Accessing the Wordbank database

Mika Braginsky

2022-09-08

The wordbankr package allows you to access data in the Wordbank database from R. This vignette shows some examples of how to use the data loading functions and what the resulting data look like.

There are three different data views that you can pull out of Wordbank: by-administration, by-item, and administration-by-item. Additionally, you can get metadata about the datasets and instruments underlying the data. Advanced functionality let’s you get estimates of words’ age of acquisition and word mappings across languages.

Administrations

The get_administration_data() function gives by-administration information, either for a specific language and/or form or for all instruments.

get_administration_data(language = "English (American)", form = "WS")
## # A tibble: 7,601 × 12
##    data_id date_of_test   age comprehension production is_norming dataset_name
##      <dbl> <chr>        <int>         <int>      <int> <lgl>      <chr>       
##  1  245518 1996-11-03      28           497        497 TRUE       Marchman    
##  2  245519 1996-10-14      22           369        369 TRUE       Marchman    
##  3  245520 1996-10-15      26           190        190 TRUE       Marchman    
##  4  245521 1996-11-01      27           264        264 TRUE       Marchman    
##  5  245522 1996-10-27      19           159        159 TRUE       Marchman    
##  6  245523 1996-10-16      30           513        513 TRUE       Marchman    
##  7  245524 1996-10-28      25           444        444 TRUE       Marchman    
##  8  245525 1996-11-04      24           582        582 TRUE       Marchman    
##  9  245526 1996-10-23      28           558        558 TRUE       Marchman    
## 10  245527 1991-10-13      18             7          7 TRUE       Marchman    
## # … with 7,591 more rows, and 5 more variables: dataset_origin_name <chr>,
## #   language <chr>, form <chr>, form_type <chr>, child_id <int>
get_administration_data()
## # A tibble: 90,897 × 12
##    data_id date_of_test   age comprehension production is_norming dataset_name
##      <dbl> <chr>        <int>         <int>      <int> <lgl>      <chr>       
##  1   26372 <NA>            13           293         88 TRUE       CLEX        
##  2   26373 <NA>            16           122         12 TRUE       CLEX        
##  3   26374 <NA>             9             3          0 TRUE       CLEX        
##  4   26375 <NA>            12             0          0 TRUE       CLEX        
##  5   26376 <NA>            12            44          0 TRUE       CLEX        
##  6   26377 <NA>             8            14          5 TRUE       CLEX        
##  7   26378 <NA>             9             2          1 TRUE       CLEX        
##  8   26379 <NA>            10            44          1 TRUE       CLEX        
##  9   26380 <NA>            13           172         51 TRUE       CLEX        
## 10   26381 <NA>            16           241         68 TRUE       CLEX        
## # … with 90,887 more rows, and 5 more variables: dataset_origin_name <chr>,
## #   language <chr>, form <chr>, form_type <chr>, child_id <int>

Items

The get_item_data() function gives by-item information, either for a specific language and/or form or for all instruments.

