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statGraph-package Statistical Methods for Graphs
Description

Contains statistical methods to analyze graphs, such as graph parameter estimation, model selection

based on the GIC (Graph Information Criterion), statistical tests to discriminate two or more popula-

tions of graphs (ANOGVA - Analysis of Graph Variability), correlation between graphs, and cluster-

ing of graphs. References: Takahashi et al. (2012) <doi:10.1371/journal.pone.0049949>, Futija et

al. (2017) <doi:10.3389/fnins.2017.00066>, Fujita et al. (2017) <doi:10.1016/j.csda.2016.11.016>,

Tang et al. (2017) <doi:10.3150/15-BEJ789>, Tang et al. (2017) <doi:10.1080/10618600.2016.1193505>,
Ghoshdastidar et al. (2017) <arXiv:1705.06168>, Ghoshdastidar et al. (2017) <arXiv:1707.00833>,

Cerqueira et al. (2017) <doi:10.1109/TNSE.2017.2674026>, Fraiman and Fraiman (2018) <doi:10.1038/s41598-
018-23152-5>, Fujita et al. (2019) <doi:10.1093/comnet/cnz028>.
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anogva ANOGVA Analysis Of Graph Variability

Description

anogva statistically tests whether two or more sets of graphs are generated by the same random
graph model. It is a generalization of the ’takahashi.test’ function.

Usage

anogva(G, labels, maxBoot = 1000, bandwidth = "Silverman")

Arguments

G a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

labels an array of integers indicating the labels of each graph.
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maxBoot integer indicating the number of bootstrap resamplings.

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges"”, "bcv", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

Value

A list containing:

statistic the statistic of the test.
p.value the p-value of the test.
References

Fujita, A., Vidal, M. C. and Takahashi, D. Y. (2017) A Statistical Method to Distinguish Functional
Brain Networks. _Front. Neurosci._, *11%*, 66. doi:10.3389/fnins.2017.00066.

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, €49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S.J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

set.seed(1)
gl <- g2 <- g3 <- list()
for (i in 1:20) {
g1[[i]] <- igraph::sample_gnp(50, 0.50)
g2[[i]] <- igraph::sample_gnp(50, 0.50)
g3[[i]] <- igraph::sample_gnp(50, 0.52)
3
G <- c(g1, g2, g3)
label <- c(rep(1,20),rep(2,20),rep(3,20))
result <- anogva(G, label, maxBoot=50)
result
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cerqueira.test Andressa Cerqueira, Daniel Fraiman, Claudia D. Vargas and Floren-
cia Leonardi non-parametric test of hypotheses to verify if two samples
of random graphs were originated from the same probability distribu-
tion.

Description

Given two identically independently distributed (idd) samples of graphs G1 and G2, the test verifies
if they have the same distribution by calculating the mean distance D from G1 to G2. The test
rejects the null hypothesis if D is greater than the (1-alpha)-quantile of the distribution of the test
under the null hypothesis.

Usage

cerqueira.test(G1, G2, maxBoot = 300)

Arguments
G1 the first iid sample of graphs to be compared. Must be a list of igraph objects.
G2 the second iid sample of graphs to be compared. Must be a list of igraph objects.
maxBoot integer indicating the number of bootstrap resamples (default is 300).

Value

A list containing:

W the value of the test.
p.value the p-value of the test.
References

Andressa Cerqueira, Daniel Fraiman, Claudia D. Vargas and Florencia Leonardi. "A test of hypothe-
ses for random graph distributions built from EEG data", https://ieeexplore.ieee.org/document/7862892

Examples

## Not run:
set.seed(42)

## test under HO

Gl <- G2 <- list()

for(i in 1:10){
G1[[i]] <- igraph::sample_gnp(50,0.5)
G2[[i]] <- igraph::sample_gnp(50,0.5)

}

k1 <- cerqueira.test(G1, G2)

k1
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## test under H1

Gl <- G2 <- list()

for(i in 1:10){
G1[[il] <- igraph::sample_gnp(50,0.5)
G2[[i]] <- igraph::sample_gnp(50,0.6)

}

k2 <- cerqueira.test(G1, G2)

k2

## End(Not run)

fast.eigenvalue.probability
Degree-based eigenvalue probability

Description
fast.eigenvalue.probability returns the probability of an eigenvalue given the degree and ex-
cess degree probability.

Usage

fast.eigenvalue.probability(deg_prob, g_prob, all_k, z, n_iter = 5000)

Arguments
deg_prob The degree probability of the graph.
g_prob The excess degree probability of the graph.
all_k List of sorted unique degrees greater than 1 of the graph.
z Complex number whose real part is the eigenvalue whose probability we want
to obtain, the imaginary part is a small value (e.g., le-3).
n_iter The maximum number of iterations to perform.
Value

A complex number whose imaginary part absolute value corresponds to the probability of the given
eigenvalue.

