otsad: Online Time Series Anomaly Detectors
Implements a set of online fault detectors for time-series, called: PEWMA see M. Carter
et al. (2012) <doi:10.1109/SSP.2012.6319708>, SD-EWMA and TSSD-EWMA see H. Raza et al.
(2015) <doi:10.1016/j.patcog.2014.07.028>, KNN-CAD see E. Burnaev et al. (2016)
<arXiv:1608.04585>, KNN-LDCD see V. Ishimtsev et al. (2017) <arXiv:1706.03412> and
CAD-OSE see M. Smirnov (2018) <https://github.com/smirmik/CAD>. The first three
algorithms belong to prediction-based techniques and the last three belong to
window-based techniques. In addition, the SD-EWMA and PEWMA algorithms are algorithms
designed to work in stationary environments, while the other four
are algorithms designed to work in non-stationary environments.
Version: |
0.2.0 |
Depends: |
R (≥ 3.4.0) |
Imports: |
stats, ggplot2, plotly, sigmoid, reticulate |
Suggests: |
testthat, stream, knitr, rmarkdown |
Published: |
2019-09-06 |
Author: |
Alaiñe Iturria [aut, cre],
Jacinto Carrasco [aut],
Francisco Herrera [aut],
Santiago Charramendieta [aut],
Karmele Intxausti [aut] |
Maintainer: |
Alaiñe Iturria <aiturria at ikerlan.es> |
BugReports: |
https://github.com/alaineiturria/otsad/issues |
License: |
AGPL (≥ 3) |
URL: |
https://github.com/alaineiturria/otsad |
NeedsCompilation: |
no |
SystemRequirements: |
Python (>= 3.0.1); bencode-python3 (1.0.2) |
Citation: |
otsad citation info |
Materials: |
README NEWS |
In views: |
TimeSeries |
CRAN checks: |
otsad results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=otsad
to link to this page.