
Package ‘wdnet’
June 27, 2022

Title Weighted and Directed Networks

Version 0.0.4

Date 2022-06-26

Description Implementations of network analysis including
(1) assortativity coefficient of weighted and directed networks,
Yuan, Yan and Zhang (2021) <doi:10.1093/comnet/cnab017>,
(2) centrality measures for weighted and directed networks,
Opsahl, Agneessens and Skvoretz (2010) <doi:10.1016/j.socnet.2010.03.006>,
Zhang, Wang and Yan (2022) <doi:10.1016/j.physa.2021.126438>,
(3) clustering coefficient of weighted and directed networks,
Fagiolo (2007) <doi:10.1103/PhysRevE.76.026107> and
Clemente and Grassi (2018) <doi:10.1016/j.chaos.2017.12.007>,
(4) network rewiring,
(5) preferential attachment network generation.

Depends R (>= 4.2.0)

License GPL (>= 3.0)

Encoding UTF-8

Imports stats, igraph, wdm, Rcpp, rARPACK, Matrix, CVXR

LinkingTo Rcpp, RcppArmadillo

BugReports https://gitlab.com/wdnetwork/wdnet/-/issues

URL https://gitlab.com/wdnetwork/wdnet

RoxygenNote 7.2.0

NeedsCompilation yes

Author Yelie Yuan [aut, cre],
Tiandong Wang [aut],
Jun Yan [aut],
Panpan Zhang [aut]

Maintainer Yelie Yuan <yelie.yuan@uconn.edu>

Repository CRAN

Date/Publication 2022-06-27 18:30:02 UTC

1

https://doi.org/10.1093/comnet/cnab017
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1016/j.physa.2021.126438
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1016/j.chaos.2017.12.007
https://gitlab.com/wdnetwork/wdnet/-/issues
https://gitlab.com/wdnetwork/wdnet

2 R topics documented:

R topics documented:

+.rpactl . 3
adj_to_edge . 3
assortcoef . 4
centrality . 5
closeness_c . 7
clustcoef . 8
cvxr.control . 10
degree_c . 11
dprewire . 12
dprewire.range . 14
dprewire_directed . 15
dprewire_directed_cpp . 16
dprewire_undirected . 17
dprewire_undirected_cpp . 18
dw_assort . 19
dw_feature_assort . 19
edge_to_adj . 20
fill_weight_cpp . 21
find_node_cpp . 21
find_node_undirected_cpp . 22
get_constr . 22
get_dist . 23
get_eta_directed . 23
get_eta_undirected . 24
get_values . 25
node_strength_cpp . 25
rpactl.edgeweight . 26
rpactl.newedge . 26
rpactl.preference . 27
rpactl.reciprocal . 28
rpactl.scenario . 29
rpanet . 30
rpanet_general . 32
rpanet_nodelist_cpp . 33
rpanet_simple . 34
rpanet_wan . 35
sample_node_cpp . 35
wdnet . 36
wpr . 36

Index 38

+.rpactl 3

+.rpactl Add components to the control list

Description

‘+‘ is used to combine components to control the PA network generation process. Available compo-
nents are rpactl.scenario(), rpactl.edgeweight(), rpactl.newedge(), rpactl.preference()
and rpactl.reciprocal().

Usage

S3 method for class 'rpactl'
e1 + e2

Arguments

e1 A list of class rpactl.

e2 A list of class rpactl.

Value

A list of class rpactl with components from e1 and e2.

Examples

control <- rpactl.scenario(alpha = 0.5, beta = 0.5) +
rpactl.preference(sparams = c(1, 1, 0, 0, 1),

tparams = c(0, 0, 1, 1, 1))

control <- rpactl.scenario(alpha = 1) +
rpactl.edgeweight(distribution = rgamma,

dparams = list(shape = 5, scale = 0.2),
shift = 1)

adj_to_edge Convert adjacency matrix to edgelist and edgeweight.

Description

Convert adjacency matrix to edgelist and edgeweight.

Usage

adj_to_edge(adj, directed = TRUE, weighted = TRUE)

4 assortcoef

Arguments

adj Adjacency matrix of a network.

directed Logical, whether the network is directed. Passed to igraph::graph_from_adjacency_matrix.

weighted Passed to igraph::graph_from_adjacency_matrix. This argument specifies
whether to create a weighted graph from an adjacency matrix. If it is NULL
then an unweighted graph is created and the elements of the adjacency matrix
gives the number of edges between the vertices. If it is TRUE then a weighted
graph is created and the name of the edge attribute will be weight.

Value

A list of edgelist and edgeweight.

assortcoef Assortativity coefficient

Description

Compute the assortativity coefficient of a network.

Usage

assortcoef(
edgelist = NULL,
edgeweight = NULL,
adj = NULL,
directed = TRUE,
f1 = NULL,
f2 = NULL

)

Arguments

edgelist A two column matrix represents edges. If NULL, edgelist and edgeweight will
be extracted from the adjacency matrix adj.

edgeweight A vector represents the weight of edges. If edgelist is provided and edgeweight
is NULL, all the edges will be considered have weight 1.

adj An adjacency matrix.

directed Logical. Whether the edges will be considered as directed.

f1 A vector, represents the first feature of existing nodes. Number of nodes =
length(f1) = length(f2). Defined for directed networks. If NULL, out-strength
will be used.

f2 A vector, represents the second feature of existing nodes. Defined for directed
networks. If NULL, in-strength will be used.

centrality 5

Value

Assortativity coefficient for undirected networks, or four assortativity coefficients for directed net-
works.

Note

When the adjacency matrix is binary (i.e., directed but unweighted networks), assortcoef returns
the assortativity coefficient proposed in Foster et al. (2010).

References

• Foster, J.G., Foster, D.V., Grassberger, P. and Paczuski, M. (2010). Edge direction and the
structure of networks. Proceedings of the National Academy of Sciences of the United States,
107(24), 10815–10820.

• Yuan, Y. Zhang, P. and Yan, J. (2021). Assortativity coefficients for weighted and directed
networks. Journal of Complex Networks, 9(2), cnab017.

Examples

set.seed(123)
control <- rpactl.edgeweight(distribution = rgamma,

dparams = list(shape = 5, scale = 0.2), shift = 0)
netwk <- rpanet(nstep = 10^4, control = control)
result <- assortcoef(netwk$edgelist, edgeweight = netwk$edgeweight, directed = TRUE)

centrality Centrality measures

Description

Compute the centrality measures of the nodes in a weighted and directed network.

