
Package ‘patrick’
October 11, 2021

Title Parameterized Unit Testing

Version 0.1.0

Description This is an extension of the 'testthat' package that
lets you add parameters to your unit tests. Parameterized unit tests
are often easier to read and more reliable, since they follow the DNRY
(do not repeat yourself) rule.

License Apache License 2.0

URL https://github.com/google/patrick

BugReports https://github.com/google/patrick/issues

Depends R (>= 3.1)

Imports dplyr, purrr, rlang, testthat, tibble

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Michael Quinn [aut, cre]

Maintainer Michael Quinn <msquinn@google.com>

Repository CRAN

Date/Publication 2021-10-11 21:30:02 UTC

R topics documented:

with_parameters_test_that . 2

Index 4

1

https://github.com/google/patrick
https://github.com/google/patrick/issues

2 with_parameters_test_that

with_parameters_test_that

Execute a test with parameters.

Description

This function is an extension of [testthat::test_that()] that lets you pass a series of testing parameters.
These values are substituted into your regular testing code block, making it reusable and reducing
duplication.

Usage

with_parameters_test_that(desc_stub, code, ..., .cases = NULL, .test_name = "")

cases(...)

Arguments

desc_stub A string scalar. Used in creating the names of the parameterized tests.

code Test code containing expectations.

... Named arguments of test parameters. All vectors should have the same length.

.cases A data frame where each row contains test parameters.

.test_name An alternative way for providing test names. If provided, the name will be
appended to the stub description in ‘desc_stub‘.

Details

You have a couple of options for passing parameters to you test. You can use named vectors/
lists. The function will assert that you have correct lengths before proceeding to test execution.
Alternatively you can used a ‘data.frame‘ or list in combination with the splice unquote operator
!!!. Last, you can use the constructor ‘cases()‘, which is similar to building a ‘data.frame‘ rowwise.
If you manually build the data frame, pass it in the ‘.cases‘ argument.

One parameter is noteworthy. If the user passes a character vector as ‘test_name‘, each instance is
combined with ‘desc_stub‘ to create the completed test name. Similarly, the named argument from
‘cases()‘ is combined with ‘desc_stub‘ to create the parameterized test names.

Examples

with_parameters_test_that("trigonometric functions match identities:",
{
testthat::expect_equal(expr, numeric_value)

},
expr = c(sin(pi / 4), cos(pi / 4), tan(pi / 4)),
numeric_value = c(1 / sqrt(2), 1 / sqrt(2), 1),
.test_name = c("sin", "cos", "tan")

)

with_parameters_test_that 3

Run the same test with the cases() constructor
with_parameters_test_that(

"trigonometric functions match identities",
{
testthat::expect_equal(expr, numeric_value)

},
cases(

sin = list(expr = sin(pi / 4), numeric_value = 1 / sqrt(2)),
cos = list(expr = cos(pi / 4), numeric_value = 1 / sqrt(2)),
tan = list(expr = tan(pi / 4), numeric_value = 1)

)
)

Or, pass a dataframe of cases, perhaps using a helper function
make_cases <- function() {

tibble::tribble(
~.test_name, ~expr, ~numeric_value,
"sin", sin(pi / 4), 1 / sqrt(2),
"cos", cos(pi / 4), 1 / sqrt(2),
"tan", tan(pi / 4), 1

)
}

with_parameters_test_that(
"trigonometric functions match identities",
{

testthat::expect_equal(expr, numeric_value)
},
.cases = make_cases()

)

Index

cases (with_parameters_test_that), 2

with_parameters_test_that, 2

4

	with_parameters_test_that
	Index

