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abn . abn Package
Description

abn is a collection of functions for fitting, selecting/learning, analysing, reporting Additive Bayesian
Networks.

General overview

What is abn:

Bayesian network modeling is a data analysis technique that is ideally suited to messy, highly
correlated, and complex datasets. This methodology is somewhat distinct from other forms of
statistical modeling in that its focus is on structure discovery - determining an optimal graphical
model that describes the inter-relationships in the underlying processes which generated the data.
It is a multivariate technique and can used for one or many dependent variables. This is a data-
driven approach, as opposed to, rely only on subjective expert opinion to determine how variables
of interest are inter-related (for example, structural equation modeling).

The R package abn is designed to fit additive Bayesian models to observational datasets. It contains
routines to score Bayesian Networks based on Bayesian or information-theoretic formulation of
generalized linear models. It is equipped with exact search and greedy search algorithms to select
the best network. The Bayesian implementation supports random effects to control for one layer
clustering. It supports a possible mixture of continuous, discrete, and count data and input of prior
knowledge at a structural level.

The R package abn requires the R package Rgraphviz to work well. It is store outside of CRAN;
see ‘Examples’ for the code to install the last version.

The web pages http://r-bayesian-networks.org provide futher case studies. See also the files
provided in the package directories inst/bootstrapping_example and inst/old_vignette for
more details.

Author(s)

Fraser Iain Lewis and Gilles Kratzer
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References

Kratzer, G., Lewis, F.I., Comin, A., Pittavino, M. and Furrer, R. (2019). "Additive Bayesian Net-
work Modelling with the R Package abn". arXiv preprint arXiv:1911.09006.

Lewis, F. I., and Ward, M. P. (2013). "Improving epidemiologic data analyses through multivariate
regression modeling". Emerging themes in epidemiology, 10(1), 4.

Kratzer, G., Pittavino, M, Lewis, F. 1., and Furrer, R., (2017). "abn: an R package for modelling
multivariate data using additive Bayesian networks". R package version 2.2. https://CRAN.R-
project.org/package=abn

Examples

## Citations:
print(citation('abn'), bibtex=TRUE)

## Installing the R package Rgraphviz:

# if (!requireNamespace("BiocManager"”, quietly = TRUE))
# install.packages("BiocManager")

# BiocManager::install("Rgraphviz")

## README.md in the directory ‘bootstrapping_example/*:
# edit(file=paste@( path.package('abn'),'/bootstrapping_example/README.md"))

adg Dataset related to average daily growth performance and abattoir
findings in pigs commercial production.

Description

The case study dataset is about growth performance and abattoir findings in pigs commercial pro-
duction in a selected set of 15 Canadian farms collected in March 1987.

Usage
adg

Format

An adapted data frame of the original dataset which consists of 341 observations of § variables and
a grouping variable (farm).

AR presence of atrophic rhinitis.

pneumS presence of moderate to severe pneumonia.

female sex of the pig (1=female, O=castrated).

livdam presence of liver damage (parasite-induced white spots).

eggs presence of fecal/gastrointestinal nematode eggs at time of slaughter.
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wormCount count of nematodes in small intestine at time of slaughter.
age days elapsed from birth to slaughter (days).
adg average daily weight gain (grams).

farm farm ID.

Details

When using the data to fit an additive Bayesian network, the variables AR, pneumS, female, 1ivdam,
eggs are considered binomial, wormcount Poisson, age and adg Gaussian. The variable farm can
be used to adjust for grouping.

References

Kratzer, G., Lewis, FI., Comin, A., Pittavino, M. and Furrer, R. (2019). "Additive Bayesian Net-
work Modelling with the R Package abn". arXiv preprint arXiv:1911.09006.

Dohoo, Ian Robert, Wayne Martin, and Henrik Stryhn. Veterinary epidemiologic research. No.
V413 DOHyv. Charlottetown, Canada: AVC Incorporated, 2003.

build.control Control the iterations in buildScoreCache

Description

Allow the user to set restrictions in the buildscorecache for both the Bayesian and the MLE
approach.

Usage

build.control(method = "bayes"”, max.mode.error = 10, mean = @, prec = 0.001,
loggam.shape = 1, loggam.inv.scale = 5e-05, max.iters = 100, epsabs = 1e-07,
error.verbose = FALSE, trace = 0L, epsabs.inner = 1e-06, max.iters.inner = 100,

finite.step.size = 1e-07, hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10, max.hessian.error = 0.5, factor.brent = 100,
maxiters.hessian.brent = 100, num.intervals.brent = 100,

ncores = @, max.irls = 100, tol = 10%-8, seed = 9062019)

Arguments

method a character that takes one of two values: "bayes" or "mle"

max.mode.error if the estimated modes from INLA differ by a factor of max.mode.error or more
from those computed internally, then results from INLA are replaced by those
computed internally. To force INLA always to be used, then max.mode.error=100,
to force INLA never to be used max.mod.error=0.

mean the prior mean for all the Gaussian additive terms for each node

prec the prior precision for all the Gaussian additive term for each node
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the shape parameter in the Gamma distribution prior for the precision in a Gaus-
sian node

loggam.inv.scale

max.iters

epsabs

error.verbose

trace

epsabs.inner

max.iters.inner

the inverse scale parameter in the Gamma distribution prior for the precision in
a Gaussian node

total number of iterations allowed when estimating the modes in Laplace ap-
proximation

absolute error when estimating the modes in Laplace approximation for models
with no random effects.

logical, additional output in the case of errors occurring in the optimization
Non-negative integer. If positive, tracing information on the progress of the "L-
BFGS-B" optimization is produced. Higher values may produce more tracing
information. (There are six levels of tracing. To understand exactly what these
do see the source code.)

absolute error in the maximization step in the (nested) Laplace approximation
for each random effect term

total number of iterations in the maximization step in the nested Laplace ap-
proximation

finite.step.size

hessian.params

suggested step length used in finite difference estimation of the derivatives for
the (outer) Laplace approximation when estimating modes

anumeric vector giving parameters for the adaptive algorithm, which determines
the optimal stepsize in the finite-difference estimation of the hessian. First entry
is the initial guess, second entry absolute error

max.iters.hessian

integer, maximum number of iterations to use when determining an optimal fi-
nite difference approximation (Nelder-Mead)

max.hessian.error

factor.brent

if the estimated log marginal likelihood when using an adaptive 5pt finite-difference
rule for the Hessian differs by more than max.hessian.error from when using an
adaptive 3pt rule then continue to minimize the local error by switching to the
Brent-Dekker root bracketing method

if using Brent-Dekker root bracketing method then define the outer most in-

terval end points as the best estimate of h (stepsize) from the Nelder-Mead as
(h/factor.brent,h*factor.brent)

maxiters.hessian.brent

maximum number of iterations allowed in the Brent-Dekker method

num.intervals.brent

max.irls

tol

ncores
seed

the number of initial different bracket segments to try in the Brent-Dekker method

total number of iterations for estimating network scores using an Iterative Reweighed
Least Square algorithm

real number giving the minimal tolerance expected to terminate the Iterative
Reweighed Least Square algorithm to estimate network score.

The number of cores to parallelize to, see ‘Details’.

a non-negative integer which sets the seed.
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Details
Parallelization over all children is possible via the function foreach of the package doParallel.
ncode=1 uses single threaded foreach. ncode=-1 uses all available cores but one.

With ncores=0 a simple for loop is used.

Value

A list with 18 components for the Bayesian approach, or a list with 4 components for "mle"

Examples

ctrlmle <- build.control(method = "mle”, ncores = @, max.irls = 100, tol = 10*-11, seed = 9062019)

ctrlbayes <- build.control(method = "bayes"”, max.mode.error = 10, mean = @, prec = 0.001,
loggam.shape = 1, loggam.inv.scale = 5e-05, max.iters = 100,
epsabs = 1e-07, error.verbose = FALSE, epsabs.inner = 1e-06,
max.iters.inner = 100, finite.step.size = 1e-07, hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10, max.hessian.error = 0.5, factor.brent = 100,
maxiters.hessian.brent = 100, num.intervals.brent = 100,
tol = 10%-8, seed = 9062019)

buildScoreCache Build a cache of goodness of fit metrics for each node in a DAG, pos-
sibly subject to user-defined restrictions

Description

Iterates over all valid parent combinations - subject to ban, retain, and max. parent limits - for each
node, or a subset of nodes, and computes a cache of log marginal likelihoods. This cache can then
be used in different DAG structural search algorithms.

Usage

buildScoreCache(data.df = NULL, data.dists = NULL, method = "bayes",
group.var = NULL, adj.vars = NULL, cor.vars = NULL, dag.banned = NULL,
dag.retained = NULL, max.parents = NULL, which.nodes=NULL,
defn.res = NULL, centre = TRUE, dry.run = FALSE,

control = NULL, verbose = FALSE, ...)
Arguments
data.df a data frame containing the data used for learning each node, binary variables

must be declared as factors.
data.dists a named list giving the distribution for each node in the network, see ‘Details’.

method should a "Bayes" or "mle" approach be used, see ‘Details’.
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group.var only applicable for nodes to be fitted as a mixed model (Bayesian) and gives
the column name in data.df of the grouping variable which must be a factor
denoting group membership.

adj.vars a character vector giving the column names in data. df for which the network
score has to be adjusted for, see ‘Details’.

cor.vars a character vector giving the column names in data. df for which a mixed model
should be used to adjust for within group correlation or pure adjustment.

dag.banned a matrix or a formula statement (see ‘Details’ for format) defining which arcs
are not permitted - banned - see ‘Details’ for format. Note that colnames and
rownames must be set, otherwise same row/column names as data.df will be
assumed. If set as NULL an empty matrix is assumed.

dag.retained a matrix or a formula statement (see ‘Details’ for format) defining which arcs
are must be retained in any model search, see ‘Details’ for format. Note that col-
names and rownames must be set, otherwise same row/column names as data.df
will be assumed. If set as NULL an empty matrix is assumed.

max.parents a constant or named list giving the maximum number of parents allowed, the list
version allows this to vary per node.

which.nodes a vector giving the column indices of the variables to be included, if ignored all
variables are included.

defn.res an optional user-supplied list of child and parent combinations, see ‘Details’.

centre should the observations in each Gaussian node first be standardized to mean zero

and standard deviation one, defaults to TRUE.

dry.run if TRUE then a list of the child nodes and parent combinations are returned but
without estimation of node scores (log marginal likelihoods).

control a list of control parameters. See build.control for the names of the settable
control values and their effect.
verbose if TRUE then provides some additional output.

additional arguments passed for optimization.

Details

The function computes a cache of scores based on possible restrictions (maximum complexity,
retained and banned arcs).

This function is very similar to fitAbn - see that help page for details of the type of models used and
in particular data. dists specification - but rather than fit a single complete DAG buildScoreCache
iterates over all different parent combinations for each node, creating a cache of scores. This cache
of score could be used to select the optimal network in other function such as searchHeuristic or
mostprobable.

Two very different approaches are implemented: a Bayesian and frequentist approaches. They can
be selected using the method argument.

If method="bayes": This function is used to calculate all individual node scores (log marginal
likelihoods).

The variable which.nodes is to allow the computation to be separated by node, for example, over
different CPUs using say R CMD BATCH. This may useful and indeed likely essential with larger
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problems or those with random effects. Note that in this case, the results must then be combined
back into a list of identical formats to that produced by an individual call to buildScoreCache,
comprising of all nodes (in the same order as the columns in data.df) before sending it to any
search routines. Using dry. run can be useful here.

If method="mle": This function is used to calculate all individual information-theoretic node scores.
The possible information-theoretic based network scores computed in buildScoreCache are the
maximum likelihood (mlik, called marginal likelihood in this context as it is computed node wise),
the Akaike Information Criteria (aic), the Bayesian Information Criteria (bic) and the Minimum
distance Length (mdl). The classical definitions of those metrics are given in Kratzer and Furrer
(2018). This function computes a cache that can be fed into a model search algorithm.

The numerical routines used here are identical to those in fitAbn and see that help page for further
details and also the quality assurance section on the http://r-bayesian-networks.org of the
abn website for more details.

Value

A named list of class abnCache.

children a vector of the child node indexes (from 1) corresponding to the columns in
data.df (ignoring any grouping variable)

node.defn a matrix giving the parent combination

mlik log marginal likelihood value for each node combination. If the model cannot

be fitted then NA is returned.

error.code if non-zero then either the root finding algorithm (glm nodes) or the maximisa-
tion algorithm (glmm nodes) terminated in an unusual way suggesting a possible
unreliable result, or else the finite difference hessian estimation produced and er-
ror or warning (glmm nodes). NULL if method="mle".

error.code.desc
a textual description of the error.code. NULL if method="mle"

hessian.accuracy
An estimate of the error in the final mlik value for each parent combination - this
is the absolute difference between two different adaptive finite difference rules
where each computes the mlik value. NULL if method="mle"

data.df a version of the original data (for internal use only in other functions such as
mostprobable).
data.dists the named list of nodes distributions (for internal use only in other functions

such as mostprobable).

max.parents the maximum number of parents (for internal use only in other functions such
as mostprobable).

dag.retained the matrix encoding the retained arcs (for internal use only in other functions
such as search.heuristic).

dag.banned the matrix encoding the banned arcs (for internal use only in other functions
such as search.heuristic).

aic aic value for each node combination. If the model cannot be fitted then NaN is
returned. NULL if method="bayes".
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bic bic value for each node combination. If the model cannot be fitted then NaN is
returned. NULL if method="bayes".

md1 mdl value for each node combination. If the model cannot be fitted then NaN is
returned. NULL if method="bayes".

