Package ‘trackter’

April 19, 2021
Title Automated Kinematic Analysis of Image Data
Version 0.1.1

Description Analysis of shape and contours in regions of interest (ROIs) in image sequences and ex-
tracting midline and other kinematic data.

License GPL (>=2)
Encoding UTF-8
LazyData true
Depends R (>=3.5.0),

biocViews

Imports EBImage, data.table, dplyr, Momocs, raster, zoo, plyr,
pastecs, features, jpeg, ggplot2, graphics, stats, utils

RoxygenNote 7.1.1

Suggests testthat (>= 3.0.1), covr, knitr, rmarkdown, animation,
SystemRequirements FFmpeg

VignetteBuilder knitr

NeedsCompilation no

Author Christopher Kenaley [aut, cre]

Maintainer Christopher Kenaley <cpkenaley@gmail.com>
Repository CRAN

Date/Publication 2021-04-18 22:10:02 UTC

R topics documented:

deg e

finkin e

2 amp.freq
fishshapes e 9
halfwave 10
images.to.video Ll e 12
images.to.video2 L 13
KinLDA 15
kin.search L 20
kinsimple 25
rad 29
vid.to.dmages L L e e e e e e 29
viditodmages2 e e 31
WAVE & . v v v e 32

Index 35

= Assignment by reference

Description

Assignment by reference
Usage
\ \ (.)
Arguments
See ? ‘...
amp.freq Computes amplitude and frequency of wave-like data
Description
Computes amplitude(s) and wavelength(s) of a wave form, amongst other things, based on a sam-
pling frequency
Usage
amp.freq(x = NULL, y, sf = 100)
Arguments
X Numeric; x position (or sample number)
y numeric; y position
sf numeric; sample frequency (i.e., how often was x and y sampled) in Hz

bearing.xy 3

Value

a list with amplitude "a", frequency "f", amplitude returned from a smoothed sign function "a.f"
based on output from features, signal to noise ratio "snr".

See Also

features
Examples

#Compute waveform patterns
x <- seq(0,pi,0.1)

y <= sin(x*1.3%*pi)
plot(x,y)

amp. freq(x=x,y=y)

bearing.xy Computes the heading between to cartesian points

Description

Computes the heading (radians counter clockwise from north or vertical)

Usage

bearing.xy(x1, x2, y1, y2)

Arguments
x1 Numeric; point A x value
X2 numeric; point B x value
y1 numeric; point A y value
y2 numeric; point B y value
Value

A single value in radians

a single value in radians

4 cosine.ang

Examples

#example

A <- c(0,0)

B <- c(-5,5)

thet <- bearing.xy(A[1],B[1]1,A[2],B[2])
deg(thet)

cosine.ang Computes angle between two segments sharing a point.

Description

Computes angle between two segments of a triangle using law of cosines.

Usage

cosine.ang(l, r, o)

Arguments
1 Numeric; length of segment to the left
r Numeric; length of segment to the right
o Numeric; length of opposite segment
Value

A single value of the angle in radians

Examples

#a right triangle
L=3

R=3
O=sqgrt(L"2+R*2)
cosine.ang(L,R,0)

deg

deg Converts radians to degrees

Description

Converts radians to degrees

Usage
deg(x)

Arguments

X Numeric; value in radians

Value

A single value

See Also

rad

dist.2d Computes distance between two points in Cartesian space.

Description

Computes distance between two points in Cartesian space using simple trigonometry functions

Usage

dist.2d(x1, x2, y1, y2)

Arguments
x1 Numeric; x position of coordinate 1
X2 numeric; x position of coordinate 2
y1 numeric; y position of coordinate 1
y2 numeric; y position of coordinate 2
Value

A single value of the distance between p[x1,y1] and p[x2,y2]

Examples

#Find the lengths of the sides of a tringle and print to plot
x <- ¢(0,3,2)

y <- ¢(90,3,0)

plot(x,y)

lines(x,y)

lines(x[c(1,3)],ylc(1,3)D)

hyp <- dist.2d(x[1]1,x[2]1,y[1],y[2])

s1 <- dist.2d(x[1]1,x[31,y[1],y[3])

s2 <- dist.2d(x[2]1,x[3],y[2],y[3])
text(mean(x[1:2],mean(y[2:3])),labels=round(hyp,1))
text(mean(x[c(1,3)]1),y[1]1+0.25,1labels=round(s1,1))
text(mean(x[c(2:3)]1),mean(y[2:3]),labels=round(s2,1))

fin.kin

fin.kin Tracking of fin-like extensions of body contours

Description

Estimates the amplitudes of regions along a body contour that are protruding. Useful in computing
paired-fin amplitudes from contour data produced from kin.simple and kin.search. Also computes

a smoothed midline based on the body outline with the fin region removed.

Usage

fin.kin(
X,
fin.pos = NULL,
smooth.n = 50,

tip.ang = 10,
smoothing = "loess”,
Xx.bins = 0.2,
ml.smooth = @.25
)
Arguments
X a data frame or matrix with ’x’ and "y’ data as columns.
fin.pos numeric, a vector of length 2 indicating the start and end of the contour region
that contains the fins of interest as a proportion of the body length.
smooth.n numeric, the number of smoothing operations undertaken by coo_smooth on the
contour described by 'x’.
tip.ang the minimum angle, in degrees, that defines tip of each fin. See Details.
smoothing character, the midline smoothing method, either ’loess’ or ’spline’.
x.bins numeric, when less than or equal to 1, the proportion of contour coordinates to

sample for midline estimation. If greater than 1, the absolute number of equally
spaced x values from which to compute the midline. See Details.

fin.kin 7

ml.smooth numeric the smoothing value for the midline. If smoothing is set to ’loess’,
passed to ’span’ value for loess. If smoothing is set to ’spline’, passed to
’spar’ value for smooth.spline

Details

The algorithm assumes a left-right orientation, i.e., the head of the contour is left. If otherwise
oriented, contour can be flipped with coo_flipx and coo_f1lipy after converting contour to class
coo.

tip.angle is used to define the tip of the fin, assuming that the tip of the fin is pointed and, for a
sufficiently smoothed fin contour, will have contour edges that form the highest angles within the
fin region defined by fin.pos. Low values of smooth.n ($<$5) should be avoided if the contour is
jagged, perhaps due to digitization.

In addition to fin amplitude and contour extraction, also produces a composite contour of the body
minus the fin area described by fin.pos. Fin contours are replaced by a simple linear prediction
constructed from the coordinates of the first and last values covered by fin.pos. The result is a
straight line between the start and end of each fin. From this composite body contour, a midline
prediction is made based on the method indicated by smoothing and number of points indicated by
x.bins.

x.bins controls the bin size of x values used to estimate the midline. From these bins, mean x and
the range of y is calculated. The midpoint at each mean x is then calculated from the mid point of
y. When less then 1, x.bins values approaching 1 may result in poor a midline as x values on one
side of the contour may not have corresponding identical values on the other. Values closer to 0 will
result in fewer points but a more robust midline. Higher smooth.n values will also result in a more
robust midline estimation (but also a loss of contour information).