Usage

centrality(
adj = NULL,
edgelist = NULL,
edgeweight = NULL,
measure = c("degree", "closeness", "wpr"),
degree.control = list(alpha = 1, mode = "out"),
closeness.control = list(alpha = 1, mode = "out", method = "harmonic", distance =

FALSE),
wpr.control = list(gamma = 0.85, theta = 1, prior.info = NULL)

)

6 centrality

Arguments

adj An adjacency matrix of a weighted and directed network. If NULL, edgelist
and edgeweight will be used to construct the adjacency matrix.

edgelist A two column matrix, each row represents a directed edge of the network. It
will be ignored if adj is not NULL.

edgeweight A vector represents the weight of edges. If edgelist is provided and edgeweight
is NULL, all the edges will be considered have weight 1. It will be ignored if adj
is not NULL.

measure Which measure to use: "degree" (degree-based centrality), "closeness" (close-
ness centrality), or "wpr" (weighted PageRank centrality)?

degree.control A list of parameters passed to the degree centrality measure.

• alpha A tuning parameter. The value of alpha must be nonnegative. By
convention, alpha takes a value from 0 to 1 (default).

• mode Which mode to compute: "out" (default) or "in"? For undirected
networks, this setting is irrelevant.

closeness.control

A list of parameters passed to the closeness centrality measure.

• alpha A tuning parameter. The value of alpha must be nonnegative. By
convention, alpha takes a value from 0 to 1 (default).

• mode Which mode to compute: "out" (default) or "in"? For undirected
networks, this setting is irrelevant.

• method Which method to use: "harmonic" (default) or "standard"?
• distance Whether to consider the entries in the adjacency matrix as dis-

tances or strong connections. The default setting is FALSE.

wpr.control A list of parameters passed to the weighted PageRank centrality measure.

• gamma The damping factor; it takes 0.85 (default) if not given.
• theta A tuning parameter leveraging node degree and strength; theta =

0 does not consider edge weight; theta = 1 (default) fully considers edge
weight.

• prior.info Vertex-specific prior information for restarting when arriving at a
sink. When it is not given (NULL), a random restart is implemented.

Value

A list of node names and associated centrality measures

Note

The degree-based centrality measure is an extension of function strength in package igraph and
an alternative of function degree_w in package tnet.

The closeness centrality measure is an extension of function closeness in package igraph and
function closeness_w in package tnet. The method of computing distances between vertices is
the Dijkstra’s algorithm.

The weighted PageRank centrality measure is an extension of function page_rank in package
igraph.

closeness_c 7

References

• Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Math-
ematik, 1, 269–271.

• Newman, M.E.J. (2003). The structure and function of complex networks. SIAM review,
45(2), 167–256.

• Opsahl, T., Agneessens, F., Skvoretz, J. (2010). Node centrality in weighted networks: Gen-
eralizing degree and shortest paths. Social Networks, 32, 245–251.

• Zhang, P., Wang, T. and Yan, J. (2022) PageRank centrality and algorithms for weighted,
directed networks with applications to World Input-Output Tables. Physica A: Statistical Me-
chanics and its Applications, 586, 126438.

• Zhang, P., Zhao, J. and Yan, J. (2020+) Centrality measures of networks with application to
world input-output tables

Examples

Generate a network according to the Erd\"{o}s-Renyi model of order 20
and parameter p = 0.3
edge_ER <- rbinom(400,1,0.3)
weight_ER <- sapply(edge_ER, function(x) x*sample(3,1))
adj_ER <- matrix(weight_ER,20,20)
mydegree <- centrality(adj_ER, measure = "degree", degree.control =
list(alpha = 0.8, mode = "in"))
myclose <- centrality(adj_ER, measure = "closeness", closeness.control =
list(alpha = 0.8, mode = "out", method = "harmonic", distance = FALSE))
mywpr <- centrality(adj_ER, measure = "wpr", wpr.control =
list(gamma = 0.85, theta = 0.75))

closeness_c Closeness centrality

Description

Compute the closeness centrality measures of the vertices in a weighted and directed network rep-
resented through its adjacency matrix.

Usage

closeness_c(
adj,
alpha = 1,
mode = "out",
method = "harmonic",
distance = FALSE

)

8 clustcoef

Arguments

adj is an adjacency matrix of a weighted and directed network

alpha is a tuning parameter. The value of alpha must be nonnegative. By convention,
alpha takes a value from 0 to 1 (default).

mode which mode to compute: "out" (default) or "in"? For undirected networks, this
setting is irrelevant.

method which method to use: "harmonic" (default) or "standard"?

distance whether to consider the entries in the adjacency matrix as distances or strong
connections. The default setting is FALSE.

Value

a list of node names and associated closeness centrality measures

Note

Function closeness_c is an extension of function closeness in package igraph and function
closeness_w in package tnet. The method of computing distances between vertices is the Dijk-
stra’s algorithm.

References

• Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Math-
ematik, 1, 269–271.

• Newman, M.E.J. (2003). The structure and function of complex networks. SIAM review,
45(2), 167–256.

• Opsahl, T., Agneessens, F., Skvoretz, J. (2010). Node centrality in weighted networks: Gen-
eralizing degree and shortest paths. Social Networks, 32, 245–251.

• Zhang, P., Zhao, J. and Yan, J. (2020+) Centrality measures of networks with application to
world input-output tables

clustcoef Directed clustering coefficient

Description

Compute the clustering coefficient of a weighted and directed network.

Usage

clustcoef(adj, method = c("Clemente","Fagiolo"), isolates = "zero")

clustcoef 9

Arguments

adj is an adjacency matrix of an weighted and directed network.

method which method used to compute clustering coefficients: Clemente and Grassi
(2018) or Fagiolo (2007).

isolates character, defines how to treat vertices with degree zero and one. If "zero", then
their clustering coefficient is returned as 0 and are included in the averaging.
Otherwise, their clustering coefficient is NaN and are excluded in the averaging.
Default value is "zero".

Value

lists of local clustering coefficients (in terms of a vector), global clustering coefficient (in terms of
a scalar) and number of weighted directed triangles (in terms of a vector) base on total, in, out,
middleman (middle), or cycle triplets.

Note

Self-loops (if exist) are removed prior to the computation of clustering coefficient. When the adja-
cency matrix is symmetric (i.e., undirected but possibly unweighted networks), clustcoef returns
local and global clustering coefficients proposed by Barrat et al. (2010).

