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Abstract

The R package simPH provides tools for effectively communicating results from Cox
Proportional Hazard (PH) models, including models with interactive and nonlinear effects.
The Cox Proportional Hazard model is a popular tool for examining event data. However,
previously available computational tools have not made it easy to explore and communi-
cate quantities of interest and associated uncertainty estimated from these models. This
is especially true when the effects are from interactions or nonlinear transformations of
continuous variables. These transformation are especially useful with Cox PH models
because they can be employed to correctly specifying models that would otherwise violate
the nonproportional hazards assumption. simPH makes it easy to simulate and then plot
quantities of interest for a variety of effects estimated from Cox PH models including in-
teractive effects, nonlinear effects, as well as ‘vanilla’ linear effects. simPH employs visual
weighting in order to effectively communicate estimation uncertainty. The user also has
the option of showing either the standard central interval of the simulation’s distribution
or the shortest probability interval–which can be useful for asymmetrically distributed
estimates. This paper uses hypothetical and empirical examples to illustrate simPH’s
syntax and capabilities.

Keywords: Cox Proportional Hazard models, hazard ratios, time-interactions, time-varying,
nonlinearity, splines, visual-weighting, R.
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The Cox (1972) Proportional Hazards (PH) model is used in a wide range of disciplines,
including epidemiology and political science, to study time to event data. However, many
poorly communicate quantities of interest and associated uncertainty estimated with these
models. This is especially true when estimates are generated from interactions and nonlinearly
transformed continuous variables. These transformations can be especially useful in Cox PH
models for correctly specify models that would otherwise have nonproportional hazards, a key
violation of the Cox PH model. These effects are extremely hard to interpret using coefficient
tables and available computational tools. In addition, estimated uncertainty around quantities
of interest from Cox PH models is difficult to assess because they are on asymmetric and
nonlinear scales.

This article aims to improve the use of Cox PH models. It first briefly discusses what a Cox PH
model is and previous research on how time interactions and nonlinear effects can be helpful
for correctly specifying models that would otherwise violate the proportional hazards assump-
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tion (PHA). Second, it advocates using shortest probability intervals and visual-weighting to
display simulated quantities of interest from interactive, nonlinear, and even ‘vanilla’ linear
estimates from Cox PH models. The latter type of interval is often more appropriate for Cox
PH model results. Third, it demonstrates how the new R (R Core Team 2014) package simPH
(Gandrud 2014) makes it easy to implement these techniques. The package is freely avail-
able on the Comprehensive R Archive Network. Quantities of interest simPH can simulate
and plot include hazard ratios, first differences, relative hazards, marginal effects, and hazard
rates from linear, linear multiplicative interactions between covariates, time interactions, and
nonlinear coefficients for continuous variables. Hypothetical and empirical examples are used
to illustrate simPH’s syntax and capabilities.

1. The Cox PH model

Let’s start by briefly looking at the basic mechanics of the Cox PH model. The Cox PH
model is a semi-parametric survival model that allows us to examine how specified factors
influence the rate of a particular event happening, e.g., infection, death, the adoption of a
public policy, at a particular point in time given that the event has not already occurred.
This rate is commonly referred to as the hazard rate (hi(t)). The hazard rate for unit i at
time t is estimated with the Cox PH model using:

h(t|Xi) = h0(t)e
(βᵀXi), (1)

where h0(t) is the baseline hazard, i.e., the instantaneous rate of a transition at time t when
all of the covariates are zero. β is a vector of coefficients and Xi is the vector of covariates
for unit i.

We are often interested in how a covariate changes the rate of an event happening. In
general researchers have tried to address this by looking at Cox PH coefficient estimates β.
However, only examining single coefficients can lead to erroneous substantive interpretations of
results. This is especially true when time-interactions and nonlinearly transformed continuous
variables are used to correct for violations of the proportional hazards assumption.

2. Violations of the proportional hazards assumption

Time-interactions and nonlinear continuous variable transformations are particularly impor-
tant when using Cox PH models as they can correct for violations of the proportional hazards
assumption. The PHA is one of the most important sources of estimation bias in Cox PH
models. It has been discussed at length by Licht (2011), Box-Steffensmeier and Zorn (2001),
and Box-Steffensmeier and Jones (2004). The proportional hazards assumption is that the
hazards of two units experiencing an event are proportional to one another and that this
relationship is constant over time. Formally, for the PHA to hold the hazard for units j and
l must be:

hj(t)

hl(t)
= eβ

ᵀ(Xj−Xl). (2)

for all points in time. This is also the equation for the hazard ratio between xj and xl. If
the proportional hazards assumption is violated and measures are not taken to correct for the
violation, then researchers may create biased parameter estimates and statistical tests with
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lower power (Therneau, Grambsch, and Fleming 1990; Keele 2010). Beyond these statistical
problems, not adjusting for violations of the PHA can prevent researchers from finding ev-
idence for phenomena they are interested in studying, including how an effect changes over
time and whether or not it changes nonlinearly over the range of a continuous variable’s
values.

There are a number of widely used tests to examine if the PHA has been violated. See
Grambsch and Therneau (1994), Box-Steffensmeier and Zorn (2001), and Box-Steffensmeier
and Jones (2004) for discussions of various methods. Many software packages implement
versions of these tests. R’s survival package (Therneau 2014) implements Grambsch and
Therneau’s (1994) modified Schoenfeld residuals test with the cox.zph function.

