = TRUE,
  .include_reported = TRUE,
  .track_var_change = FALSE
)
```

Arguments

Numeric. Vector that determines the steps up and down, starting at from (or .from, respectively) and proceeding on the level of its last decimal place. Default is 1:5, i.e., five steps up and down.

```
offset_from, .offset_from
```

Integer. If set to a non-zero number, the starting point will be offset by that many units on the level of the last decimal digit. Default is 0.

seq_disperse 79

```
out_min, .out_min, out_max, .out_max
```

If specified, output will be restricted so that it's not below out_min or above out_max. Defaults are "auto" for out_min, i.e., a minimum of one decimal unit above zero; and NULL for out_max, i.e., no maximum.

string_output, .string_output

Boolean or string. If TRUE (the default), the output is a string vector. Decimal places are then padded with zeros to match from's number of decimal places. "auto" works like TRUE if and only if from (.from) is a string.

include_reported, .include_reported

Boolean. Should from (.from) itself be part of the sequence built around it? Default is TRUE for the sake of continuity, but this can be misleading if the focus is on the dispersed values, as opposed to the input.

track_var_change, .track_var_change

Boolean. In seq_disperse(), ignore this argument. In seq_disperse_df(), default is TRUE, which creates the "var_change" output column.

.. Further columns, added as in tibble::tibble(). Only in seq_disperse_df().

Details

Unlike seq_endpoint() and friends, the present functions don't necessarily return continuous or even regular sequences. The greater flexibility is due to the dispersion (.dispersion) argument, which takes any numeric vector. By default, however, the output sequence is regular and continuous.

Underlying this difference is the fact that seq_disperse() and seq_disperse_df() do not wrap around base::seq(), although they are otherwise similar to seq_endpoint() and friends.

Value

- seq_disperse() returns a string vector by default (string_output = TRUE) and a numeric otherwise.
- seq_disperse_df() returns a tibble (data frame). The sequence is stored in the x column. x is string by default (.string_output = TRUE), numeric otherwise. Other columns might have been added via the dots (...).

See Also

Conceptually, seq_disperse() is a blend of two function families: those around seq_endpoint() and those around disperse(). The present functions were originally conceived for seq_disperse_df() to be a helper within the function_map_seq() implementation.

```
# Basic usage:
seq_disperse(from = 4.02)

# If trailing zeros don't matter,
# the output can be numeric:
seq_disperse(from = 4.02, string_output = FALSE)
# Control steps up and down with
```

seq_endpoint

```
# `dispersion` (default is `1:5`):
seq_disperse(from = 4.02, dispersion = 1:10)

# Sequences might be discontinuous...
disp1 <- seq(from = 2, to = 10, by = 2)
seq_disperse(from = 4.02, dispersion = disp1)

# ...or even irregular:
disp2 <- c(2, 3, 7)
seq_disperse(from = 4.02, dispersion = disp2)

# The data fame variant supports further
# columns added as in `tibble::tibble()`:
seq_disperse_df(.from = 4.02, n = 45)</pre>
```

seq_endpoint

Sequence generation at decimal level

Description

Functions that provide a smooth interface to generating sequences based on the input values' decimal depth. Each function creates a sequence with a step size of one unit on the level of the input values' ultimate decimal digit (e.g., 2.45, 2.46, 2.47, ...):

- seq_endpoint() creates a sequence from one input value to another. For step size, it goes by the value with more decimal places.
- seq_distance() only takes the starting point and, instead of the endpoint, the desired output length. For step size, it goes by the starting point.

seq_endpoint_df() and seq_distance_df() are variants that create a data frame. Further columns can be added as in tibble::tibble(). Regular arguments are the same as in the respective non-df function, but with a dot before each.

