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Introduction
What is the issue

The ssdtools package uses the method of Maximum Likelihood (ML) to estimate parameters for each distri-
bution that is fit to the data. Statistical theory says that maximum likelihood estimators are asymptotically
unbiased, but does not guarantee performance in small samples.

For example, consider the CCME silver data that ships with ssdtools.

data(ccme_data)
Ag <- ccme_data[ ccme_data$Chemical=="Silver",]
Ag$ecdf <- (rank(Ag$Conc)+.25)/(nrow(Ag)+.5)

Ag

## # A tibble: 9 x 6

##  Chemical Species Conc Group Units ecdf
##  <chr> <chr> <dbl> <fct> <chr> <dbl>
## 1 Silver  Oncorhynchus mykiss 0.24 Fish ug/L 0.132
## 2 Silver Lemna gibba 0.63 Plant ug/L 0.237
## 3 Silver Ceriodaphnia dubia 0.78 Invertebrate ug/L 0.342
## 4 Silver Pimephales promelas 0.83 Fish ug/L 0.447
## 5 Silver  Ictalurus punctatus 1.9 Fish ug/L 0.553
## 6 Silver Daphnia magna 2.12 Invertebrate ug/L 0.658
## 7 Silver Hyalella azteca 4 Invertebrate ug/L 0.763
## 8 Silver Chironomus tentans 13 Invertebrate ug/L 0.868
## 9 Silver Micropterus salmoides 23 Fish ug/L 0.974

Let us fit a log-normal distribution to the Ag endpoint data and estimate the parameters:

fit <- ssd_fit_dists(Ag, dist="lnorm")
fit

## Fitting of the distribution ' lnorm ' by maximum likelihood
## Parameters:

#i#t estimate Std. Error

## meanlog 0.6840072 0.4640735

## sdlog  1.3922205 0.3281487

For most distributions, the MLE must be found numerically by iterative methods, but the log-normal
distribution has easily computed estimators.

The meanlog parameter shown above represents the mean of the concentrations on the (natural) logarithmic
scale and we can easily reproduce this value:



mean(log(Ag$Conc))

## [1] 0.6840072

The sdlog parameter represents the standard deviation on the logarithmic scale, but the direct computation
of the standard deviation gives a slightly different result:

sd(log(Ag$Conc))

## [1] 1.476673

It turns out that in small samples, the MLE of the standard deviation for a log-normal distribution has a
negative bias, i.e. the MLE tends to be smaller than the underlying true parameter value. The cause of this
bias is found by comparing the formula for the MLE of the standard deviation and the traditional estimator
for the standard deviation:

. (Y; = Y)?
OMLE = n
~ > (Y- Y)?
Otraditional = n_1

where n is the sample size, Y; are the log(concentrations), and Y is the sample mean concentration again on
the logarithmic scale.

We notice that the MLE uses a divisor of n while the traditional method uses a divisor of n — 1. Hence the
MLE has a negative bias and its value is 0.94x the usual estimator for o which is 4/ ”7—:1 = 0.94 evaluated at
n=9.

As the sample size increases the absolute size of the bias will get smaller and smaller, i.e., if n = 20, then the
MLE estimator is 0.97x the traditional estimator for o which is neglible given the uncertainties in the actual
end points.

Conversly, as the sample size decreases, the absolute size of the bias could become quite large, i.e., if n = 4,
then the MLE is 0.87x the traditional estimator. But if you are fitting a species sensitivity distribution to
only 4 data values, perhaps concern about bias in MLE is misplaced. Australian guidelines recommend a
minimum sample size of 8 species.

What is the impact on the HCx value?

If the standard deviation is underestimated, then the tails of the distribution will be pulled inwards and the
HCx values will tend to be larger compared to the case where the standard deviation is not deflated as shown
in the following plot:



Comparing the estimated cumulative density computed using
MLE and bias—corrected SD

Ag CCME data with n=9
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The HC5 estimated from the MLE fit is -1.61 on the logarithmic concentrations scale or 0.201 on the
concentration scale. The HC5 estimated after correcting the standard deviation for small sample bias is -1.74
on the logarithmic concentrations scale or 0.175 on the concentration scale. The ratio of HC5 values is 0.87x
on the concentration scale, i.e. the estimated HC5 from the MLE is 1.1x larger than the HC5 computed using
the bias correction.

The differences between the HCx computed from the MLE fit and using the corrected standard deviation will
become more pronounced for small HCx values. For example, the HC1 estimated from the MLE fit is 0.078
and the HC1 estimated using the corrected standard deviation is 0.064 on the concentration scale. The ratio
of the HC1 values is 0.82x on the concentrations scale, i.e. the estimated HC1 from the MLE is 1.2x larger
than the HC5 computed using the bias correction.

What can be done?