Author(s)

Fraser Iain Lewis and Gilles Kratzer

References

Lewis, F. I., and McCormick, B. J. J. (2012). "Revealing the complexity of health determinants in
resource poor settings". American Journal Of Epidemiology. doi:10.1093/aje/KWS183).

Kratzer, G., Lewis, EI., Comin, A., Pittavino, M., and Furrer, R. (2019). "Additive Bayesian Net-
work Modelling with the R Package abn". arXiv:1911.09006.

Kratzer, G., and Furrer, R., (2018). "Information-Theoretic Scoring Rules to Learn Additive Bayesian
Network Applied to Epidemiology". arXiv:1808.01126.

Further information about abn can be found at: http://r-bayesian-networks.org.

See Also

buildScoreCache

Examples

HHHEHHHHEE AR A
## Example 1
HHHEHHAREAE AR A

## Subset of the build-in dataset, see 7?ex@.dag.data
mydat <- ex@.dag.datal,c("b1","b2","g1","g2","b3","g3")] ## take a subset of cols

## setup distribution list for each node

mydists <- list(b1="binomial”, b2="binomial”, gl="gaussian",
g2="gaussian"”, b3="binomial”, g3="gaussian")

# Structural constraints

# ban arc from b2 to b1

# always retain arc from g2 to gl

## parent limits
max.par <- list("b1"=2, "b2"=2, "gl1"=2, "g2"=2, "b3"=2, "g3"=2)

## now build the cache of pre-computed scores accordingly to the structural constraints
res.c <- buildScoreCache(data.df=mydat, data.dists=mydists,

dag.banned= ~b1|b2, dag.retained= ~gl|g2, max.parents=max.par)

## repeat but using R-INLA. The mlik's should be virtually identical.
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## now build cache:
if(requireNamespace("INLA", quietly = TRUE)){
res.inla <- buildScoreCache(data.df=mydat, data.dists=mydists,
dag.banned= ~b1|b2, dag.retained= ~gl|g2, max.parents=max.par,
control=list(max.mode.error=100))

## comparison - very similar
difference <- res.c$mlik - res.inla$mlik

## Comparison Bayes with MLE (unconstrained):

res.mle <- buildScoreCache(data.df=mydat, data.dists=mydists,
max.parents=3, method="mle")

res.abn <- buildScoreCache(data.df=mydat, data.dists=mydists,
max.parents=3, method="Bayes")

## of course different, but smame order:

plot(-res.mle$bic, res.abn$mlik)

## Not run:

HHH A AR A
## Example 2 - mle with several cores

S HHHHHE PP

## Many variables, few observations

mydat <- ex@.dag.data

mydists <- as.list(rep(c("binomial”, "gaussian”, "poisson"”), each=10))
names(mydists) <- names(mydat)

# system.time( {

# res.mlel <- buildScoreCache(data.df=mydat, data.dists=mydists,

# max.parents=2, method="mle", ncores=2) })
# system.time( {

# res.mle2 <- buildScoreCache(data.df=mydat, data.dists=mydists,

# max.parents=2, method="mle") 3})
B g

## Example 3 - grouped data - random effects example e.g. glmm
HEHHHHHHEHEEHH A EHHAHEEREEREHEHHH AR AR

mydat <- ex3.dag.data ## this data comes with abn see ?ex3.dag.data

mydists <- list(b1="binomial”, b2="binomial”, b3="binomial",
b4="binomial"”, b5="binomial”, b6="binomial”, b7="binomial"”,
b8="binomial”, b9="binomial”, b1@="binomial”,b11="binomial”,
b12="binomial”, b13="binomial” )

max.par <- 2

## in this example INLA is used as default since these are glmm nodes

## when running this at node-parent combination 71 the default accuracy check on the
## INLA modes is exceeded (default is a max. of 10 percent difference from

## modes estimated using internal code) and a message is given that internal code
## will be used in place of INLA's results.

11
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# mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, group.var="group”,

# cor.vars=c("b1"”,"b2","b3", "b4"  "b5"  "b6" , "b7"
# llbgll s Hbgll , Ilb1011 , llb1 1 n s Hb1 211 , llb1 3”) s
# max.parents=max.par, which.nodes=c(1))

## End(Not run)

compareDag Compare two DAGs or EGs

Description
Function that returns multiple graph metrics to compare two DAGs or essential graphs, known as
confusion matrix or error matrix.

Usage

compareDag(ref, test, node.names = NULL, checkDAG = TRUE)
compareEG(ref, test)

Arguments
ref a matrix or a formula statement (see details for format) defining the reference
network structure, a directed acyclic graph (DAG). Note that row names must
be set or given in node. names if the DAG is given via a formula statement.
test a matrix or a formula statement (see details for format) defining the test network
structure, a directed acyclic graph (DAG). Note that row names must be set or
given in node . names if the DAG is given via a formula statement.
node.names a vector of names if the DAGs are given via formula, see details.
checkDAG should the DAGs be tested for DAGs (default).
Details

This R function returns standard Directed Acyclic Graph comparison metrics. In statistical clas-
sification, those metrics are known as a confusion matrix or error matrix. Those metrics allows
visualization of the difference between different DAGs. In the case where comparing TRUTH to
learned structure or two learned structures, those metrics allow the user to estimate the performance
of the learning algorithm. In order to compute the metrics, a contingency table is computed of a
pondered difference of the adjacency matrices od the two graphs.

The returns metrics are: TP = True Positive TN = True Negative FP = False Positive FN = False
Negative CP = Condition Positive (ref) CN = Condition Negative (ref) PCP = Predicted Condition
Positive (test) PCN = Predicted Condition Negative (test)

True Positive Rate

_ TP
S CP
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False Positive Rate

_ XFP
> CN
Accuracy
B S>TP+> TN
"~ Totalpopulation
G-measure
\/ TP TP
TP+FP TP+ FN
F1-Score
25°TP
2 TP+ > FN+3) FP
Positive Predictive Value
STP
> PCP
False Ommision Rate
> FN
> PCN

Hamming-Distance: Number of changes needed to match the matrices.

The ref or test can be provided using a formula statement (similar to GLM input). A typical
formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to
start with ~. In this example, nodel has two parents (parentl and parent2). node2 and node3 have
the same parent3. The parents names have to exactly match those given in node.names. : is the
separtor between either children or parents, | separates children (left side) and parents (right side),
+ separates terms, . replaces all the variables in node . names.

To test for essential graphs (or graphs) in general, the test for DAG need to be switched off checkDAG=FALSE.
The function compareEG() is a wrapper to compareDag(, checkDAG=FALSE).
Value

A list giving DAGs comparison metrics. The metrics are: True Positive Rate, False Positive Rate,
Accuracy, G-measure, F1-Score, Positive Predictive Value, False Omission Rate, and the Hamming-
Distance.

Author(s)

Gilles Kratzer

References

Sammut, Claude, and Geoffrey I. Webb. (2017). Encyclopedia of machine learning and data mining.
Springer.

Further information about abn can be found at:
http://r-bayesian-networks.org
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Examples

test.m <- matrix(data = c(0,1,0,
070!0?

1,0,0), nrow = 3, ncol = 3)
ref.m <- matrix(data = c(90,90,0,

1’0!0)

1,0,0), nrow = 3, ncol = 3)

colnames(test.m) <- rownames(test.m) <- colnames(ref.m) <- colnames(ref.m) <- c("a", "b", "c")

unlist(compareDag(ref = ref.m, test = test.m))

createDag Create a legitimate DAGs

Description

Create a legitimate DAG in the abn format.

Usage
createAbnDag( dag, data.df = NULL, data.dists = NULL, ...)
Arguments
dag a matrix or a formula specifying a DAG, see ‘Details’.
data.df named dataframe or named vector.
data.dists named list giving the distribution for each node in the network. If not provided
it will be sample and returned.
further arguments passed to or from other methods.
Details

An object of class class(abnDag) contains a named matrix describing the DAG and possibly ad-
ditional objects such as the associated distributions of the nodes.

If the dag is specified with a formula, either data.df or data.dists is required with the . quanti-
fier.

If the dag is specified with an unnamed matrix and both data.df and data.dists are missing,
lower-case letters of the Roman alphabet are used for the node names.

Value

An object of class abnDag containing a named matrix and a named list giving the distribution for
each node.
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Examples

createAbnDag( ~atb|a, data.df=c("a"=1, "b"=1))

plot( createAbnDag( matrix( c(0,1,0,0),2,2)))

discretization Discretization of a Possibly Continuous Data Frame of Random Vari-
ables based on their distribution

Description

This function discretizes a data frame of possibly continuous random variables through rules for
discretization. The discretization algorithms are unsupervised and univariate. See details for the
complete list (the number of state of each random variable could also be provided).

Usage

discretization(data.df = NULL,
data.dists = NULL,
discretization.method = "sturges”,
nb.states = FALSE)

Arguments
data.df a data frame containing the data to discretize, binary variables must be declared
as factors, other as a numeric vector. The data frame must be named.
data.dists a named list giving the distribution for each node in the network.

discretization.method
a character vector giving the discretization method to use; see details. If a num-
ber is provided, the variable will be discretized by equal binning.

nb.states logical variable to select the output. If set to TRUE a list with the discretized data
frame and the number of state of each variable is returned. If set to FALSE only
the discretized data frame is returned.

Details
discretization() supports multiple rules for discretization. Below is the list of supported rules.
IQR() stands for interquartile range.
fd stands for the Freedman Diaconis rule. The number of bins is given by
range(z) * n'/?
2 IQR(x)
The Freedman Diaconis rule is known to be less sensitive than the Scott’s rule to outlier.

doane stands for doane’s rule. The number of bins is given by

1+log2n+1og21+@
g

g9
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This is a modification of Sturges’ formula, which attempts to improve its performance with non-
normal data.

sqrt The number of bins is given by:

V)

cencov stands for Cencov’s rule. The number of bins is given by:

/3

rice stands for Rice’ rule. The number of bins is given by:
on'/3

terrell-scott stands for Terrell-Scott’s rule. The number of bins is given by:
(Zn) 1/3

This is known that Cencov, Rice, and Terrell-Scott rules over-estimates k, compared to other rules
due to his simplicity.
sturges stands for Sturges’s rule. The number of bins is given by:
1+ log,(n)
scott stands for Scott’s rule. The number of bins is given by:

range(x)/o(z)n~1/?

Value

The discretized data frame or a list containing the table of counts for each bin the discretized data
frame.

Author(s)
Gilles Kratzer

References

Garcia, S., et al. (2013). A survey of discretization techniques: Taxonomy and empirical analysis
in supervised learning. IEEE Transactions on Knowledge and Data Engineering, 25.4, 734-750.

Cebeci, Z. and Yildiz, F. (2017). Unsupervised Discretization of Continuous Variables in a Chicken
Egg Quality Traits Dataset. Turkish Journal of Agriculture-Food Science and Technology, 5.4, 315-
320.

Examples

## Generate random variable

rv <- rnorm(n = 100, mean = 5, sd = 2)
dist <- list("gaussian")

names(dist) <- c("rv")

## Compute the entropy through discretization
entropyData(fregs.table = discretization(data.df = rv, data.dists = dist,
discretization.method = "sturges"”, nb.states = FALSE))
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entropyData Computes an Empirical Estimation of the Entropy from a Table of
Counts

Description

This function empirically estimates the Shannon entropy from a table of counts using the observed
frequencies.

Usage

entropyData(fregs.table)

Arguments

fregs.table a table of counts.

Details

The general concept of entropy is defined for probability distributions. The entropyData function
estimates empirical entropy from data. The probability is estimated from data using frequency ta-
bles. Then the estimates are plug-in in the definition of the entropy to return the so-called empirical
entropy. A common known problem of empirical entropy is that the estimations are biased due to
the sampling noise. This is also known that the bias will decrease as the sample size increases.

Value

Shannon’s entropy estimate on natural logarithm scale.

Author(s)

Gilles Kratzer

References

Cover, Thomas M, and Joy A Thomas. (2012). "Elements of Information Theory". John Wiley &
Sons.

