
PowerPC® Microprocessor Family:

The Programming Environments Manual for
64-bit Microprocessors

Version 3.0

July 15, 2005

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 1999, 2003, 2004, 2005

All Rights Reserved
Printed in the United States of America July 2005

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.
IBM IBM Logo
IBM Microelectronics PowerPC
PowerPC Logotype PowerPC Architecture
RS/6000 pSeries
System/370 PowerPC 750

*AltiVec is a trademark of Motorola, Inc. used under license.
Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics home page can be found at http://www.ibm.com/chips

pem_64bit_title.fm(3.0)
July 15, 2005

http://www.ibm.com
http://www.ibm.com/chips

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemTOC.fm.3.0
July 15, 2005

Contents

Page 3 of 657

Contents

 Contents ... 3

 List of Tables .. 11

 List of Figures .. 17

 About This Book .. 21
Audience ... 22
Organization .. 22
Suggested Reading ... 23

General Information .. 23
PowerPC Documentation ... 24

Conventions .. 25
Acronyms and Abbreviations .. 26
Terminology Conventions ... 28

1. Overview .. 29
1.1 PowerPC Architecture Overview ... 30

1.1.1 64-Bit PowerPC Architecture and the 32-Bit Subset ... 31
1.1.1.1 Temporary 64-Bit Bridge .. 31

1.1.2 Levels of the PowerPC Architecture .. 32
1.1.3 Latitude Within the Levels of the PowerPC Architecture ... 32
1.1.4 Features Not Defined by the PowerPC Architecture ... 33

1.2 The PowerPC Architectural Models .. 33
1.2.1 PowerPC Registers and Programming Model ... 34
1.2.2 Operand Conventions .. 35

1.2.2.1 Byte Ordering ... 35
1.2.2.2 Data Organization in Memory and Data Transfers ... 36
1.2.2.3 Floating-Point Conventions .. 36

1.2.3 PowerPC Instruction Set and Addressing Modes .. 36
1.2.3.1 PowerPC Instruction Set .. 36
1.2.3.2 Calculating Effective Addresses ... 38

1.2.4 PowerPC Cache Model ... 38
1.2.5 PowerPC Exception Model .. 39
1.2.6 PowerPC Memory Management Model ... 39

1.3 Changes to this Manual ... 40

2. PowerPC Register Set .. 41
2.1 Overview of the PowerPC UISA Registers ... 41

2.1.1 General-Purpose Registers (GPRs) .. 44
2.1.2 Floating-Point Registers (FPRs) .. 44
2.1.3 Condition Register (CR) .. 45

2.1.3.1 Condition Register CR0 Field Definition ... 46
2.1.3.2 Condition Register CR1 Field Definition ... 46
2.1.3.3 Condition Register CRn Field—Compare Instruction ... 47

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Contents

Page 4 of 657
pemTOC.fm.3.0

July 15, 2005

2.1.4 Floating-Point Status and Control Register (FPSCR) .. 47
2.1.5 XER Register (XER) .. 50
2.1.6 Link Register (LR) .. 51
2.1.7 Count Register (CTR) .. 52

2.2 PowerPC VEA Register Set—Time Base ... 53
2.2.1 Reading the Time Base ... 56

2.2.1.1 Reading the Time Base .. 56
2.2.2 Computing Time of Day from the Time Base ... 56

2.3 PowerPC OEA Register Set .. 57
2.3.1 Machine State Register (MSR) .. 60
2.3.2 Processor Version Register (PVR) .. 63
2.3.3 SDR1 ... 64
2.3.4 Address Space Register (ASR) ... 65
2.3.5 Data Address Register (DAR) .. 67
2.3.6 Software Use SPRs (SPRG0–SPRG3) ... 67
2.3.7 Data Storage Interrupt Status Register (DSISR) ... 68
2.3.8 Machine Status Save/Restore Register 0 (SRR0) ... 68
2.3.9 Machine Status Save/Restore Register 1 (SRR1) ... 69
2.3.10 Floating-Point Exception Cause Register (FPECR) ... 69
2.3.11 Time Base Facility (TB)—OEA .. 69

2.3.11.1 Writing to the Time Base .. 69
2.3.12 Decrementer Register (DEC) ... 70

2.3.12.1 Decrementer Operation .. 70
2.3.12.2 Writing and Reading the DEC .. 71
2.3.12.3 Data Address Compare .. 71

2.3.13 Data Address Breakpoint Register (DABR) ... 71
2.3.14 External Access Register (EAR) .. 73
2.3.15 Processor Identification Register (PIR) .. 74
2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers 74

2.3.16.1 Notes for Table 2-16 and Table 2-17 .. 77

3. Operand Conventions ... 79
3.1 Data Organization in Memory and Data Transfers .. 79

3.1.1 Aligned and Misaligned Accesses ... 79
3.1.2 Byte Ordering ... 80

3.1.2.1 Big-Endian Byte Ordering ... 80
3.1.2.2 Little-Endian Byte Ordering .. 80

3.1.3 Structure Mapping Examples ... 80
3.1.3.1 Big-Endian Mapping ... 81
3.1.3.2 Little-Endian Mapping ... 82

3.1.4 PowerPC Byte Ordering ... 83
3.1.4.1 Aligned Scalars in Little-Endian Mode .. 83
3.1.4.2 Misaligned Scalars in Little-Endian Mode ... 86
3.1.4.3 Nonscalars .. 87
3.1.4.4 Page Tables ... 87
3.1.4.5 PowerPC Instruction Addressing in Little-Endian Mode ... 87
3.1.4.6 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode 88

3.2 Effect of Operand Placement on Performance—VEA ... 89
3.2.1 Summary of Performance Effects .. 89
3.2.2 Instruction Restart .. 91

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemTOC.fm.3.0
July 15, 2005

Contents

Page 5 of 657

3.3 Floating-Point Execution Models—UISA ... 92
3.3.1 Floating-Point Data Format ... 92

3.3.1.1 Value Representation ... 94
3.3.1.2 Binary Floating-Point Numbers .. 95
3.3.1.3 Normalized Numbers (±NORM) ... 95
3.3.1.4 Zero Values (±0) ... 96
3.3.1.5 Denormalized Numbers (±DENORM) .. 96
3.3.1.6 Infinities (±•) ... 97
3.3.1.7 Not a Numbers (NaNs) ... 97

3.3.2 Sign of Result .. 98
3.3.3 Normalization and Denormalization ... 99
3.3.4 Data Handling and Precision ... 99
3.3.5 Rounding ... 101
3.3.6 Floating-Point Program Exceptions ... 103

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions ... 109
3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions .. 113

4. Addressing Modes and Instruction Set Summary ... 119
4.1 Conventions .. 120

4.1.1 Sequential Execution Model .. 120
4.1.2 Computation Modes .. 120
4.1.3 Classes of Instructions .. 121

4.1.3.1 Definition of Boundedly Undefined ... 121
4.1.3.2 Defined Instruction Class ... 121
4.1.3.3 Illegal Instruction Class .. 123
4.1.3.4 Reserved Instructions ... 123

4.1.4 Memory Addressing ... 124
4.1.4.1 Memory Operands .. 124
4.1.4.2 Effective Address Calculation ... 124

4.1.5 Synchronizing Instructions ... 125
4.1.5.1 Context Synchronizing Instructions .. 125
4.1.5.2 Execution Synchronizing Instructions ... 126

4.1.6 Exception Summary .. 126
4.2 PowerPC UISA Instructions .. 127

4.2.1 Integer Instructions .. 127
4.2.1.1 Integer Arithmetic Instructions .. 128
4.2.1.2 Integer Compare Instructions ... 132
4.2.1.3 Integer Logical Instructions .. 133
4.2.1.4 Integer Rotate and Shift Instructions .. 135

4.2.2 Floating-Point Instructions ... 139
4.2.2.1 Floating-Point Arithmetic Instructions ... 140
4.2.2.2 Floating-Point Multiply-Add Instructions ... 142
4.2.2.3 Floating-Point Rounding and Conversion Instructions ... 143
4.2.2.4 Floating-Point Compare Instructions .. 145
4.2.2.5 Floating-Point Status and Control Register Instructions ... 145
4.2.2.6 Floating-Point Move Instructions .. 147

4.2.3 Load and Store Instructions ... 147
4.2.3.1 Integer Load and Store Address Generation .. 148
4.2.3.2 Integer Load Instructions .. 151
4.2.3.3 Integer Store Instructions ... 153

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Contents

Page 6 of 657
pemTOC.fm.3.0

July 15, 2005

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions ... 154
4.2.3.5 Integer Load and Store Multiple Instructions .. 155
4.2.3.6 Integer Load and Store String Instructions ... 155
4.2.3.7 Floating-Point Load and Store Address Generation ... 156
4.2.3.8 Floating-Point Load Instructions ... 158
4.2.3.9 Floating-Point Store Instructions .. 159

4.2.4 Branch and Flow Control Instructions .. 160
4.2.4.1 Branch Instruction Address Calculation .. 160
4.2.4.2 Conditional Branch Control ... 166
4.2.4.3 Branch Instructions ... 169
4.2.4.4 Simplified Mnemonics for Branch Processor Instructions .. 170
4.2.4.5 Condition Register Logical Instructions .. 170
4.2.4.6 Trap Instructions ... 171
4.2.4.7 System Linkage Instruction—UISA .. 171

4.2.5 Processor Control Instructions—UISA ... 172
4.2.5.1 Move to/from Condition Register Instructions ... 172
4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA) .. 172

4.2.6 Memory Synchronization Instructions—UISA .. 173
4.2.7 Recommended Simplified Mnemonics ... 175

4.3 PowerPC VEA Instructions .. 176
4.3.1 Processor Control Instructions—VEA .. 176
4.3.2 Memory Synchronization Instructions—VEA ... 177
4.3.3 Memory Control Instructions—VEA ... 178

4.3.3.1 User-Level Cache Instructions—VEA ... 178
4.3.4 External Control Instructions .. 182

4.4 PowerPC OEA Instructions ... 183
4.4.1 System Linkage Instructions—OEA ... 183
4.4.2 Processor Control Instructions—OEA .. 184

4.4.2.1 Move to/from Machine State Register Instructions ... 184
4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA) .. 185

4.4.3 Memory Control Instructions—OEA ... 185
4.4.3.1 Segment Register Manipulation Instructions .. 186
4.4.3.2 Translation and Segment Lookaside Buffer Management Instructions 186

5. Cache Model and Memory Coherency ... 189
5.1 The Virtual Environment .. 189

5.1.1 Memory Access Ordering .. 190
5.1.1.1 Enforce In-Order Execution of I/O Instruction ... 190
5.1.1.2 Synchronize Instruction .. 190

5.1.2 Atomicity .. 191
5.1.3 Cache Model .. 192
5.1.4 Memory Coherency .. 193

5.1.4.1 Memory/Cache Access Modes ... 193
5.1.4.2 Coherency Precautions .. 195

5.1.5 VEA Cache Management Instructions ... 195
5.1.5.1 Data Cache Instructions ... 195
5.1.5.2 Instruction Cache Instructions .. 197

5.2 The Operating Environment .. 199
5.2.1 Memory/Cache Access Attributes .. 199

5.2.1.1 Write-Through Attribute (W) ... 200

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemTOC.fm.3.0
July 15, 2005

Contents

Page 7 of 657

5.2.1.2 Caching-Inhibited Attribute (I) ... 200
5.2.1.3 Memory Coherency Attribute (M) ... 201
5.2.1.4 W, I, and M Bit Combinations ... 201
5.2.1.5 Guarded Attribute (G) ... 202

5.2.2 I/O Interface Considerations .. 204

6. Exceptions .. 205
6.1 Exception Classes ... 206

6.1.1 Precise Exceptions .. 208
6.1.2 Synchronization ... 208

6.1.2.1 Context Synchronization .. 208
6.1.2.2 Execution Synchronization ... 209
6.1.2.3 Synchronous/Precise Exceptions ... 209
6.1.2.4 Asynchronous Exceptions .. 210

6.1.3 Imprecise Exceptions .. 211
6.1.3.1 Imprecise Exception Status Description ... 211
6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions .. 212

6.1.4 Partially Executed Instructions .. 213
6.1.5 Exception Priorities .. 213

6.2 Exception Processing .. 215
6.2.1 Enabling and Disabling Exceptions ... 219
6.2.2 Steps for Exception Processing ... 219
6.2.3 Returning from an Exception Handler ... 220

6.3 Process Switching ... 220
6.4 Exception Definitions ... 221

6.4.1 System Reset Exception (0x00100) .. 222
6.4.2 Machine Check Exception (0x00200) .. 223
6.4.3 DSI Exception (0x00300) ... 224
6.4.4 Data Segment Exception (0x00380) .. 227
6.4.5 ISI Exception (0x00400) .. 228
6.4.6 Instruction Segment Exception (x0480) ... 229
6.4.7 External Interrupt (0x00500) .. 230
6.4.8 Alignment Exception (0x00600) ... 230

6.4.8.1 Integer Alignment Exceptions ... 232
6.4.8.2 Little-Endian Mode Alignment Exceptions .. 233
6.4.8.3 Interpretation of the DSISR as Set by an Alignment Exception 233

6.4.9 Program Exception (0x00700) .. 235
6.4.10 Floating-Point Unavailable Exception (0x00800) ... 237
6.4.11 Decrementer Exception (0x00900) .. 237
6.4.12 System Call Exception (0x00C00) ... 238
6.4.13 Trace Exception (0x00D00) ... 239
6.4.14 Performance Monitor Exception (0x00F00) ... 240

7. Memory Management ... 241
7.1 MMU Features .. 242
7.2 MMU Overview .. 244

7.2.1 Memory Addressing ... 245
7.2.1.1 Effective Addresses in 32-Bit Mode ... 245
7.2.1.2 Predefined Physical Memory Locations ... 246

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Contents

Page 8 of 657
pemTOC.fm.3.0

July 15, 2005

7.2.2 MMU Organization ... 246
7.2.3 Address Translation Mechanisms .. 248
7.2.4 Memory Protection Facilities .. 250
7.2.5 Page History Information ... 251
7.2.6 General Flow of MMU Address Translation ... 251

7.2.6.1 Real Addressing Mode Selection ... 251
7.2.6.2 Page Address Translation Selection .. 252

7.2.7 MMU Exceptions Summary ... 255
7.2.8 MMU Instructions and Register Summary ... 257
7.2.9 TLB Entry Invalidation .. 258

7.3 Real Addressing Mode .. 259
7.4 Memory Segment Model ... 260

7.4.1 Recognition of Addresses in Segments ... 260
7.4.2 Page Address Translation Overview .. 260

7.4.2.1 Segment Lookaside Buffer (SLB) ... 262
7.4.2.2 Page Table Entry (PTE) Definition and Format .. 263

7.4.3 Page History Recording ... 265
7.4.3.1 Referenced Bit .. 265
7.4.3.2 Changed Bit .. 266
7.4.3.3 Scenarios for Referenced and Changed Bit Recording .. 267
7.4.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates 268

7.4.4 Page Memory Protection ... 268
7.4.5 Page Address Translation Summary ... 271

7.5 Hashed Page Tables ... 273
7.5.1 Page Table Definition ... 274

7.5.1.1 SDR1 Register Definition .. 275
7.5.1.2 Page Table Size ... 276
7.5.1.3 Page Table Hashing Functions .. 277
7.5.1.4 Translation Lookaside Buffer (TLB) .. 279
7.5.1.5 Page Table Address Generation .. 279
7.5.1.6 Page Table Structure Summary ... 281
7.5.1.7 Page Table Structure Example ... 281
7.5.1.8 PTEG Address Mapping Example ... 284

7.5.2 Page Table Search Process .. 287
7.5.2.1 Flow for Page Table Search Operation .. 287

7.5.3 Page Table Updates .. 289
7.5.3.1 Adding a Page Table Entry ... 290
7.5.3.2 Modifying a Page Table Entry .. 290
7.5.3.3 Deleting a Page Table Entry ... 292

7.5.4 ASR Updates ... 292
7.6 Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementations 292

7.6.1 Segment Register Manipulation Instructions in the 64-Bit Bridge .. 293
7.6.2 64-Bit Bridge Implementation of Segment Register Instruction ... 294

7.6.2.1 Move from Segment Register—mfsr .. 294
7.6.2.2 Move from Segment Register Indirect—mfsrin ... 295
7.6.2.3 Move to Segment Register—mtsr .. 296
7.6.2.4 Move to Segment Register Indirect—mtsrin ... 297

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemTOC.fm.3.0
July 15, 2005

Contents

Page 9 of 657

8. Instruction Set ... 299
8.1 Instruction Formats ... 299

8.1.1 Split-Field Notation .. 300
8.1.2 Instruction Fields ... 300
8.1.3 Notation and Conventions ... 302
8.1.4 Computation Modes .. 305

8.2 PowerPC Instruction Set ... 306

Appendix A. PowerPC Instruction Set Listings ... 545
A.1 Instructions Sorted by Mnemonic ... 545
A.2 Instructions Sorted by Opcode ... 553
A.3 Instructions Grouped by Functional Categories .. 561
A.4 Instructions Sorted by Form .. 573
A.5 Instruction Set Legend .. 585

Appendix B. Multiple-Precision Shifts .. 593
B.1 Multiple-Precision Shifts ... 594

Appendix C. Floating-Point Models .. 597
C.1 Execution Model for IEEE Operations .. 597
C.2 Execution Model for Multiply-Add Type Instructions ... 599
C.3 Floating-Point Conversions .. 600

C.3.1 Conversion from Floating-Point Number to Floating-Point Integer 600
C.3.2 Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word 600
C.3.3 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word ... 601
C.3.4 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word 601
C.3.5 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word 602
C.3.6 Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number 602
C.3.7 Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number ... 602
C.3.8 Conversion from Signed Fixed-Point Integer Word to Floating-Point Number 603
C.3.9 Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number 603

C.4 Floating-Point Models ... 603
C.4.1 Floating-Point Round to Single-Precision Model .. 603
C.4.2 Floating-Point Convert to Integer Model ... 609
C.4.3 Floating-Point Convert from Integer Model ... 612

C.5 Floating-Point Selection .. 614
C.5.1 Comparison to Zero .. 614
C.5.2 Minimum and Maximum .. 614
C.5.3 Simple If-Then-Else Constructions ... 615
C.5.4 Notes ... 615

C.6 Floating-Point Load Instructions ... 616
C.7 Floating-Point Store Instructions .. 617

Appendix D. Synchronization Programming Examples .. 619
D.1 General Information .. 619
D.2 Synchronization Primitives ... 620

D.2.1 Fetch and No-Op .. 620
D.2.2 Fetch and Store .. 620
D.2.3 Fetch and Add ... 620

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Contents

Page 10 of 657
pemTOC.fm.3.0

July 15, 2005

D.2.4 Fetch and AND .. 621
D.2.5 Test and Set .. 621

D.3 Compare and Swap .. 621
D.4 Lock Acquisition and Release ... 622

D.4.1 Lock Acquisition and Import Barriers ... 622
D.4.1.1 Acquire Lock and Import Shared Memory ... 622
D.4.1.2 Obtain Pointer and Import Shared Memory ... 623

D.4.2 Lock Release and Export Barriers ... 623
D.4.2.1 Export Shared Memory and Release Lock .. 623
D.4.2.2 Export Shared Memory and Release Lock using EIEIO or LYSYNC 624

D.4.3 Safe Fetch ... 624
D.5 List Insertion ... 625
D.6 Notes .. 626

Appendix E. Simplified Mnemonics ... 627
E.1 Symbols .. 627
E.2 Simplified Mnemonics for Subtract Instructions .. 628

E.2.1 Subtract Immediate ... 628
E.2.2 Subtract ... 628

E.3 Simplified Mnemonics for Compare Instructions ... 628
E.3.1 Double-Word Comparisons ... 629
E.3.2 Word Comparisons .. 629

E.4 Simplified Mnemonics for Rotate and Shift Instructions .. 630
E.4.1 Operations on Double Words .. 630
E.4.2 Operations on Words ... 631

E.5 Simplified Mnemonics for Branch Instructions .. 632
E.5.1 BO and BI Fields ... 632
E.5.2 Basic Branch Mnemonics .. 632
E.5.3 Branch Mnemonics Incorporating Conditions .. 636
E.5.4 Branch Prediction .. 640

E.5.4.1 Examples of Branch Prediction .. 640
E.6 Simplified Mnemonics for Condition Register Logical Instructions ... 640
E.7 Simplified Mnemonics for Trap Instructions .. 641
E.8 Simplified Mnemonics for Special-Purpose Registers .. 643
E.9 Recommended Simplified Mnemonics .. 644

E.9.1 No-Op (nop) .. 644
E.9.2 Load Immediate (li) ... 644
E.9.3 Load Address (la) .. 644
E.9.4 Move Register (mr) ... 645
E.9.5 Complement Register (not) ... 645
E.9.6 Move to/from Condition Register (mtcr/mfcr) ... 645

Appendix F. Glossary of Terms and Abbreviations ... 647

 Revision Log ... 657

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemLOT.fm.3.0
July 15, 2005

List of Tables

Page 11 of 657

List of Tables
Table i. Acronyms and Abbreviated Terms .. 26

Table ii. Terminology Conventions .. 28

Table iii. Instruction Field Conventions .. 28

Table 2-1. Bit Settings for CR0 Field of CR .. 46

Table 2-2. Bit Settings for CR1 Field of CR .. 46

Table 2-3. CRn Field Bit Settings for Compare Instructions ... 47

Table 2-4. FPSCR Bit Settings ... 48

Table 2-5. Floating-Point Result Flags in FPSCR .. 50

Table 2-6. XER Bit Definitions .. 51

Table 2-7. MSR Bit Settings ... 61

Table 2-8. Floating-Point Exception Mode Bits .. 62

Table 2-9. State of MSR at Power Up .. 63

Table 2-10. SDR1 Bit Settings .. 64

Table 2-11. ASR Bit Settings .. 65

Table 2-12. ASR Bit Settings—64-Bit Bridge ... 66

Table 2-13. Conventional Uses of SPRG0–SPRG3 ... 67

Table 2-14. DABR—Bit Settings ... 72

Table 2-15. External Access Register (EAR)—Bit Settings .. 73

Table 2-16. Data Access Synchronization .. 75

Table 2-17. Instruction Access Synchronization ... 76

Table 3-1. Memory Operand Alignment ... 79

Table 3-2. Little Endian Effective Address Modifications for Individual Aligned Scalars 84

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode 89

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode 90

Table 3-5. IEEE Floating-Point Fields .. 93

Table 3-6. Biased Exponent Format ... 94

Table 3-7. Recognized Floating-Point Numbers ... 95

Table 3-8. FPSCR Bit Settings—RN Field ... 101

Table 3-9. FPSCR Bit Settings ... 104

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF] .. 106

Table 3-11. MSR[FE0] and MSR[FE1] Bit Settings for FP Exceptions ... 108

Table 3-12. Additional Actions Performed for Invalid FP Operations ... 112

Table 3-13. Additional Actions Performed for Zero Divide ... 113

Table 3-14. Additional Actions Performed for Overflow Exception Condition ... 115

Table 3-15. Target Result for Overflow Exception Disabled Case ... 115

Table 3-16. Actions Performed for Underflow Conditions .. 116

Table 4-1. Integer Arithmetic Instructions ... 128

Table 4-2. Integer Compare Instructions .. 133

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

List of Tables

Page 12 of 657
pemLOT.fm.3.0

July 15, 2005

Table 4-3. Integer Logical Instructions ..133

Table 4-4. Integer Rotate Instructions ...136

Table 4-5. Integer Shift Instructions ..138

Table 4-6. Floating-Point Arithmetic Instructions ..140

Table 4-7. Floating-Point Multiply-Add Instructions ..142

Table 4-8. Floating-Point Rounding and Conversion Instructions ...144

Table 4-9. CR Bit Settings ..145

Table 4-10. Floating-Point Compare Instructions ...145

Table 4-11. Floating-Point Status and Control Register Instructions ..146

Table 4-12. Floating-Point Move Instructions ...147

Table 4-13. Integer Load Instructions ...151

Table 4-14. Integer Store Instructions ...153

Table 4-15. Integer Load and Store with Byte-Reverse Instructions ..154

Table 4-16. Integer Load and Store Multiple Instructions ...155

Table 4-17. Integer Load and Store String Instructions ..156

Table 4-18. Floating-Point Load Instructions ..158

Table 4-19. Floating-Point Store Instructions ..159

Table 4-20. BO Operand Encodings ...166

Table 4-21. “a” and “t” Bits of the BO Field ...166

Table 4-22. BH Field Encodings ...167

Table 4-23. Branch Instructions ..169

Table 4-24. Condition Register Logical Instructions ...170

Table 4-25. Trap Instructions ..171

Table 4-26. System Linkage Instruction—UISA ..171

Table 4-27. Move to/from Condition Register Instructions ..172

Table 4-28. Move to/from Special-Purpose Register Instructions (UISA) ...172

Table 4-29. Memory Synchronization Instructions—UISA ..174

Table 4-30. Move from Time Base Instruction ..176

Table 4-31. User-Level TBR Encodings (VEA) ...176

Table 4-32. Supervisor-Level TBR Encodings (VEA) ...177

Table 4-33. Memory Synchronization Instructions—VEA ...177

Table 4-34. User-Level Cache Instructions ...179

Table 4-35. External Control Instructions ..182

Table 4-36. System Linkage Instructions—OEA ...183

Table 4-37. Move to/from Machine State Register Instructions ..184

Table 4-38. Move to/from Special-Purpose Register Instructions (OEA) ..185

Table 4-39. Segment Register Manipulation Instructions ...186

Table 4-40. Lookaside Buffer Management Instructions ..187

Table 5-1. Combinations of W, I, and M Bits ..201

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemLOT.fm.3.0
July 15, 2005

List of Tables

Page 13 of 657

Table 6-1. PowerPC Exception Classifications .. 206

Table 6-2. Exceptions and Conditions—Overview ... 206

Table 6-3. IEEE Floating-Point Program Exception Mode Bits .. 212

Table 6-4. Exception Priorities .. 214

Table 6-5. MSR Bit Settings ... 217

Table 6-6. MSR Setting Due to Exception .. 221

Table 6-7. System Reset Exception—Register Settings .. 222

Table 6-8. Machine Check Exception—Register Settings .. 224

Table 6-9. DSI Exception—Register Settings ... 226

Table 6-10. Data Segment Exception—Register Settings .. 227

Table 6-11. ISI Exception—Register Settings .. 228

Table 6-12. Instruction Segment Exception—Register Settings ... 229

Table 6-13. External Interrupt—Register Settings .. 230

Table 6-14. Alignment Exception—Register Settings ... 231

Table 6-15. DSISR(15–21) Settings to Determine Misaligned Instruction .. 234

Table 6-16. Program Exception—Register Settings ... 236

Table 6-17. Floating-Point Unavailable Exception—Register Settings ... 237

Table 6-18. Decrementer Exception—Register Settings .. 238

Table 6-19. System Call Exception—Register Settings ... 238

Table 6-20. Trace Exception—Register Settings ... 239

Table 7-1. MMU Features Summary .. 243

Table 7-2. Predefined Physical Memory Locations .. 246

Table 7-3. Access Protection Options for Pages .. 250

Table 7-4. Translation Exception Conditions .. 256

Table 7-5. Other MMU Exception Conditions ... 256

Table 7-6. Instruction Summary—Control MMU ... 258

Table 7-7. SLB Entry Bit Description – 64-bit Implementations .. 262

Table 7-8. PTE Bit Definitions .. 264

Table 7-9. Table Search Operations to Update History Bits ... 265

Table 7-10. Model for Guaranteed R and C Bit Settings .. 267

Table 7-11. Access Protection Control with Key .. 269

Table 7-12. Exception Conditions for Key and PP Combinations .. 269

Table 7-13. Access Protection Encoding of PP Bits for KS = ‘0’ and KP = ‘1’ ... 270

Table 7-14. SDR1 Register Bit Settings ... 275

Table 7-15. Minimum Recommended Page Table Sizes ... 277

Table 7-16. Contents of rD after Executing mfsr ... 294

Table 7-17. Contents of rD after Executing mtsr ... 295

Table 7-18. SLB Entry selected by SR ... 296

Table 7-19. SLB Entry Selected by Bits [32-35] or rB .. 297

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

List of Tables

Page 14 of 657
pemLOT.fm.3.0

July 15, 2005

Table 8-1. Split-Field Notation and Conventions ..300

Table 8-2. Instruction Syntax Conventions ...300

Table 8-3. Notation and Conventions ...302

Table 8-4. Instruction Field Conventions ..304

Table 8-5. Precedence Rules ..305

Table 8-6. Encodings of the TH Field ...340

Table 8-7. fres Operand Values ...381

Table 8-8. frsqrte Operand Values ..384

Table 8-9. frsqrt with Special Operand Values ..387

Table 8-10. frsqrts with Special Operand Values ..388

Table 8-11. PowerPC UISA SPR Encodings for mfspr ..437

Table 8-12. PowerPC OEA SPR Encodings for mfspr ...438

Table 8-13. TBR Encodings for mftb ..441

Table 8-14. PowerPC UISA SPR Encodings for mtspr ..450

Table 8-15. PowerPC OEA SPR Encodings for mtspr ...451

Table A-1. Complete Instruction List Sorted by Mnemonic ...545

Table A-2. Complete Instruction List Sorted by Opcode ...553

Table A-3. Integer Arithmetic Instructions ...561

Table A-4. Integer Compare Instructions ..562

Table A-5. Integer Logical Instructions ...562

Table A-6. Integer Rotate Instructions ..563

Table A-7. Integer Shift Instructions ..563

Table A-8. Floating-Point Arithmetic Instructions ..564

Table A-9. Floating-Point Multiply-Add Instructions ..564

Table A-10. Floating-Point Rounding and Conversion Instructions ..565

Table A-11. Floating-Point Compare Instructions ...565

Table A-12. Floating-Point Status and Control Register Instructions ..565

Table A-13. Integer Load Instructions ...566

Table A-14. Integer Store Instructions ..567

Table A-15. Integer Load and Store with Byte Reverse Instructions ..567

Table A-16. Integer Load and Store Multiple Instructions ...567

Table A-17. Integer Load and Store String Instructions ..568

Table A-18. Memory Synchronization Instructions ...568

Table A-19. Floating-Point Load Instructions ..568

Table A-20. Floating-Point Store Instructions ...569

Table A-21. Floating-Point Move Instructions ...569

Table A-22. Branch Instructions ..569

Table A-23. Condition Register Logical Instructions ...570

Table A-24. System Linkage Instructions ...570

Table A-25. Trap Instructions ..570

Table A-26. Processor Control Instructions ..571

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemLOT.fm.3.0
July 15, 2005

List of Tables

Page 15 of 657

Table A-27. Cache Management Instructions .. 571

Table A-28. Segment Register Manipulation Instructions .. 572

Table A-29. Lookaside Buffer Management Instructions .. 572

Table A-30. External Control Instructions ... 572

Table A-31. I-Form ... 573

Table A-32. B-Form .. 573

Table A-33. SC-Form ... 573

Table A-34. D-Form .. 574

Table A-35. DS-Form ... 575

Table A-36. X-Form .. 576

Table A-37. XL-Form .. 580

Table A-38. XFX-Form ... 581

Table A-39. XFL-Form .. 581

Table A-40. XS-Form .. 581

Table A-41. XO-Form ... 582

Table A-42. A-Form .. 583

Table A-43. M-Form ... 584

Table A-44. MD-Form ... 584

Table A-45. MDS-Form .. 584

Table A-46. PowerPC Instruction Set Legend .. 585

Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit Mode) .. 594

Table C-1. Interpretation of G, R, and X Bits .. 597

Table C-2. Location of the Guard, Round, and Sticky Bits—IEEE Execution Model 598

Table C-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution Model 599

Table C-4. Comparison to Zero .. 614

Table C-5. Minimum and Maximum .. 614

Table C-6. Simple If-Then-Else .. 615

Table E-1. Condition Register Bit and Identification Symbol Descriptions ... 627

Table E-2. Simplified Mnemonics for Double-Word Compare Instructions .. 629

Table E-3. Simplified Mnemonics for Word Compare Instructions ... 629

Table E-4. Double-Word Rotate and Shift Instructions ... 630

Table E-5. Word Rotate and Shift Instructions ... 631

Table E-6. Simplified Branch Mnemonics ... 633

Table E-7. Simplified Branch Mnemonics for bc and bca Instructions without Link Register Update 634

Table E-8. Simplified Branch Mnemonics for bclr and bcclr Instructions without Link Register Update ... 634

Table E-9. Simplified Branch Mnemonics for bcl and bcla Instructions with Link Register Update 635

Table E-10. Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link Register Update 635

Table E-11. Standard Coding for Branch Conditions ... 636

Table E-12. Simplified Branch Mnemonics with Comparison Conditions ... 636

Table E-13. Simplified Branch Mnemonics for bc and bca Instructions without Comparison Conditions and
Link Register Updating .. 637

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

List of Tables

Page 16 of 657
pemLOT.fm.3.0

July 15, 2005

Table E-14. Simplified Branch Mnemonics for bclr and bcctr Instructions without Comparison Conditions and
Link Register Updating ..638

Table E-15. Simplified Branch Mnemonics for bcl and bcla Instructions with Comparison Conditions and Link
Register Update ..639

Table E-16. Simplified Branch Mnemonics for bclrl and bcctl Instructions with Comparison Conditions and
Link Register Update ...639

Table E-17. Condition Register Logical Mnemonics ...640

Table E-18. Standard Codes for Trap Instructions ...641

Table E-19. Trap Mnemonics ..642

Table E-20. TO Operand Bit Encoding ...643

Table E-21. Simplified Mnemonics for SPRs ..643

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemLOF.fm.3.0
July 15, 2005

List of Figures

Page 17 of 657

List of Figures
Figure 1-1. Programming Model—PowerPC Registers .. 34

Figure 1-2. Big-Endian Byte and Bit Ordering .. 35

Figure 2-1. UISA Programming Model—User-Level Registers .. 42

Figure 2-2. General-Purpose Registers (GPRs) ... 44

Figure 2-3. Floating-Point Registers (FPRs) .. 45

Figure 2-4. Condition Register (CR) ... 45

Figure 2-5. Floating-Point Status and Control Register (FPSCR) .. 48

Figure 2-6. XER Register ... 50

Figure 2-7. Link Register (LR) .. 51

Figure 2-8. Count Register (CTR) .. 52

Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base ... 54

Figure 2-10. Time Base (TB) .. 55

Figure 2-11. OEA Programming Model—All Registers .. 58

Figure 2-12. Machine State Register (MSR) .. 60

Figure 2-13. Processor Version Register (PVR) ... 64

Figure 2-14. SDR1 .. 64

Figure 2-15. Address Space Register (ASR) .. 65

Figure 2-16. Address Space Register (ASR)—64-Bit Bridge ... 66

Figure 2-17. Data Address Register (DAR) .. 67

Figure 2-18. SPRG0–SPRG3 ... 67

Figure 2-19. DSISR .. 68

Figure 2-20. Machine Status Save/Restore Register 0 (SRR0) ... 68

Figure 2-21. Machine Status Save/Restore Register 1 (SRR1) ... 69

Figure 2-22. Decrementer Register (DEC) ... 70

Figure 2-23. Data Address Breakpoint Register (DABR) ... 71

Figure 2-24. External Access Register (EAR) .. 73

Figure 3-1. C Program Example—Data Structure S ... 80

Figure 3-2. Big-Endian Mapping of Structure S ... 81

Figure 3-3. Little-Endian Mapping of Structure S ... 82

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View .. 83

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem 84

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor ... 85

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05 ... 86

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem 87

Figure 3-9. Floating-Point Single-Precision Format .. 93

Figure 3-10. Floating-Point Double-Precision Format .. 93

Figure 3-11. Approximation to Real Numbers .. 94

Figure 3-12. Format for Normalized Numbers .. 95

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

List of Figures

Page 18 of 657
pemLOF.fm.3.0

July 15, 2005

Figure 3-13. Format for Zero Numbers ...96

Figure 3-14. Format for Denormalized Numbers ..96

Figure 3-15. Format for Positive and Negative Infinities ...97

Figure 3-16. Format for NaNs ...97

Figure 3-17. Representation of Generated QNaN ..98

Figure 3-18. Single-Precision Representation in an FPR ...100

Figure 3-19. Relation of Z1 and Z2 ...101

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes ..102

Figure 3-21. Rounding Flags in FPSCR ...103

Figure 3-22. Floating-Point Status and Control Register (FPSCR) ...103

Figure 3-23. Initial Flow for Floating-Point Exception Conditions ...110

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions ..114

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Stores148

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores ..149

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores ...150

Figure 4-4. Register Indirect with Immediate Index Addressing for Floating-Point Loads/Stores157

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores157

Figure 4-6. Branch Relative Addressing ...161

Figure 4-7. Branch Conditional Relative Addressing ..162

Figure 4-8. Branch to Absolute Addressing ..162

Figure 4-9. Branch Conditional to Absolute Addressing ...163

Figure 4-10. Branch Conditional to Link Register Addressing ..164

Figure 4-11. Branch Conditional to Count Register Addressing ...165

Figure 6-1. Machine Status Save/Restore Register 0 ...216

Figure 6-2. Machine Status Save/Restore Register 1 ...216

Figure 6-3. Machine State Register (MSR) ...216

Figure 7-1. MMU Conceptual Block Diagram ...247

Figure 7-2. Address Translation Types ...249

Figure 7-3. General Flow of Address Translation (Real Addressing Mode) ...252

Figure 7-4. General Flow of Page Address Translation ..253

Figure 7-5. Location of Segment Descriptors ..254

Figure 7-6. Page Address Translation Overview ..261

Figure 7-7. SLB Entry ...262

Figure 7-8. Page Table Entry Format ...264

Figure 7-9. Memory Protection Violation Flow for Pages ..271

Figure 7-10. Page Address Translation Flow—TLB Hit ..272

Figure 7-11. Page Memory Protection Violation Conditions for Page Address Translation273

Figure 7-12. Page Table Definitions ...274

Figure 7-13. SDR1 Register Format ...275

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemLOF.fm.3.0
July 15, 2005

List of Figures

Page 19 of 657

Figure 7-13. SDR1 Register Format ... 275

Figure 7-14. Hashing Functions for Page Tables (4KB page size) .. 278

Figure 7-15. Generation of Addresses for Page Tables ... 280

Figure 7-16. Example Page Table Structure .. 283

Figure 7-17. Example Primary PTEG Address Generation .. 285

Figure 7-18. Example Secondary PTEG Address Generation ... 286

Figure 7-19. Page Table Search Flow .. 288

Figure 7-20. GPR Contents for mfsr and mfsrin ... 295

Figure 7-21. GPR Contents for mtsr and mtsrin ... 296

Figure 8-1. Instruction Description .. 306

Figure C-1. IEEE 64-Bit Execution Model .. 597

Figure C-2. Multiply-Add 64-Bit Execution Model ... 599

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

List of Figures

Page 20 of 657
pemLOF.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem0_preface.fm.3.0
July 15, 2005

About This Book

Page 21 of 657

About This Book

The primary objective of this manual is to help programmers provide software that is compatible across the
family of PowerPC™ processors. Because the PowerPC Architecture is designed to be flexible to support a
broad range of processors, this book provides a general description of features that are common to PowerPC
processors and indicates those features that are optional or that may be implemented differently in the design
of each processor.

This book describes the PowerPC Architecture from the perspective of the 64-bit architecture. For information
that pertains only to the 32-bit architecture refer to the PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors. To locate any published errata or updates for this manual, refer to
the world-wide web at http://www.ibm.com/powerpc. For programmers working with a specific processor, this
book should be used in conjunction with the user’s manual for that processor.

This manual distinguishes between the three levels, or programming environments, of the PowerPC Architec-
ture, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level software should conform.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the Pow-
erPC Architecture, defines additional user-level functionality that falls outside typical user-level software
requirements.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system.

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Refer to Section 1.1.2 on page 32 for additional information on the PowerPC Architecture levels.

It is important to note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that can cause a floating-point exception are defined by
the UISA, while the exception mechanism itself is defined by the OEA.

This book does not attempt to replace the PowerPC Architecture specification (version 2.01), which defines
the architecture from the perspective of the three programming environments and which remains the defining
manual for the PowerPC Architecture.

For ease in reference, this book and the processor user’s manuals have arranged the architecture informa-
tion into topics that build upon one another, beginning with a description and complete summary of registers
and instructions (for all three environments) and progressing to more specialized topics such as the cache,
exception, and memory management models. As such, chapters may include information from multiple levels
of the architecture; for example, the discussion of the cache model uses information from both the VEA and
the OEA.

Temporary 64-Bit Bridge

The OEA defines optional features to simplify the migration of 32-bit operating systems to a 64-bit imple-
mentations.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

About This Book

Page 22 of 657
pem0_preface.fm.3.0

July 15, 2005

It is beyond the scope of this manual to describe individual PowerPC processors. It must be kept in mind that
each PowerPC processor may be unique in its implementation of the PowerPC Architecture.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation. For more information contact your sales representative
or visit our web site at: http://www.ibm.com/powerpc.

Audience

This manual is intended for system software and hardware developers and application programmers who
want to develop 64-bit products using IBM’s 64-bit PowerPC processors. It is assumed that the reader under-
stands operating systems, microprocessor system design, and the basic principles of RISC processing.

Organization

Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview," is useful for those who want a general understanding of the features and functions
of the PowerPC Architecture. This chapter describes the flexible nature of the PowerPC Architecture defi-
nition and provides an overview of how the PowerPC Architecture defines the register set, operand con-
ventions, addressing modes, instruction set, cache model, exception model, and memory management
model.

• Chapter 2, “PowerPC Register Set," is useful for software engineers who need to understand the Pow-
erPC programming model for the three programming environments and the functionality of the PowerPC
registers.

• Chapter 3, “Operand Conventions," describes PowerPC conventions for storing data in memory, including
information regarding alignment, single and double-precision floating-point conventions, and big and little-
endian byte ordering.

• Chapter 4, “Addressing Modes and Instruction Set Summary," provides an overview of the PowerPC
addressing modes and a description of the PowerPC instructions. Instructions are organized by function.

• Chapter 5, “Cache Model and Memory Coherency," provides a discussion of the cache and memory
model defined by the VEA and aspects of the cache model that are defined by the OEA.

• Chapter 6, “Exceptions," describes the exception model defined in the OEA.

• Chapter 7, “Memory Management," provides descriptions of the PowerPC address translation and mem-
ory protection mechanism as defined by the OEA.

• Chapter 8, “Instruction Set," functions as a handbook for the PowerPC instruction set. Instructions are
sorted by mnemonic. Each instruction description includes the instruction formats and an individualized
legend that provides such information as the level(s) of the PowerPC Architecture in which the instruction
may be found and the privilege level of the instruction.

• Appendix A, “PowerPC Instruction Set Listings," lists all the PowerPC instructions. Instructions are
grouped according to mnemonic, opcode, function, and form.

• Appendix B, “Multiple-Precision Shifts," describes how multiple-precision shift operations can be pro-
grammed as defined by the UISA.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem0_preface.fm.3.0
July 15, 2005

About This Book

Page 23 of 657

• Appendix C, “Floating-Point Models," gives examples of how the floating-point conversion instructions
can be used to perform various conversions as described in the UISA.

• Appendix D, “Synchronization Programming Examples," gives examples showing how synchronization
instructions can be used to emulate various synchronization primitives and how to provide more complex
forms of synchronization.

• Appendix E, “Simplified Mnemonics," provides a set of simplified mnemonic examples and symbols.

• This manual also includes a glossary.

Suggested Reading

This section lists additional reading that provides background for the information in this manual, as well as
general information about the PowerPC Architecture.

General Information

The following documentation provides useful information about the PowerPC Architecture and computer
architecture in general:

• The following books are available via many online bookstores.

– The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, by
International Business Machines, Inc.1994.
Note: This book has been superseded with the PowerPC Architecture Books I-III, Version 2.01 and
is available at www.ibm.com/powerpc.

– PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by Apple
Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

– Macintosh Technology in the Common Hardware Reference Platform, by Apple Computer, Inc.

– Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob Way,
Reading, MA, 01867.

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books Worldwide, Inc., 919 East
Hillsdale Boulevard, Suite 400, Foster City, CA, 94404.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

About This Book

Page 24 of 657
pem0_preface.fm.3.0

July 15, 2005

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

• User’s manuals—These books provide details about individual PowerPC implementations and are
intended to be used in conjunction with The Programming Environments Manual. Chapter 1, Overview is
equivalent to previously released Technical Summaries.

• Addenda/errata to user’s manuals—Because some processors have follow-on parts, an addendum may
be provided that describes the additional features and changes to functionality of the follow-on part.
These addenda are intended for use with the corresponding user’s manuals.

• Programming environments manuals (PEM)—These books provide information about resources defined
by the PowerPC Architecture that are common to PowerPC processors. There are several PEM versions
available, this version of the PEM which describes the 64-bit PowerPC Architecture; the PowerPC Micro-
processor Family: The Programming Environments for 32-Bit Microprocessors that describes only the 32-
bit model; and the PowerPC Microprocessor Family: AltiVecTM* Technology Programming Environments
Manual which describes the vector/SIMD architecture.

• Datasheets—Datasheets provide specific data regarding bus timing; signal behavior; and AC, DC, and
thermal characteristics, as well as other design considerations for each PowerPC implementation.

• PowerPC Microprocessor Family: The Programmer’s Reference Guide: MPRPPCPRG-01 is a concise
reference that includes the register summary, memory control model, exception vectors, and the Pow-
erPC instruction set.

• PowerPC Quick Reference Guide: This brochure is a Quick Reference Guide to IBM's portfolio of indus-
try-leading PowerPC technology. It includes highlights and specifications for the PowerPC 405, PowerPC
440, PowerPC 750, and PowerPC 970 based standard products.

• Book I: PowerPC User Instruction Set Architecture (Version 2.01)–This book defines the instructions, reg-
isters, etc., typically used by application programs (for example, Branch, Load, Store, and Arithmetic
instructions; general purpose and floating-point registers). All Book I facilities and instructions are non-
privileged (are available in problem state).

• Book II: PowerPC Virtual Environment Architecture (Version 2.01)–This book defines the storage model
(caches, storage access ordering, etc.) and related instructions, such as the instructions used to manage
caches and to synchronize storage accesses when storage is shared among programs running on differ-
ent processors. All Book II facilities and instructions are non-privileged, but they are typically used via
operating-system-provided library subroutines, which application programs call as needed.

• Book III: PowerPC Operating Environment Architecture (Version 2.01) –This book defines the privileged
facilities and related instructions (address translation, storage protection, interruptions, etc.). Nearly all
Book III facilities and instructions are privileged. (Those that are non-privileged are described also in
Book I or II, but only at the level needed by application programmers.)

• Application notes—These short documents contain useful information about specific design issues useful
to programmers and engineers working with PowerPC processors.

• Documentation for support chips.

For a current list of PowerPC documentation, refer to the world-wide web at http://wwwibm.com/chips. Addi-
tional literature on PowerPC implementations is being released to the web as new processors become avail-
able.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem0_preface.fm.3.0
July 15, 2005

About This Book

Page 25 of 657

Conventions

This manual uses the following notational conventions:

Additional conventions used with instruction encodings are described in Table 8-2 on page 300. Conventions
used for pseudocode examples are described in Table 8-3 on page 302.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

n Used to express an undefined numerical value

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refers to the little-
endian mode enable bit in the machine state register.

x In certain contexts, such as a signal encoding, this indicates a don’t care.

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written
to as either ones or zeroes, they are always read as zeros.

Temporary 64-Bit Bridge

Text that pertains to the optional 64-bit bridge defined by the OEA is presented with a box, as shown
here.

0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

About This Book

Page 26 of 657
pem0_preface.fm.3.0

July 15, 2005

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this manual. Note that the meanings for some
acronyms (such as SDR1 and XER) are historical, and the words for which an acronym stands may not be
intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BIST Built-in self test

BPU Branch processing unit

BUID Bus unit ID

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in-first-out

FPECR Floating-point exception cause register

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

IEEE® Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

lsq Least-significant quad word

MERSI Modified/exclusive/reserved/shared/invalid–cache coherency protocol

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem0_preface.fm.3.0
July 15, 2005

About This Book

Page 27 of 657

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

msq Most-significant quad word

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIMD Single instruction stream, multiple data streams

SIMM Signed immediate value

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded – memory attribute bits

XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

About This Book

Page 28 of 657
pem0_preface.fm.3.0

July 15, 2005

Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology conventions.

Table iii describes instruction field notation conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Swizzling Doubleword swap

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005

Overview

Page 29 of 657

1. Overview
10
40

The PowerPC Architecture provides a software model that ensures software compatibility among implemen-
tations of the PowerPC family of microprocessors. In this manual, and in other PowerPC documentation as
well, the term ‘implementation’ refers to a hardware device (typically a microprocessor) that complies with the
specifications defined by the architecture.

 general defines the following:

• Instruction set—The instruction set specifies the families of instructions (such as load/store, integer arith-
metic, and floating-point arithmetic instructions), the specific instructions, and the forms used for encod-
ing the instructions. The instruction set definition also specifies the addressing modes used for accessing
memory.

• Programming model—The programming model defines the register set and the memory conventions,
including details regarding the bit and byte ordering, and the conventions for how data (such as integer
and floating-point values) are stored.

• Memory model—The memory model defines the size of the address space and of the subdivisions of that
address space. It also defines the ability to configure pages of memory with respect to caching, byte
ordering (big or little-endian), coherency, and various types of memory protection.

• Exception model—The exception model defines the common set of exceptions and the conditions that
can generate those exceptions. The exception model specifies characteristics of the exceptions, such as
whether they are precise or imprecise, synchronous or asynchronous, and maskable or nonmaskable.
The exception model defines the exception vectors and a set of registers used when exceptions are
taken. The exception model also provides memory space for implementation-specific exceptions. (Note
that exceptions are referred to as interrupts in the architecture specification.)

• Memory management model—The memory management model defines how memory is partitioned, con-
figured, and protected. The memory management model also specifies how memory translation is per-
formed, the real, virtual, and physical address spaces, special memory control instructions, and other
characteristics. (Physical address is referred to as real address in the architecture specification.)

• Time-keeping model—The time-keeping model defines facilities that permit the time of day to be deter-
mined and the resources and mechanisms required for supporting time-related exceptions.

These aspects of the PowerPC Architecture are defined at different levels of the architecture, and this chapter
provides an overview of those levels—the user instruction set architecture (UISA), the virtual environment
architecture (VEA), and the operating environment architecture (OEA).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Overview

Page 30 of 657
pem1_overview.fm.3.0

July 15, 2005

1.1 PowerPC Architecture Overview

The PowerPC Architecture takes advantage of recent technological advances in such areas as process tech-
nology, compiler design, and reduced instruction set computing (RISC) microprocessor design. It provides
software compatibility across a diverse family of implementations, primarily single-chip microprocessors,
intended for a wide range of systems, including battery-powered personal computers; embedded controllers;
high-end scientific and graphics workstations; and multiprocessing, microprocessor-based mainframes. To
provide a single architecture for such a broad assortment of processor environments, the PowerPC Architec-
ture is both flexible and scalable.

The flexibility of the PowerPC Architecture offers many price/performance options. Designers can choose
whether to implement architecturally-defined features in hardware or in software. For example, a processor
designed for a high-end workstation has a greater need for the performance gained from implementing
floating-point normalization and denormalization in hardware than a battery-powered, general-purpose
computer might.

The PowerPC Architecture is scalable to take advantage of continuing technological advances—for example,
the continued miniaturization of transistors makes it more feasible to implement more execution units and a
richer set of optimizing features without being constrained by the architecture.

The PowerPC Architecture defines the following features:

• Separate 32-entry register files for integer and floating-point instructions. The general-purpose registers
(GPRs) hold source data for integer arithmetic instructions, and the floating-point registers (FPRs) hold
source and target data for floating-point arithmetic instructions.

• Instructions for loading and storing data between the memory system and either the FPRs or GPRs.

• Uniform-length instructions to allow simplified instruction pipelining and parallel processing instruction
dispatch mechanisms.

• Nondestructive use of registers for arithmetic instructions in which the second, third, and sometimes the
fourth operand, typically specify source registers for calculations whose results are typically stored in the
target register specified by the first operand.

• A precise exception model (with the option of treating floating-point exceptions imprecisely).

• Floating-point support that includes IEEE-754 floating-point operations.

• A flexible architecture definition that allows certain features to be performed in either hardware or with
assistance from implementation-specific software depending on the needs of the processor design.

• The ability to perform both single and double-precision floating-point operations.

• User-level instructions for explicitly storing, flushing, and invalidating data in the on-chip caches. The
architecture also defines special instructions (cache block touch instructions) for speculatively loading
data before it is needed, reducing the effect of memory latency.

• Definition of a memory model that allows weakly-ordered memory accesses. This allows bus operations
to be reordered dynamically, which improves overall performance and in particular reduces the effect of
memory latency on instruction throughput.

• Support for separate instruction and data caches (Harvard architecture) and for unified caches.

• Support for both big and little-endian addressing modes.

• Support for 64-bit addressing.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005

Overview

Page 31 of 657

This chapter provides an overview of the major characteristics of the PowerPC Architecture in the order in
which they are addressed in this book:

• Register set and programming model

• Instruction set and addressing modes

• Cache implementations

• Exception model

• Memory management

1.1.1 64-Bit PowerPC Architecture and the 32-Bit Subset

The PowerPC Architecture is a 64-bit architecture with a 32-bit subset. It is important to distinguish the
following modes of operations:

• 64-bit implementations/64-bit mode—The PowerPC Architecture provides 64-bit addressing, 64-bit inte-
ger data types, and instructions that perform arithmetic operations on those data types, as well as other
features to support the wider addressing range. The processor is configured to operate in 64-bit mode by
setting the MSR[SF] bit.

• 64-bit implementations/32-bit mode—For compatibility with 32-bit implementations, 64-bit implementa-
tions can be configured to operate in 32-bit mode by clearing the MSR[SF] bit. In 32-bit mode, the effec-
tive address is treated as a 32-bit address, condition bits, such as overflow and carry bits, are set based
on 32-bit arithmetic (for example, integer overflow occurs when the result exceeds 32 bits), and the count
register (CTR) is tested by branch conditional instructions following conventions for 32-bit implementa-
tions. All applications written for 32-bit implementations will run without modification on 64-bit processors
running in 32-bit mode.

1.1.1.1 Temporary 64-Bit Bridge

The OEA defines an additional, optional bridge that may make it easier to migrate a 32-bit operating system
to the 64-bit architecture. This bridge allows 64-bit implementations to use a simpler memory management
model to access 32-bit effective address space. Processors that implement this bridge may implement
resources, such as instructions, that are not supported, and in some cases not permitted by the 64-bit archi-
tecture.

For processors that implement the address translation portion of the bridge, segment descriptors take the
form of the STEs defined for 64-bit MMUs; however, only 16 STEs are required to define the entire 4-Gbyte
address space. Like 32-bit implementations, the effective address space is entirely defined by 16 contiguous
256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment registers as is defined for the
32-bit MMU, the 16 STEs are implemented and are maintained in 16 SLB entries.

These resources are described more fully in Section 7.6 Migration of Operating Systems from 32-Bit Imple-
mentations to 64-Bit Implementations. These resources are not to be considered a permanent part of the
PowerPC Architecture.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Overview

Page 32 of 657
pem1_overview.fm.3.0

July 15, 2005

1.1.2 Levels of the PowerPC Architecture

The PowerPC Architecture is defined in three levels that correspond to three programming environments,
roughly described from the most general, user-level instruction set environment, to the more specific, oper-
ating environment. This layering of the architecture provides flexibility, allowing degrees of software compati-
bility across a wide range of implementations. For example, an implementation such as an embedded
controller will support the user instruction set, whereas it may be impractical for it to adhere to the memory
management, exception, and cache models.

The three levels of the PowerPC Architecture are defined as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level (referred to as problem state in the architecture specification) software should conform.
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point mem-
ory conventions and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to the UISA.

• PowerPC virtual environment architecture (VEA)—The VEA defines additional user-level functionality that
falls outside typical user-level software requirements. The VEA describes the memory model for an envi-
ronment in which multiple devices can access memory, defines aspects of the cache model, defines
cache control instructions, and defines the time base facility from a user-level perspective. The icon
shown in the margin identifies text that is relevant with respect to the VEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as
privileged state in the architecture specification) resources typically required by an operating system. The
OEA defines the PowerPC memory management model, supervisor-level registers, synchronization
requirements, and the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with respect to the OEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level, but may not neces-
sarily adhere to the OEA level; likewise, implementations that conform to the OEA level are also guaranteed
to conform to the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC application programs.
However, there may be different versions of the VEA and OEA than those described here. For example,
some devices, such as embedded controllers, may not require some of the features as defined by this VEA
and OEA, and may implement a simpler or modified version of those features.

The general-purpose PowerPC microprocessors comply both with the UISA and with the VEA and OEA
discussed here. In this book, these three levels of the architecture are referred to collectively as the PowerPC
Architecture. The distinctions between the levels of the PowerPC Architecture are maintained clearly
throughout this manual, using the conventions described in the Section Conventions on page 25.

1.1.3 Latitude Within the Levels of the PowerPC Architecture

The PowerPC Architecture defines those parameters necessary to ensure compatibility among PowerPC
processors, but also allows a wide range of options for individual implementations. These are as follows:

• The PowerPC Architecture defines some facilities (such as registers, bits within registers, instructions,
and exceptions) as optional.

• The PowerPC Architecture allows implementations to define additional privileged special-purpose regis-
ters (SPRs), exceptions, and instructions for special system requirements (such as power management
in processors designed for very low-power operation).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005

Overview

Page 33 of 657

• There are many other parameters that the PowerPC Architecture allows implementations to define. For
example, the PowerPC Architecture may define conditions for which an exception may be taken, such as
alignment conditions. A particular implementation may choose to solve the alignment problem without
taking the exception.

• Processors may implement any architectural facility or instruction with assistance from software (that is,
they may trap and emulate) as long as the results (aside from performance) are identical to that specified
by the architecture.

• Some parameters are defined at one level of the architecture and defined more specifically at another.
For example, the UISA defines conditions that may cause an alignment exception, and the OEA specifies
the exception itself.

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC Architecture, there are many aspects of the
processor design, typically relating to the hardware implementation, that the PowerPC Architecture does not
define, such as the following:

• System bus interface signals—Although numerous implementations may have similar interfaces, the
PowerPC Architecture does not define individual signals or the bus protocol. For example, the OEA
allows each implementation to determine the signal or signals that trigger the machine check exception.

• Cache design—The PowerPC Architecture does not define the size, structure, the replacement algorithm,
or the mechanism used for maintaining cache coherency. The PowerPC Architecture supports, but does
not require, the use of separate instruction and data caches. Likewise, the PowerPC Architecture does
not specify the method by which cache coherency is ensured.

• The number and the nature of execution units—The PowerPC Architecture is a reduced instruction set
computing (RISC) architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput. However, the PowerPC
Architecture does not define the internal hardware details of implementations. For example, one proces-
sor may execute load and store operations in the integer unit, while another may execute these instruc-
tions in a dedicated load/store unit.

• Other internal microarchitecture issues—The PowerPC Architecture does not prescribe which execution
unit is responsible for executing a particular instruction; it also does not define details regarding the
instruction fetching mechanism, how instructions are decoded and dispatched, and how results are writ-
ten back. Dispatch and write-back may occur in-order or out-of-order. Also while the architecture specifies
certain registers, such as the GPRs and FPRs, implementations can implement register renaming or
other schemes to reduce the impact of data dependencies and register contention.

1.2 The PowerPC Architectural Models

This section provides overviews of aspects defined by the PowerPC Architecture, following the same order as
the rest of this book. The topics include the following:

• PowerPC registers and programming model
• PowerPC operand conventions
• PowerPC instruction set and addressing modes
• PowerPC cache model
• PowerPC exception model
• PowerPC memory management model

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Overview

Page 34 of 657
pem1_overview.fm.3.0

July 15, 2005

1.2.1 PowerPC Registers and Programming Model

The PowerPC Architecture defines register-to-register operations for computational instructions. Source
operands for these instructions are accessed from the architected registers or are provided as immediate
values embedded in the instruction. The three-register instruction format allows specification of a target
register distinct from two source operand registers. This scheme allows efficient code scheduling in a highly
parallel processor. Load and store instructions are the only instructions that transfer data between registers
and memory. The PowerPC registers are shown in Figure 1-1.

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each implementation may have its own unique set of hardware implementation
(HID) registers that are not defined by the architecture.

PowerPC processors have two levels of privilege:

• Supervisor mode—used exclusively by the operating system. Resources defined by the OEA can be
accessed only by supervisor-level software.

• User mode—used by the application software and operating system software. (Only resources defined by
the UISA and VEA can be accessed by user-level software.)

Figure 1-1. Programming Model—PowerPC Registers

USER MODEL—UISA
• 32 General-Purpose Registers (GPRs)
• 32 Floating-Point Registers (FPRs)
• Condition Register (CR)
• Floating-Point Status and Control Register (FPSCR)
• Fixed-Point Exception Register (XER)
• Link Register (LR)
• Count Register (CTR)

SUPERVISOR MODEL—OEA

Configuration Registers
• Machine State Register (MSR)
• Processor Version Register (PVR)

Memory Management Registers
• SDR1
• Address Space Register (ASR)

Exception Handling Registers
• Data Address Register (DAR)
• DSISR
• Save and Restore Registers (SRR0/SRR1)
• Software Use SPRs (SPRG0–SPRG3)
• Floating-Point Exception Cause Register (FPECR)1

Miscellaneous Registers
• Time Base Facility (TBU and TBL) (For writing)
• Decrementer Register (DEC)
• Data Address Breakpoint Register (DABR)1

• Processor Identification Register (PIR)1

• External Access Register (EAR)1
• Control Register (CTRL)
• Instruction Address Breakpoint Register (IABR)2

USER MODEL—VEA
• Time Base Facility (TBU and TBL) (For reading)

1. Optional
2. Implementation specific register

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005

Overview

Page 35 of 657

These two levels govern the access to registers, as shown in Figure 1-1. The division of privilege allows the
operating system to control the application environment (providing virtual memory and protecting operating
system and critical machine resources). Instructions that control the state of the processor, the address trans-
lation mechanism, and supervisor registers can be executed only when the processor is operating in super-
visor mode.

• User Instruction Set Architecture Registers—All UISA registers can be accessed by all software with
either user or supervisor privileges. These registers include the 32 general-purpose registers (GPRs) and
the 32 floating-point registers (FPRs), and other registers used for integer, floating-point, and branch
instructions.

• Virtual Environment Architecture Registers—The VEA defines the user-level portion of the time base
facility, which consists of the two 32-bit time base registers. These registers can be read by user-level
software, but can be written to only by supervisor-level software.

• Operating Environment Architecture Registers—SPRs defined by the OEA are used for system-level
operations such as memory management, exception handling, and time-keeping.

The PowerPC Architecture also provides room in the SPR space for implementation-specific registers, typi-
cally referred to as HID registers. Individual HIDs are not discussed in this manual.

1.2.2 Operand Conventions

Operand conventions are defined in two levels of the PowerPC Architecture—user instruction set architecture
(UISA) and virtual environment architecture (VEA). These conventions define how data is stored in registers
and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides the option of operating in
either big or little-endian mode. Big-endian byte ordering is shown in Figure 1-2.

The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian mode) and ILE (exception
little-endian mode). The LE bit specifies whether the processor is configured for big-endian or little-endian
mode; the ILE bit specifies the mode when an exception is taken by being copied into the LE bit of the MSR.
A value of ’0’ specifies big-endian mode and a value of 1 specifies little-endian mode.

Note: Little endian mode is optional. If the processor does not support little endian mode, then MSR[LE] and
MSR[ILE] are treated as reserved.

Refer to Section 3.1.2 Byte Ordering for details on big-endian and little-endian modes.

Figure 1-2. Big-Endian Byte and Bit Ordering

Byte 0 Byte 1 Byte N (max)

Big-Endian Byte Ordering

MSB

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Overview

Page 36 of 657
pem1_overview.fm.3.0

July 15, 2005

1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Memory operands may be bytes, halfwords, words, or doublewords, or for the load/store string/multiple
instructions, a sequence of bytes or words. The address of a multiple-byte memory operand is the address of
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned.

1.2.2.3 Floating-Point Conventions

The PowerPC Architecture adheres to the IEEE-754 standard for floating-point arithmetic:

• Double-precision arithmetic instructions may have single or double-precision operands but always pro-
duce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision values and always pro-
duce single-precision results. Single-precision values are stored in double-precision format in the FPRs—
these values are rounded such that they can be represented in 32-bit, single-precision format (as they are
in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent
among all instruction types, permitting decoding to occur in parallel with operand accesses. This fixed instruc-
tion length and consistent format greatly simplifies instruction pipelining.

1.2.3.1 PowerPC Instruction Set

Although these categories are not defined by the PowerPC Architecture, the PowerPC instructions can be
grouped as follows:

• Integer instructions—These instructions are defined by the UISA. They include computational and logical
instructions. For example, integer arithmetic instructions, integer compare instructions, logical instruc-
tions, and integer rotate and shift instructions.

• Floating-point instructions—These instructions, defined by the UISA, include floating-point computational
instructions, as well as instructions that manipulate the floating-point status and control register (FPSCR).
For example, floating-point arithmetic instructions, floating-point multiply/add instructions, floating-point
compare instructions, floating-point status and control instructions, floating-point move instructions, and
optional floating-point instructions.

• Load/store instructions—These instructions, defined by the UISA, include integer and floating-point load
and store instructions. For example, integer load and store instructions, integer load and store with byte
reverse instructions, integer load and store multiple instructions, integer load and store string instructions,
and floating-point load and store instructions.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005

Overview

Page 37 of 657

• The UISA also provides a set of load/store with reservation instructions (lwarx/ldarx and stwcx./stdcx.)
that can be used as primitives for constructing atomic memory operations in multiprocessing environ-
ments. These are grouped under synchronization instructions.

• Synchronization instructions—The UISA and VEA define instructions for memory synchronizing, espe-
cially useful for multiprocessing. For example, load and store with reservation instructions (these UISA-
defined instructions provide primitives for synchronization operations such as test and set, compare and
swap, and compare memory). The synchronization instruction (sync) is useful for synchronizing load and
store operations on a memory bus that is shared by multiple devices. The Enforce In-Order Execution of
I/O (eieio) instruction provides an ordering function for the effects of load and store operations executed
by a processor.

• Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. The UISA defines numerous
instructions that control the program flow, including branch, trap, and system call instructions, as well as
instructions that read, write, or manipulate bits in the condition register. The OEA defines two flow control
instructions that provide system linkage (sc, rfid). These instructions are used for entering and returning
from supervisor level.

• Processor control instructions—These instructions are used for synchronizing memory accesses and
managing caches and translation lookaside buffers (TLBs). These instructions include move to/from spe-
cial-purpose register instructions (mtspr and mfspr).

• Memory/cache control instructions—These instructions provide control of caches, SLBs, and TLBs. The
VEA defines several cache control instructions. The OEA defines several memory control instructions.

• External control instructions—The VEA defines two optional instructions (eciwx, ecowx) for use with
special input/output devices.

Note: This grouping of the instructions does not indicate which execution unit executes a particular instruc-
tion or group of instructions. This is not defined by the PowerPC Architecture.

Temporary 64-Bit Bridge
• The 64-bit bridge allows several instructions to be used in 64-bit implementations that are otherwise

defined for use in 32-bit implementations only. These include the following:

– Move to Segment Register (mtsr) and Move to Segment Register Indirect (mtsrin)

– Move from Segment Register (mfsr) and Move from Segment Register Indirect (mfsrin)

All four of these instructions are implemented as a group and are never implemented individually.
Attempting to execute one of these instructions on a 64-bit implementation on which these instruc-
tions are not supported causes program exception.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Overview

Page 38 of 657
pem1_overview.fm.3.0

July 15, 2005

1.2.3.2 Calculating Effective Addresses

The effective address (EA), also called the logical address, is the address computed by the processor when
executing a memory access or branch instruction or when fetching the next sequential instruction. Unless
address translation is disabled, this address is converted by the MMU to the appropriate physical address.

Note: The architecture specification uses only the term effective address and not logical address.

The PowerPC Architecture supports the following simple addressing modes for memory access instructions:

• EA = (rA|0) (register indirect)

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for PowerPC proces-
sors. The PowerPC Architecture does not define hardware aspects of cache implementations. For example,
some PowerPC processors may have separate instruction and data caches (Harvard architecture), while
others have a unified cache.

The PowerPC Architecture allows implementations to control the following memory access modes on a page
basis:

• Write-back/write-through mode

• Caching-inhibited mode

• Memory coherency

• Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform operations on a
cache block basis. The size of the cache block is implementation-dependent. The term cache block should
not be confused with the notion of a block in memory, which is described in Section 1.2.6 PowerPC Memory
Management Model.

The VEA portion of the PowerPC Architecture defines several instructions for cache management. These can
be used by user-level software to perform such operations as touch operations (which cause the cache block
to be speculatively loaded), and operations to store, flush, or clear the contents of a cache block.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005

Overview

Page 39 of 657

1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change to supervisor state
as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions occur, information about the state of the processor is saved to various registers and the processor
begins execution at an address (exception vector) predetermined for each type of exception. Exception
handler routines begin execution in supervisor mode. The PowerPC exception model is described in detail in
Chapter 6, Exceptions.

Note: Some aspects regarding exception conditions are defined at other levels of the architecture. For exam-
ple, floating-point exception conditions are defined by the UISA, whereas the exception mechanism is defined
by the OEA.