A similar concernalso occurs with other distributions. Howeve, except for a few distributions, such as the
normal distribution, analytical expressions for the MLE and for unbiased estimators do not exist. The
mle.tools package from CRAN provides a method that numerically corrects the bias after the fit is completed.



Bias correction using Cox-Snell method - log-normal distribution

For example, again using the Ag log-normal fit we have:

# apply the Cox and Snell (1968) bias correction using mle.tools.

# what is the density function

norm.pdf <- quote(l / (sqrt(2 * pi) * sigma) * exp(-0.5 / sigma ~ 2 * (x - mu) ~ 2))
norm.pdf

## 1/(sqrt(2 * pi) * sigma) * exp(-0.5/sigma”2 * (x - mu)~2)

# what ts the log(density) function (ignoring constants)
log.norm.pdf <- quote(- log(sigma) - 0.5 / sigma "~ 2 * (x - mu) ~ 2)
log.norm.pdf

## -log(sigma) - 0.5/sigma™2 * (x - mu)~2

bias.correct <- coxsnell.bc(density = norm.pdf,
logdensity = log.norm.pdf,
n = length(Ag$Conc),
parms = c("mu", "sigma"),
mle = c(fit$lnorm$estimate["meanlog"],
fit$lnorm$estimate["sdlog" 1),
lower = '-Inf', upper = 'Inf')
bias.correct

## $mle

## mu sigma

## 0.6840072 1.3922205

#i#

## $varcov

## mu sigma
## mu 2.153642e-01 -4.458357e-14
## sigma -4.458357e-14 1.076821e-01
#i#

## $mle.bc

## mu sigma

## 0.6840072 1.5082388

##

## $varcov.bc

## mu sigma
## mu 2.527538e-01 -2.018812e-13
## sigma -2.018812e-13 1.263769e-01
##

## $bias

## mu sigma

## -2.863140e-12 -1.160184e-01

The biased corrected value for the standard deviation is 1.51 which is comparable to the standard deviation
of the log(concentration) found earlier of 1.48.

A small simulation study was conducted to investigate the effect of sample size on the bias correction and
effects of the small-sample bias in the estimates of HC5 and HC1. For this simulation study, it was assumed
that a log-normal distribution represented the distribution of endpoints among species with a mean of 0
and a standard deviation of 1 (on the logarithmic scale). These values are arbitrary, but any log-normal
distribution can be rescaled (e.g. by changing units) to have this mean and standard deviation.

Simulated data sets at various sample sizes were generated, the MLE and bias-corrected estimates were



obtained and these were used to estimate the HC5 and HC1 on the log() and anti-log scales. The average
value of each response was then computed and plotted vs. the actual parameter values based on the known
mean and standard deviation (shown in the plot below as a black horizontal line). For example, for a
log-normal distribution with a mean of 0 and a standard deviation of 1 on the log-scale, the log(HC5) is the
0.05 quantile of the normal distribution or -1.645.

A plot of the results is:

Performance of mle and bias corrected estimators
Log—-normal distribution with mean= 0 and sd =1 on the log() scale
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The MLE is unbiased for the mean of the log-normal distribution (bottom left plot) - the apparent deviations
from the true value of 0 are very small (note the scale on the Y axis) and simply simulation artefacts.

The MLE for the standard deviation is biased downwards (lower right plot) and the bias become smaller
with increasing sample size (the curve for the mean of the MLE estimate of the standard deviation increases
and approaches the true value of 0). The bias-correction for the standard deviation is effective for all but the
smallest sample sizes.

The estimated log HC' (upper right plot) based on the MLE is biased upwards (i.e. larger) than the true values
but the bias declines with sample size (as expected). The estimate of the log HC based on the bias-corrected
estimates performs well (close to the true value) except at very small sample sizes.



Finally, the estimated HC'1 and HC5 values are again biased upwards (upper left plot). This bias consists of
two parts

1. bias in the underlying estimates of the parameters of the distribution
2. non-linear tranformation bias, i.e. the mean of a function of the parameter values is not equal to

the function evaluated at the mean of the parameter values. For example, the HC5 is found as the
anti-log of the 5" percentile of the normal distribution. Suppose we have two simulation results where
the estimated 5** percentile of the fitted normal distribution were —1.8 and —1.5. The mean of the
estimated 5'h percentile is “L8+(=15) — _1.65 and is unbiased for the actual percentile value of —1.645.
However, the actual HC5 is found as the anti-log of the two individual estimates, i.e. exp(—1.8) = 0.165
and exp(—1.6) = .223 whose mean is 0.194, but the anti-log of the average, exp(—1.65) = .192 which is
not the same value.

The total bias does not appear to be large except in the case of very small sample sizes.