2.1. Correcting nonproportional hazards with time-interactions

If a covariate is determined to violate the PHA, Box-Steffensmeier and co-authors (see Box-
Steffensmeier, Reiter, and Zorn 2003; Box-Steffensmeier and Jones 2004) suggest directly
modeling the relationship between the variable and time. This usually entails including an
interaction between the variable and some function of time, such as the natural logarithm or
some exponent. The decision to use a particular functional form should be guided by theory
and will likely also be influenced by findings in the data. If f(t) is some function of time then
a simple model estimating the hazard rate for unit i with one time-interaction is given by:

hi(t|xi) = h0(t)e
(β1xi+β2f(t)xi). (3)

Like any other interaction effect (see Brambor, Clark, and Golder 2006) extra care should be
taken when interpreting the β1 and β2 parameter estimates and their associated uncertainty.
We cannot simply interpret the effect by looking at β1 or β2 in isolation. They need to be
combined. Licht (2011) argues that post-estimation simulation techniques should be employed
to substantively interpret these combined coefficients and the uncertainty surrounding them.
Let’s briefly look at ways to calculate combined effects. In the next section, we will look at
showing our uncertainty about the combined effects using simulations.

Licht (2011) describes two methods for calculating the combined effect of a time interaction
on the hazard of an event happening in ways that are relatively easy to interpret: (a) first
differences and (b) relative hazards. A first difference is the percentage change in the hazard
rate at time t between two values of x:

%4hi(t) = (e(xj−xl)(β1+β2f(t)) − 1) · 100. (4)

Relative hazards are given by:

hj(t)

hl(t)
= exj(β1+β2f(t)). (5)

In this situation the covariate xl is zero. Relative hazards represent the change in the hazard
when x is ‘switched on’. As such, relative hazards are a special case of the hazard ratio (Licht
2011, p. 231). They are the expected change in the hazard when x is fitted at a value different
from zero compared to when x is zero.

2.2. Correcting nonproportional hazards with nonlinear transformations

Un-modeled time-interactive effects are not the only cause of PHA violations. Building on
Grambsch and Therneau (1994) and Therneau and Grambsch (2000), Keele (2010) points out
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that common diagnostic tests will also indicate PHA violations if the model is misspecified
for other reasons, such as omitting important covariates, using a proportional hazards model
when another survival model is more appropriate, or including a continuous covariate as linear
when its effect is actually nonlinear.

Keele suggests that before testing the PHA we should try to make sure that we are not
omitting important variables (an issue beyond the scope of this paper) and find the covariates’
appropriate functional forms, typically using either polynomials or splines. He demonstrates
this in replication studies by adding penalized splines, then using a Wald test to examine
if the spline estimates have a better fit than their linear counterparts. Many studies using
Cox PH models do not test for nonlinearity, but instead jump straight to testing the PHA,
automatically including time-interactions when it is violated. As Keele (2010) demonstrates,
ascribing a time-interactive effect to a covariate when in fact the effect varies not over time, but
nonlinearly over values of a continuous covariate can have major implications for substantive
interpretations of results.

Because of their role in correcting for violations of the proportional hazards assumption, it
is especially important that researchers using the Cox PH model have accessible tools for
exploring estimates and associated uncertainty from time-interactions and nonlinear transfor-
mations of continuous variables.

3. Show estimation uncertainty

How can we effectively examine and communicate both the point estimates of and our un-
certainty about quantities of interest from time-interactive and nonlinear effects? In this
section I advocate showing these results using simulations, shortest probability intervals, and
visually-weighted plots. These tools are useful for showing ‘vanilla’ linear effects estimated
from Cox PH models as well.

3.1. Post estimation simulations

Following King, Tomz, and Wittenberg (2000), Licht (2011) proposes post-estimation simula-
tion techniques to make it easier to estimate the uncertainty surrounding quantities of interest
for time interactions like first differences and relative hazards. See King et al. (2000, 352-
353) for a discussion of alternative approaches including fully Bayesian Markov-Chain Monte
Carlo techniques and bootstraping. The main difference between these three approaches is
how the parameters are drawn. Using the post-estimation simulation technique, we first find
the parameter point estimates for β̂1 and β̂2. Second, we draw n values of β1 and β2 from mul-
tivariate normal distributions with means β̂1 and β̂2 and variance specified by the parameters’
estimated covariance. Third, we use these simulated values to calculate a quantity of interest,
such as the first difference or relative hazard, for a range of times as well as specified values
of xj and xl (as appropriate). Finally, we plot the results. Using this simulation technique
allows us to estimate full time-interactive effects, how they change over time, substantively
evaluate the effects, and show the uncertainty surrounding the estimates.

We can easily extend this simulation technique to quantities of interest for other estimated
effect types. For example if a nonlinear effect is modeled with a second order polynomial, i.e.,
β1xi + β2x

2
i , we can once again draw n simulations from the multivariate normal distribution

for both β1 and β2. Then we simply calculate quantities of interest for a range of values and
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plot the results as before. We find the first difference for a second order polynomial with:

%4hi(t) = (eβ1xj−l+β2x
2
j−l − 1) · 100, (6)

where xj−l = xj − xl. Note we will not be showing the estimated effect over time. For this
we need to estimate the hazard rate for a range of comparisons between xj and xl.

