KODAMA: Knowledge Discovery by Accuracy Maximization
An unsupervised and semi-supervised learning algorithm that performs feature extraction
from noisy and high-dimensional data. It facilitates identification of patterns representing underlying
groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA.
(2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014)
Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.
Version: |
2.2 |
Depends: |
R (≥ 2.10.0), stats, minerva, Rtsne |
Imports: |
Rcpp (≥ 0.12.4) |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
rgl, knitr, rmarkdown |
Published: |
2022-09-01 |
Author: |
Stefano Cacciatore
[aut, trl,
cre],
Leonardo Tenori
[aut] |
Maintainer: |
Stefano Cacciatore <tkcaccia at gmail.com> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
yes |
CRAN checks: |
KODAMA results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=KODAMA
to link to this page.