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between_time Between (For Time Series): Range detection for date or date-time se-
quences

Description

The easiest way to filter time series date or date-time vectors. Returns a logical vector indicating
which date or date-time values are within a range. See filter_by_time() for the data.frame
(tibble) implementation.

Usage

between_time(index, start_date = "start”, end_date = "end")
Arguments

index A date or date-time vector.

start_date The starting date

end_date The ending date
Details

Pure Time Series Filtering Flexibilty
The start_date and end_date parameters are designed with flexibility in mind.
Each side of the time_formula is specified as the character ' YYYY-MM-DD HH:MM:SS', but powerful
shorthand is available. Some examples are:
¢ Year: start_date = '2013', end_date = '2015'
e Month: start_date = '2013-01', end_date = '2016-06"'
* Day: start_date = '2013-01-05', end_date = '2016-06-04'
e Second: start_date = '2013-01-05 10:22:15"', end_date = '2018-06-03 12:14:22'
e Variations: start_date = '2013', end_date = '2016-06'

Key Words: '"'start' and "end"

Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end
values. Here are some examples:

¢ Start of the series to end of 2015: start_date = 'start', end_date = '2015'
« Start of 2014 to end of series: start_date = '2014', end_date = 'end'
Internal Calculations

All shorthand dates are expanded:

* The start_date is expanded to be the first date in that period
* The end_date side is expanded to be the last date in that period
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This means that the following examples are equivalent (assuming your index is a POSIXct):

* start_date = '2015" is equivalent to start_date = '2015-01-01 + 00:00:00"'
* end_date = '2016' is equivalent to 2016-12-31 + 23:59:59'

Value

A logical vector the same length as index indicating whether or not the timestamp value was
within the start_date and end_date range.

References

» This function is based on the tibbletime::filter_time() function developed by Davis
Vaughan.

See Also
Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Simplifies applying mutations by time windows.

* pad_by_time() - Insert time series rows with regularly spaced timestamps
e filter_by_time() - Quickly filter using date ranges.

* filter_period() - Apply filtering expressions inside periods (windows)
* slice_period() - Apply slice inside periods (windows)

* condense_period() - Convert to a different periodicity

* between_time() - Range detection for date or date-time sequences.

e slidify() - Turn any function into a sliding (rolling) function

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

index_daily <- tk_make_timeseries(”2016-01-01", "2017-01-01", by = "day")
index_min  <- tk_make_timeseries(”2016-01-01", "2017-01-01", by = "min")

# How it works

# - Returns TRUE/FALSE length of index

# - Use sum() to tally the number of TRUE values
index_daily %>% between_time("start”, "2016-01") %>% sum()
# ---- INDEX SLICING ----

# Daily Series: Month of January 2016
index_daily[index_daily %>% between_time("start”, "2016-01")]

# Daily Series: March 1st - June 15th, 2016
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index_daily[index_daily %>% between_time("2016-03", "2016-06-15")]

# Minute Series:
index_min[index_min %>% between_time("2016-02-01 12:00", "2016-02-01 13:00")]

# ---- FILTERING WITH DPLYR ----

FANG

%>%

group_by(symbol) %>%
filter(date %>% between_time("2016-01", "2016-01"))

bike_sharing_daily Daily Bike Sharing Data

Description

This dataset contains the daily count of rental bike transactions between years 2011 and 2012 in
Capital bikeshare system with the corresponding weather and seasonal information.

Usage

bike_sharing_daily

Format

A tibble: 731 x 16

instant: record index

dteday : date

season : season (1:winter, 2:spring, 3:summer, 4:fall)

yr : year (0: 2011, 1:2012)

mnth : month ( 1 to 12)

hr : hour (0 to 23)

holiday : weather day is holiday or not

weekday : day of the week

workingday : if day is neither weekend nor holiday is 1, otherwise is 0.

weathersit :

1: Clear, Few clouds, Partly cloudy, Partly cloudy
2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered
clouds

4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp : Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-
t_min), t_min=-8, t_max=+39 (only in hourly scale)
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» atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-
t_min), t_min=-16, t_max=+50 (only in hourly scale)

hum: Normalized humidity. The values are divided to 100 (max)

windspeed: Normalized wind speed. The values are divided to 67 (max)
* casual: count of casual users
* registered: count of registered users

* cnt: count of total rental bikes including both casual and registered

References

Fanaee-T, Hadi, and Gama, Joao, 'Event labeling combining ensemble detectors and background
knowledge’, Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

Examples

bike_sharing_daily

box_cox_vec Box Cox Transformation

Description

This is mainly a wrapper for the BoxCox transformation from the forecast R package. The
box_cox_vec() function performs the transformation. The box_cox_inv_vec() inverts the trans-
formation. The auto_lambda() helps in selecting the optimal 1ambda value.

Usage

box_cox_vec(x, lambda = "auto”, silent = FALSE)
box_cox_inv_vec(x, lambda)

auto_lambda(

X ’
method = c("guerrero”, "loglik"),
lambda_lower = -1,
lambda_upper = 2

)

Arguments
X A numeric vector.
lambda The box cox transformation parameter. If set to "auto", performs automated

lambda selection using auto_lambda().

silent Whether or not to report the automated 1ambda selection as a message.
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method The method used for automatic 1ambda selection. Either "guerrero” or "loglik".
lambda_lower A lower limit for automatic 1ambda selection

lambda_upper  An upper limit for automatic lambda selection

Details

The Box Cox transformation is a power transformation that is commonly used to reduce variance
of a time series.

Automatic Lambda Selection
If desired, the 1ambda argument can be selected using auto_lambda(), a wrapper for the Forecast
R Package’s forecast: :BoxCox.lambda() function. Use either of 2 methods:

1. "guerrero" - Minimizes the non-seasonal variance

2. "loglik" - Maximizes the log-likelihood of a linear model fit to x

References

* Forecast R Package
* Forecasting: Principles & Practices: Transformations & Adjustments

* Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of
Forecasting, 12, 37-48.

See Also

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

¢ Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), logl1p() and sqrt()

Examples

library(dplyr)
library(timetk)

d10_daily <- m4_daily %>% filter(id == "D10")
# --- VECTOR ----

value_bc <- box_cox_vec(d10_daily$value)
value <- box_cox_inv_vec(value_bc, lambda = 1.25119350454964)

# --= MUTATE ----


https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/transformations.html
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m4_daily %>%
group_by(id) %>%
mutate(value_bc = box_cox_vec(value))

condense_period Convert the Period to a Lower Periodicity (e.g. Go from Daily to
Monthly)

Description

Convert a data. frame object from daily to monthly, from minute data to hourly, and more. This
allows the user to easily aggregate data to a less granular level by taking the value from either the
beginning or end of the period.

Usage

condense_period(.data, .date_var, .period = "1 day"”, .side = c("start”, "end"))

Arguments

.data A tbl object or data. frame
.date_var A column containing date or date-time values. If missing, attempts to auto-
detect date column.
.period A period to condense the time series to. Time units are condensed using lubridate: : floor_date()
or lubridate::ceiling_date().
The value can be:
* second
* minute
* hour
e day
* week
* month
* bimonth
* quarter
* season
* halfyear
e year
Arbitrary unique English abbreviations as in the lubridate: :period() con-
structor are allowed:
e "1 year”
e "2months"
* "30 seconds”

.side One of "start" or "end". Determines if the first observation in the period should
be returned or the last.
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Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Simplifies applying mutations by time windows.

* pad_by_time() - Insert time series rows with regularly spaced timestamps
e filter_by_time() - Quickly filter using date ranges.

* filter_period() - Apply filtering expressions inside periods (windows)
* slice_period() - Apply slice inside periods (windows)

* condense_period() - Convert to a different periodicity

* between_time() - Range detection for date or date-time sequences.

e slidify() - Turn any function into a sliding (rolling) function

Examples

# Libraries
library(timetk)
library(dplyr)

# First value in each month

m4_daily %>%
group_by(id) %>%
condense_period(.period = "1 month")

# Last value in each month
m4_daily %>%
group_by(id) %>%

condense_period(.period = "1 month”, .side = "end")
diff_vec Differencing Transformation
Description

diff_vec() applies a Differencing Transformation. diff_inv_vec() inverts the differencing trans-
formation.
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Usage

diff_vec(
X,
lag = 1,
difference = 1,
log = FALSE,
initial_values = NULL,
silent = FALSE

)

diff_inv_vec(x, lag = 1, difference = 1, log = FALSE, initial_values = NULL)

Arguments
X A numeric vector to be differenced or inverted.
lag Which lag (how far back) to be included in the differencing calculation.
difference The number of differences to perform.
« 1 Difference is equivalent to measuring period change.
2 Differences is equivalent to measuring period acceleration.
log If log differences should be calculated. Note that difference inversion of a log-

difference is approximate.

initial_values Only used in the diff_vec_inv() operation. A numeric vector of the initial
values, which are used to invert differences. This vector is the original values
that are the length of the NA missing differences.

silent Whether or not to report the initial values used to invert the difference as a
message.
Details
Benefits:

This function is NA padded by default so it works well with dplyr: :mutate() operations.
Difference Calculation

Single differencing, diff_vec(x_t) is equivalent to: x_t - x_t1, where the subscript _t1 indicates
the first lag. This transformation can be interpereted as change.

Double Differencing Calculation

Double differencing, diff_vec(x_t, difference = 2) isequivalentto: (x_t - x_t1) - (x_t - x_t1)_t1,
where the subscript _tl indicates the first lag. This transformation can be interpereted as accelera-
tion.

Log Difference Calculation

Log differencing, diff_vec(x_t, log = TRUE) is equivalent to: log(x_t) - log(x_t1) = log(x_t
/ x_t1), where x_t is the series and x_t1 is the first lag.

The st difference diff_vec(difference =1, log = TRUE) has an interesting property where diff_vec(difference
=1, log = TRUE) %>% exp() is approximately I + rate of change.
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Value

A numeric vector

See Also
Advanced Differencing and Modeling:

* step_diff() - Recipe for tidymodels workflow
e tk_augment_differences() - Adds many differences to a data.frame (tibble)

Additional Vector Functions:

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
 Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)
library(timetk)

# --- USAGE ----

diff_vec(1:10, lag = 2, difference = 2) %>%
diff_inv_vec(lag = 2, difference = 2, initial_values = 1:4)

# --- VECTOR ----

# Get Change
1:10 %>% diff_vec()

# Get Acceleration
1:10 %>% diff_vec(difference = 2)

# Get approximate rate of change
1:10 %>% diff_vec(log = TRUE) %>% exp() - 1

# --- MUTATE ----

m4_daily %>%
group_by(id) %>%
mutate(difference = diff_vec(value, lag = 1)) %>%
mutate(
difference_inv = diff_inv_vec(
difference,
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lag = 1,
# Add initial value to calculate the inverse difference
initial_values = value[1]

filter_by_time Filter (for Time-Series Data)

Description

The easiest way to filter time-based start/end ranges using shorthand timeseries notation. See
filter_period() for applying filter expression by period (windows).