See Also

discretization
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Examples

## Generate random variable

rv <- rnorm(n = 100, mean = @, sd = 2)
dist <- list("gaussian"”)

names(dist) <- c("rv")

## Compute the entropy through discretization
entropyData(discretization(data.df = rv, data.dists = dist,
discretization.method = "fd"”, nb.states = FALSE))

essentialGraph Construct the essential graph

Description

Constructs different versions of the essential graph from a given DAG

Usage

essentialGraph(dag, node.names = NULL, PDAG = "minimal")

Arguments
dag a matrix or a formula statement (see ‘Details’ for format) defining the network
structure, a directed acyclic graph (DAG).
node.names a vector of names if the DAG is given via formula, see ‘Details’.
PDAG a character value that can be: minimal or complete, see ‘Details’.
Details

This function returns an essential graph from a DAG, aka acyclic partially directed graph (PDAG).
This can be useful if the learning procedure is defined up to a Markov class of equivalence. A
minimal PDAG is defined as only directed edges are those who participate in v-structure. Whereas
the completed PDAG: every directed edge corresponds to a compelled edge, and every undirected
edge corresponds to a reversible edge.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
nodel|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, nodel has two parents (parentl and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in node.names. : is the separa-
tor between either children or parents, | separates children (left side) and parents (right side), +
separates terms, . replaces all the variables in node. names.

Value

A matrix giving the PDAG.
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Author(s)
Gilles Kratzer

References

West, D. B. (2001). Introduction to Graph Theory. Vol. 2. Upper Saddle River: Prentice Hall.

Chickering, D. M. (2013) A Transformational Characterization of Equivalent Bayesian Network
Structures, arXiv:1302.4938.

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

dag <- matrix(c(0,0,0, 1,0,0, 1,1,0), nrow = 3, ncol = 3)
dist <- list(a="gaussian"”, b="gaussian", c="gaussian")
colnames(dag) <- rownames(dag) <- names(dist)

essentialGraph(dag)

ex0.dag.data Synthetic validation data set for use with abn library examples

Description

300 observations simulated from a DAG with 10 binary variables, 10 Gaussian variables and 10
poisson variables.

Usage
ex0.dag.data

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not
give parameter estimates just the form of the relationships, e.g. logit()=1 means a logit link function
and comprises of only an intercept term).

b1 binary, logit()=1
b2 binary, logit()=1
b3 binary, logit()=1
b4 binary, logit()=1
bS5 binary, logit()=1
b6 binary, logit()=1
b7 binary, logit()=1
b8 binary, logit()=1


http://r-bayesian-networks.org
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b9 binary, logit()=1

b10 binary, logit()=1
gl
g2
e3
g4
g5
g6
g7
g8
29
g10 gaussian, identity()=1
pl
p2
p3
p4
pS
p6
p7
p8
p9
p10 poisson, log()=1

gaussian, identity()=1
gaussian, identity()=1
gaussian, identity()=1
gaussian, identity()=1
gaussian, identity()=1
gaussian, identity()=1
gaussian, identity()=1
gaussian, identity()=1

gaussian, identity()=1

poisson, log()=1
poisson, log()=1
poisson, log()=1
poisson, log()=1
poisson, log()=1
poisson, log()=1
poisson, log()=1
poisson, log()=1

poisson, log()=1

Examples

## Not run:
## The dataset was (essentially) generated using the following code:
datasize <- 300
tmp <- c(rep("y”

y", as.integer(datasize/2)), rep("n",
set.seed(1)

as.integer(datasize/2)))

ex0.dag.data <- data.frame(bl=sample(tmp, size=datasize, replace=TRUE),

b2=sample(tmp,
b3=sample(tmp,
b4=sample(tmp,
b5=sample(tmp,
b6=sample(tmp,
b7=sample(tmp,
b8=sample(tmp,
b9=sample(tmp,

size=datasize,
size=datasize,
size=datasize,
size=datasize,
size=datasize,
size=datasize,
size=datasize,
size=datasize,

replace=TRUE),
replace=TRUE),
replace=TRUE),
replace=TRUE),
replace=TRUE),
replace=TRUE),
replace=TRUE),
replace=TRUE),

b10=sample(tmp, size=datasize, replace=TRUE),
gl=rnorm(datasize, mean=0,sd=1),
g2=rnorm(datasize, mean=0,sd=1),
g3=rnorm(datasize, mean=0,sd=1),
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g4=rnorm(datasize, mean=0,sd=1),
gb=rnorm(datasize, mean=0,sd=1),
gb6=rnorm(datasize, mean=0,sd=1),
g7=rnorm(datasize, mean=0,sd=1),
g8=rnorm(datasize, mean=0,sd=1),
g9=rnorm(datasize, mean=0,sd=1),
gl0=rnorm(datasize, mean=0,sd=1),
pl=rpois(datasize, lambda=10),
p2=rpois(datasize, lambda=10),
p3=rpois(datasize, lambda=10),
p4=rpois(datasize, lambda=10),
p5=rpois(datasize, lambda=10),
p6=rpois(datasize, lambda=10),
p7=rpois(datasize, lambda=10),
p8=rpois(datasize, lambda=10),
p9=rpois(datasize, lambda=10),
p10=rpois(datasize, lambda=10))

## End(Not run)

ex1.dag.data Synthetic validation data set for use with abn library examples

Description

10000 observations simulated from a DAG with 10 variables from Poisson, Bernoulli and Gaussian
distributions.

Usage

ex1.dag.data

Format

A data frame, binary variables are factors.The relevant formulas are given below (note these do not
give parameter estimates just the form of the relationships, like in glm(), e.g. logit()=1+p1 means a
logit link function and comprises of an intercept term and a term involving p1).

b1 binary, logit()=1

p1 poisson, log()=1

gl gaussian, identity()=1

b2 binary, logit()=1

p2 poisson, log()=1+bl+pl

b3 binary, logit()=1+bl+gl+b2

g2 gaussian, identify()=1+pl+gl+b2

b4 binary, logit()=1+gl+4p2

bS binary, logit()=1+gl+g2

g3 gaussian, identity()=1+gl+b2
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Examples

## The data is one realisation from the the underlying DAG:
ex1.true.dag <- matrix(data=c(

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

’

S S B S R I SIS

RN R

y Yy Y,

» Y, Y, Y,

RS A SRS

» Y Yy,

IAS A SRS

y Yy Yy

—‘®®—“—\®®®
®®—‘®“®®®®
®®®®‘®®®®
®—\®®‘®®®®

0,0,0
0,0,0
0,0,0
,0,0,0,
0,0,0
0,0,0
0,0,0
0,0,0

[SENSEES IS I S

), ncol=10, byrow=TRUE)

» Y'Y,

colnames(ex1.true.dag) <- rownames(ex1.true.dag) <-
c("b1”,"p1", "g1", "b2" , "p2", "b3", "g2"  "b4"  "b5"  "g3")

ex2.dag.data Synthetic validation data set for use with abn library examples

Description

10000 observations simulated from a DAG with 18 variables three sets each from Poisson, Bernoulli
and Gaussian distributions.

Usage

ex2.dag.data

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not
give parameter estimates just the form of the relationships, e.g. logit()=1 means a logit link function
and comprises of only an intercept term).

b1 binary,logit()=1+g1+b2+b3+p3+b4+g4+b5

gl gaussian,identity()=1

p1l poisson,Jog()=1+g6

b2 binary,logit()=1+p3+b4+p6

g2 gaussian,identify()=1+b2

p2 poisson,log()=1+b2

b3 binary,logit()=1+g1+g2+p2+g3+p3+g4

g3 gaussian,identify()=1+g1+p3+b4

p3 poisson,log()=1

b4 binary,logit()=1+gl+p3+p5
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g4 gaussian,identify()=1+b4;

p4 poisson,Jog()=1+gl+b2+g2+b5

bS binary,logit()=1+b2+g2+b3+p3+g4
g5 gaussian,identify()=1

pS poisson,log()=1+gl+g5+b6+g6
b6 binary,logit()=1

g6 gaussian,identify()=1

p6 poisson,Jog()=1+g5

Examples

## The true underlying stochastic model has DAG - this data is a single realisation.
ex2.true.dag <- matrix(data = c(

0,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,1,1,0,1,1,0,1,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
), ncol = 18, byrow = TRUE)

colnames(ex2.true.dag) <- rownames(ex2.true.dag) <- c("b1","gl","p1","b2",
"g2" MB2" b3 "g3" "p3” "ba" "g4" "p4” "b5" "g5" "b5" "be" "g6" "p6")

ex3.dag.data Validation data set for use with abn library examples

Description
1000 observations across with 13 binary variables and one grouping variable. Real (anonymised)
data of unknown structure.

Usage

ex3.dag.data
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Format

A data frame with 14 columns, where b1,b2, ... ,b13 are binary variables encoded as factors and
group is a factor with 100 factors defining the sampling groups (10 observations each).

ex4.dag.data Valdiation data set for use with abn library examples

Description

2000 observations across with 10 binary variables and one grouping variable. Real (anonymised)
data of unknown structure.

Usage

ex4.dag.data

Format

A data frame with eleven columns: group factor with 85 levels defining sampling groups; b1, ... ,b10
binary variables encoded as factors.

ex5.dag.data Valdiation data set for use with abn library examples

Description

434 observations across with 18 variables, 6 binary and 12 continuous, and one grouping variable.
Real (anonymised) data of unknown structure.

Usage

ex5.dag.data

Format

A data frame with 19 columns: b1, ...,b6 binary variables, encoded as factors; g1, ...,g12 con-
tinuous variables. Finally, the column group defines sampling groups (encoded as a factor as well).



ex6.dag.data 25

ex6.dag.data Valdiation data set for use with abn library examples

Description

800 observations across with 8 variables, 1 count, 2 binary and 4 continuous, and 1 grouping vari-
able. Real (anonymised) data of unknown structure.

Usage

ex6.dag.data

Format
A data frame with eight columns. Binary variables are factors

pl count
gl continuous
g2 continuous
b1l binary
b2 binary
g3 continuous
g4 continuous

group factor,defines sampling groups

ex7.dag.data Valdiation data set for use with abn library examples

Description
10648 observations across with 3 variables, 2 binary and 1 grouping variable. Real (anonymised)
data of unknown structure.

Usage
ex7.dag.data

Format
A data frame, binary variables are factors

b1 binary
b2 binary

group factor, defines sampling groups
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expit Expit, Logit, and odds

Description
Compute the expit and logit of a numerical vector. Transform odds to probability.

Usage
expit(x)
logit(x)
odds (x)

Arguments

X vector of real values.

Details

logit computes the logit function:

logit(p) = log

1-p
expit computes the expit function:
expit(x) = 1 —:ef
odds transform an odd into a probability.
odds(x) = . f .

Those functions become numerically unstable if evaluated at the edge or the definition range.
Value
A real vector corresponding to the expit, the logit or the odds of the input values.

Author(s)

Gilles Kratzer
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FCv Dataset related to Feline calicivirus infection among cats in Switzer-
land.

Description

The dataset is about the Feline calicivirus (FCV) infection among cats in Switzerland. FCV is a
virus that occurs worldwide in domestic cats but also in exotic felids. FCV is a highly contagious
virus that is the major cause of upper respiratory disease or cat flue that affects felids. This is a com-
plex disease caused by different viral and bacterial pathogens, i.e., FCV, FHV-1, Mycoplasma felis,
Chlamydia felis and Bordetella bronchiseptica. It can be aggravated by retrovirus infections such
as FeLV and FIV. This composite dynamic makes it very interesting for a BN modeling approach.
The data were collected between September 2012 and April 2013.

Usage
adg

Format
An adapted data frame of the original dataset, which consists of 300 observations of 15 variables.

FCYV Feline Calici Virus status (0/1).

FHV_1 Feline Herpes Virus 1 status (0/1).

C_felis C-felis and Chlamydia felis status (0/1).

M_felis Mycoplasma felis status (0/1).

B_bronchiseptica B-bronchiseptica & Bordetella bronchispetica status (0/1).
FeLV feline leukosis virus status (0/1).

FIV feline immunodeficiency virus status (0/1).
Gingivostomatitis gingivostomatitis complex status (0/1).
URTD URTD complex (upper respiratory complex) (0/1).
Vaccinated vaccination status (0/1).

Pedigree pedigree (0/1).

Outdoor outdoor access (0/1).

Sex sex and castrated status (M, MN, F, FS).

GroupSize number of cats in the group (counts).

Age age in year (continuous)\.

References

Berger, A., Willi, B., Meli, M. L., Boretti, F. S., Hartnack, S., Dreyfus, A., ... and Hofmann-
Lehmann, R. (2015). Feline calicivirus and other respiratory pathogens in cats with Feline calicivirus-

related symptoms and in clinically healthy cats in Switzerland. BMC Veterinary Research, 11(1),
282.
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fit.control Control the iterations in fitAbn

Description

Allow the user to set restrictions in the fitAbn for both the Bayesian and the MLE approach.