The PowerPC Architecture requires that exceptions be handled in program order (excluding the optional
floating-point imprecise modes and the reset and machine check exception); therefore, although a particular
implementation may recognize exception conditions out of order, they are handled strictly in order. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction
stream, including any that have not yet begun to execute, are required to complete before the exception is
taken. Any exceptions caused by those instructions must be handled first. Likewise, exceptions that are asyn-
chronous and precise are recognized when they occur, but are not handled until all instructions currently
executing successfully complete processing and report their results.

The OEA supports four types of exceptions:

• Synchronous, precise
• Synchronous, imprecise
• Asynchronous, maskable
• Asynchronous, nonmaskable

1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the PowerPC OEA. The
primary functions of the MMU in a PowerPC processor are to translate logical (effective) addresses to phys-
ical addresses for memory accesses and I/O accesses (most I/O accesses are assumed to be memory-
mapped), and to provide access protection on a block or page basis.

Note: Many aspects of memory management are implementation-dependent. The description in Chapter 7,
Memory Management describes the conceptual model of a PowerPC MMU; however, PowerPC processors
may differ in the specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction accesses and
data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 32 and 64-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 264 bytes of effective address space acces-
sible to supervisor and user programs with support for two page sizes; a 4-Kbyte page size (212) and a large
page whose size is implementation dependent (2p where 13 ≤ p ≤ 28). The MMU of 64-bit PowerPC proces-
sors uses an interim virtual address (between 65 and 80 bits) and hashed page tables in the generation of
physical addresses that are ≤ 62 bits in length. Table 7-1 MMU Features Summary summarizes the features
of PowerPC MMUs for 64-bit implementations.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Overview

Page 40 of 657
pem1_overview.fm.3.0

July 15, 2005

Two types of accesses generated by PowerPC processors require address translation: instruction accesses,
and data accesses to memory generated by load and store instructions. The address translation mechanism
is defined in terms of segment tables and page tables used by PowerPC processors to locate the logical-to-
physical address mapping for instruction and data accesses. The segment information translates the logical
address to an interim virtual address, and the page table information translates the virtual address to a phys-
ical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page table entries on-chip. Although their exact characteristics are not specified by the architecture, the
general concepts that are pertinent to the system software are described. Similarly, 64-bit implementations
contain segment lookaside buffers (SLBs) on-chip that contain recently-used segment table entries, however
the PowerPC Architecture does not define the exact characteristics for SLBs.

1.3 Changes to this Manual

This manual reflects changes made to the PowerPC Architecture, Version 2.01.

Temporary 64-Bit Bridge

The 64-bit bridge provides resources that may make it easier for a 32-bit operating system to migrate to
a 64-bit processor. The nature of these resources are largely determined by the fact that in a 32-bit
address space, only 16 segment descriptors are required to define all 4 Gbytes of memory. That is,
there are sixteen 256 Mbyte segments, as is the case in the 32-bit architecture description.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 41 of 657

2. PowerPC Register Set
20
50

This chapter describes the register organization defined by the three levels of the PowerPC Architecture:

• User instruction set architecture (UISA)
• Virtual environment architecture (VEA), and
• Operating environment architecture (OEA).

The PowerPC Architecture defines register-to-register operations for all computational instructions. Source
data for these instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a target register distinct
from the two source registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Data is transferred between memory and registers with
explicit load and store instructions only.

Note: The handling of reserved bits in any register is implementation-dependent. Software is permitted to
write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns ‘0’ if
the value last written to the bit was ‘0’ and returns an undefined value (may be ‘0’ or ‘1’) otherwise. This
means that even if the last value written to a reserved bit was ‘1’, reading that bit may return ‘0’.

2.1 Overview of the PowerPC UISA Registers

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user or supervisor-level
instructions (the architecture specification refers to user-level and supervisor-level as problem state and priv-
ileged state respectively). The general-purpose registers (GPRs) and floating-point registers (FPRs) are
accessed as instruction operands. Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax of the instruction
operand to access the register (for example, the number used to access the XER is SPR 1).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 42 of 657
pem2_regset.fm.3.0

July 15, 2005

Figure 2-1. UISA Programming Model—User-Level Registers

TBR 268

Time Base Facility 1
(For Reading)

TBL (32)

TBR 269TBU (32)

SUPERVISOR MODEL — OEA

Machine State Register

MSR (64/32) SPR 287PVR (32)

DSISR 1

SPR 18DSISR (32)

Data Address Register

SPR 19DAR (64)

Save and Restore Registers

SPR 26SRR0 (64/32)

SPR 27SRR1 (64/32)

SPRGs

SPR 272SPRG0 (64)

SPR 273SPRG1 (64)

SPR 274SPRG2 (64)

SPR 275SPRG3 (64/)

SPR 22

Decrementer 1

DEC (32)

Time Base Facility 1

(For Writing)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register
(Optional) 1

EAR (32)

SDR1

SPR 25SDR1 (64/32)

Address Space Register 1

SPR 280ASR (64)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA

SPR 1013DABR (64)

Data Address Breakpoint
Register (Optional)

1. These registers are on 64-bit implementations only.
2. These registers are implementation dependent.
3. 64-bit registers operating in 32-bit mode clear the high order 32-bits.

SPR 1

USER MODEL (UISA)

Floating-Point Status
and Control Register1

CR (32)

FPSCR (32)

Condition Register1

GPR0 (64)

GPR1 (64)

GPR31 (64)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose
Registers

Floating-Point
Registers

XER (64)

SPR 8

Link Register

LR (64)

SPR 9

Count Register

CTR (64)

XER Register

Floating-Point Exception
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification
Register (Optional)

PIR

Processor Version Register 1

(Read Only)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 43 of 657

The user-level registers can be accessed by all software with either user or supervisor privileges. The
user-level registers are:

• General-purpose registers (GPRs). The general-purpose register file consists of 32 GPRs designated as
GPR0–GPR31. The GPRs serve as either the data source or the destination registers for all integer
instructions and provide data for generating addresses. For more information see Section 2.1.1 General-
Purpose Registers (GPRs) on page 44.

• Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs designated as FPR0–
FPR31; these registers serve as either the data source or the destination for all floating-point instructions.
While the floating-point model includes data objects of either single or double-precision floating-point for-
mat, the FPRs only contain data in double-precision format. For more information, see Section 2.1.2
Floating-Point Registers (FPRs) on page 44.

• Condition register (CR). The condition register is a 32-bit register that is divided into eight 4-bit fields,
CR0–CR7. This register stores the results of certain arithmetic operations and provides a mechanism for
testing and branching. For more information, see Section 2.1.3 Condition Register (CR) on page 45.

• Floating-point status and control register (FPSCR). The floating-point status and control register contains
all floating-point exception signal bits, exception summary bits, exception enable bits, and rounding con-
trol bits needed for compliance with the IEEE 754 standard. For more information, see Section 2.1.4
Floating-Point Status and Control Register (FPSCR) on page 47.

Note: The architecture specification refers to exceptions as interrupts.

• Fixed point exception register (XER). The fixed point exception register indicates overflows and carry con-
ditions for integer operations and the number of bytes to be transferred by the load/store string indexed
instructions. For more information, see Section 2.1.5 XER Register (XER) on page 50.

• Link register (LR). The link register provides the branch target address for the Branch Conditional to Link
Register (bclrx) instructions, and can optionally be used to hold the effective address of the instruction
that follows a branch with link update instruction in the instruction stream, typically used for loading the
return pointer for a subroutine. For more information, see Section 2.1.6 Link Register (LR) on page 51.

• Count register (CTR). The count register holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR can also provide the branch target address for the
Branch Conditional to Count Register (bcctrx) instructions. For more information, see Section 2.1.7
Count Register (CTR) on page 52.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 44 of 657
pem2_regset.fm.3.0

July 15, 2005

2.1.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2-2. These registers are 64-bit regis-
ters. The GPRs are accessed as either source or destination registers in the instruction syntax.

2.1.2 Floating-Point Registers (FPRs)

The PowerPC Architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These registers are
accessed as either source or destination registers for floating-point instructions. Each FPR supports the
double-precision floating-point format. Every instruction that interprets the contents of an FPR as a floating-
point value uses the double-precision floating-point format for this interpretation.

Instructions for all floating-point arithmetic operations use the data located in the FPRs and, with the excep-
tion of compare instructions, place the result into a FPR. Information about the status of floating-point opera-
tions is placed into the FPSCR and in some cases, into the CR after the completion of instruction execution.
For information on how the CR is affected for floating-point operations, see Section 2.1.3 Condition Register
(CR).

Instructions to load and to store floating-point double precision values transfer 64 bits of data between
memory and the FPRs with no conversion.

Instructions to load floating-point single precision values are provided to read single-precision floating-point
values from memory, convert them to double-precision floating-point format, and place them in the target
floating-point register.

Instructions to store single-precision values are provided to read double-precision floating-point values from a
floating-point register, convert them to single-precision floating-point format, and place them in the target
memory location.

Instructions for single and double-precision arithmetic operations accept values from the FPRs in double-
precision format. For instructions of single-precision arithmetic and store operations, all input values must be
representable in single-precision format; otherwise, the results placed into the target FPR (or the memory
location) and the setting of status bits in the FPSCR and in the condition register (if the instruction’s record bit,
Rc, is set) are undefined.

The floating-point arithmetic instructions produce intermediate results that may be regarded as infinitely
precise and with unbounded exponent range. This intermediate result is normalized or denormalized if
required, and then rounded to the destination format. The final result is then placed into the target FPR in the
double-precision format or in fixed-point format, depending on the instruction. Refer to Section 3.3 Floating-
Point Execution Models—UISA on page 92 for more information.

Figure 2-2. General-Purpose Registers (GPRs)

0 63

GPR0

GPR1

GPR31

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 45 of 657

2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations and provides a
mechanism for testing and branching. The bits in the CR are grouped into eight 4-bit fields, CR0–CR7, as
shown in Figure 2-4.

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set from a GPR by using the mtcrf and mtocrf instruction.

• The contents of the XER[0–3] can be moved to another CR field by using the mcrf instruction.

• A specified field of the XER can be copied to a specified field of the CR by using the mcrxr instruction.

• A specified field of the FPSCR can be copied to a specified field of the CR by using the mcrfs instruction.

• Logical instructions of the condition register can be used to perform logical operations on specified bits in
the condition register.

• CR0 can be the implicit result of an integer instruction.

• CR1 can be the implicit result of a floating-point instruction.

• A specified CR field can indicate the result of either an integer or floating-point compare instruction.

Note: Branch instructions are provided to test individual CR bits.

Figure 2-3. Floating-Point Registers (FPRs)

Figure 2-4. Condition Register (CR)

0 63

FPR0

FPR1

FPR31

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 46 of 657
pem2_regset.fm.3.0

July 15, 2005

2.1.3.1 Condition Register CR0 Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is, when Rc = ’1’),
and for addic., andi., and andis., the first three bits of CR0 are set by an algebraic comparison of the result
to zero; the fourth bit of CR0 is copied from XER[SO]. For integer instructions, CR bits [0–3] are set to reflect
the result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined, the value placed
into the first three bits of CR0 is undefined. The stwcx. and stdcx. instructions also set the CR0 field.

Note: If overflow occurs, CR0 may not reflect the true (infinitely precise) result. CR0 bits [0–2] are undefined
if Rc = 1 for the mulhw, mulhwu, divw, and divwu instructions.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (Rc =1), CR1 (bits [4-7]
of the CR) is copied from bits [0–3] of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4 Floating-Point Status and Control Register (FPSCR). The bit
settings for the CR1 field are shown in Table 2-2.

Table 2-1. Bit Settings for CR0 Field of CR

CR0 Bit Description

0 Negative (LT)—This bit is set when the result is negative.

1 Positive (GT)—This bit is set when the result is positive (and not zero).

2 Zero (EQ)—This bit is set when the result is zero or when a stwcx. or stdcx. successfully completes.

3 Summary overflow (SO)—This is a copy of the final state of XER[SO] at the completion of the instruction.

Table 2-2. Bit Settings for CR1 Field of CR

CR1 Bit Description

4 Floating-point exception summary (FX)—This is a copy of the final state of FPSCR[FX] at the completion of the
instruction.

5 Floating-point enabled exception summary (FEX)—This is a copy of the final state of FPSCR[FEX] at the comple-
tion of the instruction.

6 Floating-point invalid operation exception summary (VX)—This is a copy of the final state of FPSCR[VX] at the
completion of the instruction.

7 Floating-point overflow exception (OX)—This is a copy of the final state of FPSCR[OX] at the completion of the
instruction.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 47 of 657

2.1.3.3 Condition Register CRn Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the comparison, the bits of
the specified field are interpreted as shown in Table 2-3.

2.1.4 Floating-Point Status and Control Register (FPSCR)

The Floating-Point Status and Control Register (FPSCR), shown in Figure 2-5, is used for:

• Recording exceptions generated by floating-point operations

• Recording the type of the result produced by a floating-point operation

• Controlling the rounding mode used by floating-point operations

• Enabling or disabling the reporting of exceptions (that is, invoking the exception handler)

Bits [0–23] are status bits. Bits [24–31] are control bits. Status bits in the FPSCR are updated at the comple-
tion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid operation exception
summary (VX), the exception condition bits in the FPSCR (bits [3–12] and [21–23]) are sticky. Once set,
sticky bits remain set until they are cleared by the relevant mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not listed among the
FPSCR bits directly affected by the various instructions.

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRn Bit 1 Description 2

0
Less than or floating-point less than (LT, FL).
For integer compare instructions: rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

1
Greater than or floating-point greater than (GT, FG).
For integer compare instructions: rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

2
Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

3
Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions: This is a copy of the final state of XER[SO] at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a Number (NaN).

Notes:

1. Here, the bit indicates the bit number in any one of the 4-bit subfields, CR0–CR7.
2. For a complete description of instruction syntax conventions, refer to Table 8-2 on page 300.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 48 of 657
pem2_regset.fm.3.0

July 15, 2005

A listing of FPSCR bit settings is shown in Table 2-4.

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

Table 2-4. FPSCR Bit Settings

Bit(s) Name Description

0 FX

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from ‘0’
to ‘1’. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a
sticky bit.

1 FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits
(FEX = (VX & VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX
Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions on page 113.

4 UX Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 116.

5 ZX Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 112.

6 XX

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 117.
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a given
instruction:

• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCR[FI].

• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

8 VXISI Floating-point invalid operation exception for ∞ – ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

11 VXIMZ Floating-point invalid operation exception for ∞ * 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 111.

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI
VXISI
VXSNAN

VXZDZ
VXIMZ
VXVC

VXSOFT
VXSQRT
VXCVI

Reserved

FX FEX VX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 49 of 657

14 FI

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the
intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCR[FI] and
FPSCR[XX], see the description of the FPSCR[XX] bit.

15–19 FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set

this bit with the FPCC bits to indicate the class of the result as shown in Table 2-5.
16–19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the

FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the
high-order three bits of the FPCC retain their relational significance indicating that the value is less
than, greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

Note: These are not sticky bits.

20 — Reserved

21 VXSOFT
Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only
by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Invalid
Operation Exception Condition on page 111.

22 VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 111.
Note: If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation
Exception Condition on page 111.

24 VE Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 111.

25 OE IEEE floating-point overflow exception enable.
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 113.

26 UE IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 116.

27 ZE IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 112.

28 XE Floating-point inexact exception enable. See Inexact Exception Condition on page 117.

29 NI

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, the result produced is zero (retaining the sign of the denormalized number). Any other effects
associated with setting this bit are described in the user’s manual for the implementation (the effects are imple-
mentation-dependent).
Note: When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be
approximate, and performance for these operations may be better, more predictable, or less data-dependent
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may
return 0 instead of a denormalized number, and may return a large number instead of an infinity.

30–31 RN

Floating-point rounding control. See Section 3.3.5 Rounding.
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name Description

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 50 of 657
pem2_regset.fm.3.0

July 15, 2005

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits [15–19].

2.1.5 XER Register (XER)

The fixed-point exception register (XER) is a 64-bit, user-level register and is described in Figure 2-6 and
Table 2-6.

The bit definitions for XER, shown in Table 2-6, are based on the operation of an instruction considered as a
whole, not on intermediate results. For example, the result of the Subtract from Carrying (subfcx) instruction
is specified as the sum of three values. This instruction sets bits in the XER based on the entire operation, not
on an intermediate sum.

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits [15–19])
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

Figure 2-6. XER Register

Reserved

Byte count0 0000 0000 0000 0000 0

6357

SO OV CA

32 33 34 35 56

0000 0000 0000 0000 0000 0000 0000 0000

0 31

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 51 of 657

2.1.6 Link Register (LR)

The link register (LR) is a 64-bit register that supplies the branch target address for the Branch Conditional to
Link Register (bclrx) instructions, and in the case of a branch with link update instruction, can be used to hold
the logical address of the instruction that follows the branch with link update instruction (for returning from a
subroutine). The format of LR is shown in Figure 2-7.

Note: Although the two least-significant bits can accept any values written to them, they are ignored when
the LR is used as an address. Both conditional and unconditional branch instructions include the option of
placing the logical address of the instruction following the branch instruction in the LR.

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8. Prefetching instruc-
tions along the target path (loaded by an mtspr instruction) is possible provided the link register is loaded
sufficiently ahead of the branch instruction (so that any branch prediction hardware can calculate the branch
address). Additionally, PowerPC processors can prefetch along a target path loaded by a branch and link
instruction.

Note: Some PowerPC processors may keep a stack of the LR values most recently set by branch with link
update instructions. To benefit from these enhancements, use of the link register should be restricted to the
manner described in Section 4.2.4.2 Conditional Branch Control.

Table 2-6. XER Bit Definitions

Bit(s) Name Description

0-31 – Reserved.

32 SO

Summary overflow. The summary overflow bit [SO] is set whenever an instruction (except mtspr) sets the overflow
bit [OV]. Once set, the [SO] bit remains set until it is cleared by an mtspr instruction (specifying the XER) or an
mcrxr instruction. It is not altered by compare instructions, nor by other instructions (except mtspr to the XER, and
mcrxr) that cannot overflow. Executing an mtspr instruction to the XER, supplying the values zero for [SO] and one
for [OV], causes [SO] to be cleared and [OV] to be set.

33 OV

Overflow. The overflow bit [OV] is set to indicate that an overflow has occurred during execution of an instruction.
Add, subtract from, and negate instructions having OE = ’1’ set the [OV] bit if the carry out of the msb is not equal
to the carry out of the msb + 1, and clear it otherwise. Multiply low and divide instructions having OE = ’1’ set the
[OV] bit if the result cannot be represented in 64 bits (mulld, divd, divdu) or in 32 bits (mullw, divw, divwu), and
clear it otherwise. The [OV] bit is not altered by compare instructions, nor by other instructions that cannot overflow
(except mtspr to the XER, and mcrxr).

34 CA

Carry. The carry bit [CA] is set during execution of the following instructions:
• Add carrying, subtract from carrying, add extended, and subtract from extended instructions set [CA] if there is

a carry out of the msb, and clear it otherwise.
• Shift right algebraic instructions set [CA] if any 1-bits have been shifted out of a negative operand, and clear it

otherwise.
The [CA] bit is not altered by compare instructions, nor by other instructions that cannot carry (except shift right
algebraic, mtspr to the XER, and mcrxr).

35–56 — Reserved

57–63 This field specifies the number of bytes to be transferred by a Load String Word Indexed (lswx) or Store String
Word Indexed (stswx) instruction.

Figure 2-7. Link Register (LR)

Branch Address

0 63

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 52 of 657
pem2_regset.fm.3.0

July 15, 2005

2.1.7 Count Register (CTR)

The count register (CTR) is a 64-bit register that can hold a loop count that can be decremented during
execution of branch instructions that contain an appropriately coded BO field. If the value in CTR is 0 before
being decremented, it is -1 afterward; (0xFFFF_FFFF_FFFF_FFFF (264 – 1). The CTR can also provide the
branch target address for the Branch Conditional to Count Register (bcctrx) instruction. The CTR is shown in
Figure 2-8.

Prefetching instructions along the target path is also possible provided the count register is loaded sufficiently
ahead of the branch instruction (so that any branch prediction hardware can calculate the correct value of the
loop count).

The count register can also be accessed by the mtspr and mfspr instructions by specifying SPR 9. In branch
conditional instructions, the BO field specifies the conditions under which the branch is taken. The first four
bits of the BO field specify how the branch is affected by or affects the CR and the CTR. The encoding for the
BO field is shown in Table 4-20 BO Operand Encodings.

Figure 2-8. Count Register (CTR)

CTR

0 63

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 53 of 657

2.2 PowerPC VEA Register Set—Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to those defined by the
UISA. The PowerPC VEA register set can be accessed by all software with either user or supervisor-level
privileges. Figure 2-9 provides a graphic illustration of the PowerPC VEA register set. Note that the following
programming model is similar to that found in Figure 2-1, with the additional PowerPC VEA registers.

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists of two 32-bit regis-
ters—time base upper (TBU) and time base lower (TBL).

Note: The time base registers can be accessed by both user and supervisor-level instructions. In the context
of the VEA, user-level applications are permitted read-only access to the TB. The OEA defines supervisor-
level access to the TB for writing values to the TB. See Section 2.3.11 Time Base Facility (TB)—OEA for
more information.

In Figure 2-9 the numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the XER is SPR 1).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 54 of 657
pem2_regset.fm.3.0

July 15, 2005

Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base

TBR 268

Time Base Facility
 1

(For Reading)

TBL (32)

TBR 269TBU (32)

USER MODEL
VEA

1. These registers are 32-bit registers only.
2. These registers are implementation dependent.
3. 64-bit registers operating in 32-bit mode clear the high order 32-bits.

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register 1

CR (32)

FPSCR (32)

Condition Register
 1

GPR0 (64)

GPR1 (64)

GPR31 (64)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose Registers

Floating-Point Registers

XER (64)

SPR 8

Link Register

LR (64/32)

SPR 9

Count Register

CTR (64/32)

XER Register

SUPERVISOR MODEL – OEA

Machine State Register

MSR (64)

Processor Version Register 1 (Read Only)

SPR 287PVR (32)

SPR 18DSISR (32)

Data Address Register

SPR 19DAR (64)

Save and Restore Registers

SPR 26SRR0 (64)

SPR 27SRR1 (64)

SPRGs

SPR 272SPRG0 (64)

SPR 273SPRG1 (64)

SPR 274SPRG2 (64)

SPR 275SPRG3 (64)

SPR 22

Decrementer 1

DEC (32)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register
(Optional) 1

EAR (32)

SDR1

SPR 25SDR1 (64)

Address Space Register

SPR 280ASR (64)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

SPR 1013DABR (64)

Data Address Breakpoint
Register (Optional)

Floating-Point Exception
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification
Register (Optional)

PIR

Time Base Facility 1
(For Writing)

DSISR 1

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 55 of 657

The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit unsigned integer that is
incremented periodically. Each increment adds ’1’ to the low-order bit (bit[31] of TBL). The frequency at
which the counter is incremented is implementation-dependent.

Note: The TB increments until its value becomes 0xFFFF_FFFF_FFFF_FFFF (264 – 1). At the next incre-
ment its value becomes 0x0000_0000_0000_0000. There is no exception or explicit indication when this
occurs.

The period of the time base depends on the driving frequency. The TB is implemented such that the following
requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time base is updated
and other frequencies, such as the processor clock. The TB update frequency is not required to be constant;
however, for the system software to maintain time of day and operate interval timers, one of two things is
required:

• The system provides an implementation-dependent exception to software whenever the update fre-
quency of the time base changes and a means to determine the current update frequency; or

• The system software controls the update frequency of the time base.

Note: If the operating system initializes the TB to some reasonable value and the update frequency of the TB
is constant, the TB can be used as a source of values that increase at a constant rate, such as for time
stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically increasing (except
when the TB wraps from 264 – 1 to 0). If a trace entry is recorded each time the update frequency changes,
the sequence of TB values can be postprocessed to become actual time values.

However, successive readings of the time base may return identical values due to implementation-dependent
factors such as a low update frequency or initialization.

Figure 2-10. Time Base (TB)

0 31 0 31

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 56 of 657
pem2_regset.fm.3.0

July 15, 2005

2.2.1 Reading the Time Base

The mftb instruction is used to read the time base. The following sections discuss reading the time base in
64-bit modes. For specific details on using the mftb instruction, see Chapter 8, Instruction Set. For informa-
tion on writing the time base, see Section 2.3.11.1 Writing to the Time Base.

2.2.1.1 Reading the Time Base

The contents of the time base may be read into a GPR by mftb. To read the contents of the TB into register
rD, execute the following instruction:

mftb rD

The above example uses the simplified mnemonic (referred to as extended mnemonic in the architecture
specification) form of the mftb instruction (equivalent to mftb rA,268). Using this instruction copies the entire
time base (TBU || TBL) into rA. Reading the time base has no effect on the value it contains or the periodic
incrementing of that value.

Note: If the simplified mnemonic form mftbu rA (equivalent to mftb rA,269) is used, the contents of TBU are
copied to the low-order 32 bits of rA, and the high-order 32 bits of rA are cleared (0 || TBU).

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for converting the current
value in the time base to time of day is also implementation-dependent.

In a system in which the update frequency of the time base may change over time, it is not possible to convert
an isolated time base value into time of day. Instead, a time base value has meaning only with respect to the
current update frequency and the time of day that the update frequency was last changed. Each time the
update frequency changes, either the system software is notified of the change via an exception, or else the
change was instigated by the system software itself. At each such change, the system software must
compute the current time of day using the old update frequency, compute a new value of ticks-per-second for
the new frequency, and save the time of day, time base value, and tick rate. Subsequent calls to compute
time of day use the current time base value and the saved data.

A generalized service to compute time of day could take the following as input:

• Time of day at beginning of current epoch

• Time base value at beginning of current epoch

• Time base update frequency

• Time base value for which time of day is desired

For a PowerPC system in which the time base update frequency does not vary, the first three inputs would be
constant.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 57 of 657

2.3 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) completes the discussion of PowerPC registers.
Figure 2-11 shows a graphic representation of the entire PowerPC register set—UISA, VEA, and OEA. In
Figure 2-11 the numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any attempt to access
these SPRs with user-level instructions results in a supervisor-level exception. Some SPRs are implementa-
tion-specific. In some cases, not all of a register’s bits are implemented in hardware.

If a PowerPC processor executes an mtspr/mfspr instruction with an undefined SPR encoding, it takes
(depending on the implementation) an illegal instruction program exception, a privileged instruction program
exception, or the results are boundedly undefined. See Section 6.4.9 Program Exception (0x00700) for more
information.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 58 of 657
pem2_regset.fm.3.0

July 15, 2005

Figure 2-11. OEA Programming Model—All Registers

TBR 2683

Time Base Facility
 1

(For Reading)

TBL (32)

TBR 269TBU (32)

SUPERVISOR MODEL — OEA

Machine State Register

MSR (64)

Processor Version Register
 1 (Read Only)

SPR 287PVR (32)

DSISR 1

SPR 18DSISR (32)

Data Address Register

SPR 19DAR (64)

Save and Restore Registers

SPR 26SRR0 (64)

SPR 27SRR1 (64)

SPRGs

SPR 272SPRG0 (64)

SPR 273SPRG1 (64)

SPR 274SPRG2 (64)

SPR 275SPRG3 (64)

SPR 22

Decrementer 1

DEC (32)

Time Base Facility
 1

(For Writing)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register
(Optional) 1

EAR (32)

SDR1

SPR 25SDR1 (64)

Address Space Register
 2

SPR 280ASR (64)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA

SPR 1013DABR (64)

Data Address Breakpoint
Register (Optional)

1. These registers are 32-bit registers only.
2. These registers are on 64-bit implementations only.
3. TBR268 is read as a 64-bit value

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register 1

CR (32)

FPSCR (32)

Condition Register

GPR0 (64)

GPR1 (64)

GPR31 (64)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose Registers

Floating-Point Registers

XER (64)

SPR 8

Link Register

LR (64)

SPR 9

Count Register

CTR (64)

XER Register

Floating-Point Exception
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification
Register (Optional)

PIR

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 59 of 657

The PowerPC OEA supervisor-level registers are:

• Configuration registers which include:

– Machine state register (MSR). The MSR defines the state of the processor. The MSR can be modi-
fied by the Move to Machine State Register (mtmsrd [or mtmsr]), System Call (sc), and Return from
Interrupt Doubleword (rfid) instructions. It can be read by the Move from Machine State Register
(mfmsr) instruction. For more information, see Section 2.3.1 Machine State Register (MSR).

– Processor version register (PVR). The PVR is a read-only register that identifies the version (model)
and revision level of the PowerPC processor. For more information, see Section 2.3.2 Processor Ver-
sion Register (PVR).

• Memory management registers which include:

– SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical address
translation. For more information, see Section 2.3.3 SDR1. (Note that physical address is referred to
as real address in the architecture specification.)

– Address space register (ASR). The ASR holds the physical address of the segment table. It is found
only on 64-bit implementations. For more information, see Section 2.3.4 Address Space Register
(ASR).

• Exception handling registers which include:

– Data address register (DAR). A data address register (DAR) is set to the effective address generated
by the a DSI or an alignment exception. For more information, see Section 2.3.5 Data Address Regis-
ter (DAR).

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for operating system use. For more
information, see Section 2.3.6 Software Use SPRs (SPRG0–SPRG3).

– DSISR. The DSISR defines the cause of DSI and alignment exceptions. For more information, refer
to Section 2.3.7 Data Storage Interrupt Status Register (DSISR).

– Machine status save/restore register 0 (SRR0). The SRR0 register is used to save machine status on
exceptions and to restore machine status when an rfid instruction is executed. For more information,
see Section 2.3.8 Machine Status Save/Restore Register 0 (SRR0).

– Machine status save/restore register 1 (SRR1). The SRR1 register is used to save machine status on
exceptions and to restore machine status when an rfid instruction is executed. For more information,
see Section 2.3.9 Machine Status Save/Restore Register 1 (SRR1).

– Floating-point exception cause register (FPECR). This optional register is used to identify the cause
of a floating-point exception.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 60 of 657
pem2_regset.fm.3.0

July 15, 2005

• Miscellaneous registers which include:

– Time base (TB). The TB is a 64-bit structure that maintains the time of day and operates interval tim-
ers. The TB consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note
that the time base registers can be accessed by both user and supervisor-level instructions. For more
information, see Section 2.3.11 Time Base Facility (TB)—OEA and Section 2.2 PowerPC VEA Regis-
ter Set—Time Base.”

– Decrementer register (DEC). The DEC register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay; the frequency is a sub-
division of the processor clock. For more information, see Section 2.3.12 Decrementer Register
(DEC).

– External access register (EAR). This optional register is used in conjunction with the eciwx and
ecowx instructions. Note that the EAR register and the eciwx and ecowx instructions are optional in
the PowerPC Architecture and may not be supported in all PowerPC processors that implement the
OEA. For more information about the external control facility, see Section 4.3.4 External Control
Instructions.

– Data address breakpoint register (DABR). This optional register is used to control the data address
breakpoint facility. Note that the DABR is optional in the PowerPC Architecture and may not be sup-
ported in all PowerPC processors that implement the OEA. For more information about the data
address breakpoint facility, see Section 6.4.3 DSI Exception (0x00300).

– Processor identification register (PIR). This optional register is used to hold a value that distinguishes
an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)

The machine state register (MSR) is a 64-bit register (see Figure 2-12) and defines the state of the processor.
When an exception occurs, the contents of the MSR register are saved in SRR1. A new set of bits are loaded
into the MSR as determined by the exception. The MSR can also be modified by the mtmsrd (or mtmsr), sc,
and rfid instructions. It can be read by the mfmsr instruction.

Figure 2-12. Machine State Register (MSR)

Reserved

SF 000 0000 ... 0000 0

0 1 44 5145 46 47 48 49 50

POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 0 IR DR 0 RI LE

52 53 54 55 56 57 58 59 60 62 6361

PMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 61 of 657

Table 2-7 shows the bit definitions for the MSR.

Table 2-7. MSR Bit Settings

Bit(s) Name Description

0 SF
Sixty-four bit mode
0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.

1 — Reserved

2 ISF
Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF] to select 64 or
32-bit mode for the context established by the exception.
Note: If the temporary bridge function is not implemented, this bit is treated as reserved.

3–44 — Reserved

45 POW

Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note: Power management functions are implementation-dependent. If the function is not implemented, this
bit is treated as reserved.

46 — Reserved

47 ILE
This is part of the optional little-endian facility. If the little-endian facility is implemented, and an exception
occurs, this bit is copied into MSR[LE] to select the endian mode for the context established by the excep-
tion.

48 EE

External interrupt enable
0 While the bit is cleared, the processor delays recognition of external interrupts and decrementer

exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

49 PR

Privilege level
0 The processor can execute both user and supervisor-level instructions.
1 The processor can only execute user-level instructions.
Note: Any instruction or event that set MSR[PR] also sets MSR[EE], MSR[IR], and MSR[DR].

50 FP

Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores,

and moves.
1 The processor can execute floating-point instructions.

51 ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.
Note: The only instruction that can alter MSR[ME] is the rfid instruction.

52 FE0 Floating-point exception mode 0 (see Table 2-8).

53 SE

Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of the next

instruction (unless that instruction is rfid, which is never trace). Successful completion means that
the instruction caused no other interrupt.

Note: If the function is not implemented, this bit is treated as reserved.

54 BE

Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the execution of a branch

instruction, regardless of whether the branch was taken.
Note: If the function is not implemented, this bit is treated as reserved.

55 FE1 Floating-point exception mode 1 (See Table 2-8).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 62 of 657
pem2_regset.fm.3.0

July 15, 2005

The floating-point exception mode bits [FE0–FE1] are interpreted as shown in Table 2-8.

56 — Reserved

57 — Reserved

58 IR

Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information, see Chapter 7, Memory Management.

59 DR

Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information, see Chapter 7, Memory Management.

60 — Reserved

61 PMM Performance monitor mark. This bit is part of the optional performance monitor facility. If the performance
monitor facility is not implemented or does not use this bit, then this bit is treated as reserved.

62 RI

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information, see Chapter 6, Exceptions.

63 LE

This is part of the optional little-endian facility. If the little-endian facility is implemented, then the bit has the
following meaning:
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.
If the little-endian facility is not implemented or does not use this bit, then this bit is treated as reserved.

Table 2-8. Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

Table 2-7. MSR Bit Settings (Continued)

Bit(s) Name Description

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 63 of 657

Table 2-9 indicates the initial state of the MSR at power up.

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register which contains a value identifying the
specific version (model) and revision level of the PowerPC processor (see Figure 2-13). The contents of the
PVR can be copied to a GPR by the mfspr instruction. Read access to the PVR is supervisor-level only; write
access is not provided.

Table 2-9. State of MSR at Power Up

Bit Name Default Value

0 SF 1

1 — Unspecified1

2
(Temporary 64-Bit Bridge) ISF Unspecified1

3–44 — Unspecified1

45 POW 0

46 — Unspecified1

47 ILE 0

48 EE 0

49 PR 0

50 FP 0

51 ME 0

52 FE0 0

53 SE 0

54 BE 0

55 FE1 0

56 — Unspecified1

57 — Unspecified1

58 IR 0

59 DR 0

60 — Unspecified1

61 PMM Unspecified1

62 RI 0

63 LE 0

Note:

1. Unspecified can be either ‘0’ or ’1’
2. 1 is typical, but might be ‘0’

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 64 of 657
pem2_regset.fm.3.0

July 15, 2005

The PVR distinguishes between processors that differ in attributes that might affect software. It contains two
16-bit fields:

• Version (bits [0–15])—A 16-bit number that uniquely identifies a particular processor version. This num-
ber can be used to determine the version of a processor; it might not distinguish between different end
product models if more than one model uses the same processor.

• Revision (bits [16–31])—A 16-bit number that distinguishes between various releases of a particular ver-
sion (that is, an engineering change level). The value of the revision portion of the PVR is implementa-
tion-specific. The processor revision level is changed for each revision of the device.

2.3.3 SDR1

The SDR1 is a 64-bit register that is shown in Figure 2-14.

The SDR1 bits are described in Table 2-10.

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address of the page table.
Therefore, the page table is constrained to lie on a 218-byte (256 Kbytes) boundary at a minimum. At least 11
bits from the hash function are used to index into the page table. The page table must consist of at least 256
Kbytes (211 PTEGs of 128 bytes each).

The page table can be any size 2n where 18≤n≤46. As the table size is increased, more bits are used from
the hash to index into the table and the value in HTABORG must have more of its low-order bits equal to 0.
The HTABSIZE field in SDR1 contains an integer value that determines how many bits from the hash are
used in the page table index. This number must not exceed 28. HTABSIZE is used to generate a mask of the
form 0b00...011...1; that is, a string of 0 bits followed by a string of 1-bits. The 1-bits determine how many

Figure 2-13. Processor Version Register (PVR)

Figure 2-14. SDR1

Table 2-10. SDR1 Bit Settings

Bits Name Description

0–1 — Reserved

2-45 HTABORG Physical base address of page table

46–58 — Reserved

59–63 HTABSIZE Encoded size of page table (used to generate mask)

0 15 16 31

Version Revision

Reserved

0 2 45 461 58 59 63

00 HTABORG 0000 0000 0000 0 HTABSIZE

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 65 of 657

additional bits (beyond the minimum of 11) from the hash are used in the index. The HTABORG must have
this same number of low-order bits equal to 0. See Figure 7-17 Example Primary PTEG Address Generation
for an example of the primary PTEG address generation in a 64-bit implementation.

Example:
Suppose that the page table is 16,384 (214), 128-byte PTEGs, for a total size of 221 bytes (2 Mbytes). Note
that a 14-bit index is required. Eleven bits are provided from the hash initially, so three additional bits from the
hash must be selected. The value in HTABSIZE must be 3 and the value in HTABORG must have its low-
order three bits (bits [43-45] of SDR1) equal to 0. This means that the page table must begin on a
23 + 11 + 7 = 221 = 2 Mbytes boundary.

On implementations that support a virtual address size of only 64 bits, software should set the HTABSIZE
field to a value that does not exceed 25. Because the high-order 16 bits of the VSID must be zeros for these
implementations, the hash value used in the page table search will have the high-order three bits either all
zeros (primary hash) or all ones (secondary hash). If HTABSIZE > 25, some of these hash value bits will be
used to index into the page table, resulting in certain PTEGs never being searched.

For more information, refer to Chapter 7, Memory Management.

2.3.4 Address Space Register (ASR)

The ASR is a 64-bit special purpose register provided for operating system use and can be used to point to a
segment register. On earlier PowerPC implementations and on 64-bit PowerPC implementations, bits[0-51]
of the ASR contained the high-order 52 bits of the 64-bit real address of the segment table, and bit[63] of the
ASR indicated whether the specified segment table should (bit[63] = ‘1’) or should not (bit[63] = ‘0’) be
searched by the processor when doing address translation.

The bits of the ASR are described in Table 2-11.

Figure 2-15. Address Space Register (ASR)

Table 2-11. ASR Bit Settings

Bits Name Description

0–63 – Reserved

0 63

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 66 of 657
pem2_regset.fm.3.0

July 15, 2005

Temporary 64-Bit Bridge

Some 64-bit processors implement optional features that simplify the conversion of an operating system
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows the
option of defining bit[63] as ASR[V], the STABORG field valid bit.

If the ASR[V] bit is implemented and is set, the ASR[STABORG] field is valid and functions are as
described for the 64-bit architecture. However, if the ASR[V] bit is implemented and ASR[V] and
MSR[SF] are cleared, an operating system can use 16 SLB entries similarly to the way 32-bit implemen-
tations use the segment registers, which are otherwise not supported in the 64-bit architecture. Note
that if ASR[V] = 0, a reference to a nonexistent address in the STABORG field does not cause a
machine check exception.

The ASR, with the optional V bit implemented, is shown in Figure 2-16.

The bits of the ASR, including the optional V bit, are described in Table 2-12.

Figure 2-16. Address Space Register (ASR)—64-Bit Bridge

0 51 52 62 63

STABORG 0000 0000 000 V

Reserved

Table 2-12. ASR Bit Settings—64-Bit Bridge

Bits Name Description

0–51 STABORG Physical address of segment table

52–62 — Reserved

63 V
STABORG field valid (V = ’1’) or invalid (V = 0).
Note that the [V] bit of the ASR is optional. If the function is not implemented, this bit is
treated as reserved, except that it is assumed to be set for address translation.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 67 of 657

2.3.5 Data Address Register (DAR)

The DAR is a 64-bit register and is shown in Figure 2-17.

The effective address generated by a memory access instruction is placed in the DAR if the access causes
an exception (for example, an alignment exception). If the exception occurs in a 64-bit implementation oper-
ating in 32-bit mode, the high-order 32 bits of the DAR are cleared. For information, see Chapter 6, Excep-
tions.

2.3.6 Software Use SPRs (SPRG0–SPRG3)

SPRG0–SPRG3 are 64-bit registers which are provided for general operating system use, such as
performing a fast state save or for supporting multiprocessor implementations. The formats of SPRG0–
SPRG3 are shown in Figure 2-18.

Table 2-13 provides a description of conventional uses of SPRG0 through SPRG3.

Figure 2-17. Data Address Register (DAR)

Figure 2-18. SPRG0–SPRG3

Table 2-13. Conventional Uses of SPRG0–SPRG3

Register Description

SPRG0 Software may load a unique physical address in this register to identify an area of memory reserved for use by the
first-level exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the content of a GPR.
That GPR then can be loaded from SPRG0 and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3

This register may be used by the operating system as needed.
It is optional whether SPRG3 can be read in user mode. On implementations that provide this ability, SPRG3 may
be used for information, such as a “thread-id”, that the operating system makes available to application programs.
On implementations for which SPRG3 can be read in user mode, operating systems must ensure that no sensitive
data are left in SPRG3 when a user mode program is dispatched, and operating systems for secure systems must
ensure that SPRG3 cannot be used to implement a “covert channel” between user mode programs. These require-
ments can be satisfied by clearing SPRG3 before passing control to a program that will run in user mode.
On such implementations, SPRG3 can be used “orthogonally” for both the purpose described for it above and the
purpose described for SPRG1. If this is done, SPRG1 can be used for some other purpose.

DAR

0

SPRG0

SPRG1

SPRG2

SPRG3

0 63

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 68 of 657
pem2_regset.fm.3.0

July 15, 2005

2.3.7 Data Storage Interrupt Status Register (DSISR)

The 32-bit data storage interrupt status register (DSISR), shown in Figure 2-19, identifies the cause of the
DSI, machine check, data segment, and alignment exceptions.

DSISR bits may be treated as reserved in a given implementation if they are specified as being set either to 0
or to an undefined value for all interrupts that set the DSISR (including implementation-dependent setting, for
example, by the Machine Check interrupt or by implementation-specific interrupts).

For information about bit settings, see Section 6.4.3 DSI Exception (0x00300) and Section 6.4.8 Alignment
Exception (0x00600).

2.3.8 Machine Status Save/Restore Register 0 (SRR0)

The SRR0 is a 64-bit register that is used to save the effective address on exceptions (interrupts) and return
to the interrupted program when an rfid instruction is executed. It also holds the EA for the instruction that
follows the System Call (sc) instruction. The format of SRR0 is shown in Figure 2-20.

When an exception occurs, SRR0 is set to point to an instruction such that all prior instructions have
completed execution and no subsequent instruction has begun execution. In the case of an error exception
the SRR0 register is pointing at the instruction that caused the error. When an rfid instruction is executed, the
contents of SRR0 are copied to the next instruction address (NIA)—the 64 or 32-bit address of the next
instruction to be executed. The instruction addressed by SRR0 may not have completed execution,
depending on the exception type. SRR0 addresses either the instruction causing the exception or the imme-
diately following instruction. The instruction addressed can be determined from the exception type and status
bits.

If the exception occurs in 32-bit mode of a 64-bit implementation, the high-order 32 bits of the NIA are
cleared, NIA[32–61] are set from SRR0[32–61], and the two least significant bits of NIA are cleared.

Note: In some implementations, every instruction fetch performed while MSR[IR] = ’1’ , and every instruction
execution requiring address translation when MSR[DR] = ’1’ , may modify SRR0.

For information on how specific exceptions affect SRR0, refer to the descriptions of individual exceptions in
Chapter 6, Exceptions.

Figure 2-19. DSISR

Figure 2-20. Machine Status Save/Restore Register 0 (SRR0)

DSISR

0 31

SRR0

0 61 62 63

00

Reserved

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 69 of 657

2.3.9 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 64-bit which is used to save exception status and the machine status register when an rfid
instruction is executed. The format of SRR1 is shown in Figure 2-21.

When an exception occurs, bits [33–36] and [42–47] of SRR1 are loaded with exception-specific information
and bits. The remaining bits of SRR1 are defined as reserved. An implementation may define one or more of
these bits, and in this case, may also cause them to be saved from MSR on an exception and restored to
MSR from SRR1 on a rfid.

Note: In some implementations, every instruction fetch when MSR[IR] = ’1’ , and every instruction execution
requiring address translation when MSR[DR] = ’1’ , may modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions in Chapter 6,
“Exceptions.”

2.3.10 Floating-Point Exception Cause Register (FPECR)

The FPECR register may be used to identify the cause of a floating-point exception.

Note: The FPECR is an optional register in the PowerPC Architecture and may be implemented differently
(or not at all) in the design of each processor. The user’s manual of a specific processor will describe the
functionality of the FPECR, if it is implemented in that processor.

2.3.11 Time Base Facility (TB)—OEA

As described in Section 2.2 PowerPC VEA Register Set—Time Base, the time base (TB) provides a long-
period counter driven by an implementation-dependent frequency. The VEA defines user-level read-only
access to the TB. Writing to the TB is reserved for supervisor-level applications such as operating systems
and boot-strap routines. The OEA defines supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations may initialize the TB
with a known value; however, there is no guarantee of automatic initialization of the TB when the processor is
reset. The TB runs continuously after start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2 PowerPC VEA Register
Set—Time Base on page 53.

2.3.11.1 Writing to the Time Base

Note: Writing to the TB is reserved for supervisor-level software.

Figure 2-21. Machine Status Save/Restore Register 1 (SRR1)

SRR1

0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 70 of 657
pem2_regset.fm.3.0

July 15, 2005

The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB, respectively. The
simplified mnemonics listed above are for the mtspr instruction; see Appendix E Simplified Mnemonics for
more information. The mtspr, mttbl, and mttbu instructions treat TBL and TBU as separate 32-bit registers;
setting one leaves the other unchanged. It is not possible to write the entire 64-bit time base in a single
instruction.

The instructions for writing the time base are not dependent on the implementation or mode. Thus, code
written to set the TB on a 32-bit implementation will work correctly on a 64-bit implementation running in
either 32 or 64-bit mode.

The TB can be written by a sequence such as:
lwz rx,upper #load 64-bit value for
lwz ry,lower # TB into rx and ry
li rz,0
mttbl rz #force TBL to 0
mttbu rx #set TBU
mttbl ry #set TBL

Provided that no exceptions occur while the last three instructions are being executed, loading 0 into TBL
prevents the possibility of a carry from TBL to TBU while the time base is being initialized.

For information on reading the time base, refer to Section 2.2.1 Reading the Time Base on page 56.

2.3.12 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-22, is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. The DEC frequency is based
on the same implementation-dependent frequency that drives the time base.

2.3.12.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes through zero. The
DEC satisfies the following requirements:

• The operation of the time base and the DEC are coherent (that is, the counters are driven by the same
fundamental time base).

• Loading a GPR from the DEC has no effect on the DEC.

• Storing the contents of a GPR to the DEC replaces the value in the DEC with the value in the GPR.

• Whenever bit[0] of the DEC changes from 0 to 1, a decrementer exception request is signaled. Multiple
DEC exception requests may be received before the first exception occurs; however, any additional
requests are canceled when the exception occurs for the first request.

• If the DEC is altered by software and the content of bit [0] is changed from 0 to 1, an exception request is
signaled.

Figure 2-22. Decrementer Register (DEC)

DEC

0 31

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 71 of 657

Note: In systems that change the Time Base update frequency for purposes such as power management,
the Decrementer input frequency will also change. Software must be aware of this in order to set interval tim-
ers.

2.3.12.2 Writing and Reading the DEC

The content of the DEC can be read or written using the mfspr and mtspr instructions, both of which are
supervisor-level when they refer to the DEC. Using a simplified mnemonic for the mtspr instruction, the DEC
may be written from GPR rA with the following:

mtdec rA

Using a simplified mnemonic for the mfspr instruction, the DEC may be read into GPR rA with the following:
mfdec rA

2.3.12.3 Data Address Compare

The Data Address Compare mechanism provides a means of detecting load and store accesses to a virtual
page. The Data Address Compare mechanism is controlled by the Address Compare Control Register
(ACCR), and by a bit in each Page Table Entry (PTE[AC]).

Note: The Data Address Compare mechanism does not apply to instruction fetches, or to data accesses in
real addressing mode (MSR[DR] = 0).

2.3.13 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR. The DABR is a 64-
bit register. However, if the data address breakpoint facility is implemented, it is recommended, but not
required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated doubleword. The
address comparison is done on an effective address, and is done independent of whether address translation
is enabled or disabled. The data address breakpoint mechanism applies to data accesses only. It does not
apply to instruction fetches.

The DABR is shown in Figure 2-23.

Table 2-14 describes the fields in the DABR.

Figure 2-23. Data Address Breakpoint Register (DABR)

0 60 61 62 63

DAB BT DW DR

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 72 of 657
pem2_regset.fm.3.0

July 15, 2005

A data address breakpoint match is detected for a load or store instruction if the three following conditions are
met for any byte accessed:

• EA[0–60] = DABR[DAB]

• MSR[DR] = DABR[BT]

• Instruction is a store and DABR[DW] = ’1’ , or the instruction is a load and DABR[DR] = ’1’ .

Note: In 32-bit mode the high-order 32 bits of the effective address are treated as zeros for the purpose of
detecting a match.

If the above conditions are satisfied, a match also occurs for eciwx and ecowx. For the purpose of deter-
mining whether a match occurs, eciwx is treated as a load, and ecowx is treated as a store.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the following cases:

• A store string instruction (stwcx. or stdcx.) in which the store is not performed

• A load or store string instruction (lswx or stswx) with a zero length

• A dcbz instruction. For the purpose of determining whether a match occurs, dcbz is treated as a store.

The cache management instructions other than dcbz never cause a match. If dcbz causes a match, some or
all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3 DSI Exception (0x00300) for more information on
the data address breakpoint facility.

If a match occurs, some or all of the bytes of the memory operand may have been accessed; however, if a
store or ecowx instruction causes the match, the memory operand is not altered if the instruction is one of the
following:

• any store instruction that causes an atomic access
• ecowx

Note: The data address breakpoint mechanism does not apply to instruction fetches. If a data address
breakpoint match occurs for a load instruction for which any byte of the memory operand is in memory that is
both caching inhibited and guarded, or for an eciwx instruction, it may not be safe for software to restart the
instruction.

Table 2-14. DABR—Bit Settings

 Bits
Name Description

64 Bit

0–60 DAB Data address breakpoint

61 BT Breakpoint translation enable

62 DW Data write enable

63 DR Data read enable

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 73 of 657

2.3.14 External Access Register (EAR)

The external access register (EAR) is an optional 32-bit SPR that controls access to the external control
facility and identifies the target device for external control operations. The external control facility provides a
means for user-level instructions to communicate with special external devices. The EAR is shown in
Figure 2-24.

Table 2-15 describes the fields in the external access register.

The high-order bits of the resource ID (RID) field beyond the width of the RID supported by a particular imple-
mentation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and External Control
Out Word Indexed (ecowx) instructions, which are described in Chapter 8, Instruction Set. Although access
to the EAR is supervisor-level, the operating system can determine which tasks are allowed to issue external
access instructions and when they are allowed to do so. The bit settings for the EAR are described in
Table 2-15. Interpretation of the physical address transmitted by the eciwx and ecowx instructions and the
32-bit value transmitted by the ecowx instruction is not prescribed by the PowerPC OEA, but is determined
by the target device. The data access of eciwx and ecowx is performed as though the memory access mode
bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, the ecowx instruction could
be used to send the translated physical address of a buffer containing graphics data to the graphics device.
The eciwx instruction could be used to load status information from the graphics adapter.

This register can also be accessed by using the mtspr and mfspr instructions. Synchronization requirements
for the EAR are shown in Table 2-16 Data Access Synchronization and Table 2-17 Instruction Access
Synchronization.

Figure 2-24. External Access Register (EAR)

Table 2-15. External Access Register (EAR)—Bit Settings

 Bits Name Description

0 E

Enable bit
1 Enabled
0 Disabled
If this bit is set, the eciwx and ecowx instructions can perform the specified external operation.
If the bit is cleared, an eciwx or ecowx instruction causes a DSI exception.

1-25 – Reserved

26-31 RID Resource id

0 1 25 26 31

E 000 0000 0000 0000 0000 0000 00 RID

Reserved

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 74 of 657
pem2_regset.fm.3.0

July 15, 2005

2.3.15 Processor Identification Register (PIR)

The PIR register is used to differentiate between individual processors in a multiprocessor environment.

Note: The PIR is an optional register in the PowerPC Architecture and may be implemented differently (or
not at all) in the design of each processor. The user’s manual of a specific processor will describe the func-
tionality of the PIR, if it is implemented in that processor.

2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers

Changing the value in certain system registers, and invalidating SLB and TLB entries, can cause alteration of
the context in which data addresses and instruction addresses are interpreted, and in which instructions are
executed. An instruction that alters the context in which data addresses or instruction addresses are inter-
preted, or in which instructions are executed, is called a context-altering instruction. The context synchroniza-
tion required for context-altering instructions is shown in Table 2-16 for data access and Table 2-17 for
instruction fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system reset or nonrecover-
able machine check) can be used instead of a context-synchronizing instruction. In the tables, if no software
synchronization is required before (after) a context-altering instruction, the synchronizing instruction before
(after) the context-altering instruction should be interpreted as meaning the context-altering instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and executed in the context that existed before the alter-
ation. A synchronizing instruction after the context-altering instruction ensures that all instructions after that
synchronizing instruction are fetched and executed in the context established by the alteration. Instructions
after the first synchronizing instruction, up to and including the second synchronizing instruction, may be
fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no instructions that are
affected by any of the context alterations, no software synchronization is required within the sequence.

Note: Some instructions that occur naturally in the program, such as the rfid at the end of an exception han-
dler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the MSR[POW] or
MSR[LE] bits; see Table 2-16 and Table 2-17), because mtmsrd (or mtmsr) is execution synchronizing. No
software synchronization is required before most of the other alterations shown in Table 2-17, because all
instructions before the context-altering instruction are fetched and decoded before the context-altering
instruction is executed (the processor must determine whether any of the preceding instructions are context
synchronizing).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 75 of 657

Table 2-16. Data Access Synchronization

 Instruction/Event Required Prior Required After Notes

Exception None None

rfid None None

sc None None

Trap None None

mtmsrd (SF) None None 3

mtmsrd (or mtmsr) (ILE) None None 3

mtmsrd (or mtmsr) (PR) None None 3

mtmsrd (or mtmsr) (DR) None None 3

mtmsrd (or mtmsr) (LE) — — 1, 3

mtsr [or mtsrin] Context-synchronizing instruction Context-synchronizing instruction

mtspr (ACCR) Context-synchronizing instruction Context-synchronizing instruction

mtspr (SDR1) ptesync Context-synchronizing instruction 5, 6

mtspr (DABR) — — 4

mtspr (EAR) Context-synchronizing instruction Context-synchronizing instruction

slbie Context-synchronizing instruction Context-synchronizing instruction

slbia Context-synchronizing instruction Context-synchronizing instruction

slbmte Context-synchronizing instruction Context-synchronizing instruction 13

tlbie Context-synchronizing instruction Context-synchronizing instruction 7, 9

tlbiel Context-synchronizing instruction ptesync 7, 9

tlbia Context-synchronizing instruction Context-synchronizing instruction 7

Store (PTE) none {ptesync, CSI} 8, 9

Note: Refer to Section 2.3.16.1 on page 77 for explanation of notes.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 76 of 657
pem2_regset.fm.3.0

July 15, 2005

For information on instruction access synchronization requirements, see Table 2-17.

Table 2-17. Instruction Access Synchronization

Instruction/Event Required Prior Required After Notes

Exception None None

rfid None None

sc None None

Trap None None

mtmsrd (SF) None None 3, 10

mtmsrd (or mtmsr) (ILE) None None 3

mtmsrd (or mtmsr) (EE) None None 2, 3

mtmsrd (or mtmsr) (PR) None None 3, 11

mtmsrd (or mtmsr) (FP) None None 3

mtmsrd (or mtmsr)
(FE0, FE1) None None 3

mtmsrd (or mtmsr) (SE, BE) None None 3

mtmsrd (or mtmsr) (IR) None None 3, 11

mtmsrd (or mtmsr) (RI) None None 3

mtmsrd (or mtmsr) (LE) — — 1, 3

mtsr [or mtsrin] None Context-synchronizing instruction 11

mtspr (SDR1) ptesync Context-synchronizing instruction 5, 6

mtspr (DEC) None None 12

mtspr (CTRL) None None

slbie None Context-synchronizing instruction

slbia None Context-synchronizing instruction

slbmte None Context-synchronizing instruction 11, 13

tlbie None Context-synchronizing instruction 7, 9

tlbiel None Context-synchronizing instruction 7, 9

tlbia None Context-synchronizing instruction 7

Store (PTE) none {ptesync, CSI] 8, 9

Note: Refer to Section 2.3.16.1 on page 77 for explanation of notes.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005

PowerPC Register Set

Page 77 of 657

2.3.16.1 Notes for Table 2-16 and Table 2-17

1. Synchronization requirements for changing from one endian mode to the other using the mtmsr[d]
instruction are implementation-dependent.

2. The effect of changing the EE bit is immediate, even if the mtmsr[d] instruction is not context synchroniz-
ing (i.e., even if L=’1’).

• If an mtmsr[d] instruction sets the [EE] bit to ‘0’, neither an External interrupt nor a Decrementer
interrupt occurs after the mtmsr[d] is executed.

• If an mtmsr[d] instruction changes the [EE] bit from 0 to 1 when an External, Decrementer, or higher
priority exception exists, the corresponding interrupt occurs immediately after the mtmsr[d] is exe-
cuted, and before the next instruction is executed in the program that set [EE] to ‘1’.

3. For software that will run on processors that comply with earlier versions of the architecture, a context
synchronizing instruction is required after the mtmsr[d] instruction.

4. Synchronization requirements for changing the Data Address Breakpoint Register are implementation-
dependent.

5. SDR1 must not be altered when MSR[DR] = ‘1’ or MSR[IR] = ‘1’ ; if it is, the results are undefined.

6. A ptesync instruction is required before the mtspr instruction because (a) SDR1 identifies the Page
Table and thereby the location of Reference and Change bits, and (b) on some implementations, use of
SDR1 to update Reference and Change bits may be independent of translating the virtual address. (For
example, an implementation might identify the PTE in which to update the Reference and Change bits in
terms of its offset in the Page Table, instead of its real address, and then add the Page Table address
from SDR1 to the offset to determine the real address at which to update the bits.) To ensure that Refer-
ence and Change bits are updated in the correct Page Table, SDR1 must not be altered until all Refer-
ence and Change bit updates associated with address translations that were performed, by the processor
executing the mtspr instruction, before the mtspr instruction is executed have been performed with
respect to that processor. A ptesync instruction guarantees this synchronization of Reference and
Change bit updates, while neither a context synchronizing operation nor the instruction fetching mecha-
nism does so.

7. For data accesses, the context synchronizing instruction before the tlbie, tlbiel, or tlbia instruction
ensures that all preceding instructions that access data storage have completed to a point at which they
have reported all exceptions they will cause. The context synchronizing instruction after the tlbie, tlbiel,
or tlbia instruction ensures that storage accesses associated with instructions following the context syn-
chronizing instruction will not use the TLB entry(s) being invalidated. (If it is necessary to order storage
accesses associated with preceding instructions, or Reference and Change bit updates associated with
preceding address translations, with respect to subsequent data accesses, a ptesync instruction must
also be used, either before or after the tlbie, tlbiel, or tlbia instruction.

8. The notation “{ ptesync,CSI}” denotes an instruction sequence. Other instructions may be interleaved
with this sequence, but these instructions must appear in the order shown.

No software synchronization is required before the Store instruction because (a) stores are not performed
out-of-order and (b) address translations associated with instructions preceding the Store instruction are
not performed again after the store has been performed). These properties ensure that all address trans-
lations associated with instructions preceding the Store instruction will be performed using the old con-
tents of the PTE.

The ptesync instruction after the Store instruction ensures that all searches of the Page Table that are
performed after the ptesync instruction completes will use the value stored (or a value stored subse-
quently). The context synchronizing instruction after the ptesync instruction ensures that any address

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

PowerPC Register Set

Page 78 of 657
pem2_regset.fm.3.0

July 15, 2005

translations associated with instructions following the context synchronizing instruction that were per-
formed using the old contents of the PTE will be discarded, with the result that these address translations
will be performed again and, if there is no corresponding TLB entry, will use the value stored (or a value
stored subsequently).

9. There are additional software synchronization requirements for the tlbie instruction in multiprocessor
environments. In a multiprocessor system, if software locking is used to help ensure that the require-
ments are satisfied, the isync instruction near the end of the lock acquisition sequence may naturally pro-
vide the context synchronization that is required before the alteration.

10. The alteration must not cause an implicit branch in effective address space. Thus, when changing
MSR[SF] from 1 to 0, the mtmsrd instruction must have an effective address that is less than 232 - 4. Fur-
thermore, when changing MSR[SF] from 0 to 1, the mtmsrd instruction must not be at effective address
232 - 4.

11. The alteration must not cause an implicit branch in real address space. Thus the real address of the con-
text-altering instruction and of each subsequent instruction, up to and including the next context synchro-
nizing instruction, must be independent of whether the alteration has taken effect.

12. The elapsed time between the contents of the Decrementer becoming negative and the signaling of the
corresponding exception is not defined.

13. If an slbmte instruction alters the mapping, or associated attributes, of a currently mapped ESID, the slb-
mte must be preceded by an slbie (or slbia) instruction that invalidates the existing translation. This
applies even if the corresponding entry is no longer in the SLB (the translation may still be in implementa-
tion-specific address translation lookaside information). No software synchronization is needed between
the slbie and the slbmte, regardless of whether the index of the SLB entry (if any) containing the current
translation is the same as the SLB index specified by the slbmte.

No slbie (or slbia) is needed if the slbmte instruction replaces a valid SLB entry with a mapping of a dif-
ferent ESID (for example, to satisfy an SLB miss). However, the slbie is needed later if and when the
translation that was contained in the replaced SLB entry is to be invalidated.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 79 of 657

3. Operand Conventions
30
60

This chapter describes the operand conventions as they are represented in two levels of the PowerPC Archi-
tecture—user instruction set architecture (UISA) and virtual environment architecture (VEA). Detailed
descriptions are provided of conventions used for storing values in registers and memory, accessing
PowerPC registers, and representing data in these registers in both big and little-endian modes. Additionally,
the floating-point data formats and exception conditions are described. Refer to Appendix C Floating-Point
Models for more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively starting with 0.
Each number is the address of the corresponding byte. Memory operands may be bytes, halfwords, words, or
doublewords, or, for the load and store multiple and the load and store string instructions, a sequence of
bytes or words. The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and their significance to
the PowerPC Architecture.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. Instructions are always four bytes long and word-aligned.

Operands for single-register memory access instructions have the characteristics shown in Table 3-1.
(Although not permitted as memory operands, quad words are shown because quad-word alignment is desir-
able for certain memory operands.)

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data item
is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment may affect
performance. For single-register memory access instructions, the best performance is obtained when
memory operands are aligned.

Table 3-1. Memory Operand Alignment

Operand Length Aligned Address [60–63] (if aligned)

Byte 8 bits xxxx

Halfword 2 bytes xxx0

Word 4 bytes xx00

Doubleword 8 bytes x000

Quadword 16 bytes 0000

Note: An x in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 80 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

3.1.2 Byte Ordering

If individual data items were indivisible, the concept of byte ordering would be unnecessary. The order of bits
or groups of bits within the smallest addressable unit of memory is irrelevant, because nothing can be
observed about such order. Order matters only when scalars, which the processor and programmer regard
as indivisible quantities, can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and scalars are
composed of one or more sequential bytes. Many scalars are halfwords, words, or doublewords, which
consist of groups of bytes. When a word-length scalar (32-bit) is moved from a register to memory, the scalar
occupies four consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte
addresses with respect to the value of the scalar: which byte contains the highest-order 8 bits of the scalar,
which byte contains the next highest-order 8 bits, and so on.

Although the choice of byte ordering is arbitrary, only two orderings are practical—big-endian and little-
endian. The PowerPC Architecture supports both big and little-endian byte ordering. The default byte
ordering is big-endian.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting) address while the
least-significant byte (LSB) is stored at the highest (or ending) address. This is called big-endian because the
big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the least-significant byte is stored at the lowest (or starting) address while the most-
significant byte is stored at the highest (or ending) address. This is called little-endian because the little end of
the scalar comes first in memory.

3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that contains an assortment of scalars and one array of charac-
ters (a string). The value presumed to be in each structure element is shown in hexadecimal in the comments
(except for the character array, which is represented by a sequence of characters, each enclosed in single
quote marks).

The data structure S is used throughout this section to demonstrate how the bytes that comprise each
element (a, b, c, d, e, and f) are mapped into memory.

Figure 3-1. C Program Example—Data Structure S

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 doubleword */
char * c; /* 0x3132_3334 word */
char d[7]; /* 'L','M','N','O','P','Q','R' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} S;

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 81 of 657

3.1.3.1 Big-Endian Mapping

The big-endian mapping of the structure, S, is shown in Figure 3-2. Addresses are shown in hexadecimal
below each byte. The content of each byte, as shown in the preceding C programming example, is shown in
hexadecimal and, for the character array, as characters enclosed in single quote marks.

Note: The most-significant byte of each scalar is at the lowest address.

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-2) in the map in order to
align the scalars on their proper boundaries—four bytes between elements a and b, one byte between
elements d and e, and two bytes between elements e and f.

Note: The padding is dependent on the compiler; it is not a function of the architecture.

Figure 3-2. Big-Endian Mapping of Structure S

Contents 11 12 13 14 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 31 32 33 34 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 51 52 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 61 62 63 64 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 82 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

3.1.3.2 Little-Endian Mapping

Figure 3-3 shows the structure, S, using little-endian mapping.

Note: The least-significant byte of each scalar is at the lowest address.

Figure 3-3 shows the sequence of doublewords laid out with addresses increasing from left to right. Program-
mers familiar with little-endian byte ordering may be more accustomed to viewing doublewords laid out with
addresses increasing from right to left, as shown in Figure 3-4. This allows the little-endian programmer to
view each scalar in its natural byte order of MSB to LSB. However, to demonstrate how the PowerPC Archi-
tecture provides both big and little-endian support, this section uses the convention of showing addresses
increasing from left to right, as in Figure 3-3.

Figure 3-3. Little-Endian Mapping of Structure S

Contents 14 13 12 11 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 34 33 32 31 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 52 51 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 64 63 62 61 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 83 of 657

3.1.4 PowerPC Byte Ordering

The PowerPC Architecture supports both big and little-endian byte ordering. The default byte ordering is big-
endian. The code sequence used to switch from big to little-endian mode may differ among processors.

The PowerPC Architecture defines two bits in the MSR for specifying byte ordering—LE (little-endian mode)
and ILE (interrupt little-endian mode). The LE bit specifies the endian mode in which the processor is
currently operating and ILE specifies the mode to be used when an exception handler is invoked. That is,
when an exception occurs, the ILE bit (as set for the interrupted process) is copied into MSR[LE] to select the
endian mode for the context established by the exception. For both bits, a value of 0 specifies big-endian
mode and a value of 1 specifies little-endian mode.

The PowerPC Architecture also provides load and store instructions that reverse byte ordering. These
instructions have the effect of loading and storing data in the endian mode opposite from that which the
processor is operating. See Section 4.2.3.4 Integer Load and Store with Byte-Reverse Instructions for more
information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, Addressing Modes and Instruction Set Summary describes the effective address calculation for
the load and store instructions. For processors in little-endian mode, the effective address is modified before
being used to access memory. The three low-order address bits of the effective address are exclusive-ORed
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in
Table 3-2. This address modification is called ‘munging’.

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

Contents (x) (x) (x) (x) 11 12 13 14

Address 07 06 05 04 03 02 01 00

Contents 21 22 23 24 25 26 27 28

Address 0F 0E 0D 0C 0B 0A 09 08

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 17 16 15 14 13 12 11 10

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 1F 1E 1D 1C 1B 1A 19 18

Contents (x) (x) (x) (x) 61 62 63 64

Address 27 26 25 24 23 22 21 20

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 84 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

Note: Although the process is described in the architecture, the actual term ‘munging’ is not defined or used
in the specification. However, the term is commonly used to describe the effective address modifications nec-
essary for converting big-endian addressed data to little-endian addressed data.

The munged physical address is passed to the cache or to main memory, and the specified width of the data
is transferred (in big-endian order—that is, MSB at the lowest address, LSB at the highest address) between
a GPR or FPR and the addressed memory locations (as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-endian, when in
fact they are stored in big-endian order, but at different byte addresses within doublewords. Only the address
is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure S is placed in
memory as shown in Figure 3-5.

Table 3-2. Little Endian Effective Address Modifications for Individual Aligned Scalars

Data Width (Bytes) Effective Address Modification

8 No change

4 XOR with 0b100

2 XOR with 0b110

1 XOR with 0b111

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem

Contents (x) (x) (x) (x) 11 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 10 11 12 13 14 15 16 17

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 18 19 1A 1B 1C 1D 1E 1F

Contents (x) (x) (x) (x) 61 62 63 64

Address 20 21 22 23 24 25 26 27

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 85 of 657

Note: The mapping shown in Figure 3-5 is not a true little-endian mapping of the structure S. However,
because the processor munges the address when accessing memory, the physical structure S shown in
Figure 3-5 appears to the processor as the structure S shown in Figure 3-6.