We can use a similar procedure for splines. Penalized splines (Eilers and Marx 1996) are a
commonly used way of showing more complex nonlinear effects than polynomials (see Keele
2008). They involve “linear combinations of B-spline basis functions” (Strasak, Lang, Kneib,
Brant, Klenk, Hilbe, Oberaigner, Ruttmann, Kaltenbach, Concin, Diem, Pfeiffer, and Ulmer
2009, p. 5) joined at points in the range of observed values of x called “knots” (Keele 2008,
p. 50). A Cox PH model with one penalized spline is given by:

h(t|xi) = h0(t)e
g(xi), (7)

where g(x) is the penalized spline function. For our post-estimation purposes g(x) is basically
a series of linearly combined coefficients such that:

g(x) = βk1(x)1+ + βk2(x)2+ + βk3(x)3+ + . . .+ βkn(x)n+, (8)

where k1, . . . , kn are the equally spaced spline knots with values inside of the range of observed
x and n is the number of knots. xc+ indicates that:

(x)c+ =


x if kc−1 < x ≤ kc
x if x ≤ k1 and kc = k1
x if x ≥ kn and kc = kn
0 otherwise.

(9)

Note, x should be within the observed data.

We can again draw values of each βk1 , . . . βkn from the multivariate normal distribution de-
scribed above. We then use these simulated coefficients to estimate quantities of interest for
a range of covariate values. For example, the first difference between two values xj and xl is:

%4hi(t) = (eg(xj−xl) − 1) · 100. (10)

Relative hazards and hazard ratios can be calculated by extension. Once we find the simulated
quantities of interest, plotting the results is straightforward.

We can use this post-estimation simulation technique for virtually any quantity of interest
estimated from Cox PH models including marginal effects for multiplicative interactions and
plain linear effects.

3.2. Which interval to show?

If researchers go beyond usual ‘train timetable’ coefficient tables and graphically show their
parameter estimates, as simPH makes easier, they usually do so by plotting lines of some
measure of central tendency and confidence bands calculated from standard errors over a
range of fitted values. Previous work with post-estimation simulations, e.g., Licht (2011),
has mirrored this approach in graphs with a line for the median or mean of the simulation
distribution and lines representing the boundaries of a central interval of the distribution.
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For example, the central 95 percent interval could be represented by lines at the 2.5 and 97.5
percentiles of the distribution.

Many quantities of interest from Cox PH models have asymmetric probability distributions
on a nonlinear scale and can therefore be poorly summarized by central intervals. Recall that
most quantities of interest are on an exponential scale with a lower bound of 0 or, in the
case of first differences, -100. They can have very long and sparse upper regions relative to
a tighter concentration of the distribution near the lower boundary. In these cases it can be
more useful to look at highest density regions (see Box and Tiao 1973; Hyndman 1996). The
underlying idea is that we should be more interested in the set of quantities of interest values
with the most probability (Hyndman 1996, p. 120), rather than an arbitrary central interval.
When the simulation has a normal distribution, the highest density region will be equivalent
to the central interval with the same percentage of the simulations, e.g., 95 percent. However,
when the highest density is at the boundary, for example when many of the simulated relative
hazard values are close to 0, then Liu, Gelman, and Zheng (2013) argue that the highest
density region is preferable to the central interval. In these cases “central intervals can be
much longer and have the awkward property [of] cutting off a narrow high-posterior slice
that happens to be near the boundary, thus ruling out a part of the distribution that is
actually strongly supported by the inference” (Liu et al. 2013, p. 2). If this happens Liu et al.
recommend finding the shortest probability interval (SPIn). This is the shortest interval of a
particular probability coverage based on the simulations. They find this to be a very efficient
way of finding the shortest highest density region for unimodal distributions.

3.3. Visual weighting

Whether graphing a central or shortest probability interval, only using lines to represent the
center and edges can draw the reader’s attention away from what the graph is trying to
communicate. This approach overemphasizes the edges of the interval, the areas of lowest
probability. Some graphs uniformly shade the interval between the upper and lower bounds.
Uniform shading suggest to the reader a uniform distribution between the edges. Both of
these characteristics give misleading information about the quantities of interest’s probability
distributions, especially when they are on an exponential scale.

Visual weighting presents a solution to these problems. Hsiang calls visual weight“the amount
of a viewer’s attention that a graphical object or display region attracts, based on visual
properties” (2012, p. 3). More visual weight can be created by using more “graphical ink”
(Tufte 2001). Visual weight is decreased by removing graphical ink. The simplest way to
increase or decrease graphical ink with our simulations is to simply plot each simulation value
as a point or series of values with a line that is semi-transparent. Areas of the distribution with
many simulations will be darker. Areas with fewer simulations, often near the edges of the
distribution, will be lighter. Plotting semi-transparent points or lines clearly communicates a
quantity of interest’s probability distribution. When each point or line is partially transparent,
areas of the chart where the points or lines are darker indicate areas of the distribution with
higher probability, because more points or lines are stacked on top of one another. This
approach gives more visual weight to areas of higher probability and avoids drawing the
reader’s attention to the edges of the distribution (the areas of lower probability) in the way
that traditional confidence interval lines do.