Usage

fit.control(method = "bayes”, mean = @, prec = 0.001, loggam.shape = 1,
loggam.inv.scale = 5e-05, max.mode.error = 10, max.iters = 100,
epsabs = 1e-07, error.verbose = FALSE, trace = QL, epsabs.inner = 1e-06,
max.iters.inner = 100, finite.step.size = 1e-07,
hessian.params = c(1e-04, 0.01), max.iters.hessian = 10,
max.hessian.error = 1e-04, factor.brent = 100, maxiters.hessian.brent =10,
num.intervals.brent = 100, min.pdf = 0.001, n.grid = 250, std.area = TRUE,
marginal.quantiles = c(0.025, .25, 0.5, 0.75, 0.975), max.grid.iter = 1000,
marginal.node = NULL, marginal.param = NULL, variate.vec = NULL,
max.irls = 100, tol = 10*-11, seed = 9062019)

Arguments
method a character that takes one of two values: "bayes" or "mle"
mean the prior mean for all the Gaussian additive terms for each node.
prec the prior precision for all the Gaussian additive terms for each node.

loggam.shape  the shape parameter in the Gamma distributed prior for the precision in any
Gaussian nodes, also used for group-level precision is applicable.
loggam.inv.scale
the inverse scale parameter in the Gamma distributed prior for the precision in
any Gaussian nodes, also used for group-level precision, is applicable.

max.mode.error if the estimated modes from INLA differ by a factor of max.mode.error or more
from those computed internally, then results from INLA are replaced by those
computed internally. To force INLA always to be used, then max.mode.error=100,
to force INLA never to be used max.mod. error=0. See details.

max.iters total number of iterations allowed when estimating the modes in Laplace ap-
proximation
epsabs absolute error when estimating the modes in Laplace approximation for models

with no random effects.
error.verbose logical, additional output in the case of errors occurring in the optimization

trace Non-negative integer. If positive, tracing information on the progress of the "L-
BFGS-B" optimization is produced. Higher values may produce more tracing
information. (There are six levels of tracing. To understand exactly what these
do see the source code.)

epsabs.inner absolute error in the maximization step in the (nested) Laplace approximation
for each random effect term
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max.iters.inner
total number of iterations in the maximization step in the nested Laplace ap-
proximation

finite.step.size
suggested step length used in finite difference estimation of the derivatives for
the (outer) Laplace approximation when estimating modes

hessian.params anumeric vector giving parameters for the adaptive algorithm, which determines
the optimal step size in the finite-difference estimation of the Hessian. First entry
is the initial guess, second entry absolute error

max.iters.hessian
integer, maximum number of iterations to use when determining an optimal fi-
nite difference approximation (Nelder-Mead)

max.hessian.error
if the estimated log marginal likelihood when using an adaptive 5pt finite-difference
rule for the Hessian differs by more than max.hessian.error from when using an
adaptive 3pt rule then continue to minimize the local error by switching to the
Brent-Dekker root bracketing method, see details

factor.brent  if using Brent-Dekker root bracketing method then define the outer most in-
terval end points as the best estimate of h (stepsize) from the Nelder-Mead as
(h/factor.brent,h*factor.brent)

maxiters.hessian.brent

maximum number of iterations allowed in the Brent-Dekker method
num.intervals.brent

the number of initial different bracket segments to try in the Brent-Dekker method

min.pdf the value of the posterior density function below which we stop the estimation
only used when computing marginals, see details.

n.grid recompute density on an equally spaced grid with n.grid points.

std.area logical, should the area under the estimated posterior density be standardized to

exactly one, useful for error checking.

marginal.quantiles
vector giving quantiles at which to compute the posterior marginal distribution
at.

max.grid.iter gives number of grid points to estimate posterior density at when not explicitly
specifying a grid used to avoid excessively long computation.

marginal.node usedinconjunction withmarginal.paramto allow bespoke estimate of a marginal
density over a specific grid. value from 1 to the number of nodes.

marginal.param used in conjunction with marginal.node. value of 1 is for intercept, see modes
entry in results for the appropriate number.

variate.vec a vector containing the places to evaluate the posterior marginal density, must
be supplied if marginal.node is not null

max.irls integer given the maximum number of run for estimating network scores using
an Iterative Reweighed Least Square algorithm.

tol real number giving the minimal tolerance expected to terminate the Iterative
Reweighed Least Square algorithm to estimate network score.

seed a non-negative integer which sets the seed.
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Value

A list with 26 components for the Bayesian approach, or a list with 3 components for "mle".

Examples

ctrlmle <- fit.control(method = "mle”, max.irls = 100, tol = 10*-11, seed = 9062019)

ctrlbayes <- fit.control(method = "bayes"”, mean = @, prec = 0.001, loggam.shape = 1,
loggam.inv.scale = 5e-05, max.mode.error = 10, max.iters = 100,
epsabs = 1e-07, error.verbose = FALSE, epsabs.inner = 1e-06,
max.iters.inner = 100, finite.step.size = 1e-07, hessian.params = c(1e-04, 0.01),
max.iters.hessian = 10, max.hessian.error = 1e-04, factor.brent = 100,
maxiters.hessian.brent = 10, num.intervals.brent = 100, min.pdf = 0.001,
n.grid = 100, std.area = TRUE, marginal.quantiles = c(0.025, .25, 0.5, 0.75, 0.975),
max.grid.iter = 1000, marginal.node = NULL, marginal.param = NULL, variate.vec = NULL,
seed = 9062019)

fitabn Fit an additive Bayesian network model

Description

Fits an additive Bayesian network to observed data and is equivalent to Bayesian or information-
theoretic multi-dimensional regression modeling. Two numerical options are available in the Bayesian
settings, standard Laplace approximation or else an integrated nested Laplace approximation pro-
vided via a call to the R INLA library (see www.r-inla.org - this is not hosted on CRAN).

Usage

fitAbn(object = NULL, dag = NULL, data.df = NULL, data.dists = NULL, method = NULL,
group.var = NULL, adj.vars = NULL, cor.vars = NULL, centre = TRUE,
compute.fixed = FALSE, control = NULL, verbose = FALSE, ...)

Arguments

object an object of class abnLearned produced by mostprobable, searchHeuristic
or searchHillClimber.

dag a matrix or a formula statement (see details) defining the network structure, a
directed acyclic graph (DAG), see details for format. Note that column names
and row names must be set up.

data.df a data frame containing the data used for learning the network, binary variables
must be declared as factors, and no missing values all allowed in any variable.

data.dists a named list giving the distribution for each node in the network, see details.

method if NULL, takes method of object, otherwise "bayes” or "mle” for the method

to be used, see details.

group.var only applicable for mixed models and gives the column name in data. df of the
grouping variable (which must be a factor denoting group membership).
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adj.vars a character vector giving the column names in data.df for which the network
score has to be adjusted for, see details.

cor.vars a character vector giving the column names in data.df for which a mixed model
should be used.

centre should the observations in each Gaussian node first be standardised to mean zero

and standard deviation one.

compute.fixed a logical flag, set to TRUE for computation of marginal posterior distributions,
see details.

control a list of control parameters. See fit.control for the names of the settable
control values and their effect.

verbose if TRUE then provides some additional output, in particular the code used to call
INLA, if applicable.

additional arguments passed for optimization.

Details

If method="Bayes":

The procedure fitAbn fits an additive Bayesian network model to data where each node (variable
- a column in data.df) can be either: presence/absence (Bernoulli); continuous (Gaussian); or an
unbounded count (Poisson). The model comprises of a set of conditionally independent generalized
linear regressions with or without random effects. Internal code is used by default for numerical
estimation in nodes without random effects, and INLA is the default for nodes with random effects.
This default behavior can be overridden using max.mode.error. The default is max.mode.error=10,
which means that the modes estimated from INLA output must be within 10% of those estimated
using internal code. Otherwise, the internal code is used rather than INLA. To force the use of
INLA on all nodes, use max.mode.error=100, which then ignores this check, to force the use of
internal code then use max.mode.error=0. For the numerical reliability and perform of abn see
http://r-bayesian-networks.org. Generally speaking, INLA can be swift and accurate, but in
several cases, it can perform very poorly and so some care is required (which is why there is an
internal check on the modes). Binary variables must be declared as factors with two levels, and
the argument data.dists must be a list with named arguments, one for each of the variables in
data.df (except a grouping variable - if present), where each entry is either "poisson","binomial",
or "gaussian", see examples below. The "poisson" and "binomial" distributions use log and logit
link functions, respectively. Note that "binomial" here actually means only binary, one Bernoulli
trial per row in data.df.

If the data are grouped into correlated blocks - wherein a standard regression context a mixed model
might be used - then a network comprising of one or more nodes where a generalized linear mixed
model is used (but limited to only a single random effect). This is achieved by specifying parameters
group.var and cor.vars. Where the former defines the group membership variable, which should
be a factor indicating which observations belong to the same grouping. The parameter cor.vars is
a character vector that contains the names of the nodes for which a mixed model should be used. For
example, in some problems, it may be appropriate for all variables (except group.var) in data.df
to be parametrized as a mixed model while in others it may only be a single variable for which
grouping adjustment is required (as the remainder of variables are covariates measured at group
level).

In the network structure definition, dag.m, each row represents a node in the network, and the
columns in each row define the parents for that particular node, see the example below for the
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specific format. The dag.m can be provided using a formula statement (similar to GLM). A typical
formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to
start with ~. In this example, nodel has two parents (parentl and parent2). node2 and node3 have
the same parent3. The parents names have to exactly match those given in data.df. : is the
separator between either children or parents, | separates children (left side) and parents (right side),
+ separates terms, . replaces all the variables in data. df.

If compute. fixed=TRUE then the marginal posterior distributions for all parameters are computed.
Note the current algorithm used to determine the evaluation grid is rather crude and may need to
be manually refined using variate.vec (one parameter at a time) for publication-quality density
estimates. Note that a manual grid can only be used with internal code and not INLA (which uses
its own grid). The end points are defined as where the value of the marginal density drops below a
given threshold pdf.min.

When estimating the log marginal likelihood in models with random effects (using internal code
rather than INLA), an attempt is made to minimize the error by comparing the estimates given be-
tween a 3pt and Spt rule when estimating the Hessian in the Laplace approximation. The modes
used in each case are identical. The first derivatives are computed using gsl’s adaptive finite differ-
ence function, and this is embedding inside the standard 3pt and 5pt rules for the second derivatives.
In all cases, a central difference approximation is tried first with a forward difference being a fall
back (as the precision parameters are strictly positive). The error is minimized through choosing
an optimal step size using gsl’s Nelder-Mead optimization, and if this fails, (e.g., is larger than
max.hessian.error) then the Brent-Dekker root bracketing method is used as a fallback. If the
error cannot be reduced to below max.hessian.error, then the step size, which gave the lowest
error during the searches (across potentially many different initial bracket choices), is used for the
final Hessian evaluations in the Laplace approximation.

If method="mle":

The procedure fitAbn with the argument method= "mle"” fits an additive Bayesian network model
to data where each node (variable - a column in data.df) can be either: presence/absence (Bernoulli);
continuous (Gaussian); an unbounded count (Poisson); or a discrete variable (Multinomial). The
model comprises of a set of conditionally independent generalized linear regressions with or without
adjustment.

Binary and discrete variables must be declared as factors and the argument data.dists must be
a list with named arguments, one for each of the variables in data.df, where each entry is either
"poisson","binomial”, "multinomial" or "gaussian", see examples below. The "poisson" and "bino-
mial" distributions use log and logit link functions, respectively. Note that "binomial" here actually
means only binary, one Bernoulli trial per row in data.df.

In the context of fitAbn adjustment means that irrespective to the adjacency matrix the adjustment
variable set (adj.vars) will be add as covariate to every node defined by cor.vars. If cor.vars
is NULL then adjustment is over all variables in the data.df.

In the network structure definition, dag.m, each row represents a node in the network, and the
columns in each row define the parents for that particular node, see the example below for the
specific format. The dag.m can be provided using a formula statement (similar to GLM). A typical
formula is ~ node1|parent1:parent2 + node2:node3|parent3. The formula statement have to
start with ~. In this example, nodel has two parents (parentl and parent2). node2 and node3 have
the same parent3. The parents names have to exactly match those given in data.df. : is the
separator between either children or parents, | separates children (left side) and parents (right side),
+ separates terms, . replaces all the variables in data.df.
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The Information-theoretic based network scores used in fitAbn with argument method="mle" are
the maximum likelihood (mlik, called marginal likelihood in this context as it is computed node
wise), the Akaike Information Criteria (aic), the Bayesian Information Criteria (bic) and the Min-
imum distance Length (mdl). The classical definitions of those metrics are given in Kratzer and
Furrer (2018).

The numerical routine is based on an iterative scheme to estimate the regression coefficients. The It-
erative Reweighed Least Square (IRLS) programmed using Rcpp/ReppArmadrillo. One hard coded
feature of fitAbn with argument method="mle" is a conditional use of a bias reduced binomial
regression when a classical Generalized Linear Model (GLM) fails to estimate the maximum like-
lihood of the given model accurately. Additionally, a QR decomposition is performed to check for
rank deficiency. If the model is rank deficient and the BR GLM fails to estimate it, then predictors
are sequentially removed. This feature aims at better estimating network scores when data sparsity
is present.

A special care should be taken when interpreting or even displaying p-values computed with fitAbn.
Indeed, the full model is already selected using goodness of fit metrics based on the (same) full
dataset.

The control argument is a list with separate arguments for the Bayesian and MLE implementation.
See fit.control for details.

