
Package ‘tidyseurat’
May 20, 2022

Type Package

Title Brings Seurat to the Tidyverse

Version 0.5.3

Description It creates an invisible layer that allow to see the 'Seurat' object
as tibble and interact seamlessly with the tidyverse.

License GPL-3

Depends R (>= 4.0.0),
ttservice,
SeuratObject

Imports Seurat,
tibble,
dplyr,
magrittr,
tidyr (>= 1.2.0),
ggplot2,
rlang,
purrr,
lifecycle,
methods,
plotly,
tidyselect,
utils,
ellipsis,
vctrs,
pillar,
stringr,
cli,
fansi

Suggests testthat,
knitr,
GGally,
markdown,
SingleR

VignetteBuilder knitr

RdMacros lifecycle

Biarch true

1

2 as_tibble

biocViews AssayDomain, Infrastructure, RNASeq, DifferentialExpression, GeneExpression, Normal-
ization, Clustering, QualityControl, Sequencing, Transcription, Transcriptomics

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

URL https://github.com/stemangiola/tidyseurat

BugReports https://github.com/stemangiola/tidyseurat/issues

R topics documented:
as_tibble . 2
bind . 4
cell_type_df . 5
count . 5
ggplot . 7
join_features . 8
join_transcripts . 9
pbmc_small_nested_interactions . 10
pivot_longer . 10
plot_ly . 12
print . 15
tbl_format_header . 16
tidy . 17
unnest . 17

Index 20

as_tibble Coerce lists, matrices, and more to data frames

Description

‘r lifecycle::badge("maturing")‘

‘as_tibble()‘ turns an existing object, such as a data frame or matrix, into a so-called tibble, a data
frame with class [‘tbl_df‘]. This is in contrast with [tibble()], which builds a tibble from individual
columns. ‘as_tibble()‘ is to [‘tibble()‘] as [base::as.data.frame()] is to [base::data.frame()].

‘as_tibble()‘ is an S3 generic, with methods for: * [‘data.frame‘][base::data.frame()]: Thin wrapper
around the ‘list‘ method that implements tibble’s treatment of [rownames]. * [‘matrix‘][methods::matrix-
class], [‘poly‘][stats::poly()], [‘ts‘][stats::ts()], [‘table‘][base::table()] * Default: Other inputs are
first coerced with [base::as.data.frame()].

‘r lifecycle::badge("maturing")‘

‘glimpse()‘ is like a transposed version of ‘print()‘: columns run down the page, and data runs
across. This makes it possible to see every column in a data frame. It’s a little like [str()] applied to
a data frame but it tries to show you as much data as possible. (And it always shows the underlying
data, even when applied to a remote data source.)

This generic will be moved to pillar, and reexported from there as soon as it becomes available.

https://github.com/stemangiola/tidyseurat
https://github.com/stemangiola/tidyseurat/issues

as_tibble 3

Arguments

rownames How to treat existing row names of a data frame or matrix: * ‘NULL‘: remove
row names. This is the default. * ‘NA‘: keep row names. * A string: the name
of a new column. Existing rownames are transferred into this column and the
‘row.names‘ attribute is deleted. Read more in [rownames].

.name_repair see tidyr
For compatibility only, do not use for new code.

x An object to glimpse at.

width Width of output: defaults to the setting of the option ‘tibble.width‘ (if finite) or
the width of the console.

... Unused, for extensibility.

Value

A tibble

x original x is (invisibly) returned, allowing ‘glimpse()‘ to be used within a data pipe line.

Row names

The default behavior is to silently remove row names.

New code should explicitly convert row names to a new column using the ‘rownames‘ argument.

For existing code that relies on the retention of row names, call ‘pkgconfig::set_config("tibble::rownames"
= NA)‘ in your script or in your package’s [.onLoad()] function.

Life cycle

Using ‘as_tibble()‘ for vectors is superseded as of version 3.0.0, prefer the more expressive maturing
‘as_tibble_row()‘ and ‘as_tibble_col()‘ variants for new code.

S3 methods

‘glimpse‘ is an S3 generic with a customised method for ‘tbl‘s and ‘data.frames‘, and a default
method that calls [str()].