References

Newman, M. E. J., Zhang, X., & Nadakuditi, R. R. (2019). Spectra of random networks with
arbitrary degrees. Physical Review E, 99(4), 042309.
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Examples

set.seed(42)
G <- igraph::sample_smallworld(dim = 1, size = 10, nei = 2, p = 0.2)

# Obtain the degree distribution
deg_prob <- c(igraph::degree_distribution(graph = G, mode = "all"),@.0)
k_deg <- seq(1,length(deg_prob)) - 1

# Obtain the excess degree distribution

c <- sum(k_deg * deg_prob)

g_prob <- c()

for(k in 0@:(length(deg_prob) - 1)){
aux_q <- (k + 1) * deg_prob[k + 1]/c
g_prob <- c(g_prob,aux_q)

3

# Obtain the sorted unique degrees greater than 1
all_k <- c(1:1length(g_prob))

valid_idx <- g_prob != 0

g_prob <- g_prob[valid_idx]

all_k <- all_k[valid_idx]

# Obtain the probability of the eigenvalue @

z<- 0+ 0.01%11

eigenval_prob <- -Im(fast.eigenvalue.probability(deg_prob,q_prob,all_k,z))
eigenval_prob

fast.graph.param.estimator
Degree-based graph parameter estimator

Description

fast.graph.param.estimator estimates the parameter of the complex network model using the
degree-based spectral density and ternary search.

Usage
fast.graph.param.estimator(
G,
model,
lo = NULL,
hi = NULL,
eps = 0.001,
from = NULL,
to = NULL,

npoints = 2000,
numCores = 1



Arguments

G

model

lo

hi

eps

from

to

npoints

numCores

Value

fast.graph.param.estimator

The undirected unweighted graph (igraph type).

Either a string or a function:

A string that indicates one of the following models: "ER" (Erdos-Renyi random
graph model), "GRG" (geometric random graph model), "WS" (Watts-Strogatz
model), and "BA" (Barabasi-Albert model).

A function that returns a Graph generated by a graph model. It must contain
two arguments: the first one corresponds to the graph size and the second to the
parameter of the model.

Smallest parameter value that the graph model can take.

If “model” is an string, then the default value of O is used for the predefined
models ("ER", "GRG", "WS", and "BA").

Largest parameter value that the graph model can take.

If “model” is an string, then the default values are used for the predefined models
1 for "ER", sqrt(2) for "GRG", 1 for "WS", and 5 for "BA").

Desired precision of the parameter estimate.

Lower end of the interval that contain the eigenvalues to generate the degree-
based spectral densities. The smallest eigenvalue of the adjacency matrix corre-
sponding to “graph” is used if the value is not given.

Upper end of the interval that contain the eigenvalues to generate the degree-
based spectral densities. The largest eigenvalue of the adjacency matrix corre-
sponding to “graph” is used if the value is not given.

Number of points to discretize the interval <from,to>.

Number of cores to use for parallelization.

Returns a list containing:

param

L1_dist

Examples

set.seed(42)

The degree-based parameter estimate. For the "ER", "GRG", "WS", and "BA"
models, the parameter corresponds to the probability to connect a pair of ver-
tices, the radius used to construct the geometric graph in a unit square, the prob-
ability to reconnect a vertex, and the scaling exponent respectively.

The L1 distance between the observed graph and the graph model with the esti-
mated value.

#i## Example giving only the name of the model to use
G <- igraph::sample_smallworld(dim = 1, size = 15, nei = 2, p = 0.2)

# Obtain the parameter of the WS model
estimated.parameter1l <- fast.graph.param.estimator(G, "WS", lo = 0.1, hi = 0.5,

eps = le-1, npoints = 10,
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numCores = 1)
estimated.parameteri

## Not run:
### Example giving a function instead of a model

# Defining the model to use

G <- igraph::sample_smallworld(dim = 1, size = 5000, nei = 2, p = 0.2)

K <- as.integer(igraph::ecount(G)/igraph::vcount(G))

fun_WS <- function(n, param, nei = K){

return (igraph::sample_smallworld(dim = 1,size = n, nei = nei, p = param))

}

# Obtain the parameter of the WS model
estimated.parameter2 <- fast.graph.param.estimator(G, fun_WS, lo = 0.0, hi
npoints = 100, numCores = 2)

1l
_
[

estimated.parameter2

## End(Not run)

fast.spectral.density Degree-based spectral density

Description
fast.spectral.density returns the degree-based spectral density in the interval <from,to> by
using npoints discretization points.

Usage

fast.spectral.density(G, from = NULL, to = NULL, npoints = 2000, numCores = 1)

Arguments
G The undirected unweighted graph (igraph type) whose spectral density we want
to obtain.
from Lower end of the interval that contain the eigenvalues or smallest eigenvalue of
the adjacency matrix of the graph. The smallest eigenvalue is used if the value
is not given.
to Upper end of the interval that contain the eigenvalues or largest eigenvalue of
the adjacency matrix of the graph. The largest eigenvalue is used if the value is
not given.
npoints Number of discretization points of the interval <from,to>.
numCores Number of cores to use for parallelization.
Value

Returns the degree-based spectral density of the graph in the
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References

Newman, M. E. J., Zhang, X., & Nadakuditi, R. R. (2019). Spectra of random networks with
arbitrary degrees. Physical Review E, 99(4), 042309.