Value

An object of class abnFit. A named list. One entry for each of the variables in data.df (ex-
cluding the grouping variable, if present) which contains an estimate of the log marginal likelihood
for that individual node. An entry "mlik" which is the total log marginal likelihood for the full
ABN model. A vector of error.codes - non-zero if a numerical error or warning occurred, and
a vector error.code.desc giving a text description of the error. A list modes, which contains all the
mode estimates for each parameter at each node. A vector called Hessian accuracy, which is the
estimated local error in the log marginal likelihood for each node. If compute.fixed=TRUE then
a list entry called marginals which contains a named entry for every parameter in the ABN and
each entry in this list is a two-column matrix where the first column is the value of the marginal
parameter, say X, and the second column is the respective density value, pdf(x). Also, a list called
marginal.quantiles is produced, giving the quantiles for each marginal posterior distribution.

Author(s)

Fraser Iain Lewis and Gilles Kratzer

References
Lewis, F. 1., and McCormick, B. J. J. (2012). Revealing the complexity of health determinants in
resource poor settings. American Journal Of Epidemiology. DOI:10.1093/aje/KWS183.

Kratzer, G., Lewis, FI., Comin, A., Pittavino, M. and Furrer, R. (2019). "Additive Bayesian Net-
work Modelling with the R Package abn". arXiv preprint arXiv:1911.09006.

Kratzer, G., and Furrer, R., 2018. Information-Theoretic Scoring Rules to Learn Additive Bayesian
Network Applied to Epidemiology. Preprint; Arxiv: stat. ML/1808.01126.

Further information about abn can be found at:
http://r-bayesian-networks.org
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See Also

buildScoreCache, fit.control

Examples

## Built-in dataset with a subset of cols
mydat <- ex@.dag.datal,c("b1","b2","b3","g1","b4","p2","p4")]

## setup distribution list for each node
mydists <- list(b1="binomial”, b2="binomial”, b3="binomial”, gl="gaussian”,
b4="binomial"”, p2="poisson", p4="poisson")

## Null model - all independent variables
mydag.empty <- matrix(@, nrow=7, ncol=7)
colnames(mydag.empty) <- rownames(mydag.empty) <- names(mydat)

## Now fit the model to calculate its goodness-of-fit
myres <- fitAbn(dag=mydag.empty, data.df=mydat, data.dists=mydists)

## Log-marginal likelihood goodness-of-fit for complete DAG
print(myres$mlik)

## fit using the formula statement

# including the creation of the graph of the DAG via Rgraphviz

myres <- fitAbn(dag=~b1|b2+b2|p4:gl+gl|p2+b3|gl+b4|bl1+p4|gl,
data.df=mydat, data.dists=mydists)

print(myres$mlik) ## a much weaker fit than full independence DAG

plotAbn(dag=myres$abnDag$dag, data.dists=mydists, fitted.values=myres$modes)

## Or equivalentelly using the formula statement, with plotting
## Now repeat but include some dependencies first

mydag <- mydag.empty

mydag["b1","b2"] <- 1 # b1<-b2 and so on

mydag["b2","p4"] <- mydag["b2","g1"] <- mydag["g1","p2"] <- 1
mydag["b3","g1"] <- mydag["b4","b1"] <- mydag["p4","gl1"] <- 1
myresAlt <- fitAbn(dag=mydag, data.df=mydat, data.dists=mydists)
plot(myresAlt)

et
## This function contains an MLE implementation accessible through a method parameter
## use built-in simulated data set

et

myres.mle <- fitAbn(dag=~b1|b2+b2|p4+gl+gl|p2+b3|gl+b4|b1+p4|gl,
data.df=mydat, data.dists=mydists, method="mle")

## Print the output for mle first then for Bayes:
print(myres.mle)
print(myres)
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## Not run:

## A simple plot of some posterior densities the algorithm which chooses
## density points is very simple any may be rather sparse so also recompute
## the density over an equally spaced grid of 50 points between the two
## end points which had at f=min.pdf
## max.mode.error=0 foces to use the internal c code
myres.c <- fitAbn(dag=mydag, data.df=mydat, data.dists=mydists,
compute. fixed=TRUE,
control=1list(max.mode.error=0))

print(names(myres.c$marginals)) ## gives all the different parameter names

## Repeat but use INLA for the numerics using max.mode.error=100

## as using internal code is the default here rather than INLA

myres.inla <- fitAbn(dag=mydag, data.df=mydat, data.dists=mydists,
compute.fixed=TRUE,
control=list(max.mode.error=100))

## Plot posterior densities

par(mfrow=c(2,2), mai=c(.7,.7,.2,.1))
plot(myres.c$marginals$b1[["b1|(Intercept)”1], type="1", xlab="b1|(Intercept)")
lines(myres.inla$marginals$b1[["b1|(Intercept)”]], col="blue")
plot(myres.c$marginals$b2[["b2|p4"]1], type="1", xlab="b2|p4")
lines(myres.inla$marginals$b2[["b2|p4"]1], col="blue")
plot(myres.c$marginals$g1[["gl|precision”]], type="1", xlab="gl|precision")
lines(myres.inla$marginals$g1[["g1|precision”]], col="blue")
plot(myres.c$marginals$b4[["b4|b1"]1], type="1", xlab="b4|b1")
lines(myres.inla$marginals$b4[["b4|b1"]], col="blue")

## An elementary mixed model example using built-in data specify DAG,
## only two variables using a subset of variables from ex3.dag.data
## both variables are assumed to need (separate) adjustment for the
## group variable, i.e., a binomial GLMM at each node

mydists <- list(b1="binomial”, b2="binomial")

## Compute marginal likelihood - use internal code via max.mode.error=0

## as using INLA is the default here.

## Model where b1 <- b2

myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.datal,c(1,2,14)], data.dists=mydists,
group.var="group”, cor.vars=c("b1","b2"),
control=list(max.mode.error=0))

print(myres.c) ## show all the output

## compare mode for node bl with glmer(), lme4::glmer is automatically attached.
## Now for marginals - INLA is strongly preferable for estimating marginals for nodes
## with random effects as it is far faster, but may not be reliable

## see http://r-bayesian-networks.org

## INLA's estimates of the marginals, using high n.grid=500
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## as this makes the plots smoother - see below.
## myres.inla <- fitAbn(dag=~b1|b2, data.df=ex3.dag.datal,c(1,2,14)],

# data.dists=mydists,

# group.var="group”, cor.vars=c("b1", "b2"),

# compute.fixed=TRUE, n.grid=500,

# control=list(max.mode.error=100, max.hessian.error=10E-02))

## this is NOT recommended - marginal density estimation using fitAbn in mixed models
## is really just for diagnostic purposes, better to use fitAbn.inla() here

## but here goes...be patient

# myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.datal,c(1,2,14)], data.dists=mydists,
# group.var="group”, cor.vars=c("b1", "b2"), compute.fixed=TRUE,

# control=1list(max.mode.error=0, max.hessian.error=10E-02))

## compare marginals between internal and INLA.

# par(mfrow=c(2,3))

## 5 parameters - two intercepts, one slope, two group level precisions
# plot(myres.inla$marginals$b1[[1]], type="1", col="blue")

# lines(myres.c$marginals$b1[[1]], col="brown”, lwd=2)

# plot(myres.inla$marginals$b1[[2]], type="1", col="blue")

# lines(myres.c$marginals$b1[[2]1], col="brown", lwd=2)

## the precision of group-level random effects

# plot(myres.inla$marginals$b1[[3]], type="1", col="blue", x1lim=c(0@,2))

# lines(myres.c$marginals$b1[[3]1], col="brown",lwd=2)

# plot(myres.inla$marginals$b2[[1]], type="1", col="blue")

# lines(myres.c$marginals$b2[[1]1],col="brown”,lwd=2)

# plot(myres.inla$marginals$b2[[1]1], type="1", col="blue")

# lines(myres.c$marginals$b2[[1]], col="brown”, lwd=2)

## the precision of group-level random effects

# plot(myres.inla$marginals$b2[[2]1], type="1", col="blue", xlim=c(0,2))
# lines(myres.c$marginals$b2[[2]], col="brown”, lwd=2)

### these are very similar although not exactly identical

## use internal code but only to compute a single parameter over a specified grid
## This can be necessary if the simple auto grid finding functions does a poor job

#myres.c <- fitAbn(dag=~b1|b2, data.df=ex3.dag.datal,c(1,2,14)], data.dists=mydists,

# group.var="group", cor.vars=c("b1", "b2"),

# centre=FALSE, compute.fixed=TRUE,

# control=list(marginal.node=1, marginal.param=3,## precision term in node 1
# variate.vec=seq(0.05, 1.5, len=25), max.hessian.error=10E-02))

#par (mfrow=c(1,2))

#plot(myres.c$marginals[[1]1], type="1", col="blue")## still fairly sparse

## An easy way is to use spline to fill in the density without recomputing other
## points provided the original grid is not too sparse.
#plot(spline(myres.c$marginals[[1]1], n=100), type="b", col="brown")

## End(Not run)
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infoDag Compute standard information for a DAG.

Description

This function returns standard metrics for DAG description. A list that contains the number of
nodes, the number of arcs, the average Markov blanket size, the neighborhood average set size, the
parent average set size and children average set size.

Usage
infoDag(object, node.names = NULL)

Arguments
object an object of class abnLearned, abnFit. Alternatively, a matrix or a formula
statement defining the network structure, a directed acyclic graph (DAG). Note
that row names must be set up or given in node . names.
node.names a vector of names if the DAG is given via formula, see details.
Details

This function returns a named list with the following entries: the number of nodes, the number of
arcs, the average Markov blanket size, the neighborhood average set size, the parent average set
size, and the children’s average set size.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
nodel|parent1:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, nodel has two parents (parentl and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in node.names. : is the separa-
tor between either children or parents, | separates children (left side) and parents (right side), +
separates terms, . replaces all the variables in node. names.

Value

A named list that contains following entries: the number of nodes, the number of arcs, the average
Markov blanket size, the neighborhood average set size, the parent average set size and children
average set size.

Author(s)
Gilles Kratzer

References

West, D. B. (2001). Introduction to graph theory. Vol. 2. Upper Saddle River: Prentice Hall.

Further information about abn can be found at:
http://r-bayesian-networks.org
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Examples

## Creating a dag:

dag <- matrix(c(0,0,0,0, 1,0,0,0, 1,1,0,1, 0,1,0,0), nrow = 4, ncol = 4)
dist <- list(a="gaussian"”, b="gaussian”, c="gaussian”, d="gaussian")
colnames(dag) <- rownames(dag) <- names(dist)

infoDag(dag)
plot(createAbnDag(dag))

linkStrength A function that returns the strengths of the edge connections in a
Bayesian Network learned from observational data.

Description
A flexible implementation of multiple proxy for strength measures useful for visualizing the edge
connections in a Bayesian Network learned from observational data.

Usage

linkStrength(dag, data.df = NULL, data.dists = NULL,
method = c("mi.raw”, "mi.raw.pc”, "mi.corr”, "1s", "ls.pc”, "stat.dist"),

discretization.method = "doane")
Arguments

dag a matrix or a formula statement (see details for format) defining the network
structure, a directed acyclic graph (DAG). Note that rownames must be set or
given in data.dist if the DAG is given via a formula statement.

data.df a data frame containing the data used for learning each node, binary variables
must be declared as factors.

data.dists a named list giving the distribution for each node in the network, see ‘Details’.

method the method to be used. See ‘Details’.

discretization.method
a character vector giving the discretization method to use. See discretization.

Details

This function returns multiple proxies for estimating the connection strength of the edges of a
possibly discretized Bayesian network’s dataset. The retuned connection strength measures are:
the Raw Mutual Information (mi . raw), the Percentage Mutual information (mi.raw.pc), the Raw
Mutual Information computed via correlation (mi. corr), the link strength (1s), the percentage link
strength (1s.pc) and the statistical distance (stat.dist).

The general concept of entropy is defined for probability distributions. The probability is estimated
from data using frequency tables. Then the estimates are plug-in in the definition of the entropy
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to return the so-called empirical entropy. A standard known problem of empirical entropy is that
the estimations are biased due to the sampling noise. This is also known that the bias will decrease
as the sample size increases. The mutual information estimation is computed from the observed
frequencies through a plug-in estimator based on entropy. For the case of an arc going from the
node X to the node Y and the remaining set of parent of Y is denoted as Z.

The mutual information is defined as I(X, Y) = H(X) + H(Y) - H(X, Y), where H() is the entropy.
The Percentage Mutual information is defined as PI(X,Y) = I(X,Y)/H(YIZ).

The Mutual Information computed via correlation is defined as MI(X,Y) = -0.5 log(1-cor(X,Y)"2).
The link strength is defined as LS(X->Y) = H(Y1Z)-H(Y1X,Z).

The percentage link strength is defined as PLS(X->Y) = LS(X->Y) / H(YIZ).

The statistical distance is defined as SD(X,Y) = 1- MI(X,Y) / max(H(X),H(Y)).

Value

The function returns a named matrix with the requested metric.