```
seq_endpoint(from, to, offset_from = 0, offset_to = 0, string_output = TRUE)

seq_distance(
    from,
    length_out = 10,
    dir = 1,
    offset_from = 0,
    string_output = TRUE
)

seq_endpoint_df(
    .from,
    .to,
```

seq_endpoint 81

```
...,
.offset_from = 0,
.offset_to = 0,
.string_output = TRUE
)

seq_distance_df(
.from,
...,
.length_out = 10,
.dir = 1,
.offset_from = 0,
.string_output = TRUE
)
```

Arguments

from, .from Numeric (or string coercible to numeric). Starting point of the sequence.

to, .to Numeric (or string coercible to numeric). Endpoint of the sequence. Only in seq_endpoint() and seq_endpoint_df().

offset_from, .offset_from

Integer. If set to a non-zero number, the starting point will be offset by that many units on the level of the last decimal digit. Default is 0.

offset_to, .offset_to

Integer. If set to a non-zero number, the endpoint will be offset by that many units on the level of the last decimal digit. Default is 0. Only in seq_endpoint() and seq_endpoint_df().

string_output, .string_output

Boolean or string. If TRUE (the default), the output is a string vector. Decimal places are then padded with zeros to match from's (or to's) number of decimal places. "auto" works like TRUE if and only if from (.from) is a string.

length_out, .length_out

Integer. Length of the output vector (i.e., the number of its values). Default is 10. Only in seq_distance() and seq_distance_df().

dir, .dir Integer. If set to -1, the sequence goes backward. Default is 1. Only in seq_distance() and seq_distance_df().

Further columns, added as in tibble::tibble(). Only in seq_endpoint_df() and seq_distance_df().

Details

If either from or to ends on zero, be sure to enter that value as a string! This is crucial because trailing zeros get dropped from numeric values. A handy way to format numeric values or number-strings correctly is restore_zeros(). The output of the present functions is like that by default (of string_output).

In seq_endpoint() and seq_endpoint_df(), the step size is determined by from and to, whichever has more decimal places. In seq_distance() and seq_distance_df(), it's determined by the decimal places of from.

82 seq_test_ranking

These functions are scrutiny's take on base::seq(), and themselves wrappers around it.

Value

String by default of string_output, numeric otherwise.

See Also

seq_disperse() for sequences centered around the input.

Examples

```
# Sequence between two points:
seq\_endpoint(from = 4.7, to = 5)
# Sequence of some length; default is 10:
seq_distance(from = 0.93)
seq_distance(from = 0.93, length_out = 5)
# Both of these functions can offset the
# starting point...
seq_endpoint(from = 14.2, to = 15, offset_from = 4)
seq_distance(from = 14.2, offset_from = 4)
# ...but only `seq_endpoint()` can offset the
# endpoint, because of its `to` argument:
seq_endpoint(from = 9.5, to = 10, offset_to = 2)
# In return, `seq_distance()` can reverse its direction:
seq_distance(from = 20.03, dir = -1)
# Both functions have a `_df` variant that returns
# a data frame. Arguments are the same but with a
# dot, and further columns can be added as in
# `tibble::tibble()`:
seq_endpoint_df(.from = 4.7, .to = 5, n = 20)
seq_distance_df(.from = 0.43, .length_out = 5, sd = 0.08)
```

seq_test_ranking

Rank sequence test results

Description

Run this function after generating a sequence with seq_endpoint_df() or seq_distance_df() and testing it with one of scrutiny's mapping functions, such as grim_map(). It will rank the test's consistent and inconsistent results by their positions in the sequence.

```
seq_test_ranking(x, explain = TRUE)
```

split_by_parens 83

Arguments

x Data frame.

explain If TRUE (the default), results come with an explanation.

Details

The function checks the provenance of the test results and throws a warning if it's not correct.

Value

A tibble (data frame). The function will also print an explanation of the results. See examples.

Examples

```
seq_distance_df(.from = "0.00", n = 50) %>%
  grim_map() %>%
  seq_test_ranking()
```

split_by_parens

Split columns by parentheses, brackets, braces, or similar

Description

Summary statistics are often presented like "2.65 (0.27)". When working with tables from PDF, it can be tedious to separate values before and inside parentheses. split_by_parens() does that automatically.

By default, it operates on all columns. Output can optionally be transformed into a longer format by setting . transform to TRUE.

Choose separators other than parentheses by specifying the . sep argument.