As seen by the program executing in the processor, the mapping for the structure S (Figure 3-6) is identical to
the little-endian mapping shown in Figure 3-3. However, from outside of the processor, the addresses of the
bytes making up the structure S are as shown in Figure 3-5. These addresses match neither the big-endian
mapping of Figure 3-2 nor the true little-endian mapping of Figure 3-3. This must be taken into account when
performing I/O operations in little-endian mode; this is discussed in Section 3.1.4.6 PowerPC Input/Output
Data Transfer Addressing in Little-Endian Mode.

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor

Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 34 33 32 31 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ 52 51

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 86 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar is aligned on a
boundary equal to a multiple of its length. Figure 3-7 shows a true little-endian mapping of the four-byte word
0x1112_1314, stored at address 05.

For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored at address 0x05, the
next byte (0x13) is stored at address 0x06, the third byte (0x12) is stored at address 0x07, and the most-
significant byte (0x11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store instruction with a
misaligned effective address, it may take an alignment exception. In this case, a single-register load or store
instruction means any of the integer load/store, load/store with byte-reverse, floating-point load/store
(including stfiwx) instructions, and Load And Reserve and Store Conditional.

The Load and Store with Byte Reversal instructions have the effect of loading or storing data in the opposite
endian mode from that in which the processor is running. Data is loaded or stored in little-endian order if the
processor is running in big-endian mode, and in big-endian order if the processor is running in little-endian
mode.

PowerPC processors in little-endian mode are not required to invoke an alignment exception when such a
misaligned access is attempted. The processor may handle some or all such accesses without taking an
alignment exception.

The PowerPC Architecture requires that halfwords, words, and doublewords be placed in memory such that
the little-endian address of the lowest-order byte is the effective address computed by the load or store
instruction; the little-endian address of the next-lowest-order byte is one greater, and so on. (Load And
Reserve and Store Conditional differ somewhat from the rest of the instructions in that neither the implemen-
tation nor the system alignment error handler is expected to handle these four instructions correctly if their
operands are not aligned.) However, because PowerPC processors in little-endian mode munge the effective
address, the order of the bytes of a misaligned scalar must be as if they were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is stored to address
0x05, the address is XORed with 0b111 to become 0x02. When the next byte (0x13) is stored to address
0x06, the address is XORed with 0b111 to become 0x01. When the third byte (0x12) is stored to address
0x07, the address is XORed with 0b111 to become 0x00. Finally, when the most-significant byte (0x11) is
stored to address 0x08, the address is XORed with 0b111 to become 0x0F. Figure 3-8 shows the misaligned
word, stored by a little-endian program, as seen by the memory subsystem.

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

Contents 14 13 12

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 0A 0B 0C 0D 0E 0F

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 87 of 657

Note: The misaligned word in this example spans two doublewords. The two parts of the misaligned word
are not contiguous as seen by the memory system. An implementation may support some but not all mis-
aligned little-endian accesses. For example, a misaligned little-endian access that is contained within a dou-
bleword may be supported, while one that spans doublewords may cause an alignment exception.

3.1.4.3 Nonscalars

The PowerPC Architecture has two types of instructions that handle nonscalars (multiple instances of
scalars):

• Load and store multiple instructions
• Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging cannot be used.
These types of instructions cause alignment exception conditions when the processor is executing in little-
endian mode. Although string accesses are not supported, they are inherently byte-based operations, and
can be broken into a series of word-aligned accesses.

3.1.4.4 Page Tables

The layout of the page table in memory is independent of endian mode. A given byte in the page table must
be accessed using an effective address appropriate to the mode of the executing program (for example, the
high-order byte of a Page Table Entry must be accessed with an effective address ending with 0b000 in big-
endian mode, and with an effective address ending with 0b111 in little-endian mode).

3.1.4.5 PowerPC Instruction Addressing in Little-Endian Mode

Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch and execute
instructions as if the current instruction address is incremented by four for each sequential instruction. When
operating in little-endian mode, the instruction address is munged as described in Section 3.1.4.1 Aligned
Scalars in Little-Endian Mode for fetching word-length scalars; that is, the instruction address is XORed with
0b100. A program is thus an array of little-endian words with each word fetched and executed in order (not
including branches).

All instruction addresses visible to an executing program are the effective addresses that are computed by
that program, or, in the case of the exception handlers, effective addresses that were or could have been
computed by the interrupted program. These effective addresses are independent of the endian mode.
Examples for little-endian mode include the following:

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem

Contents 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 0A 0B 0C 0D 0E 0F

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 88 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

• An instruction address placed in the link register by branch and link operation, or an instruction address
saved in an SPR when an exception is taken, is the address that a program executing in little-endian
mode would use to access the instruction as a word of data using a load instruction.

• An offset in a relative branch instruction reflects the difference between the addresses of the branch and
target instructions, where the addresses used are those that a program executing in little-endian mode
would use to access the instructions as data words using a load instruction.

• A target address in an absolute branch instruction is the address that a program executing in little-endian
mode would use to access the target instruction as a word of data using a load instruction.

• The memory locations that contain the first set of instructions executed by each kind of exception handler
must be set in a manner consistent with the endian mode in which the exception handler is invoked. Thus,
if the exception handler is to be invoked in little-endian mode, the first set of instructions comprising each
kind of exception handler must appear in memory with the instructions within each doubleword reversed
from the order in which they are to be executed.

3.1.4.6 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory subsystem recog-
nize the same byte as byte 0. However, this is not true for a PowerPC system running in little-endian mode
because of the munged address bits when the processor accesses memory.

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed as if the bytes trans-
ferred were accessed one at a time, using the little-endian address modification appropriate for the single-
byte transfers (that is, the lowest order address bits must be XORed with 0b111). This does not mean that I/O
operations in little-endian PowerPC systems must be performed using only one-byte-wide transfers. Data
transfers can be as wide as desired, but the order of the bytes within doublewords must be as if they were
fetched or stored one at a time. That is, for a true little-endian I/O device, the system must provide a mecha-
nism to munge and unmunge the addresses and reverse the bytes within a doubleword (MSB to LSB).

However, not all I/O done on PowerPC systems is for large areas of storage as described above. I/O can be
performed with certain devices merely by storing to or loading from addresses that are associated with the
devices (the terms “memory-mapped I/O” and “programmed I/O” or “PIO” are used for this). For such PIO
transfers, care must be taken when defining the addresses to be used, for these addresses are subject to the
effective address modification shown in Table 3-2 Little Endian Effective Address Modifications for Individual
Aligned Scalars. A Load or Store instruction that maps to a control register on a device may require that the
value loaded or stored have its bytes reversed; if this is required, the Load and Store with Byte Reversal
instructions can be used. Any requirement for such byte reversal for a particular I/O device register is inde-
pendent of whether the PowerPC system is running in big-endian or little-endian mode.

Similarly, the address sent to an I/O device by an eciwx or ecowx instruction is subject to the effective
address modification shown in Table 3-2.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 89 of 657

3.2 Effect of Operand Placement on Performance—VEA

The PowerPC VEA states that the placement (location and alignment) of operands in memory affects the
relative performance of memory accesses. The best performance is guaranteed if memory operands are
aligned on natural boundaries. For more information on memory access ordering and atomicity, refer to
Section 5.1 The Virtual Environment.

3.2.1 Summary of Performance Effects

To obtain the best performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Table 3-3 and Table 3-4 with respect to the
placement of memory operands.

The performance of accesses varies depending on:

• Operand size
• Operand alignment
• Endian mode (big-endian or little-endian)
• Crossing no boundary
• Crossing a cache block boundary
• Crossing a virtual page boundary
• Crossing a segment boundary

Table 3-3 applies when the processor is in big-endian mode.

Table 3-4 applies when the processor is in little-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing

Size Byte Alignment None Cache Block Virtual Page1 Segment

Integer

8 byte
8
4

<4

Optimal
Good
Good

—
Good
Good

—
Good
Good

—
Poor
Poor

4 byte 4
<4

Optimal
Good

—
Good

—
Good

—
Poor

2 byte 2
<2

Optimal
Good

—
Good

—
Good

—
Poor

1 byte 1 Optimal — — —

Imw,
stmw

4
<4

Good
Poor

Good
Poor

Good
Poor

Poor
Poor

String — Good Good Good Poor

Floating Point

8 byte
8
4

<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

Note:

1. If the memory operand spans two virtual pages that have different memory control attributes, performance is likely to be poor.
2. If an instruction causes an access that is not atomic and any portion of the operand is in memory that is write through required or

caching inhibited, performance is likely to be poor.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 90 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

The load/store multiple and the load/store string instructions are supported only in big-endian mode. The
load/store multiple instructions are defined by the PowerPC Architecture to operate only on aligned operands.
The load/store string instructions have no alignment requirements.

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing

Size Byte Alignment None Cache Block Virtual Page1 Segment

Integer

8 byte
8
4

<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Good

—
Good

—
Poor

—
Poor

2 byte 2
<2

Optimal
Good

—
Good

—
Poor

—
Poor

1 byte 1 Optimal — — —

Floating Point

8 byte
8
4

<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

Note:

1. If the memory operand spans two virtual pages that have different memory control attributes, performance is likely to be poor.
2. If an instruction causes an access that is not atomic and any portion of the operand is in memory that is write through required or

caching inhibited, performance is likely to be poor.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 91 of 657

3.2.2 Instruction Restart

In this section the “load instruction” includes the cache management and other instructions that are stated in
the instruction descriptions to be “treated as a load,” and similarly for “store instruction.” The following instruc-
tions are never restarted after having accessed any portion of the memory operand (unless the instruction
causes a “data address compare match” or a “data address breakpoint match”).

1. Store instruction that causes an atomic access.

2. Load instruction that causes an atomic access to memory that is both caching inhibited and guarded.

Any other load or store instruction may be partially executed and then aborted after having accessed a
portion of the memory operand, and then re-executed (i.e., restarted, by the processor or the operating
system). If an instruction is partially executed, the contents of registers are preserved to the extent that the
correct result will be produced when the instruction is re-executed.

There are many events which might cause a load or store instruction to be restarted. For example, a hard-
ware error may cause execution of the instruction to be aborted after part of the access has been performed,
and the recovery operation could then cause the aborted instruction to be re-executed.

When an instruction is aborted after being partially executed, the contents of the instruction pointer indicate
that the instruction has not been executed, however the contents of some registers may have been altered
and some bytes within the memory operand may have been accessed. The following are examples of an
instruction being partially executed and altering the program state even though it appears that the instruction
has not been executed.

1. Load multiple, load string: some registers in the range of registers to be loaded may have been altered.

2. Any store instruction, dcbz: some bytes of the memory operand may have been altered.

3. Any floating point load instruction: the target register (frD) may have been altered.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 92 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

3.3 Floating-Point Execution Models—UISA

There are two kinds of floating-point instructions defined for the PowerPC Architecture: computational and
non computational. The computational instructions consist of those operations defined by the IEEE-754 stan-
dard for 32 and 64-bit arithmetic (those that perform addition, subtraction, multiplication, division, extracting
the square root, rounding conversion, comparison, and combinations of these) and the multiply-add and
reciprocal estimate instructions defined by the architecture. The non computational floating-point instructions
consist of the floating-point load, store, and move instructions. While both the computational and non compu-
tational instructions are considered to be floating-point instructions governed by the MSR[FP] bit (that allows
floating-point instructions to be executed), only the computational instructions are considered floating-point
operations throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept double-precision
operands. The guidelines are as follows:

• Double-precision arithmetic instructions may have single-precision operands but always produce double-
precision results.

• Single-precision arithmetic instructions require all operands to be single-precision and always produce
single-precision results.

For arithmetic instructions, conversion from double to single-precision must be done explicitly by software,
while conversion from single to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the following execution models to ensure that iden-
tical results are obtained. The definition of the arithmetic instructions for infinities, denormalized numbers, and
NaNs follow conventions described in the following sections. Appendix C Floating-Point Models has addi-
tional detailed information on the execution models for IEEE operations, as well as the other floating-point
instructions.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two additional
bit positions to avoid potential transient overflow conditions. An extra bit is required when denormalized
double-precision numbers are prenormalized. A second bit is required to permit computation of the adjusted
exponent value in the following examples when the corresponding exception enable bit is 1 (exceptions are
referred to as interrupts in the architecture specification):

• Underflow during multiplication using a denormalized operand

• Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format

The PowerPC UISA defines the representation of a floating-point value in two different binary, fixed-length
formats. The format is a 32-bit format for a single-precision floating-point value or a 64-bit format for a double-
precision floating-point value. The single-precision format may be used for data in memory. The double-preci-
sion format can be used for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The layout of the single-
precision format is shown in Figure 3-9; the layout of the double-precision format is shown in Figure 3-10.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 93 of 657

Values in floating-point format consist of three fields:

• S (sign bit)

• EXP (exponent + bias)

• FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load or store instruction for a
byte or halfword (or word in the case of floating-point double-precision format), the value affected depends on
whether the PowerPC system is using big or little-endian byte ordering, which is described in Section 3.1.2
Byte Ordering.

Note: Big-endian mode is the default.

For numeric values, the significand consists of a leading implied bit concatenated on the right with the FRAC-
TION. This leading implied bit is a 1 for normalized numbers and a 0 for denormalized numbers and is the first
bit to the left of the binary point. Values representable within the two floating-point formats can be specified by
the parameters listed in Table 3-5.

The true value of the exponent can be determined by subtracting 127 for single-precision numbers and 1023
for double-precision numbers. This is shown in Table 3-6.

Note: Two exponent values are reserved to represent special-case values. Setting all bits indicates that the
value is an infinity or NaN and clearing all bits indicates that the number is either zero or denormalized.

Figure 3-9. Floating-Point Single-Precision Format

Figure 3-10. Floating-Point Double-Precision Format

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent (unbiased) +127 +1023

Minimum exponent (unbiased) –126 –1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

0 1 8 9 31

S EXP FRACTION

0 1 11 12 63

S EXP FRACTION

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 94 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

3.3.1.1 Value Representation

The PowerPC UISA defines numeric and nonnumeric values representable within single and double-preci-
sion formats. The numerical values are approximations to the real numbers and include the normalized
numbers, denormalized numbers, and zero values. The nonnumeric values representable are the positive
and negative infinities and the Not a Numbers (NaNs). The positive and negative infinities are adjoined to the
real numbers, but are not numbers themselves, and the standard rules of arithmetic do not hold when they
appear in an operation. They are related to the real numbers by order alone. It is possible, however, to define
restricted operations among numbers and infinities as defined below. The relative location on the real number
line for each of the defined numerical entities is shown in Figure 3-11. Tiny values include denormalized
numbers and all numbers that are too small to be represented for a particular precision format; they do not
include zero values.

The positive and negative NaNs are encodings that convey diagnostic information such as the representation
of uninitialized variables and are not related to the numbers, ±∞, or each other by order or value.

Table 3-7 describes each of the floating-point formats.

Table 3-6. Biased Exponent Format

Biased Exponent
(Binary)

Single-Precision
(Unbiased)

Double-Precision
(Unbiased)

11.11 Reserved for infinities and NaNs

11.10 +127 +1023

11.01 +126 +1022

.

.

.

.

.

.

.

.

.

10.00 1 1

01.11 0 0

01.10 –1 –1

.

.

.

.

.

.

.

.

.

00.01 –126 –1022

00.00 Reserved for zeros and denormalized numbers

Figure 3-11. Approximation to Real Numbers

Tiny Tiny

Unrepresentable, small numbers

+0–0

–∞ –NORM –DENORM +∞+NORM+DENORM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 95 of 657

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real numbers. Three
categories of numbers are supported—normalized numbers, denormalized numbers, and zero values.

3.3.1.3 Normalized Numbers (±NORM)

The values for normalized numbers have a biased exponent value in the range:

• 1 to 254 in single-precision format

• 1 to 2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (–1)s x 2E x (1.fraction)

The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand composed of a
leading unit bit (implied bit) and a fractional part. The format for normalized numbers is shown in Figure 3-12.

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value

0 Maximum x Nonzero NaN

0 Maximum x Zero +Infinity

0 0 < Exponent < Maximum 1 x +Normalized

0 0 0 Nonzero +Denormalized

0 0 x Zero +0

1 0 x Zero –0

1 0 0 Nonzero –Denormalized

1 0 < Exponent < Maximum 1 x –Normalized

1 Maximum x Zero –Infinity

1 Maximum x Nonzero NaN

Figure 3-12. Format for Normalized Numbers

MIN < EXPONENT < MAX
(BIASED) FRACTION = ANY BIT PATTERN

SIGN BIT, 0 OR 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 96 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

The ranges covered by the magnitude (M) of a normalized floating-point number are approximated in the
following decimal representation:

Single-precision format:
1.2x10–38 ≤ M ≤ 3.4x1038

Double-precision format:
2.2x10–308 ≤ M ≤ 1.8x10308

3.3.1.4 Zero Values (±0)

Zero values have a biased exponent value of zero and fraction of zero. This is shown in Figure 3-13. Zeros
can have a positive or negative sign. The sign of zero is ignored by comparison operations (that is, compar-
ison regards +0 as equal to –0). Arithmetic with zero results is always exact and does not signal any excep-
tion, except when an exception occurs due to the invalid operations as described in the Invalid Operation
Exception Condition on page 111. Rounding a zero only affects the sign (±0).

3.3.1.5 Denormalized Numbers (±DENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The format for denor-
malized numbers is shown in Figure 3-14.

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized numbers. They are
values in which the implied unit bit is zero. Denormalized numbers are interpreted as follows:

DENORM = (–1)s x 2Emin x (0.fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (–126 for single-precision,
–1022 for double-precision).

Figure 3-13. Format for Zero Numbers

Figure 3-14. Format for Denormalized Numbers

FRACTION = ’0’

SIGN BIT, 0 OR 1

EXPONENT = ‘0’
(BIASED)

SIGN BIT, 0 OR 1

EXPONENT = ’0’
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 97 of 657

3.3.1.6 Infinities (±∞)

These are values that have the maximum biased exponent value of 255 in the single-precision format, 2047
in the double-precision format, and a zero fraction value. They are used to approximate values greater in
magnitude than the maximum normalized value. Infinity arithmetic is defined as the limiting case of real arith-
metic, with restricted operations defined among numbers and infinities. Infinities and the real numbers can be
related by ordering in the affine sense:

–∞ < every finite number < +∞

The format for infinities is shown in Figure 3-15.

Arithmetic using infinite numbers is always exact and does not signal any exception, except when an excep-
tion occurs due to the invalid operations as described in Invalid Operation Exception Condition on page 111.

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for NaNs is shown in
Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather, it is simply another bit in the NaN. If
the highest-order bit of the fraction field is a zero, the NaN is a signaling NaN; otherwise it is a quiet NaN
(QNaN).

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform arithmetic opera-
tions on infinities or NaNs, when the invalid operation exception is disabled (FPSCR[VE] = ’0’). Quiet NaNs
propagate through all operations, except floating-point round to single-precision, ordered comparison, and
conversion to integer operations, and signal exceptions only for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can thus be preserved through a sequence of operations
and used to convey diagnostic information to help identify results from invalid operations.

Figure 3-15. Format for Positive and Negative Infinities

Figure 3-16. Format for NaNs

SIGN BIT, 0 OR 1

EXPONENT = MAXIMUM
(BIASED) FRACTION = ’0’

SIGN BIT (ignored)

EXPONENT = MAXIMUM
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 98 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

When a QNaN results from an operation because an operand is a NaN or because a QNaN is generated due
to a disabled invalid operation exception, the following rule is applied to determine the QNaN to be stored as
the result:

If (frA) is a NaN
Then frD ← (frA)
Else if (frB) is a NaN
Then if instruction is frsp

Then frD ← (frB)[0-34]||(29)0
Else frD ← (frB)

Else if (frC) is a NaN
Then frD ← (frC)
Else if generated QNaN

Then frD ← generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise, if the operand specified
by frB is a NaN (if the instruction specifies an frB operand), that NaN is stored as the result, with the low-
order 29 bits cleared (if the instruction is frspx). Otherwise, if the operand specified by frC is a NaN (if the
instruction specifies an frC operand), that NaN is stored as the result. Otherwise, if a QNaN is generated by a
disabled invalid operation exception, that QNaN is stored as the result. If a QNaN is to be generated as a
result, the QNaN generated has a sign bit of zero, an exponent field of all ones, and a highest-order fraction
bit of one with all other fraction bits zero. An instruction that generates a QNaN as the result of a disabled
invalid operation generates this QNaN (i.e., 0x7FF8_0000_0000_0000). This is shown in Figure 3-17.

A double-precision NaN is considered to be representable in single format if and only if the low-order 29 bits
of the double-precision NaN's fraction are zero.

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the operation does not yield
an exception. These rules apply even when the operands or results are zero (0) or ±∞:

• The sign of the result of an addition operation is the sign of the source operand having the larger absolute
value. If both operands have the same sign, the sign of the result of an addition operation is the same as
the sign of the operands. The sign of the result of the subtraction operation, x – y, is the same as the sign
of the result of the addition operation, x + (–y).

When the sum of two operands with opposite sign, or the difference of two operands with the same sign,
is exactly zero, the sign of the result is positive in all rounding modes except round toward negative infin-
ity (–∞), in which case the sign is negative.

• The sign of the result of a multiplication or division operation is the XOR of the signs of the source oper-
ands.

• The sign of the result of a round to single-precision or convert to/from integer operation is the sign of the
source operand.

Figure 3-17. Representation of Generated QNaN

SIGN BIT (ignored)

111...1 1000....00

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 99 of 657

• The sign of the result of a square root or reciprocal square root estimate operation is always positive,
except that the square root of –0 is –0 and the reciprocal square root of –0 is –infinity.

For multiply-add/subtract instructions, these rules are applied first to the multiplication operation and then to
the addition/subtraction operation (one of the source operands to the addition/subtraction operation is the
result of the multiplication operation).

3.3.3 Normalization and Denormalization

The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx) instruction may require
normalization and/or denormalization. When an intermediate result consists of a sign bit, an exponent, and a
nonzero significand with a zero leading bit, the result must be normalized (and rounded) before being stored
to the target.

A number is normalized by shifting its significand left and decrementing its exponent by one for each bit
shifted until the leading significand bit becomes one. The guard and round bits are also shifted, with zeros
shifted into the round bit; see Appendix C.1 Execution Model for IEEE Operations on page 597 for informa-
tion about the guard and round bits. During normalization, the exponent is regarded as if its range was unlim-
ited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the minimum value
that can be represented in the format specified for the result, this value is referred to as ‘tiny’ and the stored
result is determined by the rules described in Underflow Exception Condition on page 116. These rules may
involve denormalization. The sign of the number does not change.

An exponent can become tiny in either of the following circumstances:

• As the result of an arithmetic or Floating Round to Single-Precision (frspx) instruction or

• As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while denormalization is the
process of coercing the exponent into the target format's range.

In denormalization, the significand is shifted to the right while the exponent is incremented for each bit shifted
until the exponent equals the format’s minimum value. The result is then rounded. If any significand bits are
lost due to the rounding of the shifted value, the result is considered inexact. The sign of the number does not
change and an Underflow Exception is signaled, see Underflow Exception Condition on page 116.

3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and memory. For double-
precision format data, the data is not altered during the move. For single-precision data, the format is
converted to double-precision format when data is loaded from memory into an FPR. A format conversion
from double to single-precision is performed when data from an FPR is stored as single-precision. These
operations do not cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point double-precision format.

Floating-point single-precision formats are obtained by using the following four types of instructions:

• Load floating-point single-precision instructions—These instructions access a single-precision operand in
single-precision format in memory, convert it to double-precision, and load it into an FPR. Floating-point
exceptions do not occur during the load operation.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 100 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

• Floating Round to Single-Precision (frspx) instruction—The frspx instruction rounds a double-precision
operand to single-precision, checking the exponent for single-precision range and handling any excep-
tions according to respective enable bits in the FPSCR. The instruction places that operand into an FPR
as a double-precision operand. For results produced by single-precision arithmetic instructions and by
single-precision loads, this operation does not alter the value.

• Single-precision arithmetic instructions—These instructions take operands from the FPRs in double-pre-
cision format, perform the operation as if it produced an intermediate result correct to infinite precision
and with unbounded range, and then force this intermediate result to fit in single-precision format. Status
bits in the FPSCR and in the condition register are set to reflect the single-precision result. The result is
then converted to double-precision format and placed into an FPR. The result falls within the range sup-
ported by the single-precision format.

Source operands for these instructions must be representable in single-precision format. Otherwise, the
result placed into the target FPR and the setting of status bits in the FPSCR, and in the condition register
if update mode is selected, are undefined.

• Store floating-point single-precision instructions—These instructions convert a double-precision operand
to single-precision format and store that operand into memory. If the operand requires denormalization in
order to fit in single-precision format, it is automatically denormalized prior to being stored. No exceptions
are detected on the store operation (the value being stored is effectively assumed to be the result of an
instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (lfs), Floating Round to Single-Precision (frspx), or single-
precision arithmetic instruction is stored in an FPR, the low-order 29 fraction bits are zero. This is shown in
Figure 3-18.

The frspx instruction allows conversion from double to single-precision with appropriate exception checking
and rounding. This instruction should be used to convert double-precision floating-point values (produced by
double-precision load and arithmetic instructions, and by fcfid) to single-precision values before storing them
into single-format memory elements or using them as operands for single-precision arithmetic instructions.
Values produced by single-precision load and arithmetic instructions can be stored directly, or used directly
as operands for single-precision arithmetic instructions, without being preceded by an frspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse is true only if the
double-precision value can be represented in single-precision format. Some implementations may execute
single-precision arithmetic instructions faster than double-precision arithmetic instructions. Therefore, if
double-precision accuracy is not required, using single-precision data and instructions might speed opera-
tions in some implementations.

Figure 3-18. Single-Precision Representation in an FPR

x x x x . x x x 0 0 0 0 0 . 0 0 0 0

0 1 11 12 63

Bit 35

S EXP

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 101 of 657

3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the PowerPC Architecture (except the
optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal Square Root Estimate (frsqrtex)
instructions) produce an intermediate result considered to be infinitely precise and with unbounded exponent
range. This intermediate result is normalized or denormalized if required, and then rounded to the destination
format. The final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded result differs from the
infinitely precise value with unbounded range (same as the definition of ‘inexact’). In the PowerPC Architec-
ture this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or the operand of a
conversion operation. If Z can be represented exactly in the target format, then the result in all rounding
modes is exactly Z. If Z cannot be represented exactly in the target format, let Z1 and Z2 be the next larger
and next smaller numbers representable in the target format that bound Z; then Z1 or Z2 can be used to
approximate the result in the target format.

Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case.

Four rounding modes are available through the floating-point rounding control field (RN) in the FPSCR. See
Section 2.1.4 Floating-Point Status and Control Register (FPSCR). These are encoded as shown in
Table 3-8.

See Appendix C.1 Execution Model for IEEE Operations on page 597 for a detailed explanation of rounding.
Rounding occurs before an overflow condition is detected. This means that while an infinitely precise value
with unbounded exponent range may be greater than the greatest representable value, the rounding mode
may allow that value to be rounded to a representable value. In this case, no overflow condition occurs.

Figure 3-19. Relation of Z1 and Z2

Table 3-8. FPSCR Bit Settings—RN Field

RN Rounding Mode Rules

00 Round to nearest Choose the best approximation (Z1 or Z2). In case of a tie, choose the one that is
even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward –infinity Choose Z2.

Negative values

Z2 Z1 0 Z2 Z1

Z Z
Positive values

By incrementing least significant bit of Z

Infinitely precise value

By truncating after least significant bit

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 102 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

However, the underflow condition is tested before rounding. Therefore, if the value that is infinitely precise
and with unbounded exponent range falls within the range of unrepresentable values, the underflow condition
occurs. The results in these cases are defined in Underflow Exception Condition on page 116. Figure 3-20
shows the selection of Z1 and Z2 for the four possible rounding modes that are provided by FPSCR[RN].

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI, according to whether the
rounded result is inexact (FI) and whether the fraction was incremented (FR) as shown in Figure 3-21. If the
rounded result is inexact, FI is set and FR may be either set or cleared. If rounding does not change the
result, both FR and FI are cleared. The optional fresx and frsqrtex instructions set FI and FR to undefined
values; other floating-point instructions do not alter FR and FI.

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

Z is infinitely precise
result or operand

frD ← Z
Z2 < Z < Z1 per Figure 3-19

frD ← Z2frD ← Z1frD ← Z2

frD ← Z1frD ← Best approximation (Z1 or Z2)
If tie, choose even (Z1 or Z2 with least

significant bit 0)

Z fits
target format

FPSCR[RN] = 01
(round toward 0)

Z > 0Z < 0FPSCR[RN] = 11
(round toward –∞)

FPSCR[RN] = 00
(round to nearest)

FPSCR[RN] = 10
(round toward +∞)

otherwise

otherwise

otherwise

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 103 of 657

3.3.6 Floating-Point Program Exceptions

The computational instructions of the PowerPC Architecture are the only instructions that can cause floating-
point enabled exceptions (subsets of the program exception).

In the processor, floating-point program exceptions are signaled by condition bits set in the floating-point
status and control register (FPSCR) as described in this section and in Chapter 2, “PowerPC Register Set.”
These bits correspond to those conditions identified as IEEE floating-point exceptions and can cause the
system floating-point enabled exception error handler to be invoked. Handling for floating-point exceptions is
described in Section 6.4.9 Program Exception (0x00700).

The FPSCR is shown in Figure 3-22.

A listing of FPSCR bit settings is shown in Table 3-9.

Figure 3-21. Rounding Flags in FPSCR

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

Zround is rounded result

FI ← 0
FR ← 0

FI ← 1

FR ← 1 FR ← 0

otherwisefraction
incremented

Zround ≠ Zotherwise

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI
VXISI

VXSNAN

VXZDZ
VXIMZ
VXVC

VXSOFT
VXSQRT
VXCVI

Reserved

FX FEX VX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 104 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

Table 3-9. FPSCR Bit Settings

Bit(s) Name Description

0 FX

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from 0
to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a sticky
bit.

1 FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits
(FEX = (VX & VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX
Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions on page 113.

4 UX Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 116.

5 ZX Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 112.

6 XX

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 117.
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a given
instruction:

• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCR[FI].

• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

8 VXISI Floating-point invalid operation exception for ∞ – ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

11 VXIMZ Floating-point invalid operation exception for ∞ × 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 111.

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.

14 FI

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the
intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCR[FI] and
FPSCR[XX], see the description of the FPSCR[XX] bit.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 105 of 657

15–19 FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set

this bit with the FPCC bits to indicate the class of the result as shown in Table 3-10.
16–19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the

FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the
high-order three bits of the FPCC retain their relational significance indicating that the value is less
than, greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

Note: These are not sticky bits.

20 — Reserved

21 VXSOFT
Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only
by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Invalid
Operation Exception Condition on page 111.

22 VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 111.
Note: If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation
Exception Condition on page 111.

24 VE Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 111.

25 OE IEEE floating-point overflow exception enable.
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 113.

26 UE IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 116.

27 ZE IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 112.

28 XE Floating-point inexact exception enable. See Inexact Exception Condition on page 117.

29 NI

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, then the result produced is zero (retaining the sign of the denormalized number). Any other
effects associated with setting this bit are described in the user’s manual for the implementation (the effects
are implementation-dependent).
Note: When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be
approximate, and performance for these operations may be better, more predictable, or less data-dependent
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may
return 0 instead of a denormalized number, and may return a large number instead of an infinity.

30–31 RN

Floating-point rounding control. See Section 3.3.5 Rounding.
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity

Table 3-9. FPSCR Bit Settings (Continued)

Bit(s) Name Description

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 106 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits [15–19] (the FPRF field).

The following conditions that can cause program exceptions are detected by the processor. These conditions
may occur during execution of computational floating-point instructions. The corresponding bits set in the
FPSCR are indicated in parentheses:

• Invalid operation exception condition (VX)

– SNaN condition (VXSNAN)
– Infinity – infinity condition (VXISI)
– Infinity ÷ infinity condition (VXIDI)
– Zero ÷ zero condition (VXZDZ)
– Infinity × zero condition (VXIMZ)
– Invalid compare condition (VXVC)
– Software request condition (VXSOFT)
– Invalid integer convert condition (VXCVI)
– Invalid square root condition (VXSQRT)

These exception conditions are described in Invalid Operation Exception Condition on page 111.

• Zero divide exception condition (ZX). These exception conditions are described in Zero Divide Exception
Condition on page 112.

• Overflow Exception Condition (OX). These exception conditions are described in Overflow Exception
Condition on page 115.

• Underflow Exception Condition (UX). These exception conditions are described in Underflow Exception
Condition on page 116.

• Inexact Exception Condition (XX). These exception conditions are described in Inexact Exception Condi-
tion on page 117.

Each floating-point exception condition and each category of invalid IEEE floating-point operation exception
condition has a corresponding exception bit in the FPSCR which indicates the occurrence of that condition.
Generally, the occurrence of an exception condition depends only on the instruction and its arguments (with
one deviation, described below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of the IEEE floating-

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]

Result Flags (Bits [15–19])
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 107 of 657

point enable bits in the FPSCR which govern those exception conditions. If no governing enable bit is set to 1,
the instruction delivers a default result. Otherwise, specific condition bits and the FX bit in the FPSCR are set
and instruction execution is completed by suppressing or delivering a result. Finally, after the instruction
execution has completed, a nonzero FX bit in the FPSCR causes a program exception if either FE0 or FE1 is
set in the MSR (invoking the system error handler). The values in the FPRs immediately after the occurrence
of an enabled exception do not depend on the FE0 and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point instruction (except
mtfsfi and mtfsf) that causes any of the exception bits in the FPSCR to change from 0 to 1, or by mtfsfi,
mtfsf, and mtfsb1 instructions that explicitly set one of these bits. FPSCR[FEX] is set when any of the excep-
tion condition bits is set and the exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following cases:

• The inexact exception condition bit (FPSCR[XX]) may be set with the overflow exception condition bit
(FPSCR[OX]).

• The inexact exception condition bit (FPSCR[XX]) may be set with the underflow exception condition bit
(FPSCR[UX]).

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with invalid IEEE
floating-point operation exception condition bit (∞ × 0) (FPSCR[VXIMZ]) for multiply-add instructions.

• The invalid operation exception condition bit (SNaN) may be set with the invalid IEEE floating-point oper-
ation exception condition bit (invalid compare) (FPRSC[VXVC]) for compare ordered instructions.

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with the invalid IEEE
floating-point operation exception condition bit (invalid integer convert) (FPSCR[VXCVI]) for convert-to-
integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that there is no possi-
bility that one of the operands is lost:

• Enabled invalid IEEE floating-point operation

• Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the destination specified
by the instruction causing the exception condition. The result may depend on whether the condition is
enabled or disabled. The kinds of exception conditions that deliver a result are the following:

• Disabled invalid IEEE floating-point operation

• Disabled zero divide

• Disabled overflow

• Disabled underflow

• Disabled inexact

• Enabled overflow

• Enabled underflow

• Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the action taken when
they are detected.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 108 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

The IEEE standard specifies the handling of exception conditions in terms of traps and trap handlers. In the
PowerPC Architecture, an FPSCR exception enable bit being set causes generation of the result value spec-
ified in the IEEE standard for the trap enabled case—the expectation is that the exception is detected by soft-
ware, which will revise the result. An FPSCR exception enable bit of 0 causes generation of the default result
value specified for the trap disabled (or no trap occurs or trap is not implemented) case—the expectation is
that the exception will not be detected by software, which will simply use the default result. The result to be
delivered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a default value and not to notify
software, is obtained by clearing all FPSCR exception enable bits and using ignore exceptions mode (see
Table 3-11). In this case the system floating-point enabled exception error handler is not invoked, even if
floating-point exceptions occur. If necessary, software can inspect the FPSCR exception bits to determine
whether exceptions have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit must be set and
a mode other than ignore exceptions mode must be used. In this case the system floating-point enabled
exception error handler is invoked if an enabled floating-point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an enabled floating-
point exception occurs is controlled by MSR bits [FE0] and [FE1] as shown in Table 3-11. (The system
floating-point enabled exception error handler is never invoked if the appropriate floating-point exception is
disabled.)

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence of any invoca-
tions of the floating-point enabled exception handler, due to instructions initiated before the FPSCR instruc-
tion. This forcing has no effect in ignore exceptions mode and is superfluous for precise mode.

In all cases, the question of whether a floating-point result is stored, and what value is stored, is governed by
the FPSCR exception enable bits, and is not affected by the value of the FE0 and FE1 bits. For the best
performance across the widest range of implementations, the following guidelines should be considered:

• If the IEEE default results are acceptable to the application, FE0 and FE1 should be cleared (ignore
exceptions mode). All FPSCR exception enable bits should be cleared.

• If the IEEE default results are unacceptable to the application, an imprecise mode should be used with
the FPSCR enable bits set as needed.

Table 3-11. MSR[FE0] and MSR[FE1] Bit Settings for FP Exceptions

FE0 FE1 Description

0 0 Ignore exceptions mode—Floating-point exceptions do not cause the program exception error handler to be
invoked.

0 1

Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at some point at or
beyond the instruction that caused the exception. It may not be possible to identify the offending instruction or the
data that caused the exception. Results from the offending instruction may have been used by or affected subse-
quent instructions executed before the exception handler was invoked.

1 0

Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled exception handler is
invoked at some point at or beyond the instruction that caused the exception. Sufficient information is provided to
the exception handler that it can identify the offending instruction and correct any faulty results. In this mode, no
results caused by the offending instruction have been used by or affected subsequent instructions that are exe-
cuted before the exception handler is invoked. Running in this mode might cause a degradation in performance.

1 1

Precise mode—The system floating-point enabled exception error handler is invoked precisely at the instruction
that caused the enabled exception. The architecture ensures that all instructions logically residing before the
excepting instruction have completed and no instruction after the excepting instruction has been executed. Run-
ning in this mode might cause a degradation in performance.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 109 of 657

• Ignore exceptions mode should not, in general, be used when any FPSCR exception enable bits are set.

• Precise mode may degrade performance in some implementations, perhaps substantially, and therefore
should be used only for debugging and other specialized applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point exception conditions (invalid
operation and divide by zero conditions). In any of these cases of floating-point exception conditions, if the
FPSCR[FEX] bit is set (implicitly) and MSR[FE0–FE1] ≠ ‘00’, the processor takes a program exception
(floating-point enabled exception type). Refer to Chapter 6, Exceptions for more information on exception
processing. The actions performed for each floating-point exception condition are described in greater detail
in the following sections.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 110 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

Figure 3-23. Initial Flow for Floating-Point Exception Conditions

Execute Instruction;
x ← Intermediate Result

(Infinitely Precise and with Unbounded Range)

Perform Actions per Invalid Operation
Exception Condition on page 111

Check for
FP Exception Conditions

FP Computational
Instructions

Invalid Operand
Exception Condition

Check for Overflow, Underflow, and
Inexact Exception Conditions (see Figure 3-24)

Perform Actions per Zero Divide Exception
Condition on page 112

• xROUND ← Rounded x (per FPSCR[RN])
• frD ←xROUND
• Set FPSCR[FI, FR, FPRF] appropriately

Continue Instruction
Execution

Take FP Enabled
Program Exception

Take FP Enabled
Program Exception

(for Invalid Operation)

(for Zero Divide)

(FPSCR[FEX] = 1) &
(MSR[FE0–FE1] ≠ 00)

x = (0) or (±∞) otherwise

otherwise

otherwise
Zero Divide

Exception Condition

otherwise

otherwise

(FPSCR[FEX] = 1) and
(MSR[FE0–FE1] ≠ 00)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 111 of 657

Invalid Operation Exception Condition

An invalid operation exception occurs when an operand is invalid for the specified operation. The invalid oper-
ations are as follows:

• Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities (∞ – ∞)

• Division of infinity by infinity (∞ ÷ ∞)

• Division of zero by zero (0 ÷ 0)

• Multiplication of infinity by zero (∞ × 0)

• Ordered comparison involving a NaN (invalid compare)

• Square root or reciprocal square root of a negative, nonzero number (invalid square root)

Note: If the implementation does not support the optional floating-point square root or floating-point
reciprocal square root estimate instructions, software can simulate the instruction and set the
FPSCR[VXSQRT] bit to reflect the exception.

• Integer convert involving a number that is too large in magnitude to be represented in the target format, or
involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition that is not neces-
sarily associated with the execution of a floating-point instruction. For example, it might be set by a program
that computes a square root if the source operand is negative. This allows PowerPC instructions not imple-
mented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via FPSCR[VXSOFT],
(regardless of the value of FPSCR[VE]), the following actions are taken:

• One or two invalid operation exception condition bits is set

• If the operation is a compare,
FPSCR[FR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception,
FPSCR[FR, FI, FPRF] are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

There are additional actions performed that depend on the value of FPSCR[VE]. These are described in
Table 3-12.

FPSCR[VXSNAN] (if SNaN)

FPSCR[VXISI] (if ∞ – ∞)

FPSCR[VXIDI] (if ∞ ÷ ∞)

FPSCR[VXZDZ] (if 0 ÷ 0)

FPSCR[VXIMZ] (if ∞ × 0)

FPSCR[VXVC] (if invalid comparison)

FPSCR[VXSOFT] (if software request)

FPSCR[VXSQRT] (if invalid square root)

FPSCR[VXCVI] (if invalid integer convert)

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 112 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

.

Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with a zero divisor value and a
finite, nonzero dividend value or when an floating reciprocal estimate single (fres) or a floating reciprocal
square root estimate (frsqrte) instruction is executed with a zero operand value.

The corresponding result is infinity, where the sign is the sign of the source value, as follows:

• 1/+0.0 → +∞

• 1/-0.0 → -∞

•

•

When a zero divide condition occurs, the following actions are taken:

• Zero divide exception condition bit is set FPSCR[ZX] = ’1’ .

• FPSCR[FR, FI] are cleared.

Table 3-12. Additional Actions Performed for Invalid FP Operations

Invalid Operation Result Category
Action Performed

FPSCR[VE] = ’1’ FPSCR[VE] = ’0’

Arithmetic or floating-point round to single

frD Unchanged QNaN

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Set for QNaN

Convert to 64-bit integer
(positive number or +∞)

frD[0–63] Unchanged Most positive 64-bit integer
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 64-bit integer
(negative number, NaN, or –∞)

frD[0–63] Unchanged Most negative 64-bit integer
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 32-bit integer
(positive number or +∞)

frD[0–31] Unchanged Undefined

frD[32–63] Unchanged Most positive 32-bit integer
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 32-bit integer
(negative number, NaN, or –∞)

frD[0–31] Unchanged Undefined

frD[32–63] Unchanged Most negative 32-bit integer
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

All cases FPSCR[FEX]
Implicitly set
(causes exception)

Unchanged

1 +0.0()⁄ +∞→

1 0.0–()⁄ -∞→

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 113 of 657

Additional actions depend on the setting of the zero divide exception condition enable bit, FPSCR[ZE], as
described in Table 3-13.

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

As described earlier, the overflow, underflow, and inexact exception conditions are detected after the floating-
point instruction has executed and an infinitely precise result with unbounded range has been computed.
Figure 3-24 shows the flow for the detection of these conditions and is a continuation of Figure 3-23. As in the
cases of invalid operation, or zero divide conditions, if the FPSCR[FEX] bit is implicitly set as described in
Table 3-9 and MSR[FE0–FE1] ≠ 00, the processor takes a program exception (floating-point enabled excep-
tion type). Refer to Chapter 6, Exceptions for more information on exception processing. The actions
performed for each of these floating-point exception conditions (including the generated result) are described
in greater detail in the following sections.

Table 3-13. Additional Actions Performed for Zero Divide

Result Category
Action Performed

FPSCR[ZE] = ’1’ FPSCR[ZE] = ’0’

frD Unchanged ±∞ (sign determined by XOR of the signs of the
operands)

FPSCR[FEX] Implicitly set (causes exception) Unchanged

FPSCR[FPRF] Unchanged Set to indicate ±∞

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 114 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

Figure 3-24. Checking of Remaining Floating-Point Exception Conditions

xNORM ← Normalized x
(xNORM Infinitely Precise and with Unbounded Range)

Check for Overflow,
Underflow, and Inexact

(from Figure 3-23)

Set FPSCR[FPRF] appropriately

FPSCR[FEX] = 1 (implicitly)

otherwise

If (FPSCR[FEX] = 1) & (MSR[FE0–FE1] ≠ 00),
then take FP Program Exception;

otherwise, continue

otherwiseFPSCR[UE] = 0
(underflow disabled)

otherwise magnitude of xround > magnitude of
largest finite number in result precision

(overflow)

FPSCR[OX] ← 1

otherwise FPSCR[OE] = 0
(overflow disabled)

• FPSCR[FEX] = 1 (implicitly)
• Adjust Exponent per Table 3-14
• frD ← xROUND (adjusted)
• inexact ← xROUND ≠ xNORM

FPSCR[XX] ← 1

• Get default fromTable 3-15
• frD ← default
• FPSCR[FI] ← 1
• FPSCR[FR] ← undefined

FPSCR[XX] ← 1

otherwise

FPSCR[XE] = 0
(inexact disabled)

xROUND ← Rounded xNORM (per FPSCR[RN])

xNORM is tiny

• xDENORM ← Denormalized xnorm
• Round xDENORM (per FPSCR[RN])
• frD ← xROUND ← Rounded xDENORM
• inexact ← xROUND ≠ xDENORM
• If ‘inexact’, FPSCR[UX] ← 1

• FPSCR[UX] ← 1
• FPSCR[FEX] = 1 (implicitly)
• xADJUST ←Adj. Exp. of xNORM per Table 3-14
• Round xADJUST (per FPSCR[RN])
• frD ← xROUND ← Rounded xADJUST
• inexact ← xROUND ≠ xADJUST

(inexact)

otherwise

• frD ← xround
• inexact ← xROUND ≠ xNORM

inexact = 1

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 115 of 657

Overflow Exception Condition

Overflow occurs when the magnitude of what would have been the rounded result (had the exponent range
been unbounded) is greater than the magnitude of the largest finite number of the specified result precision.
Regardless of the setting of the overflow exception condition enable bit of the FPSCR, the overflow exception
condition bit is set FPSCR[OX] = ’1’ .

Additional actions are taken that depend on the setting of the overflow exception condition enable bit of the
FPSCR as described in Table 3-14.

When the overflow exception condition is disabled (FPSCR[OE] = ’0’) and an overflow condition occurs, the
default result is determined by the rounding mode bit (FPSCR[RN]) and the sign of the intermediate result as
shown in Table 3-15.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Condition Result Category
Action Performed

FPSCR[OE] = ’1’ FPSCR[OE] = ’0’

Double-precision arithmetic
instructions

Exponent of normalized
intermediate result Adjusted by subtracting 1536 —

Single-precision arithmetic and
frspx instruction

Exponent of normalized
intermediate result Adjusted by subtracting 192 —

All cases

frD Rounded result
(with adjusted exponent) Default result per Table 3-15

FPSCR[XX] Set if rounded result differs from
intermediate result Set

FPSCR[FEX] Implicitly set (causes exception) Unchanged

FPSCR[FPRF] Set to indicate ±normal number Set to indicate ±∞ or
±normal number

FPSCR[FI] Reflects rounding Set

FPSCR[FR] Reflects rounding Undefined

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN] Sign of Intermediate Result frD

Round to nearest
Positive +Infinity

Negative –Infinity

Round toward zero
Positive Format’s largest finite positive number

Negative Format’s most negative finite number

Round toward +infinity
Positive +Infinity

Negative Format’s most negative finite number

Round toward –infinity
Positive Format’s largest finite positive number

Negative –Infinity

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 116 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

Underflow Exception Condition

The underflow exception condition is defined separately for the enabled and disabled states:

• Enabled—Underflow occurs when the intermediate result is tiny.

• Disabled—Underflow occurs when the intermediate result is tiny and the rounded result is inexact.
In this context, the term ‘tiny’ refers to a floating-point value that is too small to be represented for a par-
ticular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero intermediate result value
computed as though it had infinite precision and unbounded exponent range is less in magnitude than the
smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared (FPSCR[UE] = ’0’
), the intermediate result is denormalized (see Section 3.3.3 Normalization and Denormalization) and
rounded (see Section 3.3.5 Rounding) before being stored in an FPR. In this case, if the rounding causes the
delivered result value to differ from what would have been computed were both the exponent range and
precision unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

The actions performed for underflow exception conditions are described in Table 3-16.

Note: The FR and FI bits in the FPSCR allow the system floating-point enabled exception error handler,
when invoked because of an underflow exception condition, to simulate a trap disabled environment. That is,
the FR and FI bits allow the system floating-point enabled exception error handler to unround the result, thus
allowing the result to be denormalized.

Table 3-16. Actions Performed for Underflow Conditions

Condition Result Category
Action Performed

FPSCR[UE] = ’1’ FPSCR[UE] = ’0’

Double-precision arithmetic
instructions

Exponent of normalized interme-
diate result Adjusted by adding 1536 —

Single-precision arithmetic and
frspx instructions

Exponent of normalized interme-
diate result Adjusted by adding192 —

All cases

frD Rounded result (with adjusted
exponent)

Denormalized and rounded
result

FPSCR[XX] Set if rounded result differs from
intermediate result

Set if rounded result differs from
intermediate result

FPSCR[UX] Set Set only if tiny and inexact after
denormalization and rounding

FPSCR[FPRF] Set to indicate ±normalized
number

Set to indicate ±denormalized
number or ±zero

FPSCR[FEX] Implicitly set (causes exception) Unchanged

FPSCR[FI] Reflects rounding Reflects rounding

FPSCR[FR] Reflects rounding Reflects rounding

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005

Operand Conventions

Page 117 of 657

Inexact Exception Condition

The inexact exception condition occurs when one of two conditions occur during rounding:

• The rounded result differs from the intermediate result assuming the intermediate result exponent range
and precision to be unbounded. (In the case of an enabled overflow or underflow condition, where the
exponent of the rounded result is adjusted for those conditions, an inexact condition occurs only if the sig-
nificand of the rounded result differs from that of the intermediate result.)

• The rounded result overflows and the overflow exception condition is disabled.

When an inexact exception condition occurs, the following actions are taken independent of the setting of the
inexact exception condition enable bit of the FPSCR:

• Inexact exception condition bit in the FPSCR is set FPSCR[XX] = ’1’ .

• The rounded or overflowed result is placed into the target FPR.

• FPSCR[FPRF] is set to indicate the class and sign of the result.

In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set, and an inexact
condition exists, then the FPSCR[FEX] bit is implicitly set, causing the processor to take a floating-point
enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have greater latency
than enabling other types of floating-point exception conditions.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Operand Conventions

Page 118 of 657
pem3_operand_conv.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 119 of 657

4. Addressing Modes and Instruction Set Summary
40
70

This chapter describes instructions and addressing modes defined by the three levels of the PowerPC Archi-
tecture—user instruction set architecture (UISA), virtual environment architecture (VEA), and operating envi-
ronment architecture (OEA). These instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more information, see
Section 4.2.1 Integer Instructions.

• Floating-point instructions—These include floating-point arithmetic instructions, as well as instructions
that affect the floating-point status and control register (FPSCR). For more information, see Section 4.2.2
Floating-Point Instructions.

• Load and store instructions—These include integer and floating-point load and store instructions. For
more information, see Section 4.2.3 Load and Store Instructions.

• Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. For more information, see
Section 4.2.4 Branch and Flow Control Instructions.

• Processor control instructions—These instructions are used for synchronizing memory accesses and
managing of caches, TLBs, and the segment registers. For more information, see Section 4.2.5 Proces-
sor Control Instructions—UISA, Section 4.3.1 Processor Control Instructions—VEA, and Section 4.4.2
Processor Control Instructions—OEA.

• Memory synchronization instructions—These instructions control the order in which memory operations
are completed with respect to asynchronous events, and the order in which memory operations are seen
by other processors or memory access mechanisms. For more information, see Section 4.2.6 Memory
Synchronization Instructions—UISA, and Section 4.3.2 Memory Synchronization Instructions—VEA.

• Memory control instructions—These include cache management instructions (user-level and supervisor-
level), segment register manipulation instructions, and translation lookaside buffer management instruc-
tions. For more information, see Section 4.3.3 Memory Control Instructions—VEA, and Section 4.4.3
Memory Control Instructions—OEA.

Note: User-level and supervisor-level are referred to as problem state and privileged state, respectively,
in the architecture specification.

• External control instructions—These instructions allow a user-level program to communicate with a spe-
cial-purpose device. For more information, see Section 4.3.4 External Control Instructions.

This grouping of instructions does not necessarily indicate the execution unit that processes a particular
instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, halfword, word, and doubleword operands. Floating-point instructions
operate on single-precision and double-precision floating-point operands. The PowerPC Architecture uses
instructions that are four bytes long and word-aligned. It provides for byte, halfword, word, and doubleword
operand fetches and stores between memory and a set of 32 general-purpose registers (GPRs). It also
provides for word and doubleword operand fetches and stores between memory and a set of 32 floating-point
registers (FPRs). The FPRs and GPRs are 64 bits wide in all PowerPC implementations.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in
a computation and then modify the same or another memory location, the memory contents must be loaded
into a register, modified, and then written to the target location using load and store instructions.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 120 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

The description of each instruction includes the mnemonic and a formatted list of operands. PowerPC-
compliant assemblers support the mnemonics and operand lists. To simplify assembly language program-
ming, a set of simplified mnemonics (referred to as extended mnemonics in the architecture specification)
and symbols is provided for some of the most frequently-used instructions; see Appendix E Simplified
Mnemonics, for a complete list of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation of the three levels of
the PowerPC Architecture—UISA, VEA, and OEA; Section 4.2 PowerPC UISA Instructions discusses the
UISA instructions, followed by Section 4.3 PowerPC VEA Instructions that discusses the VEA instructions
and Section 4.4 PowerPC OEA Instructions that discusses the OEA instructions. See Section 1.1.2 Levels of
the PowerPC Architecture for more information about the various levels defined by the PowerPC Architec-
ture.

4.1 Conventions

This section describes conventions used for the PowerPC instruction set. Descriptions of computation
modes, memory addressing, synchronization, and the PowerPC exception summary follow.

4.1.1 Sequential Execution Model

The PowerPC processors appear to execute instructions in program order, regardless of asynchronous
events or program exceptions. The execution of a sequence of instructions may be interrupted by an excep-
tion caused by one of the instructions in the sequence, or by an asynchronous event.

Note: The architecture specification refers to exceptions as interrupts.

For exceptions to the sequential execution model, refer to Chapter 6, Exceptions. For information about the
synchronization required when using store instructions to access instruction areas of memory, refer to
Section 4.2.3.3 Integer Store Instructions and Section 5.1.5.2 Instruction Cache Instructions. For information
regarding instruction fetching, and for information about guarded memory refer to Section 5.2.1.5 Guarded
Attribute (G).

4.1.2 Computation Modes

The general-purpose and floating-point registers, and some special-purpose registers (SPRs) are 64 bits
long, with an effective address of 64 bits. All 64-bit implementations have two modes of operation: 64-bit
mode (which is the default) and 32-bit mode. The mode controls how the effective address is interpreted, how
condition bits are set, and how the count register (CTR) is tested by branch conditional instructions. All
instructions provided for 64-bit implementations are available in both 64 and 32-bit modes.

The machine state register bit [0], MSR[SF], is used to choose between 64 and 32-bit modes. When
MSR[SF = ‘0’, the processor runs in 32-bit mode, and when MSR[SF] = ’1’ the processor runs in the default
64-bit mode.

In both 64-bit mode (the default) and 32-bit mode of a 64-bit implementation, instructions that set a 64-bit
register affect all 64 bits, and the value placed into the register is independent of mode. In both modes, effec-
tive address computations use all 64 bits of the relevant registers (GPRs, LR, CTR, etc.), and produce a
64-bit result; however, in 32-bit mode (MSR[SF] = ’0’), only the low-order 32 bits of the computed effective
address are used to address memory.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 121 of 657

4.1.3 Classes of Instructions

PowerPC instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note: While the definitions of these terms are consistent among the PowerPC processors, the assignment of
these classifications is not. For example, an instruction that is specific to 64-bit implementations is considered
defined for 64-bit implementations, but illegal for 32-bit implementations.

The class is determined by examining the primary opcode, and the extended opcode if any. If the opcode, or
the combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruc-
tion, the instruction is illegal.

In future versions of the PowerPC Architecture, instruction codings that are now illegal may become defined
(by being added to the architecture) or reserved (by being assigned to one of the special purposes). Likewise,
reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if they could have been
achieved by executing an arbitrary sequence of instructions, starting in the state the machine was in before
executing the given instruction. Boundedly undefined results for a given instruction may vary between imple-
mentations, and between different executions on the same implementation.

4.1.3.2 Defined Instruction Class

Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and OEA. Defined
instructions are guaranteed to be supported in all PowerPC implementations. The only exceptions are
instructions that are defined only for 64-bit implementations, instructions that are defined only for 32-bit imple-
mentations, and optional instructions, as stated in the instruction descriptions in Chapter 8, Instruction Set. A
PowerPC processor may invoke the illegal instruction error handler (part of the program exception handler)
when an unimplemented PowerPC instruction is encountered so that it may be emulated in software, as
required.

A defined instruction can have preferred and/or invalid forms, as described in the following sections.

Preferred Instruction Forms

A defined instruction may have an instruction form that is preferred (that is, the instruction will execute in an
efficient manner). Any form other than the preferred form will take significantly longer to execute. The
following instructions have preferred forms:

• Condition register logical instructions

• Load/store multiple instructions

• Load/store string instructions

• Or immediate instruction (preferred form of no-op)

• Move to condition register fields instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 122 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Invalid Instruction Forms

A defined instruction may have an instruction form that is invalid if one or more operands, excluding the
opcodes and reserved fields, are coded incorrectly in a manner that can be deduced by examining only the
instruction encoding (primary and extended opcodes). Attempting to execute an invalid form of an instruction
either invokes the illegal instruction error handler (a program exception) or yields boundedly-undefined
results. See Chapter 8, Instruction Set, for individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a reserved bit (shown as
‘0’) is coded as ‘1’.

The following instructions have invalid forms identified in their individual instruction descriptions:

• Branch conditional instructions
• Load/store with update instructions
• Load multiple instructions
• Load string instructions
• Load/store floating-point with update instructions

Optional Instructions

A defined instruction may be optional. The optional instructions fall into the following categories:

• General-purpose instructions—fsqrt and fsqrts

• Graphics instructions—fres, frsqrte, and fsel

• External control instructions—eciwx and ecowx

• Lookaside buffer management instructions—slbia, slbie, tlbia, tlbie, tlbiel, and tlbsync (with conditions,
see Chapter 8, Instruction Set for more information)

Any attempt to execute an optional instruction that is not provided by the implementation will cause the illegal
instruction error handler to be invoked. Exceptions to this rule are stated in the instruction descriptions found
in Chapter 8, Instruction Set.

TEMPORARY 64-BIT BRIDGE

The optional 64-bit bridge facility has three other categories of optional instructions for 64-bit implemen-
tations. These are described in greater detail in Section 7.6 Migration of Operating Systems from 32-Bit
Implementations to 64-Bit Implementations and summarized below:

• 32-bit segment register support instructions—mtsr, mtsrin, mfsr, and mfsrin
• 32-bit system linkage instructions—mtmsr

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 123 of 657

4.1.3.3 Illegal Instruction Class

Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC Architecture. These opcodes are available for
future extensions of the PowerPC Architecture; that is, future versions of the PowerPC Architecture may
define any of these instructions to perform new functions. The following primary opcodes are defined as
illegal but may be used in future extensions to the architecture:

1, 4, 5, 6, 56, 57, 60, 61

Note: Opcode 4 may be used by the vector instructions as described in the PowerPC Microprocessor
Family: AltiVec Technology Programming Environments Manual.

• All unused extended opcodes are illegal. The unused extended opcodes can be determined from infor-
mation in Appendix A.2 Instructions Sorted by Opcode and Section 4.1.3.4 Reserved Instructions. The
following primary opcodes have unused extended opcodes.

19, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases the
probability that an attempt to execute data or uninitialized memory invokes the illegal instruction error
handler (a program exception).

Note: If only the primary opcode consists of all zeros, the instruction is considered a reserved instruction, as
described in Section 4.1.3.4 Reserved Instructions.

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a program exception)
but has no other effect. See Section 6.4.9 Program Exception (0x00700) for additional information about
illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal instructions are available for
further additions to the PowerPC Architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC Architecture. An attempt to execute an unimplemented reserved instruction invokes the illegal
instruction error handler (a program exception). See Section 6.4.9 Program Exception (0x00700) for addi-
tional information about illegal instruction exception.

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the PowerPC Architecture.

2. Implementation-specific instructions used to conform to the PowerPC Architecture specifications. For
example, the implementation specific instruction tlbiel, (the processor local form of the TLB Invalidate) for
the PowerPC 970FX microprocessor.

3. The instruction with primary opcode 0, when the instruction does not consist entirely of binary zeros and
the extended opcode:
256 Service Processor “Attention.”

4. Any other implementation-specific instructions that are not defined in the UISA, VEA, or OEA.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 124 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the corre-
sponding byte. Within words bytes are numbered from left to right.

Memory operands may be bytes, halfwords, words, or doublewords, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction. The
PowerPC Architecture supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian; see Section 3.1.2 Byte Ordering for more information.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32 or 64-bit sum computed by the processor when executing a memory
access or branch instruction or when fetching the next sequential instruction. For a memory access instruc-
tion, if the sum of the effective address and the operand length exceeds the maximum effective address, the
memory operand is considered to wrap around from the maximum effective address through effective
address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 64 or 32-bit unsigned binary arith-
metic. A carry from bit [0] is ignored. The 64-bit current instruction address and next instruction address are
not affected by a change from 32-bit mode to the default 64-bit mode, but a change from the default 64-bit
mode to 32-bit mode causes the high-order 32 bits to be cleared.

In the default 64-bit mode, the entire 64-bit result comprises the 64-bit effective address. The effective
address arithmetic wraps around from the maximum address, 264 – 1, to address 0.

When a 64-bit implementation executes in 32-bit mode (MSR[SF] = ’0’), the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose of addressing memory. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by load with update and store with update instructions. The high-order
32 bits of the 64-bit effective address are cleared for the purpose of fetching instructions, and whenever a
64-bit effective address is placed into the LR by branch instructions having link register update option enabled
(LK field, bit 31, in the instruction encoding = 1). The high-order 32 bits of the 64-bit effective address are
cleared in SPRs when an exception error handler is invoked. In the context of addressing memory, the effec-
tive address arithmetic appears to wrap around from the maximum address, 232 – 1, to address 0.

Treating the high-order 32 bits of the effective address as zero effectively truncates the 64-bit effective
address to a 32-bit effective address, such as would have been generated on a 32-bit implementation.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 125 of 657

In 64-bit implementations (including 32-bit mode in 64-bit implementations), the three low-order bits of the
calculated effective address may be modified by the processor before accessing memory if the PowerPC
system is operating in little-endian mode. See Section 3.1.2 Byte Ordering for more information about little-
endian mode.

Load and store operations have three categories of effective address generation that depend on the oper-
ands specified:

• Register indirect with immediate index mode

• Register indirect with index mode

• Register indirect mode

See Section 4.2.3.1 Integer Load and Store Address Generation for a detailed description of effective
address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate addressing
• Link register indirect
• Count register indirect

See Section 4.2.4.1 Branch Instruction Address Calculation for a detailed description of effective address
generation for branch instructions.

Branch instructions can optionally load the link register (LR) with the next sequential instruction address
(current instruction address + 4). This is used for subroutine call and return.

4.1.5 Synchronizing Instructions

The synchronization described in this section refers to the state of activities within the processor that is
performing the synchronization. Refer to Section 6.1.2 Synchronization for more detailed information about
other conditions that can cause context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Call (sc), Return from Interrupt Doubleword (rfid), and Instruction Synchronize (isync) instruc-
tions perform context synchronization by allowing previously issued instructions to complete before
continuing with program execution. These instructions will flush the instruction prefetch queue and start
instruction fetching from memory in the context established after all preceding instructions have completed
execution.

1. No higher priority exception exists (sc) and dispatching is halted.

2. All previous instructions have completed to a point where they can no longer cause an exception.

3. Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

4. The instructions at the target of the branch of sc, rfid and those following the isync instruction execute in
the context established by these instructions. For the isync instruction the instruction fetch queue must
be flushed and instruction fetching restarted at the next sequential instruction. Both sc, and rfid execute
like a branch and the flushing and refetching is automatic.

5. The operation ensures that the instructions that follow the operation will be fetched and executed in the
context established by the operation.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 126 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.1.5.2 Execution Synchronizing Instructions

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for
context synchronization. The sync and ptesync instructions are treated like isync with respect to the second
item described above (that is, the conditions described in the second item apply to the completion of sync
and ptesync). The sync, ptesync, and mtmsrd instructions are examples of execution-synchronizing
instructions.

The isync instruction is concerned mainly with the instruction stream in the processor on which it is executed,
whereas, sync is looking outward towards the caches and memory and is concerned with data arriving at
memory where it is visible to other processors in a multiprocessor environment. (e.g., cache block store,
cache block flush, etc.)

All context-synchronizing instructions are execution-synchronizing. Unlike a context synchronizing operation,
an execution synchronizing instruction need not ensure that the instructions following it execute in the context
established by that instruction. This new context becomes effective sometime after the execution synchro-
nizing instruction completes and before or at a subsequent context synchronizing operation.

4.1.6 Exception Summary

PowerPC processors have an exception mechanism for handling system functions and error conditions in an
orderly way. The exception model is defined by the OEA. There are two kinds of exceptions—those caused
directly by the execution of an instruction and those caused by an asynchronous event. Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program exception) error han-
dler to be invoked. An attempt by a user-level program to execute the supervisor-level instructions listed
below causes the privileged instruction (program exception) handler to be invoked.

The PowerPC Architecture provides the following supervisor-level instructions: mfmsr, mfspr, mfsr,
mfsrin, mtmsr, mtmsrd, mtspr, mtsr, mtsrin, rfid, slbia, slbie, slbmfee, slbmfev, slbmte, tlbia, tlbie,
tlbiel, and tlbsync (defined by OEA).

Note: The privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

• The execution of a defined instruction using an invalid form causes either the illegal instruction error han-
dler or the privileged instruction handler to be invoked.

• The execution of an optional instruction that is not provided by the implementation causes the illegal
instruction error handler to be invoked.

• An attempt to access memory in a manner that violates memory protection, or an attempt to access
memory that is not available (page fault), causes the DSI exception handler or ISI exception handler to be
invoked.

• An attempt to access memory with an effective address alignment that is invalid for the instruction causes
the alignment exception handler to be invoked.

• The execution of an sc instruction permits a program to call on the system to perform a service, by caus-
ing a system call exception handler to be invoked.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are disabled invokes the float-
ing-point unavailable exception handler.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 127 of 657

• The execution of an instruction that causes a floating-point exception that is enabled invokes the floating-
point enabled exception handler.

Exceptions caused by asynchronous events are described in Chapter 6, Exceptions.

4.2 PowerPC UISA Instructions

The PowerPC user instruction set architecture (UISA) includes the base user-level instruction set (excluding
a few user-level cache-control, synchronization, and time base instructions), user-level registers, program-
ming model, data types, and addressing modes. This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions

The integer instructions consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs. Integer
arithmetic, shift, rotate, and string move instructions may update or read values from the XER, and the condi-
tion register (CR) fields may be updated if the Rc bit of the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is explicitly identified
as performing an unsigned operation. For example, Multiply High-Word Unsigned (mulhwu) and Divide Word
Unsigned (divwu) instructions interpret both operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer arithmetic instruction,
addic., set CR bits [0–3] (CR0) to characterize the result of the operation. In the default 64-bit mode, CR0 is
set to reflect a signed comparison of the 64-bit result to zero. In 32-bit mode (of 64-bit implementations), CR0
is set to reflect a signed comparison of the low-order 32 bits of the result to zero.

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme,
addze, and subfze, always set the XER bit [CA], to reflect the carry out of bit [0] in the default 64-bit mode
and out of bit [32] in 32-bit mode (of 64-bit implementations). Integer arithmetic instructions with the overflow
enable (OE) bit set in the instruction encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to
reflect an overflow of the result. Except for the multiply low and divide instructions, these integer arithmetic
instructions reflect the overflow of the 64-bit result in the default 64-bit mode and overflow of the low-order
32-bit result in 32-bit mode; however, the multiply low and divide instructions (mulld, mullw, divd, divw,
divdu, and divwu) with o suffix cause XER[SO] and XER[OV] to reflect overflow of the 64-bit result (mulld,
divd, and divdu) and overflow of the low-order 32-bit result (mullw, divw, and divwu).

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit [CA] might delay
the execution of subsequent instructions.

Unless otherwise noted, when CR0 and the XER are set, they characterize the value placed in the target
register.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 128 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.1.1 Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax Operation

Add Immediate addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into rD.

Add Immediate
Shifted addis rD,rA,SIMM The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

Add

add
add.
addo
addo.

rD,rA,rB

The sum (rA) + (rB) is placed into rD.
add Add
add. Add with CR Update. The dot suffix enables the update of the

CR.
addo Add with Overflow Enabled. The o suffix enables the overflow bit

[OV] in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the

update of the CR and enables the overflow bit [OV] in the XER.

Subtract From

subf
subf.
subfo
subfo.

rD,rA,rB

The sum ¬ (rA) + (rB) +1 is placed into rD.
subf Subtract From
subf. Subtract from with CR Update. The dot suffix enables the update

of the CR.
subfo Subtract from with Overflow Enabled. The o suffix enables the

overflow bit [OV] in the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit [OV] in
the XER.