As a practical issue if a plot shows very many simulations as individual points, and to a lesser
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extent lines, it may create a very large file size. This is especially true if higher quality vector
graphics are desired. An alternative it to summarize simulated distributions with multiple
ribbons of increasing transparency the further from the central tendency a portion of the
distribution is. These ribbons could stretch across given segments of the distribution such as
the central 50 and 95 percentage intervals. Using ribbons rather than points conveys somewhat
less information about a distribution, but can be convenient if very many simulations are
plotted.

4. simPH: Tools for simulating and graphing effects

One reason that researchers have inconsistently incorporated suggestions to test for and ex-
amine time interactions and nonlinearities in their Cox PH models and show their estimation
uncertainty is that there has been a lack of computational capabilities to easily do so. In
R the survival (Therneau 2014) package has functions for testing the proportional hazards
assumption. The survival and Zelig (Owen, Imai, King, and Lau 2013) packages can estimate
models with splines and interactions. However, their capabilities for graphically showing these
estimates and associated uncertainty are very limited. Zelig can plot basic estimates from Cox
PH models using simulation techniques, but not time-interactive or nonlinear spline effects.
Current capabilities for showing results from splines present results in difficult to interpret
quantities. In general the capabilities for showing results from time interactions is very lim-
ited. Usually, showing these types of results requires considerable effort to extract estimates
from model objects and then devise ways to show them graphically. See for example Licht’s
() Stata (StataCorp 2009) code for replicating the time-interaction plots in her paper. No
method allows you to easily plot shortest probability intervals and virtually none effectively
uses visual weighting.

To solve these problems I am introducing the simPH package for R. There are three basic
steps to use the package:

1. Estimate a Cox PH model using survival’s coxph function.

2. Simulate parameter estimates and calculate quantities of interest, e.g., relative hazards,
first differences, hazard ratios, marginal effects for linear interactions, or hazard rates,
using the function from the simPH package corresponding to the effect type. See Table 1
for a summary of the simulation functions.

3. Plot the simulations using the simGG method.

simPH’s simulation functions follow King et al. (2000) to simulate parameters and calculate
a variety of quantities of interest. The user can specify the number of simulations to run
per fitted value with the nsim argument. The default is 1,000. Warning: in some cases,
especially with penalized splines, it is easy to ask the program to create more simulations
than an average desktop computer can easily handle. The user may need to balance a desire
for a clear view of the probability distribution a quantity of interest comes from with what is
computationally feasible.

simPH’s simulation functions allow the user to keep either the traditional central interval of
the simulations’ distributions or use the shortest probability interval (both are the 95 percent
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Table 1: simPH quantity of interest simulation functions

Simulation function Effect type

coxsimLinear linear
coxsimInteract linear multiplicative interactions
coxsimPoly polynomials
coxsimtvc time-interactive
coxsimSpline penalized splines

interval by default). In either case the range is set with the ci argument, e.g., to find the
central 90 percent interval use ci = 0.9. To tell simPH to find the shortest probability
interval with any of simPH’s simulation functions simply set the argument spin = TRUE.1

The simGG plotting method can then be used to plot these simulated values as semi-transparent
points, lines, or ribbons. To choose between the plot types use the type argument and set it,
simply enough, to points, lines, or ribbons, respectively. The default is type = "ribbons".
It is important to note that while points and ribbons plot values in the selected interval for
each value of the x-axis, lines plots simulations in the selected interval for all values plotted
on the x-axis. This is to avoid creating jagged line plots, though it creates an interval with a
slightly different interpretation.

The transparency level can be set with the argument alpha. If points or lines are used, alpha
sets the transparency level for simulation values at the center of the distribution. Simulation
values further from the center become more transparent the further out they are. If the user
selects ribbon plots, three ribbons will be show. The most transparent shows the furthest
extent of the central or shortest probability interval. The less transparent ribbon shows the
central 50 percent of this interval. And the middle line shows the interval’s median.

A smoothing line of a type that can be specified by the user with the method argument is
also plotted to summarize the distribution’s central tendency. In general, any smoothing
method accepted by ggplot2 (Wickham and Chang 2013) can be used. simGG visually weights
simulation distributions by plotting semi-transparent points for each simulated quantity of
interest value or lines for the series of values from each simulation.

The simGG method draws on ggplot2 to plot the simulations. In most cases simGG returns
a ggplot2 gg object. For these plots, you can add any aesthetic attributes to the plots that
ggplot2 allows.

5. Demonstrations

To illustrate simPH’s syntax and capabilities we will first go through a simple example without
interactive or nonlinear effects. Then we will replicate key figures and findings from Licht
(2011) and Keele (2010). The quantities of interest in the latter examples will be from time-
interactive and penalized spline effects, respectively. For examples of other quantities of

1This capability was developed from Liu et al. (2013) and the accompanying code in Liu’s (2013) SPIn R
package. It is currently unavailable for hazard rates.
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interest and variable types please see simPH’s documentation.

5.1. Simple non-interactive and linear example

simPH can be used to show results from effects that are not explicitly modeled as interactions
or with nonlinear transformations. To do this use the coxsimLinear function. Let’s look
at an example using a hypothetical data set called hmohiv from Hosmer Jr, Lemeshow, and
May (2008). The data is hosted by and the basic estimation model is from UCLA Academic
Technology Services (2014). The data set contains 100 members of a Health Maintenance
Organization (HMO). All of the members are HIV positive. The HMO wants to examine
their survival times. Note: the model we will estimate below does not violate the proportional
hazards assumption.