Usage

filter_by_time(.data, .date_var, .start_date = "start”, .end_date = "end")

Arguments
.data A tibble with a time-based column.
.date_var A column containing date or date-time values to filter. If missing, attempts to
auto-detect date column.
.start_date The starting date for the filter sequence
.end_date The ending date for the filter sequence
Details

Pure Time Series Filtering Flexibilty
The .start_date and .end_date parameters are designed with flexibility in mind.
Each side of the time_formula is specified as the character ' YYYY-MM-DD HH:MM:SS', but powerful
shorthand is available. Some examples are:
* Year: .start_date = '2013', .end_date = '2015'
e Month: .start_date = '2013-01', .end_date = '2016-06'
* Day: .start_date = '2013-01-05', .end_date = '2016-06-04'
e Second: .start_date = '2013-01-05 10:22:15', .end_date = '2018-06-03 12:14:22'
e Variations: .start_date = '2013', .end_date = '2016-06'

Key Words: '"start'" and "end"

Use the keywords "start” and "end" as shorthand, instead of specifying the actual start and end
values. Here are some examples:
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e Start of the series to end of 2015: .start_date = 'start', .end_date = '2015'
 Start of 2014 to end of series: .start_date = '2014', .end_date = 'end'

Internal Calculations

All shorthand dates are expanded:

» The .start_date is expanded to be the first date in that period
* The .end_date side is expanded to be the last date in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

* .start_date = '2015"' is equivalent to .start_date = '2015-01-01 + 00:00:00"'
* .end_date = '2016" is equivalent to 2016-12-31 + 23:59:59'

References

 This function is based on the tibbletime::filter_time() function developed by Davis
Vaughan.

See Also

Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Simplifies applying mutations by time windows.

* pad_by_time() - Insert time series rows with regularly spaced timestamps
e filter_by_time() - Quickly filter using date ranges.

» filter_period() - Apply filtering expressions inside periods (windows)
* slice_period() - Apply slice inside periods (windows)

* condense_period() - Convert to a different periodicity

* between_time() - Range detection for date or date-time sequences.

e slidify() - Turn any function into a sliding (rolling) function

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

# Filter values in January 1st through end of February, 2013

FANG %>%
group_by(symbol) %>%
filter_by_time(.start_date = "start”, .end_date = "2013-02") %>%
plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)
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filter_period Apply filtering expressions inside periods (windows)

Description

Applies a dplyr filtering expression inside a time-based period (window). See filter_by_time()
for filtering continuous ranges defined by start/end dates. filter_period() enables filtering ex-
pressions like:

* Filtering to the maximum value each month.

* Filtering the first date each month.

* Filtering all rows with value greater than a monthly average

Usage
filter_period(.data, ..., .date_var, .period = "1 day")
Arguments
.data A tbl object or data.frame
Filtering expression. Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.
.date_var A column containing date or date-time values. If missing, attempts to auto-
detect date column.
.period A period to filter within. Time units are grouped using lubridate: : floor_date()

or lubridate::ceiling_date().
The value can be:

* second

* minute

* hour

e day

* week

e month

* bimonth

* quarter

e season

* halfyear

e year
Arbitrary unique English abbreviations as in the lubridate: :period() con-
structor are allowed:

e "1 year”

e "2months”

* "30 seconds”
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Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Simplifies applying mutations by time windows.

* pad_by_time() - Insert time series rows with regularly spaced timestamps

e filter_by_time() - Quickly filter using date ranges.

» filter_period() - Apply filtering expressions inside periods (windows)

* slice_period() - Apply slice inside periods (windows)

* condense_period() - Convert to a different periodicity

* between_time() - Range detection for date or date-time sequences.

* slidify() - Turn any function into a sliding (rolling) function

Examples

# Libraries
library(timetk)
library(dplyr)

# Max value in each month
m4_daily %>%
group_by(id) %>%
filter_period(.period =

# First date each month
m4_daily %>%
group_by(id) %>%
filter_period(.period =

# All observations that are
m4_daily %>%
group_by(id) %>%
filter_period(.period =

"1 month”, value == max(value))

"1 month”, date == first(date))

greater than a monthly average

"1 month”, value > mean(value))

fourier_vec

fourier_vec Fourier Series

Description

fourier_vec() calculates a Fourier Series from a date or date-time index.
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Usage

fourier_vec(x, period, K = 1, type = c("sin", "cos"), scale_factor = NULL)
Arguments

X A date, POSIXct, yearmon, yearqtr, or numeric sequence (scaled to difference 1

for period alignment) to be converted to a fourier series.

period The number of observations that complete one cycle.

K The fourier term order.

type Either "sin" or "cos" for the appropriate type of fourier term.

scale_factor  Scale factor is a calculated value that scales date sequences to numeric se-
quences. A user can provide a different value of scale factor to override the
date scaling. Default: NULL (auto-scale).

Details

Benefits:
This function is NA padded by default so it works well with dplyr: :mutate() operations.
Fourier Series Calculation

The internal calculation is relatively straightforward: fourier(x) = sin(2 * pi * term * x) or cos(2 * pi * term * x),
where term =K / period.

Period Alignment, period
The period alignment with the sequence is an essential part of fourier series calculation.
* Date, Date-Time, and Zoo (yearqtr and yearmon) Sequences - Are scaled to unit difference

of 1. This happens internally, so there’s nothing you need to do or to worry about. Future time
series will be scaled appropriately.

* Numeric Sequences - Are not scaled, which means you should transform them to a unit
difference of 1 so that your x is a sequence that increases by 1. Otherwise your period and
fourier order will be incorrectly calculated. The solution is to just take your sequence and
divide by the median difference between values.

Fourier Order, K

The fourier order is a parameter that increases the frequency. K =2 doubles the frequency. It’s
common in time series analysis to add multiple fourier orders (e.g. 1 through 5) to account for
seasonalities that occur faster than the primary seasonality.

Type (Sin/Cos)

The type of the fourier series can be either sin or cos. It’s common in time series analysis to add
both sin and cos series.

Value

A numeric vector
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See Also
Fourier Modeling Functions:

» step_fourier() - Recipe for tidymodels workflow

e tk_augment_fourier() - Adds many fourier series to a data.frame (tibble)
Additional Vector Functions:

¢ Fourier Series: fourier_vec()

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(tidyverse)
library(timetk)

options(max.print = 50)

date_sequence <- tk_make_timeseries(”2016-01-01", "2016-01-31", by = "hour")

# --- VECTOR ---
fourier_vec(date_sequence, period = 7 * 24, K = 1, type = "sin"
# --- MUTATE ---

tibble(date = date_sequence) %>%
# Add cosine series that oscilates at a 7-day period
mutate(
C1_7 = fourier_vec(date, period = 7x24, K = 1, type = "cos"),
C2_7 = fourier_vec(date, period = 7x24, K = 2, type = "cos")
) %%
# Visualize
pivot_longer(cols = contains(
plot_time_series(
date, value, .color_var = name,
.smooth = FALSE,
.interactive = FALSE,
.title = "7-Day Fourier Terms"

non

, hames_to = "name"”, values_to = "value") %>%
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future_frame Make future time series from existing

Description

Make future time series from existing

Usage

future_frame(
.data,
.date_var,
.length_out,
.inspect_weekdays = FALSE,
.inspect_months = FALSE,
.skip_values = NULL,
.insert_values = NULL,
.bind_data = FALSE

)
Arguments
.data A data.frame or tibble
.date_var A date or date-time variable.
.length_out Number of future observations. Can be numeric number or a phrase like "1

year".
.inspect_weekdays

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g.
weekends) should be excluded from the future dates. Default is FALSE.
.inspect_months

Uses a logistic regression algorithm to inspect whether certain days of months
(e.g. last two weeks of year or seasonal days) should be excluded from the future
dates. Default is FALSE.

.skip_values A vector of same class as idx of timeseries values to skip.
.insert_values A vector of same class as idx of timeseries values to insert.

.bind_data Whether or not to perform a row-wise bind of the .data and the future data.
Default: FALSE

Details
This is a wrapper for tk_make_future_timeseries() that works on data.frames. It respects dplyr
groups.
Specifying Length of Future Observations

The argument . length_out determines how many future index observations to compute. It can be
specified as:
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¢ A numeric value - the number of future observations to return.

— The number of observations returned is always equal to the value the user inputs.
— The end date can vary based on the number of timestamps chosen.

* A time-based phrase - The duration into the future to include (e.g. "6 months" or "30 min-
utes").

— The duration defines the end date for observations.

— The end date will not change and those timestamps that fall within the end date will be
returned (e.g. a quarterly time series will return 4 quarters if . length_out = "1 year").

— The number of observations will vary to fit within the end date.

Weekday and Month Inspection
The .inspect_weekdays and .inspect_months arguments apply to "daily" (scale = "day") data
(refer to tk_get_timeseries_summary() to get the index scale).

* The . inspect_weekdays argument is useful in determining missing days of the week that oc-
cur on a weekly frequency such as every week, every other week, and so on. It’s recommended
to have at least 60 days to use this option.

* The .inspect_months argument is useful in determining missing days of the month, quarter
or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.
Skipping / Inserting Values
The .skip_values and . insert_values arguments can be used to remove and add values into the
series of future times. The values must be the same format as the idx class.
* The .skip_values argument useful for passing holidays or special index values that should
be excluded from the future time series.
* The .insert_values argument is useful for adding values back that the algorithm may have
excluded.
Binding with Data

Rowwise binding with the original is so common that I've added an argument .bind_data to per-
form a row-wise bind of the future data and the incoming data.

This replaces the need to do:

df %>%
future_frame(.length_out = "6 months") %>%
bind_rows(df, .)

Now you can just do:

df %>%
future_frame(.length_out = "6 months”, .bind_data = TRUE)

Value

A tibble that has been extended with future date, date-time timestamps.
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See Also

* Making Future Time Series: tk_make_future_timeseries() (Underlying function)

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

# 30-min interval data
taylor_30_min %>%
future_frame(date, .length_out = "1 week")

# Daily Data (Grouped)
m4_daily %>%
group_by(id) %>%

future_frame(date, .length_out "6 weeks")

# Specify how many observations to project into the future
m4_daily %>%

group_by(id) %>%

future_frame(date, .length_out = 100)

# Bind with Original Data
m4_daily %>%
group_by(id) %>%
future_frame(date, .length_out = 100, .bind_data = TRUE)

holidays <- tk_make_holiday_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31",
calendar = "NYSE")

weekends <- tk_make_weekend_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31"

FANG %>%
group_by(symbol) %>%
future_frame(
.length_out "1 year",
.skip_values = c(holidays, weekends)
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is_date_class Check if an object is a date class
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Description

Check if an object is a date class

Usage

is_date_class(x)

Arguments

X A vector to check

Value

Logical (TRUE/FALSE)

Examples
library(dplyr)
tk_make_timeseries("2011") %>% is_date_class()

letters %>% is_date_class()

lag_vec Lag Transformation

Description

lag_vec() applies a Lag Transformation.

Usage

lag_vec(x, lag = 1)

lead_vec(x, lag = -1)

Arguments
X A numeric vector to be lagged.
lag Which lag (how far back) to be included in the differencing calculation. Nega-

tive lags are leads.
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Details

Benefits:

This function is NA padded by default so it works well with dplyr::mutate() operations. The
function allows both lags and leads (negative lags).

Lag Calculation
A lag is an offset of 1ag periods. NA values are returned for the number of lag periods.
Lead Calculation

A negative lag is considered a lead. The only difference between lead_vec() and lag_vec() is
that the lead_vec() function contains a starting negative value.

Value

A numeric vector

See Also
Modeling and Advanced Lagging:

* recipes::step_lag() - Recipe for adding lags in tidymodels modeling
e tk_augment_lags() - Add many lags group-wise to a data.frame (tibble)

Vectorized Transformations:

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
e Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)
library(timetk)

# --- VECTOR ----

# Lag
1:10 %>% lag_vec(lag = 1)

# Lead
1:10 %>% lag_vec(lag

1l

|
—_
~—

# --- MUTATE ----
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m4_daily %>%
group_by(id) %>%
mutate(lag_1 = lag_vec(value, lag = 1))

log_interval_vec Log-Interval Transformation for Constrained Interval Forecasting

Description

The log_interval_vec() transformation constrains a forecast to an interval specified by an upper_limit
and a lower_limit. The transformation provides similar benefits to log() transformation, while
ensuring the inverted transformation stays within an upper and lower limit.