Value

A list with the following components:
body a data table consisting of x,y coordinates of the body contour

fin a data table describing the contour of the fins consisting of the following:

* x,y coordinates within the range of fin.pos

 ’ang’: the angle formed by each coordinate and its adjacent points.

e ’fin’: fin side, 'L’ or °’R’

* ’y.pred’: predicted y values according to 1m() from start to end of fins.

fin.pts a data table describing fin position consisting of the following:

* X,y coordinates of the fin tips, start, and end within the range of fin. pos.
* ’ang’: the angle formed by the coordinates and their adjacent points.

* ’pos’: description of the coordinates’ positions, ’start’, end’ or ’tip’.
comp a data table describing the composite contour of the body minus the fins.

* x,y coordinates of the body except the range of x values within fin.pos. These values take
on a straight line described by the prediction of 1m() based on the start and end of the fin. See
Details.

8 fin.kin

midline a data table describing the estimated

* ’x’: the mean x position within the bin.
* ’x.bin’: the x bin in cut notation.
* ’y.m’: the y midpoint at the bind and mean x value.

* 'ml.pred’: the y midline value according to the smoothing parameters.

See Also

kin.simple, kin.LDA, kin.search, efourier, coo_angle_edges, coo_smooth, loess, smooth.spline

Examples

#i#ttplot pectoral-fin amplitudes of a swimming sunfish
Not run:
require(ggplot2)

#download example avi video
f <- "https://github.com/ckenaley/exampledata/blob/master/sunfish_pect.avi?raw=true”
download.file(f,"sunfish.avi")

#textract images with ffmpeg opereations and reduce them to 600 px wide with a filter
filt.red <- " -vf scale=600:-1 " #filter
vid.to.images2(vid.path="sunfish.avi”, filt = filt.red) #extract

#number of frames

fr <- length(list.files("images"))

#extract contours and other data

kin <- kin.simple(image.dir = "images",frames=c(1:fr),thr=0.9,ant.per = 0.25)
#fin amplitudes by frame with data.table

fin.pos <- c(0.25,.5)

fin.dat <- kin$cont[, { f <- fin.kin(data.frame(x=x,y=y),fin.pos =fin.pos);
list(amp=fampamp, fin=fampfin,amp.bl=Ffampamp.bl)}, by=1ist(frame)]

p <- ggplot(dat=fin.dat,aes(x=frame,y=amp,col=fin))+geom_line()+theme_classic(15)
print(p)

plot body and fin contours of frame 1
cont <- data.frame(x=kin$cont[frame==2,1ist(x,y)1$x,y=kin$cont[frame==2,1ist(y)1$y)
fins <- fin.kin(cont,fin.pos =fin.pos,x.bins=100)

#plot body contour and fins
p <- gplot(data=fins$body,x=x,y=y)+geom_point(data=fins$fin,aes(x,y),col="red",size=3)
p+geom_point(data=fins$fin.pts,aes(x,y, shape=pos))+xlim(c(@,kin$dim[1]))+ylim(c(Q,kin$dim[2]))

#plot body contour minus fins and the body midline

p <- gplot(data=fins$comp, x=x,y=y)+geom_point(data=fins$midline,aes(x,ml.pred),col="red",size=2)
p+txlim(c(@,kin$dim[1]))+ylim(c(@,kin$dim[2]))

End(Not run)

fishshapes 9

fishshapes Contour data of fish and arbitrary shapes

Description

Contour data constructed with the Momocs package of several fish shapes and arbitrary polygons.
Intended for training of PCA and LDA analysis with LDA. Shapes are classified with shape, type,
and edge factors.

Usage
data(fishshapes)

Format

An object of class "Out"” and "Coo"; see Out.

Details

* ’shape’: names the contour
* ’type’: classifies the shape as ’fish’ or not.fish’

* ’edge’: is every coordinate of the contour represented, i.e., not cut off by an edge of the field?
One level of "FALSE’.

Shapes of type ’fish’ include the follow classification levels:

* ’eel’ (genus Anguilla) swimming with body undulations
* ’sunfish_ BCF’ (genus Lepomis) swimming with body-caudal fin propulsion

* ’sunfish_pect’ (genus Lepomis) swimming with both body-caudal fin and pectoral fin oscilla-
tions

* ’trout’ (genus Oncorhynchus) swimming with body-caudal fin propulsion

Each of these fish types include contours sampled regularly over one tail-beat cycle.

Shapes of type 'not.fish’ include ’Ellipse’, ’Lshape’, *Ushape’, Ushape2’, *Ushape3’, ’triangle’,
‘rectangle’, and ’square’. Each 'not.fish’ type was resampled 6 times with different efourier anal-
yses with ‘nb.h’ values ranging from 5 to 30. This produces shape classes with subtly variable
contours.

The ’edge’ factor is included so as to have the classification factors match those of the efourier
and LDA analysis in kin.LDA.

Examples

library(Momocs)
data(fishshapes)
panel (fishshapes)

10

halfwave

halfwave

Compute half wavelengths from a sine-like waveform

Description

Computes half wavelengths and their positions and amplitude from a sine-like waveform based on
either peak-to-trough or internodal distance.

Usage
halfwave(
X’
Y,
method = "zeros",
zero.begin = TRUE,
fit = TRUE,
dens = 10,
smooth = 0.1,
smoothing = "loess”
)
Arguments
X Numeric; X position
y numeric; y position
method character; how half waves should be found and classified, where it crosses
zero/the internodal length ("zeros") or peak to trough/trough to peak ("p2t").
See Details.
zero.begin logical; does wave begin at zero? Default is "TRUE’ and will help find waves
beginning at first x,y values if y=0
fit logical; if 'method="zeros"’, should zeros be detected by a fitting operation. See
Details.
dens numeric; factor by which to increase the sample density used in fitting when
’method="zeros"’. See Details.
smooth numeric; if smoothing is set to ’loess’, ’span’ parameter value for loess. If
smoothing is set to ’spline’ ’spar’ parameter value for smooth.spline
smoothing character; the smoothing method when *fit=TRUE’, either ’loess’ or ’spline’.
See Details.
Details

If method="p2t"’,

half waves are found using critical points (i.e., local maxima and minima) with

features. Detected half waves with this method can be either peak to trough or trough to peak.

If ’method="zeros'

" and ’fit=TRUE’, zero crossings are determined by first increasing the sample

density by a factor determined by dens. A more dense loess or smooth.spline model is then

halfwave 11

fit to the data and new y values predicted. Wave positions and lengths are determined based on
these predicted values. This option should be useful when the sampling density of the waveform
is relatively low and therefor detected wave positions and zero crossings (the internodes) may be
rather coarse.

Value

A list with the following components:
method the method chosen to find half waves

names a data table with columns ’x’, ’y’, and *wave’ describing the x and y positions of the wave
and a numeric name of each half wave detected, resptively. If 'method="zeros"” and ’fit=TRUE’,
these values reflect the predicted, more dense data as determined by smoothing,smooth, and dens.

dat a data table describing each have wave detected.

* ’zeros’: x value where y crosses zero. Returns NA if *'method=p2t’.
* ’wave.begin’: x value where each half wave begins.

