Package 'DoTC'

June 17, 2016

Type Package

Title Distribution of Typicality Coefficients														
Version 0.2														
Date 2016-06-17														
Author Philip Wadewitz, Julia Fischer, Kurt Hammerschmidt, Demian Battaglia, Holger Sennhenn-Reulen														
Maintainer Holger Sennhenn-Reulen <hsennhenn-reulen@dpz.eu></hsennhenn-reulen@dpz.eu>														
Description Calculation of cluster typicality coefficients as being generated by fuzzy k-means clustering.														
Depends ggplot2, plyr														
Imports methods														
License GPL (>= 2)														
NeedsCompilation no														
Repository CRAN														
Date/Publication 2016-06-17 21:20:50														
R topics documented:														
getStart 2 plotCS 3 plotNcluster 4 plotTC 4	2 2 3 4 5													
Index	8													

2 getStart

extract	Auxiliary wrapFKM	Function	for	Extracting	Elements	from	the	Result	of

Description

Function for extracting elements from the result of wrapFKM, in especially if m is a vector.

Usage

```
extract(x, what)
```

Arguments

x result from wrapFKM

what should be extracted (possible values are U, combined, remaining, combinations,

and n_cluster).

Value

The argument that should be extracted from fkm.

Author(s)

Holger Sennhenn-Reulen

Examples

```
## Not run: extract(x, what)
```

getStart

Calculate Starting Values for Fuzzy k-means Clustering

Description

This function calculates starting values as used in the wrapFKM function.

Usage

```
getStart(d, K = 10, nrep = 100, safety = TRUE, ...)
```

plotCS 3

Arguments

d data-set with standardized columns

K number of clusters

nrep number of repetitions for the call to kmeans (default is 100).

safety As described in the help to kmeans, the algorithm may not converge in the quick-

transfer stage. If safety is set to TRUE, each run where this happens is discarded

and repeated from a different random starting point.

... further arguments to kmeans.

Details

This function calculates starting values for wrapFKM as the solution of k-means clustering.

Value

A matrix with K columns and nrow(d) rows.

Author(s)

Holger Sennhenn-Reulen

Examples

```
## Not run: getStart(d, K = 10, nrep = 100, safety = TRUE, \dots)
```

plotCS

Plot Cluster Segregation

Description

Pairwise comparisons of cluster segregations.

Usage

```
plotCS(fkm, which_clusters = NULL, colors = NULL, main = "")
```

Arguments

f	k	cm J	Resu	lt f	or o	one	sing	le :	fuzziness	parame	ter m	as	cal	cul	ated	lt	эу ۷	vra	ıрFI	K۲	1.
---	---	------	------	------	------	-----	------	------	-----------	--------	-------	----	-----	-----	------	----	------	-----	------	----	----

which_clusters Which clusters should be plotted? (Default is NULL, and all pair-wise cluster

combinations are plotted).

colors colors to be used (default is NULL, and colors are automatically provided)

main title (default is no title)

4 plotNcluster

Value

A plot with pairwise comparisons of cluster segregations.

Author(s)

Holger Sennhenn-Reulen

Examples

```
## Not run: plotCS(fkm, which_clusters = NULL, colors = NULL, main = "")
```

plotNcluster

Plot the Cluster Solution Across Varying Fuzziness Parameter

Description

Plot the cluster solution, ie. the number of clusters, as a step function across varying fuzziness parameter m.

Usage

```
plotNcluster(fkm, ...)
```

Arguments

fkm Result for one single fuzziness parameter m as calculated by wrapFKM.

... Additional attributes to plot.

Value

A step plot of the numbers of clusters (y axis) across different values for the fuzziness parameter m (x axis). The largest values of m conditional on a fixed numbers of clusters are highlighted using grey, dashed lines and bullet points.

Author(s)

Holger Sennhenn-Reulen

Examples

```
## Not run: plotNcluster(fkm, ...)
```

plotTC 5

plotTC

Plot Typicality Coefficients

Description

Plot Typicality Coefficients as stapled Histograms

Usage

```
plotTC(fkm, main = NULL)
```

Arguments

fkm Result from wrapFKM.

main Main title (default is NULL, resulting in a main title with the fuzziness parameter

m).

Details

Relies on ggplot2 and plyr.

Value

A plot with frequencies of typicality coefficients.

Author(s)

Holger Sennhenn-Reulen

Examples

```
## Not run: plotTC(fkm, main = NULL)
```

wrapFKM

Wrapper for FKM

Description

Wrapper function for a call to fuzzy k-means function FKM.

Usage

```
wrapFKM(d, m, start, maxit = 1e4, threshold = 0.1)
```

6 wrapFKM

Arguments

d data-set with standardized columns

m Fuzziness parameter

start Starting values as provided by getStart.

maxit Maximum number of iterations (default is 10000).

threshold Upper limit below which a cluster distance (as defined by matrix H in FKM) is set

to be 0.

Details

The function is a specific wrapper function to a function which gives the same results as FKM from the R package fclust.

The below example gives an exemplary complete run for an analysis as implemented by this package DoTC.

The selection of the fuzziness parameter m is crucial for the result of the wrapFKM function. We have good experiences with following strategy: first use a coarse grid of proposal values for m, look on aggregation of clusters across this proposal vector – as for example implemented by getStart –, and then refine this grid for a certain sub-interval of interest.

Value

A list with the results from the call to FKM:

U (matrix containing case-wise (rows) cluster (columns) affiliation values), H (pair-wise cluster distance matrix), value (terminal value of the fuzzy-clustering algorithm), iter (number of iterations needed to get to value), k (number od proposed clusters to the start solution start), call (call to the interior FKm function), combined (which clusters are members of any combinations), remaining (which clusters stay remaining), combinations (which are the combinations that lead to the reduction), and n_cluster (number of reduced clusters),

and further attributes of the solution across potential different proposal fuzziness values:

m (all proposed fuzziness values), n_cluster (the number of reduced clusters), m_before_step (the maximum fuzziness parameter before a reduction in n_cluster), and which_list_indexes_m_before_step (where are the respective results to m_before_step).

Author(s)

Holger Sennhenn-Reulen

References

Paolo Giordani, Maria Brigida Ferraro (2015). fclust: Fuzzy Clustering, on CRAN.

Examples

```
## Not run:
## Load and standardize (by column) data:
d <- read.csv("data_file.csv")</pre>
```

wrapFKM 7

```
d <- apply(d, MAR = 2, FUN = scale)</pre>
## Set maximal number of clusters:
K <- 10
## Set random seed:
set.seed(1604)
## Get k-means-clustering solutions as starting values:
start <- getStart(d = d, K = K)</pre>
## Proposal vector for fuzziness parameter m:
m_{proposal} \leftarrow seq(1.1, 2.5, by = 0.1)
## Calculate results of fuzzy clustering:
fkm_result <- wrapFKM(d = d, m = m_proposal, start = start)</pre>
## Plot cluster solution across varying m:
plotNcluster(fkm = fkm_result)
## Plot distribution of typicality coefficients:
plotTC(fkm_result[[1]])
## Plot pairwise cluster segregation comparisons:
plotCS(fkm_result[[1]])
## End(Not run)
```

Index

```
extract, 2
getStart, 2, 6
plotCS, 3
plotNcluster, 4
plotTC, 5
wrapFKM, 2-5, 5
```