Examples

set.seed(42)
G <- igraph::sample_smallworld(dim = 1, size = 100, nei = 2, p = 0.2)

# Obtain the degree-based spectral density
density <- fast.spectral.density(G = G, npoints = 80, numCores = 1)

density
fraiman.test Daniel Fraiman and Ricardo Fraiman test for network differences be-
tween groups with an analysis of variance test (ANOVA).
Description

Given a list of graphs, the test verifies if all the subpopulations have the same mean network, under
the alternative that at least one subpopulation has a different mean network.

Usage

fraiman.test(G, maxBoot = 300)

Arguments
G the undirected graphs to be compared. Must be a list of lists of igraph objects or
a list of lists of adjacency matrices.
maxBoot integer indicating the number of bootstrap resamples (default is 300).
Value

A list containing:

T the value of the test.
p.value the p-value of the test.
References

Fraiman, Daniel, and Ricardo Fraiman. "An ANOVA approach for statistical comparisons of brain
networks", https://www.nature.com/articles/s41598-018-23152-5
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Examples

## Not run:
set.seed(42)

## test under HO

a <-b <-G <= list(Q)

for(i in 1:10){
a[[i]] <- igraph::sample_gnp(50,0.5)
b[[i]] <- igraph::sample_gnp(50,0.5)

}

G <- list(a,b)

k1 <- fraiman.test(G)

k1

## test under H1

a <- b <- G <- 1list()

for(i in 1:10){
al[i]] <- igraph::sample_gnp(50,0.5)
b[[i]] <- igraph::sample_gnp(50,0.6)

3

G <- list(a,b)

k2 <- fraiman.test(G)

k2

## End(Not run)

ghoshdastidar.test Ghoshdastidar hypothesis testing for large random graphs.

Description
Given two lists of graphs generated by the inhomogeneous random graph model, ghoshdastidar. test
tests if they were generated by the same parameters.

Usage

ghoshdastidar.test(G1, G2, maxBoot = 300, two.sample = FALSE)

Arguments
G1 the first list of undirected graphs to be compared. Must be a list of matrices or
igraph objects.
G2 the second list of undirected graphs to be compared. Must be a list of matrices
or igraph objects.
maxBoot integer indicating the number of bootstrap resamples (default is 300).
two.sample logical. If TRUE the sets contain only one graph each. If FALSE the sets contain

more than one graph each (default is FALSE).
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Value

A list containing:

T the value of the test.
p.value the p-value of the test (only returned when the parameter *two.sample’ is FALSE).
References

Ghoshdastidar, Debarghya, et al. "Two-sample tests for large random graphs using network statis-
tics". arXiv preprint arXiv:1705.06168 (2017).

Ghoshdastidar, Debarghya, et al. "Two-sample hypothesis testing for inhomogeneous random
graphs". arXiv preprint, arXiv:1707.00833 (2017).

Examples

## Not run:
set.seed(42)

## test for sets with more than one graph each under Ho@

Gl <- G2 <- list()

for(i in 1:10){
G1[[i]] <- as.matrix(igraph::get.adjacency(igraph::sample_gnp(50,0.6)))
G2[[i]] <- as.matrix(igraph::get.adjacency(igraph::sample_gnp(50,0.6)))

3

D1 <- ghoshdastidar.test(G1, G2)

D1

## test for sets with more than one graph each under H1

Gl <- G2 <- list()

for(i in 1:10){
G1[[i]] <- as.matrix(igraph::get.adjacency(igraph::sample_gnp(50,0.6)))
G2[[i]] <- as.matrix(igraph::get.adjacency(igraph::sample_gnp(50,0.7)))

3

D2 <- ghoshdastidar.test(G1, G2)

D2

## test for sets with only one graph each under H0
Gl <- G2 <- list()

G1[[1]] <- igraph::sample_gnp(300, 0.6)

G2[[1]] <- igraph::sample_gnp(300, 0.6)

D3 <- ghoshdastidar.test(G1, G2, two.sample= TRUE)
D3

## test for sets with only one graph each under H1
Gl <- G2 <- list()

G1[[1]] <- igraph::sample_gnp(300, 0.6)

G2[[1]] <- igraph::sample_gnp(300, 0.7)

D4 <- ghoshdastidar.test(G1, G2, two.sample= TRUE)
D4

## End(Not run)
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GIC

Graph Information Criterion (GIC)

Description

GIC returns the Kullback-Leibler divergence or L2 distance between an undirected graph and a

given graph model.

Usage
GIC(
G,
model,
p = NULL,
bandwidth = "Silverman”,
eigenvalues = NULL,
dist = "KL"
)
Arguments
G the undirected graph (igraph type) or its adjacency matrix. The adjacency matrix
of an unweighted graph contains only Os and 1s, while the weighted graph may
have nonnegative real values that correspond to the weights of the edges.
model either a list, a string, a function or a matrix describing a graph model:

A list that represents the spectral density of a model. It contains the components

nyn

"x" and "y", which are numeric vectors of the same size. The "x" component
n n

contains the points at which the density was computed and the "y" component
contains the observed density.

A string that indicates one of the following models: "ER" (Erdos-Renyi ran-
dom graph), "GRG" (geometric random graph), "KR" (k regular random graph),
"WS" (Watts-Strogatz model), and "BA" (Barabasi-Albert model). When the
argument ‘model’ is a string, the user must also provides the model parameter
by using the argument 'p’.