Bias correction using Cox-Snell method - gamma distribution

We can also apply this to other distributions such as the gamma distribution. If we fit a gamma distribution
to the Ag data we obtain:

fit.gamma <- ssd_fit_dists(Ag, dist="gamma")
fit.gamma

## Fitting of the distribution ' gamma ' by maximum likelihood
## Parameters:

##

estimate Std. Error

## scale 8.0858115 4.6620883
## shape 0.6389626 0.2544429

The bias corrected estimates are:

# apply the Cox and Snell (1968) bias correction using mle.tools.
# what 7s the density function

gamma.pdf <- quote(l /(scale

shape * gamma(shape)) * x ~ (shape - 1) * exp(-x / scale))

gamma . pdf

## 1/(scale”shape * gamma(shape)) * x~(shape - 1) * exp(-x/scale)

# what ts the log(density) functiong ingoring constants

log.gamma.pdf <- quote(-shape * log(scale) - lgamma(shape) + shape * log(x) -
x / scale)

log.gamma.pdf

## -shape * log(scale) - lgamma(shape) + shape * log(x) - x/scale

bias.correct.gamma <- coxsnell.bc(density = gamma.pdf,

logdensity = log.gamma.pdf,

n = length(Ag$Conc),

parms = c("shape", "scale"),

mle = c(fit.gamma$gamma$estimate["shape"],
fit.gamma$gamma$estimate["scale" 1),

lower = 0, upper = 'Inf')

bias.correct.gamma

## $mle

##

shape scale

## 0.6389626 8.0858115

##



## $varcov

#i# shape scale
## shape 0.06474778 -0.8193984
## scale -0.81939841 21.7394342
##

## $mle.bc

## shape scale

## 0.4776978 8.8397972

##

## $varcov.bc

## shape scale

## shape 0.03426721 -0.6341122
## scale -0.63411218 29.9097308
##

## $bias

## shape scale

## 0.1612648 -0.7539858

The two cumulative density functions are:



Comparing the estimated cumulative gamma density
using MLE and bias correction

Ag CCME data with n=9 and gamma fit
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The HC5 estimated from the MLE.gamma fit is -2.76 on the logarithmic concentrations scale or 0.063 on the
concentration scale. The HC5 estimated after correcting for small sample bias is -4.34 on the logarithmic
concentrations scale or 0.013 on the concentration scale. The ratio of these two HC5 values is 0.205x on the
concentration scale, i.e. the HCx based on the MLE is 4.9x larger on the concentration scale.

The differences between the HCx computed from the MLE and for the bias corrected estimates will become
more pronounced for small HCx values. For example, the HC1 estimated from the MLE.gamma fit is 0.005
and the HC1 estimated using the biased corrected estimates is 0.000446 on the concentration scale. The ratio
of these two values is now 0.088x, i.e. the HCx based on the MLE is 11.4x larger on the concentration scale.

We repeated a similar simulation study with the gamma distribution. The shape and scale parameters were
chosen to match the mean and variance of the log-normal distribution used in the previous simulation study.



Performance of mle and bias corrected estimators
Gamma distribution with shape= 1 and scale =1.65
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The MLEs are biased in small-samples for both the shape and scale (bottom row of plots) but the small-sample
bias declines as sample size increases (as expected). The biases of the two parameters are in opposite directions
(i.e. one bias is positive and one bias is negative). The bias corrected estimates are unbiased (as expected).

The estimated log HC (upper right plot) based on the MLE is slightly biased upwards (i.e. larger) than the
true values but the bias rapidly declines with sample size (as expected). Rather surprisingly, the estimated
HC5 and HC1 values using the bias-corrected estimates are biased downwards, likely an artefact of the
non-linear transformation from scale and shape to the HCx.

Finally, the estimated HC'1 and HC5 values are again biased upwards (upper left plot) based on the MLEs,

but the estimated HCxz values based on the bias-corrected estimates appear to exhibit less bias despite the
bias in the log(HCz) values.

Recommendations

In cases with reasonably large sample sizes (around 15+), the small sample bias is unlikely to be of concern

given the uncertainty in the endpoints actually used for the fit, and the uncertainty generated for the HCx
from the model averaging process.



The small sample bias in the estimates is expected to affect the smaller HCx values (e.g. HC1) more than
larger HCx values (e.g. HC5). This is not unexpected because you are trying to extrapolate out to the
extreme tails of the distribution where there is typically no data available and small changes to parameter
values can have large impacts on the extreme tails.

For smaller sample sizes, a similar exercise as above can be used to estimate the impact of the small sample
bias. Howeverr, for small sample sizes, this exercise may be akin to “fiddling while Rome burns”, i.e, this does
not change the basic problems with small sample sizes including (a) most distributions will have adequate fits
and it is unlikely be possible to discriminate between distributions; and (b) extrapoloting even to a moderate
tail fraction (e.g. HCH) is very, very dependent on the chosen distribution; (c) there is no data available
to support even moderate extrapolation to tail proportions. Higher certainty in the estimates can only be
obtained by increasing sample sizes.

ssdtools by the Province of British Columbia is licensed under a Creative Commons Attribution 4.0
International License.
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