toRvik

CRAN status Lifecycle: stable R-CMD-check Codecov test coverage

toRvik is an R package for working with and scraping men’s college basketball.

There are a lot of college basketball data out there, but most are difficult to pull and clean or they are behind a paywall. With toRvik, you have immediate access to some of the most detailed and extensive college basketball statistics publicly available – all returned in tidy format with just a single line of code! Best of all, no subscription is required to access the data.

Most of toRvik’s functions are powered by a dedicated Fast API framework – delivering data at rapid speeds with dependable up-times.

As of version 1.0.3, the package includes nearly 30 functions for pulling player and team data, game results, advanced metric splits, play-by-play shooting, and more. Leveraging the same data and models as Barttorvik, the package now offers game and tournament predictor functions, allowing you to simulate games between any pair of teams on any date at any venue back to the 2014-15 season. toRvik also offers extensive transfer histories for over 5,000 players back to the 2011-12 season and detailed player recruiting rankings for over 6,000 players back to 2007-08.

Package Installation

Install the released version of toRvik from CRAN:

install.packages("toRvik")

Or install the development version from GitHub with:

if (!requireNamespace('devtools', quietly = TRUE)){
  install.packages('devtools')
}
devtools::install_github("andreweatherman/toRvik") 

Package Highlights

Basic Uses

All toRvik functions fall into one of six categories:

Pull T-Rank ratings:

Calling bart_ratings will return the current T-Rank ranks and ratings.

head(bart_ratings())
## ── Team Ratings: 2022 ────────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:52 EDT

## # A tibble: 6 × 19
##   team     conf  barthag barth…¹ adj_o adj_o…² adj_d adj_d…³ adj_t adj_t…⁴   wab
##   <chr>    <chr>   <dbl>   <int> <dbl>   <int> <dbl>   <int> <dbl>   <int> <dbl>
## 1 Gonzaga  WCC     0.966       1  120.       4  89.9       9  72.6       5  6.71
## 2 Houston  Amer    0.959       2  117.      10  88.5       6  63.7     336  6.15
## 3 Kansas   B12     0.958       3  120.       5  91.3      13  69.1      71 10.4 
## 4 Texas T… B12     0.951       4  111.      41  85.4       1  66.3     223  6.57
## 5 Baylor   B12     0.949       5  118.       8  91.3      14  67.6     149  8.91
## 6 Duke     ACC     0.944       6  123.       1  96.0      53  67.4     161  7.19
## # … with 8 more variables: nc_elite_sos <int>, nc_fut_sos <dbl>,
## #   nc_cur_sos <dbl>, ov_elite_sos <int>, ov_fut_sos <dbl>, ov_cur_sos <dbl>,
## #   seed <dbl>, year <int>, and abbreviated variable names ¹​barthag_rk,
## #   ²​adj_o_rk, ³​adj_d_rk, ⁴​adj_t_rk

Pull team statistics

Calling bart_factors will return four factor stats on a number of splits. To filter by home games, set venue to ‘home.’

head(bart_factors(location='H'))
## ── Team Factors ──────────────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:52 EDT

## # A tibble: 6 × 22
##   team      conf  rating  rank adj_o adj_o…¹ adj_d adj_d…² tempo off_ppp off_efg
##   <chr>     <chr>  <dbl> <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>   <dbl>   <dbl>
## 1 Houston   Amer    32.7     1  116.      15  83.0       1  66.1    117.    54.2
## 2 Gonzaga   WCC     29.7     2  120.       5  89.9      18  72.7    123.    60.1
## 3 Baylor    B12     28.8     3  116.       9  87.6       9  69.3    116.    55.0
## 4 Villanova BE      28.8     4  123.       2  94.0      50  63.2    122.    57.6
## 5 Purdue    B10     28.4     5  124.       1  96.0      81  67.9    125.    58.2
## 6 Auburn    SEC     27.6     6  115.      17  87.5       8  72.9    113.    53.1
## # … with 11 more variables: off_to <dbl>, off_or <dbl>, off_ftr <dbl>,
## #   def_ppp <dbl>, def_efg <dbl>, def_to <dbl>, def_or <dbl>, def_ftr <dbl>,
## #   wins <int>, losses <int>, games <int>, and abbreviated variable names
## #   ¹​adj_o_rank, ²​adj_d_rank

Calling bart_team_box will return team box totals and per-game averages by game type. To find how Duke performed during the month of March:

bart_team_box(team='Duke', split='month') |>
  dplyr::filter(month=='March')
## ── Team Stats ────────────────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:53 EDT