Author(s)

Gilles Kratzer

References

Boerlage, B. (1992). Link strength in Bayesian networks. Diss. University of British Columbia.

Ebert-Uphoff, Imme. "Tutorial on how to measure link strengths in discrete Bayesian networks."
(2009).

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples
dist <- list(a="gaussian”, b="gaussian"”, c="gaussian")
data.param <- matrix(c(o,1,0, 0,0,1, 0,0,0), nrow = 3L, ncol = 3L, byrow = TRUE)

data.param.var <- matrix(@, nrow = 3L, ncol = 3L)
diag(data.param.var) <- c(0.1,0.1,0.1)

out <- simulateAbn(data.dists = dist,
n.chains = 1, n.adapt = 1000, n.thin = 1, n.iter = 100,
data.param = data.param, data.param.var = data.param.var)

linkStrength(data.param, data.df = out, data.dists = dist,
method = "1s", discretization.method = "sturges")
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mb Compute the Markov blanket

Description

This function computes the Markov blanket of a set of nodes given a DAG (Directed Acyclic Graph).

Usage
mb(dag, node, data.dists=NULL)

Arguments
dag a matrix or a formula statement (see details for format) defining the network
structure, a directed acyclic graph (DAG).
node a character vector of the nodes for which the Markov Blanket should be returned.
data.dists a named list giving the distribution for each node in the network, see details.
Details

This function returns the Markov Blanket of a set of nodes given a DAG.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
nodel |parentl:parent2 + node2:node3|parent3. The formula statement have to start with ~.
In this example, nodel has two parents (parentl and parent2). node2 and node3 have the same
parent3. The parents names have to exactly match those given in name. : is the separtor between
either children or parents, | separates children (left side) and parents (right side), + separates terms,
. replaces all the variables in name.

Author(s)

Gilles Kratzer

Examples

## Defining distribution and dag
dist <- list(a="gaussian"”, b="gaussian”, c="gaussian”, d="gaussian",
e="binomial”, f="binomial")
dag <- matrix(c(e,1,1,0,1,0,
0,0,1,1,0,1,
0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,1,
0,0,0,0,0,0), nrow = 6L, ncol = 6L, byrow = TRUE)
colnames(dag) <- rownames(dag) <- names(dist)

mb(dag, node = "b")
mb(dag, node = c("b","e"))

mb(~alb:c:e+b|c:d:f+e|f, node = "e", data.dists = dist)
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miData Empirical Estimation of the Entropy from a Table of Counts

Description

This function empirically estimates the Mutual Information from a table of counts using the ob-
served frequencies.

Usage

miData(fregs.table, method = c("mi.raw”, "mi.raw.pc"))
Arguments

fregs.table a table of counts.

method a character determining if the Mutual Information should be normalized.
Details

The mutual information estimation is computed from the observed frequencies through a plugin
estimator based on entropy.

The plugin estimator is I(X, Y) = H (X) + H(Y) - H(X, Y), where H() is the entropy computed with
entropyData.

Value

Mutual information estimate.

Author(s)

Gilles Kratzer

References

Cover, Thomas M, and Joy A Thomas. (2012). "Elements of Information Theory". John Wiley &
Sons.

See Also

discretization
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Examples

## Generate random variable
Y <= rnorm(n = 100, mean = @, sd = 2)
X <= rnorm(n = 100, mean = 5, sd = 2)

dist <- list(Y="gaussian"”, X="gaussian")
miData(discretization(data.df = cbind(X,Y), data.dists = dist,

discretization.method = "fd", nb.states = FALSE),
method = "mi.raw")

mostprobable Find most probable DAG structure

Description

Find most probable DAG structure using exact order based approach due to Koivisto and Sood,
2004

Usage
mostProbable(score.cache, score="bic", prior.choice=1, verbose=TRUE, ...)
Arguments
score.cache object of class abnCache typically outputted by from buildScoreCache().
score which score should be used to score the network. Possible choices are aic,bic,mdl,mlik.

prior.choice  an integer, 1 or 2, where 1 is a uniform structural prior and 2 uses a weighted
prior, see details

verbose if TRUE then provides some additional output.

further arguments passed to or from other methods.

Details

The procedure runs the exact order based structure discovery approach of Koivisto and Sood (2004)
to find the most probable posterior network (DAG). The local.score is the node cache, as created
using buildScoreCache (or manually provided the same format is used). Note that the scope of
this search is given by the options used in local.score, for example, by restricting the number of
parents or the ban or retain constraints given there.

This routine can take a long time to complete and is highly sensitive to the number of nodes in the
network. It is recommended to use this on a reduced data set to get an idea as to the computational
practicality of this approach. In particular, memory usage can quickly increase to beyond what
may be available. For additive models, problems comprising up to 20 nodes are feasible on most
machines. Memory requirements can increase considerably after this, but then so does the run
time making this less practical. It is recommended that some form of over-modeling adjustment is
performed on this resulting DAG (unless dealing with vast numbers of observations), for example,
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using parametric bootstrapping, which is straightforward to implement in MCMC engines such
as JAGS or WinBUGS. See the case studies at http://r-bayesian-networks.org or the files
provided in the package directories inst/bootstrapping_example and inst/old_vignette for
details.

The parameter prior.choice determines the prior used within each node for a given choice of
parent combination. In Koivisto and Sood (2004) p.554, a form of prior is used, which assumes
that the prior probability for parent combinations comprising of the same number of parents are all
equal. Specifically, that the prior probability for parent set G with cardinality |Gl is proportional
to 1/[n-1 choose IGI] where there are n total nodes. Note that this favors parent combinations with
either very low or very high cardinality, which may not be appropriate. This prior is used when
prior.choice=2. When prior.choice=1 an uninformative prior is used where parent combina-
tions of all cardinalities are equally likely. The latter is equivalent to the structural prior used in the
heuristic searches e.g., searchHillclimber or searchHeuristic.

Note that the network score (log marginal likelihood) of the most probable DAG is not returned as
it can easily be computed using fitAbn, see examples below.

Value

An object of class abnMostprobable, which is a list containing: a matrix giving the DAG definition
of the most probable posterior structure, the cache of pre-computed scores and the score used for
selection.

Author(s)

Fraser Iain Lewis

References

Koivisto, M. V. (2004). Exact Structure Discovery in Bayesian Networks, Journal of Machine
Learning Research, vol 5, 549-573.

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

HH#HH A

## Example 1

A A

## This data comes with ‘abn‘ see ?ex1.dag.data
mydat <- ex1.dag.data[1:5000, c(1:7,10)]

## Setup distribution list for each node:
mydists <- list(bl1="binomial”, p1="poisson”, gl="gaussian”, b2="binomial”,
p2="poisson”, b3="binomial”, g2="gaussian"”, g3="gaussian")

## Parent limits, for speed purposes quite specific here:

max'par <_ 1ist(”b1 Ilze,llp‘] 11:0, Hg1 U:1 s llb211:1 ’Ilple:2,11b3H:3, IIgZII:3’ llg3”:2)

## Now build cache (no constraints in ban nor retain)

mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par)
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or

## Find the globally best DAG:

mp.dag <- mostProbable(score.cache=mycache)
myres <- fitAbn(object=mp.dag,create.graph=TRUE)
myres$mlik

plot(myres) # plot the best model

## last line is essentially equivalent to:
# plotAbn(dag=mp.dag$dag, data.dists=mydists, fitted.values=myres$modes)

## Fit the known true DAG (up to variables 'b4' and 'b5'):
true.dag <- matrix(data=0, ncol=8, nrow=8)
colnames(true.dag) <- rownames(true.dag) <- names(mydists)

true.dag["p2"”,c("b1","p1")] <= 1
true.dag["b3",c("b1","g1","b2")] <- 1
true.dag["g2",c("p1”,"g1"”,"b2")] <~ 1
true.dag["g3",c("g1","b2")] <- 1

fitAbn(dag=true.dag, data.df=mydat, data.dists=mydists)$mlik

## Not run:

HH# A AR A
## Example 2 - models with random effects

S HHHHHE P

## This data comes with abn see ?ex3.dag.data
# mydat <- ex3.dag.datal,c(1:4,14)]
# mydists <- list(b1="binomial”, b2="binomial"”, b3="binomial”, b4="binomial")

## This takes a few seconds and requires INLA:

# mycache.mixed <- buildScoreCache(data.df=mydat, data.dists=mydists,
# group.var="group"”, cor.vars=c("b1","b2","b3","b4"),

# max.parents=2, which.nodes=c(1:4))

## Find the most probable DAG:
# mp.dag <- mostProbable(score.cache=mycache.mixed)

## and get goodness of fit:
# fitAbn(object=mp.dag, data.df=mydat, data.dists=mydists,
# group.var="group”, cor.vars=c("b1","b2","b3","b4"))$mlik

## End(Not run)

or Odds Ratio from a Table

Description

Compute the odds ratio from a table or a matrix.
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Usage

or(x)

Arguments

X a 2x2 table or matrix.

Details

Compute the odds ratio from a table or a matrix.

Value

A real value.

Author(s)
Gilles Kratzer
pigs.vienna Dataset related to diseases present in ‘finishing pigs’, animals about
to enter the human food chain at an abattoir.
Description

The data we consider here comprise of a randomly chosen batch of 50 pigs from each of 500
randomly chosen pig producers in the UK. The dataset consists of 25000 observations, 10 binary
variables, and a grouping variable. These are ‘finishing pigs’, animals about to enter the human
food chain at an abattoir. Further description of the data set is present on the vignette.

Format

A data frame with a mixture of 10 discrete variables, each of which is set as a factor, and a grouping
variable.

PC Binary.

PT Binary.

MS Binary.

HS Binary.

TAIL Binary.

Abscess Binary.

Pyaemia Binary.

EPcat Binary.

PDcat Binary.

plbinary Binary.

batch Group variable, corresponding to the 500 different pig producers
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Details

This dataset was used in an older version of the vignette. See also the files provided in the package
directories inst/bootstrapping_example and inst/old_vignette give a detailed analysis of
the dataset and provide more details for a bootstrapping example thereof.

References

Hartnack, S., et al. (2016) "Attitudes of Austrian veterinarians towards euthanasia in small animal
practice: impacts of age and gender on views on euthanasia." BMC Veterinary Research 12.1: 26.

plotabn Plot an ABN graphic

Description

Plot an ABN DAG using formula statement or a matrix in using Rgraphviz through the graphAM
class.

Usage

plotAbn(dag, data.dists=NULL, markov.blanket.node=NULL, fitted.values=NULL,
digits=2, edge.strength=NULL, edge.strength.lwd=5, edge.direction="pc",
edge.color="black”, edge.linetype="solid", edge.arrowsize=0.6,
edge.fontsize=node.fontsize, node.fontsize=12, node.fillcolor=c(
"lightblue”, "brown3", "chartreuse3"), node.fillcolor.list=NULL,

node.shape=c("circle”, "box", "ellipse”, "diamond"), plot=TRUE , ...)
Arguments
dag a matrix or a formula statement (see details for format) defining the network
structure, a Directed Acyclic Graph (DAG). Note that rownames must be set or
given in data.dists.
data.dists a named list giving the distribution for each node in the network, see details.

markov.blanket.node
name of variables to display its Markov blanket.

fitted.values modes or coefficents outputted from fitAbn.
digits number of digits to display the fitted.values.

edge.strength a named matrix containing evaluations of edge strength which will change the
arcs width (could be Mutual information, p-values, number of bootstrap retrieve
samples or the outcome of the 1link.strength).

edge.strength.lwd
maximum line width for edge.strength.

edge.direction character giving the direction in which arcs should be plotted, pc (parent to
child) or cp (child to parent) or undirected.
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node.

node.

edge.
edge.

edge.
node.

edge.

plot

node.

Details

fillcolor

shape

color

linetype

arrowsize
fontsize

fontsize
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the colour of the node. Second and third element is used for the Markov blanket
and node of the Markov blanket.

the shape of the nodes according the Gaussian, binomial, Poisson and multino-
mial distributions.

the colour of the edge.

the linetype of the edge. Defaults to "solid"”. Valid values are the same as for
the R’s base graphic parameter 1ty.

the thickness of the arrows. Not relevant if arc. strength is provided.
the font size of the nodes names.
the font size of the arcs fitted values.

logical variable, if set to TRUE then the graph is plotted.

fillcolor.list

the list of node that should be coloured.

arguments passed to the plotting function.

By default binomial nodes are squares, multinoial nodes are empty, Gaussian nodes are circles and
poison nodes are ellipses.

The dag can be provided using a formula statement (similar to glm). A typical formula is ~
nodel|parentl:parent2 + node2:node3|parent3.

The construction is based on the graph package. Properties of the graph can be changend after the
construction, see ‘Examples’.

Value

A rendered graph, if plot=TRUE. The graphAM object is returned invisibly.

Author(s)

Gilles Kratzer, Reinhard Furrer

References

Further information about abn can be found at:
http://r-bayesian-networks.org

See Also

graphAM-class, edgeRenderInfo
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Examples

#Define distribution list
dist <- list(a="gaussian"”, b="gaussian"”, c="gaussian"”, d="gaussian”, e="binomial"”, f="binomial")

#Define a matrix formulation
edge.strength <- matrix(c(9,0.