```
split_by_parens(
   .data,
   ...,
   .keep = FALSE,
   .transform = FALSE,
   .sep = "parens",
   .col1 = "x",
   .col2 = "sd"
)
```

split_by_parens

Arguments

.data	Data frame. Only in split_by_parens().
	Optionally, name columns from .data. Splitting will then be restricted to these columns. This is useful if not all values contain parentheses.
.keep	Boolean. If set to TRUE, the original columns from .data also appear in the output. Default is FALSE.
.transform	Boolean. If set to TRUE, the output will be transformed to be better accessible for typical follow-up tasks. Default is FALSE.
. sep	String. What to split by. Either "parens", "brackets", or "braces"; or a length-2 vector of custom separators (see Examples). Default is "parens".
.col1, .col2	Strings. Endings of the two column names that result from splitting a column. Default is "x" for .col1 and "sd" for .col2.

Value

A tibble with string columns.

See Also

- before_parens() and inside_parens() take a string vector and extract values from the respective position.
- dplyr::across() powers the application of the two above functions within split_by_parens(), including the creation of new columns.
- tidyr::separate() is a more general function (but does not recognize closing elements).

```
# Call `split_by_parens()` on data like these:
df1 <- tibble::tribble(</pre>
  ~drone,
                     ~selfpilot,
                  "0.19 (0.13)",
  "0.09 (0.21)",
 "0.19 (0.28)", "0.53 (0.10)", "0.62 (0.16)", "0.50 (0.11)",
                   "0.57 (0.16)",
  "0.15 (0.35)",
)
# Basic usage:
df1 %>%
  split_by_parens()
# Name specific columns to only return those:
df1 %>%
  split_by_parens(drone)
# Pivot the data into a longer format
# by setting `.transform` to `TRUE`:
df1 %>%
  split_by_parens(.transform = TRUE)
```

```
# Choose different column names or
# name suffixes with `.col1` and `.col2`:
df1 %>%
 split_by_parens(.col1 = "beta", .col2 = "se")
df1 %>%
 split_by_parens(.transform = TRUE,
  .col1 = "beta", .col2 = "se")
# With a different separator...
df2 <- tibble::tribble(</pre>
 ~drone,
                    ~selfpilot,
  "0.09 [0.21]",
                     "0.19 [0.13]",
  "0.19 [0.28]",
                    "0.53 [0.10]",
  "0.62 [0.16]",
                     "0.50 [0.11]",
  "0.15 [0.35]",
                     "0.57 [0.16]",
)
# ... specify `.sep`:
df2 %>%
 split_by_parens(.sep = "brackets")
# (Accordingly with `{}` and `"braces"`.)
# If the separator is yet a different one...
df3 <- tibble::tribble(</pre>
                    ~selfpilot,
 ~drone,
  "0.09 < 0.21>",
                     "0.19 < 0.13>",
 "0.19 <0.28>",
                    "0.53 < 0.10 > ",
 "0.62 < 0.16 > ",
                    "0.50 <0.11>",
                    "0.57 < 0.16>",
  "0.15 < 0.35>",
# ... `.sep` should be a length-2 vector
# that contains the separating elements:
 split_by_parens(.sep = c("<", ">"))
```

unnest_consistency_cols

Unnest a test result column

Description

Within a consistency test mapper function, it may become necessary to unpack a column resulting from a basic *_scalar() testing function. That will be the case if the a show_* argument of the mapper function is TRUE, and the *_scalar() function returns a list of values, not just a single value.

At the point where such as list is stored in a data frame column (most likely "consistency"), call unnest_consistency_cols() to unnest the results into multiple columns.

86 unround

Usage

```
unnest_consistency_cols(results, col_names, index = FALSE, col = "consistency")
```

Arguments

results Data frame containing a list-column by the name passed to col.

col_names String vector of new names for the unnested columns. It should start with the

same string that was given for col.

index Boolean. Should the list-column be indexed into? Default is FALSE.

col String (length 1). Name of the list-column within results to operate on. De-

fault is "consistency".

Details

This function is a custom workaround in place of tidyr::unnest_wider(), mirroring some of the latter's functionality. It was created because unnest_wider() can be too slow for use as a helper function.

Value

Data frame. The column names are determined by col_names.

See Also

vignette("consistency-tests"), for context.

|--|

Description

unround() takes a rounded number and returns the range of the original value: lower and upper bounds for the hypothetical earlier number that was later rounded to the input number. It also displays a range with inequation signs, showing whether the bounds are inclusive or not.

By default, the presumed rounding method is rounding up (or down) from 5. See the Rounding section for other methods.