References

• Barrat, A., Barth\’elemy, M., Pastor-Satorras, R. and Vespignani, A. (2004). The architecture
of complex weighted networks. Proceddings of National Academy of Sciences of the United
States of America, 101(11), 3747–3752.

• Clemente, G.P. and Grassi, R. (2018). Directed clustering in weighted networks: A new
perspective. Chaos, Solitons & Fractals, 107, 26–38.

• Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76, 026107.

Examples

Generate a network according to the Erd\"{o}s-Renyi model of order 20
and parameter p = 0.3
edge_ER <- rbinom(400,1,0.3)
weight_ER <- sapply(edge_ER, function(x) x*sample(3,1))
adj_ER <- matrix(weight_ER,20,20)
mycc <- clustcoef(adj_ER, method = "Clemente")
system.time(mycc)

10 cvxr.control

cvxr.control Parameters passed to CVXR::solver().

Description

Defined for the convex optimization problems for solving eta. The control list is passed to dprewire
and dprewire.range.

Usage

cvxr.control(
solver = "ECOS",
ignore_dcp = FALSE,
warm_start = FALSE,
verbose = FALSE,
parallel = FALSE,
gp = FALSE,
feastol = NULL,
reltol = NULL,
abstol = NULL,
num_iter = NULL,
...

)

Arguments

solver (Optional) A string indicating the solver to use. Defaults to "ECOS".

ignore_dcp (Optional) A logical value indicating whether to override the DCP check for a
problem.

warm_start (Optional) A logical value indicating whether the previous solver result should
be used to warm start.

verbose (Optional) A logical value indicating whether to print additional solver output.

parallel (Optional) A logical value indicating whether to solve in parallel if the problem
is separable.

gp (Optional) A logical value indicating whether the problem is a geometric pro-
gram. Defaults to FALSE.

feastol The feasible tolerance on the primal and dual residual.

reltol The relative tolerance on the duality gap.

abstol The absolute tolerance on the duality gap.

num_iter The maximum number of iterations.

... Additional options that will be passed to the specific solver. In general, these
options will override any default settings imposed by CVXR.

degree_c 11

Value

A list containing the parameters.

Examples

control <- cvxr.control(solver = "OSQP", abstol = 1e-5)

degree_c Degree-based centrality

Description

Compute the degree centrality measures of the vertices in a weighted and directed network repre-
sented through its adjacency matrix.

Usage

degree_c(adj, alpha = 1, mode = "out")

Arguments

adj is an adjacency matrix of a weighted and directed network

alpha is a tuning parameter. The value of alpha must be nonnegative. By convention,
alpha takes a value from 0 to 1 (default).

mode which mode to compute: "out" (default) or "in"? For undirected networks, this
setting is irrelevant.

Value

a list of node names and associated degree centrality measures

Note

Function degree_c is an extension of function strength in package igraph and an alternative of
function degree_w in package tnet. Function degree_c uses adjacency matrix as input.

References

• Opsahl, T., Agneessens, F., Skvoretz, J. (2010). Node centrality in weighted networks: Gen-
eralizing degree and shortest paths. Social Networks, 32, 245–251.

• Zhang, P., Zhao, J. and Yan, J. (2020+) Centrality measures of networks with application to
world input-output tables

12 dprewire

dprewire Degree preserving rewiring.

Description

Rewire a given network to have predetermined assortativity coefficients while preserving node de-
gree.

Usage

dprewire(
edgelist = NULL,
directed = TRUE,
adj = NULL,
target.assortcoef = list(outout = NULL, outin = NULL, inout = NULL, inin = NULL),
control = list(iteration = 10, nattempts = NULL, history = FALSE, cvxr.control =

cvxr.control(), eta.obj = function(x) 0),
eta = NULL

)

Arguments

edgelist A two column matrix, each row represents an edge of the network.

directed Logical, whether the network is directed or not.

adj Adjacency matrix of an unweighted network. It will be ignored if edgelist is
provided.

target.assortcoef

For directed networks, it is a list represents the predetermined value or range of
assortativity coefficients. For undirected networks, it is a constant between -1 to
1. It will be ignored if eta is provided.

control A list of parameters for controlling the rewiring process and the process for
solving eta.

• iteration An integer, represents the number of rewiring iterations. Each
iteration consists of nattempts rewiring attempts. The assortativity coeffi-
cient(s) of the network will be recorded after each iteration.

• nattempts An integer, number of rewiring attempts for each iteration. De-
fault value equals the number of rows of edgelist.

• history Logical, whether the rewiring attempts should be recorded and
returned.

• eta.obj A convex function of eta to be minimized when solving for eta
with given target.assortcoef. Defaults to 0. It will be ignored if eta is
provided.

• cvxr.control A list of parameters passed to CVXR::solve() for solving
eta with given target.assortcoef. It will be ignored if eta is provided.

dprewire 13

eta An matrix represents the target network structure. If specified, target.assortcoef
will be ignored. For directed networks, the element at row "i-j" and column "k-l"
represents the proportion of directed edges linking a source node with out-degree
i and in-degree j to a target node with out-degree k and in-degree l. For undi-
rected networks, eta is symmetric, the summation of the elements at row "i",
column "j" and row "j", column "i" represents the proportion of edges linking to
a node with degree i and a node with degree j.

Details

There are two steps in this algorithm. It first solves for an appropriate eta using target.assortcoef,
eta.obj, and cvxr.control, then proceeds to the rewiring process and rewire the network towards
the solved eta. If eta is given, the algorithm will skip the first step. The function only works for
unweighted networks.

Each rewiring attempt samples two rows from edgelist, for example Edge1:(v_1, v_2) and Edge2:(v_3,
v_4). For directed networks, if the rewiring attempt is accepted, the sampled edges are replaced as
(v_1, v_4), (v_3, v_2); for undirected networks, the algorithm try to rewire the sampled edges as
{v_1, v_4}, {v_3, v_2} (type 1) or {v_1, v_3}, {v_2, v_4} (type 2), each with probability 1/2.

Value

Rewired edgelist; assortativity coefficient(s) after each iteration; rewiring history (including the
index of sampled edges and rewiring result); solved eta and its corresponding assortativity coeffi-
cient(s), if applicable.