Add Immediate
Carrying

addic
addic.

rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The dot suffix enables the update
of the CR. XER bit [CA] is altered.

Subtract from
Immediate
Carrying

subfic rD,rA,SIMM The sum ¬ (rA) + SIMM + 1 is placed into rD. XER bit [CA] is altered.

Add Carrying

addc
addc.
addco
addco.

rD,rA,rB

The sum (rA) + (rB) is placed into rD. XER bit [CA] is altered.
addc Add Carrying
addc. Add Carrying with CR Update. The dot suffix enables the update

of the CR.
addco Add Carrying with Overflow Enabled. The o suffix enables the

overflow bit [OV] in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit [OV] in
the XER.

Subtract from
Carrying

subfc
subfc.
subfco
subfco.

rD,rA,rB

The sum ¬ (rA) + (rB) + 1 is placed into rD. XER bit [CA] is altered.
subfc Subtract from Carrying
subfc. Subtract from Carrying with CR Update. The dot suffix enables

the update of the CR.
subfco Subtract from Carrying with Overflow. The o suffix enables the

overflow bit [OV] in the XER.
subfco. Subtract from Carrying with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow bit
[OV] in the XER.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 129 of 657

Add
Extended

adde
adde.
addeo
addeo.

rD,rA,rB

The sum (rA) + (rB) + XER[CA] is placed into rD. XER bit [CA] is altered.
adde Add Extended
adde. Add Extended with CR Update. The dot suffix enables the update

of the CR.
addeo Add Extended with Overflow. The o suffix enables the overflow

bit [OV] in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit [OV] in
the XER.

Subtract from
Extended

subfe
subfe.
subfeo
subfeo.

rD,rA,rB

The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.
subfe Subtract from Extended
subfe. Subtract from Extended with CR Update. The dot suffix enables

the update of the CR.
subfeo Subtract from Extended with Overflow. The o suffix enables the

overflow bit [OV] in the XER.
subfeo. Subtract from Extended with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow
[OV] bit in the XER.

Add to Minus One
Extended

addme
addme.
addmeo
addmeo.

rD,rA

The sum (rA) + XER[CA] added to 0xFFFF_FFFF_FFFF_FFFF is placed
into rD. XER bit [CA] is altered.
addme Add to Minus One Extended
addme. Add to Minus One Extended with CR Update. The dot suffix

enables the update of the CR.
addmeoAdd to Minus One Extended with Overflow. The o suffix enables

the overflow bit [OV] in the XER.
addmeo.Add to Minus One Extended with Overflow and CR Update. The

o. suffix enables the update of the CR and enables the overflow
[OV] bit in the XER.

Subtract from
Minus One
Extended

subfme
subfme.
subfmeo
subfmeo.

rD,rA

The sum ¬ (rA) + XER[CA] added to 0xFFFF_FFFF_FFFF_FFFF is
placed into rD. XER bit [CA] is altered.
subfme Subtract from Minus One Extended
subfme.Subtract from Minus One Extended with CR Update. The dot suf-

fix enables the update of the CR.
subfmeoSubtract from Minus One Extended with Overflow. The o suffix

enables the overflow bit [OV] in the XER.
subfmeo.Subtract from Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the CR and enables
the overflow bit [OV] in the XER.

Add to Zero
Extended

addze
addze.
addzeo
addzeo.

rD,rA

The sum (rA) + XER[CA] is placed into rD. XER bit [CA] is altered.
addze Add to Zero Extended
addze. Add to Zero Extended with CR Update. The dot suffix enables the

update of the CR.
addzeo Add to Zero Extended with Overflow. The o suffix enables the

overflow bit [OV] in the XER.
addzeo.Add to Zero Extended with Overflow and CR Update. The o. suf-

fix enables the update of the CR and enables the overflow bit
[OV] in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 130 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Subtract from Zero
Extended

subfze
subfze.
subfzeo
subfzeo.

rD,rA

The sum ¬ (rA) + XER[CA] is placed into rD.
subfze Subtract from Zero Extended
subfze. Subtract from Zero Extended with CR Update. The dot suffix

enables the update of the CR.
subfzeoSubtract from Zero Extended with Overflow. The o suffix enables

the overflow bit [OV] in the XER.
subfzeo.Subtract from Zero Extended with Overflow and CR Update. The

o. suffix enables the update of the CR and enables the overflow
bit [OV] in the XER.

Negate

neg
neg.
nego
nego.

rD,rA

The sum ¬ (rA) + 1 is placed into rD.
neg Negate
neg. Negate with CR Update. The dot suffix enables the update of the

CR.
nego Negate with Overflow. The o suffix enables the overflow bit [OV]

in the XER.
nego. Negate with Overflow and CR Update. The o. suffix enables the

update of the CR and enables the overflow bit [OV] in the XER.

Multiply Low
Immediate mulli rD,rA,SIMM

The low-order bits of the 128-bit product (rA) x SIMM are placed into rD.
This instruction can be used with mulhdx or mulhwx to calculate a full
128-bit (or 64-bit) product.
The low-order 32 bits of the product are the correct 32-bit product for 32-
bit mode in 64-bit implementations.

Multiply Low

mullw
mullw.
mullwo
mullwo.

rD,rA,rB

The -bit product (rA) x (rB) is placed into register rD. The 32-bit operands
are the contents of the low-order 32 bits of rA and of rB.
This instruction can be used with mulhwx to calculate a full 64-bit product.
The low-order 32 bits of the product are the correct 32-bit product for 32-
bit mode in 64-bit implementations.
mullw Multiply Low
mullw. Multiply Low with CR Update. The dot suffix enables the update

of the CR.
mullwo Multiply Low with Overflow. The o suffix enables the overflow bit

(OV) in the XER.
mullwo.Multiply Low with Overflow and CR Update. The o. suffix enables

the update of the condition register and enables the overflow bit
(OV) in the XER.

Multiply Low
Doubleword

mulld
mulld.
mulldo
mulldo.

rD,rA,rB

The low-order 64 bits of the 128-bit product (rA) x (rB) are placed into rD.
mulld Multiply Low Doubleword
mulld. Multiply Low Doubleword with CR Update. The dot suffix enables

the update of the CR.
mulldo Multiply Low Doubleword with Overflow. The o suffix enables the

overflow bit [OV] in the XER.
mulldo. Multiply Low Doubleword with Overflow and CR Update. The o.

suffix enables the update of the CR and enables the overflow bit
[OV] in the XER.

Multiply High Word
mulhw
mulhw.

rD,rA,rB

The contents of rA and rB are interpreted as 32-bit signed integers. The
64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into the low-order 32 bits of rD. The value in the high-order 32 bits
of rD is undefined.
mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables the

update of the CR.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 131 of 657

Multiply High
Doubleword

mulhd
mulhd.

rD,rA,rB

The high-order 64 bits of the 128-bit product (rA) x (rB) are placed into
register rD. Both operands and the product are interpreted as signed inte-
gers.
mulld Multiply High Doubleword
mulld. Multiply High Doubleword with CR Update. The dot suffix enables

the update of the CR.

Multiply High Word
Unsigned

mulhwu
mulhwu.

rD,rA,rB

The contents of rA and of rB are interpreted as 32-bit unsigned integers.
The 64-bit product is formed. The high-order 32 bits of the 64-bit product
are placed into the low-order 32 bits of rD. The value in the high-order 32
bits of rD is undefined.
mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix

enables the update of the CR.

Multiply High
Doubleword
Unsigned

mulhdu
mulhdu.

rD,rA,rB

The high-order 64 bits of the 128-bit product (rA) × (rB) are placed into
register rD.
mulhdu Multiply High Word Unsigned
mulhdu. Multiply High Word Unsigned with CR Update. The dot suffix

enables the update of the CR.

Divide Word

divw
divw.
divwo
divwo.

rD,rA,rB

The 64-bit dividend is the signed value of the low-order 32 bits of rA. The
64-bit divisor is the signed value of the low-order 32 bits of rB. The low-
order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of
rD. The contents of the high-order 32 bits of rD are undefined. The
remainder is not supplied as a result.
divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the update

of the CR.
divwo Divide Word with Overflow. The o suffix enables the overflow bit

[OV] in the XER.
divwo. Divide Word with Overflow and CR Update. The o. suffix enables

the update of the CR and enables the overflow bit [OV] in the
XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 132 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an addi instruction
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The subf
instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are provided
in which the third operand is subtracted from the second operand. See Appendix E Simplified Mnemonics for
examples.

4.2.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register rA with either the
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents of
register rB. The comparison is signed for the cmpi and cmp instructions, and unsigned for the cmpli and
cmpl instructions. Table 4-2 summarizes the integer compare instructions.

The PowerPC UISA specifies that the value in the L field determines whether the operands are treated as 32
or 64-bit values. If the L field is ‘0’ the operand length is 32 bits, and if it is ‘1’ the operand length is 64 bits.
The simplified mnemonics for integer compare instructions, as shown in Appendix E Simplified Mnemonics
correctly set or clear the ‘L’ value in the instruction encoding rather than requiring it to be coded as a numeric
operand. When operands are treated as 32-bit signed quantities, bit [32] of (rA) and (rB) is the sign bit.

Divide Doubleword

divd
divd.
divdo
divdo.

rD,rA,rB

The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is
placed into rD. The remainder is not supplied as a result.
divd Divide Doubleword
divd. Divide Doubleword with CR Update. The dot suffix enables the

update of the CR.
divdo Divide Doubleword with Overflow. The o suffix enables the over-

flow bit [OV] in the XER.
divdo. Divide Doubleword with Overflow and CR Update. The o. suffix

enables the update of the CR and enables the overflow bit [OV] in
the XER.

Divide Word
Unsigned

divwu
divwu.
divwuo
divwuo.

rD,rA,rB

The 64-bit dividend is the zero-extended value in the low-order 32 bits of
rA. The 64-bit divisor is the zero-extended value in the low-order 32 bits of
rB. The low-order 32 bits of the 64-bit quotient are placed into the low-
order 32 bits of rD. The contents of the high-order 32 bits of rD are unde-
fined. The remainder is not supplied as a result.
divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix enables

the update of the CR.
divwuo Divide Word Unsigned with Overflow. The o suffix enables the

overflow bit [OV] in the XER.
divwuo.Divide Word Unsigned with Overflow and CR Update. The o. suf-

fix enables the update of the CR and enables the overflow bit
[OV] in the XER.

Divide Double-
word Unsigned

divdu
divdu.
divduo
divduo.

rD,rA,rB

The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is
placed into rD. The remainder is not supplied as a result.
divdu Divide Word Unsigned
divdu. Divide Word Unsigned with CR Update. The dot suffix enables

the update of the CR.
divduo Divide Word Unsigned with Overflow. The o suffix enables the

overflow bit [OV] in the XER.
divduo. Divide Word Unsigned with Overflow and CR Update. The o. suf-

fix enables the update of the CR and enables the overflow bit
[OV] in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 133 of 657

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of the designated CR
field, and clear the other two. XER[SO] is copied into bit [3] of the CR field.

The crfD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise the target
CR field must be specified in the instruction crfD field, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix E Simplified
Mnemonics.

4.2.1.3 Integer Logical Instructions

The logical instructions shown in Table 4-3 perform bit-parallel operations on -bit operands. Logical instruc-
tions with the CR updating enabled (uses dot suffix) and instructions andi. and andis. set CR field CR0
(bits [0 to 2]) to characterize the result of the logical operation. In the default 64-bit mode, these fields are set
as if the 64-bit result were compared algebraically to zero. In 32-bit mode of a 64-bit implementation, these
fields are set as if the sign-extended low-order 32 bits of the result were algebraically compared to zero.
Logical instructions without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix E Simplified Mnemonics for simplified mnemonic examples for integer logical operations.

Table 4-2. Integer Compare Instructions

Name Mnemonic Operand Syntax Operation

Compare
Immediate cmpi crfD,L,rA,SIMM

The value in register rA (rA[32–63] sign-extended to 64 bits if L = ‘0’) is
compared with the sign-extended value of the SIMM operand, treating the
operands as signed integers. The result of the comparison is placed into
the CR field specified by operand crfD.

Compare cmp crfD,L,rA,rB

The value in register rA (rA[32–63] if L = ’0’) is compared with the value in
register rB (rB[32–63] if L = ’0’), treating the operands as signed integers.
The result of the comparison is placed into the CR field specified by oper-
and crfD.

Compare Logical
Immediate cmpli crfD,L,rA,UIMM

The value in register rA (rA[32–63] zero-extended to 64 bits if L = ‘0’) is
compared with 0x0000_0000_0000 || UIMM, treating the operands as
unsigned integers. The result of the comparison is placed into the CR field
specified by operand crfD.

Compare Logical cmpl crfD,L,rA,rB

The value in register rA (rA[32–63] if L = ’0’) is compared with the value in
register rB (rB[32–63] if L = ’0’), treating the operands as unsigned inte-
gers. The result of the comparison is placed into the CR field specified by
operand crfD.

Table 4-3. Integer Logical Instructions

Name Mnemonic Operand Syntax Operation

AND Immediate andi. rA,rS,UIMM
The contents of rS are ANDed with 0x0000_0000_0000 || UIMM and the
result is placed into rA.
The CR is updated.

AND Immediate
Shifted andis. rA,rS,UIMM

The content of rS are ANDed with 0x0000_0000 || UIMM || 0x0000 and
the result is placed into rA.
The CR is updated.

OR Immediate ori rA,rS,UIMM
The contents of rS are ORed with 0x0000_0000_0000 || UIMM and the
result is placed into rA.
The preferred no-op is ori 0,0,0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 134 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

OR Immediate
Shifted oris rA,rS,UIMM The contents of rS are ORed with 0x0000_0000 || UIMM || 0x0000 and

the result is placed into rA.

XOR Immediate xori rA,rS,UIMM The contents of rS are XORed with 0x0000_0000_0000 || UIMM and the
result is placed into rA.

XOR Immediate
Shifted xoris rA,rS,UIMM The contents of rS are XORed with 0x0000_0000 || UIMM || 0x0000 and

the result is placed into rA.

AND
and
and.

rA,rS,rB

The contents of rS are ANDed with the contents of register rB and the
result is placed into rA.
and AND
and. AND with CR Update. The dot suffix enables the update of the

CR.

OR
or
or.

rA,rS,rB

The contents of rS are ORed with the contents of rB and the result is
placed into rA.
or OR
or. OR with CR Update. The dot suffix enables the update of the CR.

XOR
xor
xor.

rA,rS,rB

The contents of rS are XORed with the contents of rB and the result is
placed into rA.
xor XOR
xor. XOR with CR Update. The dot suffix enables the update of the

CR.

NAND
nand
nand.

rA,rS,rB

The contents of rS are ANDed with the contents of rB and the one’s com-
plement of the result is placed into rA.
nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.
Note: nandx, with rS = rB, can be used to obtain the one's complement.

NOR
nor
nor.

rA,rS,rB

The contents of rS are ORed with the contents of rB and the one’s com-
plement of the result is placed into rA.
nor NOR
nor. NOR with CR Update. The dot suffix enables the update of the

CR.
Note: norx, with rS = rB, can be used to obtain the one's complement.

Equivalent
eqv
eqv.

rA,rS,rB

The contents of rS are XORed with the contents of rB and the comple-
mented result is placed into rA.
eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of

the CR.

AND with
Complement

andc
andc.

rA,rS,rB

The contents of rS are ANDed with the one’s complement of the contents
of rB and the result is placed into rA.
andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables

the update of the CR.

OR with
Complement

orc
orc.

rA,rS,rB

The contents of rS are ORed with the complement of the contents of rB
and the result is placed into rA.
orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the

update of the CR.

Extend Sign Byte
extsb
extsb.

rA,rS

The contents of the low-order eight bits of rS are placed into the low-order
eight bits of rA. Bit [56] of rS is placed into the remaining high-order bits of
rA.
extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the

update of the CR.

Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 135 of 657

4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned to
a GPR. The rotation operations rotate a 64-bit quantity left by a specified number of bit positions. Bits that exit
from position 0 enter at position .

Two types of rotation operation are supported:

1. ROTL64 or rotate64 – the value rotated is the given 64-bit value. The rotate64 operation is used to rotate
a given 64-bit quantity.

2. ROTL32 or rotate32 – the value rotated consists of two copies of bits [32-63] of the given 64-bit value,
one copy in bits [0-31] and the other in bits [32-63]. The rotate32 operation is used to rotate a given 32-bit
quantity.

The rotate and shift instructions employ a mask generator. The mask is 64 bits long and consists of ‘1’ bits
from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’ bits elsewhere. The values of Mstart
and Mstop range from 0 to . If Mstart > Mstop, the ‘1’ bits wrap around from position to position 0. Thus the
mask is formed as follows:

if Mstart ≤ Mstop then
mask[mstart–mstop] = ones
mask[all other bits] = zeros

else
mask[mstart–] = ones
mask[0–mstop] = ones
mask[all other bits] = zeros

Extend Sign
Halfword

extsh
extsh.

rA,rS

The contents of the low-order 16 bits of rS are placed into the low-order
16 bits of rA. Bit [48] of rS is placed into the remaining high-order bits of
rA.
extsh Extend Sign Half-word
extsh. Extend Sign Half-word with CR Update. The dot suffix enables

the update of the CR.

Extend Sign Word
extsw
extsw.

rA,rS

The contents of the low-order 32 bits of rS are placed into the low-order
32 bits of rA. Bit [32] of rS is placed into the remaining high-order bits of
rA.
extsw Extend Sign Word
extsw. Extend Sign Word with CR Update. The dot suffix enables the

update of the CR.

Count Leading
Zeros Word

cntlzw
cntlzw.

rA,rS

A count of the number of consecutive zero bits starting at bit [32] of rS is
placed into rA. This number ranges from 0 to 32, inclusive.
If Rc = ’1’ (dot suffix), LT is cleared in CR0.
cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix

enables the update of the CR.

Count Leading
Zeros Doubleword

cntlzd
cntlzd.

rA,rS

A count of the number of consecutive zero bits starting at bit [0] of rS is
placed into rA. This number ranges from 0 to 64, inclusive.
If Rc = ’1’ (dot suffix), LT is cleared in CR0.
cntlzd Count Leading Zeros Doubleword
cntlzd. Count Leading Zeros Doubleword with CR Update. The dot suffix

enables the update of the CR.

Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 136 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

It is not possible to specify an all-zero mask. The use of the mask is described in the following sections.

If CR updating is enabled, rotate and shift instructions set CR0[0–2] according to the contents of rA at the
completion of the instruction. Rotate and shift instructions do not change the values of XER[OV] and
XER[SO] bits. Rotate and shift instructions, except algebraic right shifts, do not change the XER[CA] bit.

See Appendix E Simplified Mnemonics for a complete list of simplified mnemonics that allows simpler coding
of often-used functions such as clearing the leftmost or rightmost bits of a register, left justifying or right justi-
fying an arbitrary field, and simple rotates and shifts.

Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into the
target register under control of a mask (if a mask bit is ‘1’ the associated bit of the rotated data is placed into
the target register, and if the mask bit is 0 the associated bit in the target register is unchanged), or ANDed
with a mask before being placed into the target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by a left-rotation of
64 - n, where n is the number of bits by which to rotate right. It also allows right-rotation of the contents of the
low-order 32 bits of a register to be performed by a left-rotation of 32 - n, where n is the number of bits by
which to rotate right.

The integer rotate instructions are summarized in Table 4-4

Table 4-4. Integer Rotate Instructions

Name Mnemonic Operand Syntax Operation

Rotate Left
Doubleword
Immediate then
Clear Left

rldicl
rldicl.

rA,rS,SH,MB

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB through bit [63] and 0 bits elsewhere. The rotated data is ANDed
with the generated mask and the result is placed into register rA.
rldicl Rotate Left Doubleword Immediate then Clear Left
rldicl. Rotate Left Doubleword Immediate then Clear Left with CR

Update. The dot suffix enables the update of the CR.

Rotate Left
Doubleword
Immediate then
Clear Right

rldicr
rldicr.

rA,rS,SH,ME

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from bit [0] through the bit
specified by operand ME and 0 bits elsewhere. The rotated data is ANDed
with the generated mask and the result is placed into register rA.
rldicr Rotate Left Doubleword Immediate then Clear Right
rldicl. Rotate Left Doubleword Immediate then Clear Right with CR

Update. The dot suffix enables the update of the CR.

Rotate Left
Doubleword
Immediate then
Clear

rldic
rldic.

rA,rS,SH,MB

The contents of register rS are rotated left by the number of bits specified
by operand SH. A mask is generated having ’1’ bits from the bit specified
by operand MB through bit [63 – SH], and 0 bits elsewhere. The rotated
data is ANDed with the generated mask and the result is placed into regis-
ter rA.
rldic Rotate Left Doubleword Immediate then Clear
rldic. Rotate Left Doubleword Immediate then Clear with CR Update.

The dot suffix enables the update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 137 of 657

Rotate Left Word
Immediate then
AND with Mask

rlwinm
rlwinm.

rA,rS,SH,MB,ME

The contents of register rS are rotated left by the number of bits specified
by operand SH. A mask is generated having ’1’ bits from the bit specified
by operand MB + 32 through the bit specified by operand ME + 32 and 0
bits elsewhere. The rotated data is ANDed with the generated mask and
the result is placed into register rA.
rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with CR

Update. The dot suffix enables the update of the CR.

Rotate Left
Doubleword then
Clear Left

rldcl
rldcl.

rA,rS,rB,MB

The contents of register rS are rotated left by the number of bits specified
by operand in the low-order six bits of rB. A mask is generated having ’1’
bits from the bit specified by operand MB through bit [63] and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result
is placed into register rA.
rldcl Rotate Left Doubleword then Clear Left
rldcl. Rotate Left Doubleword then Clear Left with CR Update. The dot

suffix enables the update of the CR.

Rotate Left
Doubleword then
Clear Right

rldcr
rldcr.

rA,rS,rB,ME

The contents of register rS are rotated left by the number of bits specified
by operand in the low-order six bits of rB. A mask is generated having ’1’
bits from bit [0] through the bit specified by operand ME and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result
is placed into register rA.
rldcr Rotate Left Doubleword then Clear Right
rldcr. Rotate Left Doubleword then Clear Right with CR Update. The

dot suffix enables the update of the CR.

Rotate Left Word
then AND with
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME

The contents of rS are rotated left by the number of bits specified by oper-
and in the low-order five bits of rB. A mask is generated having ’1’ bits
from the bit specified by operand MB + 32 through the bit specified by
operand ME + 32 and 0 bits elsewhere. The rotated word is ANDed with
the generated mask and the result is placed into rA.
rlwnm Rotate Left Word then AND with Mask
rlwnm. Rotate Left Word then AND with Mask with CR Update. The dot
suffix enables the update of the CR.

Rotate Left Word
Immediate then
Mask Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB + 32 through the bit specified by operand ME + 32 and 0 bits
elsewhere. The rotated word is inserted into rA under control of the gener-
ated mask.
rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR Update.
The dot suffix enables the update of the CR.

Rotate Left
Doubleword
Immediate then
Mask Insert

rldimi
rldimi.

rA,rS,SH,MB

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB through [63 – SH] (the bit specified by SH), and 0 bits elsewhere.
The rotated data is inserted into rA under control of the generated mask.
rldimi Rotate Left Word Immediate then Mask
rldimi. Rotate Left Word Immediate then Mask Insert with CR Update.
The dot suffix enables the update of the CR.

Table 4-4. Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 138 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift operations
are obtained by specifying masks and shift values for certain rotate instructions. Simplified mnemonics
(shown in Appendix E Simplified Mnemonics) are provided to make coding of such shifts simpler and easier
to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by 2n. The setting of
XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix B Multiple-Precision Shifts.

The integer shift instructions are summarized in Table 4-5.

Table 4-5. Integer Shift Instructions

Name Mnemonic Operand Syntax Operation

Shift Left
Doubleword

sld
sld.

rA,rS,rB

The contents of rS are shifted left the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 0 are lost. Zeros are sup-
plied to the vacated positions on the right. The result is placed into rA.
Shift amounts from 64 to 127 give a zero result.
sld Shift Left Doubleword
sld. Shift Left Doubleword with CR Update. The dot suffix enables the

update of the CR.

Shift Left Word
slw
slw.

rA,rS,rB

The contents of the low-order 32 bits of rS are shifted left the number of
bits specified by operand in the low-order six bits of rB. Bits shifted out of
position 32 are lost. Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into the low-order 32 bits of rA. The value
in the high-order 32 bits of rA is cleared, and shift amounts from 32 to 63
give a zero result.
slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the

update of the CR.

Shift Right
Doubleword

srd
srd.

rA,rS,rB

The contents of rS are shifted right the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 63 are lost. Zeros are
supplied to the vacated positions on the left. The result is placed into rA.
Shift amounts from 64 to 127 give a zero result.
srd Shift Right Doubleword
srd. Shift Right Doubleword with CR Update. The dot suffix enables

the update of the CR.

Shift Right Word
srw
srw.

rA,rS,rB

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by the low-order six bits of rB. Bits shifted out of position 63
are lost. Zeros are supplied to the vacated positions on the left. The 32-bit
result is placed into the low-order 32 bits of rA. The value in the high-order
32 bits of rA is cleared to zero, and shift amounts from 32 to 63 give a zero
result.
srw Shift Right Word
srw. Shift Right Word with CR Update. The dot suffix enables the

update of the CR.

Shift Right
Algebraic
Doubleword
Immediate

sradi
sradi.

rA,rS,SH

The contents of rS are shifted right the number of bits specified by oper-
and SH. Bits shifted out of position 63 are lost. Bit [0] of rS is replicated to
fill the vacated positions on the left. The result is placed into rA. XER[CA]
is set if rS contains a negative number and any ’1’ bits are shifted out of
position 63; otherwise XER[CA] is cleared. An operand SH of zero causes
rA to be loaded with the contents of rS and XER[CA] to be cleared to zero.
sradi Shift Right Algebraic Doubleword Immediate
sradi. Shift Right Algebraic Doubleword Immediate with CR Update.

The dot suffix enables the update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 139 of 657

4.2.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions

• Floating-point multiply-add instructions

• Floating-point rounding and conversion instructions

• Floating-point compare instructions

• Floating-point status and control register instructions

• Floating-point move instructions

Note: MSR[FP] must be set in order for any of these instructions (including the floating-point loads and
stores) to be executed. If MSR[FP] = ’0’ when any floating-point instruction is attempted, the floating-point
unavailable exception is taken (see Section 6.4.10 Floating-Point Unavailable Exception (0x00800)). See
Section 4.2.3 Load and Store Instructions for information about floating-point loads and stores.

The PowerPC Architecture supports a floating-point system as defined in the IEEE-754 standard, but requires
software support to conform with that standard. Floating-point operations conform to the IEEE-754 standard,
with the exception of operations performed with the fmadd, fres, fsel, and frsqrte instructions, or if software
sets the non-IEEE mode bit [NI] in the FPSCR. Refer to Section 3.3 Floating-Point Execution Models—UISA,
for detailed information about the floating-point formats and exception conditions. Also, refer to
Appendix C Floating-Point Models for more information on the floating-point execution models used by the
PowerPC Architecture.

Shift Right
Algebraic Word
Immediate

srawi
srawi.

rA,rS,SH

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by operand SH. Bits shifted out of position 63 are lost. Bit
[32] of rS is replicated to fill the vacated positions on the left. The 32-bit
result is sign extended and placed into the low-order 32 bits of rA.
srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot

suffix enables the update of the CR.

Shift Right
Algebraic
Doubleword

srad
srad.

rA,rS,rB

The contents of rS are shifted right the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 63 are lost. Bit [0] of rS is
replicated to fill the vacated positions on the left. The result is placed into
rA.
srad Shift Right Algebraic Doubleword
srad. Shift Right Algebraic Doubleword with CR Update. The dot suffix

enables the update of the CR.

Shift Right
Algebraic Word

sraw
sraw.

rA,rS,rB

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by the low-order six bits of rB. Bits shifted out of position 63
are lost. Bit [32] of rS is replicated to fill the vacated positions on the left.
The 32-bit result is placed into the low-order 32 bits of rA.
sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix

enables the update of the CR.

Table 4-5. Integer Shift Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 140 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax Operation

Floating Add
(Double-
Precision)

fadd
fadd.

frD,frA,frB

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.
fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix

enables the update of the CR.

Floating Add
Single

fadds
fadds.

frD,frA,frB

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.
fadds Floating Add Single
fadds. Floating Add Single with CR Update. The dot suffix enables the

update of the CR.

Floating Subtract
(Double-
Precision)

fsub
fsub.

frD,frA,frB

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.
fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot

suffix enables the update of the CR.

Floating Subtract
Single

fsubs
fsubs.

frD,frA,frB

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.
fsubs Floating Subtract Single
fsubs. Floating Subtract Single with CR Update. The dot suffix enables

the update of the CR.

Floating Multiply
(Double-Precision)

fmul
fmul.

frD,frA,frC

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.
fmul Floating Multiply (Double-Precision)
fmul. Floating Multiply (Double-Precision) with CR Update. The dot suf-

fix enables the update of the CR.

Floating Multiply
Single

fmuls
fmuls.

frD,frA,frC

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.
fmuls Floating Multiply Single
fmuls. Floating Multiply Single with CR Update. The dot suffix enables

the update of the CR.

Floating Divide
(Double-Precision)

fdiv
fdiv.

frD,frA,frB

The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.
fdiv Floating Divide (Double-Precision)
fdiv. Floating Divide (Double-Precision) with CR Update. The dot suf-

fix enables the update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 141 of 657

Floating Divide
Single

fdivs
fdivs.

frD,frA,frB

The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.
fdivs Floating Divide Single
fdivs. Floating Divide Single with CR Update. The dot suffix enables the

update of the CR.

Floating Square
Root
(Double-Precision)

fsqrt
fsqrt.

frD,frB

The square root of the floating-point operand in register frB is placed into
register frD.
fsqrt Floating Square Root (Double-Precision)
fsqrt. Floating Square Root (Double-Precision) with CR Update. The

dot suffix enables the update of the CR.
Note: This instruction is optional.

Floating Square
Root Single

fsqrts
fsqrts.

frD,frB

The square root of the floating-point operand in register frB is placed into
register frD.
fsqrts Floating Square Root Single
fsqrts. Floating Square Root Single with CR Update. The dot suffix

enables the update of the CR.
Note: This instruction is optional.

Floating Recipro-
cal Estimate Single

fres
fres.

frD,frB

A single-precision estimate of the reciprocal of the floating-point operand
in register frB is placed into frD. The estimate placed into frD is correct to
a precision of one part in 256 of the reciprocal of frB.
fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot suf-

fix enables the update of the CR.
Note: This instruction is optional.

Floating Recipro-
cal Square Root
Estimate

frsqrte
frsqrte.

frD,frB

A double-precision estimate of the reciprocal of the square root of the
floating-point operand in register frB is placed into frD. The estimate
placed into frD is correct to a precision of one part in 32 of the reciprocal
of the square root of frB.
frsqrte Floating Reciprocal Square Root Estimate
frsqrte. Floating Reciprocal Square Root estimate with CR Update. The

dot suffix enables the update of the CR.
Note: This instruction is optional.

Floating Select fsel frD,frA,frC,frB

The floating-point operand in frA is compared to the value zero. If the
operand is greater than or equal to zero, frD is set to the contents of frC. If
the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards ‘+0’ as equal
to ‘-0’).
fsel Floating Select
fsel. Floating Select with CR Update. The dot suffix enables the

update of the CR.
Note: This instruction is optional.

Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 142 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract
portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the [FR] and [FI] bits, and the FPRF field are set based
on the final result of the operation, and not on the result of the multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were performed using two
separate instructions (fmuls, followed by fadds or fsubs). That is, multiplication of infinity by zero or of
anything by an SNaN, and/or addition of an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax Operation

Floating Multiply-
Add
(Double-Precision)

fmadd
fmadd.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.
fmadd Floating Multiply-Add (Double-Precision)
fmadd. Floating Multiply-Add (Double-Precision) with CR Update. The

dot suffix enables the update of the CR.

Floating Multiply-
Add Single

fmadds
fmadds.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.
fmadds Floating Multiply-Add Single
fmadds.Floating Multiply-Add Single with CR Update. The dot suffix

enables the update of the CR.

Floating Multiply-
Subtract
(Double-Precision)

fmsub
fmsub.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fmsub Floating Multiply-Subtract (Double-Precision)
fmsub. Floating Multiply-Subtract (Double-Precision) with CR Update.

The dot suffix enables the update of the CR.

Floating Multiply-
Subtract Single

fmsubs
fmsubs.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fmsubs Floating Multiply-Subtract Single
fmsubs.Floating Multiply-Subtract Single with CR Update. The dot suffix

enables the update of the CR.

Floating Negative
Multiply- Add
(Double-Precision)

fnmadd
fnmadd.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.
fnmadd Floating Negative Multiply-Add (Double-Precision)
fnmadd.Floating Negative Multiply-Add (Double-Precision) with CR

Update. The dot suffix enables update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 143 of 657

For more information on multiply-add instructions, refer to Appendix C.2 Execution Model for Multiply-Add
Type Instructions.

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision number
to a 32-bit single-precision floating-point number. The floating-point convert instructions convert a 64-bit
double-precision floating-point number to a 32-bit signed integer number.

The PowerPC Architecture defines bits [0–31] of floating-point register frD as undefined when executing the
Floating Convert to Integer Word (fctiw) and Floating Convert to Integer Word with Round toward Zero
(fctiwz) instructions. The floating-point rounding instructions are shown in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in Appendix C Floating-
Point Models.

Floating Negative
Multiply- Add
Single

fnmadds
fnmadds.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.
fnmaddsFloating Negative Multiply-Add Single
fnmadds.Floating Negative Multiply-Add Single with CR Update. The dot

suffix enables the update of the CR.

Floating Negative
Multiply- Subtract
(Double-Precision)

fnmsub
fnmsub.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fnmsub Floating Negative Multiply-Subtract (Double-Precision)
fnmsub.Floating Negative Multiply-Subtract (Double-Precision) with CR

Update. The dot suffix enables the update of the CR.

Floating Negative
Multiply- Subtract
Single

fnmsubs
fnmsubs.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fnmsubsFloating Negative Multiply-Subtract Single
fnmsubs.Floating Negative Multiply-Subtract Single with CR Update. The

dot suffix enables the update of the CR.

Table 4-7. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 144 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax Operation

Floating Round to
Single-Precision

frsp
frsp.

frD,frB

The floating-point operand in frB is rounded to single-precision using the
rounding mode specified by FPSCR[RN] and placed into frD.
frsp Floating Round to Single-Precision
frsp. Floating Round to Single-Precision with CR Update. The dot suf-

fix enables the update of the CR.

Floating Convert
from Integer
Doubleword

fcfid
fcfid.

frD,frB

The 64-bit signed integer operand in frB is converted to an infinitely pre-
cise floating-point integer. The result of the conversion is rounded to dou-
ble-precision using the rounding mode specified by FPSCR[RN] and
placed into register frD.
fcfid Floating Convert from Integer Doubleword
fcfid. Floating Convert from Integer Doubleword with CR Update. The

dot suffix enables the update of the CR.

Floating Convert to
Integer
Doubleword

fctid
fctid.

frD,frB

The floating-point operand in register frB is converted to a 64-bit signed
integer, using the rounding mode specified by FPSCR[RN], and placed in
frD.
fctiw Floating Convert to Integer Doubleword
fctiw. Floating Convert to Integer Doubleword with CR Update. The dot

suffix enables the update of the CR.

Floating Convert to
Integer Double-
word with Round
toward Zero

fctidz
fctidz.

frD,frB

The floating-point operand in register frB is converted to a 64-bit signed
integer, using the rounding mode Round toward Zero and placed in frD.
fctidz Floating Convert to Integer Doubleword with Round toward Zero
fctidz. Floating Convert to Integer Doubleword with Round toward Zero

with CR Update. The dot suffix enables the update of the CR.

Floating Convert to
Integer Word

fctiw
fctiw.

frD,frB

The floating-point operand in register frB is converted to a 32-bit signed
integer, using the rounding mode specified by FPSCR[RN], and placed in
the low-order 32 bits of frD. Bits [0–31] of frD are undefined.
fctiw Floating Convert to Integer Word
fctiw. Floating Convert to Integer Word with CR Update. The dot suffix

enables the update of the CR.

Floating Convert to
Integer Word with
Round toward Zero

fctiwz
fctiwz.

frD,frB

The floating-point operand in register frB is converted to a 32-bit signed
integer, using the rounding mode Round toward Zero, and placed in the
low-order 32 bits of frD. Bits [0–31] of frD are undefined.
fctiwz Floating Convert to Integer Word with Round toward Zero
fctiwz. Floating Convert to Integer Word with Round toward Zero with

CR Update. The dot suffix enables the update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 145 of 657

4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers and the comparison
ignores the sign of zero (that is ‘+0’ = ‘-0’). The comparison can be ordered or unordered. The comparison
sets one bit in the designated CR field and clears the other three bits. The floating-point condition code
(FPCC) in bits [16–19] of the floating-point status and control register (FPSCR) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9.

The floating-point compare instructions are summarized in Table 4-10.

4.2.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by a
given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initi-
ated by the given processor appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR instruc-
tion has completed. In particular:

• All exceptions caused by the previously initiated instructions are recorded in the FPSCR before the
FPSCR instruction is initiated.

• All invocations of the floating-point exception handler caused by the previously initiated instructions have
occurred before the FPSCR instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the settings of any FPSCR bits
appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR instructions.

The FPSCR instructions are summarized in Table 4-11.

Table 4-9. CR Bit Settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

Note: A result of “unordered” indicates that at least one of operations of the comparison was a NaN.

Table 4-10. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax Operation

Floating Compare
Unordered fcmpu crfD,frA,frB The floating-point operand in frA is compared to the floating-point operand

in frB. The result of the compare is placed into crfD and the FPCC.

Floating Compare
Ordered fcmpo crfD,frA,frB The floating-point operand in frA is compared to the floating-point operand

in frB. The result of the compare is placed into crfD and the FPCC.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 146 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax Operation

Move from FPSCR
mffs
mffs.

frD

The contents of the FPSCR are placed into bits [32–63] of frD. Bits [0–31]
of frD are undefined.
mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix enables the

update of the CR.

Move to Condition
Register from
FPSCR

mcrfs crfD,crfS
The contents of FPSCR field specified by operand crfS are copied to the
CR field specified by operand crfD. All exception bits copied (except FEX
and VX bits) are cleared in the FPSCR.

Move to FPSCR
Field Immediate

mtfsfi
mtfsfi.

crfD,IMM

The contents of the IMM field are placed into FPSCR field crfD. The con-
tents of FPSCR[FX] are altered only if crfD = ’0’.
mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot suffix

enables the update of the CR.

Move to FPSCR
Fields

mtfsf
mtfsf.

FM,frB

Bits [32–63] of frB are placed into the FPSCR under control of the field
mask specified by FM. The field mask identifies the 4-bit fields affected.
Let i be an integer in the range 0–7. If FM[i] = ‘1’, FPSCR field i (FPSCR
bits 4×i through 4×i+3) is set to the contents of the corresponding field of
the low-order 32 bits of frB.
The contents of FPSCR[FX] are altered only if FM[0] = ‘1’.
mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables

the update of the CR.

Move to FPSCR
Bit 0

mtfsb0
mtfsb0.

crbD

The FPSCR bit location specified by operand crbD is cleared.
Bits [1, 2] (FEX and VX) cannot be reset explicitly.
mtfsb0 Move to FPSCR Bit [0]
mtfsb0. Move to FPSCR Bit [0] with CR Update. The dot suffix enables

the update of the CR.

Move to FPSCR
Bit 1

mtfsb1
mtfsb1.

crbD

The FPSCR bit location specified by operand crbD is set.
Bits [1, 2] (FEX and VX) cannot be set explicitly.
mtfsb1 Move to FPSCR Bit [1]
mtfsb1. Move to FPSCR Bit [1] with CR Update. The dot suffix enables

the update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 147 of 657

4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altering the sign bit (bit [0]) as described
for the fneg, fabs, and fnabs instructions in Table 4-12. The fneg, fabs, and fnabs instructions may alter the
sign bit of a NaN. The floating-point move instructions do not modify the FPSCR. The CR update option in
these instructions controls the placing of result status into CR1. If the CR update option is enabled, CR1 is
set; otherwise, CR1 is unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can occur out
of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the load
and store instructions, which consist of the following:

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Floating-point load instructions

• Floating-point store instructions

• Memory synchronization instructions

Table 4-12. Floating-Point Move Instructions

Name Mnemonic Operand Syntax Operation

Floating Move
Register

fmr
fmr.

frD,frB

The contents of frB are placed into frD.
fmr Floating Move Register
fmr. Floating Move Register with CR Update. The dot suffix enables

the update of the CR.

Floating Negate
fneg
fneg.

frD,frB

The contents of frB with bit [0] inverted are placed into frD.
fneg Floating Negate
fneg. Floating Negate with CR Update. The dot suffix enables the

update of the CR.

Floating Absolute
Value

fabs
fabs.

frD,frB

The contents of frB with bit [0] cleared are placed into frD.
fabs Floating Absolute Value
fabs. Floating Absolute Value with CR Update. The dot suffix enables

the update of the CR.

Floating Negative
Absolute Value

fnabs
fnabs.

frD,frB

The contents of frB with bit [0] set are placed into frD.
fnabs Floating Negative Absolute Value
fnabs. Floating Negative Absolute Value with CR Update. The dot suffix

enables the update of the CR.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 148 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index
mode (register contents + immediate), register indirect with index mode (register contents + register
contents), or register indirect mode (register contents only). See Section 4.1.4.2 Effective Address Calcula-
tion for information about calculating effective addresses.

Note: In some implementations, operations that are not naturally aligned may suffer performance degrada-
tion. Refer to Section 6.4.8.1 Integer Alignment Exceptions for additional information about load and store
address alignment exceptions.

Register indirect addressing for integer loads and stores is discussed in the following sections:

• Register Indirect with Immediate Index Addressing for Integer Loads and Stores

• Register Indirect with Index Addressing for Integer Loads and Stores

• Register Indirect Addressing for Integer Loads and Stores

Register Indirect with Immediate Index Addressing for Integer Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign
extended, and added to the contents of a general-purpose register specified in the instruction (rA operand) to
generate the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the
immediate index (d operand) in place of the contents of r0. The option to specify rA or 0 is shown in the
instruction descriptions as (rA|0).

Figure 4-1 shows how an effective address is generated when using register indirect with immediate index
addressing.

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Stores

No

GPR (rA)

0

GPR (rD/rS)

Store

Load

Yes

Instruction Encoding:

+

Effective Address

rA=0?

Memory
Interface

Opcode rD/rS rA d

0 5 6 10 11 15 16 31

0 47 48 63

Sign Extension d

0 630 63

0 63

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 149 of 657

Register Indirect with Index Addressing for Integer Loads and Stores

Instructions using this addressing mode cause the contents of two general-purpose registers (specified as
operands rA and rB) to be added in the generation of the effective address. A zero in place of the rA operand
causes a zero to be added to the contents of the general-purpose register specified in operand rB (or the
value zero for lswi and stswi instructions). The option to specify rA or 0 is shown in the instruction descrip-
tions as (rA|0).

Figure 4-2 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

No

GPR (rA)

0

+

GPR (rD/rS)
Memory
Interface

Store

Load

Yes
GPR (rB)

Instruction Encoding:

rA=0?

Effective Address

Reserved

0 63

0 63 0 63

0 63

0 5 6 10 11 15 16 31

Opcode rD/rS rA rB Subopcode 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 150 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Register Indirect Addressing for Integer Loads and Stores

Instructions using this addressing mode use the contents of the general-purpose register specified by the rA
operand as the effective address. A zero in the rA operand causes an effective address of zero to be gener-
ated. The option to specify rA or 0 is shown in the instruction descriptions as (rA|0).

Figure 4-3 shows how an effective address is generated when using register indirect addressing.

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

No

Store

Load

Yes
0 0

Instruction Encoding:

rA=0?

GPR (rA)

Effective Address

063

GPR (rD/rS)
Memory
Interface

Reserved
Opcode rD/rS rA NB Subopcode 0

0 5 6 10 11 15 16 31

0 63

0 63

0 63

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 151 of 657

4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, halfword, word, or doubleword addressed by the effective address
(EA) is loaded into rD. Many integer load instructions have an update form, in which rA is updated with the
generated effective address. For these forms, if rA ≠ 0 and rA ≠ rD (otherwise invalid), the EA is placed into
rA and the memory element (byte, halfword, word, or doubleword) addressed by the EA is loaded into rD.

Note: The PowerPC Architecture defines load with update instructions with operand rA = 0 or rA = rD as
invalid forms.

The default byte and bit ordering is big-endian in the PowerPC Architecture; see Section 3.1.2 Byte Ordering
for information about little-endian byte ordering.

Note: In some implementations of the architecture, the load algebraic instructions (lha, lhax, lwa, lwax) and
the load with update (lbzu, lbzux, lhzu, lhzux, lhau, lhaux, lwaux, ldu, ldux) instructions may execute with
a greater latency than other types of load instructions. Moreover, the load with update instructions might take
longer to execute in some implementations than the corresponding pair of a nonupdate load followed by an
add instruction to update the register.

Table 4-13 summarizes the integer load instructions.

Table 4-13. Integer Load Instructions

Name Mnemonic Operand Syntax Operation

Load Byte and
Zero lbz rD,d(rA)

The EA is the sum (rA|0) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and
Zero Indexed lbzx rD,rA,rB

The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA
is loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and
Zero with Update lbzu rD,d(rA)

The EA is the sum (rA) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Byte and
Zero with Update
Indexed

lbzux rD,rA,rB
The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Halfword and
Zero lhz rD,d(rA)

The EA is the sum (rA|0) + d. The halfword in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Halfword and
Zero Indexed lhzx rD,rA,rB

The EA is the sum (rA|0) + (rB). The halfword in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Halfword and
Zero with Update lhzu rD,d(rA)

The EA is the sum (rA) + d. The halfword in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Halfword and
Zero with Update
Indexed

lhzux rD,rA,rB
The EA is the sum (rA) + (rB). The halfword in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Halfword
Algebraic lha rD,d(rA)

The EA is the sum (rA|0) + d. The halfword in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded halfword.

Load Halfword
Algebraic Indexed lhax rD,rA,rB

The EA is the sum (rA|0) + (rB). The halfword in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded halfword.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 152 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Load Halfword
Algebraic with
Update

lhau rD,d(rA)

The EA is the sum (rA) + d. The halfword in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded halfword. The EA is
placed into rA.

Load Halfword
Algebraic with
Update Indexed

lhaux rD,rA,rB

The EA is the sum (rA) + (rB). The halfword in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded halfword. The EA
is placed into rA.

Load Word and
Zero lwz rD,d(rA)

The EA is the sum (rA|0) + d. The word in memory addressed by the EA is
loaded into the low-order 32 bits of rD. The remaining bits in the high-order
32 bits of rD are cleared.

Load Word and
Zero Indexed lwzx rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared.

Load Word and
Zero with Update lwzu rD,d(rA)

The EA is the sum (rA) + d. The word in memory addressed by the EA is
loaded into the low-order 32 bits of rD. The remaining bits in the high-order
32 bits of rD are cleared. The EA is placed into rA.

Load Word and
Zero with Update
Indexed

lwzux rD,rA,rB
The EA is the sum (rA) + (rB). The word in memory addressed by the EA
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared. The EA is placed into rA.

Load Word
Algebraic lwa rD,ds(rA)

The EA is the sum (rA|0) + (ds||’00’). The word in memory addressed by
the EA is loaded into the low-order 32 bits of rD. The remaining bits in the
high-order 32 bits of rD are filled with a copy of the most significant bit of
the loaded word.

Load Word
Algebraic Indexed lwax rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are filled with a copy of the most significant bit of the
loaded word.

Load Word
Algebraic with
Update Indexed

lwaux rD,rA,rB

The EA is the sum (rA) + (rB). The word in memory addressed by the EA
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are filled with a copy of the most significant bit of the
loaded word. The EA is placed into rA.

Load Doubleword ld rD,ds(rA) The EA is the sum (rA|0) + (ds||’00’). The doubleword in memory
addressed by the EA is loaded into rD.

Load Doubleword
Indexed ldx rD,rA,rB The EA is the sum (rA|0) + (rB). The doubleword in memory addressed by

the EA is loaded into rD.

Load Doubleword
with Update ldu rD,ds(rA) The EA is the sum (rA) + (ds||’00’). The doubleword in memory addressed

by the EA is loaded into rD. The EA is placed into rA.

Load Doubleword
with Update
Indexed

ldux rD,rA,rB The EA is the sum (rA) + (rB). The doubleword in memory addressed by
the EA is loaded into rD. The EA is placed into rA.

Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 153 of 657

4.2.3.3 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, halfword, word, or doubleword in
memory addressed by the EA (effective address). Many store instructions have an update form, in which rA is
updated with the EA. For these forms, the following rules apply:

• If rA ≠ 0, the effective address is placed into rA.

• If rS = rA, the contents of register rS are copied to the target memory element, then the generated EA is
placed into rA (rS).

In general, the PowerPC Architecture defines a sequential execution model. However, when a store instruc-
tion modifies a memory location that contains an instruction, software synchronization (isync)is required to
ensure that subsequent instruction fetches from that location obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate system library
program before attempting to execute the modified instructions to ensure that the modifications have taken
effect with respect to instruction fetching.

The PowerPC Architecture defines store with update instructions with rA = ’0’ as an invalid form. In addition,
it defines integer store instructions with the CR update option enabled (Rc field, bit [31], in the instruction
encoding = ‘1’) to be an invalid form. Table 4-14 provides a summary of the integer store instructions.

Table 4-14. Integer Store Instructions

Name Mnemonic Operand Syntax Operation

Store Byte stb rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order eight bits of rS
are stored into the byte in memory addressed by the EA.

Store Byte Indexed stbx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of
rS are stored into the byte in memory addressed by the EA.

Store Byte with
Update stbu rS,d(rA)

The EA is the sum (rA) + d. The contents of the low-order eight bits of rS
are stored into the byte in memory addressed by the EA. The EA is placed
into rA.

Store Byte with
Update Indexed stbux rS,rA,rB

The EA is the sum (rA) + (rB). The contents of the low-order eight bits of
rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.

Store Halfword sth rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order 16 bits of rS
are stored into the halfword in memory addressed by the EA.

Store Halfword
Indexed sthx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits of

rS are stored into the halfword in memory addressed by the EA.

Store Halfword
with Update sthu rS,d(rA)

The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are
stored into the halfword in memory addressed by the EA. The EA is
placed into rA.

Store Halfword
with Update
Indexed

sthux rS,rA,rB
The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS
are stored into the halfword in memory addressed by the EA. The EA is
placed into rA.

Store Word stw rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order 32 bits of rS
are stored into the word in memory addressed by the EA.

Store Word
Indexed stwx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order 32 bits of

rS are stored into the word in memory addressed by the EA.

Store Word with
Update stwu rS,d(rA)

The EA is the sum (rA) + d. The contents of the low-order 32 bits of rS are
stored into the word in memory addressed by the EA. The EA is placed
into rA.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 154 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions

Table 4-15 describes integer load and store with byte-reverse instructions. Note that in some PowerPC imple-
mentations, load byte-reverse instructions might have a greater latency than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a PowerPC system oper-
ating with little-endian byte order, these instructions have the effect of loading and storing data in big-endian
order. For more information about big-endian and little-endian byte ordering, see Section 3.1.2 Byte Ordering.

Store Word with
Update Indexed stwux rS,rA,rB

The EA is the sum (rA) + (rB). The contents of the low-order 32 bits of rS
are stored into the word in memory addressed by the EA. The EA is
placed into rA.

Store Doubleword std rS,ds(rA) The EA is the sum (rA|0) + (ds||’00’). The contents of rS are stored into
the doubleword in memory addressed by the EA.

Store Doubleword
Indexed stdx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of rS are stored into the

doubleword in memory addressed by the EA.

Store Doubleword
with Update stdu rS,ds(rA) The EA is the sum (rA) + (ds||’00’). The contents of rS are stored into the

doubleword in memory addressed by the EA. The EA is placed into rA.

Store Doubleword
with Update
Indexed

stdux rS,rA,rB The EA is the sum (rA) + (rB). The contents of rS are stored into the dou-
bleword in memory addressed by the EA. The EA is placed into rA.

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax Operation

Load Halfword
Byte-Reverse
Indexed

lhbrx rD,rA,rB

The EA is the sum (rA|0) + (rB). The high-order eight bits of the halfword
addressed by the EA are loaded into the low-order eight bits of rD. The
next eight higher-order bits of the halfword in memory addressed by the
EA are loaded into the next eight lower-order bits of rD. The remaining rD
bits are cleared.

Load Word Byte-
Reverse Indexed lwbrx rD,rA,rB

The EA is the sum (rA|0) + (rB). Bits [0–7] of the word in memory
addressed by the EA are loaded into the low-order eight bits of rD.
Bits [8–15] of the word in memory addressed by the EA are loaded into
bits [48–55] of rD. Bits [16-23] of the word in memory addressed by the
EA are loaded into bits [40–47] of rD. Bits [24–31] of the word in memory
addressed by the EA are loaded into bits [32–39] of rD. The remaining
bits in rD are cleared.

Store Halfword
Byte- Reverse
Indexed

sthbrx rS,rA,rB

The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of
rS are stored into the high-order eight bits of the halfword in memory
addressed by the EA. The contents of the next lower-order eight bits of rS
are stored into the next eight higher-order bits of the halfword in memory
addressed by the EA.

Store Word Byte-
Reverse Indexed stwbrx rS,rA,rB

The effective address is the sum (rA|0) + (rB). The contents of the low-
order eight bits of rS are stored into bits [0–7] of the word in memory
addressed by EA. The contents of the next eight lower-order bits of rS are
stored into bits [8–15] of the word in memory addressed by the EA. The
contents of the next eight lower-order bits of rS are stored into bits [16-23]
of the word in memory addressed by the EA. The contents of the next
eight lower-order bits of rS are stored into bits [24–31] of the word
addressed by the EA.

Table 4-14. Integer Store Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 155 of 657

4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load multiple
and store multiple instructions may have operands that require memory accesses crossing a 4-Kbyte page
boundary. As a result, these instructions may be interrupted by a DSI exception associated with the address
translation of the second page. Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that the low-order byte of
GPR31 is loaded from or stored into the last byte of an aligned quad word in memory; if the effective address
is not correctly aligned, it may take significantly longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an lmw or stmw
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for
more information.

The PowerPC Architecture defines the load multiple word (lmw) instruction with rA in the range of registers to
be loaded, including the case in which rA = ’0’ as an invalid form.

4.2.3.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from regis-
ters to memory without concern for alignment. These instructions can be used for a short move between arbi-
trary memory locations or to initiate a long move between misaligned memory fields. However, in some
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual load or store instructions that produce the same results.
Table 4-17 summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS = ‘4’ or ‘5’, and the last register
loaded or stored is less than or equal to ‘12’.

In some PowerPC implementations operating with little-endian byte order, execution of a load or string
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for
more information.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax Operation

Load Multiple
Word lmw rD,d(rA) The EA is the sum (rA|0) + d. n = (32 – rD).

Store Multiple
Word stmw rS,d(rA) The EA is the sum (rA|0) + d. n = (32 – rS).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 156 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Load string and store string instructions may involve operands that are not word-aligned. As described in
Section 6.4.8 Alignment Exception (0x00600), a misaligned string operation suffers a performance penalty
compared to an aligned operation of the same type. A nonword-aligned string operation that crosses a
doubleword boundary is also slower than a word-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with imme-
diate index addressing mode and register indirect with index addressing mode.

The following sections discuss index addressing for floating-point loads and stores:

• Register Indirect with Immediate Index Addressing for Floating-point Loads and Stores

• Register Indirect with Index Addressing for Floating-point Loads and Stores

Register Indirect with Immediate Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign
extended to 64 bits, and added to the contents of a GPR specified in the instruction (rA operand) to generate
the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the immediate
index (d operand) in place of the contents of r0. The option to specify rA or ‘0’ is shown in the instruction
descriptions as (rA|0).

Figure 4-4 shows how an effective address is generated when using register indirect with immediate index
addressing for floating-point loads and stores.

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax Operation

Load String Word
Immediate lswi rD,rA,NB The EA is (rA|0).

Load String Word
Indexed lswx rD,rA,rB The EA is the sum (rA|0) + (rB).

Store String Word
Immediate stswi rS,rA,NB The EA is (rA|0).

Store String Word
Indexed stswx rS,rA,rB The EA is the sum (rA|0) + (rB).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 157 of 657

Register Indirect with Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in operands rA and rB) to
generate the effective address. A zero in the rA operand causes a zero to be added to the contents of the
GPR specified in operand rB. This is shown in the instruction descriptions as (rA|0).

Figure 4-5 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-4. Register Indirect (Contents) with Immediate Index Addressing for Floating-Point Loads/Stores

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

No

0

Store

Load

Yes

Instruction Encoding:

Effective Address

rA=0

Memory
AccessFPR (frD/frS)

GPR (rA)

0 63

0 63

0 63

0 6347 48

Sign Extension d

Opcode frD/frS rA d

0 5 6 10 11 1516 31

+

No

GPR (rA)

0

FPR (frD/frS)
Memory
Access

Store

Load

Yes

0 63

GPR (rB)

Effective Address

Instruction Encoding:

rA = ’0’?

Reserved
0 5 6 10 11 15 16 3120 21 30

Opcode frD/frS rA rB Subopcode 0

0 63 0 63

0 63

+

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 158 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

The PowerPC Architecture defines floating-point load and store with update instructions (lfsu, lfsux, lfdu,
lfdux, stfsu, stfsux, stfdu, stfdux) with operand rA = ’0’ as invalid forms of the instructions. In addition, it
defines floating-point load and store instructions with the CR updating option enabled (Rc bit, bit [31] = ’1’) to
be an invalid form.

The PowerPC Architecture defines that the FPSCR[UE] bit should not be used to determine whether denor-
malization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-precision operand
formats. Because the FPRs support only the floating-point double-precision format, single-precision floating-
point load instructions convert single-precision data to double-precision format before loading the operands
into the target FPR. This conversion is described fully in Appendix C.6 Floating-Point Load Instructions.
Table 4-18 provides a summary of the floating-point load instructions.

Note: The PowerPC Architecture defines load with update instructions with rA = ’0’ as an invalid form.

Table 4-18. Floating-Point Load Instructions

Name Mnemonic Operand Syntax Operation

Load Floating-
Point Single lfs frD,d(rA)

The EA is the sum (rA|0) + d.
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

Load Floating-
Point Single
Indexed

lfsx frD,rA,rB

The EA is the sum (rA|0) + (rB).
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

Load Floating-
Point Single with
Update

lfsu frD,d(rA)

The EA is the sum (rA) + d.
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating-
Point Single with
Update Indexed

lfsux frD,rA,rB

The EA is the sum (rA) + (rB).
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating-
Point Double lfd frD,d(rA)

The EA is the sum (rA|0) + d.
The doubleword in memory addressed by the EA is placed into register
frD.

Load Floating-
Point Double
Indexed

lfdx frD,rA,rB
The EA is the sum (rA|0) + (rB).
The doubleword in memory addressed by the EA is placed into register
frD.

Load Floating-
Point Double with
Update

lfdu frD,d(rA)

The EA is the sum (rA) + d.
The doubleword in memory addressed by the EA is placed into register
frD.
The EA is placed into the register specified by rA.

Load Floating-
Point Double with
Update Indexed

lfdux frD,rA,rB

The EA is the sum (rA) + (rB).
The doubleword in memory addressed by the EA is placed into register
frD.
The EA is placed into the register specified by rA.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 159 of 657

4.2.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the store instruction—
single-precision, double-precision, and integer. The integer form is supported by the stfiwx instruction.

Because the FPRs support only floating-point, double-precision format for floating-point data, single-precision
floating-point store instructions convert double-precision data to single-precision format before storing the
operands. The conversion steps are described fully in Appendix C.7 Floating-Point Store Instructions.
Table 4-19 provides a summary of the floating-point store instructions.

Note: The PowerPC Architecture defines store with update instructions with rA = ’0’ as an invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions

Name Mnemonic Operand Syntax Operation

Store Floating-
Point Single stfs frS,d(rA)

The EA is the sum (rA|0) + d.
The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

Store Floating-
Point Single
Indexed

stfsx frS,rA,rB
The EA is the sum (rA|0) + (rB).
The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

Store Floating-
Point Single with
Update

stfsu frS,d(rA)

The EA is the sum (rA) + d.
The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.
The EA is placed into rA.

Store Floating-
Point Single with
Update Indexed

stfsux frS,rA,rB

The EA is the sum (rA) + (rB).
The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.
The EA is placed into the rA.

Store Floating-
Point Double stfd frS,d(rA)

The EA is the sum (rA|0) + d.
The contents of frS are stored into the doubleword in memory addressed
by the EA.

Store Floating-
Point Double
Indexed

stfdx frS,rA,rB
The EA is the sum (rA|0) + (rB).
The contents of frS are stored into the doubleword in memory addressed
by the EA.

Store Floating-
Point Double with
Update

stfdu frS,d(rA)

The EA is the sum (rA) + d.
The contents of frS are stored into the doubleword in memory addressed
by the EA.
The EA is placed into rA.

Store Floating-
Point Double with
Update Indexed

stfdux frS,rA,rB

The EA is the sum (rA) + (rB).
The contents of frS are stored into the doubleword in memory addressed
by EA.
The EA is placed into register rA.

Store Floating-
Point as Integer
Word Indexed

stfiwx frS,rA,rB
The EA is the sum (rA|0) + (rB).
The contents of the low-order 32 bits of frS are stored, without conversion,
into the word in memory addressed by the EA.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 160 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the CR.
When the processor encounters one of these instructions, it can attempt to resolve the branch direction
immediately, or predict the branch direction and defer its resolution.

When the branch cannot be resolved immediately, it may be predicted based on the 'at' bits (as described in
Table 4-20 and Table 4-21), or by using dynamic prediction. At some point before the branch instruction can
complete, the branch direction will be resolved based on the value of the CR bit. If the prediction is correct,
the branch is considered completed and instruction fetching continues along the predicted path. If the predic-
tion is incorrect, the fetched instructions are purged, and instruction fetching continues along the alternate
path.

4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits (bits [62, 63]) of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address using the following
addressing modes:

• Branch relative

• Branch conditional to relative address

• Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is clearing the high-
order 32 bits of the target address.

Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by sign extending and
appending ‘00’ to the immediate displacement operand LI, and adding the resultant value to the current
instruction address. Branches using this addressing mode have the absolute addressing option disabled (AA
field, bit [30], in the instruction encoding = ‘0’). The link register (LR) update option can be enabled (LK field,
bit [31], in the instruction encoding = ‘1’). This option causes the effective address of the instruction following
the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative addressing
mode.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 161 of 657

Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative addressing mode
generate the next instruction address by sign extending and appending ‘00’ to the immediate displacement
operand (BD) and adding the resultant value to the current instruction address. Branches using this
addressing mode have the absolute addressing option disabled (AA field, bit[30], in the instruction
encoding = ‘0’). The link register update option can be enabled (LK field, bit[31], in the instruction
encoding = ‘1’). This option causes the effective address of the instruction following the branch instruction to
be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch conditional relative
addressing mode.

Figure 4-6. Branch Relative Addressing

Branch Target Address

Instruction Encoding:

Current Instruction Address

Reserved

0 0Sign Extension LI

LI18 AA LK

0 5 6 29 30

37 38 61 62 630

0 63

0 63

31

+

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 162 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction address by sign
extending and appending ‘00’ to the LI operand. Branches using this addressing mode have the absolute
addressing option enabled (AA field, bit[30], in the instruction encoding = ‘1’). The link register update option
can be enabled (LK field, bit[31], in the instruction encoding = ’1’). This option causes the effective address of
the instruction following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to absolute addressing
mode.

Figure 4-7. Branch Conditional Relative Addressing

Figure 4-8. Branch to Absolute Addressing

Yes

Branch Target Address

Instruction Encoding:

No

Current Instruction Address

Next Sequential Instruction AddressCondition
Met?

Reserved
16 BO BI AA LKBD

0 5 6 10 11 15 16 30 31

0

0

0

63

63

6347 48 61 62

Sign Extension BD 0 0

+

Instruction Encoding:

0

0 0

00Branch Target Address

LISign Extension

18 LI AA LK

61 62 6337 38

0 61 62 63

0 29 30 315 6

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 163 of 657

Branch Conditional to Absolute Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to absolute addressing mode
generate the next instruction address by sign extending and appending ‘00’ to the BD operand. Branches
using this addressing mode have the absolute addressing option enabled (AA field, bit[30], in the instruction
encoding = ’1’). The link register update option can be enabled (LK field, bit[31], in the instruction
encoding = ‘1’). This option causes the effective address of the instruction following the branch instruction to
be placed in the LR.

Figure 4-9 shows how the branch target address is generated when using the branch conditional to absolute
addressing mode.

Figure 4-9. Branch Conditional to Absolute Addressing

Instruction Encoding:

No
Next Sequential Instruction AddressCondition

Met?

Yes

16 BO BI BD AA LK

0 63

0 5 6 10 11 15 16 30 3129

0 6347 48 61 62

0 6361 62

Sign Extension BD

00Branch Target Address

00

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 164 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates the next instruc-
tion address by using the contents of the LR and clearing the two low-order bits to zero. The result becomes
the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit[31], in the instruction encoding = ’1’). This option
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is
done even if the branch is not taken.

Figure 4-10 shows how the branch target address is generated when using the branch conditional to link
register addressing mode.

Figure 4-10. Branch Conditional to Link Register Addressing

Condition
Met?

LR

Branch Target Address

Instruction Encoding:

No
Next Sequential Instruction Address

Yes

Reserved

0 61 62 63

0 63

0 63

19 BO BI 00000 16 LK

00

0 5 6 10 15 16 20 21 30 3111

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 165 of 657

Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction generates the next
instruction address by using the contents of the count register (CTR) and clearing the two low-order bits to
zero. The result becomes the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit[31], in the instruction encoding = ‘1’). This option
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is
done even if the branch is not taken.

Figure 4-11 shows how the branch target address is generated when using the branch conditional to count
register addressing mode.

Figure 4-11. Branch Conditional to Count Register Addressing

CTR

Branch Target Address

Instruction Encoding:

Condition
Met?

No

Yes

Next Sequential Instruction Address

Reserved

0 61 62 63

00

0 63

0 63

0 5 6 10 15 16 20 21 30 3111

19 BO BI 00000 528 LK

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 166 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.4.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is taken.
The encodings for the BO operands are shown in Table 4-20. M = ‘32’ in 32-bit mode (of a 64-bit implementa-
tion) and M = ‘0’ in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the
entire 64-bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode.

The “a” and ”t” bits of the BO field can be used by software to provide a hint about whether the branch is likely
to be taken or is likely not to be taken (see Table 4-21).

Note: Many implementations have dynamic mechanisms for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very accurate, and is likely to be overridden by any hint pro-
vided by the “at” bits, the “at” bits should be set to ‘00’ unless the static prediction implied by at=’10’ or at=’11’
is very likely to be correct.

For Branch Conditional to Link Register and Branch Conditional to Count Register instructions, the BH field
provides a hint about the use of the instruction, as shown in Table 4-22.

Table 4-20. BO Operand Encodings

BO Description

0000z Decrement the CTR, then branch if the decremented CTR[M–63] ≠ ‘0’ and CR[BI] = ‘0’ (condition is false).

0001z Decrement the CTR, then branch if the decremented CTR[M–63] = ’0’ and CR[BI] = ‘0’ (condition is false).

001at Branch if CR[BI] = 0 (false).

0100z Decrement the CTR, then branch if the decremented CTR[M–63] ≠’0’ and CR[BI] = ’1’ (condition is true).

0101z Decrement the CTR, then branch if the decremented CTR[M–63] = ’0’ and CR[BI] = ’1’ (condition is true).

011at Branch if CR[BI] = ’1’ (condition is true).

1a00t Decrement the CTR, then branch if the decremented CTR[M–63] ≠ ‘0’.

1a01t Decrement the CTR, then branch if the decremented CTR[M–63] = ’0’.

1z1zz Branch always.

Note:

1. “z” denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

Table 4-21. “a” and “t” Bits of the BO Field

“a” “t” Hint

00 No hint is given

01 Reserved

10 Branch is very likely not to be taken

11 Branch is very likely to be taken

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 167 of 657

Note: The hint provided by the BH field is independent of the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is likely to be taken).

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the CR represents the
bit to test.

The 5-bit BO and BI fields control whether the branch is taken.

When the branch instructions contain immediate addressing operands, the branch target addresses can be
computed sufficiently ahead of the branch execution and instructions can be fetched along the branch target
path (if the branch is predicted to be taken or is an unconditional branch). If the branch instructions use the
link or count register contents for the branch target address, instructions along the branch-taken path of a
branch can be fetched if the link or count register is loaded sufficiently ahead of the branch instruction execu-
tion.

Branching can be conditional or unconditional. The branch target address is first calculated from the contents
of the count or link register or from the branch immediate field. Optionally, a branch return address can be
loaded into the LR register (this sets the return address for subroutine calls). When this option is selected
(LK = ’1’) the LR is loaded with the effective address of the instruction following the branch instruction.

Some processors may keep a stack of the link register values most recently set by branch and link instruc-
tions, with the possible exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

• Obtaining the address of the next instruction–use the following form of branch and link:
bcl 20,31,$+4

• Loop counts:
Keep loop counts in the count register, and use one of the branch conditional instructions (LK = ’0’) to
decrement the count and to control branching (for example, branching back to the start of a loop if the
decremented counter value is nonzero).