Let’s estimate a simple Cox PH model that includes information on the HMO members’ ages
and intravenous drug use history. We can load the necessary packages for this example and
download the data with the following code:

R> library("survival")

R> library("simPH")

R>

R> data(hmohiv)

In the data set intravenous drug use is recorded as a binary variable called drug, where one is
a history of drug use and zero otherwise. Each member’s age in years is recorded in a variable
called age. The ages range from 20 to 54 with a median of 35.

We are first going to present results for how age is associated with survival times. Remember
that quantities of interest such as relative hazards and hazard ratios are comparisons. Relative
hazards are simply hazard ratios comparing a unit with a value of zero on some variable to
another unit with another value of this variable. For the age variable this would mean a
comparison between someone with an age of zero and someone with some other age. This
may not be a particularly interesting comparison. In our case, it is also an out of sample
comparison, as the youngest observed HMO member is 20 years old. We can easily create a
much more substantively interesting comparison by making the reference value the median
age (35):

R> hmohiv$AgeMed <- hmohiv$age - 35

The new variable ranges from -15 to 19. Now all of the simulated relative hazards will be
based on a comparison with a 35 year old. Let’s estimate the model using the coxph function
from the survival package:

R> M1 <- coxph(Surv(time, censor) ~ AgeMed + drug,

+ method = "breslow", data = hmohiv)

Age is clearly a time-varying quantity. Not only does it change over time in the way a
person’s income (probably) does, for example, but in effect it has a linear interaction with
time. However, in our model we do not explicitly interact age with time as we will interact
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Figure 1: Simulated relative hazards of age on survival time for HIV positive HMO members.
Default simGG plot (left) and plot with user-defined styling (right).

other variables with time in later examples. We can treat the variable in the same way as
personal income for the purposes of creating simulations with simPH and so can use the
coxsimLinear function:

R> Sim1 <- coxsimLinear(M1, b = "AgeMed", Xj = seq(-15, 19, by = 1),

+ nsim = 100)

We told coxsimLinear that we wanted to simulate relative hazards (the default quantity of
interest) based on our model object M1. We specified which variable to find hazard ratios for
using the b argument. The Xj argument sets the fitted values of xj ; in this case a sequence of
values between -15 and 19 at one unit intervals. The smaller the interval, the smoother the
resulting graph will look. To graphically present the results now in the Sim1 object we can
use the simGG method. The following code creates the left panel of Figure 1:

R> simGG(Sim1)

We can set the x and y axis labels and make other aesthetic changes to create the right panel
of Figure 1 using the following code:

R> simGG(Sim1, xlab = "\nYears of Age from the Sample Median (35)",

+ ylab = "Relative Hazard with Comparison\n to a 35 Year Old\n",

+ alpha = 0.05, type = "lines")

The xlab and ylab arguments in simGG allowed us to set the x-axis and y-axis labels respec-
tively. The backslash followed by the letter n creates a new line in the label.
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Figure 2: Simulated relative hazards of drug use history on survival time for HIV positive
HMO members.

The short dashes along the x-axis of Figure 1 are a rug plot and show the distribution of the
variable in the sample used to estimate the model.

We can see in the figure that the relative hazard at AgeMed zero (age 35) is one. A relative
hazard for a unit at zero is always one, as it is a ratio of the hazards with itself. The simulated
relative hazards for ages below the median are less than one. This means that they are less
likely to die at a given point in time than someone aged 35. Ages above the median have a
relative hazard greater than one and so are more likely to die than 35 year olds. We can see
in this figure that we have estimated that 54 year olds (those 19 years older than the median)
are about six times more likely than 35 year olds to die, all else equal.

We can also use simPH to find and plot quantities of interest for the binary drug use variable.
For example, using the model object M1 we simulate relative hazards for the variable’s two
levels: zero and one.

R> Sim2 <- coxsimLinear(M1, b = "drug", Xj = 0:1, nsim = 100)

We can then use simGG (with some stylistic modifications) to create the plot in Figure 2. It
is important to note that the method argument should be set to method = "lm" (i.e. linear
model) when using binary variables. The nonlinear smoothers will not work with fewer than
10 x-axis values.

5.2. Time-interactive effects example

Let’s now look at how to use simPH to explore time-interactive effects that are explicitly
created by interacting a given variable in the estimation model with some time transformation.
To do this we will recreate plots from Licht (2011). She re-examines Golub and Steunenberg’s
(2007) analysis of European Union legislative deliberation time. They wanted to find out
what factors affected the amount of time it took the European Union to pass a new piece
of legislation. Key variables they examined were the voting procedure that was used for a
given piece of legislation, including the so-called qualified majority vote (QMV) procedure,2

and the amount of other legislation pending, i.e., legislative backlog. Both of these variables

2The procedure changed over time, but essentially QMV requires some voting majority greater than 50% + 1.
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violated the proportional hazard assumption and were more accurately modeled with log-time
interactions.