```
unround(x, rounding = "up_or_down", threshold = 5, digits = NULL)
```

unround 87

Arguments

x	String or numeric. Rounded number. x needs to be a string unless digits is specified (most likely by a function that uses unround() as a helper).
rounding	String. Rounding method presumably used to create x. Default is "up_or_down". For more, see section Rounding.
threshold	Integer. Number from which to round up or down. Other rounding methods are not affected. Default is 5.
digits	Integer. This argument is meant to make unround() more efficient to use as a helper function so that it doesn't need to redundantly count decimal places. Don't specify it otherwise. Default is NULL, in which case decimal places really are counted internally and x needs to be a string.

Details

The function is vectorized over x and rounding. This can be useful to unround multiple numbers at once, or to check how a single number is unrounded with different assumed rounding methods.

If both vectors have a length greater than 1, it needs to be the same length. However, this will pair numbers with rounding methods, which can be confusing. It is recommended that at least one of these input vectors has length 1.

Why does x need to be a string if digits is not specified? In that case, unround() needs to count decimal places by itself. If x then was numeric, it wouldn't have any trailing zeros because these get dropped from numerics.

Trailing zeros are as important for reconstructing boundary values as any other trailing digits would be. Strings don't drop trailing zeros, so they are used instead.

Value

A tibble with seven columns: range, rounding, lower, incl_lower, x, incl_upper, and upper. The range column is a handy representation of the information stored in the columns from lower to upper, in the same order.

Rounding

Depending on how x was rounded, the boundary values can be inclusive or exclusive. The incl_lower and incl_upper columns in the resulting tibble are TRUE in the first case and FALSE in the second. The range column reflects this with equation and inequation signs.

However, these ranges are based on assumptions about the way x was rounded. Set rounding to the rounding method that hypothetically lead to x:

Value of rounding	Corresponding range
"up_or_down" (default)	lower <= x <= upper
"up"	lower <= x < upper
"down"	lower < x <= upper
"even"	(no fix range)
"ceiling"	lower < x = upper
"floor"	lower = x < upper
"trunc" (positive x)	<pre>lower = x < upper</pre>

88 write_doc_audit

```
"trunc" (negative x) lower < x = upper
"trunc" (zero x) lower < x < upper
"anti_trunc" (positive x) lower < x = upper
"anti_trunc" (negative x) lower = x < upper
"anti_trunc" (zero x) (undefined; NA)
```

Base R's own round() (R version >= 4.0.0), referenced by rounding = "even", is reconstructed in the same way as "up_or_down", but whether the boundary values are inclusive or not is hard to predict. Therefore, unround() checks if they are, and informs you about it.

See Also

For more about rounding "up", "down", or to "even", see documentation for round_up(). For more about the less likely rounding methods, "ceiling", "floor", "trunc", and "anti_trunc", see documentation for round_ceiling().

Examples

```
# By default, the function assumes that `x`
# was either rounded up or down:
unround(x = "2.7")

# If `x` was rounded up, run this:
unround(x = "2.7", rounding = "up")

# Likewise with rounding down...
unround(x = "2.7", rounding = "down")

# ...and with `base::round()` which, broadly
# speaking, rounds to the nearest even number:
unround(x = "2.7", rounding = "even")

# Multiple input number-strings return
# multiple rows in the output data frame:
unround(x = c(3.6, "5.20", 5.174))
```

write_doc_audit

Documentation template for audit()

Description

write_doc_audit() creates a roxygen2 block section to be inserted into the documentation of a mapper function such as grim_map() or debit_map(): functions for which there are, or should be, audit() methods. The section informs users about the ways in which audit() summarizes the results of the respective mapper function.

Copy the output from your console and paste it into the roxygen2 block of your *_map() function. To preserve the numbered list structure when indenting roxygen2 comments with Ctrl+Shift+/, leave empty lines between the pasted output and the rest of the block.

write_doc_audit_seq 89

Usage