* ’wave.end’: x value where each half wave ends.

* ’begin.index’: x index of where each half wave begins.

* ’end.index’: x index of where each half wave ends.

* ’wave’: numeric name of each wave.

* ’1’: the length of each half wave.

e ’ampl’: If method is set to *p2t’ this is the begin amplitude. If "method="zeros’", this is the
maximum absolute amplitude between internodes.

e ’amp?2’: If method is set to *p2t’, this is the end amplitude. If "method="zeros’ value is NA.

 ’posl’: If method is set to "p2t’, the x position of begin amplitude for each half wave and iden-
tical to ’begin’. If "method="zeros’", the position of maximum absolute amplitude between
the internodes.

e ’pos2’: If method is set to 'p2t’, the x position of end amplitude for each half wave and
identical to ’end’. If "method="zeros’", value is NA

If *'method="zeros"” and ’fit=TRUE’, these values reflect the predicted, more dense data as deter-
mined by smoothing, smooth, and dens.

See Also

features, loess, smooth.spline

Examples

require(ggplot2)

#Find length of the half waves
x <- seq(0,pi,0.01)

y <= sin(x*2*xpi)

gplot(x,y)

12 images.to.video

#zero method predicting zeros
w.z <- halfwave(x,y,method="zeros",fit=TRUE, smoothing="spline")

#plot waveform with detected half waves using fitted 'zeros' method

p <- ggplot()+geom_point(aes(x=x,y=y))

p <- ptgeom_line(data=w.z$names,aes(x=x,y=y,col=wave),alpha=0.4,size=3,inherit.aes=FALSE)
p+ttheme_classic()

#plot lambda as it varies with position
gplot(data=w.z$dat,x=posi1,y=1)

#peak-to-trough method
w.p <- halfwave(x,y,method="p2t")
gplot(data=w.p$names, x=x,y=y,col=wave)

images.to.video Stitches images into a video file

Description

Stitches images into a video file of type indicated by "vid.ext"

Usage

images.to.video(
image.dir = NULL,
out.dir = NULL,
vid.name = NULL,
qual = 50,
frame.rate = 10,
overwrite = FALSE,
silent = TRUE

)
Arguments
image.dir character; directory containing images to stitch.
out.dir character; directory in which to store video.
vid.name character; file name given to video including extension. mp4 currently works
best.
qual numeric; the quality of the video rendered from 1-100%. Defaults to 50%.
frame.rate numeric; video frame rate in fps.
overwrite logical; should path described by vid.name be overwritten if it exhists.

silent logical; should output of system call for ffmpeg operation be suppressed.

images.to.video2 13

Details

Assumes images are appended with a numeric sequence.

Value

Outputs a video of name "video.name+vid.ext".

See Also

vid.to.images

Examples

#make some images
dir.create(paste@(tempdir(),"”/images”)) #make a directory to store images

a<-2

b <-3

theta <- seq(@,10*pi,0.01)

r <- a + bxtheta

df <- data.frame(x=r*cos(theta), y=r*sin(theta)) # Cartesian coords

every.i <- 30

for(i in seq(1,length(theta),30)) {
jpeg(paste@(tempdir(),"/images/image_",sprintf("%03d",which(i==seq(1,length(theta),30))),".jpg"))
with(df[1:1,],plot(x,y,xlim=range(df$x),ylim=range(df$y),col="red"))
dev.off()
}

images.to.video(image.dir=paste@(tempdir(),"/images"),
vid.name="spiral.mp4", out.dir=tempdir(),
frame.rate=5,qual=100,silent=TRUE, overwrite=TRUE)

file.exists(paste@(tempdir(),"/spiral.mp4"))
#clean up

unlink(paste@(tempdir(),"/spiral.mp4"))
unlink(paste@(tempdir(),"/images"),recursive=TRUE)

images.to.video2 Stitches images from video file passing filters to ffimpeg

Description

Wrapper for ffmpeg video operations. Permits flexible filtering.

images.to.video2

images.to.video2(

image.dir = NULL,
out.dir = NULL,

vid.name = NULL,
overwrite = TRUE,

qual = 50,
vid.ext = ".mp4",
frame.rate = 10,
raw = TRUE,
filt = NULL,
silent = TRUE
)
Arguments
image.dir character; directory containing images to stitch.
out.dir character; directory in which to store video.
vid.name character; file name to be given video (should not include file extension).
overwrite logical; should path described by vid.name be overwritten if it exhists.
qual numeric; the quality of the video rendered from 1-100%. Defaults to 50%.
vid.ext character; video type to output. mp4 currently works best.

frame.rate
raw
filt

silent

Details

numeric; video frame rate in fps.
logical; encodes a raw AVI video with the "rawvideo" codec.

character; video filter that should be applied to ffmpeg operation. See https:
//ffmpeg.org/ffmpeg-filters.html.

logical; should output of system call for ffmpeg operation be suppressed.

Assumes images are appended with a numeric sequence beginning with "_".

Value

Outputs a video of name "video.name+vid.ext".

See Also

vid.to.images?2

Examples

#make some spiralled images and video

dir.create(paste@(tempdir(),"”/images"”)) #make a directory to store images

https://ffmpeg.org/ffmpeg-filters.html
https://ffmpeg.org/ffmpeg-filters.html

kin.LDA 15

a<-2

b <- 3

theta <- seq(@,10%pi,0.01)

r <- a + bxtheta

df <- data.frame(x=r*cos(theta), y=r*sin(theta)) # Cartesian coords

every.i <- 30

for(i in seq(1,length(theta),30)) {
jpeg(paste@(tempdir(),"/images/image_",sprintf ("%03d",which(i==seq(1,length(theta),30))),".jpg"))
with(df[1:1,],plot(x,y,xlim=range(df$x),ylim=range(df$y),col="red"))
dev.off()
}

images.to.video2(image.dir=paste@(tempdir(),"/images"),
vid.name="spiral”,out.dir=tempdir(),
frame.rate=5,qual=100,silent=TRUE, overwrite=TRUE)

file.exists(paste@(tempdir(),"”/spiral.mp4"))

#clean up
unlink(paste@(tempdir(),"”/images"),recursive=TRUE)

kin.LDA Midline tracking over image sequences with ROI search using LDA

Description

Experimental and untested (in the unit-testing sense). Automatically retrieves the midline of a
detected ROI in each image of a sequence through thresholding and segmentation. Chose a fish-
like ROI class detected through linear discriminate analysis (LDA) of PCA on elliptical Fourier
described shapes. Initial training of ROIs is user defined or with the ’fishshapes’ data set loaded
with trackter (see details). For each detected ROI, kin.LDA finds the y-value midpoint along
the x-value array of the ROI and fits a midline according to a chosen smoothing method (loess or
spline). Also outputs the midline amplitude relative to a reference line determined by an anterior
section of the ROI. Supported image formats are jpeg, png, and tiff.