## # A tibble: 1 × 39
##   team  month   min   pos   fgm   fga fg_pct   tpm   tpa fg3_pct   ftm   fta
##   <chr> <chr> <int> <int> <int> <int>  <dbl> <int> <int>   <dbl> <int> <int>
## 1 Duke  March  1800   599   270   518  0.521    63   176   0.358   118   149
## # … with 27 more variables: ft_pct <dbl>, oreb <int>, dreb <int>, reb <int>,
## #   ast <int>, stl <int>, blk <int>, to <int>, pf <int>, pts <int>,
## #   second_chance_pts <dbl>, second_chance_fgm <dbl>, second_chance_fga <dbl>,
## #   second_change_fg_pct <dbl>, pts_in_paint <dbl>, pts_in_paint_fgm <dbl>,
## #   pts_in_paint_fga <dbl>, pts_in_paint_fg_pct <dbl>, fast_brk_pts <dbl>,
## #   fast_brk_fgm <dbl>, fast_brk_fga <dbl>, fast_brk_fg_pct <dbl>,
## #   bench_pts <dbl>, pts_tov <dbl>, games <int>, wins <int>, losses <int>

Pull player statistics

Calling bart_player_season will return detailed season-long player stats. To pull per-game averages for Duke players:

head(bart_player_season(team='Duke', stat='box'))
## ── Player Season Stats ───────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:53 EDT

## # A tibble: 6 × 21
##   player      pos   exp   hgt   team  conf      g   mpg   ppg fg_pct  oreb  dreb
##   <chr>       <chr> <chr> <chr> <chr> <chr> <int> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1 Paolo Banc… Wing… Fr    6-10  Duke  ACC      39  33.0 17.2   0.513 1.77   6.05
## 2 Wendell Mo… Comb… Jr    6-5   Duke  ACC      39  33.9 13.4   0.513 1.21   4.05
## 3 Trevor Kee… Comb… Fr    6-4   Duke  ACC      36  30.2 11.5   0.422 0.833  2.61
## 4 Mark Willi… C     So    7-0   Duke  ACC      39  23.6 11.2   0.782 2.59   4.87
## 5 AJ Griffin  Wing… Fr    6-6   Duke  ACC      39  24.3 10.4   0.503 0.769  3.15
## 6 Jeremy Roa… Comb… So    6-1   Duke  ACC      39  29    8.62  0.412 0.359  2.05
## # … with 9 more variables: rpg <dbl>, apg <dbl>, tov <dbl>, ast_to <dbl>,
## #   spg <dbl>, bpg <dbl>, num <dbl>, year <int>, id <int>

Calling bart_player_game will return detailed game-by-game player stats. To pull advance splits by game for Duke players:

head(bart_player_game(team='Duke', stat='advanced'))
## ── Player Game Stats ─────────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:54 EDT

## # A tibble: 6 × 25
##   date        year player exp   team  conf  opp   result   min   pts   usg  ortg
##   <chr>      <dbl> <chr>  <chr> <chr> <chr> <chr> <chr>  <dbl> <dbl> <dbl> <dbl>
## 1 2021-11-09  2022 Theo … Sr    Duke  ACC   Kent… W         22     5  14.3  98.7
## 2 2021-11-12  2022 Theo … Sr    Duke  ACC   Army  W         15     0  11.9  18.1
## 3 2021-11-13  2022 Theo … Sr    Duke  ACC   Camp… W         10     0   1.9 236  
## 4 2021-11-16  2022 Theo … Sr    Duke  ACC   Gard… W         15     4  19.1 100. 
## 5 2021-11-19  2022 Theo … Sr    Duke  ACC   Lafa… W         17     4  12.2 122. 
## 6 2021-11-22  2022 Theo … Sr    Duke  ACC   The … W         16     8  11.6 207. 
## # … with 13 more variables: or_pct <dbl>, dr_pct <dbl>, ast_pct <dbl>,
## #   to_pct <dbl>, stl_pct <dbl>, blk_pct <dbl>, bpm <dbl>, obpm <dbl>,
## #   dbpm <dbl>, net <dbl>, poss <dbl>, id <dbl>, game_id <chr>

Pull transfer histories

Calling transfer_portal will return transfer histories with matching player IDs to join with other statistics. To find all players who transferred to Duke:

head(transfer_portal(to='Duke'))
## ── Transfer Portal ───────────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:54 EDT