• Computed GOTOs, case statements, etc.:
Use the count register to hold the address to branch to, and use the bcctr instruction with the link register
option disabled (LK = ‘0’ and BH = ‘11’ if appropriate) to branch to the selected address.

• Direct subroutine linkage—where A calls B and B returns to A. The two branches should be as follows:

– A calls B: use a branch instruction (bl, bcl) that enables the link register (LK = ’1’).

Table 4-22. BH Field Encodings

BH Hint

00
bclr[l]: The instruction is a subroutine return
bcctr[l]: The instruction is not a subroutine return; the target address is likely to be the same as the target

address used the preceding time the branch was taken.

01
bclr[l]: The instruction is not a subroutine return; the target address is likely to be the same as the target

address used the preceding time the branch was taken.
bcctr[l]: Reserved.

10 Reserved.

11 bclr[l] and bcctr[l]: The target address is not predictable.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 168 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

– B returns to A: use the bclr instruction with the link register option disabled (LK = ’0’) (the return
address is in, or can be restored to, the link register).

• Indirect subroutine linkage:
Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine that the programmer wants to call, here B, is in a dif-
ferent module from the caller: the binder inserts “glue” code to mediate the branch.) The three branches
should be as follows:

– A calls Glue: use a branch instruction (bl, bcl) that sets the link register with the link register option
enabled (LK = ’1’).

– Glue calls B: place the address of B in the count register, and use the bcctr instruction with the link
register option disabled (LK = ‘0’).

– B returns to A: use the bclr instruction with the link register option disabled (LK = ’0’) (the return
address is in, or can be restored to, the link register).

• Function call:
Here A calls a function, the identity of which may vary from one instance of the call to another, instead of
calling a specific program B. This case should be handled using the conventions of the preceding two bul-
lets, depending on whether the call is direct or indirect, with the following differences.

– If the call is direct, place the address of the function into the count register, and use a bcctrl instruc-
tion (LK = ’1’) instead of a bl or bcl instruction.

– For the bcctr[l] instruction that branches to the function, use BH = ’11’ if appropriate.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 169 of 657

4.2.4.3 Branch Instructions

Table 4-23 describes the branch instructions provided by the PowerPC processors.

Table 4-23. Branch Instructions

Name Mnemonic Operand Syntax Operation

Branch

b
ba
bl
bla

target_addr

b Branch. Branch to the address computed as the sum of the
immediate address and the address of the current instruction.

ba Branch Absolute. Branch to the absolute address specified.
bl Branch then Link. Branch to the address computed as the sum of

the immediate address and the address of the current instruction.
The instruction address following this instruction is placed into the
link register (LR).

bla Branch Absolute then Link. Branch to the absolute address spec-
ified. The instruction address following this instruction is placed
into the LR.

Branch Conditional

bc
bca
bcl
bcla

BO,BI,target_addr

The BI operand specifies the bit in the CR to be used as the condition of
the branch. The BO operand is used as described in Table 4-20.
bc Branch Conditional. Branch conditionally to the address com-

puted as the sum of the immediate address and the address of
the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the absolute
address specified.

bcl Branch Conditional then Link. Branch conditionally to the address
computed as the sum of the immediate address and the address
of the current instruction. The instruction address following this
instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address following
this instruction is placed into the LR.

Branch Conditional
to Link Register

bclr
bclrl

BO,BI,BH

The BI operand specifies the bit in the CR to be used as the condition of
the branch. The BO operand is used as described in Table 4-20. The BH
field is used as described in Table 4-22 and the branch target address is
LR[0–61] || ’00’, with the high-order 32 bits of the branch target address
cleared in the 32-bit mode of a 64-bit implementation.
bclr Branch Conditional to Link Register. Branch conditionally to the

address in the LR.
bclrl Branch Conditional to Link Register then Link. Branch condition-

ally to the address specified in the LR. The instruction address
following this instruction is then placed into the LR.

Branch Condi-
tional to Count
Register

bcctr
bcctrl

BO,BI,BH

The BI operand specifies the bit in the CR to be used as the condition of
the branch. The BO operand is used as described in Table 4-20. The BH
field is used as described in Table 4-22 and the branch target address is
CTR[0–61] || ‘00’, with the high-order 32 bits of the branch target address
cleared in the 32-bit mode of a 64-bit implementation.
bcctr Branch Conditional to Count Register. Branch conditionally to the

address specified in the count register.
bcctrl Branch Conditional to Count Register then Link. Branch condi-

tionally to the address specified in the count register. The instruc-
tion address following this instruction is placed into the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] = ’0’), the
instruction form is invalid.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 170 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols is provided for the
most frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other instruc-
tions. See Appendix E Simplified Mnemonics for a list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 4-24, and the Move Condition Register Field (mcrf)
instruction are also defined as flow control instructions.

Note: If the LR update option is enabled for any of these instructions, the PowerPC Architecture defines
these forms of the instructions as invalid.

Table 4-24. Condition Register Logical Instructions

Name Mnemonic Operand Syntax Operation

Condition Register
AND crand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified by crbB.

The result is placed into the CR bit specified by crbD.

Condition Register
OR cror crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified by crbB.

The result is placed into the CR bit specified by crbD.

Condition Register
XOR crxor crbD,crbA,crbB The CR bit specified by crbA is XORed with the CR bit specified by crbB.

The result is placed into the CR bit specified by crbD.

Condition Register
NAND crnand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified by crbB.

The complemented result is placed into the CR bit specified by crbD.

Condition Register
NOR crnor crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified by crbB.

The complemented result is placed into the CR bit specified by crbD.

Condition Register
Equivalent creqv crbD,crbA, crbB The CR bit specified by crbA is XORed with the CR bit specified by crbB.

The complemented result is placed into the CR bit specified by crbD.

Condition Register
AND with
Complement

crandc crbD,crbA, crbB
The CR bit specified by crbA is ANDed with the complement of the CR bit
specified by crbB and the result is placed into the CR bit specified by
crbD.

Condition Register
OR with
Complement

crorc crbD,crbA, crbB
The CR bit specified by crbA is ORed with the complement of the CR bit
specified by crbB and the result is placed into the CR bit specified by
crbD.

Move Condition
Register Field mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition register

fields are changed.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 171 of 657

4.2.4.6 Trap Instructions

The trap instructions shown in Table 4-25 are provided to test for a specified set of conditions. If any of the
conditions tested by a trap instruction are met, the system trap handler is invoked. If the tested conditions are
not met, instruction execution continues normally. See Appendix E Simplified Mnemonics for a complete set
of simplified mnemonics.

4.2.4.7 System Linkage Instruction—UISA

Table 4-26 describes the System Call (sc) instruction that permits a program to call on the system to perform
a service. See Section 4.4.1 System Linkage Instructions—OEA for a complete description of the sc instruc-
tion.

Table 4-25. Trap Instructions

Name Mnemonic Operand Syntax Operand Syntax

Trap Doubleword
Immediate tdi TO,rA,SIMM

The contents of rA are compared with the sign-extended SIMM operand. If
any bit in the TO operand is set and its corresponding condition is met by
the result of the comparison, the system trap handler is invoked.

Trap Word Imme-
diate twi TO,rA,SIMM

The contents of the low-order 32 bits of rA are compared with the sign-
extended SIMM operand. If any bit in the TO operand is set and its corre-
sponding condition is met by the result of the comparison, the system trap
handler is invoked.

Trap Doubleword td TO,rA,rB
The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB

The contents of the low-order 32 bits of rA are compared with the contents
of the low-order 32 bits of rB. If any bit in the TO operand is set and its cor-
responding condition is met by the result of the comparison, the system
trap handler is invoked.

Table 4-26. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax Operation

System Call sc —

This instruction calls the operating system to perform a service.
When control is returned to the program that executed the system call, the
content of the registers will depend on the register conventions used by
the program providing the system service. This instruction is context syn-
chronizing as described in Section 4.1.5.1 Context Synchronizing Instruc-
tions.
See Section 4.4.1 System Linkage Instructions—OEA for a complete
description of the sc instruction.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 172 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.2.5 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR), machine state
register (MSR), and special-purpose registers (SPRs). See Section 4.3.1 Processor Control Instructions—
VEA for the mftb instruction and Section 4.4.2 Processor Control Instructions—OEA for information about the
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions

Table 4-27 summarizes the instructions for reading from or writing to the condition register.

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Figure 4-28 provides a brief description of the mtspr and mfspr instructions. For more detailed information
refer to Section 8 Instruction Set.

Table 4-27. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax Operation

Move to Condition
Register Fields mtcrf CRM,rS

The contents of the low-order 32 bits of rS are placed into the CR under
control of the field mask specified by operand CRM. The field mask iden-
tifies the 4-bit fields affected. Let i be an integer in the range 0–7. If
CRM[i] = 1, CR field i (CR bits 4 × i through 4 × i + 3) is set to the contents
of the corresponding field of the low-order 32 bits of rS.

Move to Condition
One Register
Fields

mtocrf CRM,rS

This form of the mtocrf instruction is intended to replace the old form
(mtcrf) of the instruction which will eventually be phased out of the archi-
tecture. The new form is backward compatible with most processors that
comply with versions of the architecture that precede Version 2.01.

Move from
Condition Register mfcr rD The contents of the CR are placed into the low-order 32 bits of rD. The

contents of the high-order 32 bits of rD are cleared.

Move from One
Condition Register
Field

mfocrf rD,CRM

This form of the mfocrf instruction is intended to replace the old form
(mfcr) of the instruction which is being phased out of the architecture.
The new form is backward compatible with most processors that comply
with versions of the architecture that precede Version 2.01.
Refer to page 434 for details.

Table 4-28. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax Operation

Move to Special-
Purpose Register mtspr SPR,rS The value specified by rS are placed in the specified SPR. For 32-bit

SPRs, the low-order 32 bits of rS are placed into the SPR.

Move from
Special-Purpose
Register

mfspr rD,SPR
The contents of the specified SPR are placed in rD. For 32-bit SPRs, the
low-order 32 bits of rD receive the contents of the SPR. The high-order 32
bits of rD are cleared.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 173 of 657

4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system parameters and on the
processor's state when the instruction is issued. As a result, frequent use of this instruction may degrade
performance slightly. The eieio instruction may be more appropriate than sync for many cases.

The PowerPC Architecture defines the sync instruction with CR update enabled (Rc field, bit [31] = ‘1’) to be
an invalid form.

The concept behind the use of the lwarx, ldarx, stwcx., and stdcx. instructions is that a processor may load
a semaphore from memory, compute a result based on the value of the semaphore, and conditionally store it
back to the same location. Examples of these semaphore operations can be found in
Appendix D Synchronization Programming Examples. The lwarx instruction must be paired with an stwcx.
instruction, and ldarx instruction with an stdcx. instruction, with the same effective address specified by both
instructions of the pair. The only exception is that an unpaired stwcx. or stdcx. instruction to any (scratch)
effective address can be used to clear any reservation held by the processor. The conditional store is
performed based upon the existence of a reservation established by the preceding lwarx or ldarx instruction.
If the reservation exists when the store is executed, the store is performed and a bit is set in the CR. If the
reservation does not exist when the store is executed, the target memory location is not modified and a bit is
cleared in the CR.

Note: The reservation granularity is implementation-dependent.

The lwarx, ldarx, stwcx., and stdcx. primitives allow software to read a semaphore, compute a result based
on the value of the semaphore, store the new value back into the semaphore location only if that location has
not been modified since it was first read, and determine if the store was successful. If the store was
successful, the sequence of instructions from the read of the semaphore to the store that updated the sema-
phore appear to have been executed atomically (that is, no other processor or mechanism modified the
semaphore location between the read and the update), thus providing the equivalent of a real atomic opera-
tion. However, in reality, other processors may have read from the location during this operation.

The lwarx, ldarx,stwcx., and stdcx. instructions require the effective address to be aligned.

In general, the lwarx, ldarx, stwcx., and stdcx. instructions should be used only in system programs, which
can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated with the reservation
can be changed by a subsequent lwarx or ldarx instruction. The conditional store is performed based upon
the existence of a reservation established by the preceding lwarx or ldarx. instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth and fifth bullet
items) by one of the following:

• The processor holding the reservation executes another lwarx or ldarx instruction; this clears the first
reservation and establishes a new one.

• The processor holding the reservation executes any stwcx. or stdcx. instruction regardless of whether its
address matches that of the lwarx.

• Some other processor executes a store or dcbz to the same reservation granule, or modifies a refer-
enced or changed bit in the same reservation granule.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 174 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

• Some other processor executes a dcbtst, dcbst, or dcbf to the same reservation granule; whether the
reservation is cleared is undefined.

• Some other mechanism modifies a memory location in the same reservation granule.

Note: Exceptions do not clear reservations; however, system software invoked by exceptions may clear res-
ervations.

Table 4-29 summarizes the memory synchronization instructions as defined in the UISA. See Section 4.3.2
Memory Synchronization Instructions—VEA for details about additional memory synchronization (eieio and
isync) instructions.

Table 4-29. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax Operation

Load Doubleword
and Reserve
Indexed

ldarx rD,rA,rB The EA is the sum (rA|0) + (rB). The doubleword in memory addressed by
the EA is loaded into rD and the reservation is established.

Load Word and
Reserve Indexed lwarx rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the
EA is loaded into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are cleared.

Store Doubleword
Conditional
Indexed

stdcx. rS,rA,rB

The EA is the sum (rA|0) + (rB).
If a reservation exists and the effective address specified by the stdcx.
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the contents of rS are stored into the
doubleword in memory addressed by the EA, and the reservation is
cleared.
If a reservation exists but the effective address specified by the stdcx.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and
it is undefined whether the contents of rS are stored into the doubleword
in memory addressed by the EA.
If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Store Word Condi-
tional Indexed stwcx. rS,rA,rB

The EA is the sum (rA|0) + (rB).
If a reservation exists and the effective address specified by the stwcx.
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the low-order 32 bits of rS are stored
into the word in memory addressed by the EA, and the reservation is
cleared.
If a reservation exists but the effective address specified by the stwcx.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and
it is undefined whether the low-order 32 bits of rS are stored into the word
in memory addressed by the EA.
If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Synchronize sync L

Executing a sync instruction ensures that all instructions preceding the
sync instruction appear to have completed before the sync instruction
completes, and that no subsequent instructions are initiated by the pro-
cessor until after the sync instruction completes. When the sync instruc-
tion completes, all memory accesses caused by instructions preceding
the sync instruction will have been performed with respect to all other
mechanisms that access memory, on the L=0,1, and 2 variants of this
instruction.
See Chapter 8, Instruction Set for more information.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 175 of 657

Note: The architecture is likely to be changed in the future to permit the reservation to be lost if a dcbf
instruction is executed on the processor holding the reservation. Therefore dcbf instructions should not be
placed between a load and reserve instruction and the subsequent store conditional instruction.

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most
frequently used operations (such as no-op, load immediate, load address, move register, and complement
register). Assemblers should provide the simplified mnemonics listed in Appendix E.9 Recommended Simpli-
fied Mnemonics. Programs written to be portable across the various assemblers for the PowerPC Architec-
ture should not assume the existence of mnemonics not described in this manual.

For a complete list of simplified mnemonics, see Appendix E Simplified Mnemonics.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 176 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.3 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can
be assumed by software processes, and includes descriptions of the cache model, cache-control instructions,
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA,
but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA

The VEA defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 5, Cache Model and Memory Coherency for more information. Table 4-30 describes the
mftb instruction.

Simplified mnemonics are provided (See Appendix E.8 Simplified Mnemonics for Special-Purpose Registers)
for the mftb instruction so it can be coded with the TBR name as part of the mnemonic rather than requiring it
to be coded as an operand. The simplified mnemonics Move from Time Base (mftb) and Move from Time
Base Upper (mftbu) are variants of the mftb instruction rather than of the mfspr instruction. The mftb
instruction serves as both a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic with
two operands as the basic form, and an mftb mnemonic with one operand as the simplified form.

The mftb simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR, and the
mftbu simplified mnemonic moves from the upper half of the time base (TBU) to a GPR.

Table 4-31 summarizes the time base (TBL/TBU) register encodings to which user-level access (using mftb)
is permitted (as specified by the VEA).

Table 4-30. Move from Time Base Instruction

Name Mnemonic Operand Syntax Operation

Move from Time
Base mftb rD, TBR

The TBR field denotes either time base lower or time base upper,
encoded as shown in Table 4-31 and Table 4-32. The contents of the des-
ignated register are copied to rD. When reading TBU the high-order 32
bits of rD are cleared. When reading TBL the 64 bits of the time base are
copied to rD.

Table 4-31. User-Level TBR Encodings (VEA)

Decimal Value in TBR Field TBR[0–4] TBR[5–9] Register Name Description

268 01100 01000 TBL Time base lower (read-only)

269 01101 01000 TBU Time base upper (read-only)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 177 of 657

Table 4-32 summarizes the TBL and TBU register encodings to which supervisor-level access (using mtspr)
is permitted.

4.3.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms. See Chapter 5, Cache Model and Memory Coherency for additional informa-
tion about these instructions and about related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the hardware signaling
caused by a sync operation and perform the appropriate actions to guarantee that memory references that
may be queued internally to the second-level cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order Execution of I/O
(eieio) and Instruction Synchronize (isync) instructions; see Table 4-33. The number of cycles required to
complete an eieio instruction depends on system parameters and on the processor's state when the instruc-
tion is issued. As a result, frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to complete, discard all
prefetched instructions, and then branch to the next sequential instruction after isync (which has the effect of
clearing the pipeline of prefetched instructions).

Table 4-32. Supervisor-Level TBR Encodings (VEA)

Decimal Value in SPR Field SPR[0–4] SPR[5–9] Register Name Description

284 11100 01000 TBL1 Time base lower (write only)

285 11101 01000 TBU1 Time base upper (write only)

Note:

1. Moving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

Table 4-33. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Syntax Operation

Enforce In-Order
Execution of I/O eieio — The eieio instruction provides an ordering function for the effects of loads

and stores executed by a processor.

Instruction
Synchronize isync —

Executing an isync instruction ensures that all previous instructions com-
plete before the isync instruction completes, although memory accesses
caused by those instructions need not have been performed with respect
to other processors and mechanisms. It also ensures that the processor
initiates no subsequent instructions until the isync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, so
subsequent instructions will be fetched and executed in the context estab-
lished by the instructions preceding the isync instruction.
This instruction does not affect other processors or their caches.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 178 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.3.3 Memory Control Instructions—VEA

Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. See Section 4.4.3
Memory Control Instructions—OEA for more information about supervisor-level cache, segment register
manipulation, and translation lookaside buffer management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to manage on-chip caches
if they are implemented. See Chapter 5, Cache Model and Memory Coherency for more information about
cache topics.

As with other memory-related instructions, the effect of the cache management instructions on memory are
weakly ordered. If the programmer needs to ensure that cache or other instructions have been performed
with respect to all other processors and system mechanisms, a sync instruction must be placed in the
program following those instructions.

Note: When data address translation is disabled (MSR[DR] = ’0’), the Data Cache Block Clear to Zero
(dcbz) instruction allocates a cache block in the cache and might not verify that the physical address
(referred to as real address in the architecture specification) is valid. If a cache block is created for an invalid
physical address, a machine check condition may result when an attempt is made to write that cache block
back to memory. The cache block could be written back as a result of the execution of an instruction that
causes a cache miss and the invalid addressed cache block is the target for replacement or a Data Cache
Block Store (dcbst) instruction.

Table 4-34 summarizes the cache instructions defined by the VEA.

Note: These instructions are accessible to user-level programs.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 179 of 657

Table 4-34. User-Level Cache Instructions

Name Mnemonic Operand Syntax Operation

Data Cache Block
Touch dcbt rA,rB

The EA is the sum (rA|0) + (rB).
This instruction is a hint that performance will probably be improved if the
block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon load from the addressed byte.
The hint is ignored if the block is caching inhibited or guarded.

Data Cache Block
Touch for Store dcbtst rA,rB

The EA is the sum (rA|0) + (rB).
This instruction is a hint that performance will probably be improved if the
block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon store into the addressed byte.
The hint is ignored if the block is caching inhibited or guarded.

Data Cache Block
Clear to Zero dcbz rA,rB

The EA is the sum (rA|0) + (rB).
If the cache block containing the byte addressed by the EA is in the data
cache, all bytes of the cache block are cleared to zero.
If the page containing the byte addressed by the EA is not in the data
cache and the corresponding page is marked caching allowed (I = ’0’), the
cache block is established in the data cache without fetching the block
from main memory, and all bytes of the cache block are cleared to zero.
If the page containing the byte addressed by the EA is marked caching
inhibited (WIM = ‘x1x’) or write-through (WIM = ‘1xx’), either all bytes of
the area of main memory that corresponds to the addressed cache block
are cleared to zero, or an alignment exception occurs.
If the cache block addressed by the EA is located in a page marked as
memory coherent (WIM = ‘xx1’) and the cache block exists in the caches
of other processors, memory coherence is maintained in those caches.
The dcbz instruction is treated as a store to the addressed byte with
respect to address translation, memory protection, referenced and
changed recording, and the ordering enforced by eieio or by the combina-
tion of caching-inhibited and guarded attributes for a page.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 180 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Data Cache Block
Store dcbst rA,rB

The EA is the sum(rA|0) + (rB).
If the cache block containing the byte addressed by the EA is located in a
page marked memory coherent (WIM = ‘xx1’), and a cache block contain-
ing the byte addressed by EA is in the data cache of any processor and
has been modified, the cache block is written to main memory.
If the cache block containing the byte addressed by the EA is located in a
page not marked memory coherent (WIM = ‘xx0’), and a cache block con-
taining the byte addressed by EA is in the data cache of this processor
and has been modified, the cache block is written to main memory.
The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.
The dcbst instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

Data Cache Block
Flush dcbf rA,rB

The EA is the sum (rA|0) + (rB).
The action taken depends on the memory mode associated with the tar-
get, and on the state of the block. The following list describes the action
taken for the various cases, regardless of whether the page or block con-
taining the addressed byte is designated as write-through or if it is in the
caching-inhibited or caching-allowed mode.

• Coherency required (WIM = ‘xx1’)
— Unmodified block—Invalidates copies of the block in the caches of
all processors.
— Modified block—Copies the block to memory. Invalidates copies
of the block in the caches of all processors.
— Absent block—If modified copies of the block are in the caches of
other processors, causes them to be copied to memory and invali-
dated. If unmodified copies are in the caches of other processors,
causes those copies to be invalidated.

• Coherency not required (WIM = ‘xx0’)
— Unmodified block—Invalidates the block in the processor’s cache.
— Modified block—Copies the block to memory. Invalidates the
block in the processor’s cache.
— Absent block—Does nothing.

The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.
The dcbf instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

Table 4-34. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 181 of 657

Note: In response to the hint provided by dcbt and dcbtst, the processor may prefetch the specified block
into the data cache, or take other actions that reduce the latency of subsequent load or store instructions that
refer to the block.

Instruction Cache
Block Invalidate icbi rA,rB

The EA is the sum (rA|0) + (rB).
If the cache block containing the byte addressed by EA is located in a
page marked memory coherent (WIM = ‘xx1’), and a cache block contain-
ing the byte addressed by EA is in the instruction cache of any processor,
the cache block is made invalid in all such instruction caches, so that the
next reference causes the cache block to be refetched.
If the cache block containing the byte addressed by EA is located in a
page not marked memory coherent (WIM = ‘xx0’), and a cache block con-
taining the byte addressed by EA is in the instruction cache of this proces-
sor, the cache block is made invalid in that instruction cache, so that the
next reference causes the cache block to be refetched.
The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.
The icbi instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.
Note: The invalidation of the specified instruction cache block cannot be
assumed to have been performed with respect to the processor executing
the instruction until a subsequent isync instruction has been executed by
the processor. No other instruction or event has the corresponding effect.

Table 4-34. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 182 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.3.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a special-purpose device.
Two instructions are provided and are summarized in Table 4-35.

Table 4-35. External Control Instructions

Name Mnemonic Operand Syntax Operation

External Control In
Word Indexed eciwx rD,rA,rB

The EA is the sum (rA|0) + (rB).
A load word request for the physical address corresponding to the EA is
sent to the device identified by the EAR[RID] (bits [26–31]), bypassing the
cache. The word returned by the device is placed into the low-order 32
bits of rD. The value in the high-order 32 bits of rD is cleared to zero. The
EA sent to the device must be word-aligned.
This instruction is treated as a load from the addressed byte with respect
to address translation, memory protection, referenced and changed
recording, and the ordering performed by eieio.
This instruction is optional.

External Control
Out Word Indexed ecowx rS,rA,rB

The EA is the sum (rA|0) + (rB).
A store word request for the physical address corresponding to the EA
and the contents of the low-order 32 bits of rS are sent to the device iden-
tified by EAR[RID] (bits [26–31]), bypassing the cache. The EA sent to the
device must be word-aligned.
This instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed record-
ing, and the ordering performed by eieio. Software synchronization is
required in order to ensure that the data access is performed in program
order with respect to data accesses caused by other store or ecowx
instructions, even though the addressed byte is assumed to be caching-
inhibited and guarded.
This instruction is optional.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 183 of 657

4.4 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory management
model, supervisor-level registers, and the exception model. Implementations that conform to the OEA also
adhere to the UISA and the VEA. This section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 4-36). The sc instruction is a user-level
instruction that permits a user program to call on the system to perform a service and causes the processor to
take an exception. The rfid instruction is supervisor-level instructions that are useful for returning from an
exception handler.

Table 4-36. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax Operation

System Call sc —

When executed, the effective address of the instruction following the sc
instruction is placed into SRR0. Bits [33–36 and 42–47] of SRR1 are
cleared. Additionally, bits [48–55, 57–59,and 62–63] of the MSR are
placed into the corresponding bits of SRR1. Depending on the implemen-
tation, additional bits of MSR may also be saved in SRR1. Then a system
call exception is generated. The exception causes the MSR to be altered
as described in Section 6.4 Exception Definitions.
The exception causes the next instruction to be fetched from offset
0x0000_0000_0000_0C00 from the physical base address determined by
the value of HIOR.
This instruction is context synchronizing.

Return from
Interrupt
Doubleword

rfid —

Bits [0-2, 4-32, 37-41, 48-50, 52-57, 60-63] of SRR1 are placed into the
corresponding bits of the MSR. Depending on the implementation, addi-
tional bits of MSR may also be restored from SRR1.
If the new MSR value does not enable any pending exceptions, the next
instruction is fetched, under control of the new MSR value, from the
address SRR0[0–61] || ’00’ (default 64-bit mode) or (32)0 || the low-order
32 bits of SRR0 || ’00’ (32-bit mode of 64-bit implementations).
If the new MSR value enables one or more pending exceptions, the
exception associated with the highest priority pending exception is gener-
ated; in this case, the value placed into SRR0 (machine status
save/restore 0) by the exception processing mechanism is the address of
the instruction that would have been executed next had the exception not
occurred.
This is a supervisor-level instruction and is context-synchronizing.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 184 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and write to the MSR and
the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions

Table 4-37 summarizes the instructions used for reading from and writing to the MSR.

Table 4-37. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax Operation

Move to Machine
State Register mtmsr rS,L

The MSR is set based on the contents of register rS and the L field.
L=’0’ The result of ORing bits [58] and [49] of register rS is placed into

MSR[58]. The result of ORing bits [59] and [49] of register rS is
placed into MSR[59]. Bits [32-47, 49-50, 52-57, 60-63] of register
rS are placed into the corresponding bits of the MSR. The high
order 32 bits of the MSR are unchanged.

L=’’1 Bits [48, 62] of rS are placed into the corresponding bits of the
MSR. The remaining bits of the MSR are unchanged.

This instruction is a supervisor-level instruction. If L=’0’ this instruction is
context synchronizing except with respect to alterations to the [LE] bit. If
L=’1’ this instruction is execution synchronizing; in addition, the alterations
of the [EE] and [RI] bits take effect as soon as the instruction completes.

Move to Machine
State Register
Doubleword

mtmsrd rS,L

The MSR is set based on the contents of register rS and the L field.
L=’0’ The result of ORing bits [0] and [1] of register rS is placed into

MSR[0]. The result of ORing bits [59] and [49] of register rS is
placed into MSR[59]. Bits [1-2, 4-47, 49, 50, 52-57, 60-63] of reg-
ister rS are placed into the corresponding bits of the MSR. The
high order 32 bits of the MSR are unchanged.

L=’1’ Bits [48, 62] of rS are placed into the corresponding bits of the
MSR. The remaining bits of the MSR are unchanged.

This instruction is a supervisor-level instruction. If L = ’0’ this instruction is
context synchronizing except with respect to alterations to the [LE] bit. If
L = ’1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction com-
pletes.

Move from
Machine State
Register

mfmsr rD The contents of the MSR are placed into rD. This is a supervisor-level
instruction.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 185 of 657

4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)

Provided is a brief description of the mtspr and mfspr instructions (see Table 4-38). For more detailed infor-
mation, see Chapter 8, Instruction Set. Simplified mnemonics are provided for the mtspr and mfspr instruc-
tions in Appendix E Simplified Mnemonics. For a discussion of context synchronization requirements when
altering certain SPRs, refer to Appendix D Synchronization Programming Examples.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction encoding, with the high-order 5 bits appearing in bits [16–20] of the instruction encoding and
the low-order 5 bits in bits [11–15].

For information on SPR encodings (both user and supervisor-level), see Chapter 8, Instruction Set.

Note: There are additional SPRs specific to each implementation; for implementation-specific SPRs, see the
user’s manual for your particular processor.

4.4.3 Memory Control Instructions—OEA

Memory control instructions include the following types of instructions:

• Cache management instructions (supervisor-level and user-level)

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3 Memory Control
Instructions—VEA for more information about user-level cache management instructions.

Table 4-38. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax Operation

Move to Special-
Purpose Register mtspr SPR,rS

The SPR field denotes a special-purpose register. The contents of rS are
placed into the designated SPR. For SPRs that are 32 bits long, the con-
tents of the low-order 32 bits of rS are placed into the SPR.
For this instruction, SPRs TBL and TBU are treated as separate 32-bit
registers; setting one leaves the other unaltered.

Move from
Special- Purpose
Register

mfspr rD,SPR The SPR field denotes a special-purpose register. The contents of the
designated SPR are placed into rD.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 186 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

4.4.3.1 Segment Register Manipulation Instructions

The instructions listed in Table 4-39 allow software to associate effective segments 0 through 15 with any of
virtual segments 0 through 227- 1. SLB entries [0-15] serve as virtual Segment Registers, with SLB entry i
used to emulate Segment Register i. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a
selected SLB entry. The mfsr and mfsrin instructions move 32 bits from a selected SLB entry to a selected
GPR. These instructions operate completely independent of the MSR[IR] and MSR[DR] bit settings. Refer to
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers for serializa-
tion requirements and other recommended precautions to observe when manipulating the segment registers.

4.4.3.2 Translation and Segment Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page table entries (PTEs)
used by PowerPC processors to locate the logical-to-physical address mapping for a particular access.
These segment descriptors and PTEs reside in segment tables and page tables in memory, respectively.

All implementations have a segment lookaside buffer (SLB) to cache a portion of the segment table. For
performance reasons, most implementations have one or more translation lookaside buffers (TLB) to cache a
portion of the page table. As changes are made to the segment and page tables, it is necessary to maintain
coherence between these lookaside buffers and the translation tables.

This is done by invalidating SLB or TLB entries, or occasionally by invalidating the entire SLB or TLB, and
allowing the translation caching mechanism to refetch from the segment and page tables. For this purpose,
each implementation provides the SLB management instructions described in Table 4-40. Each implementa-
tion that has a TLB provides a means for invalidating a single TLB entry, and a means for invalidating the
entire TLB. If a processor does not implement a TLB, it treats the TLB managment instructions (also
described in Table 4-40) either as no-ops or as illegal instructions.

Refer to Chapter 7, Memory Management for more information about TLB operation. Table 4-40 summarizes
the operation of the SLB and TLB instructions.

Table 4-39. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax Operation

64-Bit Bridge

Move to Segment
Register

mtsr SR,rS

The SLB entry specified by SR is loaded from register rS as described in
Section 8.2 PowerPC Instruction Set. MSR[SF] must be ‘0’ when this
instruction is executed, otherwise the results are boundedly undefined.
This instruction is a supervisor-level instruction.

64-Bit Bridge

Move to Segment
Register Indirect

mtsrin rS,rB

The SLB entry specified by rB[32-35] is loaded from rS as described in
Section 8.2 PowerPC Instruction Set. MSR[SF] must be ‘0’ when this
instruction is executed, otherwise the results are boundedly undefined.
This is a supervisor-level instruction.

64-Bit Bridge

Move from Seg-
ment Register

mfsr rD,SR

This instruction must be used only to read an SLB entry that was, or could
have been, created by mtsr or mtsrin and has not subsequently been
invalidated. Otherwise the contents of register rD is undefined. Refer to
Section 8.2 PowerPC Instruction Set for details.
This instruction is a supervisor-level instruction.

64-Bit Bridge

Move from Seg-
ment Register Indi-
rect

mfsrin rD,rB

This instruction must be used only to read an SLB entry that was, or could
have been, created by mtsr or mtsrin and has not subsequently been
invalidated. Otherwise the contents of register rD is undefined. Refer to
Section 8.2 PowerPC Instruction Set for details.
This instruction is a supervisor-level instruction.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005

Addressing Modes and Instruction Set Summary

Page 187 of 657

Table 4-40. Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax Operation

SLB Invalidate All slbia —

For all SLB entries, except SLB entry 0, the V-bit in the entry is set to 0,
making the entry invalid, and all other fields undefined. SLB entry 0 is
undefined.
This is a supervisor-level instruction.
Note: slbia does not affect SLBs on other processors.

SLB Invalidate
Entry slbie rB

The Effective Segment ID (ESID) is rB[0-35]. The class is rB[36]. The
class value must be the same as the class value in the SLB entry that
translates the ESID, or the class value that was in the SLB entry that most
recently translated the ESID if the translation is no longer in the SLB. If the
class value is not the same, the results of translating effective addresses
for which EA[0-35] = ESID are undefined.
The only SLB entry that is invalidated is the entry that translates the spec-
ified ESID. slbie does not affect SLBs on other processors.
If this instruction is executed in 32-bit mode, rB[0:31] must be zeros.
This is a supervisor-level instruction.
Note: If the optional “bridge” facility is implemented, the move to segment
register instructions create SLB entries in which the class value = ‘0’.

SLB Move to Entry slbmte rS,rB

The SLB entry specified by rB[52-63] is loaded from register rS and from
the remainder of register rB.
This instruction cannot be used to invalidate an SLB entry.
This is a supervisor-level instruction.
For more information refer to Section 8.2 PowerPC Instruction Set.

SLB Move from
Entry slbmfev rS,rB

If the SLB entry specified by bits [52-63] of register rB is valid (V = ’1’), the
contents of the VSID, Ks, Kp, N, L, and C fields of the entry are placed into
register rS.
This is a supervisor-level instruction.
For more information refer to Section 8.2 PowerPC Instruction Set.

SLB Move from
Entry ESID slbmfee rS,rB

If the SLB entry specified by bits [52-63] of register rB is valid (V = ’1’), the
contents of the ESID and V fields of the entry are placed into register rS.
This is a supervisor-level instruction.
For more information refer to Section 8.2 PowerPC Instruction Set.

TLB Invalidate
Entry tlbie rB,L

The contents of rB specify the VPN of target TLB entries. See Section 8.2
PowerPC Instruction Set for further details. If L = ’0’, target entries are for
4KB pages, otherwise large pages.
This instruction causes the target TLB entry to be invalidated in all proces-
sors.
The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by
eieio (or sync or ptesync).
When this instruction is executed MSR[SF] must be one, otherwise the
results are boundedly undefined.
This is a supervisor-level instruction and optional in the PowerPC Archi-
tecture.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Addressing Modes and Instruction Set Summary

Page 188 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Because the presence and exact semantics of the translation lookaside buffer management instructions is
implementation-dependent, system software should incorporate uses of the instruction into subroutines to
minimize compatibility problems.

TLB Invalidate
Entry Local tlbiel rB,L

The contents of rB specify the VPN of target TLB entries. See Section 8.2
PowerPC Instruction Set for further details. If L = ’0’, target entries are for
4KB pages, otherwise large pages.
Support of large pages for tlbiel is optional.
To synchronize the completion of this processor local form of tlbie, only a
ptesync is required.
rB[52-63] must be zero.
This is a supervisor-level instruction and optional.

TLB Invalidate All tlbia —

All TLB entries are made invalid. The TLB is invalidated regardless of the
settings of MSR[IR] and MSR[DR].
This instruction does not cause the entries to be invalidated in other pro-
cessors.
This is a supervisor-level instruction and optional.

TLB Synchronize tlbsync —

Executing a tlbsync instruction ensures that all tlbie instructions previ-
ously executed by the processor executing the tlbsync instruction have
completed on all processors.
The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by
eieio (or sync or ptesync).
tlbsync should not be used to synchronize the completion of tlbiel.
This is a supervisor-level instruction and optional.

Table 4-40. Lookaside Buffer Management Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 189 of 657

5. Cache Model and Memory Coherency
50
80

This chapter summarizes the cache model as defined by the virtual environment architecture (VEA), as well
as the built-in architectural controls for maintaining memory coherency. This chapter describes the cache
control instructions and special concerns for memory coherency in single-processor and multiprocessor
systems. Aspects of the operating environment architecture (OEA) as they relate to the cache model and
memory coherency are also covered.

The PowerPC Architecture provides for relaxed memory coherency. Features such as write-back caching
and out-of-order execution allow software engineers to exploit the performance benefits of weakly-ordered
memory access. The architecture also provides the means to control the order of accesses for order-critical
operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache coherency. In this context,
a system could include other devices that access system memory, maintain independent caches, and func-
tion as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA defines this cacheable
unit as a block. Since the term ‘block’ is easily confused with the unit of memory addressed by the block
address translation (BAT) mechanism, this chapter uses the term ‘cache block’ to indicate the cacheable unit.
The size of the cache block can vary by instruction and by implementation. In addition, the unit of memory at
which coherency is maintained is called the coherence block. The size of the coherence block is also imple-
mentation-specific. However, the coherence block is often the same size as the cache block.

5.1 The Virtual Environment

The User Instruction Set Architecture (UISA) relies upon a memory space of 264 bytes for applications. The
VEA expands upon the memory model by introducing virtual memory, caches, and shared memory multipro-
cessing. Although many applications will not need to access the features introduced by the VEA, it is impor-
tant that programmers are aware that they are working in a virtual environment where the physical memory
may be shared by multiple processes running on one or more processors.

This section describes load and store ordering, atomicity, the cache model, memory coherency, and the VEA
cache management instructions. The features of the VEA are accessible to both user-level and supervisor-
level applications (referred to as problem state and privileged state, respectively, in the architecture specifica-
tion).

The mechanism for controlling the virtual memory space is defined by the OEA. The features of the OEA are
accessible to supervisor-level applications only (typically operating systems). For more information on the
address translation mechanism, refer to Chapter 7, Memory Management.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 190 of 657
pem5_cache.fm.3.0

July 15, 2005

5.1.1 Memory Access Ordering

The VEA specifies a weakly consistent memory model for shared memory multiprocessor systems. This
model provides an opportunity for significantly improved performance over a model that has stronger consis-
tency rules, but places the responsibility for access ordering on the programmer. When a program requires
strict access ordering for proper execution, the programmer must insert the appropriate ordering or synchro-
nization instructions into the program.

The order in which the processor performs memory accesses, the order in which those accesses complete in
memory, and the order in which those accesses are viewed as occurring by another processor may all be
different. A means of enforcing memory access ordering is provided to allow programs (or instances of
programs) to share memory. Similar means are needed to allow programs executing on a processor to share
memory with some other mechanism, such as an I/O device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory accesses are
performed by separate instructions. First, if separate store instructions access memory that is designated as
both caching-inhibited and guarded, the accesses are performed in the order specified by the program. Refer
to Section 5.1.4 Memory Coherency and Section 5.2.1 Memory/Cache Access Attributes for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions, eieio and sync, are
provided that enable the program to control the order in which the memory accesses caused by separate
instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction (that is, by an
instruction for which multiple accesses are not atomic), and no means are provided for controlling that order.
Chapter 4, Addressing Modes and Instruction Set Summary contains additional information about the sync
and eieio instructions.

5.1.1.1 Enforce In-Order Execution of I/O Instruction

The eieio instruction permits the program to control the order in which loads and stores are performed when
the accessed memory has certain attributes, as described in Chapter 8, Instruction Set. For example, eieio
can be used to ensure that a sequence of load and store operations to an I/O device’s control registers
updates those registers in the desired order. The eieio instruction can also be used to ensure that all stores
to a shared data structure are visible to other processors before the store that releases the lock is visible to
them.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio
instruction have been performed with respect to system memory or coherent storage as appropriate.

If stronger ordering is desired, the sync instruction must be used.

5.1.1.2 Synchronize Instruction

When a portion of memory that requires coherency must be forced to a known state, it is necessary to
synchronize memory with respect to other processors and mechanisms. This synchronization is accom-
plished by requiring programs to indicate explicitly in the instruction stream, by inserting a sync instruction,
that synchronization is required. Only when sync completes are the effects of all coherent memory accesses
previously executed by the program guaranteed to have been performed with respect to all other processors
and mechanisms that access those locations coherently.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 191 of 657

The sync instruction ensures that all the coherent memory accesses, initiated by a program, have been
performed with respect to all other processors and mechanisms that access the target locations coherently,
before its next instruction is executed. A program can use this instruction to ensure that all updates to a
shared data structure, accessed coherently, are visible to all other processors that access the data structure
coherently, before executing a store that will release a lock on that data structure. Execution of the sync
instruction does the following:

• Performs the functions described for the sync instruction in Section 4.2.6 Memory Synchronization
Instructions—UISA.

• Ensures that consistency operations, and the effects of icbi, dcbz, dcbst, and dcbf instructions previ-
ously executed by the processor executing sync, have completed on such other processors as the mem-
ory/cache access attributes of the target locations require.

• Ensures that TLB invalidate operations previously executed by the processor executing the sync have
completed on that processor. The sync instruction does not wait for such invalidates to complete on other
processors.

• Ensures that memory accesses due to instructions previously executed by the processor executing the
sync are recorded in the R and C bits in the page table and that the new values of those bits are visible to
all processors and mechanisms; refer to Section 7.4.3 Page History Recording.

The sync instruction is execution synchronizing. It is not context synchronizing, and therefore need not
discard prefetched instructions.

For memory that does not require coherency, the sync instruction operates as described above except that
its only effect on memory operations is to ensure that all previous memory operations have completed, with
respect to the processor executing the sync instruction, to the level of memory specified by the
memory/cache access attributes (including the updating of R and C bits).

See Chapter 8, Instruction Set for a description of the sync instruction, including the L=’1’ (lwsync) and
L=’2’ (ptesync) variants.

5.1.2 Atomicity

An access is atomic if it is always performed in its entirety with no visible fragmentation. Atomic accesses are
thus serialized—each happens in its entirety in some order, even when that order is neither specified in the
program nor enforced between processors.

Only the following single-register accesses are guaranteed to be atomic:

• Byte accesses (all bytes are aligned on byte boundaries)

• Halfword accesses aligned on halfword boundaries

• Word accesses aligned on word boundaries

• Doubleword accesses aligned on doubleword boundaries

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the following instruc-
tions are not guaranteed to be atomic:

• Load and store instructions with misaligned operands

• lmw, stmw, lswi, lswx, stswi, or stswx instructions

• Any cache management instructions

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 192 of 657
pem5_cache.fm.3.0

July 15, 2005

The ldarx/stdcx. and lwarx/stwcx. instruction combinations can be used to perform atomic memory refer-
ences. The ldarx instruction is a load from a doubleword–aligned location that has two side effects:

1. A reservation for a subsequent instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the memory location accessed
by the ldarx.

The stdcx. instruction is a store to a doubleword–aligned location that is conditioned on the existence of the
reservation created by ldarx and on whether the same memory location is specified by both instructions and
whether the instructions are issued by the same processor.

The lwarx and stwcx. instructions are the word-aligned forms of the ldarx and stwcx. instructions. To
emulate an atomic operation with these instructions, it is necessary that both ldarx and stdcx. (or lwarx and
stwcx.) access the same memory location.

Note: When a reservation is made to a word in memory by the lwarx or ldarx instruction, an address is
saved and a reservation is set. Both of these are necessary for the memory coherence mechanism, however,
some processors do not implement the address compare for the stwcx. instruction. Only the reservation
needs to be established in order for the stwcx./stdcx. to be successful. This requires that exception handlers
clear reservations if control is passed to another program. Programmers should read the specifications for
each individual processor.

In a multiprocessor system, every processor (other than the one executing ldarx/stdcx. or lwarx/stwcx.) that
might update the location must configure the addressed page as memory coherency required. The
ldarx/stdcx. and lwarx/stwcx. instructions function in caching-inhibited, as well as in caching-allowed,
memory. If the addressed memory is in write-through mode, it is implementation-dependent whether these
instructions function correctly or cause the DSI exception handler to be invoked.

The ldarx/stdcx. and lwarx/stwcx. instruction combinations are described in Section 4.2.6 Memory
Synchronization Instructions—UISA and Chapter 8, Instruction Set.

5.1.3 Cache Model

The PowerPC Architecture does not specify the type, organization, implementation, or even the existence of
a cache. The standard cache model has separate instruction and data caches, also known as a Harvard
cache model. However, the architecture allows for many different cache types. Some implementations will
have a unified cache (where there is a single cache for both instructions and data). Other implementations
may not have a cache at all.

The function of the cache management instructions depends on the implementation of the cache(s) and the
setting of the memory/cache access modes. For a program to execute properly on all implementations, soft-
ware should use the Harvard model. In cases where a processor is implemented without a cache, the archi-
tecture guarantees that instructions affecting the nonimplemented cache will not halt execution.

Note: dcbz may cause an alignment exception on some implementations. For example, a processor with no
cache may treat a cache instruction as a no-op. Or, a processor with a unified cache may treat the icbi
instruction as a no-op. In this manner, programs written for separate instruction and data caches will run on
all compliant implementations.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 193 of 657

5.1.4 Memory Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all devices
using the system. The VEA and OEA define coherency controls that facilitate synchronization, cooperative
use of shared resources, and task migration among processors. These controls include the memory/cache
access attributes, the sync and eieio instructions, and the ldarx/stdcx. and lwarx/stwcx. instruction pairs.
Without these controls, the processor could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive overhead, particularly
in multiprocessor environments. For example, a processor performing a store operation in a strongly-ordered
system requires exclusive access to an address before making an update, to prevent another device from
using stale data.

The VEA defines a page as a unit of memory for which protection and control attributes are independently
specifiable. The OEA (supervisor level) specifies the size of a page as 4 Kbytes or a large page whose size is
implementation dependent.

Note: The VEA (user level) does not specify the page size.

5.1.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement these modes.
Refer to Section 5.2.1 Memory/Cache Access Attributes for more information. However, the VEA specifies
that at the user level, the operating system can be expected to provide the following attributes for each page
of memory:

• Write-through or write-back
• Caching-inhibited or caching-allowed
• Memory coherency required or memory coherency not required
• Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating system service.

Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache and also update
the data in main memory. The processor writes to the cache and through to main memory. Load operations
use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The processor may (but is not
required to) update main memory. Load and store operations use the data in the cache, if it is present. The
data in main memory does not necessarily stay consistent with that same location’s data in the cache. Many
implementations automatically update main memory in response to a memory access by another device (for
example, a snoop hit). In addition, the dcbst and dcbf instructions can be used to explicitly force an update of
main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 194 of 657
pem5_cache.fm.3.0

July 15, 2005

Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and performs load and
store operations to main memory. When a page is designated as caching-allowed, the processor uses the
cache and performs load and store operations to the cache or main memory depending on the other
memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the memory/cache
access attribute for the page from caching-allowed to caching-inhibited. It is considered a programming error
if a caching-inhibited memory location is found in the cache. Software must ensure that the location has not
previously been brought into the cache, or, if it has, that it has been flushed from the cache. If the program-
ming error occurs, the result of the access is boundedly undefined.

Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operations to that location are serialized
with all stores to that same location by all other processors that also access the location coherently. This can
be implemented, for example, by an ownership protocol that allows at most one processor at a time to store
to the location. Moreover, the current copy of a cache block that is in this mode may be copied to main
storage any number of times, for example, by successive dcbst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately to all other
processors and mechanisms. Only after a program has executed the sync instruction are the previous
storage accesses it executed guaranteed to have been performed with respect to all other processors and
mechanisms.

Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must ensure that the data
cache is consistent with main storage before changing the mode or allowing another device to access the
area.

Executing a dcbst or dcbf instruction specifying a cache block that is in this mode causes the block to be
copied to main memory if and only if the processor modified the contents of a location in the block and the
modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory coherency; therefore,
using memory coherency not required mode improves performance.

Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Out-of-Order Accesses to Guarded Memory
on page 203 for more information about out-of-order execution.

When a page is designated as guarded, instructions and data cannot be accessed out of order. Additionally,
if separate store instructions access memory that is both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. When a page is designated as not guarded, out-of-order
fetches and accesses are allowed.

Guarded pages are traditionally used for memory-mapped I/O devices.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 195 of 657

5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor and multi-
processor systems. When the memory/cache access attributes are changed, it is critical that the cache
contents reflect the new attribute settings. For example, if a page that had allowed caching becomes caching-
inhibited, the appropriate cache blocks should be flushed to leave no indication that caching had previously
been allowed.

Although coherency paradoxes are considered programming errors, specific implementations may attempt to
handle the offending conditions and minimize the negative effects on memory coherency. Bus operations that
are generated for specific instructions and state conditions are not defined by the architecture.

5.1.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For implementations that
have a unified instruction/data cache, instruction cache control instructions are valid instructions, but may
function differently.

This section briefly describes the cache management instructions available to programs at the user privilege
level. Additional descriptions of coding the VEA cache management instructions is provided in Chapter 4,
Addressing Modes and Instruction Set Summary and Chapter 8, Instruction Set. In the following instruction
descriptions, the target is the cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified), memory, and I/O data
transfers. To ensure consistency, aliased effective addresses (two effective addresses that map to the same
physical address) must have the same page offset.

Note: Physical address is referred to as real address in the architecture specification.

Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of software-initiated prefetch
hints. However, these instructions do not guarantee that a cache block will be fetched.

A program uses the dcbt instruction to request a cache block fetch before it is needed by the program. The
program can then use the data from the cache rather than fetching from main memory.

The dcbtst instruction behaves similarly to the dcbt instruction. A program uses dcbtst to request a cache
block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations caused by either
of the touch instructions. Additionally, memory accesses caused by these instructions are not necessarily
recorded in the page tables. If an access is recorded, then it is treated in a manner similar to that of a load
from the addressed byte. Some implementations may not take any action based on the execution of these
instructions, or they may prefetch the cache block corresponding to the effective address into their cache. For
information about the R and C bits, see Section 7.4.3 Page History Recording.

Both dcbt and dcbtst are provided for performance optimization. These instructions do not affect the correct
execution of a program, regardless of whether they succeed (fetch the cache block) or fail (do not fetch the
cache block). If the target block is not accessible to the program for loads, then no operation occurs.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 196 of 657
pem5_cache.fm.3.0

July 15, 2005

Data Cache Block Set to Zero (dcbz) Instruction

The dcbz instruction clears a single cache block as follows:

• If the target is in the data cache, all bytes of the cache block are cleared.

• If the target is not in the data cache and the corresponding page is caching-allowed, the cache block is
established in the data cache (without fetching the cache block from main memory), and all bytes of the
cache block are cleared.

• If the target is designated as either caching-inhibited or write-through, then either all bytes in main mem-
ory that correspond to the addressed cache block are cleared, or the alignment exception handler is
invoked. The exception handler should clear all the bytes in main memory that correspond to the
addressed cache block.

• If the target is designated as coherency required, and the cache block exists in the data cache(s) of any
other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address translation, protec-
tion, referenced and changed recording, and the ordering enforced by eieio or by the combination of caching-
inhibited and guarded attributes for a page.

Refer to Chapter 6, Exceptions for more information about a possible delayed machine check exception that
can occur by using dcbz when the operating system has set up an incorrect memory mapping.

Data Cache Block Store (dcbst) Instruction

The dcbst instruction permits the program to ensure that the latest version of the target cache block is in
main memory. The dcbst instruction executes as follows:

• Coherency required—If the target exists in the data cache of any processor and has been modified, the
data is written to main memory. Only one processor in a multiprocessor system should have possession
of a modified cache block.

• Coherency not required—If the target exists in the data cache of the executing processor and has been
modified, the data is written to main memory.

The PowerPC Architecture does not specify whether the modified status of the cache block is left unchanged
or is cleared (cleared implies valid-shared or valid-exclusive). That decision is left to the implementation of
individual processors. Either state is logically correct.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbst instruction is not necessarily recorded in the page tables. If the
access is recorded, then it is treated as a load operation (not as a store operation).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 197 of 657

Data Cache Block Flush (dcbf) Instruction

The action taken depends on the memory/cache access mode associated with the target, and on the state of
the cache block. The following list describes the action taken for the various cases:

• Coherency required

– Unmodified cache block—Invalidates copies of the cache block in the data caches of all processors.

– Modified cache block—Copies the cache block to memory. Invalidates the copy of the cache block in
the data cache of any processor where it is found. There should only be one modified cache block in
a coherency required multiprocessor system.

– Target block not in cache—If a modified copy of the cache block is in the data cache(s) of another
processor, dcbf causes the modified cache block to be copied to memory and then invalidated. If
unmodified copies are in the data caches of other processors, dcbf causes those copies to be invali-
dated.

• Coherency not required

– Unmodified cache block—Invalidates the cache block in the executing processor's data cache.

– Modified cache block—Copies the data cache block to memory and then invalidates the cache block
in the executing processor.

– Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbf instruction is not necessarily recorded in the page tables. If the access
is recorded, then it is treated as a load operation (not as a store operation).

5.1.5.2 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory, or I/O data trans-
fers. Software must use the appropriate cache management instructions to ensure that instruction caches are
kept coherent when instructions are modified by the processor or by input data transfer. When a processor
alters a memory location that may be contained in an instruction cache, software must ensure that updates to
memory are visible to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

1. dcbst (update memory)

2. sync (wait for update)

3. icbi (invalidate copy in instruction cache)

4. isync (perform context synchronization)

Note: Most operating systems will provide a system service for this function. These operations are neces-
sary because the memory may be designated as write-back. Since instruction fetching may bypass the data
cache, changes made to items in the data cache may not otherwise be reflected in memory until after the
instruction fetch completes.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 198 of 657
pem5_cache.fm.3.0

July 15, 2005

For implementations used in multiprocessor systems, variations on this sequence may be recommended. For
example, in a multiprocessor system with a unified instruction/data cache (at any level), if instructions are
fetched without coherency being enforced, the preceding instruction sequence is inadequate. Because the
icbi instruction does not invalidate blocks in a unified cache, a dcbf instruction should be used instead of a
dcbst instruction for this case.

Instruction Cache Block Invalidate Instruction (icbi)

The icbi instruction executes as follows:

• Coherency required
If the target is in the instruction cache of any processor, the cache block is made invalid in all such pro-
cessors, so that the next reference causes the cache block to be refetched.

• Coherency not required
If the target is in the instruction cache of the executing processor, the cache block is made invalid in the
executing processor so that the next reference causes the cache block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data caches. The effective
address is computed, translated, and checked for protection violations as defined in Chapter 7, Memory
Management. If the target block is not accessible to the program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by an icbi instruction is not necessarily recorded in the page tables. If the
access is recorded, then it is treated as a load operation. Implementations that have a unified cache treat the
icbi instruction as a no-op except that they may invalidate the target cache block in the instruction caches of
other processors (in coherency required mode).

Note: The invalidation of the specified instruction cache block cannot be assumed to have been performed
with respect to the processor executing the instruction until a subsequent isync instruction has been exe-
cuted by the processor. No other instruction or event has the corresponding effect.

Instruction Synchronize Instruction (isync)

The isync instruction provides an ordering function for the effects of all instructions executed by a processor.
Executing an isync instruction ensures that all instructions preceding the isync instruction have completed
before the isync instruction completes, except that memory accesses caused by those instructions need not
have been performed with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isync instruction completes. Finally, it causes the
processor to discard any prefetched instructions, with the effect that subsequent instructions will be fetched
and executed in the context established by the instructions preceding the isync instruction. The isync
instruction has no effect on other processors or on their caches.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 199 of 657

5.2 The Operating Environment

The OEA defines the mechanism for controlling the memory/cache access modes introduced in
Section 5.1.4.1 Memory/Cache Access Modes. This section describes the cache-related aspects of the OEA
including the memory/cache access attributes, out-of-order execution, and the dcbi instruction. The features
of the OEA are accessible to supervisor-level applications only. The mechanism for controlling the virtual
memory space is described in Chapter 7, Memory Management.

The memory model of PowerPC processors provides the following features:

• Flexibility to allow performance benefits of weakly-ordered memory access

• A mechanism to maintain memory coherency among processors and between a processor and I/O
devices controlled at the block and page level

• Instructions that can be used to ensure a consistent memory state

• Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance benefits of weak
ordering of memory accesses between processors or between processors and other external devices without
any additional complications. Memory coherency can be enforced externally by a snooping bus design, a
centralized cache directory design, or other designs that can take advantage of the coherency features of
PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from the view of the
programming model but may complete out of order with respect to the ultimate destination in the memory
hierarchy. Order is guaranteed at each level of the memory hierarchy for accesses to the same address from
the same processor. The dcbf, dcbst, eieio, icbi, isync, ldarx, lwarx, stdcx., stwcx., sync, and tlbsync
instructions allow the programmer to ensure a consistent and ordered memory state.

5.2.1 Memory/Cache Access Attributes

All instruction and data accesses are performed under the control of the four memory/cache access
attributes:

• Write-through (W attribute)

• Caching-inhibited (I attribute)

• Memory coherency (M attribute)

• Guarded (G attribute)

These attributes are maintained in the PTEs by the operating system for each page. The operating system
stores the WIMG bits for each page into the PTEs in system memory as it sets up the page tables. The W and
I attributes control how the processor performing an access uses its own cache. The M attribute ensures that
coherency is maintained for all copies of the addressed memory location. When an access requires coher-
ency, the processor performing the access must inform the coherency mechanisms throughout the system
that the access requires memory coherency. The G attribute prevents out-of-order loading and prefetching
from the addressed memory location.

Note: The memory/cache access attributes are relevant only when an effective address is translated by the
processor performing the access. Also, not all combinations of settings of these bits are supported. The
attributes are not saved along with data in the cache (for cacheable accesses), nor are they associated with
subsequent accesses made by other processors.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 200 of 657
pem5_cache.fm.3.0

July 15, 2005

Note: For data accesses performed in real addressing mode (MSR[DR] = ‘0’), the WIMG bits are assumed to
be ‘0011’ (the data is write-back, caching is enabled, memory coherency is enforced, and memory is
guarded). For instruction accesses performed in real addressing mode (MSR[IR] = ‘0’), the WIMG bits are
assumed to be ‘0001’ (the data is write-back, caching is enabled, memory coherency is not enforced, and
memory is guarded).

5.2.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = ‘1’), if the data is in the cache, a store operation updates
the cached copy of the data. In addition, the update is written to the memory location. The definition of the
memory location to be written to (in addition to the cache) depends on the implementation of the memory
system but can be illustrated by the following examples:

• RAM—The store is sent to the RAM controller to be written into the target RAM.

• I/O device—The store is sent to the memory-mapped I/O controller to be written to the target register or
memory location.

In systems with multilevel caching, the store must be written to at least a depth in the memory hierarchy that
is seen by all processors and devices.

Multiple store instructions may be combined for write-through accesses except when the store instructions
are separated by a sync or eieio instruction. A store operation to a memory location designated as write-
through may cause any part of the cache block to be written back to main memory.

Accesses that correspond to W = ‘0’ are considered write-back. For this case, although the store operation is
performed to the cache, the data is copied to memory only when a copy-back operation is required. Use of
the write-back mode (W = ‘0’) can improve overall performance for areas of the memory space that are
seldom referenced by other processors or devices in the system.

Accesses to the same memory location using two effective addresses for which the W-bit setting differs meet
the memory-coherency requirements if the accesses are performed by a single processor. If the accesses
are performed by two or more processors, coherence is enforced by the hardware only if the write-through
attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (I)

If I=’1’, the memory access is completed by referencing the location in main memory, bypassing the cache.
During the access, the addressed location is not loaded into the cache nor is the location allocated in the
cache.

It is considered a programming error if a copy of the target location of an access to caching-inhibited memory
is resident in the cache. Software must ensure that the location has not been previously loaded into the
cache, or if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited operations, except when
the accesses are separated by a sync instruction, or by an eieio instruction when the page is also designated
as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory location using two
effective addresses for which the I-bit setting differs must meet the requirement that a copy of the target loca-
tion of an access to caching-inhibited memory not be in the cache. Violation of this requirement is considered
a programming error; software must ensure that the location has not previously been brought into the cache

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 201 of 657

or, if it has, that it has been flushed from the cache. If the programming error occurs, the result of the access
is boundedly undefined. It is not considered a programming error if the target location of any other cache
management instruction to caching-inhibited memory is in the cache.

5.2.1.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-enforced coherency is
relatively slow, and software is able to enforce the required coherency. When M=’0’, there are no require-
ments to enforce data coherency. When M=’1’, the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware indication to the rest
of the system that the access is global. Other processors affected by the access must then respond to this
global access. For example, in a snooping bus design, the processor may assert some type of global access
signal. Other processors affected by the access respond and signal whether the data is being shared. If the
data in another processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some implementations may
ignore the M attribute for instruction accesses. In a single-processor (or single-cache) system, performance
might be improved by designating all pages as memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M-bit settings differ may
require explicit software synchronization before accessing the location with M = ‘1’ if the location has previ-
ously been accessed with M = ‘0’. Any such requirement is system-dependent. For example, no software
synchronization may be required for systems that use bus snooping. In some directory-based systems, soft-
ware may be required to execute dcbf instructions on each processor to flush all storage locations accessed
with M=’0’ before accessing those locations with M=’1’.

5.2.1.4 W, I, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The combinations where
WIM = ‘11x’ are not supported.

Note: Either a ‘0’ or ‘1’ setting for the G-bit is allowed for each of these WIM bit combinations.

Table 5-1. Combinations of W, I, and M Bits

WIM Setting Meaning

000
The processor may cache data (or instructions).
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

001
Data (or instructions) may be cached.
A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

010
Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 202 of 657
pem5_cache.fm.3.0

July 15, 2005

5.2.1.5 Guarded Attribute (G)

When the guarded bit is set, the memory area (page) is designated as guarded. This setting can be used to
protect certain pages from read accesses made by the processor that are not dictated directly by the
program. If there are areas of physical memory that are not fully populated (in other words, there are holes in
the physical memory map within this area), this setting can protect the system from undesired accesses
caused by out-of-order load operations or instruction prefetches that could lead to the generation of the
machine check exception. Also, the guarded bit can be used to prevent out-of-order (speculative) load opera-
tions or prefetches from occurring to certain peripheral devices that produce undesired results when
accessed in this way.

Performing Operations Out of Order

An operation is said to be performed in-order if it is guaranteed to be required by the sequential execution
model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results will be needed by
an instruction that will be required by the sequential execution model. Whether the results are really needed
is contingent on everything that might divert the control flow away from the instruction, such as branch, trap,
system call, and return from interrupt instructions, and exceptions, and on everything that might change the
context in which the instruction is executed.

Typically, the hardware performs operations out of order when it has resources that would otherwise be idle,
so the operation incurs little or no cost. If subsequent events such as branches or exceptions indicate that the
operation would not have been performed in the sequential execution model, the processor abandons any
results of the operation (except as described below).

Most operations can be performed out of order, as long as the machine appears to follow the sequential
execution model. Certain out-of-order operations are restricted, as follows.

• Stores – A store instruction may not be executed out of order in a manner such that the alteration of the
target location can be observed by other processors or mechanisms.

• Accessing guarded memory – The restrictions for this case are given in Out-of-Order Accesses to
Guarded Memory on page 203.

011
Caching is inhibited.
The access is performed to memory, completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

100

Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.
Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor does not need to enforce memory coherency for accesses it initiates.

101

Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.
Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor enforces memory coherency for accesses it initiates.

Table 5-1. Combinations of W, I, and M Bits (Continued)

WIM Setting Meaning

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem5_cache.fm.3.0
July 15, 2005

Cache Model and Memory Coherency

Page 203 of 657

No error of any kind other than a machine check exception may be reported due to an operation that is
performed out of order, until such time as it is known that the operation is required by the sequential execu-
tion model. The only other permitted side effects (other than machine check) of performing an operation out
of order are the following:

• Referenced and changed bits may be set as described in Section 7.2.5 Page History Information.

• Nonguarded memory locations that could be fetched into a cache by in-order execution may be fetched
out of order into that cache.

Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not defective, and if
the effects of a single access to it are indistinguishable from the effects of multiple identical accesses to it.
Data and instructions can be fetched out of order from well-behaved memory without causing undesired side
effects.

Memory is said to be guarded if either:
(a) the G-bit is ’1’ in the relevant PTE or
(b) the processor is in real addressing mode (MSR[IR] = ‘0’ or MSR[DR] = ‘0’ for instruction fetches or data
accesses respectively).

In case (b), all of memory is guarded for the corresponding accesses. In general, memory that is not well-
behaved should be guarded. Because such memory may represent an I/O device or may include locations
that do not exist, an out-of-order access to such memory may cause an I/O device to perform incorrect oper-
ations or may result in a machine check.

Note: If separate store instructions access memory that is both caching-inhibited and guarded, the accesses
are performed in the order specified by the program. If an aligned, elementary load or store to caching-inhib-
ited, guarded memory has accessed main memory and an external, decrementer, or imprecise-mode float-
ing-point enabled exception is pending, the load or store is completed before the exception is taken.

Out-of-Order Accesses to Guarded Memory

The circumstances in which guarded memory may be accessed out of order are as follows:

• Load instruction – If a copy of the target location is in a cache, the location may be accessed in the cache
or in main memory.

• Instruction fetch – In real addressing mode (MSR[IR] = ‘0’), an instruction may be fetched if any of the fol-
lowing conditions is met:

– The instruction is in a cache. In this case, it may be fetched from that cache.

– The instruction is in the same physical page as an instruction that is required by the sequential execu-
tion model or is in the physical page immediately following such a page.

If MSR[IR] = ‘1’, instructions may not be fetched from either no-execute segments or guarded memory. If
the effective address of the current instruction is mapped to either of these kinds of memory when
MSR[IR] = ‘1’, an ISI exception is generated. However, it is permissible for an instruction from either of
these kinds of memory to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the operating system can
access an application's instruction segments as no-execute without having to invalidate them in the
instruction cache.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Cache Model and Memory Coherency

Page 204 of 657
pem5_cache.fm.3.0

July 15, 2005

Note: Software should ensure that only well-behaved memory is loaded into a cache, either by marking as
caching-inhibited (and guarded) all memory that may not be well-behaved, or by marking such memory cach-
ing-allowed (and guarded) and referring only to cache blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode (MSR[IR] = ‘0’), soft-
ware should ensure that this physical page and the next physical page contain only well-behaved memory.

5.2.2 I/O Interface Considerations

Memory-mapped I/O interface operations are considered to address memory space and are therefore subject
to the same coherency control as memory accesses. Depending on the specific I/O interface, the
memory/cache access attributes (WIMG) and the degree of access ordering (requiring eieio or sync instruc-
tions) need to be considered. This is the recommended way of accessing I/O.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 205 of 657

6. Exceptions
60
90

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions may be defined at other levels of the architecture. For example, the user instruc-
tion set architecture (UISA) defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of
external signals, errors, or unusual conditions arising in the execution of instructions. When exceptions occur,
information about the state of the processor is saved to certain registers and the processor begins execution
at an address (exception vector) predetermined for each exception. Processing of exceptions begins in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific condition may
be determined by examining a register associated with the exception—for example, the DSISR and the
floating-point status and control register (FPSCR). Additionally, certain exception conditions can be explicitly
enabled or disabled by software.

The PowerPC Architecture requires that exceptions be taken in program order; therefore, although a partic-
ular implementation may recognize exception conditions out of order, they are handled strictly in order with
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially. Likewise, exceptions that
are asynchronous and precise are recognized when they occur, but are not handled until all instructions
currently in the execute stage successfully complete execution and report their results.

Note: Exceptions can occur while an exception handler routine is executing, and multiple exceptions can
become nested. It is up to the exception handler to save the appropriate machine state if it is desired to allow
control to ultimately return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to execute the instruc-
tion that caused the exception. Instruction execution continues until the next exception condition is encoun-
tered. This method of recognizing and handling exception conditions sequentially guarantees that the
machine state is recoverable and processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information stored in SRR0 and
SRR1 soon after the exception is taken to prevent this information from being lost due to another exception
being taken.

In this chapter, the following terminology is used to describe the various stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is identified by
the processor.

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler; that is, the context is saved and the instruction at the appropriate vector offset is
fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset. Excep-
tion handling is begun in supervisor mode (referred to as privileged state in the architecture
specification).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 206 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.1 Exception Classes

As specified by the PowerPC Architecture, all exceptions can be described as either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events external to the
processor’s execution; synchronous exceptions are caused by instructions.

The PowerPC exception types are shown in Table 6-1.

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The exception
vectors described in the table correspond to physical address locations, relative to address 0. Refer to
Section 7.2.1.2 Predefined Physical Memory Locations for a complete list of the predefined physical memory
areas. Remaining sections in this chapter provide more complete descriptions of the exceptions and of the
conditions that cause them.