Usage

log_interval_vec(
X,
limit_lower = "auto”,
limit_upper = "auto”,
offset = 0,
silent = FALSE

log_interval_inv_vec(x, limit_lower, limit_upper, offset = 0)

Arguments
X A positive numeric vector.
limit_lower A lower limit. Must be less than the minimum value. If set to "auto", selects
ZEero.
limit_upper An upper limit. Must be greater than the maximum value. If set to "auto", selects
a value that is 10% greater than the maximum value.
offset An offset to include in the log transformation. Useful when the data contains
values less than or equal to zero.
silent Whether or not to report the parameter selections as a message.
Details

Log Interval Transformation

The Log Interval Transformation constrains values to specified upper and lower limits. The trans-
formation maps limits to a function:

log(((x + offset) - a)/(b - (x + offset)))

where a is the lower limit and b is the upper limit



m4_daily 25

Inverse Transformation
The inverse transformation:
(b-a)*(exp(x)) / (1 +exp(x)) +a - offset

References

 Forecasting: Principles & Practices: Forecasts constrained to an interval

See Also

¢ Box Cox Transformation: box_cox_vec()
* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

 Fourier Series: fourier_vec()

* Missing Value Imputation & Anomaly Cleaning for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), logl1p() and sqrt()

Examples

library(dplyr)
library(timetk)

values_trans <- log_interval_vec(1:10, limit_lower = @, limit_upper = 11)
values_trans

values_trans_forecast <- c(values_trans, 3.4, 4.4, 5.4)
values_trans_forecast %>%

log_interval_inv_vec(limit_lower = @, limit_upper = 11) %>%
plot()

m4_daily Sample of 4 Daily Time Series Datasets from the M4 Competition

Description
The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 daily time series
from the competition.

Usage
m4_daily


https://otexts.com/fpp2/limits.html

26 m4_hourly

Format
A tibble: 9,743 x 3

 id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Daily format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 daily data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_daily

m4_hourly Sample of 4 Hourly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 hourly time series
from the competition.

Usage
m4_hourly

Format
A tibble: 3,060 x 3

* id Factor. Unique series identifier (4 total)
* date Date-time. Timestamp information. Hourly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 hourly data sets from the M4 competition.

Source

* M4 Competition Website


https://mofc.unic.ac.cy/m4/
https://mofc.unic.ac.cy/m4/
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Examples

m4_hourly

m4_monthly Sample of 4 Monthly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 monthly time
series from the competition.

Usage

m4_monthly

Format
A tibble: 9,743 x 3
* id Factor. Unique series identifier (4 total)

* date Date. Timestamp information. Monthly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Monthly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_monthly


https://mofc.unic.ac.cy/m4/
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m4_quarterly Sample of 4 Quarterly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 quarterly time
series from the competition.

Usage

m4_quarterly

Format
A tibble: 9,743 x 3

* id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Quarterly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Quarterly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_quarterly

m4_weekly Sample of 4 Weekly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 weekly time
series from the competition.

Usage
m4_weekly


https://mofc.unic.ac.cy/m4/
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Format
A tibble: 9,743 x 3

 id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Weekly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Weekly data sets from the M4 competition.

Source

* M4 Competition Website

Examples

m4_weekly

m4_yearly Sample of 4 Yearly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 yearly time series
from the competition.

Usage
m4_yearly

Format
A tibble: 9,743 x 3

* id Factor. Unique series identifier (4 total)
* date Date. Timestamp information. Yearly format.

* value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Yearly data sets from the M4 competition.

Source

* M4 Competition Website


https://mofc.unic.ac.cy/m4/
https://mofc.unic.ac.cy/m4/
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Examples

m4_yearly

mutate_by_time Mutate (for Time Series Data)

Description

mutate_by_time() is a time-based variant of the popular dplyr::mutate() function that uses
.date_var to specify a date or date-time column and .by to group the calculation by groups like

non

"5 seconds", "week", or "3 months".

Usage

mutate_by_time(
.data,
.date_var,
.by = "day”,

.type = c("floor"”, "ceiling”, "round")

)
Arguments
.data A tbl object or data. frame
.date_var A column containing date or date-time values to summarize. If missing, attempts
to auto-detect date column.
by A time unit to summarise by. Time units are collapsed using lubridate: : floor_date()

or lubridate::ceiling_date().
The value can be:

* second
* minute
* hour

e day

* week

e month

* bimonth
* quarter
* season
* halfyear
* year
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Arbitrary unique English abbreviations as in the lubridate: :period() con-
structor are allowed.

Name-value pairs. The name gives the name of the column in the output.
The value can be:

* A vector of length 1, which will be recycled to the correct length.

* A vector the same length as the current group (or the whole data frame if
ungrouped).

¢ NULL, to remove the column.

* A data frame or tibble, to create multiple columns in the output.

.type One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate: :round_date.

Value

A tibble or data.frame

See Also
Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Simplifies applying mutations by time windows.

* pad_by_time() - Insert time series rows with regularly spaced timestamps
e filter_by_time() - Quickly filter using date ranges.

* filter_period() - Apply filtering expressions inside periods (windows)
* slice_period() - Apply slice inside periods (windows)

* condense_period() - Convert to a different periodicity

* between_time() - Range detection for date or date-time sequences.

e slidify() - Turn any function into a sliding (rolling) function

Examples

# Libraries
library(timetk)
library(dplyr)
library(tidyr)

# First value in each month
m4_daily_first_by_month_tbl <- m4_daily %>%
group_by(id) %>%
mutate_by_time(
.date_var = date,

. by = "month"”, # Setup for monthly aggregation
# mutate recycles a single value
first_value_by_month = first(value)

)
m4_daily_first_by_month_tbl
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# Visualize Time Series vs 1st Value Each Month
m4_daily_first_by_month_tbl %>%
pivot_longer(value:first_value_by_month) %>%
plot_time_series(date, value, name,
.facet_scale = "free”, .facet_ncol = 2,
.smooth = FALSE, .interactive = FALSE)

normalize_vec Normalize to Range (0, 1)

Description

Normalization is commonly used to center and scale numeric features to prevent one from domi-
nating in algorithms that require data to be on the same scale.

Usage

normalize_vec(x, min = NULL, max = NULL, silent = FALSE)

normalize_inv_vec(x, min, max)

Arguments

X A numeric vector.

min The population min value in the normalization process.

max The population max value in the normalization process.

silent Whether or not to report the automated min and max parameters as a message.
Details

Standardization vs Normalization
» Standardization refers to a transformation that reduces the range to mean 0, standard devia-
tion 1

* Normalization refers to a transformation that reduces the min-max range: (0, 1)

See Also

¢ Normalization/Standardization: standardize_vec(), normalize_vec()
¢ Box Cox Transformation: box_cox_vec()

¢ Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

e Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()
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Examples
library(dplyr)
library(timetk)
d10_daily <- m4_daily %>% filter(id == "D10")

# --- VECTOR ----

value_norm <- normalize_vec(d10_daily$value)

value <- normalize_inv_vec(value_norm,
min = 1781.6,
max = 2649.3)

# --- MUTATE ----
m4_daily %>%

group_by(id) %>%
mutate(value_norm = normalize_vec(value))

pad_by_time Insert time series rows with regularly spaced timestamps

Description

The easiest way to fill in missing timestamps or convert to a more granular period (e.g. quarter to
month). Wraps the padr: :pad() function for padding tibbles.

Usage

pad_by_time(
.data,
.date_var,
.by = "auto”,
.pad_value = NA,
.fill_na_direction = c("none”, "down", "up"”, "downup”, "updown"),
.start_date = NULL,
.end_date = NULL

)
Arguments
.data A tibble with a time-based column.
.date_var A column containing date or date-time values to pad
.by Either "auto", a time-based frequency like "year", "month", "day", "hour", etc,

or a time expression like "5 min", or "7 days". See Details.

.pad_value Fills in padded values. Default is NA.
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.fill_na_direction
Users can provide an NA fill strategy using tidyr::fill(). Possible values:
'none’', 'down', 'up', 'downup', 'updown'. Default: 'none’

.start_date Specifies the start of the padded series. If NULL it will use the lowest value of
the input variable.

.end_date Specifies the end of the padded series. If NULL it will use the highest value of
the input variable.

Details

Padding Missing Observations

The most common use case for pad_by_time() is to add rows where timestamps are missing. This
could be from sales data that have missing values on weekends and holidays. Or it could be high
frequency data where observations are irregularly spaced and should be reset to a regular frequency.

Going from Low to High Frequency

The second use case is going from a low frequency (e.g. day) to high frequency (e.g. hour). This is
possible by supplying a higher frequency to pad_by_time().

Interval, .by
Padding can be applied in the following ways:

e .by ="auto" - pad_by_time() will detect the time-stamp frequency and apply padding.
* The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.

* Intervals like 5 minutes, 6 hours, 10 days are possible.

Pad Value, .pad_value

A pad value can be supplied that fills in missing numeric data. Note that this is only applied to
numeric columns.

Fill NA Direction, .fill_na_directions

Uses tidyr::fill() to fill missing observations using a fill strategy.

References

* This function wraps the padr: :pad() function developed by Edwin Thoen.

See Also
Imputation:
e ts_impute_vec() - Impute missing values for time series.
Time-Based dplyr functions:

e summarise_by_time() - Easily summarise using a date column.
* mutate_by_time() - Simplifies applying mutations by time windows.
* pad_by_time() - Insert time series rows with regularly spaced timestamps

e filter_by_time() - Quickly filter using date ranges.
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* filter_period() - Apply filtering expressions inside periods (windows)
* slice_period() - Apply slice inside periods (windows)
* condense_period() - Convert to a different periodicity

* between_time() - Range detection for date or date-time sequences.

slidify() - Turn any function into a sliding (rolling) function

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

# Create a quarterly series with 1 missing value

missing_data_tbl <- tibble(
date = tk_make_timeseries("2014-01-01", "2015-01-01", by = "quarter"),
value = 1:5

) %>%
slice(-4) # Lose the 4th quarter on purpose

missing_data_tbl

# Detects missing quarter, and pads the missing regularly spaced quarter with NA
missing_data_tbl %>% pad_by_time(date, .by = "quarter"”)

# Can specify a shorter period. This fills monthly.
missing_data_tbl %>% pad_by_time(date, .by = "month")

# Can let pad_by_time() auto-detect date and period
missing_data_tbl %>% pad_by_time()

# Can specify a .pad_value
missing_data_tbl %>% pad_by_time(date, .by = "quarter”, .pad_value = 0)

# Can then impute missing values

missing_data_tbl %>%
pad_by_time(date, .by = "quarter”) %>%
mutate(value = ts_impute_vec(value, period = 1))

# Can specify a custom .start_date and .end_date
missing_data_tbl %>%
pad_by_time(date, .by = "quarter"”, .start_date = "2013", .end_date = "2015-07-01")

# Can specify a tidyr::fill() direction
missing_data_tbl %>%
pad_by_time(date, .by = "quarter”,
.fill_na_direction = "downup”,
.start_date = "2013", .end_date = "2015-07-01")

# --- GROUPS ----

# Apply standard NA padding to groups

35
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FANG %>%
group_by(symbol) %>%
pad_by_time(.by = "day")

# Apply constant pad value
FANG %>%
group_by(symbol) %>%
pad_by_time(.by = "day", .pad_value = 0)

# Apply filled padding to groups
FANG %>%
group_by(symbol) %>%
pad_by_time(.by = "day"”, .fill_na_direction = "down")

parse_date2 Fast, flexible date and datetime parsing

Description

Significantly faster time series parsing than readr: :parse_date, readr: :parse_datetime, lubridate: :as_date(),
and lubridate: :as_datetime(). Uses anytime package, which relies on Boost.Date_Time C++
library for date/datetime parsing.