See Also

[tibble()] constructs a tibble from individual columns. [enframe()] converts a named vector to a
tibble with a column of names and column of values. Name repair is implemented using [vc-
trs::vec_as_names()].

Examples

data("pbmc_small")
pbmc_small %>% as_tibble()
data("pbmc_small")
pbmc_small %>% tidy %>% glimpse()

4 bind

bind Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of ‘do.call(rbind, dfs)‘ or ‘do.call(cbind,
dfs)‘ for binding many data frames into one.

Arguments

... Data frames to combine.
Each argument can either be a data frame, a list that could be a data frame, or a
list of data frames.
When row-binding, columns are matched by name, and any missing columns
will be filled with NA.
When column-binding, rows are matched by position, so all data frames must
have the same number of rows. To match by value, not position, see mutate-
joins.

.id Data frame identifier.
When ‘.id‘ is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
‘bind_rows()‘. When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

add.cell.ids from Seurat 3.0 A character vector of length(x = c(x, y)). Appends the corre-
sponding values to the start of each objects’ cell names.

Details

The output of ‘bind_rows()‘ will contain a column if that column appears in any of the inputs.

Value

‘bind_rows()‘ and ‘bind_cols()‘ return the same type as the first input, either a data frame, ‘tbl_df‘,
or ‘grouped_df‘.

Examples

`%>%` = magrittr::`%>%`
tt = pbmc_small
bind_rows(tt, tt)

tt_bind = tt %>% select(nCount_RNA ,nFeature_RNA)
tt %>% bind_cols(tt_bind)

cell_type_df 5

cell_type_df Example data set 2

Description

Example data set 2

Usage

cell_type_df

Format

An object of class tbl_df (inherits from tbl, data.frame) with 80 rows and 2 columns.

count Count observations by group

Description

‘count()‘ lets you quickly count the unique values of one or more variables: ‘df ‘df ‘count()‘ is
paired with ‘tally()‘, a lower-level helper that is equivalent to ‘df switching the summary from ‘n =
n()‘ to ‘n = sum(wt)‘.

‘add_count()‘ are ‘add_tally()‘ are equivalents to ‘count()‘ and ‘tally()‘ but use ‘mutate()‘ instead
of ‘summarise()‘ so that they add a new column with group-wise counts.

Usage

count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

add_count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

Default S3 method:
add_count(

x,

6 count

...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

S3 method for class 'Seurat'
add_count(

x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <[‘data-masking‘][dplyr_data_masking]> Variables to group by.

wt <[‘data-masking‘][dplyr_data_masking]> Frequency weights. Can be ‘NULL‘
or a variable:
* If ‘NULL‘ (the default), counts the number of rows in each group. * If a
variable, computes ‘sum(wt)‘ for each group.

sort If ‘TRUE‘, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to ‘n‘. If there’s already a column called ‘n‘, it will
error, and require you to specify the name.

.drop For ‘count()‘: if ‘FALSE‘ will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data). Deprecated in ‘add_count()‘ since it didn’t
actually affect the output.

Value

An object of the same type as ‘.data‘. ‘count()‘ and ‘add_count()‘ group transiently, so the output
has the same groups as the input.

Examples

`%>%` = magrittr::`%>%`
data("pbmc_small")
pbmc_small %>% count(groups)

ggplot 7

ggplot Create a new ggplot from a tidyseurat object

Description

‘ggplot()‘ initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Arguments

.data Default dataset to use for plot. If not already a data.frame, will be converted to
one by [fortify()]. If not specified, must be supplied in each layer added to the
plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

... Other arguments passed on to methods. Not currently used.

environment DEPRECATED. Used prior to tidy evaluation.

Details

‘ggplot()‘ is used to construct the initial plot object, and is almost always followed by ‘+‘ to add
component to the plot. There are three common ways to invoke ‘ggplot()‘:

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default data frame to use for the plot, but
no aesthetics are defined up front. This is useful when one data frame is used predominantly as
layers are added, but the aesthetics may vary from one layer to another. The third method initializes
a skeleton ‘ggplot‘ object which is fleshed out as layers are added. This method is useful when
multiple data frames are used to produce different layers, as is often the case in complex graphics.