Usage

kin.LDA(
image.dir = NULL,
frames = NULL,

thr = 0.7,
ant.per = 0.2,
tips = 0.2,

edges = FALSE,
train.dat = NULL,
rescale = FALSE,
harms = 15,

16

enorm = TRUE,
retrain = 5,
after.train = "LDA",
ties = "fish",
size.min = 0.05,
show.prog = FALSE,
smoothing = "loess"”,
smooth = 0.3,
smooth.points = 200,

kin.LDA

save = TRUE,
out.dir = NULL,
image.type = "orig”,
plot.pml = TRUE,
flip = TRUE
)
Arguments
image.dir character, directory containing images to analyze.
frames numeric, vector indicating which images to process.
thr numeric or character ("otsu’) threshold to determine binary image. See Details.
ant.per numeric; left-most percentage of ROI that establishes the horizontal reference
for the midline displacement.
tips, numeric, the proportion the the midline data to use in calculation of the head
and tail position.
edges logical, should ROIs on image edges by evaluated. See Details.
train.dat Classified Out and Coo outlines that are produced from Momocs. See Details.
rescale logical, should all shapes in PCA be rescaled. Performs best as "FALSE’.
harms numeric, the number of harmonics to use. If missing, Momocs sets 'nh.b’ to 12.
Will produce messages.
enorm logical, should the EFA coefficients from efourier operations be normalized
or not. See details and efourier
retrain numeric, the number of frames on which to retrain the LDA data set. See details.

after.train

ties

size.min

show.prog

smoothing

character, if set to ’size’, LDA will be skipped after retrain and the ROI with
a size closest to the ROI found by the LDA $>=$ will be chosen. This speeds
calculations considerably. If ’LDA’, the default, LDA will continue using the
retraining classifications from frames $<=$ ’train’.

character, how to chose ROI’s in any one frame that appear fish-like. See details.

numeric, indicating the minimum size of ROIs as a proportion of the pixel field
to be considered in analysis. May be useful if smaller unimportant ROIs appear
in the frame. Default is 0.05.

logical value indicating if outputted image should be displayed during analysis.

character, the midline smoothing method, either ’loess’ or ’spline’.

kin.LDA 17

smooth numeric; if smoothing is set to ’loess’, ’span’ parameter value for loess. If
smoothing is set to ’spline’ ’spar’ parameter value for smooth.spline

smooth.points numeric, number of equally spaced points along the ROI midline on which the
smoothed midline is computed.

save logical, value indicating if images should be outputted with midline and pre-
dicted midline based on the ant.per 1m() overlaying original or binary images.

out.dir character, the directory to which ouputted images should be saved. If NULL,
then a subdirectory ’processed_images’ in the working directory.

image. type character; the type of image to be outputted, either "orig’ or ’bin’ representing
the original or binary images, respectively. Ignored if ’save==FALSE’.

plot.pml logical, value indicating if outputted images should include the predicted mid-
line (in blue) and the points according to ant. per used to construct the predicted
midline (in green).

flip logical, indicating if binary should be flipped.

Details

The algorithm assumes a left-right orientation, i.e., the head of the ROI is positioned left, the tail
right. ffmpeg operations or even imageJ can rotate images not in this orientation. The ant.per
value therefor establishes the reference line (theoretical straight midline) based on that portion of
the head. The midline is calculated as the midpoints between the y extrema for each x position. If
’save=TRUE’, images are saved as binary or the original with a body midline overlay and, if chosen,
with the theoretical midline (based on ant.per).

Thresholding operations can be performed with an arbitrary (user-defined) numeric value or with
Otsu’s method ("thr="otsu"’). The latter chooses a threshold value by minimizing the combined
intra-class variance. See otsu.

Before train, ROIs are chosen according to LDA of a PCA object constructed from efourier
analysis. LDA is trained by a user define "train.dat” when the frame $<=$ retrain. LDA will pro-
ceed after retrain if after.train="LDA’, but the LDA will be trained by the contours classified
as ’fish’ and "not.fish’ found during the chosen training period.

enorm Normalization of EFA coefficients is often perilous, especially for symmetrical shapes, a
conditional met for undulating, bilaterally symmetrical organisms at least some of the time and
perhaps for many of the frames included in any analysis. Thus, ’enorm’ by default is set to "FALSE’.
’enorm=TRUE’ may produce odd ROI choices and should be used cautiously.

train.dat This should be a Coo and Out object produced by efourier analysis of predefined
shapes. A user defined dataset or the fishshapes dataset in trackter must be used for training.
fishshapes includes several arbitrary shapes (circles, squares, U-shapes, etc.) as well as sev-
eral fish shapes: sunfish (genus Lepomis), eel (genus Anguilla), and trout (genus Onchorhynchus)
swimming over one tail-beat cycle. A user-defined dataset must have shapes classified with factors
identical to the fishshapes contours, that is by shape, type, and edge. Shape levels should indicate
what type of shape is described by the contour (e.g., *circle’, ’L-shape’, ’trout’, "eel’, etc). The type
levels must describe the shape as ’fish’ or "not.fish’. The edge levels must be "FALSE’.

edges Set by default to "TFALSE’. It is not advisable to include shapes that are on the edge of any
frame and are therefore incomplete. retrain After this value, the LDA analysis will use the ROIs
determined as ’fish” and "not.fish’ in the frames $>=$ retrain to discriminate fish from non-fish

18 kin.LDA

shapes. This speeds up analysis considerably. ties Determines how to chose ROIs if more than one
fish-like ROI is found in any frame. ’fish’ will result in choosing the ROI with shape types in which
the best *and* second-best fish-like shape (according to posterior probabilities) match a fish-like
shape in the training and/or retraining datasets.’post’ will chose the best fish-like shape according
the the highest posterior probability from LDA.

Value

A list with the following components:
kin.dat a data table consisting of frame-by-frame position parameters for the ROI determined by
LDA analysis.

* the frame number
* ’x’ and “’y’: the position of the tail (rightmost or posteriormost)
* ’head.x’ and ’head.y’: the x and y position of the head (leftmost or anteriormost)

* ’amp’: the amplitude (amp) of the tail relative to thr theoretical midline determined by the
1m() predictions from ant.per

* ’roi’: a character indicating the ROI ranked by size ("a’ being the largest)
* ’head.pval’: p values of the 1m() fit that describes the position of the head as determined by
ant.per (green points in the outputted images/video)

midline A data table containing, for each frame described by frames, the following:

* ’x’ and y.m’: x and y positions of the midline of the ROI #
* ’y.min’ and y.max’: min and max y positions ROI's contour used in y.m calculation

* “mid.pred’: the predicted linear midline based on the points/pixels defined by head. per (green
points in the outputted images/video)

 ’y.pred’: midline points fit to a smooth spline or loess model with spar or span equal to smooth
(red curve in the outputted images/video)

* ’wave.y’: midline points "y.pred’ relative to *mid.pred’

* ’roi’: a character indicating ROI size ("a’ being the largest)

cont A data table containing x and y positions of the contours used to calculate the data in "kin.dat’.
Contains the following:

e ’frame’: the frame #’

e ’x’ and ’y’: the x and y positions of the contours
all.classes A data table containing the following for all ROIs detected:

e ’frame’: the frame
¢ ’roi’: the name of each ROI found in a frame.

 ’size’: the size of each ROI

dim the x and y dimensions of the images analyzed

kin.LDA 19

See Also

kin.simple, kin.search, efourier LDA, fishshapes.