Examples

set.seed(123)
edgelist <- rpanet(1e4, control = rpactl.scenario(

alpha = 0.4, beta = 0.3, gamma = 0.3))$edgelist
rewire a directed network to have predetermined assortativity coefficients
target.assortcoef <- list("outout" = -0.2, "outin" = 0.2)
ret1 <- dprewire(edgelist, directed = TRUE,

target.assortcoef = target.assortcoef,
control = list(iteration = 200))

plot(ret1$assortcoef$Iteration, ret1$assortcoef$"outout")
plot(ret1$assortcoef$Iteration, ret1$assortcoef$"outin")

edgelist <- rpanet(1e4, control = rpactl.scenario(
alpha = 0.3, beta = 0.1, gamma = 0.3, xi = 0.3),
directed = FALSE)$edgelist

rewire an undirected network to have predetermined assortativity coefficient
ret2 <- dprewire(edgelist, directed = FALSE, target.assortcoef = 0.3,

control = list(iteration = 100, eta.obj = CVXR::norm2,
history = TRUE))

plot(ret2$assortcoef$Iteration, ret2$assortcoef$Value)

14 dprewire.range

dprewire.range Range of assortativity coefficient.

Description

The assortativity coefficient of a given network may not achieve all the values within -1 and 1
via degree preserving rewiring. This function computes the range of assortativity coefficients that
can be achieved through degree preserving rewiring. The algorithm is designed for unweighted
networks.

Usage

dprewire.range(
edgelist = NULL,
directed = TRUE,
adj = NULL,
which.range = c("outout", "outin", "inout", "inin"),
control = cvxr.control(),
target.assortcoef = list(outout = NULL, outin = NULL, inout = NULL, inin = NULL)

)

Arguments

edgelist A two column matrix, each row represents an edge of the network.

directed Logical, whether the network is directed or not.

adj Adjacency matrix of an unweighted network. It will be ignored if edgelist is
provided.

which.range The type of interested assortativity coefficient. For directed networks, it takes
one of the values: "outout", "outin", "inout" and "inin". It will be ignored if the
network is undirected.

control A list of parameters passed to CVXR::solve() for solving an appropriate eta
with the constraints target.assortcoef.

target.assortcoef

A list of constraints, it has the predetermined value or range imposed on assor-
tativity coefficients other than which.range. It will be ignored if the network is
undirected.

Details

The ranges are computed through convex optimization. The problems are defined and solved via
the R package CVXR. For undirected networks, the function returns the range of the assortativity
coefficient. For directed networks, the function computes the range of which.range while other
assortativity coefficients are restricted through target.assortcoef.

dprewire_directed 15

Value

Range of the interested assortativity coefficient; solved eta and its corresponding assortativity co-
efficients.

Examples

set.seed(123)
edgelist <- rpanet(5e3, control =

rpactl.scenario(alpha = 0.5, beta = 0.5))$edgelist
ret1 <- dprewire.range(edgelist, directed = TRUE, which.range = "outin",

target.assortcoef = list("outout" = c(-0.3, 0.3), "inout" = 0.1))
ret2 <- dprewire(edgelist, eta = ret1$lbound$eta, control = list(iteration = 100))
plot(ret2$assortcoef$Iteration, ret2$assortcoef$"outin")
ret3 <- dprewire(edgelist, eta = ret1$ubound$eta, control = list(iteration = 100))
plot(ret3$assortcoef$Iteration, ret3$assortcoef$"outin")

dprewire_directed Degree preserving rewiring for directed networks

Description

Degree preserving rewiring towards the target structure eta.

Usage

dprewire_directed(
edgelist,
eta,
iteration = 1,
nattempts = NULL,
rewire.history = FALSE

)

Arguments

edgelist A two column matrix, each row represents a directed edge from the first column
to the second column.

eta An matrix, target structure eta generated by wdnet::get_eta_directed().

iteration An integer, number of rewiring iterations, each iteration consists of nattempts
rewiring attempts.

nattempts An integer, number of rewiring attempts for each iteration. Default value equals
the number of rows of edgelist.

rewire.history Logical, whether the rewiring history should be returned.

16 dprewire_directed_cpp

Value

Rewired edgelist, degree based assortativity coefficients after each iteration, rewiring history (in-
cluding the index of sampled edges and rewiring result). For each rewiring attempt, two rows are
sampled form the edgelist, for example Edge1:(v_1, v_2) and Edge2:(v_3, v_4), if the rewiring
attempt is accepted, the sampled edges are replaced as (v_1, v_4), (v_3, v_2).

dprewire_directed_cpp Degree preserving rewiring process for directed networks.

Description

Degree preserving rewiring process for directed networks.

Usage

dprewire_directed_cpp(
iteration,
nattempts,
targetNode,
sourceOut,
sourceIn,
targetOut,
targetIn,
index_s,
index_t,
eta,
rewire_history

)

Arguments

iteration Integer, number of iterations of nattempts rewiring attempts.

nattempts Integer, number of rewiring attempts per iteration.

targetNode Vector, target node sequence - 1.

sourceOut Vector, source nodes’ out-degree.

sourceIn Vector, source nodes’ in-degree.

targetOut Vector, target nodes’ out-degree.

targetIn Vector, target nodes’ in-degree.

index_s Index of source nodes’ out- and in-degree. index_s/index_t bridges the indices
of source/target nodes and the target structure eta.

index_t Index of target nodes’ out- and in-degree.

eta Matrix, target structure eta generated by wdnet::get_eta_directed().

rewire_history Logical, whether the rewiring history should be returned.

dprewire_undirected 17

Value

Target node sequence, four directed assortativity coefficients after each iteration, and rewire history.

dprewire_undirected Degree preserving rewiring for undirected networks

Description

Degree preserving rewiring towards the target structure eta.

Usage

dprewire_undirected(
edgelist,
eta,
iteration = 1,
nattempts = NULL,
rewire.history = FALSE

)

Arguments

edgelist A two column matrix, each row represents an undirected edge.

eta An matrix, target structure eta generated by wdnet::get_eta_undirected().

iteration An integer, number of rewiring iterations, each iteration consists of nattempts
rewiring attempts.

nattempts An integer, number of rewiring attempts for each iteration. Default value equals
the number of rows of edgelist.

rewire.history Logical, whether the rewiring history should be returned.

Value

Rewired edgelist, assortativity coefficient after each iteration, and rewiring history (including the
index of sampled edges and rewiring result). For each rewiring attempt, two rows are sampled from
the edgelist, for example Edge1:{v_1, v_2} and Edge2:{v_3, v_4}, the function try to rewire the
sampled edges as {v_1, v_4}, {v_3, v_2} (rewire type 1) or {v_1, v_3}, {v_2, v_4} (rewire type 2)
with probability 1/2.

18 dprewire_undirected_cpp

dprewire_undirected_cpp

Degree preserving rewiring process for undirected networks.