get_item_data(language = "Italian", form = "WG")
## # A tibble: 505 × 11
##    item_id language form  form_type item_kind   category item_definition        
##    <chr>   <chr>    <chr> <chr>     <chr>       <chr>    <chr>                  
##  1 item_1  Italian  WG    WG        first_signs <NA>     Risponde quando è chia…
##  2 item_2  Italian  WG    WG        first_signs <NA>     Risponde ad un No      
##  3 item_3  Italian  WG    WG        first_signs <NA>     Reagisce ad un C'è la …
##  4 item_4  Italian  WG    WG        phrases     <NA>     Vuoi la pappa          
##  5 item_5  Italian  WG    WG        phrases     <NA>     Hai sonno? Sei stanco  
##  6 item_6  Italian  WG    WG        phrases     <NA>     Vuoi bere?             
##  7 item_7  Italian  WG    WG        phrases     <NA>     Stai attento           
##  8 item_8  Italian  WG    WG        phrases     <NA>     Stai buono             
##  9 item_9  Italian  WG    WG        phrases     <NA>     Batti le manine        
## 10 item_10 Italian  WG    WG        phrases     <NA>     Cambiamo il pannolino  
## # … with 495 more rows, and 4 more variables: english_gloss <chr>,
## #   uni_lemma <chr>, lexical_category <chr>, complexity_category <chr>
get_item_data()
## # A tibble: 40,959 × 11
##    item_id language           form  form_type item_kind category item_definition
##    <chr>   <chr>              <chr> <chr>     <chr>     <chr>    <chr>          
##  1 item_1  British Sign Lang… WG    WG        phrases   <NA>     be careful     
##  2 item_2  British Sign Lang… WG    WG        phrases   <NA>     bring me       
##  3 item_3  British Sign Lang… WG    WG        phrases   <NA>     change nappy   
##  4 item_4  British Sign Lang… WG    WG        phrases   <NA>     come here      
##  5 item_5  British Sign Lang… WG    WG        phrases   <NA>     daddy/mummy ho…
##  6 item_6  British Sign Lang… WG    WG        phrases   <NA>     donttouch      
##  7 item_7  British Sign Lang… WG    WG        phrases   <NA>     finish         
##  8 item_8  British Sign Lang… WG    WG        phrases   <NA>     get up         
##  9 item_9  British Sign Lang… WG    WG        phrases   <NA>     give me hug    
## 10 item_10 British Sign Lang… WG    WG        phrases   <NA>     give me kiss   
## # … with 40,949 more rows, and 4 more variables: english_gloss <chr>,
## #   uni_lemma <chr>, lexical_category <chr>, complexity_category <chr>

Administrations x Items

If you are only looking at total vocabulary size, admins is all you need, since it has both productive and receptive vocabulary sizes calculated. If you are looking at specific items or subsets of items, you need to load instrument data, using the get_instrument_data() function. Pass it an instrument language and form, along with a list of items you want to extract (by item_id).

get_instrument_data(
  language = "English (American)",
  form = "WS",
  items = c("item_26", "item_46")
)
## # A tibble: 17,098 × 5
##    data_id item_id value      produces understands
##      <dbl> <chr>   <chr>      <lgl>    <lgl>      
##  1  245518 item_26 "produces" TRUE     NA         
##  2  245519 item_26 "produces" TRUE     NA         
##  3  245520 item_26 "produces" TRUE     NA         
##  4  245521 item_26 "produces" TRUE     NA         
##  5  245522 item_26 ""         FALSE    NA         
##  6  245523 item_26 "produces" TRUE     NA         
##  7  245524 item_26 "produces" TRUE     NA         
##  8  245525 item_26 "produces" TRUE     NA         
##  9  245526 item_26 "produces" TRUE     NA         
## 10  245527 item_26 ""         FALSE    NA         
## # … with 17,088 more rows

By default get_instrument_table() returns a data frame with columns of the administration’s data_id, the item’s num_item_id (numerical item_id), and the corresponding value. To include administration information, you can set the administrations argument to TRUE, or pass the result of get_administration_data() as administrations (that way you can prevent the administration data from being loaded multiple times). Similarly, you can set the iteminfo argument to TRUE, or pass it result of get_item_data().

Loading the data is fast if you need only a handful of items, but the time scales about linearly with the number of items, and can get quite slow if you need many or all of them. So, it’s a good idea to filter down to only the items you need before calling get_instrument_data().

