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2 with_parameters_test_that

with_parameters_test_that

Execute a test with parameters.

Description

This function is an extension of [testthat::test_that()] that lets you pass a series of testing parameters.
These values are substituted into your regular testing code block, making it reusable and reducing
duplication.

Usage

with_parameters_test_that(desc_stub, code, ..., .cases = NULL, .test_name = "")

cases(...)

Arguments

desc_stub A string scalar. Used in creating the names of the parameterized tests.

code Test code containing expectations.

... Named arguments of test parameters. All vectors should have the same length.

.cases A data frame where each row contains test parameters.

.test_name An alternative way for providing test names. If provided, the name will be
appended to the stub description in ‘desc_stub‘.

Details

You have a couple of options for passing parameters to you test. You can use named vectors/
lists. The function will assert that you have correct lengths before proceeding to test execution.
Alternatively you can used a ‘data.frame‘ or list in combination with the splice unquote operator
!!!. Last, you can use the constructor ‘cases()‘, which is similar to building a ‘data.frame‘ rowwise.
If you manually build the data frame, pass it in the ‘.cases‘ argument.

One parameter is noteworthy. If the user passes a character vector as ‘test_name‘, each instance is
combined with ‘desc_stub‘ to create the completed test name. Similarly, the named argument from
‘cases()‘ is combined with ‘desc_stub‘ to create the parameterized test names.

Examples

with_parameters_test_that("trigonometric functions match identities:",
{
testthat::expect_equal(expr, numeric_value)

},
expr = c(sin(pi / 4), cos(pi / 4), tan(pi / 4)),
numeric_value = c(1 / sqrt(2), 1 / sqrt(2), 1),
.test_name = c("sin", "cos", "tan")

)
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# Run the same test with the cases() constructor
with_parameters_test_that(

"trigonometric functions match identities",
{
testthat::expect_equal(expr, numeric_value)

},
cases(

sin = list(expr = sin(pi / 4), numeric_value = 1 / sqrt(2)),
cos = list(expr = cos(pi / 4), numeric_value = 1 / sqrt(2)),
tan = list(expr = tan(pi / 4), numeric_value = 1)

)
)

# Or, pass a dataframe of cases, perhaps using a helper function
make_cases <- function() {

tibble::tribble(
~.test_name, ~expr, ~numeric_value,
"sin", sin(pi / 4), 1 / sqrt(2),
"cos", cos(pi / 4), 1 / sqrt(2),
"tan", tan(pi / 4), 1

)
}

with_parameters_test_that(
"trigonometric functions match identities",
{

testthat::expect_equal(expr, numeric_value)
},
.cases = make_cases()

)
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