Examples

produce a classic midline waveform plot of swimming

fish searching a image field with a two fish-like ROIs
Not run:

require(wesanderson)

require(ggplot2)

require(data.table)

require(dplyr)

require(EBImage)

#download example images and place in 'example' subdirectory

f <- "https://github.com/ckenaley/exampledata/blob/master/example.zip?raw=true”
download.file(f, "temp.zip")

unzip("temp.zip")

unlink("temp.zip")

#load fishshapes data
data(fishshapes)

kin <- kin.LDA(image.dir = "example”, frames=1:20,thr=0.7,
ant.per=.25,enorm=FALSE, show.prog = FALSE,retrain=2,
train.dat = fishshapes,after.train="LDA",edges=FALSE,
)

ml <- kin$midline

#x start at @

ml <-ml[,x2:=x-x[1]1,by=frame]

#compute instantaneous amplitude of tail (last/rightmost point) and wave crest x position by frame
ml2 <-ml[,.(amp.i=abs(last(wave.y))),by=frame]

ml <- merge(ml,ml2,by="frame") #merge these

pal <- wes_palette("Zissoul”, 100, type = "continuous") #"Zissou" color palette

p <- ggplot(dat=ml,aes(x=x2,y=wave.y))+theme_classic(15)+scale_color_gradientn(colours = pal)
p <- ptgeom_line(aes(group=frame,color=amp.i),

stat="smooth"”,method = "loess"”, size = 1.5,alpha = 0.5)

print(p)

Make a video of processed frames
images.to.video2(image.dir="processed_images"”,

vid.name="trout_test",frame.rate=5,qual=100, raw=FALSE)
file.exists("trout_test_red.mp4")

End(Not run)

20 kin.search

kin.search Midline tracking over image sequences

Description

Automatically retrieves the midline of a detected ROI in each image of a sequence through thresh-
olding and segmentation; finds the y-value midpoint along the x-value array of the ROI and fits a
midline according to a chosen smoothing method (loess or spline). Also outputs the midline am-
plitude relative to a reference line determined by an anterior section of the ROI. Supported image
formats are jpeg, png, and tiff.

Usage

kin.search(
image.dir = NULL,
frames = NULL,
thr = "otsu”,
plot.pml = TRUE,
show.prog = FALSE,
ant.per = 0.1,
tips = 0.02,
smoothing = "loess”,
smooth = 0.25,
smooth.points = 200,

image.type = "orig",
save = TRUE,
out.dir = NULL,
flip = TRUE,
size.min = 0.02,
search.for = "largest"”,
edges = FALSE,
border = 5
)
Arguments
image.dir character, directory containing images to analyze.
frames numeric, vector indicating which images to process.
thr numeric or character (Cotsu’) threshold to determine binary image. See Details.
plot.pml logical, value indicating if outputted images should include an overlay of the
theoretical midline based on ant. per.
show.prog logical value indicating if outputted image should be displayed during analysis.
ant.per numeric; left-most percentage of ROI that establishes the horizontal reference

for the midline displacement.

kin.search 21
tips, numeric, the proportion the the midline data to use in calculation of the head
and tail position.
smoothing character, the midline smoothing method, either ’loess’ or "spline".
smooth numeric; if smoothing is set to ’loess’, smoothing parameter value for plotted

smooth.points

midline.

numeric, number of equally spaced points along the ROI midline on which the
smoothed midline is computed.

image.type character; the type of image to be outputted, either *orig’ or ’bin’ representing
the original or binary images, respectively. Ignored if ’save=FALSE’.

save logical, value indicating if images should be outputted with midline and pre-
dicted midline based on the ant.per 1m() overlaying original or binary images.

out.dir character, the directory to which outputted images should be saved.

flip logical, indicating if binary should be flipped.

size.min numeric, indicating the minimum size of ROIs as a proportion of the pixel field
to be considered in analysis. May be useful if smaller unimportant ROIs appear
in the frame. Default is 0.02.

search.for character, the search parameter. See Details.

edges logical, should ROIs on image edges be evaluated. See Details.

border if edges=TRUE, size of border to add in pixels. Dee details.

Details

The algorithm assumes a left-right orientation, i.e., the head of the ROI is positioned left, the tail
right. The ant.per value therefor establishes the reference line (theoretical straight midline) based
on that portion of the head. The midline is calculated as the midpoints between the y extrema for
each x position. Chooses ROIs based on relative ROI size or position.

Thresholding operations can be performed with an arbitrary (user defined) numeric value or with
Otsu’s method ("thr="otsu"’). The latter chooses a threshold value by minimizing the combined
intra-class variance. See otsu.

If ’edges=TRUE"’, it is best to add an artificial border so that any part of the ROI in contact with the
edge can be distinguished from it.

search. for determines how ROIs are chosen:

* "offset", the ROI with a centroid that is the shortest linear distance to the center of the field

 "offset.x", the ROI with a centroid x position that is closest to the x position of the center of
the field

 "offset.y", the ROI with a centroid y position that is closest to the y position of the center of
the field

* "largest", the largest ROI.

These choices will be made on ROI sets that are not on the edge of the field if ’edges=FALSE’.

edges Set by default to "TFALSE’. It is not advisable to include shapes that are on the edge of any
frame and are therefore incomplete. Yet, if set to "TRUE’, the border adds a black border to the
image so that the intended ROI may be distinguished from the edge.

image. type Can be set as "orig" or "bin". "orig" plots midline and reference lines over the original
video frames, "bin" over binary images.

22 kin.search

Value

A list with the following components:
kin.dat a data table consisting of frame-by-frame position parameters for the ROI determined by
search. for.

* the frame number

* ’x’ and ”’y’: the position of the tail (rightmost or posteriormost)

* ’head.x’ and "head.y’: the x and y position of the head (leftmost or anteriormost)

* ’amp’: the amplitude (amp) of the tail relative to thr theoretical midline determined by the
1m() predictions from ant.per

* ’head.pval’: p values of the 1Im() fit that describes the position of the head as determined by
ant.per (green points in the outputted images/video)

* ’roi’: a character indicating the ROI ranked by size (’a’ being the largest)
* ’edge’: indicating whether ROI was on the edge of the image field

* ’size’: size of the ROI in pixels"2

* ’offset.x’: ROI distance from horizontal center

* ’offset.y’: ROI distance from vertical center

* ’offset’: linear distance of ROI’s centroid to image center
midline A data table containing, for each frame described by frames, the following:

* ’x’ and ’y.m’: x and y positions of the midline of the ROI #°
* ’y.min’ and y.max’: min and max y positions ROI’s contour used in y.m calculation

* “mid.pred’: the predicted linear midline based on the points/pixels defined by head. per (green
points in the outputted images/video)

* ’y.pred’: midline points fit to a smooth spline or loess model with spar or span equal to smooth
(red curve in the outputted images/video)

* ’wave.y’: midline points ’y.pred’ relative to *'mid.pred’

* ’roi’: a character indicating ROI size ("a’ being the largest)
cont A data table containing x and y positions of the contours used to calculate the data in ’kin.dat’.
Contains the following:

* ’frame’: the frame

e ’x’ and ’y’: the x and y positions of the contours
all.classes A data table containing the following for all ROIs detected:

 ’frame’: the frame

* ’roi’: the name of each ROI found in a frame.