Usage
parse_date2(x, ..., silent = FALSE)
parse_datetime2(x, tz = "UTC", tz_shift = FALSE, ..., silent = FALSE)
Arguments
X A character vector
Additional parameters passed to anytime() and anydate()
silent If TRUE, warns the user of parsing failures.
tz Datetime only. A timezone (see 01senNames()).
tz_shift Datetime only. If FALSE, forces the datetime into the time zone. If TRUE,
offsets the datetime from UTC to the new time zone.
Details

Parsing Formats

* Date Formats: Must follow a Year, Month, Day sequence. (e.g. parse_date2(”2011 June")
is OK, parse_date2("June 2011") is NOT OK).

* Date Time Formats: Must follow a YMD HMS sequence.
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Refer to lubridate: :mdy() for Month, Day, Year and additional formats.
Time zones (Datetime)

Time zones are handled in a similar way to lubridate::as_datetime() in that time zones are
forced rather than shifted. This is a key difference between anytime: :anytime(), which shifts
datetimes to the specified timezone by default.

References
* This function wraps the anytime: :anytime() and anytime: :anydate functions developed

by Dirk Eddelbuettel.

Examples

# Fast date parsing
parse_date2("2011")
parse_date2("2011 June 3rd")

# Fast datetime parsing
parse_datetime2("2011")
parse_datetime2(”2011 Jan 1 12:35:21")

# Time Zones (datetime only)
parse_datetime2(”2011 Jan 1 12:35:21", tz = "GB")

plot_acf_diagnostics  Visualize the ACF, PACF, and CCFs for One or More Time Series

Description

Returns the ACF and PACF of a target and optionally CCF’s of one or more lagged predictors
in interactive plotly plots. Scales to multiple time series with group_by ().

Usage

plot_acf_diagnostics(
.data,
.date_var,
.value,
.ccf_vars = NULL,
.lags = 1000,
.show_ccf_vars_only = FALSE,
.show_white_noise_bars = TRUE,
.facet_ncol = 1,
.facet_scales = "fixed",
.line_color = "#2c3e50",
.line_size = 0.5,
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plot_acf_diagnostics

.line_alpha = 1,

.point_color = "#2c3e50",
.point_size = 1,

.point_alpha = 1,

.x_intercept = NULL,
.X_intercept_color = "#E31A1C",
.hline_color = "#2c3e50",
.white_noise_line_type = 2,
.white_noise_line_color = "#A6CEE3",
.title = "Lag Diagnostics”,
.x_lab = "Lag",

.y_lab = "Correlation”,
.interactive = TRUE,
.plotly_slider = FALSE

Arguments

.data A data frame or tibble with numeric features (values) in descending chronolog-

ical order

.date_var A column containing either date or date-time values
.value A numeric column with a value to have ACF and PACF calculations performed.

.ccf_vars Additional features to perform Lag Cross Correlations (CCFs) versus the . value.

Useful for evaluating external lagged regressors.

.lags A sequence of one or more lags to evaluate.
.show_ccf_vars_only

Hides the ACF and PACF plots so you can focus on only CCFs.

.show_white_noise_bars

Shows the white noise significance bounds.

.facet_ncol Facets: Number of facet columns. Has no effect if using grouped_df.
.facet_scales Facets: Options include "fixed", "free", "free_y", "free_x"

.line_color Line color. Use keyword: "scale_color" to change the color by the facet.
.line_size Line size

.line_alpha Line opacity. Adjust the transparency of the line. Range: (0, 1)
.point_color  Point color. Use keyword: "scale_color" to change the color by the facet.
.point_size Point size

.point_alpha  Opacity. Adjust the transparency of the points. Range: (0, 1)

.x_intercept  Numeric lag. Adds a vertical line.
.X_intercept_color

Color for the x-intercept line.

.hline_color  Color for the y-intercept = O line.
.white_noise_line_type

Line type for white noise bars. Set to 2 for "dashed" by default.
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.white_noise_line_color

Line color for white noise bars. Set to tidyquant: :palette_light() "steel
blue" by default.

.title Title for the plot
.x_lab X-axis label for the plot
.y_lab Y-axis label for the plot

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly x-axis range slider.

Details

Simplified ACF, PACF, & CCF

We are often interested in all 3 of these functions. Why not get all 3+ at once? Now you can.

* ACF - Autocorrelation between a target variable and lagged versions of itself

* PACF - Partial Autocorrelation removes the dependence of lags on other lags highlighting key
seasonalities.

* CCF - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification

Lags (. lags) can either be specified as:

* A time-based phrase indicating a duraction (e.g. 2 months)
* A maximum lag (e.g. .1lags = 28)
* A sequence of lags (e.g. .lags =7:28)

Scales to Multiple Time Series with Groups

The plot_acf_diagnostics() works with grouped_df’s, meaning you can group your time series
by one or more categorical columns with dplyr: : group_by () and then apply plot_acf_diagnostics()
to return group-wise lag diagnostics.

Special Note on Groups

Unlike other plotting utilities, the . facet_vars arguments is NOT included. Use dplyr: : group_by()
for processing multiple time series groups.

Calculating the White Noise Significance Bars

The formula for the significance bars is +2/sqrt(T) and -2/sqrt(T) where T is the length of the
time series. For a white noise time series, 95% of the data points should fall within this range.
Those that don’t may be significant autocorrelations.

Value

A static ggplot2 plot or an interactive plotly plot



40 plot_anomaly_diagnostics

See Also
* Visualizing ACF, PACF, & CCF: plot_acf_diagnostics()

¢ Visualizing Seasonality: plot_seasonal_diagnostics()

* Visualizing Time Series: plot_time_series()

Examples

library(tidyverse)
library(timetk)

# Apply Transformations
# - Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%
group_by(id) %>%
plot_acf_diagnostics(
date, value, # ACF & PACF
.lags = "7 days”, # 7-Days of hourly lags
.interactive = FALSE

)

# Apply Transformations
# - Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%

group_by(id) %>%

plot_acf_diagnostics(

date,
diff_vec(value, lag = 1), # Difference the value column
.lags = 0:(24%7), # 7-Days of hourly lags

.interactive = FALSE
) +
ggtitle("ACF Diagnostics”, subtitle = "1st Difference"”)

# CCFs Too!

walmart_sales_weekly %>%
select(id, Date, Weekly_Sales, Temperature, Fuel_Price) %>%
group_by(id) %>%
plot_acf_diagnostics(

Date, Weekly_Sales, # ACF & PACF
.ccf_vars = c(Temperature, Fuel_Price), # CCFs
.lags = "3 months”, # 3 months of weekly lags

.interactive = FALSE

plot_anomaly_diagnostics
Visualize Anomalies for One or More Time Series
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Description

An interactive and scalable function for visualizing anomalies in time series data. Plots are available
in interactive plotly (default) and static ggplot2 format.

Usage

plot_anomaly_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.frequency = "auto",
.trend = "auto”,
.alpha = 0.05,
.max_anomalies = 0.2,
.message = TRUE,
.facet_ncol =1,
.facet_nrow = 1,
.facet_scales = "free",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,

.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,

.line_alpha = 1,
.anom_color = "#e31alc",
.anom_alpha = 1,
.anom_size = 1.5,
.ribbon_fill = "grey20",
.ribbon_alpha = 0.2,

.legend_show = TRUE,

.title = "Anomaly Diagnostics”,
.x_lab = "",

.y_lab = "",

.color_lab = "Anomaly",

.interactive = TRUE,
.trelliscope = FALSE,
.trelliscope_params = list()

)

Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values

.value A column containing numeric values
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.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

.alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

.max_anomalies The maximum percent of anomalies permitted to be identified.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

.facet_ncol Number of facet columns.

.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

.facet_collapse

Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep

The separator used for collapsing facets.
.facet_strip_remove

Whether or not to remove the strip and text label for each facet.

.line_color Line color.
.line_size Line size.
.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.anom_color Color for the anomaly dots

.anom_alpha Opacity for the anomaly dots. Range: (0, 1).
.anom_size Size for the anomaly dots

.ribbon_fill  Fill color for the acceptable range

.ribbon_alpha Fill opacity for the acceptable range. Range: (0, 1).
.legend_show  Toggles on/off the Legend

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.color_lab Plot label for the color legend

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.
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.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params
Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:

* ncol: use .facet_ncol

* nrow: use .facet_nrow

e scales: use facet_scales

e as_plotly: use .interactive

Details
The plot_anomaly_diagnostics() is a visualization wrapper for tk_anomaly_diagnostics()
group-wise anomaly detection, implements a 2-step process to detect outliers in time series.
Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season” and "trend" components from the "observed" values leav-
ing the "remainder” for anomaly detection.

The user can control two parameters: frequency and trend.

1. .frequency: Adjusts the "season" component that is removed from the "observed" values.
2. .trend: Adjusts the trend window (t.window parameter from stats::st1() thatis used.
The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or

numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the
scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "re-
mainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_I2) are de-
termined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.
IOR Adjustment, alpha parameter
With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an
IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):
* To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more
difficult to be an outlier.
* Increase alpha to make it easier to be an outlier.
¢ The IQR outlier detection method is used in forecast: : tsoutliers().
* A similar outlier detection method is used by Twitter’s AnomalyDetection package.

* Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s
anomalize package.

Value

A plotly or ggplot?2 visualization
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See Also

* tk_anomaly_diagnostics(): Group-wise anomaly detection

Examples

library(tidyverse)
library(timetk)

walmart_sales_weekly %>%
group_by(id) %>%
plot_anomaly_diagnostics(Date, Weekly_Sales,
.message = FALSE,
.facet_ncol = 3,
.ribbon_alpha = 0.25,
.interactive = FALSE)

plot_seasonal_diagnostics
Visualize Multiple Seasonality Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series seasonality. Plots are available in
interactive plotly (default) and static ggplot2 format.

Usage

plot_seasonal_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.feature_set = "auto",
.geom = c("boxplot”, "violin"),
.geom_color = "#2c3e50",

.geom_outlier_color = "#2c3e50",
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.title = "Seasonal Diagnostics”,
.x_lab = "",
.y_lab = "7,
.interactive = TRUE
)
Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can

be selected using tidyselect() helpers (e.g contains()).
.feature_set One or multiple selections to analyze for seasonality. Choices include:
* "auto" - Automatically selects features based on the time stamps and length
of the series.
* "second" - Good for analyzing seasonality by second of each minute.
* "minute" - Good for analyzing seasonality by minute of the hour
* "hour" - Good for analyzing seasonality by hour of the day

* "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of
the week.

* "week" - Good for analyzing seasonality by week of the year.

* "month.lbl" - Labeled months. Good for analyzing seasonality by month of
the year.

 "quarter" - Good for analyzing seasonality by quarter of the year
* "year" - Good for analyzing seasonality over multiple years.

.geom Either "boxplot" or "violin"
.geom_color Geometry color. Line color. Use keyword: "scale_color" to change the color by
the facet.

.geom_outlier_color
Color used to highlight outliers.