A function that returns a graph (represented by its adjacency matrix) generated
by a graph model. It must contain two arguments: the first one corresponds
to the graph size and the second to the parameter of the model. The model
parameter will be provided by the argument ’p’ of the ’GIC’ function.

A matrix containing the spectrum of the model. Each column contains the eigen-
values of a graph generated by the model. To estimate the spectral density of the
model, the method will estimate the density of the values of each column, and
then will take the average density.
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p the model parameter. The user must provide a valid parameter if the argument
’model’ is a string or a function. For the predefined models ("ER", "GRG",
"KR", "WS", and "BA"), the parameter the probability to connect a pair of ver-
tices, for the "ER" model (Erdos-Renyi random graph);
the radius used to construct the geometric graph in a unit square, for the "GRG"
model (geometric random graph);
the degree 'k’ of a regular graph, for the "KR" model (k regular random graph);
the probability to reconnect a vertex, for the "WS" model (Watts-Strogatz model);
and the scaling exponent, for the "BA" model (Barabasi-Albert model).

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bev", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

eigenvalues optional parameter. It contains the eigenvalues of matrix G. Then, it can be used
when the eigenvalues of G were previously computed. If no value is passed,
then the eigenvalues of G will be computed by *GIC’.

dist string indicating if you want to use the "KL" (default) or "L2" distances. "KL"
means Kullback-Leibler divergence.

Value

A real number corresponding to the Kullback-Leibler divergence or L2 distance between the ob-
served graph and the graph model.

References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, €49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, *21%, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

set.seed(1)
G <- as.matrix(igraph::get.adjacency(igraph::sample_gnp(n=50, p=0.5)))

# Using a string to indicate the graph model
resultl <- GIC(G, "ER", 0.5)
resulti

# Using a function to describe the graph model
# Erdos-Renyi graph
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model <- function(n, p) {
return(as.matrix(igraph::get.adjacency(igraph::sample_gnp(n, p))))

3
result2 <- GIC(G, model, 0.5)
result2
graph.acf Auto Correlation Function Estimation for Graphs
Description

The function graph.acf computes estimates of the autocorrelation function for graphs.

Usage
graph.acf (G, plot = TRUE)

Arguments
G a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.
plot logical. If TRUE (default) the graph.acf is plotted.
Value

An object of class acf.

References

Fujita, A., Takahashi, D. Y., Balardin, J. B., Vidal, M. C. and Sato, J. R. (2017) Correlation between
graphs with an application to brain network analysis. _Computational Statistics & Data Analysis_
*109%, 76-92.

Examples

set.seed(1)
G <- list()
p <- array(0, 100)
p[1:3] <= rnorm(3)
for (t in 4:100) {
p[t] <- @.5%p[t-3] + rnorm(1)
3
ma <- max(p)
mi <- min(p)
p <= (p - mi)/(ma-mi)
for (t in 1:100) {
GL[t]] <- igraph::sample_gnp(100, p[tl)
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}
graph.acf (G, plot=TRUE)

graph.cem Clustering Expectation-Maximization for Graphs (graph.cem)

Description

graph. cemclusters graphs following an expectation-maximization algorithm based on the Kullback-
Leibler divergence between the spectral densities of the graph and of the random graph model.

Usage
graph.cem(g, model, k, max_iter = 10, ncores = 1, bandwidth = "Sturges")
Arguments
g a list containing the graphs or their adjacency matrices to be clustered.
model a string that indicates one of the following random graph models: "ER" (Erdos-
Renyi random graph), "GRG" (geometric random graph), "KR" (k regular graph),
"WS" (Watts-Strogatz model), and "BA" (Barabasi-Albert model).
k an integer specifying the number of clusters.
max_iter the maximum number of expectation-maximization steps to execute.
ncores the number of cores to be used for the parallel processing. The default value is
1.
bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bev", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.
Value

a list containing three fields: labels a vector of the same length of g containing the clusterization
labels; a vector containing the estimated parameters for the groups. It has the length equals to k;

References

Celeux, Gilles, and Gerard Govaert. "Gaussian parsimonious clustering models." Pattern recogni-
tion 28.5 (1995): 781-793.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.
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Examples

set.seed(42)
g <- list()
for(i in 1:2){
g[[i]] <- igraph::sample_gnp(n=10, p=0.5)
3
for(i in 3:4){
g[[i]] <- igraph::sample_gnp(n=10, p=1)

}
res <- graph.cem(g, model="ER", k=2, max_iter=1, ncores=1)
res
graph.cor.test Test for Association / Correlation Between Paired Samples of Graphs
Description

graph.cor.test tests for association between paired samples of graphs, using Spearman’s rho
correlation coefficient.

Usage

graph.cor.test(G1, G2)

Arguments

G1 a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

G2 a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

Value

statistic the value of the test statistic.

p.value the p-value of the test.

estimate the estimated measure of association 'rho’.