* ’edge’: indicating whether ROI was on the edge of the image field
* ’size’: size of the ROI in pixels”"2

* ’offset.x’: ROI distance from horizontal center

* ’offset.y’: ROI distance from vertical center

kin.search 23

* ’offset’: linear distance of ROI’s centroid to image center

dim the x and y dimensions of the images analyzed
A list with the following components:
kin.dat a data frame consisting of frame-by-frame position parameters for the ROI indicated by
n.blob:
* the frame number
* ’head.x’ and ’head.y’: the x and y position of the head (leftmost or anteriormost)
* ’x’ and ’y’: the position of the tail (rightmost or posteriormost)
* ’amp’: the amplitude (amp) of the tail
* ’cent.x’ and ’cent.y’: centroid coordinate of ROI
* ’roi’: a character indicating ROI size ("a’ being the largest)
* ’head.pval’: p values of the 1Im() fit that describes the position of the head as determined by
ant.per (green points in the outputted images/video)

midline A data frame containing, for each frame described by frames, the following:

* ’x’ and ’y.m’: x and y positions of the midline of the ROI

* mid.pred’: the predicted linear midline based on the points/pixels defined by head. per (green
points in the outputted images/video)

* ’y.pred’: midline points fit to a smooth spline or loess model with spar or span equal to smooth
(red curve in the outputted images/video)

* ’wave.y’: midline points ’y.pred’ normalized to *mid.pred’
* ’roi’: a character indicating ROI size ("a’ being the largest)
* “cent.x’: x centroid of ROI

* ’cent.y’: y centroid of ROI

* ’offset.x’: ROI distance from horizontal center

* ’offset.y’: ROI distance from vertical center

* ’offset.total’: sum of ROI offset.x and offset.y

* ’ar’: aspect ration of the ROI

* ’size’: size of ROI in pixels

dim the x and y dimensions of the images analyzed

See Also

kin.simple

24 kin.search

Examples

#i### plot lot caudal amplitude and produce a classic midline waveform plot of swimming fish

##A very long example.
Not run:

#download example images and place in 'example' subdirectory
f <- "https://github.com/ckenaley/exampledata/blob/master/example.zip?raw=true”

download.file(f, paste@(tempdir(),"/temp.zip"))
unzip(paste@(tempdir(),"/temp.zip"), exdir=tempdir())
unlink(paste@(tempdir(),"/temp.zip"))

dir.create(paste@(tempdir(),"/processed_images"))

kin <- kin.search(image.dir =paste@(tempdir(),"/example”),
search.for = "largest”,
smoothing = "loess”,frames=1:50,
out.dir=paste@(tempdir(),"/processed_images"),
show.prog = FALSE,thr = "otsu”,
image.type="bin", smooth=0.4)

#plot instantaneous amplitude of tail (last/rightmost point) over frames
p <- ggplot(dat=kin$kin.dat,aes(x=frame,y=amp))+geom_line()+geom_point()+theme_classic(15)
print(p)

midline plot

ml <- kin$midline

#leftmost x starts at 0

ml <- ml[,x2:=x-x[1],by=frame]

ml <- merge(ml,kin$kin.dat[,list(frame,amp)],by="frame") #merge these
pal <- wes_palette("Zissoul”, 100, type = "continuous") #"Zissou” color palette
p <- ggplot(dat=ml,aes(x=x2,y=wave.y))+theme_classic(15)+scale_color_gradientn(colours = pal)

—_n

p <- ptgeom_line(aes(group=frame,color=amp),stat
print(p)

smooth” ,method = "loess"”, size = 1.5)

#Make a video of processed frames
images.to.video2(image.dir=paste@(tempdir(),"/processed_images"),
vid.name="trout_test"”,out.dir=tempdir(),frame.rate=5,qual=100, raw=FALSE)
file.exists(paste@(tempdir(),"”/trout_test_red.mp4"))

End(Not run)

A very short example.

#retrieve image

kin.simple 25

i <- EBImage: :readImage(system.file("extdata/img"”, "sunfish_BCF. jpg", package = "trackter"))
#create directory and write image to it
t <- tempdir()

dir.create(paste@(t,"/images"))
EBImage: :writeImage(i,paste@(t,"”/images/sunfish@01.jpg"),type = "jpeg")

list.files(paste@(t,"”/images"))
#run kin.search and save output image to directory
kin.i<- kin.search(image.dir = paste@(t,"”/images"),smooth=0.7,save = TRUE,out.dir = t)

#plot midline over original image
with(kin.i$midline,plot(x,wave.y))

i2 <- EBImage::readlmage(pasted(t,"/sunfish@@1_000.jpg"))
EBImage: :display(i2,method="raster")

#clean up
unlink(paste@(t,"”/images"), recursive=TRUE)

kin.simple Simplified midline tracking over image sequences

Description

Automatically retrieves the midline of a detected ROI based on size. Assumes the ROI of interest
is the largest detected and not intersecting the edges of the image frame, conditions often met in
kinematic studies. For each ROI of interest, finds the y-value midpoint along the x-value array of
the ROI and fits a midline according to a chosen smoothing method (loess or spline). Also outputs
the midline amplitude relative to a reference line determined by an anterior section of the ROI and
outputs contours ROIs in each frame for subsequent analysis. Supported image formats are jpeg,
png, and tiff.

Usage

kin.simple(
image.dir = NULL,
frames = NULL,
thr = 0.7,
size.min = 0.05,
ant.per = 0.2,
tips = 0.02,
smoothing = "loess”,
smooth = 0.25,
smooth.points = 200,
save = TRUE,
out.dir = NULL,

26

kin.simple

plot.pml = TRUE,

image.type = "orig",
flip = TRUE,
show.prog = FALSE
)
Arguments
image.dir character, directory containing images to analyze.
frames numeric, vector indicating which images to process.
thr numeric or character (Cotsu’) threshold to determine binary image. See Details.
size.min numeric, indicating the minimum size of ROIs as a proportion of the pixel field
to be considered in analysis. May be useful if smaller unimportant ROIs appear
in the frame. Default is 0.05.
ant.per numeric; left-most proportion of ROI that establishes the horizontal reference
for the midline displacement.
tips, numeric, the proportion the the midline data to use in calculation of the head
and tail position.
smoothing character, the midline smoothing method, either ’loess’ or ’spline’.
smooth numeric; if smoothing is set to ’loess’, passed to ’span’ parameter of loess. If

smooth.points

save
out.dir
plot.pml
image. type
flip
show.prog
Details

smoothing is set to ’spline’, passed to ’spar’ parameter of smooth.spline

numeric, number of equally spaced points along the ROI midline on which the
smoothed midline is computed.

logical, value indicating if images should be outputted with midline and pre-
dicted midline based on the 1m() predictions from ant . peroverlaying original
or binary images.

character, the directory to which outputted images should be saved.

logical, value indicating if outputted images should include the predicted mid-
line (in blue) and the points according to ant . per used to construct the predicted
midline (in green).

character; the type of image to be outputted, either *orig’ or ’bin’ representing
the original or binary images, respectively. Ignored if ’save=FALSE’.

logical, indicating if binary image should be flipped.

logical, indicating if outputted image should be displayed during analysis.