Value

A ggplot

Examples

Generate some sample data, then compute mean and standard deviation
in each group

8 join_features

join_features Extract and join information for features.

Description

join_features() extracts and joins information for specified features

Usage

S4 method for signature 'Seurat'
join_features(

.data,
features = NULL,
all = FALSE,
exclude_zeros = FALSE,
shape = "long",
...

)

Arguments

.data A Seurat object

features A vector of feature identifiers to join

all If TRUE return all
exclude_zeros

If TRUE exclude zero values

shape Format of the returned table "long" or "wide"

... Parameters to pass to join wide, i.e. assay name to extract feature abundance
from and gene prefix, for shape="wide"

Details

This function extracts information for specified features and returns the information in either long
or wide format.

Value

An object containing the information.for the specified features

An object containing the information.for the specified features

Examples

data("pbmc_small")
pbmc_small %>%
join_features(features = c("HLA-DRA", "LYZ"))

join_transcripts 9

join_transcripts (DEPRECATED) Extract and join information for transcripts.

Description

join_transcripts() extracts and joins information for specified transcripts

Usage

join_transcripts(
.data,
transcripts = NULL,
all = FALSE,
exclude_zeros = FALSE,
shape = "long",
...

)

Arguments

.data A tidyseurat object

transcripts A vector of transcript identifiers to join

all If TRUE return all
exclude_zeros

If TRUE exclude zero values

shape Format of the returned table "long" or "wide"

... Parameters to pass to join wide, i.e. assay name to extract transcript abundance
from

Details

DEPRECATED, please use join_features()

Value

A ‘tbl‘ containing the information.for the specified transcripts

Examples

print("DEPRECATED")

10 pivot_longer

pbmc_small_nested_interactions
Example data set 2

Description

Example data set 2

Usage

pbmc_small_nested_interactions

Format

An object of class tbl_df (inherits from tbl, data.frame) with 100 rows and 9 columns.

pivot_longer Pivot data from wide to long

Description

[Maturing]
‘pivot_longer()‘ "lengthens" data, increasing the number of rows and decreasing the number of
columns. The inverse transformation is [pivot_wider()]

Learn more in ‘vignette("pivot")‘.

Arguments

data A data frame to pivot.
cols <[‘tidy-select‘][tidyr_select]> Columns to pivot into longer format.
names_to A string specifying the name of the column to create from the data stored in the

column names of ‘data‘.
Can be a character vector, creating multiple columns, if ‘names_sep‘ or ‘names_pattern‘
is provided. In this case, there are two special values you can take advantage of:
* ‘NA‘ will discard that component of the name. * ‘.value‘ indicates that com-
ponent of the name defines the name of the column containing the cell values,
overriding ‘values_to‘.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern
If ‘names_to‘ contains multiple values, these arguments control how the column
name is broken up.
‘names_sep‘ takes the same specification as [separate()], and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).
‘names_pattern‘ takes the same specification as [extract()], a regular expression
containing matching groups (‘()‘).
If these arguments do not give you enough control, use ‘pivot_longer_spec()‘ to
create a spec object and process manually as needed.

pivot_longer 11

names_repair What happens if the output has invalid column names? The default, ‘"check_unique"‘
is to error if the columns are duplicated. Use ‘"minimal"‘ to allow duplicates in
the output, or ‘"unique"‘ to de-duplicated by adding numeric suffixes. See [vc-
trs::vec_as_names()] for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If ‘names_to‘ is a character containing the special ‘.value‘ sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na
If ‘TRUE‘, will drop rows that contain only ‘NA‘s in the ‘value_to‘ column.
This effectively converts explicit missing values to implicit missing values, and
should generally be used only when missing values in ‘data‘ were created by its
structure.

names_transform, values_transform
A list of column name-function pairs. Use these arguments if you need to change
the type of specific columns. For example, ‘names_transform = list(week =
as.integer)‘ would convert a character week variable to an integer.

names_ptypes, values_ptypes
A list of column name-prototype pairs. A prototype (or ptype for short) is a zero-
length vector (like ‘integer()‘ or ‘numeric()‘) that defines the type, class, and
attributes of a vector. Use these arguments to confirm that the created columns
are the types that you expect.