.title Plot title.
.x_lab Plot x-axis label
.y_lab Plot y-axis label

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

Details

Automatic Feature Selection
Internal calculations are performed to detect a sub-range of features to include useing the following
logic:

* The minimum feature is selected based on the median difference between consecutive times-
tamps
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* The maximum feature is selected based on having 2 full periods.
Example: Hourly timestamp data that lasts more than 2 weeks will have the following features:
"hour", "wday.lbl", and "week".
Scalable with Grouped Data Frames
This function respects grouped data. frame and tibbles that were made with dplyr: :group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the
sub-groups. This means extra features are returned even though they may be meaningless for some
of the groups.

Transformations

The .value parameter respects transformations (e.g. .value = log(sales)).

Value

A plotly or ggplot?2 visualization

Examples

library(dplyr)
library(timetk)

# ---- MULTIPLE FREQUENCY ----
# Taylor 30-minute dataset from forecast package
taylor_30_min

# Visualize series
taylor_30_min %>%
plot_time_series(date, value, .interactive = FALSE)

# Visualize seasonality
taylor_30_min %>%
plot_seasonal_diagnostics(date, value, .interactive = FALSE)

# ---- GROUPED EXAMPLES ----
# m4 hourly dataset
m4_hourly

# Visualize series
m4_hourly %>%
group_by(id) %>%
plot_time_series(date, value, .facet_scales = "free", .interactive = FALSE)

# Visualize seasonality
m4_hourly %>%
group_by(id) %>%
plot_seasonal_diagnostics(date, value, .interactive = FALSE)
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plot_stl_diagnostics  Visualize STL Decomposition Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series STL Decomposition. Plots are
available in interactive plotly (default) and static ggplot2 format.

Usage

plot_stl_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.feature_set = c("observed”, "season”, "trend”, "remainder”, "seasadj"),
.frequency = "auto”,
.trend = "auto”,
.message = TRUE,
.facet_scales = "free”,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type =1,
.line_alpha = 1,
.title = "STL Diagnostics”,

x_lab = "",
.y_lab = "7,
.interactive = TRUE
)
Arguments
.data A tibble or data. frame with a time-based column
.date_var A column containing either date or date-time values
.value A column containing numeric values
.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can

be selected using tidyselect() helpers (e.g contains()).

.feature_set The STL decompositions to visualize. Select one or more of "observed", "sea-

non non

son", "trend", "remainder", "seasad;j".

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder.
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.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",

"free_x"
.line_color Line color.
.line_size Line size.
.line_type Line type.
.line_alpha Line alpha (opacity). Range: (0, 1).
.title Plot title.
.x_lab Plot x-axis label
.y_lab Plot y-axis label

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

Details

The plot_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The
function is "tidy" in the sense that it works on data frames and is designed to work with dplyr
groups.

STL method:

The STL method implements time series decomposition using the underlying stats::stl1(). The
decomposition separates the "season" and "trend" components from the "observed" values leaving
the "remainder".

Frequency & Trend Selection
The user can control two parameters: . frequency and . trend.
1. The .frequency parameter adjusts the "season" component that is removed from the "ob-
served" values.
2. The .trend parameter adjusts the trend window (t.window parameter from st1()) that is

used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based
on the scale of the time series.

Value

A plotly or ggplot2 visualization

Examples

library(tidyverse)
library(timetk)

# ---- SINGLE TIME SERIES DECOMPOSITION ----
m4_hourly %>%
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filter(id == "H10") %>%
plot_stl_diagnostics(
date, value,
# Set features to return, desired frequency and trend

.feature_set = c("observed”, "season”, "trend", "remainder"),
frequency = "24 hours”

. ’

.trend = "1 week",

.interactive = FALSE)

# ---- GROUPS ----
m4_hourly %>%
group_by(id) %>%
plot_stl_diagnostics(
date, value,
.feature_set = c("observed”, "season", "trend"),
.interactive = FALSE)

plot_time_series Interactive Plotting for One or More Time Series

Description

A workhorse time-series plotting function that generates interactive plotly plots, consolidates 20+
lines of ggplot2 code, and scales well to many time series.

Usage

plot_time_series(
.data,
.date_var,
.value,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol 1,
.facet_nrow = 1,
.facet_scales = "free_y",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.y_intercept = NULL,
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.y_intercept_color = "#2c3e50",
.smooth = TRUE,

.smooth_period = "auto”,
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,

.smooth_alpha = 1,

.legend_show = TRUE,

plot_time_series

.title = "Time Series Plot",
.x_lab = "",

.y_lab = "",

.color_lab = "Legend",
.interactive = TRUE,

.plotly_slider = FALSE,
.trelliscope = FALSE,
.trelliscope_params = list()

Arguments

.data
.date_var
.value
.color_var

.facet_vars

.facet_ncol
.facet_nrow

.facet_scales

.facet_dir

.facet_collapse

A tibble or data.frame with a time-based column

A column containing either date or date-time values

A column containing numeric values

A categorical column that can be used to change the line color

One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

Number of facet columns.
Number of facet rows (only used for .trelliscope = TRUE)

Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

Multiple facets included on one facet strip instead of multiple facet strips.

.facet_collapse_sep

The separator used for collapsing facets.

.facet_strip_remove

Whether or not to remove the strip and text label for each facet.

.line_color Line color. Overrided if . color_var is specified.
.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.y_intercept

Value for a y-intercept on the plot
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.y_intercept_color

.smooth

.smooth_period

.smooth_message

.smooth_span

.smooth_degree

.smooth_color
.smooth_size
.smooth_alpha
.legend_show
.title

.x_lab

.y_lab
.color_lab

.interactive

.plotly_slider

.trelliscope

Color for the y-intercept

Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

Number of observations to include in the Loess Smoother. Set to "auto" by
default, which uses tk_get_trend() to determine a logical trend cycle.

Logical. Whether or not to return the trend selected as a message. Useful for
those that want to see what . smooth_period was selected.

Percentage of observations to include in the Loess Smoother. You can use either
period or span. See smooth_vec().

Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more
flexible).

Smoother line color

Smoother line size

Smoother alpha (opacity). Range: (0, 1).
Toggles on/off the Legend

Title for the plot

X-axis label for the plot

Y-axis label for the plot

Legend label if a color_var is used.

Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

If TRUE, returns a plotly date range slider.

Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params

Details

Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:

* ncol: use .facet_ncol

* nrow: use .facet_nrow

* scales: use facet_scales

e as_plotly: use .interactive

plot_time_series() is ascalable function that works with both ungrouped and grouped data.frame
objects (and tibbles!).

Interactive by Default

plot_time_series() is built for exploration using:

¢ Interactive Plots: plotly (default) - Great for exploring!
* Static Plots: ggplot2 (set . interactive = FALSE) - Great for PDF Reports
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By default, an interactive plotly visualization is returned.
Scalable with Facets & Dplyr Groups

plot_time_series() returns multiple time series plots using ggplot?2 facets:

* group_by() - If groups are detected, multiple facets are returned

* plot_time_series(.facet_vars) - You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to
take the log of sales you can use a call like plot_time_series(date, log(sales)) and the log
transformation will be applied.

Smoother Period / Span Calculation

The . smooth = TRUE option returns a smoother that is calculated based on either:

1. A .smooth_period: Number of observations

2. A .smooth_span: A percentage of observations
By default, the . smooth_period is automatically calculated using 75% of the observertions. This
is the same as geom_smooth(method = "1oess”, span=0.75).

A user can specify a time-based window (e.g. .smooth_period ="1 year") or a numeric value
(e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

Examples

library(tidyverse)
library(tidyquant)
library(lubridate)
library(timetk)

# Works with individual time series
FANG %>%
filter(symbol == "FB") %>%
plot_time_series(date, adjusted, .interactive = FALSE)

# Works with groups
FANG %>%
group_by(symbol) %>%
plot_time_series(date, adjusted,
.facet_ncol = 2, # 2-column layout
.interactive = FALSE)

# Can also group inside & use .color_var
FANG %>%
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mutate(year = year(date)) %>%
plot_time_series(date, adjusted,

.facet_vars
.color_var
.facet_ncol
.facet_scales
.facet_collapse
.interactive

= c(symbol, year), # add groups/facets

= year,
:4y

= "free”,
= TRUE,

= FALSE)

# Can apply transformations to .value or .color_var
# - .value = log(adjusted)
# - .color_var = year(date)

FANG %>%

plot_time_series(date, log(adjusted),

.color_var =
.facet_vars =
.facet_ncol
.facet_scales =
.y_lab =
.interactive =

year(date),
contains(”symbol"),
2,

"free",

"Log Scale”,

FALSE)

# color by year

# combine group strip text into 1 line
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plot_time_series_boxplot

Interactive Time Series Box Plots

Description

A boxplot function that generates interactive plotly plots for time series.

Usage

plot_time_series_boxplot(

.data,
.date_var,
.value,
.period,
.color_var =
.facet_vars =
.facet_ncol
.facet_nrow
.facet_scales

NULL,

NULL,

1,

1’

= "free_y",

.facet_dir = "h",
.facet_collapse = FALSE,

n o n

.facet_collapse_sep = ,
.facet_strip_remove = FALSE,

.line_color =

"#2c3e50",
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.line_size
.line_type R
.line_alpha = 1,

.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.smooth = TRUE,

.smooth_func = ~mean(.x, na.rm = TRUE),
.smooth_period = "auto”,
.smooth_message = FALSE,

0.5,
1

plot_time_series_boxplot

.smooth_span

= NULL,

.smooth_degree = 2,

.smooth_color

.smooth_size

.smooth_alpha

.legend_show

= "#3366FF",
=1,

=1,

= TRUE,

.title = "Time Series Plot",

.x_lab = "",
.y_lab = "",
.color_lab =
.interactive

"Legend”,
= TRUE,

.plotly_slider = FALSE,

.trelliscope

.trelliscope_

Arguments
.data
.date_var
.value

.period

.color_var

.facet_vars

.facet_ncol
.facet_nrow

.facet_scales

.facet_dir

.facet_collapse

= FALSE,
params = list()

A tibble or data.frame with a time-based column

A column containing either date or date-time values

A column containing numeric values

A time series unit of aggregation for the boxplot. Examples include:

e "1 week"
e "3 years"
¢ "3(0 minutes"

A categorical column that can be used to change the line color

One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

Number of facet columns.
Number of facet rows (only used for . trelliscope = TRUE)

Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

Multiple facets included on one facet strip instead of multiple facet strips.
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.facet_collapse_sep

The separator used for collapsing facets.

.facet_strip_remove

.line_color
.line_size
.line_type
.line_alpha

.y_intercept

Whether or not to remove the strip and text label for each facet.
Line color. Overrided if . color_var is specified.

Line size.

Line type.

Line alpha (opacity). Range: (0, 1).

Value for a y-intercept on the plot

.y_intercept_color

.smooth

.smooth_func

.smooth_period

.smooth_message

.smooth_span

.smooth_degree

.smooth_color
.smooth_size
.smooth_alpha
.legend_show
.title

.x_lab

.y_lab
.color_lab

.interactive

.plotly_slider

.trelliscope

Color for the y-intercept

Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

Defines how to aggregate the .value to show the smoothed trendline. The default
is ~mean(.x, na.rm=TRUE), which uses lambda function to ensure NA values
are removed. Possible values are:

* A function, e.g. mean.
* A purrr-style lambda, e.g. ~ mean(.x, na.rm=TRUE)

Number of observations to include in the Loess Smoother. Set to "auto" by
default, which uses tk_get_trend() to determine a logical trend cycle.