References

Fujita, A., Takahashi, D. Y., Balardin, J. B., Vidal, M. C. and Sato, J. R. (2017) Correlation between
graphs with an application to brain network analysis. _Computational Statistics & Data Analysis_
*109%, 76-92.
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Examples

set.seed(1)
Gl <- G2 <- list()

p <- MASS::mvrnorm(5@, mu=c(@,0), Sigma=matrix(c(1, 0.5, 0.5, 1), 2, 2))

ma <- max(p)
mi <- min(p)
p[,1]1 <= (pL[,1] - mi)/(ma - mi)
p[,2] <= (p[,2] - mi)/(ma - mi)

for (i in 1:50) {
G1[[i]] <- igraph::sample_gnp(50, p[i,1])
G2[[i]] <- igraph::sample_gnp(50, pl[i,2])
3
graph.cor.test(G1, G2)

graph.entropy Graph spectral entropy

Description

graph.entropy returns the spectral entropy of an undirected graph.

Usage
graph.entropy(G = NULL, bandwidth = "Silverman”, eigenvalues = NULL)

Arguments

G the undirected graph (igraph type) or its adjacency matrix. The adjacency matrix
of an unweighted graph contains only Os and 1s, while the weighted graph may
have nonnegative real values that correspond to the weights of the edges.

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges"”, "bcv", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

eigenvalues optional parameter. It contains the eigenvalues of matrix G. Then, if the eigen-
values of matrix G have already been computed, this parameter can be used
instead of G. If no value is passed, then the eigenvalues of G will be computed
by ’graph.entropy’.

Value

a real number corresponding to the graph spectral entropy.
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References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PL0oS ONE_, *7%, e49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

G <- igraph::sample_gnp(n=100, p=0.5)
entropy <- graph.entropy(G)
entropy

graph.hclust Hierarchical cluster analysis on a list of graphs.

Description
Given a list of graphs, graph.hclust builds a hierarchy of clusters according to the Jensen-Shannon
divergence between graphs.

Usage

graph.hclust(G, k, method = "complete”, bandwidth = "Silverman")

Arguments

G a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

k the number of clusters.

method the agglomeration method to be used. This should be (an unambiguous ab-
breviation of) one of *"ward.D"’, *"ward.D2"’, *"single"’, *"complete"’, *"av-

erage”’ (= UPGMA), ""mcquitty”” (= WPGMA), *"median"’ (= WPGMC) or
*"centroid"’ (= UPGMC).

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bcv", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.
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Value

A list containing:

hclust an object of class *hclust* which describes the tree produced by the clustering
process.
cluster the clustering labels for each graph.
References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, €49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

set.seed(1)
G <- list()
for (i in 1:5) {
GL[iJ] <- igraph::sample_gnp(50, 0.5)
3
for (i in 6:10) {
GL[i]] <- igraph::sample_smallworld(1, 50, 8, 0.2)
3
for (i in 11:15) {
GL[i]] <- igraph::sample_pa(50, power = 1, directed = FALSE)
3
graph.hclust(G, 3)

graph.kmeans K-means for Graphs

Description
graph.kmeans clusters graphs following a k-means algorithm based on the Jensen-Shannon diver-
gence between the spectral densities of the graphs.

Usage

graph.kmeans(x, k, nstart = 2)
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Arguments
X a list containing the graphs or their adjacency matrices to be clustered.
k an integer specifying the number of clusters.
nstart the number of trials of k-means clusterizations. The algorithm returns the clus-
terization with the best silhouette.
Value

a vector of the same length of x containing the clusterization labels.

References

MacQueen, James. "Some methods for classification and analysis of multivariate observations."
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Vol. 1.
No. 14. 1967.

Lloyd, Stuart. "Least squares quantization in PCM." IEEE transactions on information theory 28.2
(1982): 129-137.

Examples

set.seed(42)
g <- list(Q)
for(i in 1:5){
g[[i]] <- igraph::sample_gnp(30, p=0.2)
3
for(i in 6:10){
g[[i]] <- igraph::sample_gnp(30, p=0.5)
}
res <- graph.kmeans(g, k=2, nstart=2)
res

graph.model.selection Graph model selection

Description

graph.model.selection selects the graph model that best approximates the observed graph ac-
cording to the Graph Information Criterion (GIC).

Usage

graph.model.selection(
G,
models = NULL,
parameters = NULL,
eps = 0.01,
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bandwidth = "Silverman”,
eigenvalues = NULL

)

Arguments

G the undirected graph (igraph type) or its adjacency matrix. The adjacency matrix
of an unweighted graph contains only Os and 1s, while the weighted graph may
have nonnegative real values that correspond to the weights of the edges.

models either a vector of strings, a list of functions or a list of arrays describing graph
models:

A vector of strings containing some of the following models: "ER" (Erdos-
Renyi random graph), "GRG" (geometric random graph), "KR" (k regular ran-
dom graph), "WS" (Watts-Strogatz model), and "BA" (Barabasi-Albert model).

A list of functions. Each function returns a graph (represented by its adjacency
matrix) generated by a graph model and has two arguments: the graph size and
the model parameter, in this order.

