
Package ‘xml2relational’
February 10, 2022

Type Package

Title Converting XML Documents into Relational Data Models

Description Import an XML document with nested object structures and convert
it into a relational data model. The result is a set of R dataframes
with foreign key relationships. The data model and the data can be exported as
SQL code of different SQL flavors.

Version 0.1.1

Maintainer Joachim Zuckarelli <joachim@zuckarelli.de>

Depends R (>= 3.5.0)

License GPL-3

Imports xml2, stringr, tidyr, fs, stats, utils, lubridate, rlang

Repository CRAN

BugReports https://github.com/jsugarelli/xml2relational/issues

URL https://github.com/jsugarelli/xml2relational/

Encoding UTF-8

ByteCompile true

RoxygenNote 7.1.1

NeedsCompilation no

Author Joachim Zuckarelli [aut, cre] (<https://orcid.org/0000-0002-9280-3016>)

Date/Publication 2022-02-10 20:00:01 UTC

R topics documented:
getCreateSQL . 2
getInsertSQL . 4
savetofiles . 5
toRelational . 6
xml2relational . 8

Index 9

1

https://github.com/jsugarelli/xml2relational/issues
https://github.com/jsugarelli/xml2relational/
https://orcid.org/0000-0002-9280-3016

2 getCreateSQL

getCreateSQL Exporting the relational data model and data to a database

Description

Produces ready-to-run SQL INSERT statements to import the data transformed with toRelational()
into a SQL database.

Usage

getCreateSQL(
ldf,
sql.style = "MySQL",
tables = NULL,
prefix.primary = "ID_",
prefix.foreign = "FKID_",
line.break = "\n",
datatype.func = NULL,
one.statement = FALSE

)

Arguments

ldf A list of dataframes created by toRelational() (the data tables transformed
from XML to a relational schema).

sql.style The SQL flavor that the produced CREATE statements will follow. The supported
SQL styles are "MySQL", "TransactSQL" and "Oracle". You can add your own
SQL flavor by providing a dataframe with the required information instead of
the name of one of the predefined SQL flavors as value for sql.style. See the
Details section for more information on working with different SQL flavors.

tables A character vector with the names of the tables for whichs SQL CREATE state-
ments will be produced. If null (default) CREATE statements will be produced
for all tables in in the relational data model of ldf.

prefix.primary The prefix that is used in the relational data model of ldf to identify primary
keys. "ID_" by default.

prefix.foreign The prefix that is used in the relational data model of ldf to identify foreign
keys. "FKID_" by default.

line.break Line break character that is added to the end of each CREATE statement (apart
from the semicolon that is added automatically). Default is "\n".

datatype.func A function that is used to determine the data type of the table fields. The function
must take the field/column from the data table (basically the result of SELCT
field FROM table) as its sole argument and return a character vector providing
the data type. If null (default), the built-in mechanism will be used to determine
the data type.

getCreateSQL 3

one.statement Determines whether all CREATE statements will be returned as one piece of SQL
code (one.statement = TRUE) or if each CREATE statement will be stored in a
separate element of the return vector.

Details

If you want to produce SQL CREATE statements that follow a different SQL dialect than one of
the built-in SQL flavors (i.e. MySQL, TransactSQL and Oracle) you can provide the necessary
information to getCreateSQL() via the sql.style argument. In this case the sql.style argument
needs to be a dataframe with the folling fields:

Column Type Description Example
Style character Name of the SQL flavor. "MySQL"
NormalField character Template string for a normal, nullable field. "%FIELDNAME% %DATATYPE%"
NormalFieldNotNull character Template string for non-nullable field. "%FIELDNAME% %DATATYPE% NOT NULL"
PrimaryKey character Template string for the definition of a primary key. "PRIMARY KEY (%FIELDNAME%)"
ForeignKey character Template string for the definition of a foreign key. "FOREIGN KEY (%FIELDNAME%) REFERENCES %REFTABLE%(%REFPRIMARYKEY%)"
PrimaryKeyDefSeparate logical Indicates if primary key needs additional definition like a any other field. TRUE
ForeignKeyDefSeparate logical Indicates if foreign key needs additional definition like a any other field. TRUE
Int character Name of integer data type. "INT"
Int.MaxSize numeric Size limit of integer data type. 4294967295
BigInt character Name of data type for integers larger than the size limit of the normal integer data type. "BIGINT"
Decimal character Name of data type for floating point numbers. "DECIMAL"
VarChar character Name of data type for variable-size character fields. "VARCHAR"
VarChar.MaxSize numeric Size limit of variable-size character data type. 65535
Text character Name of data type for string data larger than the size limit of the variable-size character data type. "TEXT"

Date character Name of data type date data. "DATE"
Time character Name of data type time data "TIME"
Date character Name of data type for combined date and time data. "TIMESTAMP"

In the template strings you can use the following placeholders, as you also see from the MySQL
example in the table:

1. %FIELDNAME%: Name of the field to be defined.
2. %DATATYPE%: Datatype of the field to be defined.
3. %REFTABLE%: Table referenced by a foreign key.
4. %REFPRIMARYKEY%: Name of the primary key field of the table referenced by a foreign key.