If not specified, the type of the columns generated from ‘names_to‘ will be
character, and the type of the variables generated from ‘values_to‘ will be the
common type of the input columns used to generate them.

... Additional arguments passed on to methods.

Details

‘pivot_longer()‘ is an updated approach to [gather()], designed to be both simpler to use and to
handle more use cases. We recommend you use ‘pivot_longer()‘ for new code; ‘gather()‘ isn’t
going away but is no longer under active development.

Value

A Seurat object or a tibble depending on input

Examples

See vignette("pivot") for examples and explanation

library(dplyr)
data("pbmc_small")
pbmc_small %>% pivot_longer(c(orig.ident, groups), names_to = "name", values_to = "value")

12 plot_ly

plot_ly Initiate a plotly visualization

Description

This function maps R objects to [plotly.js](https://plot.ly/javascript/), an (MIT licensed) web-based
interactive charting library. It provides abstractions for doing common things (e.g. mapping data
values to fill colors (via ‘color‘) or creating [animation]s (via ‘frame‘)) and sets some different
defaults to make the interface feel more ’R-like’ (i.e., closer to [plot()] and [ggplot2::qplot()]).

Usage

plot_ly(
data = data.frame(),
...,
type = NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,
stroke = NULL,
strokes = NULL,
alpha_stroke = 1,
size = NULL,
sizes = c(10, 100),
span = NULL,
spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,
split = NULL,
frame = NULL,
width = NULL,
height = NULL,
source = "A"

)

Arguments

data A data frame (optional) or [crosstalk::SharedData] object.

... Arguments (i.e., attributes) passed along to the trace ‘type‘. See [schema()] for a
list of acceptable attributes for a given trace ‘type‘ (by going to ‘traces‘ -> ‘type‘
-> ‘attributes‘). Note that attributes provided at this level may override other ar-
guments (e.g. ‘plot_ly(x=1:10, y=1:10, color=I("red"), marker=list(color="blue"))‘).

type A character string specifying the trace type (e.g. ‘"scatter"‘, ‘"bar"‘, ‘"box"‘,
etc). If specified, it *always* creates a trace, otherwise

name Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like ‘split‘ in that it creates one trace for
every unique value.

plot_ly 13

color Values mapped to relevant ’fill-color’ attribute(s) (e.g. [fillcolor](https://plot.ly/r/reference#scatter-
fillcolor), [marker.color](https://plot.ly/r/reference#scatter-marker-color), [textfont.color](https://plot.ly/r/reference/#scatter-
textfont-color), etc.). The mapping from data values to color codes may be con-
trolled using ‘colors‘ and ‘alpha‘, or avoided altogether via [I()] (e.g., ‘color=I("red")‘).
Any color understood by [grDevices::col2rgb()] may be used in this way.

colors Either a colorbrewer2.org palette name (e.g. "YlOrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like ‘colorRamp()‘.

alpha A number between 0 and 1 specifying the alpha channel applied to ‘color‘.
Defaults to 0.5 when mapping to [fillcolor](https://plot.ly/r/reference#scatter-
fillcolor) and 1 otherwise.

stroke Similar to ‘color‘, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., [marker.line.color](https://plot.ly/r/reference#scatter-marker-line-color) and
[line.color](https://plot.ly/r/reference#scatter-line-color) for filled polygons). If
not specified, ‘stroke‘ inherits from ‘color‘.

strokes Similar to ‘colors‘, but controls the ‘stroke‘ mapping.

alpha_stroke Similar to ‘alpha‘, but applied to ‘stroke‘.

size (Numeric) values mapped to relevant ’fill-size’ attribute(s) (e.g., [marker.size](https://plot.ly/r/reference#scatter-
marker-size), [textfont.size](https://plot.ly/r/reference#scatter-textfont-size), and
[error_x.width](https://plot.ly/r/reference#scatter-error_x-width)). The mapping
from data values to symbols may be controlled using ‘sizes‘, or avoided alto-
gether via [I()] (e.g., ‘size=I(30)‘).

sizes A numeric vector of length 2 used to scale ‘size‘ to pixels.