Table 6-1. PowerPC Exception Classifications

Type Exception

Asynchronous/nonmaskable
Machine Check
System Reset

Asynchronous/maskable
External interrupt
Decrementer

Synchronous/Precise Instruction-caused exceptions, excluding floating-point imprecise exceptions

Synchronous/Imprecise
Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Table 6-2. Exceptions and Conditions—Overview

Exception Type Vector Offset (hex) Causing Conditions

System reset 00100

The causes of system reset exceptions are implementation-dependent. If the conditions that
cause the exception also cause the processor state to be corrupted such that the contents of
SRR0 and SRR1 are no longer valid or such that other processor resources are so corrupted
that the processor cannot reliably resume execution, the copy of the RI bit copied from the
MSR to SRR1 is cleared.

Machine check 00200

The causes for machine check exceptions are implementation-dependent, but typically these
causes are related to conditions such as bus parity errors or attempting to access an invalid
physical address. Typically, these exceptions are triggered by an input signal to the processor.
Note: Not all processors provide the same level of error checking.

The machine check exception is disabled when MSR[ME] = ’0’. If a machine check exception
condition exists and the ME bit is cleared, the processor goes into the checkstop state.
If the conditions that cause the exception also cause the processor state to be corrupted such
that the contents of SRR0 and SRR1 are no longer valid or such that other processor
resources are so corrupted that the processor cannot reliably resume execution, the copy of
the RI bit written from the MSR to SRR1 is cleared.
Note: The physical address is referred to as real address in the architecture specification.)

DSI 00300

A DSI exception occurs when a data memory access cannot be performed for any of the rea-
sons described in Section 6.4.3 DSI Exception (0x00300). Such accesses can be generated
by load/store instructions, certain memory control instructions, and certain cache control
instructions.

Data Segment 00380
A Data Segment interrupt occurs if MSR[DR] = ’1’ and the translation of the effective address
of any byte of the specified storage location is not found in the SLB. Refer to Section 6.4.4
Data Segment Exception (0x00380) for details.

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed for a variety of reasons
described in Section 6.4.5 ISI Exception (0x00400).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 207 of 657

Instruction
Segment 00480

An instruction segment exception occurs when no higher priority exception exists and next
instruction to be executed cannot be fetched because instruction address translation is
enabled (MSR[IR]=1) and the effective address cannot be translated to a virtual address.

External interrupt 00500 An external interrupt is generated only when an external interrupt is pending (typically sig-
nalled by a signal defined by the implementation) and the interrupt is enabled (MSR[EE] = ’1’).

Alignment 00600

An alignment exception may occur when the processor cannot perform a memory access for
reasons described in Section 6.4.8 Alignment Exception (0x00600).
Note: An implementation is allowed to perform the operation correctly and not cause an align-
ment exception.

Program 00700

A program exception is caused by one of the following exception conditions, which correspond
to bit settings in SRR1 and arise during execution of an instruction:

• Floating-point enabled exception—A floating-point enabled exception condition is gener-
ated when MSR[FE0–FE1] ≠ ‘00’ and FPSCR[FEX] is set. The settings of FE0 and FE1
are described in Table 6-3.
FPSCR[FEX] is set by the execution of a floating-point instruction that causes an enabled
exception or by the execution of a Move to FPSCR instruction that sets both an exception
condition bit and its corresponding enable bit in the FPSCR. These exceptions are
described in Section 3.3.6 Floating-Point Program Exceptions.”

• Illegal instruction—An illegal instruction program exception is generated when execution
of an instruction is attempted with an illegal opcode or illegal combination of opcode and
extended opcode fields or when execution of an optional instruction not provided in the
specific implementation is attempted (these do not include those optional instructions that
are treated as no-ops). The PowerPC instruction set is described in Chapter 4, “Address-
ing Modes and Instruction Set Summary.” See Section 6.4.9 Program Exception
(0x00700) for a complete list of causes for an illegal instruction program exception.

• Privileged instruction—A privileged instruction type program exception is generated when
the execution of a privileged instruction is attempted and the MSR user privilege bit,
MSR[PR], is set. This exception is also generated for mtspr or mfspr with an invalid SPR
field if spr[0] = ’1’ and MSR[PR] = ’1’.

• Trap—A trap type program exception is generated when any of the conditions specified in
a trap instruction is met.

For more information, refer to Section 6.4.9 Program Exception (0x00700).”

Floating-point
unavailable 00800

A floating-point unavailable exception is caused by an attempt to execute a floating-point
instruction (including floating-point load, store, and move instructions) when the floating-point
available bit is cleared, MSR[FP] = ’0’.

Decrementer 00900
The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] = ’1’), and it
is pending. The exception is created when the most-significant bit of the decrementer changes
from 0 to 1. If it is not enabled, the exception remains pending until it is taken.

Reserved 00A00 This is reserved for implementation-specific exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00

Implementation of the trace exception is optional. If implemented, it occurs if either the
MSR[SE] = ’1’ and almost any instruction successfully completed or MSR[BE] = ’1’ and a
branch instruction is completed. See Section 6.4.13 Trace Exception (0x00D00) for more infor-
mation.

Reserved 00E00–00FFF —

Performance
monitor 00F00

The performance monitor exception is part of the optional performance monitor facility. If the
performance monitor facility is not implemented or does not use this interrupt, the correspond-
ing interrupt vector is treated as reserved.

Reserved 01000–02FFF This is reserved for implementation-specific purposes. May be used for implementation-spe-
cific exception vectors or other uses.

Table 6-2. Exceptions and Conditions—Overview (Continued)

Exception Type Vector Offset (hex) Causing Conditions

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 208 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.1.1 Precise Exceptions

When any precise exception occurs, SRR0 points to either the instruction causing the exception or the
instruction immediately following. The exception type and status bits determine which instruction is
addressed. However, depending on the exception type, the instruction addressed by SRR0 and those
following it might have started, but might not have completed execution.

When an exception occurs, instruction dispatch (the issuance of instructions by the instruction fetch unit to
any instruction execution mechanism) is halted and the following synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction stream to complete to a
point where they will not report any exceptions.

2. The processor ensures that all previous instructions in the instruction stream complete in the context in
which they began execution.

3. The exception mechanism implemented in hardware (the loading of registers SRR0 and SRR1) and the
software handler (saving SRR0 and SRR1 in the stack and updating stack pointer, etc.) are responsible
for saving and restoring the processor state.

The synchronization described conforms to the requirements for context synchronization. A complete
description of context synchronization is described in Section 6.1.2.1 Context Synchronization.

6.1.2 Synchronization

The synchronization described in this section refers to the state of activities within the processor that
performs the synchronization.

6.1.2.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies all the requirements listed below. Such instruc-
tions and events are collectively called context-synchronizing operations. Examples of context-synchronizing
operations include the isync, sc, and rfid instructions, the mtmsr[d] instruction if L = ‘0’, and most excep-
tions. A context-synchronizing operation has the following characteristics:

1. The operation causes instruction fetching and dispatching (the issuance of instructions by the instruction
fetch mechanism to any instruction execution mechanism) to be halted.

2. The operation is not initiated or, in the case of isync, does not complete, until all instructions in execution
have completed to a point at which they have reported all exceptions they will cause.

3. The operation ensures that the instructions that precede the operation will complete execution in the con-
text (privilege, relocation, memory protection, etc.) in which they were initiated, except that the operation
has no effect on the context in which the associated Reference and Change bit updates are performed.

4. If the operation either directly causes an exception (for example, the sc instruction causes a system call
exception) or is an exception, then the operation is not initiated until there is no exception having a higher
priority than the exception associated with the context-synchronizing operation.

5. The operation ensures that the instructions that follow the operation will be fetched and executed in the
context established by the operation. (This requirement dictates that any prefetched instructions be dis-
carded and that any effects and side effects of executing them out-of-order also be discarded, except as
described in the Section Out-of-Order Accesses to Guarded Memory.)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 209 of 657

A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync instruction, a
context-synchronizing operation need not wait for memory-related operations to complete on this or other
processors, or for Referenced and Changed bits in the page table to be updated.

6.1.2.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for
context synchronization. The sync and ptesync instructions are treated like isync with respect to the second
item described above (that is, the conditions described in the second item apply to the completion of sync).
The sync and mtmsr instructions are examples of execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context-synchronizing operation,
an execution-synchronizing instruction need not ensure that the subsequent instructions execute in the
context established by this and previous instructions. This new context becomes effective sometime after the
execution-synchronizing instruction completes and before or at a subsequent context-synchronizing opera-
tion.

6.1.2.3 Synchronous/Precise Exceptions

When instruction execution causes a precise exception, the following conditions exist at the exception point:

• SRR0 always points to the instruction causing the exception except for the sc instruction. In this case
SRR0 points to the immediately following instruction. The instruction addressed can be determined from
the exception type and status bits, which are defined in the description of each exception. In all cases
SRR0 points to the first instruction that has not completed execution. The sc instruction always com-
pletes execution, updates the instruction pointer and reports the exception. Hence, SRR0 points to the
instructions following sc.

• All instructions that precede the excepting instruction complete to a point where they will not report
exceptions before the exception is processed. However, some memory accesses generated by these pre-
ceding instructions may not have been performed with respect to all other processors or system devices.

• The instruction causing the exception may not have begun execution, may have partially completed, or
may have completed, depending on the exception type. Handling of partially executed instructions is
described in Section 6.1.4 Partially Executed Instructions.

• Architecturally, no subsequent instruction has begun execution.

While instruction parallelism allows the possibility of multiple instructions reporting exceptions during the
same cycle, they are handled one at a time in program order. Exception priorities are described in
Section 6.1.5 Exception Priorities.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 210 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.1.2.4 Asynchronous Exceptions

There are four asynchronous exceptions—system reset and machine check, which are nonmaskable and
highest-priority exceptions, and external interrupt and decrementer exceptions which are maskable and low-
priority. These two types of asynchronous exceptions are discussed separately.

System Reset and Machine Check Exceptions

System reset and machine check exceptions have the highest priority and can occur while other exceptions
are being processed.

Note: Nonmaskable, asynchronous exceptions are never delayed; therefore, if two of these exceptions occur
in immediate succession, the state information saved by the first exception may be overwritten when the sub-
sequent exception occurs. Also, these exceptions are context-synchronizing if they are recoverable; the sys-
tem uses the MSR[RI] to detect whether an exception is recoverable.

While a system is running the MSR[RI] bit is set. When an exception occurs a copy of the MSR register is
stored in SRR1. Then most bits in the MSR are cleared including the RI bit with various exceptions (see the
exceptions types for new setting of the MSR bits). The exception handler saves the state of the machine
(saving SRR0 and SRR1 into the stack and updating the stack pointer) to a point that it can incur another
exception. At this point the exception handler sets the MSR[RI] bit. Also the external interrupt can be re-
enabled. Now you can clearly understand that if the exception handler ever sees in the SRR1 register a case
where the MSR[RI] bit is not set, the exception is not recoverable (because the exception occurred while the
machine state was being saved) and a system restart procedure should be initiated.

System reset and machine check exceptions cannot be masked by using the MSR[EE] bit. Furthermore, if the
machine check enable bit, MSR[ME], is cleared and a machine check exception condition occurs, the
processor goes directly into checkstop state as the result of the exception condition. Clearly, one never wants
to run in this mode (MSR[ME] cleared) for extended periods of time. When one of these exceptions occur, the
following conditions exist at the exception point:

• For system reset exceptions, SRR0 addresses the instruction that would have attempted to execute next
if the exception had not occurred.

• For machine check exceptions, SRR0 holds either an instruction that would have completed or some
instruction following it that would have completed if the exception had not occurred.

• An exception is generated such that all instructions preceding the instruction addressed by SRR0 appear
to have completed with respect to the executing processor.

Note: MSR[RI] indicates whether enough of the machine state was saved to allow the processor to resume
processing.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 211 of 657

External Interrupt and Decrementer Exceptions

For the external interrupt and decrementer exceptions, the following conditions exist at the exception point
(assuming these exceptions are enabled (MSR[EE] bit is set)):

• All instructions issued before the exception is taken and any instructions that precede those instructions
in the instruction stream appear to have completed before the exception is processed.

• No subsequent instructions in the instruction stream have begun execution.

• SRR0 addresses the first instruction that has not completed execution.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer exceptions are
maskable. When the machine state register external interrupt enable bit is cleared (MSR[EE] = ’0’), these
exception conditions are not recognized until the EE bit is set. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of subsequent exception conditions. No two precise exceptions can
be recognized simultaneously. Exception handling does not begin until all currently executing instructions
complete and any synchronous, precise exceptions caused by those instructions have been handled. Excep-
tion priorities are described in Section 6.1.5 Exception Priorities.

6.1.3 Imprecise Exceptions

The PowerPC Architecture defines one imprecise exception, the imprecise mode floating-point enabled
exception. This is implemented as one of the conditions that can cause a program exception.

6.1.3.1 Imprecise Exception Status Description

When the execution of an instruction causes an imprecise exception, SRR0 contains information related to
the address of the excepting instruction as follows:

• SRR0 addresses either the instruction causing the exception or some instruction following the instruction
causing the exception that generated the interrupt.

• The exception is generated such that all instructions preceding the instruction addressed by SRR0 have
completed with respect to the processor.

• If the imprecise exception is caused by the context-synchronizing mechanism (due to an instruction that
caused another exception—for example, an alignment or DSI exception), then SRR0 contains the
address of the instruction that caused the exception, and that instruction may have been partially exe-
cuted (refer to Section 6.1.4 Partially Executed Instructions).

• If the imprecise exception is caused by an execution-synchronizing instruction other than sync, isync, or
ptesync, then SRR0 addresses the instruction causing the exception. Additionally, besides causing the
exception, that instruction is considered not to have begun execution. If the exception is caused by the
sync, isync, or ptesync instruction, SRR0 may address either the sync, isync, or ptesync instruction,
or the following instruction.

• If the imprecise exception is not forced by either the context-synchronizing mechanism or the execution-
synchronizing mechanism, then the instruction addressed by SRR0 is considered not to have begun exe-
cution if it is not the instruction that caused the exception.

• When an imprecise exception occurs, no instruction following the instruction addressed by SRR0 is con-
sidered to have begun execution.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 212 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions

The enabled IEEE floating-point exception mode bits in the MSR (FE0 and FE1) together define whether
IEEE floating-point exceptions are handled precisely, imprecisely, or whether they are taken at all. The
possible settings are shown in Table 6-3. For further details, see Section 3.3.6 Floating-Point Program
Exceptions.

As shown in the table, the imprecise floating-point enabled exception has two modes—nonrecoverable and
recoverable. These modes are specified by setting the MSR[FE0] and MSR[FE1] bits and are described as
follows:

• Imprecise nonrecoverable floating-point enabled mode. MSR[FE0] = ’0’; MSR[FE1] = ‘1’. When an excep-
tion occurs, the exception handler is invoked at some point at or beyond the instruction that caused the
exception. It may not be possible to identify the offending instruction or the data that caused the excep-
tion. Results from the offending instruction may have been used by or affected data of subsequent
instructions executed before the exception handler was invoked.

• Imprecise recoverable floating-point enabled mode. MSR[FE0] = ’1’; MSR[FE1] = ’0’. When an exception
occurs, the floating-point enabled exception handler is invoked at some point at or beyond the offending
instruction that caused the exception. Sufficient information is provided to the exception handler that it
can identify the offending instruction and correct any faulty data. In this mode, no incorrect data caused
by the offending instruction have been used by or affected data of subsequent instructions that are exe-
cuted before the exception handler is invoked.

Although these exceptions are maskable with these bits, they differ from other maskable exceptions in that
the masking is usually controlled by the application program rather than by the operating system.

Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions ignored

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 213 of 657

6.1.4 Partially Executed Instructions

The architecture permits certain instructions to be partially executed when an alignment exception or DSI
exception occurs, or an imprecise floating-point exception is forced by an instruction that causes an align-
ment or DSI exception. They are as follows:

• Load multiple/string instructions that cause an alignment or DSI exception—Some registers in the range
of registers to be loaded may have been loaded.

• Store multiple/string instructions that cause an alignment or DSI exception—Some bytes in the
addressed memory range may have been updated.

• Non-multiple/string store instructions that cause an alignment or DSI exception—Some bytes just before
the boundary may have been updated. If the instruction normally alters CR0 (stwcx. or stdcx.), CR0 is
set to an undefined value. For instructions that perform register updates, the update register (rA) is not
altered.

• Floating-point load instructions that cause an alignment or DSI exception—The target register may be
altered. For update forms, the update register (rA) is not altered.

In the cases above, the number of registers and the amount of memory altered are implementation, instruc-
tion, and boundary-dependent. However, memory protection is not violated.

Note: An exception may result in the partial execution of a Load or Store instruction. For example, if the
Page Table Entry that translates the address of the memory operand is altered, by a program running on
another processor, such that the new contents of the Page Table Entry preclude performing the access, the
alteration could cause the Load or Store instruction to be aborted after having been partially executed.

Partial execution is not allowed when integer load operations (except multiple/string operations) cause an
alignment or DSI exception. The target register is not altered. For update forms of the integer load instruc-
tions, the update register (rA) is not altered.

6.1.5 Exception Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—system reset and
machine check exceptions (although the machine check exception condition can be disabled so that the
condition causes the processor to go directly into the checkstop state). These two types of exceptions in
this class cannot be delayed by exceptions in other classes, and do not wait for the completion of any pre-
cise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order.

3. If an imprecise exception exists (the instruction that caused the exception has been completed and is
required by the sequential execution model), exceptions signaled by instructions subsequent to the
instruction that caused the exception are not permitted to change the architectural state of the processor.
The exception causes an imprecise program exception unless a machine check or system reset excep-
tion is pending.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions) have lowest priority.

The exceptions are listed in Table 6-4 in order of highest to lowest priority.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 214 of 657
pem6_exceptions.fm.3.0

July 15, 2005

Table 6-4. Exception Priorities

Exception Class Priority Exception

Nonmaskable,
asynchronous

1

System reset—The system reset exception has the highest priority of all exceptions. If this exception
exists, the exception mechanism ignores all other exceptions and generates a system reset exception.
When the system reset exception is generated, previously issued instructions can no longer generate
exception conditions that cause a nonmaskable exception.

2

Machine check—The machine check exception is the second-highest priority exception. If this exception
occurs, the exception mechanism ignores all other exceptions (except reset) and generates a machine
check exception. When the machine check exception is generated, previously issued instructions can no
longer generate exception conditions that cause a nonmaskable exception.

Synchronous,
precise 3

Instruction dependent— When an instruction causes an exception, the exception mechanism waits for
any instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions
caused by these instructions are handled first. It then generates the appropriate exception if no higher
priority exception exists when the exception is to be generated.
Note: A single instruction can cause multiple exceptions. When this occurs, those exceptions are
ordered in priority as indicated in the following:

A. Integer loads and stores
a. Program-illegal instruction
b. DSI, Data Segment, or Alignment
c. Trace (if implemented)

B. Floating-point loads and stores
a. Program-illegal instruction
b. Floating-point unavailable
c. DSI, Data Segment, or Alignment
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented)

D. rfid and mtmsrd (or mtmsr)
a. Program—Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsrd (or mtmsr) only
If precise-mode IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is
set, a program exception occurs no later than the next synchronizing event.

E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
—Program: Trap
— System call (sc)
—Program: Privileged Instruction
—Program: Illegal Instruction
b. Trace (if implemented)

F. ISI or Instruction Segment exception
The ISI or Instruction Segment exception has the lowest priority in this category. It is only recog-
nized when all instructions prior to the instruction causing this exception appear to have com-
pleted and that instruction is to be executed. The priority of this exception is specified for
completeness and to ensure that it is not given more favorable treatment. An implementation
can treat this exception as though it had a lower priority.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 215 of 657

Nonmaskable, asynchronous exceptions (namely, system reset or machine check exceptions) may occur at
any time. That is, these exceptions are not delayed if another exception is being handled (although machine
check exceptions can be delayed by system reset exceptions). As a result, state information for the inter-
rupted exception handler may be lost.

All other exceptions have lower priority than system reset and machine check exceptions, and the exception
might not be taken immediately when it is recognized. Only one synchronous, precise exception can be
reported at a time. If a maskable, asynchronous or an imprecise exception condition occurs while instruction-
caused exceptions are being processed, its handling is delayed until all exceptions caused by previous
instructions in the program flow are handled and those instructions complete execution.

6.2 Exception Processing

Associated with each kind of exception is an exception vector, which contains the initial sequence of instruc-
tions that is executed when the corresponding exception occurs. Exception processing consists of saving a
small part of the processor's state in certain registers, identifying the cause of the exception in other registers,
and continuing execution at the corresponding exception vector location.

When an exception is taken, the processor uses the save/restore registers, SRR1 and SRR0, respectively, to
save the contents of the MSR for the interrupted process and to help determine where instruction execution
should resume after the exception is handled.

When an exception occurs, the address saved in SRR0 is used to help calculate where instruction processing
should resume when the exception handler returns control to the interrupted process. Depending on the
exception, this may be the address in SRR0 or at the next address in the program flow. All instructions in the
program flow preceding this one will have completed execution and no subsequent instruction will have
completed execution. This may be the address of the instruction that caused the exception or the next one
(as in the case of a system call or trap exception). The SRR0 register is shown in Figure 6-1.

Imprecise 4

Program imprecise floating-point mode enabled exceptions—When this exception occurs, the exception
handler is invoked at or beyond the floating-point instruction that caused the exception. The PowerPC
Architecture supports recoverable and nonrecoverable imprecise modes, which are enabled by setting
MSR[FE0-FE1] = ‘10’ or ‘01’, respectively. For more information see, Section 6.1.3 Imprecise Excep-
tions.

Maskable,
asynchronous

5

External interrupt—The external interrupt mechanism waits for instructions currently or previously dis-
patched to complete execution. After all such instructions are completed, and any exceptions caused by
those instructions have been handled, the exception mechanism generates this exception if no higher
priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is zero when
the exception is detected, it is delayed until the bit is set.

5

Decrementer—This exception is the lowest priority exception. When this exception is created, the excep-
tion mechanism waits for all other possible exceptions to be reported. It then generates this exception if
no higher priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is
zero when the exception is detected, it is delayed until the bit is set.

Table 6-4. Exception Priorities (Continued)

Exception Class Priority Exception

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 216 of 657
pem6_exceptions.fm.3.0

July 15, 2005

The save/restore register 1 (SRR1) is used to save machine status (selected bits from the MSR and other
implementation-specific status bits as well) on exceptions and to restore those values when rfid is executed.
SRR1 is shown in Figure 6-2.

When an exception occurs, SRR1 bits [33–36] and [42–47] are loaded with exception-specific information
and MSR bits [0, 48–55, 57–59,62–63] are placed into the corresponding bit positions of SRR1. Depending
on the implementation, additional bits of the MSR may be copied to SRR1.

Note: In some implementations, every instruction fetch when MSR[IR] = ’1’, and every data access requiring
address translation when MSR[DR] = ’1’, can modify SRR0 and SRR1.

The MSR bits are shown in Figure 6-3.

Figure 6-1. Machine Status Save/Restore Register 0

Figure 6-2. Machine Status Save/Restore Register 1

Figure 6-3. Machine State Register (MSR)

SRR0 (holds effective address for instruction in interrupted program flow)

0 61 62 63

0 0

Reserved

Exception-specific information and MSR bit values

0 63

Reserved

SF 000 0000 ... 0000 0

0 1 44 5145 46 47 48 49 50

POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 0 IR DR 0 RI LE

52 53 54 55 56 57 58 59 60 62 6361

PMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 217 of 657

Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings

Bit(s) Name Description

0 SF
Sixty-four bit mode
0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.

1 — Reserved

64-BIT BRIDGE

2
ISF

Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF] to select 64 or
32-bit mode for the context established by the exception.
Note: If the bridge function is not implemented, this bit is treated as reserved.

3–44 — Reserved

45 POW

Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note: Power management functions are implementation-dependent. If the function is not implemented, this
bit is treated as reserved.

46 — Reserved

47 ILE
This is part of the optional little-endian facility. If the little-endian facility is implemented, and an exception
occurs, this bit is copied into MSR[LE] to select the endian mode for the context established by the excep-
tion.

48 EE

External interrupt enable
0 While the bit is cleared, the processor delays recognition of external interrupts and decrementer

exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

49 PR

Privilege level
0 The processor can execute both user and supervisor-level instructions.
1 The processor can only execute user-level instructions.
Note: Any instruction or event that set MSR[PR] also sets MSR[EE], MSR[IR], and MSR[DR].

50 FP

Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores,

and moves.
1 The processor can execute floating-point instructions.

51 ME

Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.
Note: The only instruction that can alter MSR[ME] is the rfid instruction.

52 FE0 Floating-point exception mode 0 (see Table 2-8).

53 SE

Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of the next

instruction (unless that instruction is rfid, which is never trace). Successful completion means that
the instruction caused no other interrupt.

Note: If the function is not implemented, this bit is treated as reserved.

54 BE

Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the execution of a branch

instruction, regardless of whether the branch was taken.
Note: If the function is not implemented, this bit is treated as reserved.

55 FE1 Floating-point exception mode 1 (See Table 2-8).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 218 of 657
pem6_exceptions.fm.3.0

July 15, 2005

.

When an exception occurs instruction fetching, dispatching, decoding of instructions stops. The processor
waits until all previous instructions have completed to a point where no other exceptions will be reported.
SRR0 is loaded with the address where program execution will resume when the exception has been
processed. SRR1 is loaded with the MSR register along with any status bits for this exception. A new value is
loaded into the MSR and instruction execution resumes at the entry point for the exception handler under the
influence of the new MSR.

The data address register (DAR) may be used by several exceptions (for example, DSI and alignment excep-
tions) to identify the address of a memory element.

56 — Reserved

57 — Reserved

58 IR

Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information, see Chapter 7, Memory Management.

59 DR

Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information, see Chapter 7, Memory Management.

60 — Reserved

61 PMM Performance monitor mark. This bit is part of the optional performance monitor facility. If the performance
monitor facility is not implemented or does not use this bit, then this bit is treated as reserved.

62 RI

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information, see Chapter 6, Exceptions.

63 LE

This is part of the optional little-endian facility. If the little-endian facility is implemented, then the bit has the
following meaning:
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.
If the little-endian facility is not implemented or does not use this bit, then this bit is treated as reserved.

TEMPORARY 64-BIT BRIDGE

Bit [2] of the MSR (MSR[ISF]) may optionally be used by a 64-bit implementation to control the mode
(64-bit or 32-bit) that is entered when an exception is taken. If this bit is implemented, it has the following
properties:

• When an exception is taken, the value of MSR[ISF] is copied to MSR[SF].

• When an exception is taken, MSR[ISF] is not altered.

• No software synchronization is required before or after altering MSR[ISF]. Refer to Section 2.3.16
Synchronization Requirements for Special Registers and for Lookaside Buffers for more information
on synchronization requirements for altering other bits in the MSR.

If the MSR[ISF] bit is not implemented, it is treated as reserved except that the value is assumed to be
‘1’ for exception processing.

Table 6-5. MSR Bit Settings (Continued)

Bit(s) Name Description

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 219 of 657

6.2.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the
exception is enabled for that condition as follows:

• IEEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FE0]
and MSR[FE1] are cleared. If either of these bits is set, all IEEE enabled floating-point exceptions are
taken and cause a program exception.

• Asynchronous, maskable exceptions (that is, the external and decrementer interrupts) are enabled by
setting the MSR[EE] bit. When MSR[EE] = ’0’, recognition of these exception conditions is delayed.
MSR[EE] is cleared automatically when an exception is taken, to delay recognition of conditions causing
those exceptions.

• A machine check exception can only occur if the machine check enable bit, MSR[ME], is set. If MSR[ME]
is cleared, the processor goes directly into a checkstop state when a machine check exception condition
occurs.

6.2.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled
for the exception condition), the processor does the following:

1. The machine status save/restore register 0 (SRR0) is loaded with an instruction address that depends on
the type of exception. See the individual exception description for details about how this register is used
for specific exceptions. Normally, SRR0 contains the address to the first instruction to execute if the
exception handler resumes program execution.

2. SRR1 bits [33–36] and [42–47] are loaded with information specific to the exception type.

3. SRR1 bits [0-32, 37-41, 48–63] are loaded with a copy of the corresponding bits of the MSR.
Depending on the implementation, additional bits from the MSR may be saved in SRR1.

4. The MSR is set as described in Table 6-6. The new values take effect beginning with the fetching of the
first instruction of the exception-handler routine located at the exception vector address.

Note: MSR[IR] and MSR[DR] are cleared for all exception types; therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine. The MSR[ILE] bit setting at the time of the exception is copied to MSR[LE] when the
exception is taken (as shown in Table 6-6).

TEMPORARY 64-BIT BRIDGE

Similar to MSR[ILE], the MSR[ISF] bit setting at the time of the exception is copied to MSR[SF] when
the exception is taken (if the ISF bit is implemented).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 220 of 657
pem6_exceptions.fm.3.0

July 15, 2005

5. The MSR[RI] bit is cleared. This indicates that the interrupt handler is operating in the “window-of-vulner-
ability” and cannot recover if another exception now occurs. After the machine state is saved (SRR0 and
SRR1) and stack pointer has been updated, the exception handler sets this bit to indicate that it could
now handle another exception. See System Reset and Machine Check Exceptions on page 210 for more
details.

6. Instruction fetch and execution resumes, using the new MSR value, at the address specified by the
exception’s vector offset. For a machine check exception that occurs when MSR[ME] = ’0’ (machine
check exceptions are disabled), the checkstop state is entered (the machine stops executing instruc-
tions). See Section 6.4.2 Machine Check Exception (0x00200).

In some implementations, any instruction fetch with MSR[IR] = ’1’ and any load or store with MSR[DR] = ’1’
might cause SRR0 and SRR1 to be modified.

Note: Exceptions do not clear reservations obtained with lwarx or ldarx.

6.2.3 Returning from an Exception Handler

The Return from Interrupt Doubleword (rfid) instruction performs context synchronization by allowing previ-
ously issued instructions to complete before returning to the interrupted process. Execution of the rfid instruc-
tion ensures the following:

• All previous instructions have completed to a point where they can no longer cause an exception.

• Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

• The rfid instruction copies SRR1 bits back into the MSR.

• The instructions following this instruction execute in the context established by this instruction.

For a complete description of context synchronization, refer to Section 6.1.2.1 Context Synchronization.

6.3 Process Switching

The operating system should execute the following when processes are switched:

• The sync instruction, which orders the effects of instruction execution. All instructions previously initiated
appear to have completed before the sync instruction completes, and no subsequent instructions appear
to be initiated until the sync instruction completes.

• The isync/rfid instruction, which waits for all previous instructions to complete and then discards any
fetched instructions, causing subsequent instructions to be fetched (or refetched) from memory and to
execute in the context (privilege, translation, protection, etc.) established by the previous instructions.

• The stwcx./stdcx. instruction, to clear any outstanding reservations, which ensures that an lwarx/ldarx
instruction in the old process is not paired with an stwcx./stdcx. instruction in the new process. This is
necessary because some implementations of the PowerPC Architecture do not do an address compare
when the stwcx./stdcx. is executed. Only the reservation is required for the stwcx./stdcx. to be success-
ful.

The operating system should handle MSR[RI] as follows:

• In machine check and system reset exception handlers—if the SRR1 bit corresponding to MSR[RI] is
cleared, the exception is not recoverable.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 221 of 657

• In each exception handler—when enough state information has been saved that a machine check or sys-
tem reset exception can reconstruct the previous state, set MSR[RI].

• At the end of each exception handler—clear MSR[RI], set the SRR0 and SRR1 registers appropriately,
update stack pointers, and then execute rfid.

Note: The [RI] bit being set indicates that, with respect to the processor, enough processor state data is valid
for the processor to continue, but it does not guarantee that the interrupted process can resume.

6.4 Exception Definitions

Table 6-6 shows all the types of exceptions that can occur and certain MSR bit settings when the exception
handler is invoked. Depending on the exception, certain of these bits are stored in SRR1 when an exception
is taken. The following subsections describe each exception in detail.

Table 6-6. MSR Setting Due to Exception

Exception Type
MSR Bit

SF1,2 ISF2 POW ILE EE PR FP ME FE0 SE BE FE1 PMM IR DR RI LE

System reset 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Machine check 1 — 0 — 0 0 0 0 0 0 0 0 0 0 0 0 ILE

DSI 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Data segment 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

ISI 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Instruction
Segment 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

External 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Alignment 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Program 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Floating-point
unavailable 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Decrementer 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

System call 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Trace exception 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Performance
Monitor 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

0 Bit is cleared.
1 Bit is set.
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered.
Reading of reserved bits may return 0, even if the value last written to it was 1.
164-bit implementations only.

Temporary 64-Bit Bridge
2 When the 64-bit bridge is implemented in a 64-bit processor and the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is cop-
ied to the MSR[SF] bit when an exception is taken.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 222 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.4.1 System Reset Exception (0x00100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the processor typically
through the assertion of a system-defined signal; see Table 6-7.
.

When a system reset exception is taken, instruction execution continues at effective address
0x0000_0000_0000_0100.

If the exception is recoverable, the value of the MSR[RI] bit is copied to the corresponding SRR1 bit. The
exception functions as a context-synchronizing operation. If a reset exception causes the loss of:

• A machine check exception,

• An external exception (interrupt or decrementer),

• Floating-point enabled type program exception,

then the exception is not recoverable. If the SRR1 bit corresponding to MSR[RI] is cleared, the exception is
context-synchronizing only with respect to subsequent instructions.

Note: Each implementation provides a means for software to distinguish between power-on reset and other
types of system resets (such as soft reset).

Table 6-7. System Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present.

SRR1

0
33–36
42–47
48–55
57–59
62

63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable; otherwise
cleared.
Loaded with equivalent bit from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

If the processor state is corrupted to the extent that execution cannot resume reliably, the bit corresponding to
MSR[RI], (SRR1[62] in 64-bit implementations and SRR1[30] in 32-bit implementations), is cleared.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 223 of 657

6.4.2 Machine Check Exception (0x00200)

If no higher-priority exception is pending (namely, a system reset exception), the processor initiates a
machine check exception when the appropriate condition is detected.

Note: The causes of machine check exceptions are implementation and system-dependent, and are typically
signalled to the processor by the assertion of a specified signal on the processor interface.

When a machine check condition occurs and MSR[ME] = ’1’, the exception is recognized and handled. If
MSR[ME] = ’0’ and a machine check occurs, the processor generates an internal checkstop condition. When
a processor is in checkstop state, instruction processing is suspended and generally cannot continue without
resetting the processor. Some implementations may preserve some or all of the internal state of the
processor when entering the checkstop state, so that the state can be analyzed as an aid in problem determi-
nation.

In general, it is expected that a bus error signal would be used by a memory controller to indicate a memory
parity error or an uncorrectable memory ECC error.

Note: The resulting machine check exception has priority over any exceptions caused by the instruction that
generated the bus operation.

If a machine check exception causes an exception that is not context-synchronizing, the exception is not
recoverable. Also, a machine check exception is not recoverable if it causes the loss of one of the following:

• An external exception (interrupt or decrementer)

• Floating-point enabled type program exception

If the SRR1 bit corresponding to MSR[RI] is cleared, the exception is context-synchronizing only with respect
to subsequent instructions. If the exception is recoverable, the SRR1 bit corresponding to MSR[RI] is set and
the exception is context-synchronizing.

Note: If the error is caused by the memory subsystem, incorrect data could be loaded into the processor and
register contents could be corrupted regardless of whether the exception is considered recoverable by the
SRR1 bit corresponding to MSR[RI].

On some implementations, a machine check exception may be caused by referring to a nonexistent physical
(real) address, either because translation is disabled (MSR[IR] or MSR[DR] = ’0’) or through an invalid trans-
lation. On such a system, execution of the dcbz instruction can cause a delayed machine check exception by
introducing a block into the data cache that is associated with an invalid physical (real) address. A machine
check exception could eventually occur when and if a subsequent attempt is made to store that block to
memory (for example, as the block becomes the target for replacement, or as the result of executing a dcbst
instruction).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 224 of 657
pem6_exceptions.fm.3.0

July 15, 2005

When a machine check exception is taken, registers are updated as shown in Table 6-8.

If MSR[RI] is set, the machine check exception may still be unrecoverable in the sense that execution can
resume in the same context that existed before the exception.

When a machine check exception is taken, instruction execution continues at effective address
0x0000_0000_0000_0200.

6.4.3 DSI Exception (0x00300)

A DSI (data storage interrupt) exception occurs when no higher priority exception exists and a data memory
access cannot be performed. The condition that caused the DSI exception can be determined by reading the
DSISR, a supervisor-level SPR (SPR18) register that can be read by using the mfspr instruction. Table 6-9
lists bit settings and indicates which memory element is pointed to by the DAR. DSI exceptions can be gener-
ated by load/store instructions, cache-control instructions (icbi, dcbi, dcbz, dcbst, and dcbf), or the
eciwx/ecowx instructions for any of the following reasons:

• The effective address cannot be translated. That is, there is a page fault for this portion of the translation,
so a DSI exception must be taken to retrieve the page and update the translation tables. For example
read a page from a storage device such as a hard disk drive.

• The instruction is not supported for the type of memory addressed. For lwarx/stwcx. and ldarx/stdcx.
instructions that reference a memory location that is write-through required. If the exception is not taken,
the instructions execute correctly.

• The access violates memory protection.

• The execution of an eciwx or ecowx instruction is disallowed because the external access register
enable bit (EAR[E]) is cleared.

• A data address compare match occurs.

Table 6-8. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis, implementations can set this to an EA of some instruction that was executing or about to be
executing when the machine check condition occurred.

SRR1 Bit [62] is loaded from MSR[RI] if the processor is in a recoverable state. Otherwise cleared. The setting of all other
SRR1 bits is implementation-dependent.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME 1 —
FE0 0

BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR Implementation dependent.

DAR Implementation dependent.

1. When a machine check exception is taken, the exception handler should set MSR[ME] as soon as it is practical to handle another
machine check exception. Otherwise, subsequent machine check exceptions cause the processor to automatically enter the
checkstop state.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 225 of 657

• A data address breakpoint register (DABR) match occurs. The DABR facility is optional to the PowerPC
Architecture, but if one is implemented, it is recommended, but not required, that it be implemented as fol-
lows. A data address breakpoint match is detected for a load or store instruction if the three following con-
ditions are met for any byte accessed:

– EA[0–60] = DABR[DAB]
– MSR[DR] = DABR[BT]
– The instruction is a store and DABR[DW] = ’1’, or the instruction is a load and DABR[DR] = ’1’.

The DABR is described in Section 2.3.13 Data Address Breakpoint Register (DABR). In 32-bit mode of
64-bit implementations, the high-order 32 bits of the EA are treated as zero for the purpose of detecting a
match; the DAR settings are described in Table 6-9. If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases:

– The instruction is store conditional but the store is not performed.
– The instruction is a load/store string of zero length.
– The instruction is dcbz, eciwx, or ecowx.

The cache management instructions other than dcbz never cause a match. If dcbz causes a match,
some or all of the target memory locations may have been updated. For the purpose of determining
whether a match occurs, eciwx is treated as a load, and ecowx and dcbz are treated as stores.

If an stwcx./stdcx. instruction has an effective address for which a normal store operation would cause a DSI
exception but the processor does not have the reservation from lwarx/ldarx, whether a DSI exception is
taken is then implementation-dependent.

If the value in XER[25–31] indicates that a load or store string instruction has a length of zero, a DSI excep-
tion does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. As shown in Table 6-9, this exception also
sets the data address register (DAR).

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 226 of 657
pem6_exceptions.fm.3.0

July 15, 2005

When a DSI exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0300.

Table 6-9. DSI Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

33–36
42–47
Others

Cleared
Cleared
Loaded with equivalent bits from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR

0 Set to ‘0’.
1 Set if MSR[DR] = ’1’ and the translation for an attempted access is not found in the primary page table

entry group (PTEG), or in the secondary PTEG (page fault condition); otherwise cleared.
2–3 Cleared
4 Set if a memory access is not permitted by the memory protection mechanism; otherwise cleared.
5 Set if the access is due to a lwarx, ldarx, stwcx., or stdcx. instruction that addresses memory that is Write

Through Required or Caching Inhibited; otherwise cleared.
6 Set for a store, dcbz, or ecowx instruction otherwise cleared.
7–8 Cleared
9 Set if a data address compare match or a DABR match occurs. Otherwise cleared.
10 Cleared
11 Set if the instruction is an eciwx or ecowx and EAR[E] = ’0’; otherwise cleared.
12–14 Cleared
15 Set if MSR[DR] = ’1’, the translation for an attempted access is found in the SLB, the translation is not

found in the primary PTEG or in the secondary PTEG, and LSLBE[L] = ’1’; otherwise cleared.
16–31 Cleared
If multiple Data Storage exceptions occur for a given effective address, any one or more of the bits corresponding to
these exceptions may be set in the DSISR.

DAR

Set to the effective address of a memory element as described in the following list:
• A Data Storage exception occurs for reasons other than DABR match or, for eciwx and ecowx, EAR[E] = ’0’

– A byte in the block that caused the exception, for a cache management instruction

– A byte in the first aligned doubleword for which access was attempted in the page that caused the excep-
tion, for a Load, Store, eciwx, or ecowx instruction

Note: If the exception occurs when a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 227 of 657

6.4.4 Data Segment Exception (0x00380)

A data segment interrupt occurs when no higher priority exception exists and a data access cannot be
performed because data address translation is enabled (MSR[DR] = ’1’) and the effective address of any byte
of the memory location specified by a Load, Store, icbi, dcbz, dcbst, dcbf, eciwx, or ecowx instruction
cannot be translated to a virtual address.

If a stwcx. or stdcx. would not perform its store in the absence of a data segment interrupt, and a noncondi-
tional Store to the specified effective address would cause a data segment interrupt, it is implementation-
dependent whether a data segment interrupt occurs.

If a Move Assist instruction has a length of zero (in the XER), a data segment interrupt does not occur,
regardless of the effective address.

Table 6-10 describes the registers affected by the data segment exception.

Execution resumes at effective address 0x0000_0000_0000_0380.

Table 6-10. Data Segment Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

33–36
42–47
48–55
57–59
62–63

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR Set to an undefined value

DAR

Set to the effective address of a memory element as described in the following list:
• A Data Storage exception occurs for reasons other than DABR match or, for eciwx and ecowx, EAR[E] = ’0’

– A byte in the block that caused the exception, for a cache management instruction

– A byte in the first aligned doubleword for which access was attempted in the page that caused the excep-
tion, for a Load, Store, eciwx, or ecowx instruction

Note: If the exception occurs when a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 228 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.4.5 ISI Exception (0x00400)

An instruction storage interrupt (ISI) exception occurs when no higher priority exception exists and an attempt
to fetch the next instruction to be executed fails for any of the following reasons:

• Instruction address translation is enabled (MSR[IR] = ’1’) and the virtual address cannot be translated to
a real address.

• The fetch access violates memory protection.

Register settings for ISI exceptions are shown in Table 6-11.

If multiple instruction storage exceptions occur due to attempting to fetch a single instruction, any one or more
of the bits corresponding to these exceptions may be set to ‘1’ in SRR1. More than one bit may be set to ‘1’ in
SRR1 in the following combinations.

33, 35
33, 47
33, 35, 47
35, 36

When an ISI exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0400.

Table 6-11. ISI Exception—Register Settings

Register Setting Description

SRR0
Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present (if the exception occurs on attempting to fetch a branch target, SRR0 is set to the
branch target address).

SRR1

0-32 Loaded with equivalent bit from the MSR

33 Set if MSR[IR] = ’1’ and the translation of an attempted access is not found in the pri-
mary page table entry group (PTEG), or in the secondary PTEG; otherwise cleared

34 Cleared

35
Set if the fetch access occurs when MSR[IR] = ’1’ and is to No-execute storage, to
Guarded storage, or to a segment for which bit [57] of the Segment Table Entry is set to
1;. Otherwise, cleared.

36 Set if a memory access is not permitted by the page protection mechanism, described
in Chapter 7, Memory Management”; otherwise cleared.

42–47 Cleared

Others Loaded with equivalent bits from the MSR

Note: Only one of the bits [33, 35, 36, and 42] can be set.
Also, note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 229 of 657

6.4.6 Instruction Segment Exception (x0480)

An instruction segment exception occurs when no higher priority exception exists and the next instruction to
be executed cannot be fetched because instruction address translation is enabled (MSR[IR] = ’1’) and the
translation of the effective address of the next instruction to be executed is not found in the SLB.

Register settings for instruction segment exceptions are shown in Table 6-11.

When an instruction segment exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0480.

Table 6-12. Instruction Segment Exception—Register Settings

Register Setting Description

SRR0
Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present (if the exception occurs on attempting to fetch a branch target, SRR0 is set to the
branch target address).

SRR1

32-36 Cleared

42–47 Cleared

Others Loaded with equivalent bits from the MSR

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 230 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.4.7 External Interrupt (0x00500)

An external interrupt exception is signaled to the processor by the assertion of the external interrupt signal.
The exception may be delayed by other higher priority exceptions or if the MSR[EE] bit is ‘0’ when the excep-
tion is detected.

Note: The occurrence of this exception does not cancel the external request.

The register settings for the external interrupt exception are shown in Table 6-13.

When an external interrupt exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0500.

6.4.8 Alignment Exception (0x00600)

This section describes conditions that can cause alignment exceptions in the processor. Similar to DSI
exceptions, alignment exceptions use the SRR0 and SRR1 to save the machine state and the DSISR to
determine the source of the exception. An alignment exception occurs when no higher priority exception
exists and the implementation cannot perform a memory access for one of the following reasons:

• The operand of a floating-point load or store instruction is not word-aligned or crosses a virtual page
boundary.

• The operand of lmw, stmw, lwarx, ldarx, stwcx., stdcx., eciwx, or ecowx is not aligned.

• The operand of a single-register load or store is not aligned and the processor is in little-endian mode.

• The instruction is lmw, stmw, lswi, lswx, stswi, or stswx and the operand is in memory that is Write
Through Required or Caching Inhibited, or the processor is in little-endian mode.

• The operand of lmw or stmw crosses a segment boundary, or crosses a boundary between virtual pages
that have different memory control attributes.

• The operand of a load or store is not aligned and is in memory that is write-through required or caching
inhibited.

• The operand of dcbz, lwarx, ldarx, stwcx., or stdcx., is in memory that is write-through-required or
caching inhibited.

Table 6-13. External Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no inter-
rupt conditions were present.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 231 of 657

If a stwcx. or stdcx. would not perform its store in the absence of an alignment exception and the specified
effective address refers to memory that is Write Through Required or Caching Inhibited, it is implementation-
dependent whether an alignment exception occurs.

Setting the DSISR and DAR as described below is optional for implementations on which alignment excep-
tions occur rarely, if ever, for cases that the alignment exception handler emulates. For such implementa-
tions, if the DSISR and DAR are not set as described below they are set to undefined values.

The term, ‘protection boundary’, refers to the boundary between protection domains. A protection domain is a
segment, a virtual 4-Kbyte page or implementation specific larger size, or a range of unmapped effective
addresses. Protection domains are defined only when the corresponding address translation (instruction or
data) is enabled (MSR[IR] or MSR[DR] = ’1’).

The register settings for alignment exceptions are shown in Table 6-14.

Table 6-14. Alignment Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR

0–11 Cleared
12–13 For 64-bit instructions that use immediate addressing—set to bits [30–31] if DS-form. Otherwise cleared.
14 Cleared
15–16 For instructions that use register indirect with index addressing (X-form)—set to bits [29–30] of the instruc-

tion encoding.
For instructions that use register indirect with immediate index addressing (D or DS-form)—cleared

17 For instructions that use register indirect with index addressing (X-form)—set to bit [25] of the instruction
encoding.
For instructions that use register indirect with immediate index addressing (D or DS-form)— set to bit [5] of
the instruction encoding.

18–21 For instructions that use register indirect with index addressing (X-form)—set to bits [21–24] of the instruc-
tion encoding.
For instructions that use register indirect with immediate index addressing (D or DS-form)—set to bits [1–4]
of the instruction encoding.

22–26 Set to bits [6–10] (identifying either the source or destination) of the instruction encoding. Undefined for
dcbz.

27–31 Set to bits [11–15] of the instruction encoding (rA) for update-form instructions
Set to either bits [11–15] of the instruction encoding or to any register number not in the range of registers
loaded by a valid form instruction for lmw, lswi, and lswx instructions. Otherwise undefined.

DAR
Set to the EA of the data access as computed by the instruction causing the alignment exception.
Note: If a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 232 of 657
pem6_exceptions.fm.3.0

July 15, 2005

For load or store instructions that use register indirect with index addressing, the DSISR can be set to the
same value that would have resulted if the corresponding instruction uses register indirect with immediate
index addressing had caused the exception. Similarly, for load or store instructions that use register indirect
with immediate index addressing, DSISR can hold a value that would have resulted from an instruction that
uses register indirect with index addressing. For example, a misaligned lwarx instruction that crosses a
protection boundary would normally cause the DSISR to be set to the following binary value:

000000000000 00 0 01 0 0101 ttttt ?????

The value ttttt refers to the destination and ????? indicates undefined bits.

However, this register may be set as if the instruction were lwa, as follows:
000000000000 10 0 00 0 1101 ttttt ?????

If there is no corresponding instruction (such as for the lwaux instruction), no alternative value can be speci-
fied.

The instruction pairs that can use the same DSISR values are as follows:

The architecture does not support the use of a misaligned effective address by load/store with reservation
instructions or by the eciwx and ecowx instructions. If one of these instructions specifies a misaligned effec-
tive address, the exception handler should not emulate the instruction, but should treat the occurrence as a
programming error.

When an alignment exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0600.

6.4.8.1 Integer Alignment Exceptions

Operations that are not naturally aligned may suffer performance degradation, depending on the processor
design, the type of operation, the boundaries crossed, and the mode that the processor is in during execution.
More specifically, these operations may either cause an alignment exception or they may cause the
processor to break the memory access into multiple, smaller accesses with respect to the cache and the
memory subsystem.

lhz / lhzx lhzu / lhzux lha / lhax lhau / lhaux

lwz / lwzx lwzu / lwzux lwa / lwax

ld / ldx ldu / ldux

sth / sthx sthu / sthux stw / stwx stwu / stwux

std / stdx stdu / stdux

lfs / lfsx lfsu / lfsux lfd / lfdx lfdu / lfdux

stfs / stfsx stfsu / stfsux stfd / stfdx stfdu / stfdux

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 233 of 657

Page Address Translation Access Considerations

A page address translation access occurs when MSR[DR] is set.

Note: A dcbz instruction causes an alignment exception if the access is to a page with the write-through (W)
or cache-inhibit (I) bit set.

Misaligned memory accesses that do not cause an alignment exception may not perform as well as an
aligned access of the same type. The resulting performance degradation due to misaligned accesses
depends on how well each individual access behaves with respect to the memory hierarchy.

Particular details regarding page address translation is implementation-dependent; the reader should consult
the user’s manual for the appropriate processor for more information.

6.4.8.2 Little-Endian Mode Alignment Exceptions

The OEA allows implementations to take alignment exceptions on misaligned accesses (as described in
Section 3.1.4 PowerPC Byte Ordering) in little-endian mode but does not require them to do so. Some imple-
mentations may perform some misaligned accesses without taking an alignment exception.

6.4.8.3 Interpretation of the DSISR as Set by an Alignment Exception

For most alignment exceptions, an exception handler may be designed to emulate the instruction that causes
the exception. To do this, the handler requires the following characteristics of the instruction:

• Load or store

• Length (halfword, word, or doubleword)

• String, multiple, or normal load/store

• Integer or floating-point

• Whether the instruction performs update

• Whether the instruction performs byte reversal

• Whether it is a dcbz instruction

The PowerPC Architecture provides this information implicitly, by setting opcode bits in the DSISR that iden-
tify the excepting instruction type. The exception handler does not need to load the excepting instruction from
memory. The mapping for all exception possibilities is unique except for the few exceptions discussed below.

Table 6-15 shows the inverse mapping—how the DSISR bits identify the instruction that caused the excep-
tion.

The alignment exception handler cannot distinguish a floating-point load or store that causes an exception
because it is misaligned, However, this does not matter; in either case it is emulated with integer instructions.
Floating-point instructions are distinguished from integer instructions because different register files must be
accessed while emulating each class. Bits [15-21] of the DSISR are used to identify whether the instruction is
integer or floating-point.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 234 of 657
pem6_exceptions.fm.3.0

July 15, 2005

Table 6-15. DSISR(15–21) Settings to Determine Misaligned Instruction

DSISR[15–21] Instruction DSISR[15–21] Instruction

00 0 0000 lwarx, lwz, special cases1 01 1 0010 stdux

00 0 0010 ldarx 01 1 0101 lwaux

00 0 0010 stw 10 0 0010 stwcx.

00 0 0100 lhz 10 0 0011 stdcx.

00 0 0101 lha 10 0 1000 lwbrx

00 0 0110 sth 10 0 1010 stwbrx

00 0 0111 lmw 10 0 1100 lhbrx

00 0 1000 lfs 10 0 1110 sthbrx

00 0 1001 lfd 10 1 0100 eciwx

00 0 1010 stfs 10 1 0110 ecowx

00 0 1011 stfd 10 1 1111 dcbz

00 0 1101 ld, ldu, lwa2 11 0 0000 lwzx

00 0 1111 std, stdu2 11 0 0010 stwx

00 1 0000 lwzu 11 0 0100 lhzx

00 1 0010 stwu 11 0 0101 lhax

00 1 0100 lhzu 11 0 0110 sthx

00 1 0101 lhau 11 0 1000 lfsx

00 1 0110 sthu 11 0 1001 lfdx

00 1 0111 stmw 11 0 1010 stfsx

00 1 1000 lfsu 11 0 1011 stfdx

00 1 1001 lfdu 11 0 1111 stfiwx

00 1 1010 stfsu 11 1 0000 lwzux

00 1 1011 stfdu 11 1 0010 stwux

01 0 0000 ldx 11 1 0100 lhzux

01 0 0010 stdx 11 1 0101 lhaux

01 0 0101 lwax 11 1 0110 sthux

01 0 1000 lswx 11 1 1000 lfsux

01 0 1001 lswi 11 1 1001 lfdux

01 0 1010 stswx 11 1 1010 stfsux

01 0 1011 stswi 11 1 1011 stfdux

01 1 0000 ldux

1. The instructions lwz and lwarx give the same DSISR bits (all zero). But if lwarx causes an alignment exception, it is an invalid
form, so it need not be emulated in any precise way. It is adequate for the alignment exception handler to simply emulate the
instruction as if it were an lwz. It is important that the emulator use the address in the DAR, rather than computing it from rA/rB/D,
because lwz and lwarx use different addressing modes.

If opcode 0 (“illegal or reserved”) can cause an alignment exception, it will be indistinguishable to the exception handler from lwarx
and lwz.

2. These instructions are distinguished by DSISR[12–13], which are not shown in this table.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 235 of 657

6.4.9 Program Exception (0x00700)

A program exception occurs when no higher priority exception exists and one or more of the following excep-
tion conditions, which correspond to bit settings in SRR1, occur during execution of an instruction:

• System IEEE floating-point enabled exception—A system IEEE floating-point enabled exception can be
generated when FPSCR[FEX] is set and either (or both) of the MSR[FE0] or MSR[FE1] bits is set.

FPSCR[FEX] is set by the execution of a floating-point instruction that causes an enabled exception or by
the execution of a “move to FPSCR” type instruction that sets an exception bit when its corresponding
enable bit is set. Floating-point exceptions are described in Section 3.3.6 Floating-Point Program Excep-
tions.

• Illegal instruction—An illegal instruction program exception is generated when execution of an instruction
is attempted with an illegal opcode or illegal combination of opcode and extended opcode fields (these
include PowerPC instructions not implemented in the processor), or when execution of an optional or a
reserved instruction not provided in the processor is attempted.

Implementations are permitted to generate an illegal instruction program exception when encountering
the following instructions. If an illegal instruction exception is not generated, then the alternative is shown
in parenthesis.

– An instruction corresponds to an invalid class (the results may be boundedly undefined)

– An lswx instruction for which rA or rB is in the range of registers to be loaded (may cause results that
are boundedly undefined)

– An mtspr or mfspr instruction with an SPR field that does not contain one of the defined values, or
an mftb instruction with a TBR field that does not contain one of the defined values

• Privileged instruction—A privileged instruction type program exception is generated when the execution
of a privileged instruction is attempted and the processor is operating in user mode (MSR[PR] is set). It is
also generated for mtspr or mfspr instructions that have an invalid SPR field that contain one of the
defined values having spr[0] = ’1’ and if MSR[PR] = ’1’. Some implementations may also generate a priv-
ileged instruction program exception if a specified SPR field (for a move to/from SPR instruction) is not
defined for a particular implementation, but spr[0] = ’1’; in this case, the implementation may cause either
a privileged instruction program exception, or an illegal instruction program exception may occur instead.

• Trap—A trap program exception is generated when any of the conditions specified in a trap instruction is
met. Trap instructions are described in Section 4.2.4.6 Trap Instructions.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 236 of 657
pem6_exceptions.fm.3.0

July 15, 2005

The register settings when a program exception is taken are shown in Table 6-16.

When a program exception is taken, instruction execution resumes at effective address
0x000_0000_0000_0700.

Table 6-16. Program Exception—Register Settings

Register Setting Description

SRR0

The contents of SRR0 differ according to the following situations:
• For all program exceptions except floating-point enabled exceptions when operating in imprecise mode

(MSR[FE0-FE1] = ’10’ or ‘01’ respectively), SRR0 contains the effective address of the instruction that caused
the exception.

• When the processor is in floating-point imprecise mode, SRR0 may contain the effective address of the
excepting instruction or that of a subsequent unexecuted instruction. If the subsequent instruction is sync,
ptesync, or isync, SRR0 points not more than four bytes beyond the sync, ptesync, or isync instruction.

• If FPSCR[FEX] = ’1’, but IEEE floating-point enabled exceptions are disabled (MSR[FE0] = MSR[FE1] = ’0’),
the program exception occurs before the next synchronizing event if an instruction alters those bits (thus
enabling the program exception). When this occurs, SRR0 points to the instruction that would have executed
next and not to the instruction that modified MSR.

SRR1

0
33–36
42
43
44
45
46
47

48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Set for an IEEE floating-point enabled program exception; otherwise cleared.
Set for an illegal instruction program exception; otherwise cleared.
Set for a privileged instruction program exception; otherwise cleared.
Set for a trap program exception; otherwise cleared.
Cleared if SRR0 contains the address of the instruction causing the exception, and set
if SRR0 contains the address of a subsequent instruction.
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note: Only one of bits [43:46] can be set to 1.

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 237 of 657

6.4.10 Floating-Point Unavailable Exception (0x00800)

A floating-point unavailable exception occurs when no higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-point load, store, or move instructions), and the floating-
point available bit in the MSR is cleared, (MSR[FP] = ’0’).

The register settings for floating-point unavailable exceptions are shown in Table 6-17.

When a floating-point unavailable exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0800.

6.4.11 Decrementer Exception (0x00900)

A decrementer exception occurs when no higher priority exception exists, a decrementer exception condition
occurs (for example, the decrementer register has completed decrementing), and MSR[EE] = ’1’. The decre-
menter register counts down, causing an exception request when it passes through zero. A decrementer
exception request remains pending until the decrementer exception is taken and then it is cancelled. The
decrementer implementation meets the following requirements:

• The counters for the decrementer and the time-base counter are driven by the same fundamental time
base.

• Loading a GPR from the decrementer does not affect the decrementer.

• Storing a GPR value to the decrementer replaces the value in the decrementer with the value in the GPR.

• Whenever bit [0] of the decrementer changes from ‘0’ to ‘1’, a decrementer exception request is signaled.
If multiple decrementer exception requests are received before the first can be reported, only one excep-
tion is reported. The occurrence of a decrementer exception cancels the request.

• If the decrementer is altered by software and if bit [0] is changed from ‘0’ to ‘1’, an exception request is
signaled.

Table 6-17. Floating-Point Unavailable Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 238 of 657
pem6_exceptions.fm.3.0

July 15, 2005

The register settings for the decrementer exception are shown in Table 6-18.

When a decrementer exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0900.

6.4.12 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. The effective address of the
instruction following the sc instruction is placed into SRR0. MSR bits are saved in SRR1, as shown in
Table 6-19, and then a system call exception is generated.

The system call exception causes the next instruction to be fetched from effective address
0x0000_0000_0000_0C00. As with most other exceptions, this exception is context-synchronizing. Refer to
Context Synchronization on page 208 for more information on the actions performed by a context-synchro-
nizing operation. Register settings are shown in Table 6-19.

When a system call exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0C00.

Table 6-18. Decrementer Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Table 6-19. System Call Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction following the System Call instruction

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005

Exceptions

Page 239 of 657

6.4.13 Trace Exception (0x00D00)

The trace exception is optional to the PowerPC Architecture, and specific information about how it is imple-
mented can be found in user’s manuals for individual processors.

The trace exception provides a means of tracing the flow of control of a program for debugging and perfor-
mance analysis purposes. It is controlled by MSR bits [SE] and [BE] as follows:

• MSR[SE] = ’1’ and any instruction except rfid is successfully completed.

• MSR[BE] = ’1’: the processor generates a branch-type trace exception after completing the execution of a
branch instruction, whether or not the branch is taken.

If this facility is implemented, a trace exception occurs when no higher priority exception exists and either of
the conditions described above exist. The following are not traced:

• rfid instruction

• sc, and trap instructions that trap

• Other instructions that cause exceptions (other than trace exceptions)

• The first instruction of any exception handler

• Instructions that are emulated by software

MSR[SE, BE] are both cleared when the trace exception is taken. In the normal use of this function,
MSR[SE, BE] are restored when the exception handler returns to the interrupted program using an rfid
instruction.

Register settings for the trace mode are described in Table 6-20.

When a trace exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0D00.

Table 6-20. Trace Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the next instruction to be executed in the program for which the trace exception was
generated.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Exceptions

Page 240 of 657
pem6_exceptions.fm.3.0

July 15, 2005

6.4.14 Performance Monitor Exception (0x00F00)

The performance monitor exception is part of the optional performance monitor facility. If the performance
monitor facility is not implemented or does not use this interrupt, the corresponding interrupt vector is treated
as reserved.

A performance monitor facility provides a means of collecting information about program and system perfor-
mance. The resources (for example, SPR numbers) that a performance monitor facility may use are identified
elsewhere in this manual. All other aspects of any performance monitor facility are implementation-depen-
dent.

When a performance monitor exception is taken, instruction execution resumes at effective address
0x0000_0000_0000_0F00.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 241 of 657

7. Memory Management
70
100

This chapter describes the memory management unit (MMU) specifications provided by the PowerPC oper-
ating environment architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is to translate logical (effective) addresses to physical addresses (referred to as real
addresses in the architecture specification) for memory accesses and I/O accesses (most I/O accesses are
assumed to be memory-mapped). In addition, the MMU provides various levels of access protection on a
segment, block, or page basis.

Note: There are many aspects of memory management that are implementation-specific. This chapter
describes the conceptual model of a PowerPC MMU; however, PowerPC processors may differ in the spe-
cific hardware used to implement the MMU model of the OEA, depending on the many design trade-offs
inherent in each implementation.

Two general types of accesses generated by PowerPC processors require address translation—instruction
accesses, and data accesses to memory generated by load and store instructions. In addition, the addresses
specified by cache instructions and the optional external control instructions also require translation. Gener-
ally, the address translation mechanism is defined in terms of segment descriptors and page tables used by
PowerPC processors to locate the effective to physical address mapping for instruction and data accesses.
The segment information translates the effective address to an interim virtual address, and the page table
information translates the virtual address to a physical address.

The definition of the segment and page table data structures provides significant flexibility for the implementa-
tion of performance enhancement features in a wide range of processors. Therefore, the performance
enhancements used to store the segment or page table information on-chip vary from implementation to
implementation.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page address translations on-chip. Although their exact characteristics are not specified in the OEA, the
general concepts that are pertinent to the system software are described.

Note: In contrast to earlier versions of the architecture, an implementation is required to have an SLB, but
explicit representation of a segment table in memory is not required. The SLB is software managed, and so
memory management software can maintain an explicit segment table in memory, or can implement an
implicit segment table by generating new SLB entries as needed. References to the segment table in this
chapter do not presume the explicit table in memory that was specified in previous versions of the architec-
ture.

The segment information, used to generate the interim virtual addresses, is stored as segment descriptors.
These descriptors may reside in segment table entries (STEs) in memory. In much the same way that TLBs
cache recently-used page address translations, 64-bit processors may contain segment lookaside buffers
(SLBs) on-chip that cache recently-used segment table entries. Although the exact characteristics of SLBs
are not specified, there is general information pertinent to those implementations that provide SLBs.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 242 of 657
pem7_MMU.fm.3.0

July 15, 2005

The MMU, together with the exception processing mechanism, provides the necessary support for the oper-
ating system to implement a paged virtual memory environment and for enforcing protection of designated
memory areas. Exception processing is described in Chapter 6, Exceptions. Section 2.3.1 Machine State
Register (MSR) describes the MSR, which controls some of the critical functionality of the MMU.

7.1 MMU Features

The memory management specification of the PowerPC OEA includes models for both 32 and 64-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 264 bytes of effective address space acces-
sible to supervisor and user programs with support for two page sizes; a 4-Kbyte page size (212) and a large
page whose size is implementation dependent (2p where 13 ≤ p ≤ 28). The MMU of 64-bit PowerPC proces-
sors uses an interim virtual address (between 65 and 80 bits) and hashed page tables in the generation of
physical addresses that are ≤ 62 bits in length.

Table 7-1 summarizes the features of PowerPC MMUs for 64-bit implementations.

Temporary 64-Bit Bridge

The OEA defines an additional, optional bridge to the 64-bit architecture that may make it easier for 32-
bit operating systems to migrate to 64-bit processors. The 64-bit bridge retains certain aspects of the
32-bit architecture that otherwise are not supported, and in some cases not permitted, by the 64-bit ver-
sion of the architecture. In processors that implement this bridge, segment descriptors are implemented
by using 16 SLB entries to emulate segment registers, which, like those defined for the 32-bit architec-
ture, divide the 32-bit memory space (4 Gbytes) into sixteen 256-Mbyte segments. These segment
descriptors however use the format of the segment table entries as defined in the 64-bit architecture
and are maintained in SLBs rather than in architecture-defined segment registers.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 243 of 657

Note: This chapter describes address translation mechanisms from the perspective of the programming
model. As such, it describes the structure of the page and segment tables, the MMU conditions that cause
exceptions, the instructions provided for programming the MMU, and the MMU registers. The hardware
implementation details of a particular MMU (including whether the hardware automatically performs a page
table search in memory) are not contained in the architectural definition of PowerPC processors and are
invisible to the PowerPC programming model; therefore, they are not described in this manual. In the case
that some of the OEA model is implemented with some software assist mechanism, this software should be
contained in the area of memory reserved for implementation-specific use and should not be visible to the
operating system.

Table 7-1. MMU Features Summary

Feature Category
64-Bit Implementations

Conventional Temporary 64-Bit Bridge

Address ranges

264 bytes of effective address 232 bytes of effective address

2n where 65 ≤ n ≤ 80 bytes of virtual address 252 bytes of virtual address

< 2m (m≤62) bytes of physical address < 232 bytes of physical address

Page size
4 Kbytes
Some large page sizes
(2p where 13 ≤ p ≤ 28)

4 Kbytes

Segment size 256 Mbytes Same

Block address translation
Not applicable Not applicable

Not applicable Not applicable

Memory protection

Segments selectable as no-execute Same

Pages selectable as user/supervisor and read-only Same

Blocks selectable as user/supervisor and read-only Same

Page history Referenced and changed bits defined and main-
tained Same

Page address
translation

Translations stored as PTEs in hashed page tables
in memory Same

Page table size determined by size programmed
into SDR1 register Same

TLBs Instructions for maintaining optional TLBs Same

Segment
descriptors

Stored as STEs (explicit or implicit segment tables) Stored in 16 SLB entries in the same format as the
STEs defined for 64-bit implementations.

Instructions for maintaining SLBs

16 SLB entries are required to emulate the segment
registers defined for 32-bit addressing. The slbie
and slbia instructions should not be executed when
using the 64-bit bridge.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 244 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.2 MMU Overview

The PowerPC MMU and exception models support demand-paged virtual memory. Virtual memory manage-
ment permits execution of programs larger than the size of physical memory; the term demand paged implies
that individual pages are loaded into physical memory from backing storage only as they are accessed by an
executing program.

The memory management model includes the concept of a virtual address that is not only larger than that of
the maximum physical memory allowed, but a virtual address space that is also larger than the effective
address space. Effective addresses generated by 64-bit implementations are 64 bits wide. In the address
translation process, the processor converts an effective address to a virtual address between 65 and 80 bits,
as per the information in the selected descriptor. Then the address is translated back to a physical address
the size (or less) of the effective address.

Implementations for 64-bit designs have the option of supporting virtual address in the range of 65 to 80 bits.
The remainder of this chapter describes the virtual address for 64-bit processors as consisting of 65 ≤ n ≤ 80
bits. For implementations that support a virtual address less than 80 bits, the high-order bits of the 80-bit
virtual address are assumed to be zero.

Note: For 64-bit implementations the physical address space size is 2m bytes, where m ≤ 62. The value of
“m” is implementation dependent. When used to address memory, the high-order “62-m” bits of the 62-bit
physical address must be zeros.

The operating system manages the system’s physical memory resources. Consequently, the operating
system initializes the MMU registers (address space register (ASR) and SDR1 register) and sets up page
tables and segment tables in memory appropriately. The MMU then assists the operating system by
managing page status and optionally caching the recently-used address translation information on-chip for
quick access.