The algorithm assumes a left-right orientation, i.e., the head of the ROI is positioned left, the tail
right. ffmpeg operations or even imagelJ can rotate images not in this orientation. The ant.per
value therefore establishes the reference line (theoretical straight midline) based on that portion of
the head. The midline is calculated as the midpoints between the y extrema for each x position.

If ’save=TRUE’, images are saved as binary or the original with a body midline overlay and, if
chosen, with the theoretical midline (based on ant. per).

Thresholding operations can be performed with an arbitrary (user defined) numeric value or with
Otsu’s method (thr="otsu"’). The latter chooses a threshold value by minimizing the combined
intra-class variance. See otsu.

kin.simple 27

Value

A list with the following components:
kin.dat a data table consisting of frame-by-frame position parameters for the ROI determined by
LDA analysis.

¢ the frame number

* ’x’ and ’y’: the position of the tail (rightmost or posteriormost)

* ’head.x’ and ’head.y’: the x and y position of the head (leftmost or anteriormost)

e ’amp’: the amplitude (amp) of the tail relative to the theoretical midline determined by the
1m() predictions from ant.per

* ’roi’: a character indicating the ROI ranked by size ("a’ being the largest)
* ’head.pval’: p values of the 1Im() fit that describes the position of the head as determined by
ant.per (green points in the outputted images/video)

midline A data table containing, for each frame described by frames, the following:

* ’x’ and ’y.m’: x and y positions of the midline of the ROI #°
* ’y.min’ and ’y.max’: min and max y positions ROI’s contour used in y.m calculation

* “mid.pred’: the predicted linear midline based on the points/pixels defined by ant . per (green
points in the outputted images/video if *plot.pml=TRUE’)

* ’y.pred’: midline points fit to a smooth spline or loess model with spar or span equal to smooth
(red curve in the outputted images/video)

* ’wave.y’: midline points ’y.pred’ relative to *mid.pred’

* ’roi’: a character indicating ROI size ("a’ being the largest)

cont A data table containing x and y positions of the contours used to calculate the data in ’kin.dat’.
Contains the following:

e ’frame’: the frame

* ’x’ and ’y’: the x and y positions of the contours
all.classes A data table containing the following for all ROIs detected:

e ’frame’: the frame
¢ ’roi’: the name of each ROI found in a frame.

e ’size’: the size of each ROI

dim the x and y dimensions of the images analyzed

See Also

kin.search

28 kin.simple

Examples

plot caudal amplitude and produce a classic midline waveform plot of swimming fish
##A very long example.
Not run:

#download example images and place in 'example' subdirectory
f <- "https://github.com/ckenaley/exampledata/blob/master/example.zip?raw=true”

download.file(f, paste@(tempdir(),"/temp.zip"))
unzip(paste@(tempdir(),"”/temp.zip"”), exdir=tempdir())
unlink(paste@(tempdir(),"/temp.zip"))

dir.create(paste@(tempdir(),"”/processed_images"))

kin <- kin.simple(image.dir =paste@(tempdir(),"/example”),
smoothing = "loess”,frames=1:50,
out.dir=paste@(tempdir(),"/processed_images"),
show.prog = FALSE,thr = "otsu”,
image.type="bin", smooth=0.4)

#plot instantaneous amplitude of tail (last/rightmost point) over frames
p <- ggplot(dat=kin$kin.dat,aes(x=frame,y=amp))+geom_line()+geom_point()+theme_classic(15)

print(p)

midline plot

ml <- kin$midline

#leftmost x starts at 0

ml <- ml[,x2:=x-x[1],by=frame]

ml <- merge(ml,kin$kin.dat[,list(frame,amp)],by="frame") #merge these

pal <- wes_palette("Zissoul”, 100, type = "continuous") #"Zissou” color palette

p <- ggplot(dat=ml,aes(x=x2,y=wave.y))+theme_classic(15)+scale_color_gradientn(colours = pal)

—n

p <- ptgeom_line(aes(group=frame,color=amp),stat="smooth” ,method = "loess”, size = 1.5)
print(p)

#Make a video of processed frames
images.to.video2(image.dir=paste@(tempdir(),"/processed_images"),
vid.name="trout_test"”,out.dir=tempdir(),frame.rate=5,qual=100, raw=FALSE)
file.exists(paste@(tempdir(),"/trout_test_red.mp4"))

End(Not run)

A very short example.

#retrieve image

i <- EBImage: :readImage(system.file("extdata/img"”, "sunfish_BCF. jpg", package = "trackter"))
#create directory and write image to it

rad

t <-tempdir()
dir.create(paste@(t,"/images"))
EBImage: :writeImage(i,paste@(t,"”/images/sunfish@@1.jpg"),type = "jpeg")

#run kin.search and save output image to directory
kin.i<- kin.simple(image.dir = paste@(t,"”/images"),save = TRUE,out.dir = t)

#plot midline

with(kin.i$midline,plot(x,wave.y))

i2 <- EBImage::readImage(paste@d(t,"/sunfish@@1_000.jpg"))
EBImage: :display(i2,method="raster")

#clean up

unlink(paste@(t,"/images"), recursive=TRUE)

29

rad convert degrees to radians

Description

convert degrees to radians

Usage
rad(x)

Arguments

X Numeric; value in degrees

Value

A single value

See Also
deg

vid.to.images Extracts images from a video file with ffmpeg

Description

Uses ffmpeg systems calls to extract images from a video.

Usage

vid.to.images(vid.path = NULL, out.dir = NULL, overwrite = FALSE, qual = 50)

30 vid.to.images

Arguments
vid.path Character; path of video file to be processed.
out.dir character; directory path in which to store images.
overwrite logical; should path described by ’out.dir’ be overwritten if it exhists.
qual numeric; the quality of the jpeg images to be rendered from 1-100%. Defaults
to 50%.
Value

Extracts all the images of the video and saves them to an "images" directory with appended number
sequence

See Also

images.to.video

Examples

#make a video with animation package

require(animation)

fun <- function(){

y <- sin(1:50)

X <- 1:50

for(i in 1:50) {
plot(x[il,y[i],col="red",x1im=c(@,50),ylim=range(y))
animation::ani.pause()
}

3

animation: :saveVideo(fun(),video.name=paste@(tempdir(),"/wave.mp4"”),interval = 0.2)

#create directory in which to store images
dir.create(paste@(tempdir(),"”/images"))
vid.to.images(vid.path=paste@(tempdir(),"/wave.mp4"),
out.dir= paste@(tempdir(),"/images"),qual=100)

#see the images in the "images" subdirectory
list.files(paste@(tempdir(),"/images"))