A list of arrays. Each elememt of the list is a three-dimensional array containing
the precomputed spectrum of each model. Let M be a graph model. For each
parameter p considered for M, the array of model M contains the eigenvalues
of graphs randomly generated by M with parameter p. The position (i,j,k) of
the array contains the j-th eigenvalue of the k-th graph that generated by M with
the i-th parameter. The attribute 'rownames’ of the array corresponds to the
parameters converted to string.

If the argument "models" is NULL, then the "ER", "WS", and "BA" models will
be considered for the model selection.

parameters list of numeric vectors. Each vector contains the values that will be consider-
ated for the parameter estimation of the corresponding model. If the user does
not provide the argument "parameters’, then default values are used for the pre-
defined models ("ER", "GRG", "KR", "WS", and "BA"). The default vector
corresponds to a sequence from
0 to 1 with step ’eps’ for the "ER" model (Erdos-Renyi random graph), in which
the parameter corresponds to the probability to connect a pair of vertices;
0 to sqrt(2) with step "eps’ for the "GRG" model (geometric random graph), in
which the parameter corresponds to the radius used to contruct the geometric
graph in a unit square;
0 to 'n’ with step 'n*eps’ for the "KR" model (k regular random graph), in which
the parameter of the model corresponds to the degree 'k’ of a regular graph;
0 to 1 with step ’eps’ for the "WS" model (Watts-Strogatz model), in which the
parameter corresponds to the probability to reconnect a vertex;
and 0 to 3 with step ’eps’ for the "BA" model (Barabasi-Albert model), in which
the parameter corresponds to the scaling exponent.

eps precision of the grid (default is 0.01).

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bev", "ucv" and "SJ". "bcv" is an abbreviation of biased
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cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

eigenvalues optional parameter. It contains the eigenvalues of matrix G. Then, it can be used
when the eigenvalues of G were previously computed. If no value is passed,
then the eigenvalues of G will be computed by ’graph.model.selection’.

Value
A list containing:

model the indice(s) or name(s) of the selected model(s), i. e. the model(s) that mini-
mize(s) the Graph Information Criterion (GIC).

estimates a matrix in which each row corresponds to a model, the column "param" cor-
responds to the parameter estimate, and the column "GIC" corresponds to the
Graph Information Criterion (GIC), i. e. the Kullback-Leibler divergence be-
tween the observed graph and the model.

References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, e49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

## Example using an igraph object as input data
set.seed(1)
G <- igraph::sample_gnp(n=30, p=0.5)

# Using strings to indicate the graph models
resultl <- graph.model.selection(G, models=c("ER", "WS"), eps=0.5)
resultl

## Using functions to describe the graph models

# Erdos-Renyi graph

modell <- function(n, p) {
return(igraph::sample_gnp(n, p))

3

# Watts-Strogatz small-world graph

model2 <- function(n, pr, K=8) {
return(igraph::sample_smallworld(1, n, K, pr))

3

parameters <- list(seq(@.01, 0.99, 0.49), seq(@.01, 0.99, 0.49))
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graph.mult.scaling

result2 <- graph.model.selection(G, list(modell, model2), parameters)

result2

graph.mult.scaling Multidimensional scaling of graphs

Description

graph.mult.scaling performs multidimensional scaling of graphs. It takes the Jensen-Shannon
divergence between graphs (JS) and uses the ’cmdscale’ function from the ’stats’ package to obtain
a set of points such that the distances between the points are similar to JS.

Usage
graph.mult.scaling(
G,
plot = TRUE,
bandwidth = "Silverman”,
type = n n n s
main = "",
)
Arguments
G a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.
plot logical. If TRUE (default) the points chosen to represent the Jensen-Shannon
divergence between graphs are plotted.
bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bcv", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.
type what type of plot should be drawn. The defaut value is *"n"’, which indicates
that the points will not be plotted (i. e. only the labels of the graphs will be
plotted).
main title of the plot (default value is "").

additional plotting parameters. See ’plot’ function from the ’graphics’ package
for the complete list.



graph.param.estimator 25

Value

A matrix in which each column corresponds to a coordinate and each row corresponds to a graph
(point). Then, each row gives the coordinates of the points chosen to represent the Jensen-Shannon
divergence between graphs.

References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, e49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

set.seed(1)
G <- list()
for (i in 1:5) {
GL[i]] <- igraph::sample_gnp(50, 0.5)
}
for (i in 6:10) {
GL[i]] <- igraph::sample_smallworld(1, 50, 8, 0.2)
3
for (i in 11:15) {
GL[i]] <- igraph::sample_pa(50, power = 1, directed = FALSE)
}
graph.mult.scaling(G)

graph.param.estimator Graph parameter estimator

Description

graph.param.estimator estimates the parameter that best approximates the model to the observed
graph according to the Graph Information Criterion (GIC).

Usage
graph.param.estimator(
G)
model,
parameters = NULL,
eps = 0.01,

bandwidth = "Silverman",
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eigenvalues

graph.param.estimator

NULL,

spectra = NULL,
classic = FALSE

Arguments

G

model

parameters

eps
bandwidth

eigenvalues

the undirected graph (igraph type) or its adjacency matrix. The adjacency matrix
of an unweighted graph contains only Os and 1s, while the weighted graph may
have nonnegative real values that correspond to the weights of the edges.

either a string or a function:

A string that indicates one of the following models: "ER" (Erdos-Renyi ran-
dom graph), "GRG" (geometric random graph), "KR" (k regular random graph),
"WS" (Watts-Strogatz model), and "BA" (Barabasi-Albert model).

