KODAMA: Knowledge Discovery by Accuracy Maximization

An unsupervised and semi-supervised learning algorithm that performs feature extraction from noisy and high-dimensional data. It facilitates identification of patterns representing underlying groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.

Version: 2.2
Depends: R (≥ 2.10.0), stats, minerva, Rtsne
Imports: Rcpp (≥ 0.12.4)
LinkingTo: Rcpp, RcppArmadillo
Suggests: rgl, knitr, rmarkdown
Published: 2022-09-01
Author: Stefano Cacciatore ORCID iD [aut, trl, cre], Leonardo Tenori ORCID iD [aut]
Maintainer: Stefano Cacciatore <tkcaccia at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
CRAN checks: KODAMA results

Documentation:

Reference manual: KODAMA.pdf
Vignettes: Knowledge Discovery by Accuracy Maximization

Downloads:

Package source: KODAMA_2.2.tar.gz
Windows binaries: r-devel: KODAMA_2.2.zip, r-release: KODAMA_2.2.zip, r-oldrel: KODAMA_2.2.zip
macOS binaries: r-release (arm64): KODAMA_2.2.tgz, r-oldrel (arm64): KODAMA_2.2.tgz, r-release (x86_64): KODAMA_2.2.tgz, r-oldrel (x86_64): KODAMA_2.2.tgz
Old sources: KODAMA archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=KODAMA to link to this page.