When you use your own defintion of an SQL flavor, then sql.style must be a one-row dataframe
providing the fields described in the table above.

You can use the datatype.func argument to provide your own function to determine how the data
type of a field is derived from the values in that field. In this case, the values of the columns Int,
Int.MaxSize, VarChar, VarChar.MaxSize, Decimal and Text in the sql.style dataframe are
ignored. They are used by the built-in mechanism to determine data types. Providing your own
function allows you to determine data types in a more differentiated way, if you like. The function
that is provided needs to take a vectors of values as its argument and needs to provide the SQL data
type of these values as a one-element character vector.

4 getInsertSQL

Value

A character vector with exactly one element (if argument one.statement = TRUE) or with one
element per CREATE statement.

See Also

Other xml2relational: getInsertSQL(), savetofiles(), toRelational()

Examples

Find path to custmers.xml example file in package directory
path <- system.file("", "customers.xml", package = "xml2relational")
db <- toRelational(path)

sql.code <- getCreateSQL(db, "TransactSQL", "address")

getInsertSQL Exporting the relational data model and data to a database

Description

Produces ready-to-run SQL INSERT statements to import the data transformed with toRelational()
into a SQL database.

Usage

getInsertSQL(
ldf,
table.name,
line.break = "\n",
one.statement = FALSE,
tz = "UTC"

)

Arguments

ldf A list of dataframes created by toRelational() (the data tables transformed
from XML to a relational schema).

table.name Name of the table from the data table list ldf for which INSERT statements are
to be created.

line.break Line break character that is added to the end of each INSERT statement (apart
from the semicolon that is added automatically). Default is "\n".

savetofiles 5

one.statement Determines whether all INSERT statements will be returned as one piece of SQL
code (one.statement = TRUE) or if each INSERT statement will be stored in a
separate element of the return vector. In the former case the return vector will
have just one element, in the latter case as many elements as there are data
records to insert. Default is FALSE (return vector has one element per INSERT
statement.

tz The code of the timezone used for exporting timestamp data. Default it "UTC"
(Coordinated Universal Time).

Value

A character vector with exactly one element (if argument one.statement = TRUE) or with one
element per INSERT statement.

See Also

Other xml2relational: getCreateSQL(), savetofiles(), toRelational()

Examples

Find path to custmers.xml example file in package directory
path <- system.file("", "customers.xml", package = "xml2relational")
db <- toRelational(path)

sql.code <- getInsertSQL(db, "address")

savetofiles Saving the relational data

Description

Saves a list of dataframes created from an XML source with toRelational() to CSV files, one file
per dataframe (i.e. table in the relational data model). File names are identical to the dataframe/table
names.

Usage

savetofiles(ldf, dir, sep = ",", dec = ".")

Arguments

ldf A list of dataframes created by toRelational() (the data tables transformed
from XML to a relational schema).#’ @param dir Directory where the files will
be stored. Default is the current working directory.

dir The directory to save the CSV files in. Per default the working directory.

sep Character symbol to separate fields in the CSV fil, comma by default.

dec Decimal separator used for numeric fields in the CSV file, point by default.

6 toRelational

Value

No return vaue.

See Also

Other xml2relational: getCreateSQL(), getInsertSQL(), toRelational()

Examples

Find path to custmers.xml example file in package directory
path <- system.file("", "customers.xml", package = "xml2relational")
db <- toRelational(path)

savetofiles(db, dir = tempdir())

toRelational Converting an XML document into a relational data model

Description

Imports an XML document and converts it into a set of dataframes each of which represents one
table in the data model.

Usage

toRelational(
file,
prefix.primary = "ID_",
prefix.foreign = "FKID_",
keys.unique = TRUE,
keys.dim = 6

)

Arguments

file The XML document to be processed.

prefix.primary A prefix for the tables’ primary keys (unique numeric identifier for a data record/row
in the table) . Default is "ID_". The primary key field name will consist of the
prefix and the table name.

prefix.foreign A prefix for the tables’ foreign keys (). Default is "FKID_". The rest of the
foreign key field name will consist of the prefix and the table name.

keys.unique Defines if the primary keys must be unique across all tables of the data model
or only within the table of which it is the primary key. Default is TRUE (unique
across all tables).

toRelational 7

keys.dim Size of the ’key space’ reserved for primary keys. Argument is a power of ten.
Default is 6 which means the namespace for primary keys extends from 1 to 1
million.