A function that returns a graph (represented by its adjacency matrix) generated
by a graph model. It must contain two arguments: the first one corresponds to
the graph size and the second to the parameter of the model.

numeric vector containing the values that that will be considered for the parame-
ter estimation. The ’graph.param.estimator’ will return the element of ’parame-
ter’ that minimizes the Kullback-Leiber divergence. If the user does not provide
the argument “parameters’, and ‘model’ is an array, then the values considered
for the parameter estimation are the rownames converted to a numeric vector.
If “'model’ is a string, then default values are used for the predefined models
("ER", "GRG", "KR", "WS", and "BA"). The default ’parameter’ argument cor-
responds to a sequence from

0 to 1 with step ’eps’ for the "ER" model (Erdos-Renyi random graph), in which
the parameter corresponds to the probability to connect a pair of vertices;

0 to sqrt(2) with step ’eps’ for the "GRG" model (geometric random graph), in
which the parameter corresponds to the radius used to construct the geometric
graph in a unit square;

0 to 'n’ with step "'n*eps’ for the "KR" model (k regular random graph), in which
the parameter of the model corresponds to the degree 'k’ of a regular graph;

0 to 1 with step ’eps’ for the "WS" model (Watts-Strogatz model), in which the
parameter corresponds to the probability to reconnect a vertex;

and O to 3 with step ’eps’ for the "BA" model (Barabasi-Albert model), in which
the parameter corresponds to the scaling exponent.

precision of the grid (default is 0.01) when ’classic’ is TRUE.

string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges"”, "bcv", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

optional parameter. It contains the eigenvalues of matrix G. Then, it can be used
when the eigenvalues of G were previously computed. If no value is passed,
then the eigenvalues of G will be computed by ’graph.param.estimator’.
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spectra optional parameter containing the precomputed spectrum of the model. It is a
three-dimensional array in which the first dimension corresponds to all param-
eters that will be explored in the grid, the second dimension has the same size
of the given graph, and the third one corresponds to graphs randomly generated
by the model. Thus, the position (i,j,k) contains the j-th eigenvalue of the k-th
graph generated with the i-th parameter. The attribute 'rownames’ of the array
corresponds to the parameters converted to string. If spectra is NULL (default),
then model’ is used to generate random graphs and their spectra are computed
automatically.

classic logical. If FALSE (default) parameter is estimated using ternary search. If
TRUE parameter is estimated using grid search.

Value
A list containing:

param the parameter estimate. For the "ER", "GRG", "KR", "WS", and "BA" models,
the parameter corresponds to the probability to connect a pair of vertices, the
radius used to construct the geometric graph in a unit square, the degree k of a
regular graph, the probability to reconnect a vertex, and the scaling exponent,
respectively.

KLD the Kullback-Leibler divergence between the observed graph and the graph model
with the estimated parameter.

References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, €49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

set.seed(1)
G <- igraph::sample_gnp(n=50, p=0.5)

# Using a string to indicate the graph model
resultl <- graph.param.estimator(G, "ER", eps=0.25)
resulti

## Not run:

# Using a function to describe the graph model

# Erdos-Renyi graph

set.seed(1)

model <- function(n, p) {
return(igraph::sample_gnp(n, p))
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}

sp.anogva

result2 <- graph.param.estimator(G, model, seq(0.2, 0.8, 0.1))

result2

## End(Not run)

sp.anogva

Semi-Parametric Analysis Of Graph Variability (ANOGVA)

Description

sp.anogva statistically tests whether two or more graphs are generated by the same model and set
of parameters.

Usage

sp.anogva(
G,
model,
maxBoot
spectra
eps = 0.
classic
bandwidt

Arguments

G

model

maxBoot

spectra

01

h

500,
NULL,

F

ALSE,

"Silverman”

a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

A string that indicates one of the following models: "ER" (Erdos-Renyi random
graph model), "GRG" (geometric random graph model), "WS" (Watts-Strogatz
random graph model), and "BA" (Barabasi-Albert random graph model).

integer indicating the number of bootstrap resamples (default is 500).

optional parameter containing the precomputed spectrum of the model. It is a
three-dimensional array in which the first dimension corresponds to all param-
eters that will be explored in the parameter estimation, the second dimension
has the same size of the given graph, and the third one corresponds to graphs
randomly generated by the model. Thus, the position (i,j,k) contains the j-th
eigenvalue of the k-th graph generated with the i-th parameter. The attribute
‘rownames’ of the array corresponds to the parameters converted to string. If
spectra is NULL (default), then model’ is used to generate random graphs and
their spectra are computed automatically.
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eps (default is 0.01) precision of the grid when ’classic’ = TRUE.

classic logical. If FALSE (default) parameter is estimated using ternary search, if TRUE
parameter is estimated using grid search.

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bcv", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

Value

A list containing:

parameters a vector containing the estimated parameters for each graph.
F.value the F statistic of the test.
p.value the p-value of the test.