span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., [marker.line.width](https://plot.ly/r/reference#scatter-
marker-line-width), [line.width](https://plot.ly/r/reference#scatter-line-width) for
filled polygons, and [error_x.thickness](https://plot.ly/r/reference#scatter-error_x-
thickness)) The mapping from data values to symbols may be controlled using
‘spans‘, or avoided altogether via [I()] (e.g., ‘span=I(30)‘).

spans A numeric vector of length 2 used to scale ‘span‘ to pixels.

symbol (Discrete) values mapped to [marker.symbol](https://plot.ly/r/reference#scatter-
marker-symbol). The mapping from data values to symbols may be controlled
using ‘symbols‘, or avoided altogether via [I()] (e.g., ‘symbol=I("pentagon")‘).
Any [pch] value or [symbol name](https://plot.ly/r/reference#scatter-marker-symbol)
may be used in this way.

symbols A character vector of [pch] values or [symbol names](https://plot.ly/r/reference#scatter-
marker-symbol).

linetype (Discrete) values mapped to [line.dash](https://plot.ly/r/reference#scatter-line-
dash). The mapping from data values to symbols may be controlled using ‘line-
types‘, or avoided altogether via [I()] (e.g., ‘linetype=I("dash")‘). Any ‘lty‘ (see
[par]) value or [dash name](https://plot.ly/r/reference#scatter-line-dash) may be
used in this way.

linetypes A character vector of ‘lty‘ values or [dash names](https://plot.ly/r/reference#scatter-
line-dash)

split (Discrete) values used to create multiple traces (one trace per value).

frame (Discrete) values used to create animation frames.

width Width in pixels (optional, defaults to automatic sizing).

height Height in pixels (optional, defaults to automatic sizing).

14 plot_ly

source a character string of length 1. Match the value of this string with the source
argument in [event_data()] to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless ‘type‘ is specified, this function just initiates a plotly object with ’global’ attributes that are
passed onto downstream uses of [add_trace()] (or similar). A [formula] must always be used when
referencing column name(s) in ‘data‘ (e.g. ‘plot_ly(mtcars, x=~wt)‘). Formulas are optional when
supplying values directly, but they do help inform default axis/scale titles (e.g., ‘plot_ly(x=mtcars$wt)‘
vs ‘plot_ly(x=~mtcars$wt)‘)

Value

A plotly

Author(s)

Carson Sievert

References

<https://plotly-r.com/overview.html>

See Also

• For initializing a plotly-geo object: [plot_geo()]

• For initializing a plotly-mapbox object: [plot_mapbox()]

• For translating a ggplot2 object to a plotly object: [ggplotly()]

• For modifying any plotly object: [layout()], [add_trace()], [style()]

• For linked brushing: [highlight()]

• For arranging multiple plots: [subplot()], [crosstalk::bscols()]

• For inspecting plotly objects: [plotly_json()]

• For quick, accurate, and searchable plotly.js reference: [schema()]

Examples

Not run:
plot_ly() tries to create a sensible plot based on the information you
give it. If you don't provide a trace type, plot_ly() will infer one.
plot_ly(economics, x=~pop)
plot_ly(economics, x=~date, y=~pop)
plot_ly() doesn't require data frame(s), which allows one to take
advantage of trace type(s) designed specifically for numeric matrices
plot_ly(z=~volcano)
plot_ly(z=~volcano, type="surface")

plotly has a functional interface: every plotly function takes a plotly
object as it's first input argument and returns a modified plotly object
add_lines(plot_ly(economics, x=~date, y=~ unemploy / pop))

To make code more readable, plotly imports the pipe operator from magrittr
economics %>%

print 15

plot_ly(x=~date, y=~ unemploy / pop) %>%
add_lines()

Attributes defined via plot_ly() set 'global' attributes that
are carried onto subsequent traces, but those may be over-written
plot_ly(economics, x=~date, color=I("black")) %>%

add_lines(y=~uempmed) %>%
add_lines(y=~psavert, color=I("red"))