```
write_doc_audit(sample_output, name_test)
```

Arguments

sample_output Data frame. Result of a call to audit() on a data frame that resulted from a

call to the mapper function for which you wrote the audit() method, such as

audit(grim_map(pigs1)) or audit(debit_map(pigs3)).

name_test String (length 1). Name of the consistency test which the mapper function ap-

plies, such as "GRIM" or "DEBIT".

Value

A string vector formatted by glue::glue().

Examples

```
# Start by running `audit()`:
out_grim <- audit(grim_map(pigs1))
out_debit <- audit(debit_map(pigs3))

out_grim
out_debit

# Documenting the `audit()` method for `grim_map()`:
write_doc_audit(sample_output = out_grim, name_test = "GRIM")

# Documenting the `audit()` method for `debit_map()`:
write_doc_audit(sample_output = out_debit, name_test = "DEBIT")</pre>
```

write_doc_audit_seq

Documentation template for audit_seq()

Description

write_doc_audit_seq() creates a roxygen2 block section to be inserted into the documentation of functions created with function_map_seq(). The section informs users about the ways in which audit_seq() summarizes the results of the manufactured *_map_seq() function.

Copy the output from your console and paste it into the roxygen2 block of your *_map_seq() function. To preserve the bullet-point structure when indenting roxygen2 comments with Ctrl+Shift+/, leave empty lines between the pasted output and the rest of the block.

```
write_doc_audit_seq(key_args, name_test)
```

Arguments

key_args String vector with the names of the key columns that are tested for consistency

by the *_map_seq() function. The values need to have the same order as in that

function's output.

name_test String (length 1). Name of the consistency test which the *_map_seq() function

applies, such as "GRIM".

Value

A string vector formatted by glue::glue().

See Also

The sister function write_doc_audit_total_n() and, for context, vignette("consistency-tests").

Examples

```
# For GRIM and `grim_map_seq()`:
write_doc_audit_seq(key_args = c("x", "n"), name_test = "GRIM")

# For DEBIT and `debit_map_seq()`:
write_doc_audit_seq(key_args = c("x", "sd", "n"), name_test = "DEBIT")
```

```
write_doc_audit_total_n
```

Documentation template for audit_total_n()

Description

write_doc_audit_total_n() creates a roxygen2 block section to be inserted into the documentation of functions created with function_map_total_n(). The section informs users about the ways in which audit_seq() summarizes the results of the manufactured *_map_total_n() function.

Copy the output from your console and paste it into the roxygen2 block of your *_map_total_n() function. To preserve the bullet-point structure when indenting roxygen2 comments with Ctrl+Shift+/, leave empty lines between the pasted output and the rest of the block.

Usage

```
write_doc_audit_total_n(key_args, name_test)
```

Arguments

key_args String vector with the names of the key columns that are tested for consistency

by the *_map_seq() function. (These are the original variable names, without "1" and "2" suffixes.) The values need to have the same order as in that func-

tion's output.

name_test String (length 1). Name of the consistency test which the *_map_seq() function

applies, such as "GRIM".

Value

A string vector formatted by glue::glue().

See Also

The sister function write_doc_audit_seq() and, for context, vignette("consistency-tests").

Examples

```
# For GRIM and `grim_map_total_n()`:
write_doc_audit_total_n(key_args = c("x", "n"), name_test = "GRIM")
# For DEBIT and `debit_map_total_n()`:
write_doc_audit_total_n(key_args = c("x", "sd", "n"), name_test = "DEBIT")
```

write_doc_factory_map_conventions

Documentation template for *_map() function factory conventions

Description

write_doc_factory_map_conventions() creates a roxygen2 block section to be inserted into the documentation of a function factory such as function_map_seq() or function_map_total_n(). It lays out the naming guidelines that users of your function factory should follow when creating new manufactured functions.

Copy the output from your console and paste it into the roxygen2 block of your function factory.

Usage

```
write_doc_factory_map_conventions(
  ending,
  name_test1 = "GRIM",
  name_test2 = "DEBIT"
)
```

Arguments

```
ending String (length 1). The part of your function factory's name after function_map_.

name_test1, name_test2

Strings (length 1). Plain-text names of example consistency tests. Defaults are

"GRIM" and "DEBIT", respectively.
```

Value

A string vector formatted by glue::glue().

See Also

For context, see vignette("consistency-tests").