References

Andre Fujita, Eduardo Silva Lira, Suzana de Siqueira Santos, Silvia Yumi Bando, Gabriela Eleu-
terio Soares, Daniel Yasumasa Takahashi. A semi-parametric statistical test to compare complex
networks, Journal of Complex Networks, cnz028, https://doi.org/10.1093/comnet/cnz028

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

## Not run:
set.seed(42)
model <- "ER"
G <- list()

# Under Ho

GL[1]1] <- igraph::sample_gnp(50, 0.5)

G[[2]] <- igraph::sample_gnp(50, 0.5)

GL[3]1] <- igraph::sample_gnp(50, 0.5)

resultl <- sp.anogva(G, model, maxBoot = 300)
resultl

# Under H1

G[[1]] <- igraph::sample_gnp(50, 0.5)

G[[2]] <- igraph::sample_gnp(50, 0.55)

GL[3]1] <- igraph::sample_gnp(50, 0.5)

result2 <- sp.anogva(G, model, maxBoot = 300)
result2

## End(Not run)
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takahashi.test Test for the Jensen-Shannon divergence between graphs

Description

takahashi. test tests whether two sets of graphs were generated by the same random graph model.
This bootstrap test is based on the Jensen-Shannon (JS) divergence between graphs.

Usage

takahashi.test(G1, G2, maxBoot = 1000, bandwidth = "Silverman")

Arguments

G1 a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

G2 a list of undirected graphs (igraph type) or their adjacency matrices. The adja-
cency matrix of an unweighted graph contains only Os and 1s, while the weighted
graph may have nonnegative real values that correspond to the weights of the
edges.

maxBoot integer indicating the number of bootstrap resamplings.

bandwidth string showing which criterion is used to choose the bandwidth during the spec-
tral density estimation. Choose between the following criteria: "Silverman"
(default), "Sturges", "bev", "ucv" and "SJ". "bcv" is an abbreviation of biased
cross-validation, while "ucv" means unbiased cross-validation. "SJ" implements
the methods of Sheather & Jones (1991) to select the bandwidth using pilot es-
timation of derivatives.

Details

Given two lists of graphs, ’G1’ and *G2’, ’takahashi.test’ tests HO: "JS divergence between *G1’
and G2’ is 0" against H1: "JS divergence between *G1’ and *G2’ is larger than 0".

Value

A list containing:

JSD the Jensen-Shannon divergence between 'G1’ and *G2’.

p.value the p-value of the test.
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References

Takahashi, D. Y., Sato, J. R., Ferreira, C. E. and Fujita A. (2012) Discriminating Different Classes
of Biological Networks by Analyzing the Graph Spectra Distribution. _PLoS ONE_, *7%*, e49949.
doi:10.1371/journal.pone.0049949.

Silverman, B. W. (1986) _Density Estimation_. London: Chapman and Hall.
Sturges, H. A. The Choice of a Class Interval. _J. Am. Statist. Assoc._, ¥21%*, 65-66.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel
density estimation. _Journal of the Royal Statistical Society series B_, 53, 683-690. http://www.jstor.org/stable/2345597.

Examples

set.seed(1)
G1 <- G2 <- list()
for (i in 1:20) {
G1[[i]] <- igraph::sample_gnp(n=50, p=0.5)
}
for (i in 1:20) {
G2[[i]] <- igraph::sample_gnp(n=50, p=0.51)

3
result <- takahashi.test(G1, G2, maxBoot=100)
result
tang. test Tang hypothesis testing for random graphs.
Description

Given two independent finite-dimensional random dot product graphs, tang. test tests if they have
generating latent positions that are drawn from the same distribution.

Usage

tang.test(G1, G2, dim, sigma = NULL, maxBoot = 200)

Arguments
G1 the first undirected graph to be compared. Must be an igraph object.
G2 the second undirected graph to be compared. Must be an igraph object.
dim dimension of the adjacency spectral embedding.
sigma a real value indicating the kernel bandwidth. If NULL (default) the bandwidth

is calculated by the method.

maxBoot integer indicating the number of bootstrap resamples (default is 200).
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Value

A list containing:

T the value of the test.
p.value the p-value of the test.
References

Tang, Minh, et al. "A nonparametric two-sample hypothesis testing problem for random graphs."
Bernoulli 23.3 (2017): 1599-1630.

Tang, Minh, et al. "A semiparametric two-sample hypothesis testing problem for random graphs."
Journal of Computational and Graphical Statistics 26.2 (2017): 344-354.

Examples

set.seed(42)

## test under HO

lpvs <- matrix(rnorm(200), 20, 10)

lpvs <- apply(lpvs, 2, function(x) { return (abs(x)/sqrt(sum(x*2))) 3})
G1 <- igraph::sample_dot_product(lpvs)

G2 <- igraph::sample_dot_product(lpvs)

D1 <- tang.test(G1, G2, 5)

D1

## test under H1

lpvs2 <- matrix(pnorm(200), 20, 10)

lpvs2 <- apply(lpvs2, 2, function(x) { return (abs(x)/sqrt(sum(x*2))) })
G2 <- suppressWarnings(igraph::sample_dot_product(lpvs2))

D2 <- tang.test(G1, G2, 5)

D2
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