Logical. Whether or not to return the trend selected as a message. Useful for
those that want to see what . smooth_period was selected.

Percentage of observations to include in the Loess Smoother. You can use either
period or span. See smooth_vec().

Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more
flexible).

Smoother line color

Smoother line size

Smoother alpha (opacity). Range: (0, 1).
Toggles on/off the Legend

Title for the plot

X-axis label for the plot

Y-axis label for the plot

Legend label if a color_var is used.

Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

If TRUE, returns a plotly date range slider.

Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.
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.trelliscope_params
Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:
* ncol: use .facet_ncol
* nrow: use .facet_nrow
* scales: use facet_scales
e as_plotly: use .interactive

Details

plot_time_series_boxplot() is a scalable function that works with both ungrouped and grouped
data. frame objects (and tibbles!).

Interactive by Default

plot_time_series_boxplot() is built for exploration using:

* Interactive Plots: plotly (default) - Great for exploring!
* Static Plots: ggplot2 (set . interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.
Scalable with Facets & Dplyr Groups

plot_time_series_boxplot() returns multiple time series plots using ggplot2 facets:

* group_by() - If groups are detected, multiple facets are returned

* plot_time_series_boxplot(.facet_vars) - You can manually supply facets as well.

Can Transform Values just like ggplot

The .values argument accepts transformations just like ggplot2. For example, if you want to take
the log of sales you can use a call like plot_time_series_boxplot(date, log(sales)) and the
log transformation will be applied.

Smoother Period / Span Calculation
The . smooth = TRUE option returns a smoother that is calculated based on either:
1. A .smooth_func: The method of aggregation. Usually an aggregation like mean is used. The
purrr-style function syntax can be used to apply complex functions.
2. A .smooth_period: Number of observations
3. A .smooth_span: A percentage of observations
By default, the . smooth_period is automatically calculated using 75% of the observertions. This
is the same as geom_smooth(method = "loess”, span=0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year"”) or a numeric value
(e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot
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Examples

library(tidyverse)
library(tidyquant)
library(lubridate)
library(timetk)

# Works with individual time series

FANG %>%

filter(symbol == "FB") %>%
plot_time_series_boxplot(

date, adjusted,
.period =
.interactive =

# Works with groups
FANG %>%

"3 month",
FALSE)

group_by(symbol) %>%
plot_time_series_boxplot(

date, adjusted,
.period =
.facet_ncol =
.interactive =

## Not run:
# Can also group inside
FANG %>%
mutate(year = year(
plot_time_series_bo
date, adjusted,
.period =
.facet_vars =
.color_var =
.facet_ncol
.facet_scales
.interactive =

## End(Not run)

# Can apply transformat

"3 months”,
2, # 2-column layout
FALSE)

& use .color_var

date)) %>%
xplot(

"3 months”,
c(symbol, year), # add groups/facets
year, # color by year
= 4,
"free”,
FALSE)

ions to .value or .color_var

# - .value = log(adjusted)
# - .color_var = year(date)

FANG %>%

plot_time_series_boxplot(
date, log(adjusted),

.period =
.color_var =
.facet_vars =
.facet_ncol =
.facet_scales =
.y_lab =
.interactive =

"3 months”,
year(date),
contains("”symbol"),
2,

"free",

"Log Scale”,

FALSE)

57
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# Can adjust the smoother

FANG %>%

group_by(symbol) %>%
plot_time_series_boxplot(
date, adjusted,

.period = "3 months",

.smooth = TRUE,

.smooth_func = median, # Smoother function
.smooth_period = "5 years"”, # Smoother Period
.facet_ncol =2,

.interactive = FALSE)

plot_time_series_cv_plan

Visualize a Time Series Resample Plan

Description

The plot_time_series_cv_plan() function provides a visualization for a time series resample
specification (rset) of either rolling_origin or time_series_cv class.

Usage

plot_time_series_cv_plan(

.data,
.date_var,
.value,

L

.smooth = FALSE,

.title = "Time Series Cross Validation Plan”
)
Arguments

.data A time series resample specification of of either rolling_originor time_series_cv
class or a data frame (tibble) that has been prepared using tk_time_series_cv_plan().

.date_var A column containing either date or date-time values

.value A column containing numeric values
Additional parameters passed to plot_time_series()

.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

.title Title for the plot
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Details

Resample Set

A resample set is an output of the timetk: : time_series_cv() function or the rsample: :rolling_origin()
function.

See Also

e time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specfications.

* plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

Examples

library(tidyverse)
library(tidyquant)
library(rsample)
library(timetk)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

resample_spec <- time_series_cv(

FB_tbl,

initial = "1 year”,
assess = "6 weeks",
skip = "3 months”,
lag = "1 month",

cumulative = FALSE,
slice_limit = 6

)
resample_spec %>% tk_time_series_cv_plan()

resample_spec %>%

tk_time_series_cv_plan() %>%

plot_time_series_cv_plan(
date, adjusted, # date variable and value variable
# Additional arguments passed to plot_time_series(),
.facet_ncol = 2,
.line_alpha = 0.5,
.interactive = FALSE
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plot_time_series_regression
Visualize a Time Series Linear Regression Formula

Description

A wrapper for stats: : 1Im() that overlays a linear regression fitted model over a time series, which
can help show the effect of feature engineering

Usage

plot_time_series_regression(
.data,
.date_var,
.formula,
.show_summary = FALSE,

)
Arguments
.data A tibble or data.frame with a time-based column
.date_var A column containing either date or date-time values
.formula A linear regression formula. The left-hand side of the formula is used as the

y-axis value. The right-hand side of the formula is used to develop the linear
regression model. See stats::1m() for details.

.show_summary  If TRUE, prints the summary.1m().

Additional arguments passed to plot_time_series()

Details

plot_time_series_regression() is a scalable function that works with both ungrouped and
grouped data.frame objects (and tibbles!).

Time Series Formula
The . formula uses stats::1m() to apply a linear regression, which is used to visualize the effect
of feature engineering on a time series.

* The left-hand side of the formula is used as the y-axis value.

* The right-hand side of the formula is used to develop the linear regression model.

Interactive by Default

plot_time_series_regression() is built for exploration using:

* Interactive Plots: plotly (default) - Great for exploring!
* Static Plots: ggplot2 (set . interactive = FALSE) - Great for PDF Reports
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By default, an interactive plotly visualization is returned.
Scalable with Facets & Dplyr Groups

plot_time_series_regression() returns multiple time series plots using ggplot2 facets:

* group_by() - If groups are detected, multiple facets are returned

* plot_time_series_regression(.facet_vars) - You can manually supply facets as well.

Value

A static ggplot2 plot or an interactive plotly plot

Examples
library(dplyr)
library(lubridate)
# ---- SINGLE SERIES ----
m4_monthly %>%
filter(id == "M750") %>%
plot_time_series_regression(
.date_var = date,
.formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),
.show_summary = TRUE,
.facet_ncol = 2,
.interactive = FALSE
)
# ---- GROUPED SERIES ----

m4_monthly %>%
group_by(id) %>%
plot_time_series_regression(

.date_var = date,
.formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),
.facet_ncol = 2,

.interactive = FALSE

set_tk_time_scale_template
Get and modify the Time Scale Template

Description

Get and modify the Time Scale Template
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Usage

set_tk_time_scale_template(.data)
get_tk_time_scale_template()

tk_time_scale_template()

Arguments

.data A tibble with a "time_scale", "frequency", and "trend" columns.

Details

Used to get and set the time scale template, which is used by tk_get_frequency() and tk_get_trend()
when period = "auto”.

The predefined template is stored in a function tk_time_scale_template(). This is the default
used by timetk.

Changing the Default Template

* You can access the current template with get_tk_time_scale_template().

* You can modify the current template with set_tk_time_scale_template().

See Also

* Automated Frequency and Trend Calculation: tk_get_frequency(), tk_get_trend()

Examples

get_tk_time_scale_template()

set_tk_time_scale_template(tk_time_scale_template())

slice_period Apply slice inside periods (windows)

Description

Applies a dplyr slice inside a time-based period (window).

Usage

slice_period(.data, ..., .date_var, .period = "1 day")
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Arguments
.data A tbl object or data. frame
For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_helpers(), these arguments are passed on to methods.
.date_var A column containing date or date-time values. If missing, attempts to auto-
detect date column.
.period A period to slice within. Time units are grouped using lubridate: : floor_date()
or lubridate::ceiling_date().
The value can be:
* second
* minute
* hour
e day
* week
* month
* bimonth
e quarter
* season
* halfyear
* year
Arbitrary unique English abbreviations as in the lubridate: :period() con-
structor are allowed:
e "1 year”
e "2 months”
* "30 seconds”
Value

A tibble or data.frame

See Also
Time-Based dplyr functions:

* summarise_by_time() - Easily summarise using a date column.

* mutate_by_time() - Simplifies applying mutations by time windows.

* pad_by_time() - Insert time series rows with regularly spaced timestamps
e filter_by_time() - Quickly filter using date ranges.

» filter_period() - Apply filtering expressions inside periods (windows)

* slice_period() - Apply slice inside periods (windows)
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* condense_period() - Convert to a different periodicity
* between_time() - Range detection for date or date-time sequences.

e slidify() - Turn any function into a sliding (rolling) function

Examples

# Libraries
library(timetk)
library(dplyr)

# First 5 observations in each month
m4_daily %>%

group_by(id) %>%

slice_period(1:5, .period = "1 month")

# Last observation in each month
m4_daily %>%
group_by(id) %>%
slice_period(n(), .period = "1 month")

slidify Create a rolling (sliding) version of any function

Description

slidify returns a rolling (sliding) version of the input function, with a rolling (sliding) .period
specified by the user.

Usage
slidify(
.f,
.period = 1,
.align = c("center”, "left", "right"),
.partial = FALSE,
.unlist = TRUE
)
Arguments
f A function, formula, or vector (not necessarily atomic).

If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

* For a single argument function, use .

* For a two argument function, use .x and .y
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* For more arguments, use . .1, ..2, ..3etc

This syntax allows you to create very compact anonymous functions.

If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

.period The period size to roll over
.align One of "center", "left" or "right".
.partial Should the moving window be allowed to return partial (incomplete) windows

instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

.unlist If the function returns a single value each time it is called, use .unlist = TRUE.
If the function returns more than one value, or a more complicated object (like a
linear model), use .unlist = FALSE to create a list-column of the rolling results.

Details

The slidify() function is almost identical to tibbletime: :rollify() with 3 improvements:

1. Alignment ("center", "left", "right")
2. Partial windows are allowed
3. Uses slider under the hood, which improves speed and reliability by implementing code at
C++ level
Make any function a Sliding (Rolling) Function

slidify() turns a function into a sliding version of itself for use inside of a call to dplyr: :mutate(),
however it works equally as well when called from purrr: :map().

Because of it’s intended use with dplyr: :mutate(), slidify creates a function that always returns
output with the same length of the input

Alignment
Rolling / Sliding functions generate .period - 1 fewer values than the incoming vector. Thus, the

vector needs to be aligned. Alignment of the vector follows 3 types:

* center (default): NA or .partial values are divided and added to the beginning and end of
the series to "Center" the moving average. This is common in Time Series applications (e.g.
denoising).

e left: NA or .partial values are added to the end to shift the series to the Left.
* right: NA or .partial values are added to the beginning to shift the series to the Right. This
is common in Financial Applications (e.g moving average cross-overs).
Allowing Partial Windows

A key improvement over tibbletime: :slidify() isthat timetk: :slidify() implements .partial
rolling windows. Just set . partial = TRUE.
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References
» The Tibbletime R Package by Davis Vaughan, which includes the original rollify() Func-
tion
See Also

Transformation Functions:

* slidify_vec() - A simple vectorized function for applying summary functions to rolling
windows.