Figure 3 recreates Licht’s (2011) figure showing the first difference of a log-time interaction for
how the effect of the QMV procedure on legislative deliberation time changes as the number
of days of deliberation increases (see Licht 2011, p. 236).3 To create this figure we first load
the data set GolubEUPData. This data set is included in simPH.

R> data("GolubEUPData")

Before creating the log-time interactions, let’s look at the data’s format:

R> head(GolubEUPData[, 2:5])

## caseno begin end event

## 1 1 0 595 1

## 2 2 0 1246 1

## 3 4 0 341 1

## 4 5 0 335 1

## 5 6 0 522 1

## 6 7 0 1664 0

We can see that each piece of prospective legislation is identified with a case number in
the caseno variable. The event variable records if the event of interest occurred (i.e. the
legislation was passed) or not. Observation intervals begin at 0 and extend to the end when
either the event occurs, or one of the covariate values change. If we create a time interaction by
using the end variable as the time value, we will over-measure the interaction for failures before
this time. For example, imagine we create a simple interaction between a binary variable and
time. One unit has the value one for the binary variable and this unit experiences an event
of interest at time 1,000 in a data set formatted as above. The time interaction would then
be treated as 1,000 for all failures at time t ≤ 1, 000. This would be inaccurate. At time 500,
for example the interaction should be 500, not 1,000.

To solve this problem, simPH includes the SurvExpand function. It expands a data set out
into equally spaced intervals. It keeps all intervals that end at an observed event time and
when a covariate changes. These are the only time points that are interesting to the Cox PH
model and removing unneeded periods helps save memory. The resulting data frame allows us
to create accurate time interactions. Here is how we use the function with the GolubEUPData

data:

R> GolubEUPData <- SurvExpand(GolubEUPData, GroupVar = 'caseno',
+ Time = 'begin', Time2 = 'end', event = 'event')
R>

See the European Union’s website for more details: https://europa.eu/legislation_summaries/glossary/

qualified_majority_en.htm (accessed January 2014).
3Her original figure was not in terms of a percentage difference to make it more comparable to a figure

in Golub and Steunenberg’s original. The results are presented in terms of percentage difference, as the first
difference is commonly reported. The pre and post Single European Act time periods are not separated out
for simplicity. Finally, I also examined whether or not nonlinearity functional forms would be better fits than
time interactions as per our discussion above. However, no evidence of this was found.

https://europa.eu/legislation_summaries/glossary/qualified_majority_en.htm
https://europa.eu/legislation_summaries/glossary/qualified_majority_en.htm
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R> head(GolubEUPData[, 1:4])

## caseno begin end event

## 1 1 0 1 0

## 2 1 1 2 0

## 3 1 4 5 0

## 4 1 6 7 0

## 5 1 8 9 0

## 6 1 10 11 0

Now we can create the log-time interactions. The two time-interaction variables we will focus
on are for qualified majority voting (qmv) and legislative backlog (backlog). Other time-
interaction variables are also from the original model. We can use the tvc function to create
log-time interactions. The function is included with simPH. The data argument specifies the
data frame where our covariate and time variables are. The covariate we wish to interact is
specified with b and the time variable with tvar. Finally, we specify the function of time
with the tfun argument.

R> BaseVars <- c('qmv', 'backlog', 'coop', 'codec', 'qmvpostsea', 'thatcher')
R>

R> GolubEUPData <- tvc(GolubEUPData, b = BaseVars, tvar = 'end', tfun = 'log')
R>

R> names(GolubEUPData)[18:23]

## [1] "qmv_log" "backlog_log" "coop_log"

## [4] "codec_log" "qmvpostsea_log" "thatcher_log"

Notice that the time interaction variables are added to the original GolubEUPData using the
base variables’ names plus a suffix denoting the log transformation.

Now estimate the model with coxph. Note that each log-time interaction is entered into the
model along with the corresponding non-time interacted term.

R> M2 <- coxph(Surv(begin, end, event) ~

+ qmv + qmvpostsea + qmvpostteu +

+ coop + codec + eu9 + eu10 + eu12 + eu15 + thatcher +

+ agenda + backlog +

+ qmv_log + qmvpostsea_log + coop_log +

+ codec_log + thatcher_log + backlog_log,

+ data = GolubEUPData, ties = "efron")

In the following code chunk we take the M2 model object created by coxph and use it in
simPH’s coxsimtvc function to simulate the first difference of the time-interactive effect of
qualified majority voting on directive deliberation time. We create the simulations for 80
through 2000 days after deliberation begins. We specify the quantity of interest that we
want to simulate with the qi argument. The non-time interacted term is entered with the b

argument. The time interacted term is entered with btvc. The form of the time interaction is
declared with the tfun argument, e.g., tfun = "log".4 Xj = 1 specifies that the difference

4Other options include linear for linear time-interactions and pow for polynomials. If tfun = "pow" then
also set the argument pow to specify the power the time interaction was raised to.
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is between values of qmv one and zero. This is a comparison between using QMV and not. We
could change the xl value with the Xl argument, but this is not relevant for binary variables.
The from and to arguments allow us to specify the time period over which to simulate the
quantity of interest. The by argument allows us to specify the increment of the time sequence
to simulate values at.