Attributes are documented in the figure reference -> https://plot.ly/r/reference
You might notice plot_ly() has named arguments that aren't in this figure
reference. These arguments make it easier to map abstract data values to
visual attributes.
p <- plot_ly(iris, x=~Sepal.Width, y=~Sepal.Length)
add_markers(p, color=~Petal.Length, size=~Petal.Length)
add_markers(p, color=~Species)
add_markers(p, color=~Species, colors="Set1")
add_markers(p, symbol=~Species)
add_paths(p, linetype=~Species)

End(Not run)

print Printing tibbles

Description

‘r lifecycle::badge("maturing")‘

One of the main features of the ‘tbl_df‘ class is the printing:

* Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns. * Tibble reveals the type of each column, which keeps the user
informed about whether a variable is, e.g., ‘<chr>‘ or ‘<fct>‘ (character versus factor).

Printing can be tweaked for a one-off call by calling ‘print()‘ explicitly and setting arguments like
‘n‘ and ‘width‘. More persistent control is available by setting the options described below.

Only the first 5 reduced dimensions are displayed, while all of them are queriable (e.g. ggplot). All
dimensions are returned/displayed if as_tibble is used.

Usage

S3 method for class 'Seurat'
print(x, ..., n = NULL, width = NULL, n_extra = NULL)

Arguments

x Object to format or print.

... Other arguments passed on to individual methods.

n Number of rows to show. If ‘NULL‘, the default, will print all rows if less than
option ‘tibble.print_max‘. Otherwise, will print ‘tibble.print_min‘ rows.

16 tbl_format_header

width Width of text output to generate. This defaults to ‘NULL‘, which means use
‘getOption("tibble.width")‘ or (if also ‘NULL‘) ‘getOption("width")‘; the lat-
ter displays only the columns that fit on one screen. You can also set ‘op-
tions(tibble.width = Inf)‘ to override this default and always print all columns.

n_extra Number of extra columns to print abbreviated information for, if the width is too
small for the entire tibble. If ‘NULL‘, the default, will print information about
at most ‘tibble.max_extra_cols‘ extra columns.

Value

Nothing

Package options

The following options are used by the tibble and pillar packages to format and print ‘tbl_df‘ objects.
Used by the formatting workhorse ‘trunc_mat()‘ and, therefore, indirectly, by ‘print.tbl()‘.

* ‘tibble.print_max‘: Row number threshold: Maximum number of rows printed. Set to ‘Inf‘ to
always print all rows. Default: 20. * ‘tibble.print_min‘: Number of rows printed if row number
threshold is exceeded. Default: 10. * ‘tibble.width‘: Output width. Default: ‘NULL‘ (use ‘width‘
option). * ‘tibble.max_extra_cols‘: Number of extra columns printed in reduced form. Default:
100.

Examples

library(dplyr)
data("pbmc_small")
pbmc_small %>% print()

tbl_format_header Format the header of a tibble

Description

‘r lifecycle::badge("experimental")‘

For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The ‘tbl_format_header()‘ method is responsible for formatting the header of a tibble.

Override this method if you need to change the appearance of the entire header. If you only need to
change or extend the components shown in the header, override or extend [tbl_sum()] for your class
which is called by the default method.

tidy 17

tidy tidy for seurat

Description

DEPRECATED. Not needed any more.

Usage

tidy(object)

Arguments

object A Seurat object

Value

A tidyseurat object

unnest unnest

Description

Given a regular expression with capturing groups, ‘extract()‘ turns each group into a new column.
If the groups don’t match, or the input is NA, the output will be NA.

Convenience function to paste together multiple columns into one.

Given either a regular expression or a vector of character positions, ‘separate()‘ turns a single char-
acter column into multiple columns.