Augmentation Functions (Add Rolling Multiple Columns):
* tk_augment_slidify() - For easily adding multiple rolling windows to you data
Slider R Package:

e slider::pslide() - The workhorse function that powers timetk: :slidify()

Examples

library(tidyverse)
library(tidyquant)
library(tidyr)
library(timetk)

FB <- FANG %>% filter(symbol == "FB")

# --- ROLLING MEAN (SINGLE ARG EXAMPLE) ---

# Turn the normal mean function into a rolling mean with a 5 row .period
mean_roll_5 <- slidify(mean, .period =5, .align = "right")

FB %>%
mutate(rolling_mean_5 = mean_roll_5(adjusted))

# Use ‘partial = TRUE® to allow partial windows (those with less than the full .period)
mean_roll_5_partial <- slidify(mean, .period = 5, .align = "right”, .partial = TRUE)

FB %>%
mutate(rolling_mean_5 = mean_roll_5_partial(adjusted))

# There's nothing stopping you from combining multiple rolling functions with
# different .period sizes in the same mutate call

mean_roll_10 <- slidify(mean, .period = 10, .align = "right")

FB %>%
select(symbol, date, adjusted) %>%
mutate(
rolling_mean_5 mean_roll_5(adjusted),
rolling_mean_10 = mean_roll_10(adjusted)


https://business-science.github.io/tibbletime/index.html
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)

# For summary operations like rolling means, we can accomplish large-scale
# multi-rolls with tk_augment_slidify()

FB %>%
select(symbol, date, adjusted) %>%
tk_augment_slidify(
adjusted, .period = 5:10, .f = mean, .align = "right",
.names = str_c("MA_", 5:10)

# --- GROUPS AND ROLLING ----

# One of the most powerful things about this is that it works with
# groups since ‘mutate‘ is being used
data(FANG)

mean_roll_3 <- slidify(mean, .period = 3, .align = "right")

FANG %>%
group_by(symbol) %>%
mutate(mean_roll = mean_roll_3(adjusted)) %>%
slice(1:5)

# --- ROLLING CORRELATION (MULTIPLE ARG EXAMPLE) ---

# With 2 args, use the purrr syntax of ~ and .x, .y
# Rolling correlation example
cor_roll <- slidify(~cor(.x, .y), .period = 5, .align = "right")

FB %>%
mutate(running_cor = cor_roll(adjusted, open))

# With >2 args, create an anonymous function with >2 args or use
# the purrr convention of ..1, ..2, ..3 to refer to the arguments
avg_of_avgs <- slidify(

function(x, y, z) (mean(x) + mean(y) + mean(z)) / 3,

.period = 10,

.align = "right”

# Or
avg_of_avgs <- slidify(
~(mean(..1) + mean(..2) + mean(..3)) / 3,

.period = 10,
.align = "right"”
)
FB %>%

mutate(avg_of_avgs = avg_of_avgs(open, high, low))
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# Optional arguments MUST be passed at the creation of the rolling function
# Only data arguments that are "rolled over"” are allowed when calling the
# rolling version of the function

FB$adjusted[1] <- NA

roll_mean_na_rm <- slidify(~mean(.x, na.rm = TRUE), .period = 5, .align = "right")

FB %>%
mutate(roll_mean = roll_mean_na_rm(adjusted))

# —--- ROLLING REGRESSIONS ----

# Rolling regressions are easy to implement using ‘.unlist = FALSE"
Im_roll <- slidify(~Im(.x ~ .y), .period = 90, .unlist = FALSE, .align = "right")

FB %>%
drop_na() %>%
mutate(numeric_date = as.numeric(date)) %>%
mutate(rolling_lm = 1m_roll(adjusted, numeric_date)) %>%
filter(!is.na(rolling_1m))

slidify_vec Rolling Window Transformation

Description

slidify_vec() applies a summary function to a rolling sequence of windows.

Usage
slidify_vec(
X,
.f,
.period = 1,
.align = c("center”, "left", "right"),
.partial = FALSE
)
Arguments

A vector to have a rolling window transformation applied.

.f A summary [function / formulal
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* If a function, e.g. mean, the function is used with any additional arguments,

 If aformula, e.g. ~mean(., na.rm=TRUE), it is converted to a function.
This syntax allows you to create very compact anonymous functions.

Additional arguments passed on to the . f function.

.period The number of periods to include in the local rolling window. This is effectively
the "window size".

.align One of "center", "left" or "right".

.partial Should the moving window be allowed to return partial (incomplete) windows

instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

Details

The slidify_vec() function is a wrapper for slider::slide_vec() with parameters simplified

non

"center", "left", "right" alignment.
Vector Length In == Vector Length Out

NA values or .partial values are always returned to ensure the length of the return vector is the
same length of the incoming vector. This ensures easier use with dplyr: :mutate().

Alignment
Rolling functions generate .period - 1 fewer values than the incoming vector. Thus, the vector

needs to be aligned. Alignment of the vector follows 3 types:

* Center: NA or .partial values are divided and added to the beginning and end of the se-
ries to "Center" the moving average. This is common for de-noising operations. See also
[smooth_vec()] for LOESS without NA values.

e Left: NA or .partial values are added to the end to shift the series to the Left.

* Right: NA or .partial values are added to the beginning to shif the series to the Right. This
is common in Financial Applications such as moving average cross-overs.

Partial Values

* The advantage to using .partial values vs NA padding is that the series can be filled (good
for time-series de-noising operations).

* The downside to partial values is that the partials can become less stable at the regions where
incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is smooth_vec(),

which implements local polynomial regression.

Value

A numeric vector

References

e Slider R Package by Davis Vaughan


https://davisvaughan.github.io/slider/

70 slidify_vec

See Also
Modeling and More Complex Rolling Operations:

* step_slidify() - Roll apply for tidymodels modeling
* tk_augment_slidify() - Add many rolling columns group-wise

* slidify() - Turn any function into a rolling function. Great for rolling cor, rolling regression,
etc.

» For more complex rolling operations, check out the slider R package.
Vectorized Transformation Functions:

¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
* Loess Smoothing Transformation: smooth_vec()
¢ Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

# Training Data

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

# ---- FUNCTION FORMAT ----
# - The *.f = mean® function is used. Argument ‘na.rm = TRUE' is passed as ...
FB_tbl %>%

mutate(adjusted_30_ma = slidify_vec(

X = adjusted,
.period = 30,

f = mean,

na.rm = TRUE,

.align = "center")) %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue")

# ---- FORMULA FORMAT ----
# - Anonymous function *.f = ~ mean(., na.rm = TRUE)"‘ is used
FB_tbl %>%
mutate(adjusted_30_ma = slidify_vec(
X = adjusted,
.period = 30,
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f = ~ mean(., na.rm = TRUE),

.align = "center")) %>%

ggplot(aes(date, adjusted)) +

geom_line() +

geom_line(aes(y = adjusted_30_ma), color = "blue")

# ---- PARTIAL VALUES ----
# - set ‘.partial = TRUE®
FB_tbl %>%
mutate(adjusted_30_ma = slidify_vec(

X = adjusted,

f = ~ mean(., na.rm = TRUE),
.period = 30,

.align = "center”,

.partial = TRUE)) %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue")

# ---- Loess vs Moving Average ----
# - Loess: Using “.degree = @' to make less flexible. Comperable to a moving average.

FB_tbl %>%
mutate(
adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
adjusted_ma_30 slidify_vec(adjusted, .f = AVERAGE,
.period = 30, .partial = TRUE)

) %%
ggplot(aes(date, adjusted)) +
geom_line() +

geom_line(aes(y = adjusted_loess_30), color = "red"”) +
geom_line(aes(y = adjusted_ma_30), color = "blue") +
labs(title = "Loess vs Moving Average")
smooth_vec Smoothing Transformation using Loess
Description

smooth_vec() applies a LOESS transformation to a numeric vector.

Usage

smooth_vec(x, period = 30, span = NULL, degree = 2)
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Arguments
X A numeric vector to have a smoothing transformation applied.
period The number of periods to include in the local smoothing. Similar to window
size for a moving average. See details for an explanation period vs span spec-
ification.
span The span is a percentage of data to be included in the smoothing window. Pe-
riod is preferred for shorter windows to fix the window size. See details for an
explanation period vs span specification.
degree The degree of the polynomials to be used. Accetable values (least to most flexi-
ble): 0, 1, 2. Set to 2 by default for 2nd order polynomial (most flexible).
Details
Benefits:

* When using period, the effect is similar to a moving average without creating missing
values.

* When using span, the effect is to detect the trend in a series using a percentage of the total
number of observations.
Loess Smoother Algorithm This function is a simplified wrapper for the stats::loess() with a
modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations
change.

When to use Period? The effect of using a period is similar to a Moving Average where the
Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you
want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the
window size is unknown. You can specify span = @.75 to locally regress using a window of 75%
of the data.

Value

A numeric vector

See Also
Loess Modeling Functions:
e step_smooth() - Recipe for tidymodels workflow
Additional Vector Functions:

¢ Box Cox Transformation: box_cox_vec()
* Lag Transformation: lag_vec()
* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()
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* Loess Smoothing Transformation: smooth_vec()
e Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(tidyverse)
library(tidyquant)
library(timetk)

# Training Data

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

# ---- PERIOD ----

FB_tbl %>%
mutate(adjusted_30 = smooth_vec(adjusted, period = 30, degree
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30), color = "red")

2)) %%

# ---- SPAN ----

FB_tbl %>%
mutate(adjusted_30 = smooth_vec(adjusted, span = 0.75, degree = 2)) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30), color = "red")

# ---- Loess vs Moving Average ----
# - Loess: Using ‘degree = @ to make less flexible. Comperable to a moving average.

FB_tbl %>%
mutate(
adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
adjusted_ma_30 = slidify_vec(adjusted, .period = 30,
.f = AVERAGE, .partial = TRUE)

) %%

ggplot(aes(date, adjusted)) +

geom_line() +

geom_line(aes(y = adjusted_loess_30), color = "red") +
geom_line(aes(y = adjusted_ma_30), color = "blue"”) +
labs(title = "Loess vs Moving Average")
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standardize_vec Standardize to Mean 0, Standard Deviation 1 (Center & Scale)

Description

Standardization is commonly used to center and scale numeric features to prevent one from domi-
nating in algorithms that require data to be on the same scale.

Usage

standardize_vec(x, mean = NULL, sd = NULL, silent = FALSE)

standardize_inv_vec(x, mean, sd)

Arguments

X A numeric vector.

mean The mean used to invert the standardization

sd The standard deviation used to invert the standardization process.

silent Whether or not to report the automated mean and sd parameters as a message.
Details

Standardization vs Normalization
» Standardization refers to a transformation that reduces the range to mean 0, standard devia-
tion 1

* Normalization refers to a transformation that reduces the min-max range: (0, 1)

See Also

¢ Normalization/Standardization: standardize_vec(), normalize_vec()
¢ Box Cox Transformation: box_cox_vec()

* Lag Transformation: lag_vec()

* Differencing Transformation: diff_vec()

* Rolling Window Transformation: slidify_vec()

* Loess Smoothing Transformation: smooth_vec()

 Fourier Series: fourier_vec()

* Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()
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Examples
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library(dplyr)
library(timetk)

d10_daily <-
# --- VECTOR

value_std <-
value <-

# --- MUTATE

m4_daily %>%

m4_daily %>% filter(id == "D10")

standardize_vec(d10_daily$value)
standardize_inv_vec(value_std,
mean = 2261.60682492582,
sd 175.603721730477)

group_by(id) %>%
mutate(value_std = standardize_vec(value))

step_box_cox

Box-Cox Transformation using Forecast Methods

Description

step_box_cox creates a specification of a recipe step that will transform data using a Box-Cox
transformation. This function differs from recipes: :step_BoxCox by adding multiple methods
including Guerrero lambda optimization and handling for negative data used in the Forecast R

Package.