Description

Degree preserving rewiring process for undirected networks.

Usage

dprewire_undirected_cpp(
iteration,
nattempts,
node1,
node2,
degree1,
degree2,
index1,
index2,
e,
rewire_history

)

Arguments

iteration Integer, number of iterations of nattempts rewiring attempts.

nattempts Integer, number of rewiring attempts per iteration.

node1 Vector, first column of edgelist.

node2 Vector, second column of edgelist.

degree1 Vector, degree of node1 and node2.

degree2 Vector, degree of node2 and node1. degree1 and degree2 are used to calculate
assortativity coefficient, i.e., degree correlation.

index1 Index of the first column of edgelist. index1 and index2 bridge the nodes’ degree
and the structure e.

index2 Index of the second column of edgelist..

e Matrix, target structure e (eta) generated by wdnet::get_eta_undirected().

rewire_history Logical, whether the rewiring history should be returned.

Value

Node sequences, assortativity coefficient after each iteration and rewiring history.

dw_assort 19

dw_assort Compute the assortativity coefficient of a weighted and directed net-
work.

Description

Compute the assortativity coefficient of a weighted and directed network.

Usage

dw_assort(adj, type = c("out-in", "in-in", "out-out", "in-out"))

Arguments

adj is an adjacency matrix of a weighted and directed network.

type which type of assortativity coefficient to compute: "outin" (default), "inin", "out-
out" or "inout"?

Value

a scalar of assortativity coefficient

Note

When the adjacency matrix is binary (i.e., directed but unweighted networks), dw_assort returns
the assortativity coefficient proposed in Foster et al. (2010).

References

• Foster, J.G., Foster, D.V., Grassberger, P. and Paczuski, M. (2010). Edge direction and the
structure of networks. Proceedings of the National Academy of Sciences of the United States,
107(24), 10815–10820.

• Yuan, Y. Zhang, P. and Yan, J. (2021). Assortativity coefficients for weighted and directed
networks. Journal of Complex Networks, 9(2), cnab017.

dw_feature_assort Feature based assortativity coefficient

Description

Node feature based assortativity coefficients of a weighted and directed network.

Usage

dw_feature_assort(edgelist, edgeweight, f1, f2)

20 edge_to_adj

Arguments

edgelist A two column matrix represents edges. If NULL, edgelist and edgeweight will
be extracted from the adjacency matrix adj.

edgeweight A vector represents the weight of edges. If NULL, all the edges are considered
have weight 1.

f1 A vector, represents the first feature of existing nodes. Number of nodes =
length(f1) = length(f2). Defined for directed networks. If NULL, out-strength
will be used.

f2 A vector, represents the second feature of existing nodes. Defined for directed
networks. If NULL, in-strength will be used.

Value

Directed weighted assortativity coefficients between source nodes’ f1 (or f2) and target nodes’
f2(or f1).

Examples

set.seed(123)
adj <- matrix(rbinom(400, 1, 0.2) * sample(1:3, 400, replace = TRUE), 20, 20)
f1 <- runif(20)
f2 <- abs(rnorm(20))
ret <- assortcoef(adj = adj, f1 = f1, f2 = f2)

edge_to_adj Convert edgelist and edgeweight to adjacency matrix.

Description

Convert edgelist and edgeweight to adjacency matrix.

Usage

edge_to_adj(edgelist, edgeweight = NULL, directed = TRUE)

Arguments

edgelist A two column matrix represents edges.

edgeweight A vector represents the weight of edges. If NULL, all the edges are considered
have weight 1.

directed Logical, whether the network is directed.

Value

An adjacency matrix.

fill_weight_cpp 21

fill_weight_cpp Fill edgeweight into the adjacency matrix. Defined for function
edge_to_adj.

Description

Fill edgeweight into the adjacency matrix. Defined for function edge_to_adj.

Usage

fill_weight_cpp(adj, edgelist, edgeweight)

Arguments

adj An adjacency matrix.

edgelist A two column matrix represents the edgelist.

edgeweight A vector represents the weight of edges.

Value

Adjacency matrix with edge weight.

find_node_cpp Fill missing nodes in the node sequence. Defined for wdnet::rpanet.

Description

Fill missing nodes in the node sequence. Defined for wdnet::rpanet.

Usage

find_node_cpp(nodes, edges)

Arguments

nodes Source/target nodes, missing nodes are denoted as 0.

edges Sampled edges according to preferential attachment.

Value

Source/target nodes.

22 get_constr

find_node_undirected_cpp

Fill missing values in node sequence. Defined for wdnet::rpanet.

Description

Fill missing values in node sequence. Defined for wdnet::rpanet.

Usage

find_node_undirected_cpp(node1, node2, start_edge, end_edge)

Arguments

node1 Nodes in the first column of edgelist, i.e., edgelist[, 1].

node2 Nodes in the second column of edgelist, i.e., edgelist[, 2].

start_edge Index of sampled edges, corresponds to the missing nodes in node1 and node2.

end_edge Index of sampled edges, corresponds to the missing nodes in node1 and node2.

Value

Node sequence.

get_constr Get the constraints for the optimization problem. This function is de-
fined for get_eta_directed.

Description

Get the constraints for the optimization problem. This function is defined for get_eta_directed.

Usage

get_constr(constrs, target.assortcoef, rho)

Arguments

constrs A list of constraints.
target.assortcoef

A list of target assortativity levels.

rho A list of variable objects.

Value

A list of constraints.

get_dist 23

get_dist Get the node-level joint distributions and some empirical distributions
with given edgelist.

Description

Get the node-level joint distributions and some empirical distributions with given edgelist.

Usage

get_dist(edgelist = NA, directed = TRUE, joint_dist = FALSE)

Arguments

edgelist A two column matrix represents the directed edges of a network.

directed Logical, whether the network is directed.

joint_dist Logical, whether to return edge-level distributions.

Value

A list of distributions and degree vectors.

get_eta_directed Compute edge-level distributions for directed networks with respect to
desired assortativity level(s).

Description

Compute edge-level distributions for directed networks with respect to desired assortativity level(s).

Usage

get_eta_directed(
edgelist,
target.assortcoef = list(outout = NULL, outin = NULL, inout = NULL, inin = NULL),
eta.obj = function(x) 0,
which.range = NULL,
control = cvxr.control()

)

24 get_eta_undirected

Arguments

edgelist A two column matrix represents the directed edges of a network.
target.assortcoef

List, represents the predetermined value or range of assortativity coefficients.

eta.obj A convex function of eta to be minimized when which.range is NULL. Defaults
to 0.

which.range Character, "outout", "outin", "inout" or "inin". Represents the interested degree
based assortativity coefficient. Default is NA.

control A list of parameters passed to CVXR::solve() when solving for eta or comput-
ing the range of assortativity coefficient.