R> Sim3 <- coxsimtvc(obj = M2, b = "qmv", btvc = "qmv_log",

+ qi = "First Difference", Xj = 1,

+ tfun = "log", from = 80, to = 2000, by = 10,

+ )

Once we create the Sim3 object containing the simulations, we can simply use the simGG

method to plot the results. In this example, we adjust the median line size with the lsize =

0.5 argument. This makes this particular plot clearer. The legend = FALSE argument hides
the legend describing the fitted value comparisons that are being made between xj and xl. A
legend is uninformative in this case as we are only comparing the values one and zero. The
default is to show the legend. The legend argument follows the ggplot2 syntax for creating
plot guides.

R> simGG(Sim3, xlab = "\nTime in Days", type = "ribbons", lsize = 0.5,

+ legend = FALSE, alpha = 0.3, nsim = 100)

We can clearly see in Figure 35 that QMV increases the probability of passing a directive early
in the deliberation process (almost by 250 percent at about 80 days). But as the deliberation
time increases, the effect decreases and then becomes negative at around 1,000 days.

Let’s look at another example, this time with multiple comparisons plotted in one figure.
Figure 46 shows the effect of different levels of legislative backlog on directive deliberation
time from 1,200 to 7,000 days after the directive was proposed. The effect shown is also
modeled as a log-time interaction. The process of creating the plot is similar to what we
have already seen. The only differences to note are that we entered a sequence of values for
backlogged legislation for Xj in coxsimtvc ranging from 40 to 200 at increments of 40. This
creates five separate sets of relative hazard simulations, one for each value of Xj compared to
zero. Finally, we specified the legend name for the plot in the simGG call with the leg.name

argument.

R> Sim4 <- coxsimtvc(obj = M2, b = "backlog", btvc = "backlog_log",

+ qi = "Relative Hazard", Xj = seq(40, 200, 40),

+ tfun = "log", from = 1200, to = 7000, by = 100,

+ nsim = 100)

R>

R> simGG(Sim4, xlab = "\nTime in Days", type = "ribbons",

5The figures’ ribbons extend across the central probability 95 percent interval of the simulations.
As in Licht’s (2011) original the time period plotted is truncated from 80 to 2000 to make the estimates more
easily interpretable.

6It replicates the right panel of Licht’s (2011) Figure 3 (2011, 237). One difference is that she estimates
uncertainty from 10 draws of 1,000 simulations, whereas Figure 4 is based on one draw of 1,000 simulations.
The figure’s ribbons extend across the middle 95 percent of the simulations.
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Figure 3: Simulated first differences for the effect of Qualified Majority Voting on the time it
takes to pass legislation.

+ leg.name = "Backlogged \n Items")

The main conclusion we can draw from Figure 4 is that if a piece of legislation is not passed
in the first 1,200 or so days from when it was proposed, it is less likely that it will be passed
the larger the legislative backlog is (for more details see Licht 2011, p. 236-237).

In the previous examples, the simulation probability distributions are not strongly influenced
by boundary effects or long upper tails. Because of this the central and shortest probability
intervals (not shown) are largely equivalent. The distributions are also relatively tight, which
is indicated by fairly even visual weight across the distributions.

5.3. Nonlinear effects: penalized spline example

Let’s now turn to look at how simPH can be used to simulate and plot quantities of interest
estimated from penalized splines. To do this we will build on Keele (2010). He demonstrated
that we need to check for and explicitly model nonlinearity with a replication of Carpenter
(2002). Carpenter (2002) examined the time it took the US Food and Drug Administration
(FDA) to approve a new drug. Using the steps discussed above, he found that modeling non-
linearity with penalized splines, rather than time-interactive effects was the more appropriate
strategy for dealing with the covariates that violated the proportional hazards assumption.
This allowed him to draw conclusions that, for example, the number of FDA staff review-
ing a drug’s application increases the likelihood that it will be accepted, but that the effect
diminishes after a threshold number of staff are assigned.

It has been difficult to examine and communicate the functional form, magnitude, and un-
certainty surrounding spline effects. Coefficient tables are very cumbersome, because a spline
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Figure 4: Simulated relative hazards for the effect of different levels of legislative backlog on
directive deliberation time.

fitted effect is estimated using multiple coefficients, each for a different range of a covariate’s
values. Keele does not show spline coefficients in his results tables. Instead he simply denotes
their overall statistical significance with standard significance stars.

In R you can plot estimated spline effects over a range of values with the termplot function.
These plots, however, have a number of drawbacks. First, the plots show the log hazard
ratio,7 which is not a particularly intuitive quantity to understand and is rarely reported in
studies using Cox PH models. More importantly it attempts to communicate uncertainty by
plotting standard errors, instead of more widely used confidence intervals. As such, casual
readers could easily think the uncertainty around the spline estimates is smaller than it really
is.

simPH allows us to estimate quantities that we are more interested in like relative hazards,
hazard rates over time, hazard ratios, and first differences. For example, let’s simulate the
hazard ratios for the effect of an additional drug review staff on the time it takes for a drug
to be approved. The plots in Figure 5 show the simulated hazard ratios over the full range of
FDA staff per drug trial (stafcder) observed in Carpenter’s data.

Let’s look at the syntax used to create the left panel of Figure 5. Load Carpenter’s data
included with simPH and estimate the model with splines using coxph and pspline. The
model was originally used to create the results in Keele’s (2010) Table 7.