## # A tibble: 6 × 11
##      id player        from  to    exp    year imm_e…¹ source from_d1 to_d1 sit  
##   <int> <chr>         <chr> <chr> <chr> <int> <chr>   <chr>  <lgl>   <lgl> <lgl>
## 1 65776 Kale Catchin… Harv… Duke  Sr     2023 Yes     Josep… TRUE    FALSE NA   
## 2 66209 Ryan Young    Nort… Duke  Jr     2023 Yes     Jeff … TRUE    FALSE NA   
## 3 65826 Max Johns     Prin… Duke  Sr     2023 Yes     <NA>   TRUE    FALSE NA   
## 4 50593 Theo John     Marq… Duke  Sr     2022 Yes     <NA>   TRUE    TRUE  FALSE
## 5 51179 Bates Jones   Davi… Duke  Sr     2022 Yes     <NA>   TRUE    TRUE  FALSE
## 6 45926 Patrick Tape  Colu… Duke  Sr     2021 Yes     Evan … TRUE    TRUE  TRUE 
## # … with abbreviated variable name ¹​imm_elig

Pull recruiting rankings

Calling player_recruiting_rankings will return extensive recruit histories with matching player IDs. To find all 5-star players who played high school basketball in North Carolina:

head(player_recruiting_rankings(stars=5, state='NC'))
## ── Recruiting Rankings ───────────────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:55 EDT

## # A tibble: 6 × 31
##   position player  height weight team  conf  high_…¹ town  state tfs_c…² tfs_c…³
##   <chr>    <chr>   <chr>   <dbl> <chr> <chr> <chr>   <chr> <chr>   <dbl>   <int>
## 1 SF       Patric… 6-6       215 Flor… ACC   West C… Char… Nort…    99.1       5
## 2 PG       Devon … 6-2       185 Kans… B12   Provid… Char… Nort…    99.3       5
## 3 SF       Jaylen… 6-8       215 Wake… ACC   Wesley… High… Nort…    99.3       5
## 4 SG       Coby W… 6-5       185 Nort… ACC   Greenf… Wils… Nort…    99.1       5
## 5 PF       Harry … 6-10      240 Duke  ACC   Oak Hi… Wins… Nort…   100.        5
## 6 PG       Dennis… 6-3       190 Nort… ACC   Trinit… Faye… Nort…    99.7       5
## # … with 20 more variables: tfs_comp_national <dbl>, tfs_comp_position <dbl>,
## #   tfs_comp_state <dbl>, tfs_rating <dbl>, tfs_star <int>, espn_rating <dbl>,
## #   espn_grade <dbl>, espn_rank <dbl>, rivals_rating <dbl>, rivals_rank <dbl>,
## #   avg_rank <dbl>, num_offers <int>, announce_date <chr>, tfs_cb <chr>,
## #   tfs_cb_odds <dbl>, tfs_cb_alt <chr>, tfs_cb_alt_odds <dbl>, tfs_pid <int>,
## #   year <int>, id <int>, and abbreviated variable names ¹​high_school,
## #   ²​tfs_comp_rating, ³​tfs_comp_star

Predict games and tournaments

Calling bart_game_predictions will returns expected points, possessions, and win percentage for a given game on a given date. To simulate North Carolina at Duke in mid-January:

bart_game_prediction('Duke', 'North Carolina', '20220113', location = 'H')
## ── Duke vs. North Carolina Prediction ────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:55 EDT

## # A tibble: 2 × 8
##   team           date          location tempo   ppp   pts win_per did_win
##   <chr>          <chr>         <chr>    <dbl> <dbl> <dbl>   <dbl> <lgl>  
## 1 Duke           Jan. 13, 2022 Home      73.4  1.15  84.2    73.1 TRUE   
## 2 North Carolina Jan. 13, 2022 Away      73.4  1.02  75.1    26.9 FALSE

Calling bart_tournament_prediction will simulate a single-elimination tournament between a group of teams on a given date. To simulate the 2022 Final Four 25 times:

bart_tournament_prediction(teams = c('Duke', 'North Carolina', 'Kansas', 'Villanova'), '20220402', sims = 25, seed = 10)
## ── Tournament Prediction: 25 Sims ────────────────────────────── toRvik 1.1.0 ──

## ℹ Data updated: 2022-09-09 08:20:56 EDT

## # A tibble: 4 × 4
##   team            wins finals champ
##   <chr>          <int>  <int> <int>
## 1 Duke              31     21    10
## 2 Kansas            17     10     7
## 3 Villanova         21     15     6
## 4 North Carolina     6      4     2

Documentation

For more information on the package and its functions, please see the toRvik reference.

The Author

Andrew Weatherman

@andreweatherman