Value

Assortativity coefficients and joint distributions. If which.range is specified, the range of the
interested coefficient and the corresponding joint distributions will be returned, provided the prede-
termined target.assortcoef is satisfied.

get_eta_undirected Compute edge-level distribution for undirected networks with respect
to desired assortativity level.

Description

Compute edge-level distribution for undirected networks with respect to desired assortativity level.

Usage

get_eta_undirected(
edgelist,
target.assortcoef = NULL,
eta.obj = function(x) 0,
control = cvxr.control()

)

Arguments

edgelist A two column matrix represents the undirected edges of a network.
target.assortcoef

Numeric, represents the predetermined assortativity coefficient. If NA, the range
of assortativity coefficient and corresponding joint distribution are returned.

eta.obj A convex function of eta to be minimized when target.assortcoef is not NA.
Defaults to 0.

control A list of parameters passed to CVXR::solve() when solving for eta or comput-
ing the range of assortativity coefficient.

get_values 25

Value

Assortativity level and corresponding edge-level distribution.

get_values Get the value of an object from the optimization problem. This function
is defined for get_eta_directed.

Description

Get the value of an object from the optimization problem. This function is defined for get_eta_directed.

Usage

get_values(object, result, mydist)

Arguments

object An object from the optimization problem.
result A list returned from CVXR::solve().
mydist A list returned from get_dist().

Value

Value of the object.

node_strength_cpp Aggregate edgeweight into nodes’ strength.

Description

Aggregate edgeweight into nodes’ strength.

Usage

node_strength_cpp(snode, tnode, weight, nnode, weighted = TRUE)

Arguments

snode Source nodes.
tnode Target nodes.
weight Edgeweight.
nnode Number of nodes.
weighted Logical, true if the edges are weighted, false if not.

Value

Out-strength and in-strength.

26 rpactl.newedge

rpactl.edgeweight Set parameters for controlling weight of new edges

Description

Set parameters for controlling weight of new edges

Usage

rpactl.edgeweight(distribution = NA, dparams = list(), shift = 1)

Arguments

distribution Distribution function for edge weights. Default is NA. If specified, its first argu-
ment must be the number of observations.

dparams Additional parameters passed on to distribution. The name of parameters
must be specified.

shift A constant add to the specified distribution. Default value is 1.

Value

A list of class rpactl with components distribution, dparams, and shift with meanings as
explained under ’Arguments’.

Examples

Edge weight follows Gamma(5, 0.2).
control <- rpactl.edgeweight(distribution = rgamma,

dparams = list(shape = 5, scale = 0.2),
shift = 0)

Constant edge weight
control <- rpactl.edgeweight(shift = 2)

rpactl.newedge Set parameters for controlling new edges in each step

Description

Set parameters for controlling new edges in each step

rpactl.preference 27

Usage

rpactl.newedge(
distribution = NA,
dparams = list(),
shift = 1,
snode.replace = TRUE,
tnode.replace = TRUE,
node.replace = TRUE

)

Arguments

distribution Distribution function for number of new edges. Default is NA. If specified, its
first argument must be the number of observations.

dparams Additional parameters passed on to distribution. The name of parameters
must be specified.

shift A constant add to the specified distribution. Default value is 1.

snode.replace Logical, whether the source nodes in the same step should be sampled with
replacement. Defined for directed networks.

tnode.replace Logical, whether the target nodes in the same step should be sampled with re-
placement. Defined for directed networks.

node.replace Logical, whether the nodes in the same step should be sampled with replace-
ment. Defined for undirected networks. If FALSE, self-loops will not be allowed
under beta scenario.

Value

A list of class rpactl with components distribution, dparams, shift, snode.replace, tnode.replace
and node.replace with meanings as explained under ’Arguments’.

Examples

control <- rpactl.newedge(distribution = rpois,
dparams = list(lambda = 2),
shift = 1,
node.replace = FALSE)

rpactl.preference Set parameters for source and target preference function

Description

Set parameters for source and target preference function

28 rpactl.reciprocal

Usage

rpactl.preference(
sparams = c(1, 1, 0, 0, 1),
tparams = c(0, 0, 1, 1, 1),
params = c(1, 1)

)

Arguments

sparams Parameters of the source preference function for directed networks. Probability
of choosing an existing node as the source node is proportional to sparams[1] *
out-strength^sparams[2] + sparams[3] * in-strength^sparams[4] + sparams[5].

tparams Parameters of the target preference function for directed networks. Probability
of choosing an existing node as the source node is proportional to tparams[1] *
out-strength^tparams[2] + tparams[3] * in-strength^tparams[4] + tparams[5].

params Parameters of the preference function for undirected networks. Probability of
choosing an existing node is proportional to strength^param[1] + param[2].

Value

A list of class rpactl with components sparams, tparams, and params with meanings as explained
under ’Arguments’.

Examples

control <- rpactl.preference(sparams = c(1, 2, 0, 0, 0.1),
tparams = c(0, 0, 1, 2, 0.1))

rpactl.reciprocal Set parameters for controlling reciprocal edges

Description

Set parameters for controlling reciprocal edges

Usage

rpactl.reciprocal(group.prob = NULL, recip.prob = NULL, selfloop.recip = FALSE)

Arguments

group.prob A vector of probability weights for sampling the group of new nodes. Defined
for directed networks. Groups are from 1 to length(group.prob). Its length
must equal to the number of rows of recip.prob.

rpactl.scenario 29

recip.prob A square matrix giving the probability of adding a reciprocal edge after a new
edge is introduced. Defined for directed networks. Its element p_{ij} repre-
sents the probability of adding a reciprocal edge from node A, which belongs to
group i, to node B, which belongs to group j, immediately after a directed edge
from B to A is added.

selfloop.recip Logical, whether reciprocal edge of self-loops are allowed.

Value

A list of class rpactl with components group.prob, recip.prob, and selfloop.recip with
meanings as explained under ’Arguments’.