R> data("CarpenterFdaData")

R>

7Log hazard ratios for a standard Cox PH model are given by: log
{

hj(t)

hh(t)

}
= βXi (modified from Box-

Steffensmeier and Jones 2004, 49).
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R> M3 <- coxph(Surv(acttime, censor) ~ prevgenx + lethal + deathrt1 +

+ acutediz + hosp01 + pspline(hospdisc, df = 4) +

+ pspline(hhosleng, df = 4) + mandiz01 +

+ femdiz01 + peddiz01 + orphdum + natreg + vandavg3 +

+ wpnoavg3 + pspline(condavg3, df = 4) +

+ pspline(orderent, df = 4) + pspline(stafcder, df = 4),

+ data = CarpenterFdaData)

Now simulate the hazard ratios for a sequence of values with coxsimSpline and graph the
results with simGG.

R> XjFit <- seq(1100, 1700, by = 10)

R>

R> XlFit <- setXl(Xj = XjFit, diff = 1)

R>

R> Sim4 <- coxsimSpline(M3, bspline = "pspline(stafcder, df = 4)",

+ bdata = CarpenterFdaData$stafcder,

+ qi = "Hazard Ratio", nsim = 100,

+ Xj = XjFit, Xl = XlFit)

R>

R> simGG(Sim4, xlab = "\n Number of FDA Drug Review Staff",

+ title = "Central Interval\n", alpha = 0.1,

+ type = "lines")

There are a few syntax points to note. First, we created our vector of xl values using the
setXl function. This simply takes a vector of xj values and returns a vector of corresponding
xl values that are different from xj by an amount set with the diff argument. Second, we
told coxsimSpline the term to estimate for using the bspline argument and the same syntax
we used to enter the term as a penalized spline in the coxph call, i.e., pspline(stafcder, df

= 4). Third, we specified the vector containing the observed stafcder data with the bdata

argument. This is important for coxsimSpline to be able to accurately find the spline knots.

We can see in the left panel of Figure 5 that the simulated values are concentrated near
the bottom of the distribution.8 Following Liu et al. we may find it useful to show not the
central 95 percent interval, but the shortest 95 percent probability interval. The right panel
of Figure 5 shows this interval. To create it we used all of the same syntax as before, while
simply adding spin = TRUE to coxsimSpline. Using the shortest 95 percent probability
interval indicates that there is actually a higher probability that the hazard ratio is 1, i.e.,
no effect, than the central 95 percent interval for all but the highest quartile or so of FDA
drug review staff. It also deemphasizes the higher hazard ratio values, where there is a low
concentration of the probability. In both panels of Figure 5 the visual weighting draws readers’
attention to the lower part of the distribution where the model estimates there is a higher
probability that the hazard ratio will be.

8Note that the values have been smoothed using post-simulation cubic smoothing splines. This gives a more
continuous appearance to the simulations. Smoothing is accomplished with smooth.spline, which is part of
basic R. You can tell simGG to not smooth the simulations by setting the argument SmoothSpline = FALSE.
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Figure 5: Simulated hazard ratios for the effect of FDA staff on drug approval time.

Finally, to ease comparison, the right panel plot is on the same y-axis scale as the first.
To illustrate how to do this, imagine that we placed the output of coxsimSpline with the
argument spin = TRUE into an object called SimPlot. We can then use ggplot2 to change
the y-axis range so that it is comparable the left panel of Figure 5:

R> library("ggplot2")

R>

R> SimPlot + scale_y_continuous(breaks = c(0, 20, 40, 60), limits = c(0, 60))

By simulating quantities of interest and plotting the results we can more adequately explore
the estimated spline effects than we could have with previously available tools. In so doing we
can bring into question the substantive significance of Keele’s (2010) findings. Remember that
Figure 5 plots hazard ratios between an xj value that is only one unit, i.e., one FDA review
staff member, greater than the xl value. Given that the observed drug review staff variable
stafcder ranges from 996 to 1796, a one unit change is not really substantively meaningful.
However, when we create simulations using only slightly larger differences between xj and xl,
e.g., setXl(Xj = XjFit, diff = 5), we end up with very large (often infinite) simulated
quantity of interest values. simPH automatically reports and drops extreme values when
running coxsim functions. This avoids crashes that may occur when trying to find the distri-
butions’ middle intervals or during plotting. The user can set the argument extremesDrop =

FALSE in the simulation function call to keep extreme values if they wish to explore them in
more detail.
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6. Conclusion

Exploring and communicating quantities of interest and their associated uncertainty estimated
from Cox PH models presents a number of difficulties. Quantities of interest are on nonlinear
and asymmetric scales. Key types of covariate transformations that help address violations of
the proportional hazards assumption are especially difficult to interpret using coefficient tables
and other previously available tools. The Zelig package for R comes closest to allowing us to
estimate and communicate uncertainty from Cox Proportional Hazards models. However, it
has limited or no ability to simulate quantities of interest for time-interactive and nonlinear
estimated effects. So, this paper has demonstrated a new R package, simPH, that makes
it easy to effectively explore and present quantities of interest for interactive and nonlinear
effects. It can also be used for ‘vanilla’ linear effects, making it a useful all-round package
for showing results from Cox Proportional Hazard models. This paper has also argued for
and demonstrated the usefulness of visual weighting and shortest probability intervals for
understanding results from these models. simPH fully supports these methods.
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