Effective address spaces are divided into 256-Mbyte regions called segments for virtual addressing.
Segments that correspond to virtual memory can be further subdivided into pages (4KB or large page size
whose size is implementation dependent). For programs using virtual addressing, only the most recently used
4-Kbyte (or large) pages need be resident in memory.

Temporary 64-Bit Bridge

In addition to the features described above, the OEA provides optional features that facilitate the migra-
tion of operating systems from 32-bit processor designs to 64-bit processors. These features, which can
be implemented in part or in whole, include the following:

• Support for several 32-bit instructions that are otherwise defined as illegal in 64-bit processors.
These include the following—mtsr, mtsrin, mfsr, mfsrin.

• The mtmsr instruction, which is otherwise illegal in the 64-bit architecture may optionally be imple-
mented in 64-bit bridge implementations.

• The bridge defines the optional bit ASR[V] (bit [63]) may be implemented to indicate whether
ASR[STABORG] holds a valid physical base address for the segment table.

To determine whether a processor implements any or all of the bridge features, consult the user’s man-
ual for that processor.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 245 of 657

For each page, the operating system creates an address descriptor (page table entry (PTE)). The MMU then
uses these descriptors to generate the physical address, the protection information, and other access control
information each time an address within the page is accessed. Address descriptors for the pages reside in
tables (as PTEs) in memory and can be cached in the TLBs.

This section provides an overview of the high-level organization and operational concepts of the MMU in
PowerPC processors, and a summary of all MMU control registers. For more information about the MSR, see
Section 2.3.1 Machine State Register (MSR). Section 7.5.1.1 SDR1 Register Definition describes the SDR1.

7.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next instruction. The effective
address is translated to a physical (real) address according to the procedures described throughout this
chapter. The memory subsystem uses the physical address for the access.

7.2.1.1 Effective Addresses in 32-Bit Mode

In addition to the 64 and 32-bit memory management models defined by the OEA, the PowerPC Architecture
also defines a 32-bit mode of operation for 64-bit implementations. In this 32-bit mode (MSR[SF] = 0), the
64-bit effective address is first calculated as usual, and then the high-order 32 bits of the effective address are
treated as zero for the purposes of addressing memory. This occurs for both instruction and data accesses,
and occurs independently from the setting of the MSR[IR] and MSR[DR] bits that enable instruction and data
address translation, respectively. The truncation of the effective address is the only way in which memory
accesses are affected by the 32-bit mode of operation.

For a complete discussion of effective address calculation, see Section 4.1.4.2 Effective Address Calculation.

Temporary 64-Bit Bridge

Some 64-bit processors implement optional features that simplify the conversion of an operating system
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows an
operating system to use 16 on-chip SLB entries in the same manner that 32-bit implementations use the
segment registers, which are otherwise not supported in the 64-bit architecture. These bridge features
are available if the ASR[V] bit is implemented, and they are enabled when both ASR[V] and MSR[SF]
are cleared.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 246 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.2.1.2 Predefined Physical Memory Locations

There are four areas of the physical memory map that have predefined uses. Except for the first 256 bytes,
which are reserved for software use, the physical (real) page beginning at physical address
0x0000_0000_0000_0000 is used for exception vectors. The two contiguous real pages beginning at real
address 0x0000_0000_0000_1000 are reserved for implementation-specific purposes. A contiguous
sequence of real pages beginning at the physical address specified by the SDR1 contains the Page Table.
These predefined memory areas are summarized in Table 7-2. Refer to Chapter 6, Exceptions for more
detailed information on the assignment of the exception vector offsets.

7.2.2 MMU Organization

Figure 7-1 shows the conceptual organization of the MMU; note that it does not describe the specific hard-
ware used to implement the memory management function for a particular processor, and other hardware
features (invisible to the system software) not depicted in the figure may be implemented. For example, the
memory management function can be implemented with parallel MMUs that translate addresses for instruc-
tion and data accesses independently.

The instruction addresses shown in Figure 7-1 are generated by the processor for sequential instruction
fetches and addresses that correspond to a change of program flow. Memory addresses are generated by
load and store instructions, by cache instructions, and by the optional external control instructions.

As shown in Figure 7-1, for 4KB pages, bits EA0-EA51 are translated; for a large page translation, bits
EA0-EAx are translated, where x=63-p if the size of large pages is 2p. The lower-order address bits are
untranslated and therefore identical for both effective and physical addresses. After translating the address,
the MMU passes the resulting 64-bit physical address to the memory subsystem.

In addition to the higher-order address bits, the MMU automatically keeps an indicator of whether each
access was generated as an instruction or data access and a supervisor/user indicator that reflects the state
of the MSR[PR] bit when the effective address was generated. In addition, for data accesses, there is an indi-
cator of whether the access is for a load or a store operation. This information is then used by the MMU to
appropriately direct the address translation and to enforce the protection hierarchy programmed by the oper-
ating system. See Section 2.3.1 Machine State Register (MSR) for more information about the MSR.

Table 7-2. Predefined Physical Memory Locations

Memory Area Physical Address Range Predefined Use

1 0x0_0000 – 0x0_00FF Operating system

2 0x0_0100 – 0x0_0FFF Exception vectors

3 0x0_1000 – 0x0_2FFF Implementation-specific

4
Software-specified—contiguous sequence of physical pages
Software-specified—single physical page

Page table

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 247 of 657

Figure 7-1. MMU Conceptual Block Diagram

E
A

0–
E

A
51

MMU
(64 Bit)

A52–A63

E
A

0–
E

A
51

SPR25

PA0–PA63

+

Data
Accesses

Instruction
Accesses

A
52

–A
63

X

E
A

36
–E

A
51

SDR1

ASR

Upper 52 bits of
virtual address

EA0–EA51

EA0–EA35

On-Chip
SLBs

X

PA0–PA51SPR280

On-Chip
TLBs

Optional

Page Table
Search Logic

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 248 of 657
pem7_MMU.fm.3.0

July 15, 2005

As shown in Figure 7-1, processors optionally implement on-chip translation lookaside buffers (TLBs) and
optionally support the automatic search of the page tables for page table entries (PTEs).

The address space register (ASR) can be used to define the physical address of the base of the segment
table in memory, if it exits. The architecture does not require that such a table be built. Instead, segment
descriptors can be generated as needed by memory management software, and placed in the on-chip SLB.

7.2.3 Address Translation Mechanisms

PowerPC processors support the following two types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte or large page size

• Real addressing mode—when address translation is disabled, the physical address is identical to the
effective address.

Figure 7-2 shows the address translation mechanisms provided by the MMU. The segment descriptors
shown in the figure controls the page address translation mechanism. When an access uses the page
address translation, the appropriate segment descriptor is required. In 64-bit implementations, the segment
descriptor is located via a search of the segment table in memory for the appropriate segment table entry
(STE), if an explicit table is used, and is otherwise generated by the operating system.

For memory accesses translated by a segment descriptor, the interim virtual address is generated using the
information in the segment descriptor. Page address translation corresponds to the conversion of this virtual
address into the 64-bit physical address used by the memory subsystem. In some cases, the physical
address for the page resides in an on-chip TLB and is available for quick access. However, if the page
address translation misses in a TLB, the MMU searches the page table in memory (using the virtual address
information and a hashing function) to locate the required physical address. Some implementations may have
dedicated hardware to perform the page table search automatically, while others may define an exception
handler routine that searches the page table with software.

Temporary 64-Bit Bridge

Processors that implement the 64-bit bridge implement segment descriptors as a table of 16 segment
table entries.

Temporary 64-Bit Bridge

Processors that implement the 64-bit bridge divide the 32-bit address space into sixteen 256-Mbyte
segments defined by a table of 16 STEs maintained in 16 SLB entries.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 249 of 657

Figure 7-2. Address Translation Types

Temporary 64-Bit Bridge

Figure 7-2 shows address sizes for a 64-bit processor operating in 64-bit mode. If the 64-bit bridge is
enabled (ASR[V] is cleared), only the 32-bit address space is available and only 52 bits of the virtual
address are used. However, the bridge supports cross-memory operations that permit an operating sys-
tem to establish addressability to an address space, to copy data to it from another address space, and
then to destroy the new addressability, without altering the segment table.

0 63
Effective Address

0 79

Virtual Address

Segment Descriptor
Located

0 63

Physical Address

0 63

Physical Address

Look Up in
Page Table

Address Translation Disabled

Page Address

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical Address

(see Section 7.3)

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 250 of 657
pem7_MMU.fm.3.0

July 15, 2005

Real addressing mode address translation occurs when address translation is disabled; in this case, the
physical address generated is identical to the effective address. Instruction and data address translation is
enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus, when the processor generates an access,
and the corresponding address translation enable bit in the MSR (MSR[IR] for instruction accesses and
MSR[DR] for data accesses) is cleared, the resulting physical address is identical to the effective address and
all other translation mechanisms are ignored. See Section 7.2.6.1 Real Addressing Mode Selection for more
information.

7.2.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMU provides access protec-
tion of supervisor areas from user access and can designate areas of memory as read-only, as well as no-
execute. Table 7-3 shows the eight protection options supported by the MMU for pages.

The operating system programs whether or not instruction fetches are allowed from an area of memory with
the no-execute option provided in the segment descriptor. The remaining options are enforced based on a
combination of information in the segment descriptor and the page table entry. Thus, the supervisor-only
option allows only read and write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = ‘0’) to access the page. User accesses that map into a supervisor-only page
cause an exception to be taken.

Note: Independent of the protection mechanisms, care must be taken when writing to instruction areas as
coherency must be maintained with on-chip copies of instructions that may have been prefetched into a
queue or an instruction cache. Refer to Section 5.1.5.2 Instruction Cache Instructions for more information on
coherency within instruction areas.

As shown in the table, the supervisor-write-only option allows both user and supervisor accesses to read from
the page, but only supervisor programs can write to that area. There is also an option that allows both super-
visor and user programs read and write access (both user/supervisor option), and finally, there is an option to
designate a page as read-only, both for user and supervisor programs (both read-only option).

Table 7-3. Access Protection Options for Pages

Option
User Read

User Write
Supervisor Read

Supervisor Write
I-Fetch Data I-Fetch Data

Supervisor-only — — — Y Y Y

Supervisor-only-no-execute — — — — Y Y

Supervisor-write-only Y Y — Y Y Y

Supervisor-write-only-no-execute — Y — — Y Y

Both user/supervisor Y Y Y Y Y Y

Both user/supervisor-no-execute — Y Y — Y Y

Both read-only Y Y — Y Y —

Both read-only-no-execute — Y — — Y —

Y Access permitted
 — Protection violation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 251 of 657

A facility defined in the VEA and OEA allows pages to be designated as guarded, preventing out-of-order
accesses that may cause undesired side effects. For example, areas of the memory map that are used to
control I/O devices can be marked as guarded so that accesses (such as, instruction prefetches) do not occur
unless they are explicitly required by the program. Refer to Out-of-Order Accesses to Guarded Memory on
page 203, for a complete description of how accesses to guarded memory are restricted.

7.2.5 Page History Information

The MMU of PowerPC processors also defines referenced (R) and changed (C) bits in the page address
translation mechanism that can be used as history information relevant to the usage of a page. The C-bit is
used by the operating system to determine which pages have changed and must be written back to disk when
new pages are replacing them in main memory. The R-bit is used to determine that a reference (for example
a load instruction) has been made to a page and the operating system can use this information when trying to
decide which page not to remove from memory. While these bits are initially allocated by the operating
system into the page table, the architecture specifies that the R and C-bits are updated by the processor
when a program executes a load (R) or store (C) to a page.

7.2.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses.

Note: Although there are references to the concept of an on-chip TLB, they may not be present in a particu-
lar hardware implementation for performance enhancement (and a particular implementation may have one
or more TLBs). Thus, TLBs are shown here as optional and only the software ramifications of the existence of
a TLB is discussed.

7.2.6.1 Real Addressing Mode Selection

When an instruction or data access is generated and the corresponding instruction or data translation is
disabled (MSR[IR] = ‘0’ or MSR[DR] = ‘0’), real addressing mode translation is used (physical address equals
effective address) and the access continues to the memory subsystem as described in Section 7.3 Real
Addressing Mode.

Figure 7-3 shows the flow used by the MMU in determining whether to select real addressing mode or to use
the segment descriptor to select page address translation.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 252 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.2.6.2 Page Address Translation Selection

If address translation is enabled (real addressing mode translation not selected), then the segment descriptor
must be located. Figure 7-4 also shows the way in which the no-execute protection is enforced; if the N-bit in
the segment descriptor is set and the access is an instruction fetch, the access is faulted.

Figure 7-3. General Flow of Address Translation (Real Addressing Mode)

D-accessI-access

Data
Translation Disabled

(MSR[DR] = ’0’)

Instruction
Translation Disabled

(MSR[IR] = ‘0’)

Effective Address
Generated

Instruction
Translation Enabled

(MSR[IR] = ‘1’)

Data
Translation Enabled

(MSR[DR] = ‘1’)

Perform Real
Addressing Mode

Translation Perform Address Transla-
tion with Segment

Descriptor

Perform Real
Addressing Mode

Translation

(See Figure 7-4)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 253 of 657

Figure 7-4. General Flow of Page Address Translation

Access Faulted

Access Faulted

Access
Protected

Access
Permitted

Continue Access
to Memory Subsystem

Translate Address

Page Address
Translation

TLB
Miss

Generate Virtual
Address from Segment

Descriptor

Compare Virtual
Address with TLB

Entries

Locate Segment
Descriptor

Address Translation with
Segment Descriptor

(See Figure 7-5)

(See Figure 7-10)

(See Figure 7-19)

I-Fetch with N bit set in Seg-
ment Descriptor

 (no-execute)

TLB
Hit

otherwise

Perform Page Table
Search Operation

PTE FoundPTE Not
Found

Notes:
Implementation-specific

Load TLB Entry

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 254 of 657
pem7_MMU.fm.3.0

July 15, 2005

The segment descriptor for each access is generated by the operating system and placed in the SLB. Alter-
nately, an explicit segment table can be built by the operating system, from which segment descriptors are
copied, as needed, into the SLB.

Temporary 64-Bit Bridge

Processors that implement the 64-bit bridge maintain segment descriptors on-chip by emulating seg-
ment tables in 16 SLB entries. As shown in Figure 7-5, this feature is enabled by clearing the optional
ASR[V] bit. This indicates that any value in the STABORG is invalid and that segment table hashing is
not implemented.

Figure 7-5. Location of Segment Descriptors

Access Faulted

SLB Miss SLB Hit

Generate Segment
Descriptor

No valid descriptor Valid descriptor

Load SLB Entry

Page Address
Translation

Locate Segment
Descriptor

Use EA0–EA3 to select one of
16 segment registers mapped

to SLB entries

TEMPORARY 64-BIT BRIDGE
Locate emulated SR

(ASR[V] = 0)

Compare EA with
SLB entries

Implementation-specificNote:

64-bit Implementation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 255 of 657

Selection of Page Address Translation

The information in the segment descriptor is used to generate the n-bit (65 ≤ n ≤ 80) virtual address. The
virtual address is then used to identify the page address translation information (stored as page table entries
(PTEs) in a page table in memory). Although the architecture does not require the existence of a TLB, one or
more TLBs may be implemented in the hardware to store copies of recently-used PTEs on-chip for increased
performance. A TLB is used like a small cache of the much larger PTE tables in memory.

If an access hits in the TLB, the page translation occurs and the physical address bits are forwarded to the
memory subsystem. If the translation is not found in the TLB, the MMU requires a search of the page table.
The hardware of some implementations may perform the table search automatically, while others may trap to
an exception handler for the system software to perform the page table search. If the translation is found, a
new TLB entry is created and the page translation is once again attempted. This time, the TLB is guaranteed
to hit. When the PTE is located, the access is qualified with the appropriate protection bits. If the access is
determined to be protected (not allowed), an exception (ISI or DSI exception) is generated.

If the PTE is not found by the table search operation, an ISI or DSI exception is generated. This is also known
as a page fault.

7.2.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be translated to a physical address. A
translation exception condition occurs if this translation fails for one of the following reasons:

• There is no valid entry in the page table for the page specified by the effective address (and segment
descriptor).

• There is no valid segment descriptor.

• An address translation is found but the access is not allowed by the memory protection mechanism.

The translation exception conditions cause either the ISI or the DSI exception to be taken as shown in
Table 7-4. The state saved by the processor for each of these exceptions contains information that identifies
the address of the failing instruction. Refer to Chapter 6, Exceptions for a more detailed description of excep-
tion processing, and the bit settings of SRR1 and DSISR when an exception occurs.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 256 of 657
pem7_MMU.fm.3.0

July 15, 2005

In addition to the translation exceptions, there are other MMU-related conditions (some of them implementa-
tion-specific) that can cause an exception to occur. These conditions map to the exceptions as shown in
Table 7-5. The only MMU exception conditions that occur when MSR[DR] = ‘0’ are the conditions that cause
the alignment exception for data accesses. For more detailed information about the conditions that cause the
alignment exception (in particular for string/multiple instructions), see Section 6.4.8 Alignment Exception
(0x00600). Refer to Chapter 6, Exceptions for a complete description of the SRR1 and DSISR bit settings for
these exceptions.

Table 7-4. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables

I access: ISI exception
SRR1[33] = ‘1’

D access: DSI exception
DSISR[1] = ‘1’

Segment fault (no STE found) No matching STE found in the segment tables

I access: ISI exception
SRR1[42] = ‘1’

D access: DSI exception
DSISR[10] = ’1’

Page protection violation Conditions described in Table 7-12 for page protection

I access: ISI exception
SRR1[36] = ‘1’

D access: DSI exception
DSISR[4] = ‘1’

No-execute protection violation Attempt to fetch instruction when SR[N] = ‘1’ or
STE[N] = ‘1’

ISI exception
SRR1[35] = ‘1’

Instruction fetch from guarded memory Attempt to fetch instruction when MSR[IR] = ‘1’ and
PTE[G] = ‘1’

ISI exception
SRR1[35] = ‘1’

Table 7-5. Other MMU Exception Conditions

Condition Description Exception

dcbz with W = ‘1’ or I = ‘1’ (might cause
exception or operation might be performed
to memory)

dcbz instruction to write-through or
cache-inhibited segment

Alignment exception (implementation-
dependent)

ldarx, stdcx., lwarx, or stwcx. with W = ‘1’
(might cause exception or execute correctly)

Reservation instruction to write-through
segment

DSI exception (implementation-dependent)
DSISR[5] = ‘1’

eciwx or ecowx attempted when external
control facility disabled

eciwx or ecowx attempted with
EAR[E] = ‘0’

DSI exception
DSISR[11] = ‘1’

lmw, stmw, lswi, lswx, stswi, or stswx
instruction attempted in little-endian mode

lmw, stmw, lswi, lswx, stswi, or stswx
instruction attempted while MSR[LE] = ‘1’ Alignment exception

Operand misalignment
Translation enabled and operand is mis-
aligned as described in Chapter 6, Excep-
tions.

Alignment exception (some of these cases
are implementation-dependent)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 257 of 657

7.2.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up the segment
descriptors in the SLB, and the page table in memory from which entries can be cached in a TLB, if imple-
mented.

Note: Because the implementation of TLBs is optional, the instructions that refer to these structures are also
optional. However, as these structures serve as caches of the page table, there must be a software protocol
for maintaining coherency between these caches and the tables in memory whenever changes are made to
the tables in memory. Therefore, the PowerPC OEA specifies that a processor implementing a TLB is guar-
anteed to have a means for doing the following:

• Invalidating an individual TLB entry (the architecture defines the optional tlbie instruction for this pur-
pose)

• Invalidating the entire TLB (the architecture defines the optional tlbia instruction for this purpose)

Similarly, a processor is guaranteed to have a means for doing the following:

• Invalidating an individual SLB entry (the architecture defines the slbie instruction for this purpose)

• Invalidating the entire SLB (the architecture defines the slbia instruction for this purpose)

When the tables in memory are changed, the operating system purges these caches of the corresponding
entries, allowing the translation caching mechanism to refetch from the tables when the corresponding entries
are required.

A processor may implement one or more of the instructions described in this section to support table invalida-
tion. Alternatively, an algorithm may be specified that performs one of the functions listed above (for example,
a loop invalidating individual TLB entries may be used to invalidate the entire TLB), or different instructions
may be provided.

A processor may also perform additional functions (not described here), as well as those described in the
implementation of some of these instructions. For example, the tlbie instruction may be implemented to
purge all TLB entries in a congruence class (that is, all TLB entries indexed by the specified effective address
which can include corresponding entries in data and instruction TLBs) or the entire TLB.

Note: If a processor does not implement an optional instruction it treats the instruction as a no-op or as an
illegal instruction, depending on the implementation. Also, note that the TLB concepts described here are
conceptual; that is, a processor may implement parallel sets of TLBs for instructions and data.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the software
that uses these instructions and registers be encapsulated into subroutines to minimize the impact of
migrating across the family of implementations.

Table 7-6 summarizes the PowerPC instructions that specifically control the MMU. For more detailed infor-
mation about the instructions, refer to Chapter 8, Instruction Set.

TEMPORARY 64-BIT BRIDGE

When the processor is using the 64-bit bridge, neither the slbie or slbia instruction should be executed.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 258 of 657
pem7_MMU.fm.3.0

July 15, 2005

The operating system uses the SDR1 register to program the MMU. The SDR1 register specifies the base
and size of the page tables in memory. SDR1 is defined as a 64-bit register and is a special-purpose register
that is accessed by the mtspr and mfspr instructions.

7.2.9 TLB Entry Invalidation

Optionally, PowerPC processors implement TLB structures that store on-chip copies of the PTEs that are
resident in physical memory. These processors have the ability to invalidate resident TLB entries through the
use of the tlbie and tlbia instructions. Additionally, these instructions may also enable a TLB invalidate
signalling mechanism in hardware so that other processors also invalidate their resident copies of the
matching PTE. See Chapter 8, Instruction Set for detailed information about the tlbie and tlbia instructions.

Table 7-6. Instruction Summary—Control MMU

Instruction Description

mtsr SR,rS
Move to Segment Register
SR[SR]← rS
64-bit bridge only

mtsrin rS,rB
Move to Segment Register Indirect
SR[rB[0–3]]←rS
64-bit bridge only

mfsr rD,SR
Move from Segment Register
rD←SR[SR]
64-bit bridge only

mfsrin rD,rB
Move from Segment Register Indirect
rD←SR[rB[0–3]]
64-bit bridge only

tlbia
(optional)

Translation Lookaside Buffer Invalidate All
For all TLB entries, TLB[V]←0
Causes invalidation of TLB entries only for the processor that executed the tlbia

tlbie rB
(optional)

Translation Lookaside Buffer Invalidate Entry
If TLB hit (for effective address specified as rB), TLB[V]←0
Causes TLB invalidation of entry in all processors in the system

tlbsync
(optional)

Translation Lookaside Buffer Synchronize
Ensures that all tlbie instructions previously executed by the processor executing the tlbsync
instruction have completed on all processors

slbia
Segment Table Lookaside Buffer Invalidate All
For all SLB entries, SLB[V]←0
64-bit implementations only

slbie rB
(optional)

Segment Table Lookaside Buffer Invalidate Entry
If SLB hit (for effective address specified as rB), SLB[V]←0
64-bit implementations only

slbmte rS, rB
SLB Move to Entry
SLB[rB(52..63)]← rS,rB

slbmfev rD, rB
SLB Move from Entry VSID
rD← SLB[rB(52..63)]VSID

slbmfee rD, rB
SLB Move from Entry ESID
rD← SLB[rB(52..63)]ESID

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 259 of 657

7.3 Real Addressing Mode

If address translation is disabled (MSR[IR] = ‘0’ or MSR[DR] = ‘0’) for a particular access, the effective
address is treated as the physical address and is passed directly to the memory subsystem as a real
addressing mode address translation. If an implementation has a smaller physical address range than effec-
tive address range, the extra high-order bits of the effective address may be ignored in the generation of the
physical address.

Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers describes the
synchronization requirements for changes to MSR[IR] and MSR[DR].

The addresses for accesses that occur in real addressing mode bypass all memory protection checks as
described in Section 7.4.4 Page Memory Protection and do not cause the recording of referenced and
changed information (described in Section 7.4.3 Page History Recording).

For data accesses that use real addressing mode, the memory access mode bits (WIMG) are assumed to be
‘0011’. That is, the cache is write-back and memory does not need to be updated immediately (W = ‘0’),
caching is enabled (I = ‘0’), data coherency is enforced with memory, I/O, and other processors (caches)
(M = ‘1’, so data is global), and the memory is guarded (G = ‘1’). For instruction accesses in real addressing
mode, the memory access mode bits (WIMG) are assumed to be either ‘0001’ or ‘0011’. That is, caching is
enabled (I = ‘0’) and the memory is guarded (G = ‘1’). Additionally, coherency may or may not be enforced
with memory, I/O, and other processors (caches) (M = ‘0’ or ‘1’, so data may or may not be considered
global). For a complete description of the WIMG bits, refer to Section 5.2.1 Memory/Cache Access Attributes.

Note: The attempted execution of the eciwx or ecowx instructions while MSR[DR] = ‘0’ causes boundedly-
undefined results.

Whenever an exception occurs, the processor clears both the MSR[IR] and MSR[DR] bits. Therefore, at least
at the beginning of all exception handlers (including reset), the processor operates in real addressing mode
for instruction and data accesses. If address translation is required for the exception handler code, the soft-
ware must explicitly enable address translation by accessing the MSR as described in Chapter 2, PowerPC
Register Set.

Note: An attempt to access a physical address that is not physically present in the system may cause a
machine check exception (or even a checkstop condition), depending on the response by the system for this
case. Thus, care must be taken when generating addresses in real addressing mode. This can also occur
when translation is enabled and the ASR or SDR1 registers set up the translation such that nonexistent mem-
ory is accessed. See Section 6.4.2 Machine Check Exception (0x00200) for more information on machine
check exceptions.

TEMPORARY 64-BIT BRIDGE

Note: If ASR[V] = ‘0’, a reference to a nonexistent address in the STABORG field does not cause a
machine check exception.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 260 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.4 Memory Segment Model

Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented memory model provides
a way to map 4-Kbyte (or implementation specific larger size) pages of effective addresses to pages in phys-
ical memory (page address translation), while providing the programming flexibility afforded by a large virtual
address space (up to 80 bits).

The page translation proceeds in the following two steps:

1. From effective address to the virtual address, and

2. From virtual address to physical address.

The page address translation mechanism is described in the following sections, followed by a summary of
page address translation with a detailed flow diagram.

7.4.1 Recognition of Addresses in Segments

The page address translation uses segment descriptors, which provide virtual address and protection infor-
mation, and page table entries (PTEs), which provide the physical address and page protection information.
The segment descriptors are programmed by the operating system to provide the virtual ID for a segment. In
addition, the operating system also creates the page table in memory that provides the virtual-to-physical
address mappings (in the form of PTEs) for the pages in memory.

Segments in the OEA can be classified as memory segments. An effective address in these segments repre-
sents a virtual address that is used to define the physical address of the page.

All accesses generated by the processor can be mapped to a segment descriptor; however, if translation is
disabled (MSR[IR] = ‘0’ or MSR[DR] = ‘0’ for an instruction or data access, respectively), real addressing
mode translation is performed as described in Section 7.3 Real Addressing Mode. Otherwise the access
maps to memory space and page address translation is performed.

After a memory segment is selected, the processor creates the virtual address for the segment and searches
for the PTE that dictates the physical page number to be used for the access.

Note: I/O devices can be easily mapped into memory space and used as memory-mapped I/O.

7.4.2 Page Address Translation Overview

The first step in page address translation for 64-bit implementations is the conversion of the 64-bit effective
address of an access into the virtual address (between 65 and 80 bits depending on the implementation). The
virtual address is then used to locate the PTE in the page table in memory. The physical page number is then
extracted from the PTE and used in the formation of the physical address of the access.

Note: For increased performance, some processors may implement on-chip TLBs to store copies of
recently-used PTEs.

Figure 7-6 shows an overview of the translation of an effective address to a physical address for 64-bit imple-
mentations (assuming an 80-bit virtual address) as follows:

• Bits [0–35] of the effective address comprise the effective segment ID (ESID) used to select a segment
descriptor, from which the virtual segment ID (VSID) is extracted.

• Bits [36–(63-p)] of the effective address correspond to the page number (index) within the segment; these
bits are concatenated with the VSID from the segment descriptor to form the virtual page number (VPN).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 261 of 657

The VPN is used to search for the PTE in either an on-chip TLB or the page table. The PTE then provides
the physical page number (also known as the real page number or RPN).

Note: Bits [36–40] form the abbreviated page index (API) which is used to compare with page table
entries during hashing. This is described in detail in Section 7.5.1.8 PTEG Address Mapping Example on
page 284.

• Bits [(64-p)–63] of the effective address are the byte offset within the page; these are concatenated with
the real page number (RPN) field of a PTE to form the physical (real) address used to access memory.

TEMPORARY 64-BIT BRIDGE

Because processors that implement the 64-bit bridge access only a 32-bit address space, only 16 STEs
are required to define the entire 4-Gbyte address space. Page address translation for 64-bit processors
using the 64-bit bridge uses a subset of the functionality described here for 64-bit implementations. For
example, only bits [32–35] are used to select a segment descriptor, and as in the 32-bit portion of the
architecture, only 16 on-chip segment registers are required. These segment descriptors are main-
tained in 16 SLB entries.

Refer to Section 7.6 Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementa-
tions on page 292 for details concerning the 64-bit bridge.

Figure 7-6. Page Address Translation Overview

80-Bit Virtual Address

64-Bit Effective Address

62-Bit Physical Address

Page Byte Offset
(28-p Bit (p Bit)

Virtual Segment ID (VSID) Page Index Byte Offset
(52 Bit) (28-p Bit) (p Bit)

Physical Page Number (RPN) Byte Offset
(62-p Bit) (p Bit)

TLB/
Page Table

Page Index (16 Bit)

PTE

0 35 36 63-p 64-p 63

SLB/
Segment Table

0 51 52 79-p 80-p 79

Virtual Page Number (VPN)

Effective Segment ID
(36 Bit)

0 61-p 62-p 62

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 262 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.4.2.1 Segment Lookaside Buffer (SLB)

The Segment Lookaside Buffer (SLB) specifies the mapping between Effective Segment IDs (ESIDs) and
Virtual Segment IDs (VSIDs). The number of SLB entries is implementation-dependent, except that all imple-
mentations provide at least 32 entries.

The contents of the SLB are managed by software, using the instructions described in Table 7-6. See
Section 4.1.5.1 Context Synchronizing Instructions for the rules that software must follow when updating the
SLB.

Each SLB entry (SLBE) maps one ESID to one VSID. Figure 7-7 illustrates an SLB entry.

On implementations that support a virtual address size of only n bits, n< 80, bits [0 to 79-n] of the VSID field
are treated as reserved bits, and software must set them to zeros.

A No-execute segment (N=’1’) contains data that should not be executed.

The L bit selects between the two virtual page sizes, 4 KB (p=12) and “large.” The large page size is an imple-
mentation-dependent value that is a power of 2 and is in the range 8 KB to 256 MB (13 ≤ p ≤ 28). Some
implementations may provide a means by which software can select the large page size from a set of several
implementation-dependent sizes during system initialization.

If “large page” is used in reference to physical (real) memory, it means the sequence of contiguous real
(4 KB) pages to which a large virtual page is mapped. The Class field is used in conjunction with the slbie
instruction.

Software must ensure that the SLB contains at most one entry that translates a given effective address (for
example, that a given ESID is contained in no more than one SLB entry).

Figure 7-7. SLB Entry

Table 7-7. SLB Entry Bit Description – 64-bit Implementations

Bit Name Description

0-35 ESID Effective segment ID

36 V Entry valid (V=’1’) or invalid (V=’0’)

37-88 VSID Virtual segment ID

89 KS Supervisor state storage key

90 KP User (problem) state storage key

91 N No-execute segment if N=1

92 L Virtual pages are large (L=1) or 4KB (L=0)

93 C Class

0 35 37 89 9388

ESID V VSID KS KP N L

90 91 92

C

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 263 of 657

Because the virtual page size is used both in searching the Page Table and in forming the real address using
the matching Page Table Entry (PTE), and PTEs contain no indication of the virtual page size, the virtual
page size must be the same for all address translations that use a given VSID value. This has the following
consequences, which apply collectively to all processors that use the same Page Table.

• The value of the L bit must be the same in all SLB entries that contain a given VSID value.

• Before changing the value of the L bit in an SLB entry, software must invalidate all SLB entries, TLB
entries, and PTEs that contain the corresponding VSID value.

SLB Search

When the hardware searches the SLB, all entries are tested for a match with the EA. For a match to exist, the
following must be true:

• SLBE[V] = ‘1’

• SLBE[ESID] = EA[0-35]

If the SLB search succeeds, the virtual address (VA) is formed by concatenating the VSID from the matching
SLB entry with bits [36-63] of the effective address.

The Virtual Page Number (VPN) is bits [0 to 79-p] of the virtual address.

If the SLB search fails, a segment fault occurs. This is an Instruction Segment exception or a Data Segment
exception, depending on whether the effective address is for an instruction fetch or for a data access.

7.4.2.2 Page Table Entry (PTE) Definition and Format

Page table entries (PTEs) are generated and placed in a page table in memory by the operating system using
the hashing algorithm described in Section 7.5.1.3 Page Table Hashing Functions. Some of the fields are
defined as follows:

• The virtual segment ID field corresponds to the high-order bits of the virtual page number (VPN), and,
along with the H, V, and API fields, it is used to locate the PTE (used as match criteria in comparing the
PTE with the segment information).

• The R and C bits maintain history information for the page as described in Section 7.4.3 Page History
Recording.

• The WIMG bits define the memory/cache control mode for accesses to the page.

• The PP bits define the remaining access protection constraints for the page. The page protection pro-
vided by PowerPC processors is described in Section 7.4.4 Page Memory Protection.

Conceptually, the page table in memory must be searched to translate the address of every reference. For
performance reasons, however, some processors use on-chip TLBs to cache copies of recently-used PTEs
so that the table search time is eliminated for most accesses. In this case, the TLB is searched for the
address translation first. If a copy of the PTE is found, then no page table search is performed. As TLBs are
noncoherent caches of PTEs, software that changes the page table in any way must perform the appropriate
TLB invalidate operations to keep the on-chip TLBs coherent with respect to the page table in memory.

Each PTE is a 128-bit entity (two doublewords) that maps a virtual page number (VPN) to a physical page
number (RPN). Information in the PTE is used in the page table search process (to determine a page table
hit) and provides input to the memory protection mechanism. Figure 7-8 shows the format of the two double-
words that comprise a PTE for 64-bit implementations.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 264 of 657
pem7_MMU.fm.3.0

July 15, 2005

Table 7-8 lists the corresponding bit definitions for each doubleword in a PTE as defined.

If p ≤ 23, the Abbreviated Virtual Page Number (AVPN) field contains bits [0-56] of the VPN. Otherwise bits
[0 - (79-p)] of the AVPN field contain bits [0 to (79-p)] of the VPN, and bits [(80-p) to 56] of the AVPN field
must be zeros.

Note: If p ≤ 23, the AVPN field omits the low-order (23-p) bits of the VPN. These bits are not needed in the
PTE, because the low-order 11 bits of the VPN are always used in selecting the PTEGs to be searched.

On implementations that support a virtual address size of only n bits, n< 80, bits [0 to (79-n)] of the AVPN field
must be zeros.

The RPN field contains the page number of the real page that contains the first byte of the block of real
storage to which the virtual page is mapped. If p> 12, the low-order p-12 bits of the RPN field (bits
[(64-p) to 51] of doubleword 1 of the PTE) must be ‘0’. On implementations that support a real address size of
only m bits, m< 62, bits [0 to (61-m)] of the RPN field must be zeros.

Note: For a large virtual page, the high-order [62-p] bits of the RPN field (bits [0 to (61-p)]) comprise the large
real page number.

Figure 7-8. Page Table Entry Format

Table 7-8. PTE Bit Definitions

Doubleword Bit Name Description

0

0-56 AVPN Abbreviated virtual page number

57-60 SW Available for software use

61 — Reserved

62 H Hash function identifier

63 V Entry valid (V = ‘1’) or invalid (V = ‘0’)

1

0-1 — Reserved

2-51 RPN Physical page number

52–53 — Reserved

54 AC Address compare bit

55 R Referenced bit

56 C Changed bit

57–60 WIMG Memory/cache access control bits

61 N No execute page if N = ‘1’

62–63 PP Page protection bits

Reserved

0 51 52 54 55 56 57 60 61 62 63

0 56 57 61 62 63

AVPN SW 0 H V

0 0 RPN AC R C WIMG N PP0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 265 of 657

7.4.3 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about the page. The
operating system then uses this information to determine which areas of memory to write back to disk when
new pages must be allocated in main memory. Furthermore, R and C bits are maintained only for accesses
made while address translation is enabled (MSR[IR] = ‘1’ or MSR[DR] = ‘1’).

In general, the referenced and changed bits are updated to reflect the status of the page based on the
access, as shown in Table 7-9.

In processors that implement a TLB, the processor may perform the R and C-bit updates based on the copies
of these bits resident in the TLB. For example, the processor may update the C-bit based only on the status of
the C-bit in the TLB entry in the case of a TLB hit (the R-bit may be assumed to be set in the page tables if
there is a TLB hit). Therefore, when software clears the R and C-bits in the page tables in memory, it must
invalidate the TLB entries associated with the pages whose referenced and changed bits were cleared. See
Section 7.5.3 Page Table Updates for all of the constraints imposed on the software when updating the refer-
enced and changed bits in the page tables.

The R-bit for a page may be set by the execution of the dcbt or dcbtst instruction to that page. However,
neither of these instructions cause the C-bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if address translation
were disabled (real addressing mode address).

7.4.3.1 Referenced Bit

The referenced bit for each virtual (real) page is located in the PTE. Every time a page is referenced (by an
instruction fetch, or any other read or write access) the referenced bit is set in the page table. The referenced
bit may be set immediately, or the setting may be delayed until the memory access is determined to be
successful. Because the reference to a page is what causes a PTE to be loaded into the TLB, some proces-
sors may assume the R-bit in the TLB is always set. The processor never automatically clears the referenced
bit.

The referenced bit is only a hint to the operating system about the activity of a page. At times, the referenced
bit may be set although the access was not logically required by the program or even if the access was
prevented by memory protection. Examples of this include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by a stwcx. or stdcx. instruction when no store is performed

• Accesses that cause exceptions and are not completed

Table 7-9. Table Search Operations to Update History Bits

R and C bits Processor Action

00
Read: Table search operation to update R
Write: Table search operation to update R and C

01 Combination doesn’t occur

10
Read: No special action
Write: Table search operation to update C

11 No special action for read or write

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 266 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.4.3.2 Changed Bit

The changed bit for each virtual page is located both in the PTE in the page table and in the copy of the PTE
loaded into the TLB (if a TLB is implemented). Whenever a data store instruction is executed successfully, if
the TLB search (for page address translation) results in a hit, the changed bit in the matching TLB entry is
checked. If it is already set, no additional action is required. If the TLB changed bit is ‘0’, it is set and a table
search operation is performed to set the C-bit in the corresponding PTE in the page table.

Processors cause the changed bit (in both the PTE in the page tables and in the TLB if implemented) to be
set only when a store operation is allowed by the page memory protection mechanism and the store is guar-
anteed to be in the execution path, unless an exception, other than those caused by one of the following
occurs:

• System-caused interrupts (system reset, machine check, external, and decrementer interrupts)

• Floating-point enabled exception type program exceptions when the processor is in an imprecise mode

• Floating-point assist exceptions for instructions that cause no other kind of precise exception

Furthermore, the following conditions may cause the C-bit to be set:

• The execution of an stwcx. or stdcx. instruction is allowed by the memory protection mechanism but a
store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection mechanism but a store opera-
tion is not performed because the specified length is zero.

No other cases cause the C-bit to be set.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 267 of 657

7.4.3.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) used by PowerPC processors that main-
tain the referenced and changed bits automatically in hardware, in the setting of the R and C-bits. In some
scenarios, the bits are guaranteed to be set by the processor; in some scenarios, the architecture allows that
the bits may be set (not absolutely required); and in some scenarios, the bits are guaranteed to not be set.
Note that when the hardware updates the R and C-bits in memory, the accesses are performed as a physical
memory access, as if the WIMG bit settings were ‘0010’ (that is, as unguarded cacheable operations in which
coherency is required).

In implementations that do not maintain the R and C-bits in hardware, software assistance is required. For
these processors, the information in this section still applies, except that the software performing the updates
is constrained to the rules described (that is, must set bits shown as guaranteed to be set and must not set
bits shown as guaranteed to not be set).

Note: This software should be contained in the area of memory reserved for implementation-specific use and
should be invisible to the operating system.

Table 7-10 defines a prioritized list of the R and C-bit settings for all scenarios. The entries in the table are
prioritized from top to bottom, such that a matching scenario occurring closer to the top of the table takes
precedence over a matching scenario closer to the bottom of the table. For example, if an stwcx. instruction
causes a protection violation and there is no reservation, the C-bit is not altered, as shown for the protection
violation case.

Note: In Table 7-10, load operations include those generated by load instructions, by the eciwx instruction,
and by the cache management instructions that are treated as loads with respect to address translation. Sim-
ilarly, store operations include those operations generated by store instructions, by the ecowx instruction,
and by the cache management instructions that are treated as stores with respect to address translation.

Table 7-10. Model for Guaranteed R and C Bit Settings

Priority Scenario Causes Setting of R-Bit Causes Setting of C-Bit

1 Page protection violation Maybe No

2 Out-of-order instruction fetch or load operation Maybe No

3
Out-of-order store operation for instructions that will cause no other
kind of precise exception (in the absence of system-caused, impre-
cise, or floating-point assist exceptions)

Maybe1 Maybe1

4 All other out-of-order store operations Maybe1 No

5 In-order Load-type instruction Maybe No

6 In-order Store-type instruction Maybe Maybe1

7 In-order instruction fetch Yes2 No

8 Load instruction or eciwx Yes No

9 Store instruction, ecowx or dcbz instruction Yes Yes

10 icbi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe No

Note:
1 If C is set, R is guaranteed to also be set.
2 This includes the case in which the instruction was fetched out of order and R was not set.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 268 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.4.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates

Although the processor updates the referenced and changed bits in the page tables automatically, these
updates are not guaranteed to be immediately visible to the program after the load, store, or instruction fetch
operation that caused the update. If processor A executes a load or store or fetches an instruction, the
following conditions are met with respect to performing the access and performing any R and C-bit updates:

• If processor A subsequently executes a sync instruction, both the updates to the bits in the page table
and the load or store operation are guaranteed to be performed with respect to all processors and mech-
anisms before the sync instruction completes on processor A.

• Additionally, if processor B executes a tlbie instruction that

– signals the invalidation to the hardware,

– invalidates the TLB entry for the access in processor A, and

– is detected by processor A after processor A has begun the access,

and processor B executes a tlbsync instruction after it executes the tlbie, both the updates to the bits
and the original access are guaranteed to be performed with respect to all processors and mechanisms
before the tlbsync instruction completes on processor A.

7.4.4 Page Memory Protection

In addition to the no-execute option that can be programmed at the segment descriptor level to prevent
instructions from being fetched from a given segment (shown in Figure 7-4). There are a number of other
memory protection options that can be programmed at the page level. The page memory protection mecha-
nism allows selectively granting read access, granting read/write access, and prohibiting access to areas of
memory based on a number of control criteria.

The memory protection used by the page address translation mechanism is different in that the page address
translation protection defines a key bit that, in conjunction with the PP bits, determines whether supervisor
and user programs can access a page.

For page address translation, the memory protection mechanism is controlled by the following:

• MSR[PR] which defines the mode of the access as follows:
– MSR[PR] = ‘0’ corresponds to supervisor mode
– MSR[PR] = ‘1’ corresponds to user mode

• KS and KP, the supervisor and user key bits, which define the key for the page

• The PP bits, which define the access options for the page

• For instruction fetches only:
– No-execute (N) value used for the access
– PTE[G], the guarded (G) bit in the page table entry used to translate the effective address.

The key bits (KS and KP) and the PP bits are located as follows for page address translation:

• KS and KP are located in the segment descriptor.

• The PP bits are located in the PTE.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 269 of 657

The key bits, the PP bits, and the MSR[PR] bit are used as follows:

• When an access is generated, one of the key bits is selected to be the key as follows:
– For supervisor accesses (MSR[PR] = ‘0’), the KS bit is used and KP is ignored
– For user accesses (MSR[PR] = ‘1’), the KP bit is used and KS is ignored

That is, key = (KP & MSR[PR]) | (KS & ¬MSR[PR])

• For an instruction fetch, the access is not permitted if the N = ‘1’ or PTE[G] = ‘1’

• The selected key is used with the PP bits to determine if instruction fetching, load access, or store access
is allowed

Table 7-11 shows the types of accesses that are allowed for the general case (all possible Ks, Kp, and PP bit
combinations), assuming that the N-bit in the segment descriptor is cleared (the no-execute option is not
selected).

Thus, the conditions that cause a protection violation (not including the no-execute protection option for
instruction fetches) are depicted in Table 7-12 and as a flow diagram in Figure 7-11. Any access attempted
(read or write) when the key = ‘1’ and PP = ‘00’, causes a protection violation exception condition. When
key = ‘1’ and PP = ‘01’, an attempt to perform a write access causes a protection violation exception condi-
tion. When PP = ‘10’, all accesses are allowed, and when PP = ‘11’, write accesses always cause an excep-
tion. The processor takes either the ISI or the DSI exception (for an instruction or data access, respectively)
when there is an attempt to violate the memory protection.

Table 7-11. Access Protection Control with Key

Key1 PP2 Page Type

0 00 Read/write

0 01 Read/write

0 10 Read/write

0 11 Read only

1 00 No access

1 01 Read only

1 10 Read/write

1 11 Read only

Note:
1 KS or KP selected by state of MSR[PR]
2 PP protection option bits in PTE

Table 7-12. Exception Conditions for Key and PP Combinations

Key PP Prohibited Accesses

0 0x None

1 00 Read/write

1 01 Write

x 10 None

x 11 Write

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 270 of 657
pem7_MMU.fm.3.0

July 15, 2005

Any combination of the KS, KP, and PP bits is allowed. One example is if the KS and KP bits are programmed
so that the value of the key bit for Table 7-11 directly matches the MSR[PR] bit for the access. In this case,
the encoding of KS = ‘0’ and KP = ‘1’ is used for the PTE, and the PP bits then enforce the protection options
shown in Table 7-13.

However, if the setting KS = ‘1’ is used, supervisor accesses are treated as user reads and writes with respect
to Table 7-13. Likewise, if the setting KP = ‘0’ is used, user accesses to the page are treated as supervisor
accesses in relation to Table 7-13. Therefore, by modifying one of the key bits (in the segment descriptor),
the way the processor interprets accesses (supervisor or user) in a particular segment can easily be
changed.

Note: Only supervisor programs are allowed to modify the key bits for the segment descriptor. Although
access to the ASR is privileged, the operating system must protect write accesses to the segment table as
well.

As shown in Figure 7-9, when the memory protection mechanism prohibits a reference, one of the following
occurs depending on the type of access that was attempted:

• For data accesses, a DSI exception is generated and DSISR[4] is set. If the access is a store, DSISR[6] is
also set.

• For instruction accesses,

– an ISI exception is generated and SRR1[36] is set, or
– an ISI exception is generated and SRR1[35] is set if the segment is designated as no-execute.

Table 7-13. Access Protection Encoding of PP Bits for KS = ‘0’ and KP = ‘1’

PP Field Option User Read
(Key = ‘1’)

User Write
(Key = ‘1’)

Supervisor Read
(Key = ‘0’)

Supervisor Write
(Key = ‘0’)

00 Supervisor-only Violation Violation Y Y

01 Supervisor-write-only Y Violation Y Y

10 Both user/supervisor Y Y Y Y

11 Both read-only Y Violation Y Violation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 271 of 657

If the page protection mechanism prohibits a store operation, the changed bit is not set (in either the TLB or in
the page tables in memory); however, a prohibited store access may cause a PTE to be loaded into the TLB
and consequently cause the referenced bit to be set in a PTE (both in the TLB and in the page table in
memory).

7.4.5 Page Address Translation Summary

Figure 7-10 provides the detailed flow for the page address translation mechanism in 64-bit implementations.
The figure includes the checking of the N-bit in the segment descriptor and then expands on the ‘TLB Hit’
branch of Figure 7-4. The detailed flow for the ‘TLB Miss’ branch of Figure 7-4 is described in Section 7.5.2
Page Table Search Process. The checking of memory protection violation conditions for page address trans-
lation is shown in Figure 7-11. The ‘Invalidate TLB Entry’ box shown in Figure 7-10 is marked as implementa-
tion-specific as this level of detail for TLBs (and the existence of TLBs) is not dictated by the architecture.

Note: The figure does not show the detection of all exception conditions shown in Table 7-4 and Table 7-5;
the flow for many of these exceptions is implementation-specific.

Figure 7-9. Memory Protection Violation Flow for Pages

DSI Exception

Page Memory
Protection Violation

DSISR[4] ← 1

Abort Access

dcbt/dcbtst
Instruction

otherwise

Instruction
Access

Data
Access

SRR1[36] ← 1

ISI Exception

otherwise

N Bit Set in
Segment Descriptor

SRR1[35] ← 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 272 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-10. Page Address Translation Flow—TLB Hit

(See Figure 7-19)

(See Figure 7-11)

TLB Hit
Case

Effective Address
Generated

Compare Virtual Address
with TLB Entries

Continue Access to Memory
Subsystem with WIMG bits from

PTE

Page Table
Search Operation

PA0–PA63←RPN||A52–A63Invalidate TLB entry

Generate 80-Bit
 Virtual Address from
Segment Descriptor

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

Page Memory
Protection Violation

Access ProhibitedAccess Permitted

otherwise
Store Access with

PTE [C] = ‘0’

otherwise

(See Figure 7-9)

I-Fetch with N Bit Set in
Segment Descriptor

 (No-Execute)

Implementation-specificNote:

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 273 of 657

7.5 Hashed Page Tables

If a copy of the PTE corresponding to the VPN for an access is not resident in a TLB (corresponding to a miss
in the TLB, provided a TLB is implemented), the processor must search for the PTE in the page tables set up
by the operating.

The algorithm specified by the architecture for accessing the page tables includes a hashing function on
some of the virtual address bits. Thus, the addresses for PTEs are allocated more evenly within the page
tables and the hit rate of the page tables is maximized. This algorithm must be synthesized by the operating
system for it to correctly place the page table entries in main memory.

If page table search operations are performed automatically by the hardware, they are performed using phys-
ical addresses and as if the memory access attribute bit M = ‘1’ (memory coherency enforced in hardware). If
the software performs the page table search operations, the accesses must be performed in real addressing
mode (MSR[DR] = ‘0’); this additionally guarantees that M = ‘1’.

This section describes the format of the page tables and the algorithm used to access them. In addition, the
constraints imposed on the software in updating the page tables (and other MMU resources) are described.

Figure 7-11. Page Memory Protection Violation Conditions for Page Address Translation

Select Key:
If MSR[PR] = ‘0’, key = Ks
If MSR[PR] = ‘1’, key = Kp

Check Page Memory
Protection Violation

Conditions

Access Permitted

otherwise

Read Access with
key || PP = ‘100’

Write Access with
key || PP = any of:

011
100
101
111

Access Prohibited (See Figure 7-9)

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 274 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.5.1 Page Table Definition

The hashed page table is a variable-sized data structure that defines the mapping between virtual page
numbers and physical page numbers. The page table size is a power of ‘2’, its starting address is a multiple of
its size, and the table must reside in memory with the WIMG attributes of ‘0010’.

The page table contains a number of page table entry groups (PTEGs). For 64-bit implementations, a PTEG
contains eight page table entries (PTEs) of 16 bytes each; therefore, each PTEG is 128 bytes long. PTEG
addresses are entry points for table search operations. Figure 7-12 shows two PTEG addresses (PTEGaddr1
and PTEGaddr2) where a given PTE may reside.

A given PTE can reside in one of two possible PTEGS—one is the primary PTEG and the other is the
secondary PTEG. Additionally, a given PTE can reside in any of the PTE locations within an addressed
PTEG. Thus, a given PTE may reside in one of 16 possible locations within the page table. If a given PTE is
not in either the primary or secondary PTEG, a page table miss occurs, corresponding to a page fault condi-
tion.

A table search operation is defined as the search for a PTE within a primary and secondary PTEG. When a
table search operation commences, a primary hashing function is performed on the virtual address. The
output of the hashing function is then concatenated with bits programmed into the SDR1 register by the oper-
ating system to create the physical address of the primary PTEG. The PTEs in the PTEG are then checked,
one by one, to see if there is a hit within the PTEG. If the PTE is not located, a secondary hashing function is
performed, a new physical address is generated for the PTEG, and the PTE is searched for again, using the
secondary PTEG address.

Figure 7-12. Page Table Definitions

16 bytes

PTE0 PTE1 PTE7 PTEG0

PTEG7FFF

PTE0 PTE1 PTE7

PTE0 PTE1 PTE7

PTEGaddr1

PTEGaddr2

Page Table

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 275 of 657

Note: Although a given PTE may reside in one of 16 possible locations, an address that is a primary PTEG
address for some accesses also functions as a secondary PTEG address for a second set of accesses (as
defined by the secondary hashing function). Therefore, these 16 possible locations are really shared by two
different sets of effective addresses. Section 7.5.1.7 Page Table Structure Example, illustrates how PTEs
map into the 16 possible locations as primary and secondary PTEs.

7.5.1.1 SDR1 Register Definition

The Storage Description Register 1 (SDR1) contains the control information for the page table structure in
that it defines the high-order bits for the physical base address of the page table and it defines the size of the
table. Note that there are certain synchronization requirements for writing to SDR1 that are described in
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers.

The format of the SDR1 register is shown in Figure 7-13.

The bit settings for SDR1 are described in Table 7-14.

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address of the page table.
Therefore, the beginning of the page table lies on a 218 byte (256 Kbyte) boundary at a minimum. If the
processor does not support 64 bits of physical address, software should write zeros to those unsupported bits
in the HTABORG field (as the implementation treats them as reserved). Otherwise, a machine check excep-
tion can occur.

A page table can be any size 2
n bytes where 18 ≤ n ≤ 46. The HTABSIZE field in SDR1 contains an integer

value that specifies how many bits from the output of the hashing function are used as the page table index.
This number must not exceed 28. HTABSIZE is used to generate a mask of the form ‘00...011...1’ (a string of
n ‘0’ bits (where n is 28 – HTABSIZE) followed by a string of ‘1’ bits, the number of which is equal to the value
of HTABSIZE). As the table size increases, more bits are used from the output of the hashing function to
index into the table. The ‘1’ bits in the mask determine how many additional bits (beyond the minimum of 11)
from the hash are used in the index; the HTABORG field must have this same number of low-order bits equal
to 0. See Figure 7-17 for an example of the primary PTEG address generation in a 64-bit implementation.

On implementations that support a real address size of only m bits, m< 62, bits [0 to (61- m)] of the
HTABORG field are treated as reserved bits, and software must set them to zeros.

Figure 7-13. SDR1 Register Format

Table 7-14. SDR1 Register Bit Settings

Bits Name Description

0–1 — Reserved

2–45 HTABORG Physical base address of page table

46–58 — Reserved

59-63 HTABSIZE Encoded size of page table (used to generate mask)

0 0 0 0 0 0 0 0 0 0 0 0 0 HTABSIZE

Reserved

0 45 46 58 59 63

HTABORG

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 276 of 657
pem7_MMU.fm.3.0

July 15, 2005

Let n equal the virtual address size (in bits) supported by the implementation. If n< 67, software should set the
HTABSIZE field to a value that does not exceed n- 39. Because the high-order [80- n] bits of the VSID are
assumed to be zeros, the hash value used in the Page Table search will have the high-order [67- n] bits either
all ‘0’s (primary hash) or all ‘1’s (secondary hash). If HTABSIZE > [n- 39], some of these hash value bits will
be used to index into the Page Table, with the result that certain PTEGs will not be searched.

7.5.1.2 Page Table Size

The number of entries in the page table directly affects performance because it influences the hit ratio in the
page table and thus the rate of page fault exception conditions. If the table is too small, not all virtual pages
that have physical page frames assigned may be mapped via the page table. This can happen if more than
16 entries map to the same primary/secondary pair of PTEGs; in this case, many hash collisions may occur.

The minimum allowable size for a page table is 256 Kbytes (211 PTEGs of 128 bytes each). However, it is
recommended that the total number of PTEGs in the page table be at least half the number of physical page
frames to be mapped. While avoidance of hash collisions cannot be guaranteed for any size page table,
making the page table larger than the recommended minimum size reduces the frequency of such collisions,
by making the primary PTEGs more sparsely populated, and further reducing the need to use the secondary
PTEGs.

Table 7-15 shows example sizes for total main memory. The recommended minimum page table sizes for
these example memory sizes are then outlined, along with their corresponding HTABORG and HTABSIZE
settings.

Note: Systems with less than 16 Mbytes of main memory may be designed with 64-bit implementations, but
the minimum amount of memory that can be used for the page tables is 256 Kbytes in these cases.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 277 of 657

As an example, if the physical memory size is 231 bytes (2 Gbyte), there are 231 – 212 (4 Kbyte page size) =
219 (512 Kbyte) total page frames. If this number of page frames is divided by 2, the resultant minimum
recommended page table size is 218 PTEGs, or 225 bytes (32 Mbytes) of memory for the page tables.

7.5.1.3 Page Table Hashing Functions

The MMU uses two different hashing functions, a primary and a secondary, in the creation of the physical
addresses used in a page table search operation. These hashing functions distribute the PTEs within the
page table, in that there are two possible PTEGs where a given PTE can reside. Additionally, there are eight
possible PTE locations within a PTEG where a given PTE can reside. If a PTE is not found using the primary
hashing function, the secondary hashing function is performed, and the secondary PTEG is searched.

Note: These two functions must also be used by the operating system to set up the page tables in memory
appropriately.

Typically, the hashing functions provide a high probability that a required PTE is resident in the page table,
without requiring the definition of all possible PTEs in main memory. However, if a PTE is not found in the
secondary PTEG, a page fault occurs and an exception is taken. Thus, the required PTE can then be placed
into either the primary or secondary PTEG by the system software, and on the next TLB miss to this page (in
those processors that implement a TLB), the PTE will be found in the page tables (and loaded into an on-chip
TLB).

The address of a PTEG is derived from the HTABORG field of the SDR1 register, and the output of the corre-
sponding hashing function (primary hashing function for primary PTEG and secondary hashing function for a
secondary PTEG). The value in the HTABSIZE field of SDR1 determines how many of the higher-order hash
value bits are masked and how many are used in the generation of the physical address of the PTEG.

Table 7-15. Minimum Recommended Page Table Sizes

Total Main Memory

 Recommended Minimum Settings for Recommended Minimum

Memory for Page Tables
Number of

Mapped Pages
(PTEs)

Number of
PTEGs

HTABORG
(Maskable Bits

[18-45])

HTABSIZE
(28-Bit Mask)

16 Mbytes (224) 256 Kbytes (218) 214 211 x xxxx 0 0000
(0 0000)

32 Mbytes (225) 512 Kbytes (219) 215 212 x xxx0 0 0001
(0 0001)

64 Mbytes (226) 1 Mbyte (220) 216 213 x xx00 0 0010
(0 0011)

128 Mbytes (227) 2 Mbytes (221) 217 214 x x000 0 0011
(0 0111)

256 Mbytes (228) 4 Mbytes (222) 218 215 x . . .x 0000 0 0100
(0 . . .0 1111)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

251 Bytes 245 Bytes 241 238 x 0 . . . 0000 1 1011
(0 1 . . . 1111)

252 Bytes 246 Bytes 242 239 0 0000 1 1100
(11111)

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 278 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-14 depicts the hashing functions defined by the PowerPC OEA for page tables (4KB page size). The
inputs to the primary hashing function are the lower-order 39 bits of the VSID field of the STE (bits [13–51] of
the 80-bit virtual address), and the page index field of the effective address (bits [52–67] of the virtual
address) concatenated with 23 higher-order bits of zero. The XOR of these two values generates the output
of the primary hashing function (hash value 1).

When the secondary hashing function is required, the output of the primary hashing function is comple-
mented with one’s complement arithmetic, to provide Hash Value 2.

Figure 7-14. Hashing Functions for Page Tables (4KB page size)

Lower-Order 39 Bits of VSID (from Segment Descriptor)

VA13 VA51

52 67

Primary Hash:

XOR

Output of Hashing Function 1

0 27 28 38

=

Secondary Hash:

Hash Value 1

0 38

Hash Value 1

Hash Value 2

One’s Complement Function

0 0 0 0 0 0
(23 Zeros)

Page Index
(from Effective Address)

Output of Hashing Function 2

0 27 28 38

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 279 of 657

7.5.1.4 Translation Lookaside Buffer (TLB)

Conceptually, the page table is searched by the address relocation hardware to translate every reference.
For performance reasons, the hardware usually keeps a Translation Lookaside Buffer (TLB) that holds PTEs
that have recently been used. The TLB is searched prior to searching the page table. As a consequence,
when software makes changes to the page table it must perform the appropriate TLB invalidate operations to
maintain the consistency of the TLB with the page table.

Page table entries may or may not be cached in a TLB. It is possible that the hardware implements more than
one TLB, such as one for data and one for instructions. In this case the size and shape of the TLBs may
differ, as may the values contained therein. A tlbie or tlbia instruction should be used to ensure that the TLB
no longer contains a mapping corresponding to an entry that has been deleted from the page table.

7.5.1.5 Page Table Address Generation

The following section illustrates the generation of the addresses used for accessing the hashed page tables.
As stated earlier, the operating system must synthesize the table search algorithm for setting up the tables.

Two of the elements that define the virtual address (the VSID field of the segment descriptor and the page
index field of the effective address) are used as inputs into a hashing function. Depending on whether the
primary or secondary PTEG is to be accessed, the processor uses either the primary or secondary hashing
function as described in Section 7.5.1.3 Page Table Hashing Functions.

Note: When address translation is enabled (MSR[DR] or MSR[IR] = ‘1’), the SDR1 must point to a valid page
table. Otherwise, a machine check exception can occur.

Additionally, care should be given that page table addresses not conflict with those that correspond to areas
of the physical address map reserved for the exception vector table or other implementation-specific
purposes (refer to Section 7.2.1.2 Predefined Physical Memory Locations).

The base address of the page table is defined by the high-order bits of SDR1[HTABORG]. Effectively, bits
[18–45] of the PTEG address are derived from the masking of the higher-order bits of the hash value (as
defined by SDR1[HTABSIZE]) concatenated with (implemented as an OR function) the high-order bits of
SDR1[HTABORG] as defined by HTABSIZE. Bits [46–56] of the PTEG address are the 11 lower-order bits of
the hash value, and bits [57–63] of the PTEG address are zero. In the process of searching for a PTE, the
processor checks up to eight PTEs located in the primary PTEG and up to eight PTEs located in the
secondary PTEG, if required, searching for a match. Figure 7-15 provides a graphical description of the
generation of the PTEG addresses.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 280 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-15. Generation of Addresses for Page Tables

Page Table

SDR1

62-Bit Physical Address of Page Table Entry Group

PTE0

128 Bytes

80-Bit Virtual Address

PTE7
16 Bytes

62-Bit Physical Address

WIMG

(16 Bit) (28 Bit) (11 Bit)

(28-p Bits)

Hash Function

PTEG0

PTEGn

Page Index

PP

Page Table Entry (PTE)

28 Bits
11 Bits

0 0 0 0 0 0 0

00 N

0 0 0 ... 0 0 0

0 0 . . 0 0
(7 Bit)

Base
Address

HTABSIZE

AND

Decode

0 27

0 0 0 . . . 011 . . . 11

OR

(11+p Bits)

39 Bits

R C

Hash Value
(39 Bit)

79

80-p p

80-p79-p51 52130

ByteVirtual Page Number (VPN)

0 38

HTABORG

0 2

17 18

45 46 58 59 63

MASK

AVPN

0 56 57 60 61 62 63

SW 0 H V

0 2

63-p2

0 0

51 52 54 555657 61 63

AC

Real Page Number (RPN)

RPN (62-p Bits) Byte offset (p Bits)

0 27 28 38

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 281 of 657

7.5.1.6 Page Table Structure Summary

In the process of searching for a PTE, the processor interprets the values read from memory as described in
Section 7.4.2.2 Page Table Entry (PTE) Definition and Format. The VSID and the abbreviated page index
(API) fields of the virtual address of the access are compared to those same fields of the PTEs in memory. In
addition, the valid (V) bit and the hashing function (H) bit are also checked. For a hit to occur, the V-bit of the
PTE in memory must be set. If the fields match and the entry is valid, the PTE is considered a hit if the H-bit is
set as follows:

• If this is the primary PTEG, H = ‘0’
• If this is the secondary PTEG, H = ‘1’

The physical address of the PTE(s) to be checked is derived as shown in Figure 7-15, and the generated
address is the address of a group of eight PTEs (a PTEG). During a table search operation, the processor
compares up to 16 PTEs: PTE0–PTE7 of the primary PTEG (defined by the primary hashing function) and
PTE0–PTE7 of the secondary PTEG (defined by the secondary hashing function).

If the VSID and API fields do not match (or if V or H are not set appropriately) for any of these PTEs, a page
fault occurs and an exception is taken. Thus, if a valid PTE is located in the page tables, the page is consid-
ered resident; if no matching (and valid) PTE is found for an access, the page in question is interpreted as
nonresident (page fault) and the operating system must load the page into main memory and update the PTE
accordingly.

The architecture does not specify the order in which the PTEs are checked. Note that for maximum perfor-
mance however, PTEs should be allocated by the operating system first beginning with the PTE0 location
within the primary PTEG, then PTE1, and so on. If more than eight PTEs are required within the address
space that defines a PTEG address, the secondary PTEG can be used (again, allocation of PTE0 of the
secondary PTEG first, and so on is recommended). Additionally, it may be desirable to place the PTEs that
will require most frequent access at the beginning of a PTEG and reserve the PTEs in the secondary PTEG
for the least frequently accessed PTEs.

The architecture also allows for multiple matching entries to be found within a table search operation. Multiple
matching PTEs are allowed if they meet the match criteria described above, as well as have identical RPN,
WIMG, and PP values, allowing for differences in the R and C-bits. In this case, one of the matching PTEs is
used and the R and C-bits are updated according to this PTE. In the case that multiple PTEs are found that
meet the match criteria but differ in the RPN, WIMG, or PP fields, the translation is undefined and the
resultant R and C-bits in the matching entries are also undefined.

Note: Multiple matching entries can also differ in the setting of the H-bit, but the H-bit must be set according
to whether the PTE was located in the primary or secondary PTEG, as described above.

7.5.1.7 Page Table Structure Example

Figure 7-16 shows the structure of an example page table. The base address of the page table is defined by
SDR1[HTABORG] concatenated with 18 zero bits. In this example, the address is identified by bits [0–41] in
SDR1[HTABORG]; note that bits [42–45] of HTABORG must be zero because the HTABSIZE field specifies
an integer mask size of four, which decodes to four mask bits of ones. The addresses for individual PTEGs
within this page table are then defined by bits [42–56] as an offset from bits [0–41] of this base address. Thus,
the size of the page table is defined as 0x7FFF (32K) PTEGs.

Two example PTEG addresses are shown in Figure 7-16 as PTEGaddr1 and PTEGaddr2. Bits [42–56] of
each PTEG address in this example page table are derived from the output of the hashing function (bits
[57-63] are zero to start with PTE0 of the PTEG). In this example, the ‘b’ bits in PTEGaddr2 are the one’s

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 282 of 657
pem7_MMU.fm.3.0

July 15, 2005

complement of the ‘a’ bits in PTEGaddr1. The ‘n’ bits are also the one’s complement of the ‘m’ bits, but these
four bits are generated from bits [24–27] of the output of the hashing function, logically ORed with bits [42–45]
of the HTABORG field (which must be zero). If bits [42–56] of PTEGaddr1 were derived by using the primary
hashing function, PTEGaddr2 corresponds to the secondary PTEG.

Note: Bits [42–56] in PTEGaddr2 can also be derived from a combination of effective address bits, segment
descriptor bits, and the primary hashing function. In this case, then PTEGaddr1 corresponds to the secondary
PTEG. Thus, while a PTEG may be considered a primary PTEG for some effective addresses (and segment
descriptor bits), it may also correspond to the secondary PTEG for a different effective address (and segment
descriptor value).

It is the value of the H-bit in each of the individual PTEs that identifies a particular PTE as either primary or
secondary (there may be PTEs that correspond to a primary PTEG and PTEs that correspond to a secondary
PTEG, all within the same physical PTEG address space). Thus, only the PTEs that have H = ‘0’ are checked
for a hit during a primary PTEG search. Likewise, only PTEs with H = ‘1’ are checked in the case of a
secondary PTEG search.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 283 of 657

Figure 7-16. Example Page Table Structure

0 42 56 63

Page Table

Example:

Given: SDR1

0000 0000 1111 0000 0001 1000 0000 0000 1010 0110 0000 0000 0000 0000 0000 0100

0 45 46 58 59 63

PTEGaddr1=

0000 0000 1111 0000 0001 1000 0000 0000 1010 0110 00mm mmaa aaaa aaaa a000 0000

PTEGaddr2 =

HTABORG

HTABSIZE

Base Address (0–41)

decode

 28-Bit Mask (0...0 1111)

0000 0000 1111 0000 0001 1000 0000 0000 1010 0110 00nn nnbb bbbb bbbb b000 0000

0 42 56 63

$00F0 1800 A600 0000 PTE0 PTE1 PTEG0

PTEGaddr1 PTE0 PTE1

PTE7

PTE7

PTEGaddr2 PTE0 PTE1

PTEG4095

PTE7

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 284 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.5.1.8 PTEG Address Mapping Example

This section contains a sample effective address and how its address translation (the PTE) maps into the
primary PTEG in physical memory. This example illustrates how the processor generates PTEG addresses
for a table search operation; this is also the algorithm that must be used by the operating system in creating
page tables.