Examples

control <- rpactl.reciprocal(group.prob = c(0.4, 0.6),
recip.prob = matrix(runif(4), ncol = 2))

rpactl.scenario Set parameters for controlling the probability of edge scenarios

Description

Set parameters for controlling the probability of edge scenarios

Usage

rpactl.scenario(
alpha = 1,
beta = 0,
gamma = 0,
xi = 0,
rho = 0,
beta.loop = TRUE,
source.first = TRUE

)

Arguments

alpha Probability of adding an edge from a new node to an existing node.

beta Probability of adding an edge between existing nodes.

gamma Probability of adding an edge from an existing node to a new node.

xi Probability of adding an edge between two new nodes.

rho Probability of adding a new node with a self-loop.

beta.loop Logical, whether self-loops are allowed under beta scenario. Default value is
TRUE.

30 rpanet

source.first Logical. Defined for beta scenario edges of directed networks. If TRUE, the
source node of a new edge is sampled from existing nodes before the target node
is sampled; if FALSE, the target node is sampled from existing nodes before the
source node is sampled. Default value is TRUE.

Value

A list of class rpactl with components alpha, beta, gamma, xi, rho, beta.loop and source.first
with meanings as explained under ’Arguments’.

Examples

control <- rpactl.scenario(alpha = 0.5, beta = 0.5, beta.loop = FALSE)

rpanet Generate PA networks.

Description

Generate preferential attachment (PA) networks with linear or non-linear preference functions.

Usage

rpanet(
nstep = 10^3,
seednetwork = NULL,
control = NULL,
directed = TRUE,
method = c("binary", "naive", "edgesampler", "nodelist")

)

Arguments

nstep Number of steps when generating a network.

seednetwork A list represents the seed network. If NULL, seednetwork will have one edge
from node 1 to node 2 with weight 1. It consists of the following components: a
two column matrix edgelist represents the edges; a vector edgeweight repre-
sents the weight of edges; an integer vector nodegroup represents the group of
nodes. nodegroup is defined for directed networks, if NULL, all nodes from the
seed graph are considered from group 1.

control A list of parameters that controls the PA generation process. The default value is
rpactl.scenario() + rpactl.edgeweight() + rpactl.newedge() + rpactl.preference()
+ rpactl.reciprocal(). Under the default setup, in each step, a new edge of
weight 1 is added from a new node A to an existing node B (alpha scenario),
where B is chosen with probability proportional to its in-strength + 1.

rpanet 31

directed Logical, whether to generate directed networks. If FALSE, the edge directions
are omitted.

method Which method to use: binary, naive, edgesampler or nodelist. For nodelist
and edgesampler methods, the source preference function must be out-degree
(out-strength) plus a nonnegative constant, the target preference function must
be in-degree (in-strength) plus a nonnegative constant, beta.loop must be TRUE.
Besides, nodelist method only works for unweighted networks, rpactl.edgeweight,
rpactl.newedge, rpactl.reciprocal must set as default; node.replace, snode.replace,
tnode.replace must be TRUE for edgesampler method.

Value

A list with the following components: edgelist, edgeweight, strength for undirected networks,
outstrength and instrength for directed networks, number of new edges in each step newedge
(reciprocal edges are not included), control list control, node group nodegroup (if applicable) and
edge scenario scenario (1~alpha, 2~beta, 3~gamma, 4~xi, 5~rho, 6~reciprocal). The scenario of
edges from seednetwork are denoted as 0.

Note

The nodelist method implements the algorithm from Wan et al. (2017). The edgesampler first
samples edges then find the source/target node of the sampled edge. If all the edges are of weight
1, the network can be considered as unweighted, node strength then equals node degree.

References

• Wan P, Wang T, Davis RA, Resnick SI (2017). Fitting the Linear Preferential Attachment
Model. Electronic Journal of Statistics, 11(2), 3738–3780.

Examples

Control edge scenario and edge weight through rpactl.scenario()
and rpactl.edgeweight(), respectively, while keeping rpactl.newedge(),
rpactl.preference() and rpactl.reciprocal() as default.
set.seed(123)
control <- rpactl.scenario(alpha = 0.5, beta = 0.5) +

rpactl.edgeweight(distribution = rgamma,
dparams = list(shape = 5, scale = 0.2), shift = 0)

ret1 <- rpanet(nstep = 1e3, control = control)

In addition, set node groups and probability of creating reciprocal edges.
control <- control + rpactl.reciprocal(group.prob = c(0.4, 0.6),

recip.prob = matrix(runif(4), ncol = 2))
ret2 <- rpanet(nstep = 1e3, control = control)

Further, set the number of new edges in each step as Poisson(2) + 1 and use
ret2 as a seed network.
control <- control + rpactl.newedge(distribution = rpois,

dparams = list(lambda = 2), shift = 1)
ret3 <- rpanet(nstep = 1e3, seednetwork = ret2, control = control)

32 rpanet_general

rpanet_general Generate a PA network with non-linear preference functions

Description

Generate a PA network with non-linear preference functions

Usage

rpanet_general(
nstep,
seednetwork,
control,
directed,
m,
sum_m,
w,
nnode,
nedge,
method,
sample.recip

)

Arguments

nstep Number of steps when generating a network.
seednetwork A list represents the seed network. If NULL, seednetwork will have one edge

from node 1 to node 2 with weight 1. It consists of the following components:
a two column matrix edgelist represents the edges; a vector edgeweight rep-
resents the weight of edges; a integer vector nodegroup represents the group of
nodes. nodegroup is defined for directed networks, if NULL, all nodes from the
seed graph are considered from group 1.

control A list of parameters that controls the PA generation process. The default value is
rpactl.scenario() + rpactl.edgeweight() + rpactl.newedge() + rpactl.preference()
+ rpactl.reciprocal(). By default, in each step, a new edge of weight 1 is
added from a new node A to an existing node B (alpha scenario), where $B is
chosen with probability proportional to its in-strength + 1.

directed Logical, whether to generate directed networks. If FALSE, the edge directions
are ignored.

m Integer vector, number of new edges in each step.
sum_m Integer, summation of m.
w Vector, weight of new edges.
nnode Integer, number of nodes in seednetwork.
nedge Integer, number of edges in seednetwork.
method Which method to use when generating PA networks: "binary" or "naive".
sample.recip Whether reciprocal edges will be added.

rpanet_nodelist_cpp 33

Value

A list with the following components: edgelist, edgeweight, strength for undirected networks,
outstrength and instrength for directed networks, number of new edges in each step newedge
(reciprocal edges are not included), control list control, node group nodegroup (if applicable) and
edge scenario scenario (1~alpha, 2~beta, 3~gamma, 4~xi, 5~rho, 6~reciprocal). The scenario of
edges from seednetwork are denoted as 0.

rpanet_nodelist_cpp Preferential attachment algorithm for simple situations, e.g., edge
weight equals to 1, number of new edges per step is 1.