```
# For `function_map_seq()`:
write_doc_factory_map_conventions(ending = "seq")
# For `function_map_total_n()`:
write_doc_factory_map_conventions(ending = "total_n")
```

Index

* datasets	grim_map_seq,47
pigs1, 62	<pre>grim_map_total_n, 49</pre>
pigs2, 62	grim_plot, 52
pigs3, 63	<pre>grim_ratio(grim_total), 54</pre>
pigs4, 64	grim_total, 54
pigs5, 64	grimmer, 35
	grimmer_map, 37
<pre>anti_trunc (round_ceiling), 72</pre>	grimmer_map_seq, 39
audit, 3	grimmer_map_total_n,41
<pre>audit_cols_minimal, 5</pre>	5
<pre>audit_seq (audit), 3</pre>	inside_parens (before_parens), 6
<pre>audit_total_n (audit), 3</pre>	is_equal_set (is_subset_of), 57
	is_equal_set_vals (is_subset_of), 57
before_parens, 6	is_equal_set_vecs (is_subset_of), 57
	is_proper_subset_of (is_subset_of), 57
<pre>check_audit_special, 7</pre>	is_proper_subset_of_vals
<pre>check_mapper_input_colnames, 7</pre>	(is_subset_of), 57
11.4	is_proper_subset_of_vecs
debit, 8	(is_subset_of), 57
debit_map, 9	is_proper_superset_of (is_subset_of), 57
debit_map_seq, 11	is_proper_superset_of_vals
debit_map_total_n, 13	(is_subset_of), 57
debit_plot, 15	is_proper_superset_of_vecs
decimal_places, 17	(is_subset_of), 57
<pre>decimal_places_scalar (decimal_places),</pre>	is_seq_ascending (is_seq_linear), 56
17	is_seq_descending (is_seq_linear), 56
Deprecated, 68	is_seq_dispersed (is_seq_linear), 56
disperse, 19	
disperse2 (disperse), 19	is_seq_linear, 56
disperse_total (disperse), 19	is_subset_of, 57
duplicate_count, 21	is_subset_of_vals(is_subset_of), 57
<pre>duplicate_detect, 23</pre>	is_subset_of_vecs (is_subset_of), 57
0	is_superset_of (is_subset_of), 57
function_map, 24	is_superset_of_vals(is_subset_of), 57
function_map_seq, 26	<pre>is_superset_of_vecs(is_subset_of), 57</pre>
function_map_total_n, 30	
amim 22	manage_helper_col, 60
grim, 33	manage_key_colnames, 61
grim_granularity, 43	nigo1 62
grim_items (grim_granularity), 43	pigs1, 62
grim_map, 45	pigs2, 62

94 INDEX

```
pigs3, 63
pigs4, 64
pigs5, 64
reround, 65
reround_to_fraction, 66
reround_to_fraction_level
        (reround_to_fraction), 66
restore_zeros, 68
reverse_map_seq, 69
reverse_map_total_n, 70
round_anti_trunc (round_ceiling), 72
round_ceiling, 72
round_down (round_up_from), 73
round_down_from (round_up_from), 73
round_floor (round_ceiling), 72
round_trunc (round_ceiling), 72
round_up (round_up_from), 73
round_up_from, 73
rounding_bias, 71
row_to_colnames, 75
sd_binary_0_n (sd_binary_groups), 76
sd_binary_1_n (sd_binary_groups), 76
sd_binary_groups, 76
sd_binary_mean_n (sd_binary_groups), 76
seq_disperse, 78
seq_disperse_df (seq_disperse), 78
seq_distance (seq_endpoint), 80
seq_distance_df (seq_endpoint), 80
seq_endpoint, 80
seq_endpoint_df (seq_endpoint), 80
seq_test_ranking, 82
split_by_parens, 83
unnest_consistency_cols, 85
unround, 86
write_doc_audit, 88
write_doc_audit_seq, 89
write_doc_audit_total_n, 90
write_doc_factory_map_conventions, 91
```