As an example, let’s say we want to look at the production of animal words on English Words & Sentences over age. First we get the items we want:

animals <- get_item_data(language = "English (American)", form = "WS") %>%
  filter(category == "animals")

Then we get the instrument data for those items:

animal_data <- get_instrument_data(language = "English (American)",
                                   form = "WS",
                                   items = animals$item_id,
                                   administration_info = TRUE,
                                   item_info = TRUE)

Finally, we calculate how many animals words each child produces and the median number of animals of each age bin:

animal_summary <- animal_data %>%
  group_by(age, data_id) %>%
  summarise(num_animals = sum(produces, na.rm = TRUE)) %>%
  group_by(age) %>%
  summarise(median_num_animals = median(num_animals, na.rm = TRUE))
  
ggplot(animal_summary, aes(x = age, y = median_num_animals)) +
  geom_point() +
  labs(x = "Age (months)", y = "Median animal words producing")

Metadata

Instruments

The get_instruments() function gives information on all the CDI instruments in Wordbank.

get_instruments()
## # A tibble: 78 × 8
##    instrument_id language            form  form_type age_min age_max has_grammar
##            <int> <chr>               <chr> <chr>       <int>   <int>       <int>
##  1             1 British Sign Langu… WG    WG              8      36           0
##  2             2 Cantonese           WS    WS             16      30           0
##  3             3 Croatian            WG    WG              8      16           0
##  4             4 Croatian            WS    WS             16      30           0
##  5             5 Danish              WG    WG              8      20           0
##  6             6 Danish              WS    WS             16      36           1
##  7             7 English (American)  WG    WG              8      18           0
##  8             8 English (American)  WS    WS             16      30           1
##  9             9 French (Quebecois)  WG    WG              8      16           0
## 10            10 French (Quebecois)  WS    WS             16      30           1
## # … with 68 more rows, and 1 more variable: unilemma_coverage <dbl>

Datasets

The get_datasets() function gives information on all the datasets in Wordbank, either for a specific language and/or form or for all instruments. If the admin_data argument is set to TRUE, the results will also include the number of administrations in the database from that dataset.

get_datasets(form = "WG")
## # A tibble: 37 × 10
##    dataset_id dataset_name  dataset_origin_name     contributor citation license
##         <int> <chr>         <chr>                   <chr>       <chr>    <chr>  
##  1          5 Marchman      Marchman_Norming_Engli… Larry Fens… "Fenson… CC-BY  
##  2          6 Byers         Byers__English (Americ… Krista Bye… ""       CC-BY  
##  3          7 Thal          Thal                    Donna Thal… "Thal, … CC-BY  
##  4          9 Marchman      Marchman_Norming_Spani… Donna Jack… "Jackso… CC-BY  
##  5         12 Kristoffersen Kristoffersen_longitud… Hanne Simo… "Simons… CC-BY  
##  6         13 CLEX          CLEX__Croatian_WG       Melita Kov… "Kovace… CC-BY  
##  7         17 CLEX          CLEX__Russian_WG        Stella Cey… "Е.А.Ве… CC-BY  
##  8         19 CLEX          CLEX__Swedish_WG        Mårten Eri… "Erikss… CC-BY  
##  9         21 CLEX          CLEX__Turkish_WG        Aylin Künt… "Acarla… CC-BY  
## 10         23 Shalev        Shalev__Hebrew_WG       Hila Gendl… "Gendle… CC-BY  
## # … with 27 more rows, and 4 more variables: longitudinal <lgl>,
## #   language <chr>, form <chr>, form_type <chr>
get_datasets(language = "Spanish (Mexican)", admin_data = TRUE)
## # A tibble: 6 × 11
##   dataset_id dataset_name dataset_origin_name       contributor citation license
##        <int> <chr>        <chr>                     <chr>       <chr>    <chr>  
## 1          8 Marchman     Marchman Dallas Bilingual Donna Jack… Marchma… CC-BY  
## 2          9 Marchman     Marchman_Norming_Spanish… Donna Jack… Jackson… CC-BY  
## 3         55 Fernald      Fernald_Outreach_Spanish… Anne Ferna… Weisled… CC-BY  
## 4         56 Fernald      Fernald_Outreach_Spanish… Anne Ferna… Weisled… CC-BY  
## 5         76 Marchman     Marchman_Norming_Spanish… Donna Jack… Jackson… CC-BY  
## 6         87 Hoff         Hoff_English_Mexican_Bil… Hoff, E     Hoff, E… CC-BY  
## # … with 5 more variables: longitudinal <lgl>, language <chr>, form <chr>,
## #   form_type <chr>, n_admins <dbl>