Details

toRelational() converts the hierarchical XML structure into a flat tabular structure with one
dataframe for each table in the data model. toRelational() determines automatically which XML
elements need to be stored in a separate table. The relationship between the nested objects in the
XML data is recreated in the dataframes with combinations of foreign and primary keys. The
foreign keys refer to the primary keys that toRelational() creates automatically when adding
XML elements to a table.

Column Type Description Example
Style character Name of the SQL flavor. "MySQL"
NormalField character Template string for a normal, nullable field. "%FIELDNAME% %DATATYPE%"
NormalFieldNotNull character Template string for non-nullable field. "%FIELDNAME% %DATATYPE% NOT NULL"
PrimaryKey character Template string for the definition of a primary key. "PRIMARY KEY (%FIELDNAME%)"
ForeignKey character Template string for the definition of a foreign key. "FOREIGN KEY (%FIELDNAME%) REFERENCES %REFTABLE%(%REFPRIMARYKEY%)"
PrimaryKeyDefSeparate logical Indicates if primary key needs additional definition like a any other field. TRUE
ForeignKeyDefSeparate logical Indicates if foreign key needs additional definition like a any other field. TRUE
Int character Name of integer data type. "INT"
Int.MaxSize numeric Size limit of integer data type. 4294967295
BigInt character Name of data type for integers larger than the size limit of the normal integer data type. "BIGINT"
Decimal character Name of data type for floating point numbers. "DECIMAL"
VarChar character Name of data type for variable-size character fields. "VARCHAR"
VarChar.MaxSize numeric Size limit of variable-size character data type. 65535
Text character Name of data type for string data larger than the size limit of the variable-size character data type. "TEXT"
Date character Name of data type date data. "DATE"
Time character Name of data type time data "TIME"
Date character Name of data type for combined date and time data. "TIMESTAMP"

In the template strings you can use the following placeholders, as you also see from the MySQL
example in the table:

1. %FIELDNAME%: Name of the field to be defined.

2. %DATATYPE%: Datatype of the field to be defined.

3. %REFTABLE%: Table referenced by a foreign key.

4. %REFPRIMARYKEY%: Name of the primary key field of the table referenced by a foreign key.

When you use your own defintion of an SQL flavor, then sql.style must be a one-row dataframe
providing the fields described in the table above.

You can use the datatype.func argument to provide your own function to determine how the data
type of a field is derived from the values in that field. In this case, the values of the columns Int,
Int.MaxSize, VarChar, VarChar.MaxSize, Decimal and Text in the sql.style dataframe are
ignored. They are used by the built-in mechanism to determine data types. Providing your own
function allows you to determine data types in a more differentiated way, if you like. The function

8 xml2relational

that is provided needs to take a vectors of values as its argument and needs to provide the SQL data
type of these values as a one-element character vector.

Value

A list of standard R dataframes, one for each table of the data model. The tables are named for the
elements in the XML document.

See Also

Other xml2relational: getCreateSQL(), getInsertSQL(), savetofiles()

Examples

Find path to custmers.xml example file in package directory
path <- system.file("", "customers.xml", package = "xml2relational")
db <- toRelational(path)

xml2relational Package ’xml2relational’

Description

Transforming a hierarchical XML document into a relational data model.

What is xml2relational

The xml2relational package is designed to ’flatten’ XML documents with nested objects into
relational dataframes. xml2relational takes an XML file as input and converts it into a set of
dataframes (tables). The tables are linked among each other with foreign keys and can be exported
as CSV or ready-to-use SQL code (CREATE TABLE for the data model, INSERT INTO for the data).

How to use xml2relational

• First, use toRelational() to read in an XML file and to convert into a relational data model.

• This will give you a list of dataframes, one for each table in the relational data model. Tables
are linked by foreign keys. You can specify the naming convention for the tables’ primary and
foreign keys as arguments in toRelational().

• You can now export the data structures of the tables (or a selection of tables) using getCreateSQL().
It support multiple SQL dialects, and you also provide syntax and data type information for
additional SQL dialects.

• You can also export the data as SQL INSERT statements with the getInsertSQL(). If you
only want to export the data as CSV use savetofiles() to save the dataframes produced by
toRelational() as comma-separated files.

Index

∗ xml2relational
getCreateSQL, 2
getInsertSQL, 4
savetofiles, 5
toRelational, 6

getCreateSQL, 2, 5, 6, 8
getInsertSQL, 4, 4, 6, 8

savetofiles, 4, 5, 5, 8

toRelational, 2, 4–6, 6, 8

xml2relational, 8

9

	getCreateSQL
	getInsertSQL
	savetofiles
	toRelational
	xml2relational
	Index