,0,0),nrow = 6L, ncol = 6L, byrow = TRUE)

## Naming of the matrix
colnames(edge.strength) <- rownames(edge.strength) <- names(dist)

## Plot form a matrix
plotAbn(dag = edge.strength, data.dists = dist)

## Edge strength
plotAbn(dag = ~alb:c:d:e+b|c:d:f+c|d:e+d|e+e|f, data.dists = dist, edge.strength = edge.strength)

## Plot from a formula for a different DAG!
plotAbn(dag = ~a|b:c:et+b|c:d:f+e|f, data.dists = dist)

## Markov blanket
plotAbn(dag = ~a|b:c:e+b|c:d:f+e|f, data.dists = dist, markov.blanket.node = "e")

## Change col for all edges

tmp <- plotAbn(dag = ~a|b:c:etb|c:d:f+e|f, data.dists = dist, plot=FALSE)
graph: :edgeRenderInfo(tmp) <- list(col="blue")

Rgraphviz: :renderGraph(tmp)

## Change 1ty for individual ones. Named vector is necessary

tmp <- plotAbn(dag = ~a|b:c:etb|c:d:f+e|f, data.dists = dist, plot=FALSE)
edgelty <- rep(c("solid”,"dotted"), c(6,1))

names(edgelty) <- names( graph::edgeRenderInfo(tmp, "col”))

graph: :edgeRenderInfo(tmp) <- list(lty=edgelty)

Rgraphviz: :renderGraph(tmp)

scoreContribution Compute the score’s contribution in a network of each observation.

Description

This function computes the score’s contribution of each observation to the total network score.

Usage

scoreContribution(object = NULL,
dag = NULL, data.df = NULL, data.dists = NULL,
verbose = FALSE)
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Arguments

object

dag

data.df

data.dists

verbose

Details
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an object of class ’abnLearned’ produced by mostProbable, searchHeuristic
or searchHillClimber.

a matrix or a formula statement (see details) defining the network structure, a
directed acyclic graph (DAG), see details for format. Note that colnames and
rownames must be set.

a data frame containing the data used for learning the network, binary variables
must be declared as factors and no missing values all allowed in any variable.

a named list giving the distribution for each node in the network, see details.

if TRUE then provides some additional output.

This function computes the score contribution of each observation to the total network score. This
function is available only in the ‘mle‘ settings. To do so one uses the glm and predict functions.
This function is an attempt to perform diagnostic for an ABN analysis.

Value

A named list that contains the scores contributions: maximum likelihood, aic, bic, mdl and diagonal
values of the hat matrix.

Author(s)

Gilles Kratzer

Examples

## Use a subset of a built-in simulated data set
mydat <- ex1.dag.datal[,c("b1","g1","p1")]

## setup distribution list for each node
mydists <- list(b1="binomial”, gl="gaussian”, p1="poisson")

## now build cache
mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2, method = "mle")

## Find the globally best DAG
mp.dag <- mostProbable(score.cache=mycache, score="bic", verbose = FALSE)

out <- scoreContribution(object = mp.dag)

## Observations contribution per network node

boxplot (out$bic)
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searchHeuristic A family of heuristic algorithms that aims at finding high scoring di-
rected acyclic graphs

Description

A flexible implementation of multiple greedy search algorithms to find high scoring network (DAG)

Usage
searchHeuristic(score.cache, score = "mlik"”,
num.searches = 1, seed = 42, start.dag = NULL,
max.steps = 100,
algo = "hc", tabu.memory = 10, temperature = 0.9,
verbose = FALSE, ...)
Arguments
score.cache output from buildScoreCache().
score which score should be used to score the network. Possible choices are aic,bic,mdl,mlik.

num. searches a positive integer giving the number of different search to run, see details.

seed a non-negative integer which sets the seed.

start.dag a DAG given as a matrix, see details for format, which can be used to explicity
provide a starting point for the structural search.

max.steps a constant giving the number of search steps per search, see details.

algo which heuristic algorithm should be used. Possible choices are: hc, tabu, sa.

tabu.memory a non-negative integer number to set the memory of the tabu search.

temperature a real number giving the update in temperature for the sa (simulated annealing)

search algorithm.
verbose if TRUE then provides some additional output.

further arguments passed to or from other methods.

Details

This function is a flexible implementation of multiple greedy heuristic algorithms, particularly well
adapted to the abn framework. It targets multi-random restarts heuristic algorithms. The user can
select the num. searches and the maximum number of steps within by max.steps. The optimiza-
tion algorithm within each search is relatively rudimentary.

The function searchHeuristic is different from the searchHillclimber in the sense that this
function is fully written in R, whereas the searchHillclimber is written in C and thus expected to
be faster. The function searchHillclimber at each hill-climbing step consider every information
from the pre-computed scores cache while the function searchHeuristic performs a local stepwise
optimization. This function chooses a structural move (or edge move) and compute the score’s
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change. On this point, it is closer to the MCMCMC algorithm from Madigan and York (1995) and
Giudici and Castelo (2003) with a single edge move.

If the user select random, then a random valid DAG is selected. The routine used favourise low
density structure. The function implements three algorithm selected with the parameter algo: hc,
tabu or sa.

If algo=hc: The Hill-climber algorithm (hc) is a single move algorithm. At each Hill-climbing step
within a search an arc is attempted to be added. The new score is computed and compared to the
previous network’s score.

If algo=tabu: The same algorithm is as with hc is used, but a list of banned moves is computed.
The parameter tabu.memory controls the length of the tabu list. The idea is that the classical Hill-
climber algorithm is inefficient when it should cross low probability regions to unblock from a local
maximum and reaching a higher score peak. By forcing the algorithm to choose some not already
used moves, this will force the algorithm to escape the local maximum.

If algo=sa: This variant of the heuristic search algorithm is based on simulated annealing described
by Metropolis et al. (1953). Some accepted moves could result in a decrease of the network score.
The acceptance rate can be monitored with the parameter temperature.

Value

An object of class abnHeuristic (which extends the class abnLearnd) and contains list with en-

tires:
dags a list of DAGs
scores a vector giving the network score for the locally optimal network for each search

detailed.score a vector giving the evolution of the network score for the all the random restarts
score a number giving the network score for the locally optimal network
score.cache the pre-computed cache of scores

num.searches a numeric giving the number of random restart

max.steps a numeric giving the maximal number of optimization steps within each search
algorithm a character for indicating the algorithm used
Author(s)

Gilles Kratzer

References

Heckerman, D., Geiger, D. and Chickering, D. M. (1995). Learning Bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning, 20, 197-243.

Madigan, D. and York, J. (1995) "Bayesian graphical models for discrete data". International Sta-
tistical Review, 63:215232.

Giudici, P. and Castelo, R. (2003). "Improving Markov chain Monte Carlo model search for data
mining". Machine Learning, 50:127158.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). "Equation

of state calculations by fast computing machines". The journal of chemical physics, 21(6), 1087-
1092.
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Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

## Not run:

HHHHHHHAE A A
## example: use built-in simulated data set
S HHEHHEH PR AR

mydat <- exl.dag.data ## this data comes with abn see ?ex1.dag.data

## setup distribution list for each node

mydists<-list(b1="binomial”, pl1="poisson”, gl="gaussian”, b2="binomial”,
p2="poisson”, b3="binomial”, g2="gaussian”, b4="binomial”,
b5="binomial”, g3="gaussian")

mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2)
## Now peform 10 greedy searches
heur.res <- searchHeuristic(score.cache = mycache, data.dists = mydists,

start.dag = "random”, num.searches = 10,

max.steps = 50)

## Plot (one) dag
plotAbn(heur.res$dags[[1]], data.dists = mydists)

## End(Not run)

searchHillclimber Find high scoring directed acyclic graphs using heuristic search.

Description

Find high scoring network (DAG) structures using a random re-starts greedy hill-climber heuristic

search.
Usage
searchHillClimber(score.cache, score = "mlik"”, num.searches = 1, seed = 42,
start.dag = NULL, support.threshold = 0.5, timing.on = TRUE, dag.retained = NULL,
verbose = FALSE, ...)
Arguments

score.cache output from buildScoreCache().
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score character giving which network score should be used to select the structure.
Currently 'mlik' only.

num.searches  number of times to run the search.
seed non-negative integer which sets the seed in the GSL random number generator.

start.dag a DAG given as a matrix, see details for format, which can be used to provide a
starting point for the structural search explicitly,

support.threshold
the proportion of search results - each locally optimal DAG - in which each arc
must appear to be a part of the consensus network.

timing.on extra output in terms of duration computation.

dag.retained a DAG given as a matrix, see details for format. This is necessary if the score.cache
was created using an explicit retain matrix, and the same retain matrix should
be used here. dag.retained is used by the algorithm which generates the initial
random DAG to ensure that the necessary arcs are retained.

verbose extra output.

further arguments passed to or from other methods.

Details

The procedure runs a greedy hill-climbing search similar, but not identical, to the method presented
initially in Heckerman et al. 1995. (Machine Learning, 20, 197-243). Each search begins with a
randomly chosen DAG structure where this is constructed in such a way as to attempt to choose a
DAG uniformly from the vast landscape of possible structures. The algorithm used is as follows:
given a node cache (from buildScoreCache, then within this set of all allowed local parent com-
binations, a random combination is chosen for each node. This is then combined into a full DAG,
which is then checked for cycles, where this check iterates over the nodes in a random order. If all
nodes have at least one child (i.e., at least one cycle is present), then the first node examined has all
its children removed, and the check for cycles is then repeated. If this has removed the only cycle
present, then this DAG is used at the starting point for the search, if not, a second node is chosen
(randomly) and the process is then repeated until a DAG is obtained.

The actual hill-climbing algorithm itself differs slightly from that presented in Heckerman et al. as
a full cache of all possible local combinations are available. At each hill-climbing step, everything
in the node cache is considered. In other words, all possible single swaps between members of
cache currently present in the DAG and those in the full cache. The single swap, which provides
the greatest increase in goodness of fit is chosen. A single swap here is the removal or addition
of any one node-parent combination present in the cache while avoiding a cycle. This means that
as well as all single arc changes (addition or removal), multiple arc changes are also considered at
each same step, note however that arc reversal in this scheme takes two steps (as this requires first
removal of a parent arc from one node and then addition of a parent arc to a different node). The
original algorithm perturbed the current DAG by only a single arc at each step but also included arc
reversal. The current implementation may not be any more efficient than the original but is arguably
more natural given a pre-computed cache of local scores.

A start DAG may be provided in which case num.searches must equal 1 - this option is really just
to provide a local search around a previously identified optimal DAG.

This function is designed for two different purposes: i) interactive visualization; and ii) longer batch
processing. The former provides easy visual "eyeballing"” of data in terms of its majority consensus
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network (or similar threshold), which is a graphical structure which comprises of all arcs which
feature in a given proportion (support.threshold) of locally optimal DAGs already identified
during the run. The general hope is that this structure will stabilize - become fixed - relatively
quickly, at least for problems with smaller numbers of nodes.

Value

A list with entries:

init.score

final.score
init.dag
final.dag

consensus

a vector giving network score for initial network from which the search com-
menced

a vector giving the network score for the locally optimal network
list of matrices, initial DAGs
list of matrices, locally optimal DAGs

a matrix holding a binary graph, not necessary a DAG!

support.threshold

Author(s)

percentage supported used to create consensus matrix

Fraser Iain Lewis

References

Lewis, F. 1., and McCormick, B. J. J. (2012). Revealing the complexity of health determinants in
resource poor settings. American Journal Of Epidemiology. DOI:10.1093/aje/KWS183).

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

## Not run:

A

## example 1:

use built-in simulated data set

AR

## this data comes with abn see ?ex1.dag.data
mydat <- ex1.dag.data

## setup distribution list for each node
mydists <- list(bl1="binomial”, p1="poisson”, gl="gaussian”, b2="binomial”,

p2="poisson”, b3="binomial”, g2="gaussian”, b4="binomial”,
b5="binomial”, g3="gaussian")

## Build cache may take some minutes for buildScoreCache()
mycache <- buildScoreCache(data.df=mydat, data.dists=mydists,

max.parents=2);

# now peform 10 greedy searches
heur.res <- searchHillClimber(score.cache=mycache,
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num. searches=10, timing.on=FALSE)
plotAbn(dag=heur.res$consensus, data.dists=mydists)

SHEHHHHHHHEEHHEHEEEEEEHHEHR
## example 2 - glmm example
HHHHHHHEEEE A

## this data comes with abn see ?ex1.dag.data
mydat <- ex3.dag.datal[,c(1:4,14)]

mydists <- list(b1="binomial”, b2="binomial”, b3="binomial",
b4="binomial")

## This takes a few seconds

# mycache.mixed <- buildScoreCache(data.df=mydat, data.dists=mydists,
# group.var="group”, cor.vars=c("b1","b2","b3","b4"),
# max.parents=2, which.nodes=c(1:4))

## Now peform 50 greedy searches

# heur.res <- searchHillClimber(score.cache=mycache.mixed, num.searches=50,
# timing.on=FALSE)

## Plot the majority consensus network

# plotAbn(dag=heur.res$consensus, data.dists=mydists)

## End(Not run)

simulateAbn Simulate from an ABN Network

Description

Simulate one or more responses from an ABN network corresponding to a fitted object using a
formula statement or an adjacency matrix.

