Automatically creates separate regression models for different spatial
regions. The prediction surface is smoothed using a regional border smoothing
method. If regional models are continuous, the resulting prediction surface is
continuous across the spatial dimensions, even at region borders. Methodology
is described in Wagstaff (2021) <https://digitalcommons.usu.edu/etd/8065/>.
Version: |
0.3.0 |
Depends: |
R (≥ 3.6.0) |
Imports: |
graphics (≥ 3.6.0), methods (≥ 3.6.0), parallel (≥ 3.6.0), sf (≥ 0.9.6), stats (≥ 3.6.0), units (≥ 0.6.7), utils (≥
3.6.0) |
Suggests: |
dplyr (≥ 1.0.2), ggplot2 (≥ 3.3.2), knitr (≥ 1.30), lwgeom (≥ 0.2.5), magrittr (≥ 2.0.1), maps (≥ 3.3.0), mgcv (≥
1.8.33), rmarkdown (≥ 2.5), tibble (≥ 3.0.4) |
Published: |
2022-08-12 |
Author: |
Jadon Wagstaff [aut, cre],
Brennan Bean [aut] |
Maintainer: |
Jadon Wagstaff <jadonw at gmail.com> |
BugReports: |
https://github.com/jadonwagstaff/remap/issues |
License: |
GPL-3 |
URL: |
https://github.com/jadonwagstaff/remap |
NeedsCompilation: |
no |
Citation: |
remap citation info |
Materials: |
NEWS |
CRAN checks: |
remap results |