Arguments

cols <[‘tidy-select‘][tidyr_select]> Columns to unnest. If you ‘unnest()‘ multiple
columns, parallel entries must be of compatible sizes, i.e. they’re either equal or
length 1 (following the standard tidyverse recycling rules).

names_sep If ‘NULL‘, the default, the names will be left as is. In ‘nest()‘, inner names
will come from the former outer names; in ‘unnest()‘, the new outer names will
come from the inner names.
If a string, the inner and outer names will be used together. In ‘nest()‘, the names
of the new outer columns will be formed by pasting together the outer and the
inner column names, separated by ‘names_sep‘. In ‘unnest()‘, the new inner
names will have the outer names (+ ‘names_sep‘) automatically stripped. This
makes ‘names_sep‘ roughly symmetric between nesting and unnesting.

keep_empty See tidyr::unnest

names_repair See tidyr::unnest

ptype See tidyr::unnest

.drop See tidyr::unnest

18 unnest

.id tidyr::unnest

.sep tidyr::unnest

.preserve See tidyr::unnest

.data A tbl. (See tidyr)

.names_sep See tidyr::nest

into Names of new variables to create as character vector. Use ‘NA‘ to omit the
variable in the output.

regex a regular expression used to extract the desired values. There should be one
group (defined by ‘()‘) for each element of ‘into‘.

convert If ‘TRUE‘, will run [type.convert()] with ‘as.is = TRUE‘ on new columns. This
is useful if the component columns are integer, numeric or logical.
NB: this will cause string ‘"NA"‘s to be converted to ‘NA‘s.

data A data frame.

col The name of the new column, as a string or symbol.
This argument is passed by expression and supports [quasiquotation][rlang::quasiquotation]
(you can unquote strings and symbols). The name is captured from the expres-
sion with [rlang::ensym()] (note that this kind of interface where symbols do not
represent actual objects is now discouraged in the tidyverse; we support it here
for backward compatibility).

... <[‘tidy-select‘][tidyr_select]> Columns to unite

na.rm If ‘TRUE‘, missing values will be remove prior to uniting each value.

remove If ‘TRUE‘, remove input columns from output data frame.

sep Separator between columns.
If character, ‘sep‘ is interpreted as a regular expression. The default value is a
regular expression that matches any sequence of non-alphanumeric values.
If numeric, ‘sep‘ is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative value start at -1 at the far-right of
the string. The length of ‘sep‘ should be one less than ‘into‘.

extra If ‘sep‘ is a character vector, this controls what happens when there are too many
pieces. There are three valid options:
* "warn" (the default): emit a warning and drop extra values. * "drop": drop
any extra values without a warning. * "merge": only splits at most ‘length(into)‘
times

fill If ‘sep‘ is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:
* "warn" (the default): emit a warning and fill from the right * "right": fill with
missing values on the right * "left": fill with missing values on the left

Value

A Seurat object or a tibble depending on input

A Seurat object or a tibble depending on input

A Seurat object or a tibble depending on input

A Seurat object or a tibble depending on input

A Seurat object or a tibble depending on input

unnest 19

See Also

[separate()] to split up by a separator.

[separate()], the complement.

[unite()], the complement, [extract()] which uses regular expression capturing groups.

Examples

library(dplyr)
data("pbmc_small")
pbmc_small %>% nest(data = -groups) %>% unnest(data)

library(dplyr)
data("pbmc_small")
pbmc_small %>% nest(data = -groups) %>% unnest(data)

data("pbmc_small")
pbmc_small %>% extract(groups, into = "g", regex = "g([0-9])", convert = TRUE)

data("pbmc_small")
pbmc_small %>% unite("new_col", c(orig.ident, groups))

data("pbmc_small")
un = pbmc_small %>% unite("new_col", c(orig.ident, groups))
un %>% separate(col = new_col, into= c("orig.ident", "groups"))

Index

∗ datasets
cell_type_df, 5
pbmc_small_nested_interactions,

10

add_count (count), 5
as_tibble, 2

bind, 4

cell_type_df, 5
count, 5

extract (unnest), 17

ggplot, 7
glimpse (as_tibble), 2

join_features, 8
join_features,Seurat-method

(join_features), 8
join_transcripts, 9

nest (unnest), 17

pbmc_small_nested_interactions,
10

pivot_longer, 10
plot_ly, 12
print, 15

separate (unnest), 17

tbl_format_header, 16
tidy, 17

unite (unnest), 17
unnest, 17

20

	as_tibble
	bind
	cell_type_df
	count
	ggplot
	join_features
	join_transcripts
	pbmc_small_nested_interactions
	pivot_longer
	plot_ly
	print
	tbl_format_header
	tidy
	unnest
	Index