#clean up
unlink(paste@(tempdir(),"”/images"),recursive=TRUE)

vid.to.images2 31

vid.to.images?2 Extracts images from a video file with ffmpeg

Description

Extract images from video file using ffmpegs flexible video filters and codecs

Usage

vid.to.images2(
vid.path = NULL,
out.dir = NULL,
overwrite = FALSE,

filt = NULL,
codec = NULL,
silent = TRUE
)
Arguments
vid.path character; path of video file to be processed.
out.dir character; directory path in which to store images.
overwrite logical; should path described by ’out.dir’ be overwritten if it exhists.
filt character; video filter that should be applied to ffmpeg operation. See https:
//ffmpeg.org/ffmpeg-filters.html
codec character; video codec to apply in ffmpeg operation
silent logical; should output of system call for ffmpeg operation be suppressed.
Details

Particularly useful for resizing images

Value
Extracts all the images of the video and saves them to an "images" directory with appended number
sequence

See Also

images.to.video

https://ffmpeg.org/ffmpeg-filters.html
https://ffmpeg.org/ffmpeg-filters.html

32

Examples

#make a video with animation package

fun <- function(){

y <- sin(1:50)

x <= 1:50

for(i in 1:50) {
plot(x[il,y[i],col="red",x1lim=c(0,50),ylim=range(y))
animation::ani.pause()
}

3

animation::saveVideo(fun(),video.name=paste@(tempdir(),"/wave.mp4"),interval = 0.2)

#reduce the image images to 200 px wide maintaining aspect ratio
#notice the spaces at the beginning/end of string

filt.red <- " -vf scale=200:-1 "

c <- " -c:v libx264 "

dir.create(paste@(tempdir(),"/images"))
vid.to.images2(vid.path=paste@(tempdir(),"/wave.mp4"),
out.dir=paste@(tempdir(),"/images"”),filt=filt.red, codec=NULL)
#see the images in the "images"” directory
list.files(paste@(tempdir(),"/images"))

#clean up
unlink(paste@(tempdir(),"”/images"),recursive=TRUE)

wave

wave Compute wavelengths from a sine-like waveform

Description

Computes full wavelengths and their positions and amplitude from a sine-like waveform based on

either peak-to-peak, trough-to-trough, or internodal distance.

Usage

wave (
X!
Y,
method = "zeros",
zero.begin = TRUE,
fit = TRUE,
dens = 10,
smooth = 0.1,
smoothing = "loess"

wave 33

Arguments
X numeric; x position
y numeric; y position
method character; how waves should be found and classified, where it crosses zero/the
internodal length ("zeros"), peak to peak ("p2p") or trough to trough ("t2t"). See
Details.
zero.begin logical; does wave begin at zero? Default is "TRUE’ and will help find waves
beginning at first x,y values if y=0
fit logical; if "'method="zeros"’, should zeros be detected by a fitting operation. See
Details.
dens numeric; factor by which to increase the sample density used in fitting when
’method="zeros"’. See Details.
smooth numeric; if smoothing is set to ’loess’, ’span’ parameter value for loess. If
smoothing is set to ’spline’ ’spar’ parameter value for smooth.spline
smoothing character; the smoothing method when *fit=TRUE’, either "loess’ or ’spline’.
See Details.
Details

If "'method="p2p"* or "'method="t2t"’, full waves are found using critical points (i.e., local maxima,
the peaks or minima, the troughs) with features.

If "method="zeros"” and *fit=TRUE’, zero crossings are determined by first increasing the sample
density by a factor determined by dens. A more dense loess or smooth.spline model is then
fit to the data and new y values predicted. Wave positions and lengths are determined based on
these predicted values. This option should be useful when the sampling density of the waveform
is relatively low and therefor detected wave positions and zero crossings (the internodes) may be
rather coarse.

Value

A list with the following components:
method the method chosen to find full waves

names a data table with columns ’x’, ’y’, and *wave’ describing the x and y positions of the wave
and a numeric name of each wave detected, respectively. If method="zeros" and ’fit=TRUE’,
these values reflect the predicted, more dense data as determined by smoothing, smooth, and dens.

dat a data table describing each wave detected.

* ’zeros’: x value where y crosses zero. Returns NA if method is *p2p’ or ’t2t°, value is NA.
* ’wave.begin’: x value where each wave begins.

* “wave.end’: x value where each wave ends.

* ’begin.index’: x index of where each wave begins.

* ’end.index’: x index of where each wave ends.

e ’wave’: numeric name of each wave.

34

See Also

wave

’I’: the length of each wave.

’amp1’: the peak amplitude of each wave. If method is set to "p2p’ or ’t2t° this is the begin
amplitude. If "method="zeros’" this is the peak amplitude between internodes.

’amp?2’: If method is set to "p2p’ or ’t2t’ this is the end amplitude. If "method="zeros’" this is
the minimum amplitude between internodes.

pos1’: If method is set to p2p’ or ’t2t’ the x position of begin amplitude for each half wave
and identical to ’begin’. If "method="zeros’", the position of peak amplitude between the
internodes.

"pos2’: If method is set to p2p’ or ’t2t’ the x position of end amplitude for each half wave
and identical to end’. If "method="zeros’", the position of minimum amplitude between the
internodes.

If "method="zeros"” and ’fit=TRUE’, these values reflect the predicted, more dense data as deter-
mined by smoothing,smooth, and dens.

features, loess, smooth.spline

Examples

require(ggplot2)

#Find length of the full waves
x <- seq(0,pi,0.01)

y <= sin(x"2*pi)

#zero method
w.z <- wave(x,y,method="zeros", smoothing="spline"”,smooth=0.1)

#plot wave with detected full waves using fitted 'zeros' method

p <- ggplot()+geom_point(aes(x=x,y=y))

p <- ptgeom_line(data=w.z$names,aes(x=x,y=y,col=wave),alpha=0.4,size=3,inherit.aes=FALSE)
p+theme_classic()

#plot lambda as it varies with position

gplot(data=w.z$dat,x=posi1,y=1)

#trough-to-trough method
w.p <- wave(x,y,method="t2t")

gplot(data=w.p$names, x=x, y=y,col=wave)

Index

x datasets
fishshapes, 9
=2

amp.freq, 2
bearing.xy, 3

coo_angle_edges, 8
coo_flipx, 7
coo_flipy, 7
coo_smooth, 6, 8
cosine.ang, 4
cut, 8

deg, 5, 29
dist.2d,5

efourier, 8, 16, 19
features, 3, 10, 11, 33, 34
fin.kin, 6
fishshapes, 9, 19
halfwave, 10

images.to.video, 12, 30, 31
images.to.video2, 13

kin.LDA, 8, 15
kin.search, 6, 8, 19, 20, 27
kin.simple, 6, 8, 19, 23, 25

LDA, 19
loess, 7, 8,10, 11,17, 26, 33, 34

otsu, 17,21, 26
Out, 9

rad, 5,29

smooth.spline, 7, 8, 10, 11, 17, 26, 33, 34

35

vid.to.images, 13, 29
vid. to.images2, /4, 31

wave, 32

	:=
	amp.freq
	bearing.xy
	cosine.ang
	deg
	dist.2d
	fin.kin
	fishshapes
	halfwave
	images.to.video
	images.to.video2
	kin.LDA
	kin.search
	kin.simple
	rad
	vid.to.images
	vid.to.images2
	wave
	Index