Usage

simulateAbn(data.dists = NULL,
data.param = NULL,
data.param.var = NULL,
data.param.mult = NULL,
n.chains =10,
n.adapt = 1000,
n.thin = 100,
n.iter = 10000,
bug.file=NULL,
verbose=TRUE,
simulate=TRUE,
keep.file=FALSE,
seed=42)
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Arguments
data.dists named list giving the distribution for each node in the network, see ‘Details’.
data.param named matrix, which have to be square with as many entries as the number of

variables, each element is the coefficient (for specifications see ‘Details’) used
in the glm to simulate responses.

data.param.var optional matrix, which should be square and having as many entries as number
of variables, which contains the precision values for gaussian nodes. Default is
setto 1.

data.param.mult
optional matrix, which should be square and having as many entries as number
of variables, which contains the multinomial coefficient.

n.chains number of parallel chains for the model.

n.thin number of parallel chains for the model.

n.iter number of iteration to monitor.

n.adapt number of iteration for adaptation. If n. adapt is set to zero, then no adaptation
takes place.

bug.file name of the user specific bug file. If missing "model.bug"” will be used. See
‘Details’.

verbose logical. Default TRUE. Should R report extra information on progress?

simulate logical. Default TRUE. If set to FALSE, no simulation will be run only creation of
the bug file.

keep.file logical. Default FALSE. If set to TRUE, the bug file generated will be kept after-
wards.

seed by default set to 42.

Details

This function use rjags to simulate data from a DAG. It first creates a bug file, in the actual
repository, then use it to simulate the data. This function output a data frame. The bug file can be
run using rjags separately.

The coefficients given in the data.param are: the logit of the probabilities for binomial nodes,
the means of the gaussian nodes, and the log of the Poison parameter. Additionally, a matrix
data.param.var could give precision values for gaussian nodes (default is set to 1).

Binary and multinomial variables must be declared as factors, and the argument data.dists must
be a list with named arguments, one for each of the variables in data. df (except a grouping variable
- if present), where each entry is either "poisson”, "binomial”, "multinomial” or "gaussian”,
see examples below. The Poisson distributed variables use log and Binomial and multinomial dis-
tributed ones the logit link functions. Note that "binomial" here actually means only binary, one
Bernoulli trial per row in data.df.

The number of simulated data (rows of the outputted data frame) is given by n.iter divided by
n.thin.

The bug file contains a description of the model in the JAGS dialect of the BUGS language. It is
possible to only generate this file and to reuse this for later or other purposes. If a bug file name is
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specified and the file exists, it will be used. If the file does not exist or bug. file is missing, the bug
file is created. Default name is "model . bug”.

The verbose argument is passed appropriately to the JAGS functions.

Value

A data frame containing simulated data.

Author(s)
Gilles Kratzer

References

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

## Define set of distributions:
dist<-list(a="gaussian”, b="gaussian"”, c="gaussian", d="gaussian”,
e="binomial”, f="binomial")

## Define parameter matrix:

data.param <- matrix(c(1,2,0.5,0,20,0,
0,1,3,10,0, 0.8,

,0,0,0,

'Yy

1
0,1,0,0
,0,0,0.5

0,0,0,0

’

» Y Y,

’1 ’
), nrow = 6L, ncol = 6L, byrow = TRUE)

’

0,0
0,0,
0,0
0,0

’ y Y'Y,

## Define precision matrix:
data.param.var <- matrix(@, nrow = 6L, ncol = 6L)
diag(data.param.var) <- c(10,20,30,40,0,0)

## Plot the dag
plotAbn(dag = ~a|b:c:etb|c:d:f+e|f, data.dists = dist)

## Simulate the data
out <- simulateAbn(data.dists=dist, n.chains=1, n.thin=1, n.iter=1000,
data.param=data.param, data.param.var=data.param.var)

simulateDag Simulate DAGs

Description

Simulate a Directed Acyclic Graph (ABN) with arbitrary arc density.
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Usage

simulateDag(node.name = NULL,
data.dists = NULL,
edge.density = 0.5)

Arguments
node. name a vector of character giving the names of the nodes. It gives the size of the
simulated DAG.
data.dists named list giving the distribution for each node in the network. If not provided

it will be sample and returned.

edge.density  areal number between O and 1 giving the network density.

Details

This function generates DAGs by sampling triangular matrices and reorder columns and rows ran-
domly. The network density (edge.density) is used column-wise as binomial sampling probabil-
ity. Then the matrix is named using the user-provided names.

Value

An object of class abnDag a named matrix and a named list giving the distribution for each node.

Author(s)

Gilles Kratzer

References

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

## Example using Ozon entries:

dist <- list(Ozone="gaussian", Solar.R="gaussian”, Wind="gaussian",
Temp="gaussian”, Month="gaussian", Day="gaussian")

out <- simulateDag(node.name = names(dist), data.dists = dist, edge.density = 0.8)

plot(out)
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tographviz Convert a DAG into graphviz format

Description

Given a matrix defining a DAG create a text file suitable for plotting with graphviz

Usage

toGraphviz(dag, data.df=NULL, data.dists=NULL, group.var=NULL, outfile, directed=TRUE)

Arguments
dag a matrix defining a DAG.
data.df a data frame containing the data used for learning the network.
data.dists a list with named arguments matching the names of the data frame which gives
the distribution family for each variable. See fitAbn for details.
group.var only applicable for mixed models and gives the column name in data.df of the
grouping variable (which must be a factor denoting group membership). See
fitAbn for details.
outfile a character string giving the filename which will contain the graphviz graph.
directed logical; if TRUE, a directed acyclic graph is produced, otherwise an undirected
graph.
Details

Graphviz (https://www.graphviz.org) is visualisation software developed by AT&T and freely
available. This function creates a text representation of the DAG, or the undirected graph, so this
can be plotted using graphviz. The R package, Rgraphviz (available through the Bioconductor
project https://www.bioconductor.org/) interfaces R and the working installation of graphviz.
Binary nodes will appear as squares, Gaussian as ovals and Poisson nodes as diamonds in the
resulting graphviz network diagram. There are many other shapes possible for nodes and numerous
other visual enhancements - see online graphviz documentation. Bespoke refinements can be added
by editing the raw outfile produced. For full manual editing, particularly of the layout, or adding
annotations, one easy solution is to convert a postscript format graph (produced in graphviz using
the -Tps switch) into a vector format using a tool such as pstoedit (http://www.pstoedit.net),
and then edit using a vector drawing tool like xfig. This can then be resaved as postscript or pdf
thus retaining full vector quality.

Value

Nothing is returned, but a file outfile written.

Author(s)

Fraser Iain Lewis
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References

Further information about abn can be found at:
http://r-bayesian-networks.org

Examples

## On a typical linux system the following code constructs a nice
## looking pdf file 'graph.pdf'.

## Not run:

## Subset of a build-in dataset

mydat <- ex@.dag.datal,c("b1","b2","b3","g1","b4","p2","p4")]

## setup distribution list for each node

mydists <- list(bl1="binomial”, b2="binomial”, b3="binomial”,
gl="gaussian”, b4="binomial”, p2="poisson”,
p4="poisson")

## specify DAG model

mydag <- matrix(c(

y 1Yy

y Y'Y,

» Uy

0,1,0,0,1
0,0,0,0,0
0,1,0,0,1
1,0,0,0,0,
0,0,0,0,0
0,0,0,1,0
0,0,0,0
)

AR SILE]

b , ?1’0!®
, byrow=TRUE, ncol=7)

#
#
#
, #
#
#
#

colnames(mydag) <- rownames(mydag) <- names(mydat)

## create file for processing with graphviz

outfile <- paste(tempdir(), "graph.dot”, sep="/")

toGraphviz(dag=mydag, data.df=mydat, data.dists=mydists, outfile=outfile)
## and then process using graphviz tools e.g. on linux

# system(paste( "dot -Tpdf -o graph.pdf”, outfile))

# system("evince graph.pdf")

## Example using data with a group variable where b1<-b2
mydag <- matrix(c(@,1, 0,0), byrow=TRUE, ncol=2)

colnames(mydag) <- rownames(mydag) <- names(ex3.dag.datal,c(1,2)]1)
## specific distributions
mydists <- list(b1="binomial”, b2="binomial")

## create file for processing with graphviz

outfile <- paste@(tempdir(), "/graph.dot")

toGraphviz(dag=mydag, data.df=ex3.dag.datal,c(1,2,14)], data.dists=mydists,
group.var="group”,
outfile=outfile, directed=FALSE)

## and then process using graphviz tools e.g. on linux:

# pdffile <- paste@(tempdir(), "/graph.pdf”)"

# system(paste("dot -Tpdf -o ", pdffile, outfile))

# system(paste("evince ", pdffile, " &")  ## or some other viewer
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## End(Not run)

var33 simulated dataset from a DAG comprising of 33 variables
Description
250 observations simulated from a DAG with 17 binary variables and 16 continuous. A DAG of

this
the

Format

data features in the vignette. Note that the conditional dependence relations given are those in
population and may differ in the realization of 250 observations.

A data frame with a mixture of discrete variables each of which is set as a factor and continuous

vari

vl
v2
v3
v4
v5
v6
v7
v8
v9
v10
vlil
v12
v13
v1l4
vl5
v16
v17
v18
v19
v20
v21
v22
v23

ables. Joint distribution structure used to generate the data.

Binary, independent.
Gaussian, conditionally dependent upon v1.
Binary, independent.
Binary, conditionally dependent upon v3.
Gaussian, conditionally dependent upon v6.
Binary, conditionally dependent upon v4 and v7.
Gaussian, conditionally dependent upon v8.
Gaussian, conditionally dependent upon v9.
Binary, conditionally dependent upon v10.
Binary, independent.
Binary, conditionally dependent upon v10, v12 and v19.
Binary, independent.
Gaussian, independent.
Gaussian, conditionally dependent upon v13.
Binary, conditionally dependent upon v14 and v21.
Gaussian, independent.
Gaussian, conditionally dependent upon v16 and v20.
Binary, conditionally dependent upon v20.
Binary, conditionally dependent upon v20.
Binary, independent.
Binary, conditionally dependent upon v20.
Gaussian, conditionally dependent upon v21.

Gaussian, conditionally dependent upon v21.
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v24
v25
v26
v27
v28
v29
v30
v31
v32
v33

Examples

Binary, independent.

Gaussian, independent.

Gaussian, independent.

version

Gaussian, conditionally dependent upon v23.

Gaussian, conditionally dependent upon v23 and v26.
Binary, conditionally dependent upon v20.

Binary, conditionally dependent upon v27, v29 and v31.

Gaussian, conditionally dependent upon v29.

Binary, conditionally dependent upon v21, v29 and v31.

Gaussian, conditionally dependent upon v31.

## Constructing the DAG of the dataset:
dag33 <- matrix(@, 33, 33)

dag33[2,1] <

dag33[4,3]
dag33[6,4]
dag33[5,6]
dag33[7,8]
dag33[8,9]

dag33[9,10] <- 1

dag33[11,10]
dag33[14,13]
dag33[17,16]
dag33[15,14]
dag33[18,20]
dag33[19,20]
dag33[21,20]
dag33[22,21]
dag33[23,21]
dag33[24,23]
dag33[25,23]
dag33[26,20]
dag33[33,31]
dag33[33,31]
dag33[32,21]
dag33[30,29]
dag33[28,27]

-1
<1

<-1
<-1
<-1
<-1

dag33[6,7] <- 1

; dag33[11,12]

; dag33[17,20]

; dag33[15,21]

; dag33[25,26]

; dag33[32,31]

; dag33[28,29]

<- 1; dag33[11,19] <- 1;

<-1

N
I
_

<- 1; dag33[32,29] <- 1

<- 1; dag33[28,31] <- 1

version

abn Version Information
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Description

abn.version is a variable (class simple.list) holding detailed information about the version of
abn loaded.

abn.Version() provides detailed information about the running version of abn or the abn compo-
nents.

Usage

n o n

abn.Version(what=c("abn","system"))
abn.version

Arguments
what detailed information about the version of abn or a summary of the abn compo-
nents.
Value

abn.Version() is a list with character-string components

R R.version.string
abn essentially abn.version$version.string

GSL, JAGS, INLA version numbers thereof

abn.version is a list with character-string components

status the status of the version (e.g., "beta")
major the major version number

minor the minor version number

year the year the version was released
month the month the version was released
day the day the version was released

version.string acharacter string concatenating the info above, useful for plotting, etc.

abn.versionis a list of class "simple.list” which has a print method.

Author(s)

Reinhard Furrer

See Also

See the R counterparts R. version.
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Examples

abn.version$version.string

## Not run:
abn.Version("system")

## End(Not run)
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