Description

Preferential attachment algorithm for simple situations, e.g., edge weight equals to 1, number of
new edges per step is 1.

Usage

rpanet_nodelist_cpp(
snode,
tnode,
scenario,
nnode,
nedge,
delta_out,
delta_in,
directed

)

Arguments

snode Source nodes.

tnode Target nodes.

scenario Sequence of alpha, beta, gamma, xi, rho scenarios.

nnode Number of nodes in seed network.

nedge Number of edges in seed network.

delta_out Tuning parameter.

delta_in Tuning parameter.

directed Whether the network is directed.

Value

Number of nodes, sequences of source and target nodes.

34 rpanet_simple

rpanet_simple Generate a PA network with linear preference functions.

Description

Source preference function must be out-degree (out-strength) plus a nonnegative constant; target
preference function must be in-degree (in-strength) plus a nonnegative constant.

Usage

rpanet_simple(
nstep,
seednetwork,
control,
directed,
m,
sum_m,
w,
ex_node,
ex_edge,
method

)

Arguments

nstep Number of steps when generating a network.

seednetwork A list represents the seed network. If NULL, seednetwork will have one edge
from node 1 to node 2 with weight 1. It consists of the following components:
a two column matrix edgelist represents the edges; a vector edgeweight rep-
resents the weight of edges; a integer vector nodegroup represents the group of
each node. nodegroup is defined for directed networks, if NULL, all nodes from
the seed graph are considered from group 1.

control A list of parameters to be used when generate network.

directed Logical, whether to generate directed networks. When FALSE, the edge direc-
tions are omitted.

m Integer vector, number of new edges in each step.

sum_m Integer, summation of m.

w Vector, weight of new edges.

ex_node Integer, number of nodes in seednetwork.

ex_edge Integer, number of edges in seednetwork.

method Which method to use, nodelist or edgesampler.

rpanet_wan 35

Value

A list with the following components: edgelist, edgeweight, out- and in-strength, number of edges
per step (m), scenario of each new edge (1~alpha, 2~beta, 3~gamma, 4~xi, 5~rho). The edges in
the seed graph are denoted as scenario 0.

rpanet_wan Simulating a Preferential Attachment Network

Description

Simulating a Preferential Attachment Network

Usage

rpanet_wan(alpha, beta, gamma, xi, delta_in, delta_out, nedge)

Arguments

alpha Scalar probability of adding an edge from the new node to an existing node

beta Scalar probability of adding an edge between two existing nodes.

gamma Scalar probability of adding an edge from an existing node to a new node.

xi Scalar probability of ...

delta_in Growth rate parameter for nodes’ instrength

delta_out Growth rate parameter for nodes’ outstrength

nedge The number of edges to be generated

Value

A list with the following components: in_degree, out_degree, edge_start, edge_end, evolution

sample_node_cpp Uniformly draw a node from existing nodes for each time step. Defined
for wdnet::rpanet.

Description

Uniformly draw a node from existing nodes for each time step. Defined for wdnet::rpanet.

Usage

sample_node_cpp(total_node)

36 wpr

Arguments

total_node Number of existing nodes at each time step.

Value

Sampled nodes.

wdnet wdnet: Weighted and Directed Networks

Description

This package provides functions to conduct network analysis

• Assortativity, centrality, clustering coefficient for weighted and directed networks

• Rewire an unweighted network with given assortativity coefficient(s)

• Preferential attachment (PA) network generation

Details

The development version of this package is available on Gitlab (https://gitlab.com/wdnetwork/wdnet).

wpr Weighted PageRank centrality

Description

Compute the weighted PageRank centrality measures of the vertices in a weighted and directed
network represented through its adjacency matrix.

Usage

wpr(adj, gamma = 0.85, theta = 1, prior.info)

Arguments

adj is an adjacency matrix of a weighted and directed network

gamma is the damping factor; it takes 0.85 (default) if not given.

theta is a tuning parameter leveraging node degree and strength; theta = 0 does not
consider edge weight; theta = 1 (default) fully considers edge weight.

prior.info vertex-specific prior information for restarting when arriving at a sink. When it
is not given (NULL), a random restart is implemented.

wpr 37

Value

a list of node names with corresponding weighted PageRank scores

Note

Function wpr is an extension of function page_rank in package igraph.

References

• Zhang, P., Wang, T. and Yan, J. (2022) PageRank centrality and algorithms for weighted,
directed networks with applications to World Input-Output Tables. Physica A: Statistical Me-
chanics and its Applications, 586, 126438.

Index

+.rpactl, 3

adj_to_edge, 3
assortcoef, 4

centrality, 5
closeness_c, 7
clustcoef, 8
cvxr.control, 10

degree_c, 11
dprewire, 12
dprewire.range, 14
dprewire_directed, 15
dprewire_directed_cpp, 16
dprewire_undirected, 17
dprewire_undirected_cpp, 18
dw_assort, 19
dw_feature_assort, 19

edge_to_adj, 20

fill_weight_cpp, 21
find_node_cpp, 21
find_node_undirected_cpp, 22

get_constr, 22
get_dist, 23
get_eta_directed, 23
get_eta_undirected, 24
get_values, 25

node_strength_cpp, 25

rpactl.edgeweight, 26
rpactl.newedge, 26
rpactl.preference, 27
rpactl.reciprocal, 28
rpactl.scenario, 29
rpanet, 30
rpanet_general, 32

rpanet_nodelist_cpp, 33
rpanet_simple, 34
rpanet_wan, 35

sample_node_cpp, 35

wdnet, 36
wpr, 36

38

	+.rpactl
	adj_to_edge
	assortcoef
	centrality
	closeness_c
	clustcoef
	cvxr.control
	degree_c
	dprewire
	dprewire.range
	dprewire_directed
	dprewire_directed_cpp
	dprewire_undirected
	dprewire_undirected_cpp
	dw_assort
	dw_feature_assort
	edge_to_adj
	fill_weight_cpp
	find_node_cpp
	find_node_undirected_cpp
	get_constr
	get_dist
	get_eta_directed
	get_eta_undirected
	get_values
	node_strength_cpp
	rpactl.edgeweight
	rpactl.newedge
	rpactl.preference
	rpactl.reciprocal
	rpactl.scenario
	rpanet
	rpanet_general
	rpanet_nodelist_cpp
	rpanet_simple
	rpanet_wan
	sample_node_cpp
	wdnet
	wpr
	Index