Advanced functionality: Age of acquisition

The fit_aoa() function computes estimates of items’ age of acquisition (AoA). It needs to be provided with a data frame returned by get_instrument_data() – one row per administration x item combination, and minimally the columns age and num_item_id. It returns a data frame with one row per item and an aoa column with the estimate, preserving and item-level columns in the input data. The AoA is estimated by computing the proportion of administrations for which the child understands/produces (measure) each word, smoothing the proportion using method, and taking the age at which the smoothed value is greater than proportion.

fit_aoa(animal_data)
## # A tibble: 43 × 8
##      aoa item_id item_kind item_definition category lexical_category uni_lemma
##    <dbl> <chr>   <chr>     <chr>           <chr>    <chr>            <chr>    
##  1    26 item_13 word      alligator       animals  nouns            alligator
##  2    25 item_14 word      animal          animals  nouns            animal   
##  3    26 item_15 word      ant             animals  nouns            ant      
##  4    20 item_16 word      bear            animals  nouns            bear     
##  5    22 item_17 word      bee             animals  nouns            bee      
##  6    18 item_18 word      bird            animals  nouns            bird     
##  7    23 item_19 word      bug             animals  nouns            bug      
##  8    22 item_20 word      bunny           animals  nouns            bunny    
##  9    24 item_21 word      butterfly       animals  nouns            butterfly
## 10    19 item_22 word      cat             animals  nouns            cat      
## # … with 33 more rows, and 1 more variable: complexity_category <chr>
fit_aoa(animal_data, method = "glmrob", proportion = 1/3)
## # A tibble: 43 × 8
##      aoa item_id item_kind item_definition category lexical_category uni_lemma
##    <dbl> <chr>   <chr>     <chr>           <chr>    <chr>            <chr>    
##  1    24 item_13 word      alligator       animals  nouns            alligator
##  2    23 item_14 word      animal          animals  nouns            animal   
##  3    24 item_15 word      ant             animals  nouns            ant      
##  4    18 item_16 word      bear            animals  nouns            bear     
##  5    19 item_17 word      bee             animals  nouns            bee      
##  6    NA item_18 word      bird            animals  nouns            bird     
##  7    20 item_19 word      bug             animals  nouns            bug      
##  8    19 item_20 word      bunny           animals  nouns            bunny    
##  9    22 item_21 word      butterfly       animals  nouns            butterfly
## 10    NA item_22 word      cat             animals  nouns            cat      
## # … with 33 more rows, and 1 more variable: complexity_category <chr>

Advanced functionality: Cross-linguistic data

One of the item-level fields is uni_lemma (“universal lemma”), which is intended to be an approximate semantic mapping between words across the languages in Wordbank. The function get_crossling_items() simply gives all the available uni_lemma values.

get_crossling_items()
## # A tibble: 2,552 × 2
##       id uni_lemma                
##    <int> <chr>                    
##  1  1739 (hair)brush              
##  2  1552 (play)pen                
##  3  1494 (sheep)                  
##  4  1783 (to be in) pain          
##  5  1777 (to be) hungry           
##  6  1775 (to be) thirsty          
##  7  1769 (to have) breakfast      
##  8  1272 [possessive]             
##  9  1593 [to splash in the water?]
## 10  1951 1PL                      
## # … with 2,542 more rows

The function get_crossling_data() takes a vector of uni_lemmas and returns a data frame of summary statistics for each item mapped to that uni_lemma in any language (on WG forms). Each row is combination of item and age, and the columns indicate the number of children (n_children), means (comprehension, production), standard deviations (comprehension_sd, production_sd), and item-level fields.

get_crossling_data(uni_lemmas = c("hat", "nose")) %>%
  select(language, uni_lemma, item_definition, age, n_children, comprehension,
         production, comprehension_sd, production_sd) %>%
  arrange(uni_lemma)