Usage

step_box_cox(

recipe,
method =
limits =

c("guerrero”, "loglik"),
c(-1, 2),

role = NA,
trained = FALSE,
lambdas_trained = NULL,
skip = FALSE,

id = rand_id("box_cox")

## S3 method for class 'step_box_cox'

tidy(x,

>
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Arguments

recipe

method

limits

role

trained

lambdas_trained

skip

id

Details

step_box_cox

A recipe object. The step will be added to the sequence of operations for this
recipe.

One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

One of "guerrero" or "loglik"

A length 2 numeric vector defining the range to compute the transformation
parameter lambda.

Not used by this step since no new variables are created.

A logical to indicate if the quantities for preprocessing have been estimated.

A numeric vector of transformation values. This is NULL until computed by
prep().

A logical. Should the step be skipped when the recipe is baked by bake . recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

A character string that is unique to this step to identify it.

A step_box_cox object.

The step_box_cox() function is designed specifically to handle time series using methods imple-
mented in the Forecast R Package.

Negative Data

This function can be applied to Negative Data.
Lambda Optimization Methods

This function uses 2 methods for optimizing the lambda selection from the Forecast R Package:

1. method = "guerrero”: Guerrero’s (1993) method is used, where lambda minimizes the coef-
ficient of variation for subseries of x.

2. method = loglik: the value of lambda is chosen to maximize the profile log likelihood of a
linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal
data, a linear time trend with seasonal dummy variables is used.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).
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References
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See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff (), recipes::step_lag()

e Smoothing: step_slidify(), step_smooth()

* Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

» Padding: step_ts_pad()
Transformations to reduce variance:

* recipes::step_log() - Log transformation

* recipes::step_sqrt() - Square-Root Power Transformation
Recipe Setup and Application:

* recipes::recipe()
* recipes::prep()

* recipes::bake()

Examples

library(tidyverse)
library(tidyquant)
library(recipes)
library(timetk)

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted)

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
step_box_cox(FB, AMZN, NFLX, GOOG) %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

recipe_box_cox %>% tidy(1)
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step_diff Create a differenced predictor
Description
step_diff creates a specification of a recipe step that will add new columns of differenced data.
Differenced data will include NA values where a difference was induced. These can be removed
with step_naomit().
Usage
step_diff(
recipe,
role = "predictor”,
trained = FALSE,
lag = 1,
difference = 1,
log = FALSE,
prefix = "diff_",
columns = NULL,
skip = FALSE,
id = rand_id("diff")
)
## S3 method for class 'step_diff'
tidy(x,
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
One or more selector functions to choose which variables are affected by the
step. See selections() for more details.
role Defaults to "predictor”
trained A logical to indicate if the quantities for preprocessing have been estimated.
lag A vector of positive integers identifying which lags (how far back) to be included
in the differencing calculation.
difference The number of differences to perform.
log Calculates log differences instead of differences.
prefix A prefix for generated column names, default to "diff_".
columns A character string of variable names that will be populated (eventually) by the

terms argument.



step_diff 79

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.
X A step_diff object.
Details

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox()

e Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Remove NA Values:

* recipes::step_naomit()
Main Recipe Functions:

* recipes::recipe()

* recipes::prep()

* recipes: :bake()

Examples

library(tidyverse)
library(tidyquant)
library(recipes)
library(timetk)

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted)
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# Make and apply recipe ----

recipe_diff <- recipe(~ ., data = FANG_wide) %>%
step_diff(FB, AMZN, NFLX, GOOG, lag = 1:3, difference = 1) %>%

prep()

recipe_diff %>% bake(FANG_wide)

# Get information with tidy ----

recipe_diff %>% tidy()

recipe_diff %>% tidy(1)

step_fourier

step_fourier

Fourier Features for Modeling Seasonality

Description

step_fourier creates a a specification of a recipe step that will convert a Date or Date-time column
into a Fourier series

Usage

step_fourier(

recipe,
-

period,

K,

role =

trained

columns

"predictor”,

FALSE,
NULL,

scale_factor = NULL,
skip = FALSE,
id = rand_id("fourier")

## S3 method for class 'step_fourier'

»)

tidy(x,

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this

recipe.

A single column with class Date or POSIXct. See recipes::selections() for

more details. For the tidy method, these are not currently used.
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period The numeric period for the oscillation frequency. See details for examples of
period specification.

K The number of orders to include for each sine/cosine fourier series. More orders
increase the number of fourier terms and therefore the variance of the fitted
model at the expense of bias. See details for examples of K specification.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

scale_factor A factor for scaling the numeric index extracted from the date or date-time fea-
ture. This is a placeholder and will be populated once recipes: :prep() is
used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_fourier object.

Details
Date Variable

Unlike other steps, step_fourier does not remove the original date variables. recipes: :step_rm()
can be used for this purpose.

Period Specification

The period argument is used to generate the distance between peaks in the fourier sequence. The
key is to line up the peaks with unique seasonalities in the data.

For Daily Data, typical period specifications are:

* Yearly frequency is 365
* Quarterly frequency is 365 /4 =91.25
* Monthly frequency is 365/ 12 = 30.42

K Specification

The K argument specifies the maximum number of orders of Fourier terms. Examples:

* Specifying period = 365 and K = 1 will return a cos365_K1 and sin365_K1 fourier series

* Specifying period =365 and K = 2 will return a cos365_K1, cos365_K2, sin365_K1 and
sin365_K2 sequence, which tends to increase the models ability to fit vs the K =1 specifi-
cation (at the expense of possibly overfitting).
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Multiple values of period and K
It’s possible to specify multiple values of period in a single step such as step_fourier(period = c(91.25, 365), K = 2.
This returns 8 Fouriers series:

* c0s91.25_K1, sin91.25_K1, cos91.25_K2, sin91.25_K2

e cos365_K1, sin365_K1, cos365_K2, sin365_K2

Value

For step_fourier, an updated version of recipe with the new step added to the sequence of ex-
isting steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also
Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
* Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

¢ Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

» Padding: step_ts_pad()
Main Recipe Functions:

* recipes::recipe()
e recipes: :prep()

* recipes: :bake()

Examples

library(recipes)
library(tidyverse)
library(tidyquant)
library(timetk)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

# Create a recipe object with a timeseries signature step

# - 252 Trade days per year

# - period = c(252/4, 252): Adds quarterly and yearly fourier series
# - K =2: Adds 1st and 2nd fourier orders

rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_fourier(date, period = c(252/4, 252), K = 2)
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# View the recipe object
rec_obj

# Prepare the recipe object
prep(rec_obj)

# Bake the recipe object - Adds the Fourier Series
bake (prep(rec_obj), FB_tbl)

# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))

tidy(prep(rec_obj), number = 1)

step_holiday_signature
Holiday Feature (Signature) Generator

Description

step_holiday_signature creates a a specification of a recipe step that will convert date or date-
time data into many holiday features that can aid in machine learning with time-series data. By
default, many features are returned for different holidays, locales, and stock exchanges.

Usage

step_holiday_signature(
recipe,

holiday_pattern = ".",

locale_set = "all”,
exchange_set = "all",
role = "predictor”,

trained = FALSE,
columns = NULL,
features = NULL,

skip = FALSE,
id = rand_id("holiday_signature")
)
## S3 method for class 'step_holiday_signature'
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this

recipe.
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One or more selector functions to choose which variables that will be used to cre-
ate the new variables. The selected variables should have class Date or POSIXct.
See recipes: :selections() for more details. For the tidy method, these are
not currently used.

holiday_pattern
A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
"CAII’ IIC}BH7 IIFRII’ "ITII’ ||JP"’ HCH"’ "DE"’

exchange_set  Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes: :prep() is used.

features A character string of features that will be generated. This field is a placeholder
and will be populated once recipes: :prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
X A step_holiday_signature object.
Details

Use Holiday Pattern and Feature Sets to Pare Down Features By default, you’re going to get A
LOT of Features. This is a good thing because many machine learning algorithms have regulariza-
tion built in. But, in many cases you will still want to reduce the number of unnecessary features.
Here’s how:

* Holiday Pattern: This is a Regular Expression pattern that can be used to filter. Try holiday_pattern
="(US_Christ) | (US_Thanks)" to return just Christmas and Thanksgiving features.

* Locale Sets: This is a logical as to whether or not the locale has a holiday. For locales outside
of US you may want to combine multiple locales. For example, locale_set = c("World",
"GB") returns both World Holidays and Great Britain.

* Exchange Sets: This is a logical as to whether or not the Business is off due to a holiday.
Different Stock Exchanges are used as a proxy for business holiday calendars. For example,
exchange_set = "NYSE" returns business holidays for New York Stock Exchange.

Removing Unnecessary Features By default, many features are created automatically. Unneces-
sary features can be removed using recipes: :step_rm() and recipes::selections() for more
details.
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Value

For step_holiday_signature, an updated version of recipe with the new step added to the se-
quence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors
or variables selected), value (the feature names).

See Also

Time Series Analysis:

* Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()
 Diffs & Lags step_diff(), recipes::step_lag()

* Smoothing: step_slidify(), step_smooth()

* Variance Reduction: step_box_cox()

* Imputation: step_ts_impute(), step_ts_clean()

* Padding: step_ts_pad()
Main Recipe Functions:

* recipes::recipe()
* recipes::prep()

* recipes::bake()

Examples

library(recipes)
library(timetk)
library(tidyverse)

# Sample Data
dates_in_2017_tbl <- tibble(

index = tk_make_timeseries("”2017-01-01", "2017-12-31", by = "day")
)

# Add US holidays and Non-Working Days due to Holidays
# - Physical Holidays are added with holiday pattern (individual) and locale_set
rec_holiday <- recipe(~ ., dates_in_2017_tbl) %>%
step_holiday_signature(index,
holiday_pattern = "~US_",
locale_set = "us",
exchange_set = "NYSE")

# Not yet prep'ed - just returns parameters selected
rec_holiday %>% tidy(1)

# Prep the recipe
rec_holiday_prep <- prep(rec_holiday)

# Now prep'ed - returns new features that will be created
rec_holiday_prep %>% tidy(1)
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# Apply the recipe to add new holiday features!
bake(rec_holiday_prep, dates_in_2017_tbl)

step_log_interval Log Interval Transformation for Constrained Interval Forecasting

Description

step_log_interval creates a specification of a recipe step that will transform data using a Log-
Inerval transformation. This function provides a recipes interface for the log_interval_vec()
transformation function.

Usage
step_log_interval(
recipe,
limit_lower = "auto”,
limit_upper = "auto”,
offset = 0,
role = NA,

trained = FALSE,
limit_lower_trained = NULL,
limit_upper_trained = NULL,

skip = FALSE,
id = rand_id("log_interval")
)
## S3 method for class 'step_log_interval'
tidy(x, ...)
Arguments
recipe A recipe object. The step will be added to the sequence of operations for this
recipe.
One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.
limit_lower A lower limit. Must