In the example shown in Figure 7-17, the value in SDR1 defines a page table at address
0x0F05_8400_0F00_0000 that contains 217 PTEGs. The highest order 36 bits of the effective address
uniquely map to a segment descriptor. The segment descriptor is then located and the contents of the
segment descriptor are used along with bits [36–63] of the effective address to create the 80-bit virtual
address.

To generate the address of the primary PTEG, bits [13–51], and bits [52–67] of the virtual address are then
used as inputs into the primary hashing function (XOR) to generate hash value 1. The low-order 17 bits of
hash value 1 are then concatenated with the high-order 40 bits of HTABORG and with seven low-order ‘0’
bits, defining the address of the primary PTEG (0x0F05_8400_0F3F_F300). The ANDing of the 28 high-order
bits of hash value 1 with the mask (defined by the HTABSIZE field) and the ORing with bits [18–45] of
HTABORG are implicitly shown in the figure. The ANDing with the mask selects six additional bits of hash
value 1 to be used (in addition to the 11 prescribed bits) producing a total of 17 bits of hash value 1 bits to be
used. The ORing causes those selected six bits of hash value 1 to comprise bits [40–45] of the PTEG
address (as bits [40–45] of HTABORG should be zero).

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 285 of 657

Figure 7-17. Example Primary PTEG Address Generation

Byte Offset

0 39 40 45 46 56 57 63

Page Index

Example:

Given: SDR1

0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 0000 0000 0000 0000 0000 0110

0 39 45 59 63HTABORG

HTABSIZE

EA = 0x0027_0000_00FF_A01B:

Second Doubleword of STE:

Segment Descriptor Search

0 0 0 0 0 2 0 C A 7 0 1 C

0 51

12 13 51 52 67

Virtual Address: VSID

Primary Hash:

000 0000 0010 0000 1100 1010 0111 0000 0001 1100

XOR

000 0000 0000 0000 0000 0000 0000 1111 1111 1010

Hash Value 1

000 0000 0010 0000 1100 1010 0111 1111 1110 0110

28-bits 11-bits

0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 0011 1111 1111 0011 0000 0000

0 F 0 5 8 4 0 0 0 F 3 F F 3 0 0

Primary PTEG Address: Start at PTE0

HTABORG

0 35 51 52 63

0000 0000 0010 0111 0000 0000 0000 0000 0000 0000 1111 1111 1010 0000 0001 1011

0 F 0 5 8 4 0 0 0 F

0000 0000 0000 0000 0000 0010 0000 1100 1010 0111 0000 0001 1100 000...000

0000 0000 0000 0000 0000 0010 0000 1100 1010 0111 0000 0001 1100 0000 11111111 1010 0000 0001 1011

mask (0...011
decode

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 286 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-18 shows the generation of the secondary PTEG address for this example. If the secondary PTEG is
required, the secondary hash function is performed and the low-order 17 bits of hash value 2 are then ORed
with the high-order 46 bits of HTABORG (bits [40–45] should be zero), and concatenated with seven low-
order 0 bits, defining the address of the secondary PTEG (0x0F05_8400_0FC0_0C80).

As described in Figure 7-15, the 11 low-order bits of the page index field are always used in the generation of
a PTEG address (through the hashing function). This is why only the 5-bit abbreviated page index (API) is
defined for a PTE (the entire page index field does not need to be checked). For a given effective address,
the low-order 11 bits of the page index (at least) contribute to the PTEG address (both primary and
secondary) where the corresponding PTE may reside in memory. Therefore, if the high-order 5 bits (the API
field) of the page index match with the API field of a PTE within the specified PTEG, the PTE mapping is
guaranteed to be the unique PTE required.

Note: A given PTEG address does not map back to a unique effective address. Not only can a given PTEG
be considered both a primary and a secondary PTEG (as described in Section 7.5.1.7 Page Table Structure
Example), but if the mask defined has four ‘1’ bits or less (not the case shown in the example in the figure),
some bits of the page index field of the virtual address are not used to generate the PTEG address. There-
fore, any combination of these unused bits will map to the same pair of PTEG addresses. (However, these
bits are part of the API and are therefore compared for each PTE within the PTEG to determine if there is a

Figure 7-18. Example Secondary PTEG Address Generation

Hash Value 2:

Secondary PTEG Address:

0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 1100 0000 0000 1100 1000 0000

0x 0 F 0 5 8 4 0 0 0 F C 0 0 C 8 0

28 Bits
11 Bits

1) First compare 8 PTEs
at 0x0F05_8400_0F3F_F300

2) Then compare 8 PTEs
at 0x0F05_8400_0FC0_0C80,

 if necessary

HTABORG

0x0F05_8400_0F00_0000 PTEG0

PTEG

PTEG

PTEG

PTE0 PTE7

PTE0 PTE7

One’s Complement

Secondary Hash:

000 0000 0010 0000 1100 1010 0111 1111 1110 0110Hash Value 1:

Start at PTE0

000 0000 0010 0000 1100 1010 0111 1111 1110 0110

111 1111 1101 1111 0011 0101 1000 0000 0001 1001

0x3F_F300

0xC0_0C80

0xFF_FF80

63
5646

57
0 39

40 45

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 287 of 657

hit.) Furthermore, an effective address can select a different segment descriptor with a different value such
that the output of the primary (or secondary) hashing function happens to equal the hash values shown in the
example. Thus, these effective addresses would also map to the same PTEG addresses shown.

7.5.2 Page Table Search Process

An outline of the page table search process is as follows:

1. The 64-bit physical addresses of the primary and secondary PTEGs are generated as described in
Section 7.5.1.5 Page Table Address Generation on page 279.

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from memory (the architecture
does not specify the order of these reads, allowing multiple reads to occur in parallel). PTE reads occur
with an implied WIM memory/cache mode control bit setting of ‘001’. Therefore, they are considered
cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number (VPN) of the
access. The VPN is the VSID concatenated with the page index field of the virtual address. For a match
to occur, the following must be true:

– PTE[H] = ‘0’ for primary PTEG; PTE[H] = ‘1’ for secondary PTEG
– PTE[V] = ‘1’
– PTE[VSID] = VA[0-51]
– PTE[API] = VA[52-56]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight PTEs of the secondary
PTEG, an exception is generated as described in step 8. If a match (or multiple matches) is found, the
table search process continues.

5. If multiple matches are found, all of the following must be true:

– PTE[RPN] is equal for all matching entries
– PTE[WIMG] is equal for all matching entries
– PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and C-bit of matching
entries are undefined. Otherwise, the R and C-bits are updated based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB (if implemented) and the R-bit is updated in the PTE in
memory (if necessary). If there is no memory protection violation, the C-bit is also updated in memory (if
necessary) and the table search is complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and a page fault exception
condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed as if the WIMG bit settings were ‘0010’
(that is, as unguarded cacheable operations in which coherency is required).

7.5.2.1 Flow for Page Table Search Operation

Figure 7-19 Page Table Search Flow provides a detailed flow diagram of a page table search operation.

Note: The references to TLBs are shown as optional because TLBs are not required; if they do exist, the
specifics of how they are maintained are implementation-specific.

Figure 7-19 shows only a few cases of R-bit and C-bit updates. For a complete list of the R and C-bit updates
dictated by the architecture, refer to Table 7-10 Model for Guaranteed R and C Bit Settings.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 288 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-19. Page Table Search Flow

otherwise

otherwise

Update PTE[R]
(if required)

Generate Primary and
Secondary PTEG Addresses

Page Table Search

Adjust PA to read
more PTE(s)

Fetch PTE(s)
from Physical Address(es)

PTE [VSID, API, V] = Seg Desc [VSID], EA[API], 1
PTE [H] = ‘0’ (Primary PTEG) or
PTE [H] = ‘1’ (Secondary PTEG)

Translation
Undefined

Write PTE
into TLB

Check Memory Protection Vio-
lation Conditions

otherwise

R, C bits for match-
ing PTEs also

undefined

DSI ExceptionISI Exception

SRR1[33] ← 1 DSISR[1] ← 1

Data AccessInstruction Access

Access
Permitted

Access
Prohibited

Page Table
Search Complete

otherwise Store operation
with PTE[C] = 0

Page Memory
Protection Violation

TLB[PTE[C]] ← 1

Page Table
Search Complete

PTE[C] ← 1
(update PTE[C] in memory)

PTE(RPN, WIMG, PP)
equal for all matching PTEs

All 16 PTEs checked

(See Figure 7-11)

(See Figure 7-9)

Page Fault

Note:

Implementation-specific

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 289 of 657

7.5.3 Page Table Updates

This section describes the requirements on the software when updating page tables in memory via some
pseudocode examples. Multiprocessor systems must follow the rules described in this section so that all
processors operate with a consistent set of page tables. Even single processor systems must follow certain
rules, because software changes must be synchronized with the other instructions in execution and with auto-
matic updates that may be made by the hardware (referenced and changed bit updates). Updates to the
tables include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C-bits of a PTE
• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately synchronized by
software locking of (that is, guaranteeing exclusive access to) PTEs or PTEGs if more than one processor
can modify the table at that time. In the examples below, software locks should be performed to provide
exclusive access to the PTE being updated. However, the architecture does not dictate the specific protocol
to be used for locking (for example, a single lock, a lock per PTEG, or a lock per PTE can be used). See
Appendix D Synchronization Programming Examples for more information about the use of the reservation
instructions (such as the lwarx and stwcx. instructions) to perform software locking.

When TLBs are implemented they are defined as noncoherent caches of the page tables. TLB entries must
be invalidated explicitly with the TLB invalidate entry instruction (tlbie) whenever the corresponding PTE is
modified. In a multiprocessor system, the tlbie instruction must be controlled by software locking, so that the
tlbie is issued on only one processor at a time.

The PowerPC OEA defines the tlbsync instruction that ensures that TLB invalidate operations executed by
this processor have caused all appropriate actions in other processors. In a system that contains multiple
processors, the tlbsync functionality must be used in order to ensure proper synchronization with the other
PowerPC processors.

Note: A sync (or ptesync) instruction must also follow the tlbsync to ensure that the tlbsync has completed
execution on this processor.

On single processor systems, PTEs need not be locked and the eieio instructions (in between the tlbie and
tlbsync instructions) and the tlbsync instructions themselves are not required. The sync instructions shown
are required even for single processor systems (to ensure that all previous changes to the page tables and all
preceding tlbie instructions have completed).

Any processor, including the processor modifying the page table, may access the page table at any time in an
attempt to reload a TLB entry. An inconsistent PTE must never accidentally become visible (if V = ‘1’); thus,
there must be synchronization between modifications to the valid bit and any other modifications (to avoid
corrupted data).

In the pseudocode examples that follow, changes made to a PTE or STE shown as a single line in the
example is assumed to be performed with an atomic store instruction. Appropriate modifications must be
made to these examples if this assumption is not satisfied (for example, if a store doubleword operation is
performed with two store word instructions).

Updates of R and C-bits by the processor are not synchronized with the accesses that cause the updates.
When modifying the low-order half of a PTE, software must take care to avoid overwriting a processor update
of these bits and to avoid having the value written by a store instruction overwritten by a processor update.
The processor does not alter any other fields of the PTE.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 290 of 657
pem7_MMU.fm.3.0

July 15, 2005

Explicitly altering certain MSR bits (using the mtmsrd instruction), or explicitly altering STEs, PTEs, or certain
system registers, may have the side effect of changing the effective or physical addresses from which the
current instruction stream is being fetched. This kind of side effect is defined as an implicit branch. For
example, an mtmsrd instruction may change the value of MSR[SF], changing the effective addresses from
which the current instruction stream is being fetched, causing an implicit branch. Implicit branches are not
supported and an attempt to perform one causes boundedly-undefined results. Therefore, PTEs and STEs
must not be changed in a manner that causes an implicit branch. Section 2.3.16 Synchronization Require-
ments for Special Registers and for Lookaside Buffers lists the possible implicit branch conditions that can
occur when system registers and MSR bits are changed.

For a complete list of the synchronization requirements for executing the MMU instructions, see
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers.

The following examples show the required sequence of operations. However, other instructions may be inter-
leaved within the sequences shown.

7.5.3.1 Adding a Page Table Entry

This is the simplest page table case. The valid bit of the old entry is assumed to be ‘0’. The following
sequence can be used to create a PTE, maintain a consistent state, and ensure that a subsequent reference
to the virtual address translated by the new entry will use the correct real address and associated attributes.

PTE[RPN,AC,R,C,WIMG,N,PP] ← new values
eieio /* order 1st update before 2nd */
PTE[AVPN,SW,H,V] ← new values (V = 1)
ptesync /* order updates before next page table search and before next data access */

7.5.3.2 Modifying a Page Table Entry

This section describes several scenarios for modifying a PTE.

General Case

If a valid entry is to be modified and the translation instantiated by the entry being modified is to be invali-
dated, the following sequence can be used to modify the PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer available, and ensure that a subsequent reference to the
virtual address translated by the new entry will use the correct real address and associated attributes. (The
sequence is equivalent to deleting the PTE and then adding a new one.)

PTE[V] ← 0 /* (other fields don’t matter) */
ptesync /* order updated before tlbie and before next page table search */
tblie (old_VPN[32-79-p, OLD_L] /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tblie before ptesync */
ptesync /* order tlbie, tlbsync and first update before second update */
PTE[RPN,AC,R,C,WIMG,N,PP] ← new values
eieio /* order second update before third */
PTE[AVPN,SW,H,V] ← new values (V = ‘1’)
ptesync /* order second and third updates before next page table search and before

next data access */

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 291 of 657

Clearing the Referenced (R) Bit

When the PTE is modified only to clear the R bit to ‘0’, a much simpler algorithm suffices because the R-bit
need not be maintained exactly.

lock(PTE)
oldR ←PTE[R] /*get old R */
if oldR = 1, then
PTE[R] ← 0 /* store byte (R = ‘0’, other bits unchanged) */
tlbie(PTE) /* invalidate entry */
eieio /* order tlbie before tlbsync */
tlbsync /* ensure tlbie completed on all processors */
ptesync /* order tlbie, tlbsync, and update before next page table

search and before next data access */
unlock(PTE)

Since only the R and C-bits are modified by the processor, and since they reside in different bytes, the R-bit
can be cleared by reading the current contents of the byte in the PTE containing R (bits [48–55] of the second
doubleword), ANDing the value with ‘FE’, and storing the byte back into the PTE.

Modifying the Virtual Address

If the virtual address translated by a valid PTE is to be modified and the new virtual address hashes to the
same two PTEGs as does the old virtual address, the following sequence can be used to modify the PTE,
maintain a consistent state, ensure that the translation instantiated by the old entry is no longer available, and
ensure that a subsequent reference to the virtual address translated by the new entry uses the correct real
address and associated attributes.

PTE[AVPN,SW,H,V] ← new values (V = 1)
ptesync /* order update before tblie and before next page table search */
tlbie(old_EA) /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync and update before next data access */
unlock(PTE)

To modify the AC, N, or PP bits without overwriting a reference or change bit update being performed by the
processor or by some other processor, a sequence similar to that shown above can be used except that the
first line would be replaced by a ptesync instruction followed by a loop containing a ldarx/stdcx. pair that
emulates an atomic “Compare and Swap” of the low-order doubleword of the PTE.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 292 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.5.3.3 Deleting a Page Table Entry

The following sequence can be used to ensure that the translation instantiated by an existing entry is no
longer available.

lock(PTE)
PTE[V] ← 0 /* (other fields don’t matter) */
ptesync /* order update before tlbie and before next page table search */
tlbie(old_EA) /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync and update before next data access */
unlock(PTE)

7.5.4 ASR Updates

There are certain synchronization requirements for writing to the ASR or using the move to segment register
instructions. These are described in Section 2.3.16 Synchronization Requirements for Special Registers and
for Lookaside Buffers.

7.6 Migration of Operating Systems from 32-Bit Implementations to 64-Bit
Implementations

The facilities and instructions described in this section may optionally be provided by a 64-bit implementation
to reduce the amount of software change required to migrate an operating system from a 32-bit implementa-
tion to a 64-bit implementation. Using the bridge facility allows the operating system to treat the MSR as a
32-bit register and to continue to use the segment register manipulation instructions (mtsr, mtsrin, mfsr, and
mfsrin) which are defined for 32-bit implementations. These instructions are otherwise illegal in the 64-bit
architecture. Although the 64-bit bridge does not literally implement the 16 registers as they are defined by
the 32-bit portion of the architecture, the segment register manipulation instructions are used to access the
16 predefined segment descriptors stored in the on-chip SLBs.

The bridge features do not conceal the differences in format of the page table and SDR1 between 32-bit and
64-bit implementations—the operating system must be converted explicitly to use the 64-bit formats.

Note: An operating system that uses the bridge features does not take full advantage of the 64-bit implemen-
tation (for example, it can generate only 32-bit effective addresses).

An operating system that uses the 64-bit bridge architecture should observe the following:

• The boot process should do the following:

– Clear MSR[SF].

– Initialize the ASR, clearing ASR[V].

– Invalidate all SLB entries.

• The operating system should do the following:

– Support only 32-bit applications.

– If any 64-bit instructions are used, for example, to modify a PTE or a 64-bit SPR, ensure either that
exceptions cannot occur or that the exception handler saves and restores all 64 bits of the GPRs.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 293 of 657

– Manipulate only the low-order 32 bits of the MSR, leaving the high-order 32 bits unchanged.

– Always have ASR[V] = 0.

– Manage virtual segments using the 32-bit segment register manipulation instructions (mtsr, mtsrin,
mfsr, and mfsrin).

– Always map segments 0–15 in the SLB when translation is enabled. They may be mapped with a
VSID for which there are no valid PTEs.

– Never execute an slbie or slbia instruction.

– Never generate an effective address greater than 232 – 1 when MSR[SF] = ‘1’.

7.6.1 Segment Register Manipulation Instructions in the 64-Bit Bridge

The four segment register manipulation instructions, mtsr, mtsrin, mfsr, and mfsrin, defined as part of the
32-bit portion of the architecture may optionally be provided by a 64-bit implementation that uses the 64-bit
bridge. As part of the 64-bit bridge, these instructions operate as described below, and are implemented as a
group and not individually. Attempting to execute one of these instructions on a 64-bit processor on which it is
not supported causes an illegal instruction type program exception.

These instructions allow software to associate effective segments 0 through 15 with any of virtual segments 0
through 224 – 1 without altering the segment table in memory. Sixteen indexed SLB entries serve as virtual
segment registers. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a selected SLB
entry. The mfsr and mfsrin instructions move 64 bits from a selected SLB entry to a selected GPR and can
be used to read an SLB entry that was created with mtsr or mtsrin.

The software synchronization requirements for any of the move to segment register instructions in a 64-bit
implementation are the same as for those defined by the 32-bit architecture.

To ensure that SLB entries contain unique ESIDs when the bridge is used, an ESID mapped by any of the
move to segment register instructions must not have been mapped to that SLB entry by the segment table
when ASR[V] was set.

If an SLB entry that software established using one of the move to segment register instructions is overwritten
while ASR[V] = ‘1’, software must be able to handle any exception caused when a segment descriptor cannot
be located.

Executing an mfsr or mfsrin instruction may set rD to an undefined value if ASR[V] has been set at any time
since execution of the mtsr or mtsrin instruction that established the selected SLB entry, because that SLB
entry may have been overwritten by the processor in the meantime.

Typically, 16 fixed SLB entries are used by the segment register manipulation instructions, while SLB reload
from the segment table selects SLB entries based on some other replacement policy such as LRU.

With respect to updating any SLB replacement history used by the SLB replacement policy, implementations
will treat the execution of an mtsr or mtsrin instruction the same as an SLB reload from the segment table.

The following sections describe the move to and move from segment register instructions as they are defined
for the 64-bit bridge.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 294 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.6.2 64-Bit Bridge Implementation of Segment Register Instruction

The following sections describe the mfsr, mfsrin, mtsr, and mtsrin instructions that are defined for the 32-bit
architecture and are allowed in the 64-bit bridge architecture only if ASR[V] is implemented. Otherwise,
attempting to execute one of these instructions is illegal on a 64-bit implementation.

7.6.2.1 Move from Segment Register—mfsr

The mfsr instruction syntax is as follows:

mfsr rD,SR

The operation of the instruction is described as follows:

rD ← SLB(SR)

When executed as part of the 64-bit bridge, the contents of the SLB entry selected by SR are placed into rD;
the contents of rD correspond to a segment table entry containing values as shown in Table 7-16.

If the SLB entry selected by SR was not created by an mtsr instruction, the contents of rD are undefined.
Formatting for GPR contents is shown in Figure 7-20. Fields shown as x’s are ignored. Fields shown as
slashes correspond to reserved bits in the segment table entry.

This is a supervisor-level instruction.

Table 7-16. Contents of rD after Executing mfsr

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 SR ESID[32–35]

36–57 — —

58–59 rD[33–34] Ks, Kp

60–61 rD[35–36] N, reserved bit, or ‘0’

62–63 — —

1

0–24 rD[7–31] VSID[0–24]

25–51 rD[37–63] VSID[25–51]

52–63 — —

Note: The contents of rD[0–6] are cleared automatically.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 295 of 657

7.6.2.2 Move from Segment Register Indirect—mfsrin

The mfsrin instruction syntax is as follows:

mfsrin rD,rB

The operation of the instruction is described as follows:

rD ← SLB(rB[32–35])

The contents of the SLB entry selected by rB[32–35] are placed into rD; the contents of rD correspond to a
segment table entry containing values as shown in Table 7-17.

If the SLB entry selected by rB[32–35] was not created by an mtsr instruction, the contents of rD are unde-
fined. Formatting for GPR contents is shown in Figure 7-20. Fields shown as x’s are ignored. Fields shown as
slashes correspond to reserved bits in the segment table entry.

This is a supervisor-level instruction.

Figure 7-20. GPR Contents for mfsr and mfsrin

Table 7-17. Contents of rD after Executing mtsr

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 rB[32–35] ESID[32–35]

36–57 — —

58–59 rD[33–34] Ks, Kp

60–61 rD[35–36] N, reserved bit, or ‘0’

1

0–24 rD[7–31] VSID[0–24]

25–51 rD[37–63] VSID[25–51]

52–63 — —

Note: The contents of rD[0–6] are cleared automatically.

0 6 7 31 32 33 34 35 36 37 63

0 0 0 0 0 0 VSID{0–24] 0 Ks Kp N 0 VSID[25–51]

0 31 32 35 36 63

x x x x x x x x x x x x x x x x x x x x x x x x x x x x ESID x x x x x x x x x x x x x x x x x x x x x x x x x x x x

rS/rD

rB (for mfsrin)

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 296 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.6.2.3 Move to Segment Register—mtsr

The mtsr instruction syntax is as follows:

mtsr SR,rS

The operation of the instruction is described as follows:

SLB(SR) ← (rS[32–63])

The SLB entry selected by SR is set as though it were loaded from a segment table entry, as shown in
Table 7-18.

This is a supervisor-level instruction. Formatting for GPR contents is shown in Figure 7-21. Fields shown as
x’s are ignored. Fields shown as slashes correspond to reserved bits in the segment table entry.

Note: When creating a memory segment using the mtsr instruction, rS[36–39] should be cleared.

Table 7-18. SLB Entry selected by SR

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 SR ESID[32–35]

36–55 — —

56 0b1 V

57 — —

58–59 rS[33–34] Ks, Kp

60–61 rS[35–36] N, reserved bit, or ‘0’

62–63 — —

1

0–24 0x0000_00||0b0 VSID[0–24]

25–51 rS[37–63] VSID[25–51]

51–63 — —

Figure 7-21. GPR Contents for mtsr and mtsrin

0 3132 33 34 35 36 39 40 63

x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0 Ks Kp N 0 0 0 0 VSID[28–51]

rS

rB

0 31 32 35 36 63

x x x x x x x x x x x x x x x x x x x x x x x x x x x x ESID x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005

Memory Management

Page 297 of 657

7.6.2.4 Move to Segment Register Indirect—mtsrin

The mtsrin instruction syntax is as follows:

mtsrin rS,rB

The operation of the instruction is described as follows:

SLB(rB[32–35]) ← (rS[32–63])

The SLB entry selected by bits [32–35] of rB is set as though it were loaded from a segment table entry, as
shown in Table 7-19.

This is a supervisor-level instruction. Formatting for GPR contents is shown in Figure 7-21. Fields shown as
x’s are ignored. Fields shown as slashes correspond to reserved bits in the segment table entry.

Note: When creating a memory segment using the mtsrin instruction, rS[36–39] should be cleared.

Table 7-19. SLB Entry Selected by Bits [32-35] or rB

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 rB[32–35] ESID[32–35]

36–55 — —

56 0b1 V

57 — —

58–59 rS[33–34] Ks, Kp

60–61 rS[35–36] N, reserved bit, or ‘0’

62–63 — —

1

0–24 0x0000_00||0b0 VSID[0–24]

25–51 rS[37–63] VSID[25–51]

52–63 — —

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Memory Management

Page 298 of 657
pem7_MMU.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 299 of 657

8. Instruction Set
80
110

This chapter lists the PowerPC instruction set in alphabetical order by mnemonic and the instruction format.
The format diagrams show, horizontally, all valid combinations of instruction fields; for a graphical representa-
tion of these instruction formats, see Appendix A PowerPC Instruction Set Listings. A description of the
instruction fields and pseudocode conventions are also provided.

For more information on the PowerPC instruction set, refer to Chapter 4, Addressing Modes and Instruction
Set Summary.

Note: The architecture specification refers to user-level and supervisor-level as problem state and privileged
state, respectively.

8.1 Instruction Formats

Instructions are four bytes long and word-aligned, so when instruction addresses are presented to the
processor (as in branch instructions) the two low-order bits are ignored. Similarly, whenever the processor
develops an instruction address, its two low-order bits are zero.

Bits [0–5] always specify the primary opcode. Many instructions also have an extended opcode. The
remaining bits of the instruction contain one or more fields for the different instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the individual instruction
layouts. If a reserved field does not have all bits cleared, or if a field that must contain a particular value does
not contain that value, the instruction form is invalid and the results are as described in Chapter 4, Addressing
Modes and Instruction Set Summary.

Within the instruction format diagram the instruction operation code and extended operation code (if extended
form) are specified in decimal. These fields have been converted to hexadecimal and are shown on line two
for each instruction definition.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 300 of 657
pem8.fm.3.0

July 15, 2005

8.1.1 Split-Field Notation

Some instruction fields occupy more than one contiguous sequence of bits or occupy a contiguous sequence
of bits used in permuted order. Such a field is called a split field. Split fields that represent the concatenation
of the sequences from left to right are shown in lowercase letters. These split fields—mb, me, sh, spr, and
tbr—are described in Table 8-1.

Split fields that represent the concatenation of the sequences in some order, which need not be left to right
(as described for each affected instruction), are shown in uppercase letters. These split fields—MB, ME, and
SH—are described in Table 8-2.

8.1.2 Instruction Fields

Table 8-2 describes the instruction fields used in the various instruction formats.

Table 8-1. Split-Field Notation and Conventions

Field Description

mb (21–26) This field is used in rotate instructions to specify the first 1 bit of a 64-bit mask, as described in Section 4.2.1.4
Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

me (21–26) This field is used in rotate instructions to specify the last 1 bit of a 64-bit mask, as described in Section 4.2.1.4
Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

sh (16–20) and
sh (30) These fields are used to specify a shift amount (64-bit implementations only).

spr (11–20) This field is used to specify a special-purpose register for the mtspr and mfspr instructions. The encoding is
described in Section 4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA).

tbr (11–20) This field is used to specify either the time base lower (TBL) or time base upper (TBU).

Table 8-2. Instruction Syntax Conventions

Field Description

 AA (30)

Absolute address bit.
0 The immediate field represents an address relative to the current instruction address (CIA). (For more

information on the CIA, see Table 8-3.) The effective (logical) address of the branch is either the sum
of the LI field sign-extended to 64 bits and the address of the branch instruction or the sum of the BD
field sign-extended to 64 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch is the
LI field sign-extended to 64 bits or the BD field sign-extended to 64 bits.

BD (16–29) Immediate field specifying a 14-bit signed two's complement branch displacement that is concatenated on the
right with ‘00’ and sign-extended to 64 bits.

BI (11–15) This field is used to specify a bit in the CR to be used as the condition of a branch conditional instruction.

BO (6–10) This field is used to specify options for the branch conditional instructions. The encoding is described in
Section 4.2.4.2 Conditional Branch Control.

crbA (11–15) This field is used to specify a bit in the CR to be used as a source.

crbB (16–20) This field is used to specify a bit in the CR to be used as a source.

crbD (6–10) This field is used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an instruction.

crfD (6–8) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

crfS (11–13) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a source.

CRM (12–19) This field mask is used to identify the CR fields that are to be updated by the mtcrf instruction.

d (16–31) Immediate field specifying a 16-bit signed two's complement integer that is sign-extended to 64 bits.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 301 of 657

ds (16–29) Immediate field specifying a 14-bit signed two’s complement integer which is concatenated on the right with
‘00’ and sign-extended to 64 bits. This field is defined in 64-bit implementations only.

FM (7–14) This field mask is used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA (11–15) This field is used to specify an FPR as a source.

frB (16–20) This field is used to specify an FPR as a source.

frC (21–25) This field is used to specify an FPR as a source.

frD (6–10) This field is used to specify an FPR as the destination.

frS (6–10) This field is used to specify an FPR as a source.

IMM (16–19) Immediate field used as the data to be placed into a field in the FPSCR.

L (9-10) Field used by the synchronize instruction. This field is defined in 64-bit implementations only.

L (10)
Field used to specify whether an integer compare instruction is to compare 64-bit numbers or 32-bit numbers.
This field is defined in 64-bit implementations only.
Field used by the TLB Invalidate Entry instruction.

L (15)
Field used to specify whether an integer compare instruction is to compare 64-bit numbers or 32-bit numbers.
This field is defined in 64-bit implementations only.
Field used by the Move To Machine State Register instruction.

LI (6–29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the right with ‘00’
and sign-extended to 64 bits.

LK (31)

Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction following the

branch instruction is placed into the LR.

MB (21–25) and
ME (26–30)

These fields are used in rotate instructions to specify a -bit mask consisting of ‘1’ bits from bit MB + 32 through
bit ME + 32 inclusive, and ‘0’ bits elsewhere, as described in Section 4.2.1.4 Integer Rotate and Shift Instruc-
tions.

MB (21–26) Field used in the MD-form and MDS-form instructions to specify the first ‘1’ bit of a 64-bit mask as described in
Section 4.2.1.4 Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

ME (21–26) Field used in the MD-form and MDS-form instructions to specify the last ‘1’ bit of a 64-bit mask as described in
Section 4.2.1.4 Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

NB (16–20) This field is used to specify the number of bytes to move in an immediate string load or store.

OE (21) This field is used for extended arithmetic to enable setting OV and SO in the XER.

OPCD (0–5) Primary opcode field.

rA (11–15) This field is used to specify a GPR to be used as a source or destination.

rB (16–20) This field is used to specify a GPR to be used as a source.

Rc (31)

Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits [0–2] are set to reflect the result as a signed quantity and CR bit [3]
receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned quantity or a bit
string can be deduced from the EQ bit. For floating-point instructions, CR bits [4–7] are set to reflect
floating-point exception, floating-point enabled exception, floating-point invalid operation exception,
and floating-point overflow exception.

Note: Eexceptions are referred to as interrupts in the architecture specification.

rD (6–10) This field is used to specify a GPR to be used as a destination.

rS (6–10) This field is used to specify a GPR to be used as a source.

Table 8-2. Instruction Syntax Conventions (Continued)

Field Description

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 302 of 657
pem8.fm.3.0

July 15, 2005

8.1.3 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode). See Table 8-3 for a
list of pseudocode notation and conventions used throughout this chapter.

S (10) Field used by the tlbie instruction that is part of the optional large page facility.

SH (16–20, or
16–20 and 30) This field is used to specify a shift amount.

SIMM (16–31) This immediate field is used to specify a 16-bit signed integer.

SPR (11–20) Field used to specify a Special Purpose Register for the mtspr and mfspr instructions.

64-BIT BRIDGE

SR (12–15)
This field is used to specify one of the 16 segment registers in 64-bit implementations that provide the optional
mtsr and mfsr instructions.

TBR (11–20) Field used by the move from time base instruction.

TH (9–10) Field used by the optional data stream variant of the dcbt instruction.

TO (6–10) This field is used to specify the conditions on which to trap. The encoding is described in Section 4.2.4.6 Trap
Instructions.

UIMM (16–31) This immediate field is used to specify a 16-bit unsigned integer.

XO (21–29, 21–30,
22–30, 26–30, 27–29,
27–30, or 30–31)

Extended opcode field.
Bits [21–29, 27–29, 27–30, 30–31] pertain to 64-bit implementations only.

Table 8-3. Notation and Conventions

Notation/Convention Meaning

← Assignment

←iea
Assignment of an instruction effective address. In 32-bit mode of a 64-bit implementation the high-order
32 bits of the 64-bit target are cleared.

¬ NOT logical operator

×, ∗ Multiplication

÷ Division (yielding quotient)

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

=, ≠ Equals and Not Equals relations

<, ≤, >, ≥ Signed comparison relations

. (period) Update. When used as a character of an instruction mnemonic, a period (.) means that the instruction updates
the condition register field.

c Carry. When used as a character of an instruction mnemonic, a ‘c’ indicates a carry out in XER[CA].

e
Extended Precision.
When used as the last character of an instruction mnemonic, an ‘e’ indicates the use of XER[CA] as an oper-
and in the instruction and records a carry out in XER[CA].

o Overflow. When used as a character of an instruction mnemonic, an ‘o’ indicates the record of an overflow in
XER[OV] and CR0[SO] for integer instructions or CR1[SO] for floating-point instructions.

<U, >U Unsigned comparison relations

Table 8-2. Instruction Syntax Conventions (Continued)

Field Description

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 303 of 657

? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as ‘010111’)

⊕, ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn or x’nnnn nnnn’ A number expressed in hexadecimal format.

(n)x

The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:
• (n)0 means a field of n bits with each bit equal to ‘0’. Thus (5)0 is equivalent to ‘00000’.
• (n)1 means a field of n bits with each bit equal to ‘1’. Thus (5)1 is equivalent to ‘11111’.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value ‘0’ if the rA field is ‘0’.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA

Current instruction address.
The 64 or 32-bit address of the instruction being described by a sequence of pseudocode. Used by relative
branches to set the next instruction address (NIA) and by branch instructions with LK = ’1’ to set the link regis-
ter.
Note: In 32-bit mode of 64-bit implementations, the high-order 32 bits of CIA are always cleared. Does not
correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate and shift instructions.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to scale
a known non-negative array index by the width of an element. These operations are used for rotate and shift
instructions.

Cleared Bits are set to ‘0’.

Do

Do loop.
• Indenting shows range.
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point double-precision format.

Extract
Select a field of n bits starting at bit position b in the source register, right or left justify this field in the target
register, and clear all other bits of the target register to zero. This operation is used for rotate and shift instruc-
tions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert

Select a field of n bits in the source register, insert this field starting at bit position b of the target register, and
leave other bits of the target register unchanged. (No simplified mnemonic is provided for insertion of a field
when operating on doublewords; such an insertion requires more than one instruction.) This operation is used
for rotate and shift instructions.
Note: Simplified mnemonics are referred to as extended mnemonics in the architecture specification.

Table 8-3. Notation and Conventions (Continued)

Notation/Convention Meaning

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 304 of 657
pem8.fm.3.0

July 15, 2005

Table 8-4 describes instruction field notation conventions used throughout this chapter.

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x, y)
Contents of y bytes of memory starting at address x.
Note: In 32-bit mode of a 64-bit implementation, the high-order 32 bits of the 64-bit value x are ignored.

NIA

Next instruction address, which is the 64 or 32-bit address of the next instruction to be executed (the branch
destination) after a successful branch. In pseudocode, a successful branch is indicated by assigning a value
to NIA. For instructions which do not branch, the next instruction address is CIA + 4.
Note: In 32-bit mode of 64-bit implementations, the high-order 32 bits of NIA are always cleared. Does not
correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used for rotate and shift
instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to ‘1’.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This operation is used for
rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from one execution to
another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 8-4. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table 8-3. Notation and Conventions (Continued)

Notation/Convention Meaning

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 305 of 657

Precedence rules for pseudocode operators are summarized in Table 8-5.

Operators higher in Table 8-5 are applied before those lower in the table. Operators at the same level in the
table associate from left to right, from right to left, or not at all, as shown. For example, “–” (unary minus)
associates from left to right, so a – b – c = (a – b) – c. Parentheses are used to override the evaluation order
implied by Table 8-5, or to increase clarity; parenthesized expressions are evaluated before serving as oper-
ands.

8.1.4 Computation Modes

The PowerPC Architecture allows for the following types of implementations:

• 64-bit implementations, in which all registers except some special-purpose registers (SPRs) are 64 bits
long and effective addresses are 64 bits long. All 64-bit implementations have two modes of operation:
64-bit mode (which is the default) and 32-bit mode. The mode controls how the effective address is inter-
preted, how condition bits are set, and how the count register (CTR) is tested by branch conditional
instructions. All instructions provided for 64-bit implementations are available in both 64 and 32-bit
modes.

• 32-bit implementations, in which all registers except the FPRs are 32 bits long and effective addresses
are 32 bits long.

Instructions defined in this chapter are provided in both 64-bit implementations and 32-bit implementations
unless otherwise stated. Instructions that are provided only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

Note: All pseudocode examples are given in the default 64-bit mode (unless otherwise stated). To determine
32-bit mode bit field equivalents, simply subtract 32.

Table 8-5. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

– (range) None

←, ←iea None

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 306 of 657
pem8.fm.3.0

July 15, 2005

8.2 PowerPC Instruction Set

The remainder of this chapter lists and describes the instruction set for the PowerPC Architecture. The
instructions are listed in alphabetical order by mnemonic. Figure 8-1 shows the format for each instruction
description page.

Note: The execution unit that executes the instruction may not be the same for all PowerPC processors.

Figure 8-1. Instruction Description

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = ’0’ Rc = ’0’)
add. rD,rA,rB (OE = ’0’ Rc = ’1’)
addo rD,rA,rB (OE = ’1’ Rc = ’0’)
addo. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

•Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

•XER:
Affected: SO, OV (if OE = ’1’)

B OE 266 Rc
0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Instruction name
Name (Instruction operation codes in
hexadecimal)

Instruction syntax

Instruction encoding

Pseudocode description of
instruction operation

Text description of instruction operation

Registers altered by instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 307 of 657

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = ’0’ Rc = ’0’)
add. rD,rA,rB (OE = ’0’ Rc = ’1’)
addo rD,rA,rB (OE = ’1’ Rc = ’0’)
addo. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see next bullet item).

• XER
Affected: SO, OV (if OE = ’1’)

Note: For more information on condition codes see Section 2.1.3 Condition Register (CR) and
Section 2.1.5 XER Register (XER).

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 266 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 308 of 657
pem8.fm.3.0

July 15, 2005

addcx addcx
Add Carrying (x’7C00 0014’)

addc rD,rA,rB (OE = ’0’ Rc = ’0’)
addc. rD,rA,rB (OE = ’0’ Rc = ’1’)
addco rD,rA,rB (OE = ’1’ Rc = ’0’)
addco. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 10 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 309 of 657

addex addex
Add Extended (x’7C00 0114’)

adde rD,rA,rB (OE = ’0’ Rc = ’0’)
adde. rD,rA,rB (OE = ’0’ Rc = ’1’)
addeo rD,rA,rB (OE = ’1’ Rc = ’0’)
addeo. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 138 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 310 of 657
pem8.fm.3.0

July 15, 2005

addi addi
Add Immediate (x’3800 0000’)

addi rD,rA,SIMM

if rA = 0 then rD ← EXTS(SIMM)
else rD ← rA + EXTS(SIMM)

The sum (rA|0) + sign extended SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few status bits.

Note: addi uses the value ‘0’, not the contents of GPR0, if rA = ’0’.

Other registers altered:

• None

Simplified mnemonics:

li rD,value equivalent to addi rD,0,value
la rD,disp(rA) equivalent to addi rD,rA,disp
subi rD,rA,value equivalent to addi rD,rA,–value

0 5 6 10 11 15 16 31

14 D A SIMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 311 of 657

addic addic
Add Immediate Carrying (x’3000 0000’)

addic rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER
Affected: CA

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

Simplified mnemonics:

subic rD,rA,value equivalent to addic rD,rA,–value

0 5 6 10 11 15 16 31

12 D A SIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 312 of 657
pem8.fm.3.0

July 15, 2005

addic. addic.
Add Immediate Carrying and Record (x’3400 0000’)

addic. rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

Simplified mnemonics:

subic. rD,rA,value equivalent to addic. rD,rA,–value

0 5 6 10 11 15 16 31

13 D A SIMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 313 of 657

addis addis
Add Immediate Shifted (x’3C00 0000’)

addis rD,rA,SIMM

if rA = 0 then rD ← EXTS(SIMM || (16)0)
else rD ← (rA) + EXTS(SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

The addis instruction is preferred for addition because it sets few status bits.

Note: addis uses the value ‘0’, not the contents of GPR0, if rA = ‘0’.

Other registers altered:

• None

Simplified mnemonics:

lis rD,value equivalent to addis rD,0,value
subis rD,rA,value equivalent to addis rD,rA,–value

0 5 6 10 11 15 16 31

15 D A SIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 314 of 657
pem8.fm.3.0

July 15, 2005

addmex addmex
Add to Minus One Extended (x’7C00 01D4’)

addme rD,rA (OE = ’0’ Rc = ’0’)
addme. rD,rA (OE = ’0’ Rc = ‘1’)
addmeo rD,rA (OE = ‘1’ Rc = ’0’)
addmeo. rD,rA (OE = ‘1’ Rc = ‘1’)

rD ← (rA) + XER[CA] – 1

The sum (rA) + XER[CA] + 0xFFFF_FFFF_FFFF_FFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 234 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 315 of 657

addzex addzex
Add to Zero Extended (x’7C00 0194’)

addze rD,rA (OE = ’0’ Rc = ’0’)
addze. rD,rA (OE = ’0’ Rc = ’1’)
addzeo rD,rA (OE = ’1’ Rc = ’0’)
addzeo. rD,rA (OE = ’1’ Rc = ’1’)

rD ← (rA) + XER[CA]

The sum (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 202 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 316 of 657
pem8.fm.3.0

July 15, 2005

andx andx
AND (x’7C00 0038’)

and rA,rS,rB (Rc = ’0’)
and. rA,rS,rB (Rc = ’1’)

rA ← (rS) & (rB)

The contents of rS are ANDed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 28 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 317 of 657

andcx andcx
AND with Complement (x’7C00 0078’)

andc rA,rS,rB (Rc = ’0’)
andc. rA,rS,rB (Rc = ’1’)

rA ← (rS) + ¬ (rB)

The contents of rS are ANDed with the one’s complement of the contents of rB and the result is placed into
rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 60 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 318 of 657
pem8.fm.3.0

July 15, 2005

andi. andi.
AND Immediate (x’7000 0000’)

andi. rA,rS,UIMM

rA ← (rS) & ((48)0 || UIMM)

The contents of rS are ANDed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO

0 5 6 10 11 15 16 31

28 S A UIMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 319 of 657

andis. andis.
AND Immediate Shifted (x’7400 0000’)

andis. rA,rS,UIMM

rA ← (rS) + ((32)0 || UIMM || (16)0)

The contents of rS are ANDed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO

0 5 6 10 11 15 16 31

29 S A UIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 320 of 657
pem8.fm.3.0

July 15, 2005

bx bx
Branch (x’4800 0000’)

b target_addr (AA = ’0’ LK = ’0’)
ba target_addr (AA = ’1’ LK = ’0’)
bl target_addr (AA = ’0’ LK = ’1’)
bla target_addr (AA = ’1’ LK = ’1’)

if AA then NIA ←iea EXTS(LI || ’00’)
else NIA ←iea CIA + EXTS(LI || ’00’)
if LK then LR ←iea CIA + 4

target_addr specifies the branch target address.

If AA = ’0’, then the branch target address is the sum of LI || ‘00’ sign-extended and the address of this
instruction, with the high-order 32 bits of the branch target address cleared in 32-bit mode of 64-bit implemen-
tations.

If AA = ’1’, then the branch target address is the value LI || ‘00’ sign-extended, with the high-order 32 bits of
the branch target address cleared in 32-bit mode of 64-bit implementations.

If LK = ’1’, then the effective address of the instruction following the branch instruction is placed into the link
register.

Other registers altered:

• Affected: Link Register (LR) (if LK = ’1’)

0 5 6 29 30 31

18 LI AA LK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 321 of 657

bcx bcx
Branch Conditional (x’4000 0000’)

bc BO,BI,target_addr (AA = ’0’ LK = ’0’)
bca BO,BI,target_addr (AA = ’1’ LK = ’0’)
bcl BO,BI,target_addr (AA = ’0’ LK = ’1’)
bcla BO,BI,target_addr (AA = ’1’ LK = ’1’)

if (64-bit implementation) & (64-bit mode)
then m ← 0
else m ← 32
if ¬ BO[2] then CTR ← CTR – 1
ctr_ok ← BO[2] | ((CTR[m–63] ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then
 if AA then NIA ←iea EXTS(BD || ’00’)
 else NIA ←iea CIA + EXTS(BD || ’00’)
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register (CR) to be used as the condition of the branch. The BO
field is encoded as described in Table 4-20 BO Operand Encodings. Additional information about BO field
encoding is provided in Section 4.2.4.2 Conditional Branch Control. target_addr specifies the branch target
address.

If AA = ’0’, then the branch target address is the sum of BD || ’00’ sign-extended and the address of this
instruction, with the high-order 32 bits of the branch target address cleared in 32-bit mode of 64-bit implemen-
tations.

If AA = ’1’, the branch target address is the value BD || ’00’ sign-extended, with the high-order 32 bits of the
branch target address cleared in 32-bit mode of 64-bit implementations.

If LK = ’1’, the effective address of the instruction following the branch instruction is placed into the link
register.

Other registers altered:

• Count Register (CTR) (if BO[2] = ’0’)

• Link Register (LR) (if LK = ’1’)

Simplified mnemonics:

blt target equivalent to bc 12,0,target
bne cr2,target equivalent to bc 4,10,target
bdnz target equivalent to bc 16,0,target

0 5 6 10 11 15 16 29 30 31

16 BO BI BD AA LK

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 322 of 657
pem8.fm.3.0

July 15, 2005

bcctrx bcctrx
Branch Conditional to Count Register (x’4C00 0420’)

bcctr BO,BI,BH (LK = ’0’)
bcctrl BO,BI,BH (LK = ’1’)

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok then
 NIA ←iea CTR[0–61] || ’00’
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the branch. The BO field is
encoded as described in Table 4-20 BO Operand Encodings. The BH field is used as described in Table 4-22
BH Field Encodings. The branch target address is CTR[0–61] || ’00’, with the high-order 32 bits of the branch
target address cleared in 32-bit mode of 64-bit implementations. Additional information about BO field
encoding is provided in Section 4.2.4.2 Conditional Branch Control.

If LK = ’1’ the effective address of the instruction following the branch instruction is placed into the link
register.

If the “decrement and test CTR” option is specified (BO[2] = ‘0’), the instruction form is invalid.

Other registers altered:

• Link Register (LR) (if LK = ‘1’)

Simplified mnemonics:

bcctr 4,6 equivalent to bcctr 4,6,0
bltctr equivalent to bcctr 12,0,0
bnectr cr2 equivalent to bcctr 4,10,0

0 5 6 10 11 15 16 18 19 20 21 30 31

Reserved

19 BO BI 0 0 0 BH 528 LK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 323 of 657

bclrx bclrx
Branch Conditional to Link Register (x’4C00 0020’)

bclr BO,BI,BH (LK = ’0’)
bclrl BO,BI,BH (LK = ’1’)

if (64-bit implementation) & (64-bit mode)
then m ← 0
else m ← 32
if ¬ BO[2] then CTR ← CTR – 1
ctr_ok ← BO[2] | ((CTR[m–63] ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then
 NIA ←iea LR[0–61] || ’00’
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the branch. The BO field is
encoded as described in Table 4-20 BO Operand Encodings. The BH field is used as described in Table 4-22
BH Field Encodings. The branch target address is LR[0–61] || ’00’, with the high-order 32 bits of the branch
target address cleared in 32-bit mode of a 64-bit implementations. Additional information about BO field
encoding is provided in Section 4.2.4.2 Conditional Branch Control.

If LK = ’1’, then the effective address of the instruction following the branch instruction is placed into the link
register.

Other registers altered:

• Count Register (CTR) (if BO[2] = ’0’)

• Link Register (LR) (if LK = ’1’)

Simplified mnemonics:

bclr 4,6 equivelent to bclr 4,6,0
bltlr equivalent to bclr 12,0,0
bnelr cr2 equivalent to bclr 4,10,0
bdnzlr equivalent to bclr 16,0,0

0 5 6 10 11 15 16 18 19 20 21 30 31

Reserved

19 BO BI 0 0 0 BH 16 LK

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 324 of 657
pem8.fm.3.0

July 15, 2005

cmp cmp
Compare (x’7C00 0000’)

cmp crfD,L,rA,rB

if L = ’0’ then a ← EXTS(rA[32-63])
b ← EXTS(rB[32-63])

else a ← (rA)
b ← (rB)

if a < b then c ← ’100’
else if a > b then c ← ‘010’
else c ← ’001’
CR[(4 × crfD) - (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA if L = ’0’) are compared with the contents of rB (or the low-
order 32 bits of rB if L = ’0’), treating the operands as signed integers. The result of the comparison is placed
into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpd rA,rB equivalent to cmp 0,1,rA,rB
cmpw cr3,rA,rB equivalent to cmp 3,0,rA,rB

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 031 crfD 0 L A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 325 of 657

cmpi cmpi
Compare Immediate (x’2C00 0000’)

cmpi crfD,L,rA,SIMM

if L = ’0’ then a ← EXTS(rA[32–63])
elsea ← (rA)

if a < EXTS(SIMM) then c ← ’100’
else if a > EXTS(SIMM) then c ← ‘010’
else c ← ’001’
CR[(4 × crfD) - (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA sign-extended to 64 bits if L = ’0’) are compared with the
sign-extended value of the SIMM field, treating the operands as signed integers. The result of the comparison
is placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdi rA,value equivalent to cmpi 0,1,rA,value
cmpwi cr3,rA,value equivalent to cmpi 3,0,rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM11 crfD 0 L A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 326 of 657
pem8.fm.3.0

July 15, 2005

cmpl cmpl
Compare Logical (x’7C00 0040’)

cmpl crfD,L,rA,rB

if L = 0 then a ← (32)0 || rA[32–63]
b ← (32)0 || rB[32–63]

else a ← (rA)
b ← (rB)

if a <U b then c ← ’100’
else if a >U b then c ← ’010’
else c ← ’001’
CR[(4 × crfD) − (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA if L = ’0’) are compared with the contents of rB (or the low-
order 32 bits of rB if L = ’0’), treating the operands as unsigned integers. The result of the comparison is
placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpld rA,rB equivalent to cmpl 0,1,rA,rB
cmplw cr3,rA,rB equivalent to cmpl 3,0,rA,rB

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

31 crfD 0 L A B 32 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 327 of 657

cmpli cmpli
Compare Logical Immediate (x’2800 0000’)

cmpli crfD,L,rA,UIMM

if L = 0 then a ← (32)0 || rA[32–63]
else a ← (rA)

if a <U ((48)0 || UIMM) then c ← ’100’
else if a >U ((48)0 || UIMM) then c ← ’010’
else c ← ’00’1
CR[(4 × crfD) - (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA zero-extended to 64-bits if L = ’0’) are compared with
0x0000_0000_0000 || UIMM, treating the operands as unsigned integers. The result of the comparison is
placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldi r A,value equivalent to cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalent to cmpli 3,0,rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM10 crfD 0 L A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 328 of 657
pem8.fm.3.0

July 15, 2005

cntlzdx cntlzdx
Count Leading Zeros Doubleword (x’7C00 0074’)

cntlzd rA,rS (Rc = ’0’)
cntlzd. rA,rS (Rc = ’1’)

n ← 0
do while n < 64

if rS[n] = 1 then leave
n ← n + 1

rA ← n

A count of the number of consecutive zero bits starting at bit [0] of register rS is placed into rA. This number
ranges from 0 to 64, inclusive.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (Rc = ’1’)

Note: If Rc = ’1’, then LT is cleared in the CR0 field.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 58 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 329 of 657

cntlzwx cntlzwx
Count Leading Zeros Word (x’7C00 0034’)

cntlzw rA,rS (Rc = ’0’)
cntlzw. rA,rS (Rc = ’1’)

n ← 32
do while n < 64
if rS[n] = 1 then leave
n ← n + 1
rA ← n – 32

A count of the number of consecutive zero bits starting at bit [32] of rS is placed into rA. This number ranges
from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: If Rc = ’1’, then LT is cleared in the CR0 field.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 26 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 330 of 657
pem8.fm.3.0

July 15, 2005

crand crand
Condition Register AND (x’4C00 0202’)

crand crbD,crbA,crbB

CR[crbD] ← CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition register specified by
crbB. The result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

crbB 257 019 crbD crbA

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 331 of 657

crandc crandc
Condition Register AND with Complement (x’4C00 0102’)

crandc crbD,crbA,crbB

CR[crbD] ← CR[crbA] & ¬ CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the bit in the condition
register specified by crbB and the result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 129 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 332 of 657
pem8.fm.3.0

July 15, 2005

creqv creqv
Condition Register Equivalent (x’4C00 0242’)

creqv crbD,crbA,crbB

CR[crbD] ← CR[crbA] ≡ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition register specified by
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

Simplified mnemonics:

crset crbD equivalent to creqv crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 289 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 333 of 657

crnand crnand
Condition Register NAND (x’4C00 01C2’)

crnand crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] & CR[crbB])

The bit in the condition register specified by crbA is ANDed with the bit in the condition register specified by
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 225 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 334 of 657
pem8.fm.3.0

July 15, 2005

crnor crnor
Condition Register NOR (x’4C00 0042’)

crnor crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] | CR[crbB])

The bit in the condition register specified by crbA is ORed with the bit in the condition register specified by
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

Simplified mnemonics:

crnot crbD,crbA equivalent to crnor crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 33 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 335 of 657

cror cror
Condition Register OR (x’4C00 0382’)

cror crbD,crbA,crbB

CR[crbD] ← CR[crbA] | CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition register specified by
crbB. The result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

Simplified mnemonics:

crmove crbD,crbA equivalent to cror crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 449 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 336 of 657
pem8.fm.3.0

July 15, 2005

crorc crorc
Condition Register OR with Complement (x’4C00 0342’)

crorc crbD,crbA,crbB

CR[crbD] ← CR[crbA] | ¬ CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the condition register bit
specified by crbB and the result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 417 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 337 of 657

crxor crxor
Condition Register XOR (x’4C00 0182’)

crxor crbD,crbA,crbB

CR[crbD] ← CR[crbA] ⊕ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition register specified by
crbB and the result is placed into the condition register specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by crbD

Simplified mnemonics:

crclr crbD equivalent to crxor crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 193 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 338 of 657
pem8.fm.3.0

July 15, 2005

dcbf dcbf
Data Cache Block Flush (x’7C00 00AC’)

dcbf rA,rB

EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the block containing the byte addressed and
the state of that block. If the system is a multiprocessor implementation, then the block is marked coherency-
required, the processor will, if necessary, send an address-only broadcast to other processors. The broadcast
of the dcbf instruction causes another processor to copy the block to memory, if it has dirty data, and then
invalidate the block from the cache. The list below describes the action taken for the two states of the memory
coherency attribute (M-bit).

• Coherency required (requires the use of address broadcast)

– Unmodified block—Invalidates copies of the block in the data caches of all processors.

– Modified block— Copies the block to memory and invalidates it. (In whatever processor it resides,
there should be only one modified block).

– Absent block—If modified copies of the block are in the data caches of other processors, it causes
them to be copied to memory and invalidated in those data caches. If unmodified copies are in the
data caches of other processors, it causes those copies to be invalidated in those data caches.

• Coherency not required (no address broadcast required)

– Unmodified block—Invalidates the block in the processor’s data cache.

– Modified block—Copies the block to memory. Invalidates the block in the processor’s data cache.

– Absent block—No action is taken.

The function of this instruction is independent of the write-through, write-back and caching-inhibited/allowed
modes of the block containing the byte addressed by the effective address.

This instruction is treated as a load from the addressed byte with respect to address translation and memory
protection. It is also treated as a load for referenced and changed bit recording except that referenced and
changed bit recording may not occur.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 86 031 0 0 0 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 339 of 657

dcbst dcbst
Data Cache Block Store (x’7C00 006C’)

dcbst rA,rB

EA is the sum (rA|0) + (rB).

The dcbst instruction executes as follows:

• Coherency required (requires the use of address broadcast)

– Unmodified block—No action in this processor. Signals other processors to copy to memory any
modified cache block.

– Modified block—The cache block is written to memory. (Only one processor should have a copy of a
modified block)

– Absent block —No action in this processor. If a modified copy of the block is in the data cache of
another processor, the cache line is written to memory.

• Coherency not required (no address broadcast required)

– Unmodified block—No action is taken.

– Modified block— The cache block is written to memory.

– Absent block—No action is taken.

Note: For modified cache blocks written to memory the architecture does not stipulate whether or not to
clear the modified state of the cache block. It is left up to the processor designer to determine the final
state of the cache block. Either modified or valid is logically correct.

The function of this instruction is independent of the write-through and caching-inhibited/allowed modes of the
block containing the byte addressed by EA.

The processor treats this instruction as a load from the addressed byte with respect to address translation
and memory protection, except that the system data storage error handler is not invoked, and the reference
and change recording does not need to be done.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 54 031 0 0 0 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 340 of 657
pem8.fm.3.0

July 15, 2005

dcbt dcbt
Data Cache Block Touch (x’7C00 022C’)

dcbt rA,rB,TH

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte addressed
by EA and the TH field is fetched into the data cache, because the program will probably soon load from the
addressed byte. If the block is caching-inhibited, the hint is ignored and the instruction is treated as a no-op.
Executing dcbt does not cause the system alignment error handler to be invoked.

The encodings of the TH field are as follows:

The actions (if any) taken by the processor in response to the hint are not considered to be “caused by” or
“associated with” the dcbt instruction (for example, dcbt is considered not to cause any data accesses). No
means are provided by which software can synchronize these actions with the execution of the instruction
stream. For example, these actions are not ordered by memory barriers.

This instruction is treated as a load from the addressed byte with respect to address translation, memory
protection, and reference and change recording except that referenced and changed bit recording may not
occur. Additionally, no exception occurs in the case of a translation fault or protection violation.

The program uses the dcbt instruction to request a cache block fetch before it is actually needed by the
program. The program can later execute load instructions to put data into registers. However, the processor
is not obliged to load the addressed block into the data cache.

Note: This instruction is defined architecturally to perform the same functions as the dcbtst instruction. Both
are defined in order to allow implementations to differentiate the bus actions when fetching into the cache for
the case of a load and for a store.

In response to the hint provided by dcbt, the processor may prefetch the specified block into the data cache,
or take other actions that reduce the latency of subsequent load or store instructions that refer to the block.

Table 8-6. Encodings of the TH Field

TH Description

00 The memory location is the block containing the byte addressed by the effective address.

01 The memory locations are the block containing the byte addressed by the effective address and sequentially following
blocks (i.e., the blocks containing the bytes addressed by EA + n × block_size, where n = 0, 1, 2, ...).

10
Reserved
Note: The TH field should not be set to ’10’, because the value may be assigned a meaning in some future version of
the architecture.

11 The memory locations are the block containing the byte addressed by the effective address and sequentially preceding
blocks (i.e., the blocks containing the bytes addressed by EA - n × block_size, where n = 0, 1, 2, ...).

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 278 031 0 0 0 TH A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 341 of 657

Note: Earlier implementations that do not support the optional version of dcbt ignore the TH field (i.e., treat it
as if it were set to ’00’), and do not necessarily ignore the hint provided by dcbt if the specified block is in stor-
age that is Guarded and not Caching Inhibited. Therefore a dcbt instruction with TH[1] = ‘1’ should not spec-
ify an EA in such memory if the program is to be run on such implementations.

Earlier implementations do not necessarily ignore the hint provided by dcbt if the specified block is in memory
that is Guarded and not Caching Inhibited. Therefore a dcbt instruction should not specify an EA in such
memory if the program is to be run on such implementations.

Other registers altered:

• None

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 342 of 657
pem8.fm.3.0

July 15, 2005

dcbtst dcbtst
Data Cache Block Touch for Store (x’7C00 01EC’)

dcbtst rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte addressed
by EA is fetched into the data cache, because the program will probably soon store from the addressed byte.
If the block is caching-inhibited or guarded, the hint is ignored and the instruction is treated as a no-op.
Executing dcbtst does not cause the system alignment error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address translation, memory
protection, and reference and change recording except that referenced and changed bit recording may not
occur. Additionally, no exception occurs in the case of a translation fault or protection violation.

The program uses dcbtst to request a cache block fetch to potentially improve performance for a subsequent
store to that EA, as that store would then be to a cached location. However, the processor is not obliged to
load the addressed block into the data cache.

Note: This instruction is defined architecturally to perform the same functions as the dcbt instruction. Both
are defined in order to allow implementations to differentiate the bus actions when fetching into the cache for
the case of a load and for a store.

Note: In response to the hint provided by dcbtst, the processor may prefetch the specified block into the
data cache, or take other actions that reduce the latency of subsequent load or store instructions that refer to
the block.

Earlier implementations do not necessarily ignore the hint provided by dcbtst if the specified block is in
memory that is Guarded and not Caching Inhibited. Therefore a dcbtst instruction should not specify an EA
in such memory if the program is to be run on such implementations.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 246 031 0 0 0 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 343 of 657

dcbz dcbz
Data Cache Block Clear to Zero (x’7C00 07EC’)

dcbz rA,rB

if A = 0 then b ← 0
else b ← (RA)
EA ← b + (B)
n ← block size (bytes)
m ← log2(n)
ea ← EA[(0-63)-m || (m)0)
MEM(ea, n) ← (n)0x00

EA is the sum (rA|0) + (rB).

All bytes in the block containing the byte addressed by the effective address are set to zero.

This instruction is treated as a store to the addressed byte with respect to address translation, memory
protection, referenced and changed recording. It is also treated as a store with respect to the ordering
enforced by eieio and the ordering enforced by the combination of caching-inhibited and guarded attributes
for a page (or block).

The dcbz instruction executes as follows:

• dcbz does not cause the block to exist in the data cache if the block is in memory that is caching inhib-
ited.

• For memory that is neither write-through required nor caching inhibited, dcbz provides an efficient means
of setting blocks of memory to zero. It can be used to initialize large areas of such memory, in a manner
that is likely to consume less memory bandwidth than an equivalent sequence of store instructions.

• If the page containing the byte addressed by EA is in caching-inhibited or write-through mode, either all
bytes of main memory that correspond to the addressed cache block are cleared or the alignment excep-
tion handler is invoked. The exception handler can then clear all bytes in main memory that correspond to
the addressed cache block.

• For memory that is either write-through required or caching inhibited, dcbz is likely to take significantly
longer to execute than an equivalent sequence of store instructions.

Other registers altered:

• None

The PowerPC OEA describes how the dcbz instruction may establish a block in the data cache without veri-
fying that the associated physical address is valid. This scenario can cause a delayed machine check excep-
tion; see Chapter 6, Exceptions for a discussion about this type of machine check exception.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 1014 031 0 0 0 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 344 of 657
pem8.fm.3.0

July 15, 2005

divdx divdx
Divide Doubleword (x’7C00 03D2’)

divd rD,rA,rB (OE = ’0’ Rc = ’0’)
divd. rD,rA,rB (OE = ’0’ Rc = ’1’)
divdo rD,rA,rB (OE = ’1’ Rc = ’0’)
divdo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0–63] ← (rA)
divisor[0–63] ← (rB)
rD ← dividend + divisor

The 64-bit dividend is the contents of rA. The 64-bit divisor is the contents of rB. The 64-bit quotient is placed
into rD. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed
integer that satisfies the equation—dividend = (quotient × divisor) + r—where 0 ≤ r < |divisor| if the dividend is
non-negative, and –|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform the divisions—0x8000_0000_0000_0000 ÷ –1 or <anything> ÷ 0—the
contents of rD are undefined, as are the contents of the LT, GT, and EQ bits of the CR0 field (if Rc = ’1’). In
this case, if OE = ’1’ then OV is set.

The 64-bit signed remainder of dividing (rA) by (rB) can be computed as follows, except in the case that
(rA) = –263 and (rB) = –1:

divd rD,rA,rB # rD = quotient
mulld rD,rD,rB # rD = quotient × divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 489 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 345 of 657

divdux divdux
Divide Doubleword Unsigned (x’7C00 0392’)

divdu rD,rA,rB (OE = ’0’ Rc = ’0’)
divdu. rD,rA,rB (OE = ’0’ Rc = ’1’)
divduo rD,rA,rB (OE = ’1’ Rc = ’0’)
divduo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0–63] ← (rA)
divisor[0–63] ← (rB)
rD ← dividend ÷ divisor

The 64-bit dividend is the contents of rA. The 64-bit divisor is the contents of rB. The 64-bit quotient of the
dividend and divisor is placed into rD. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as unsigned integers, except that if Rc is set to 1, then the
first three bits of CR0 field are set by signed comparison of the result to zero. The quotient is the unique
unsigned integer that satisfies the equation—dividend = (quotient × divisor) + r—where 0 ≤ r < divisor.

If an attempt is made to perform the division—<anything> ÷ 0—the contents of rD are undefined as are the
contents of the LT, GT, and EQ bits of the CR0 field (if Rc = ’1’). In this case, if OE = ’1’ then OV is set.

The 64-bit unsigned remainder of dividing (rA) by (rB) can be computed as follows:

divdu rD,rA,rB # rD = quotient
mulld rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 457 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 346 of 657
pem8.fm.3.0

July 15, 2005

divwx divwx
Divide Word (x’7C00 03D6’)

divw rD,rA,rB (OE = ’0’ Rc = ’0’)
divw. rD,rA,rB (OE = ’0’ Rc = ’1’)
divwo rD,rA,rB (OE = ’1’ Rc = ’0’)
divwo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0-63] ← EXTS(rA[32-63])
divisor[0-63] ← EXTS(rB[32-63])
rD[32-63] ← dividend ÷ divisor
rD[0-31] ← undefined

The 64-bit dividend is the sign-extended value of the contents of the low-order 32 bits of rA. The 64-bit divisor
is the sign-extended value of the contents of the low-order 32 bits of rB. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are undefined. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed
integer that satisfies the equation—dividend = (quotient × divisor) + r where 0 ≤ r < |divisor| (if the dividend is
non-negative), and –|divisor| < r ≤ 0 (if the dividend is negative).

If an attempt is made to perform either of the divisions— 0x8000_0000 ÷ –1 or <anything> ÷ 0,
then the contents of rD are undefined, as are the contents of the LT, GT, and EQ bits of the CR0 field (if
Rc = 1). In this case, if OE = ’1’ then OV is set.

The 32-bit signed remainder of dividing the contents of the low-order 32 bits of rA by the contents of the low-
order 32 bits of rB can be computed as follows, except in the case that the contents of the low-order 32 bits of
rA = –231 and the contents of the low-order 32 bits of rB = ‘–1’.

divw rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient × divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ‘1’ and 64-bit mode)

• XER:
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 491 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 347 of 657

divwux divwux
Divide Word Unsigned (x’7C00 0396’)

divwu rD,rA,rB (OE = ’0’ Rc = ’0’)
divwu. rD,rA,rB (OE = ’0’ Rc = ’1’)
divwuo rD,rA,rB (OE = ’1’ Rc = ’0’)
divwuo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0–63] ← (32)0 || rA[32–63]
divisor[0–63] ← (32)0 || rB[32–63]
rD[32–63] ← dividend ÷ divisor
rD[0–31] ← undefined

The 64-bit dividend is the zero-extended value of the contents of the low-order 32 bits of rA. The 64-bit divisor
is the zero-extended value the contents of the low-order 32 bits of rB. A 64-bit quotient is formed. The low-
order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of rD. The contents of the high-order
32 bits of rD are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = ’1’ the first three bits
of CR0 field are set by signed comparison of the result to zero. The quotient is the unique unsigned integer
that satisfies the equation—dividend = (quotient × divisor) + r (where 0 ≤ r < divisor). If an attempt is made to
perform the division—<anything> ÷ 0—then the contents of rD are undefined as are the contents of the LT,
GT, and EQ bits of the CR0 field (if Rc = ’1’). In this case, if OE = ’1’ then OV is set.

The 32-bit unsigned remainder of dividing the contents of the low-order 32 bits of rA by the contents of the
low-order 32 bits of rB can be computed as follows:

divwu rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient × divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ‘1’ and 64-bit mode)

• XER:
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 459 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 348 of 657
pem8.fm.3.0

July 15, 2005

eciwx eciwx
External Control In Word Indexed (x’7C00 026C’)

eciwx rD,rA,rB

The eciwx instruction and the EAR register can be very efficient when mapping special devices such as
graphics devices that use addresses as pointers.

if rA = 0 then b ← 0
else b← (rA)
EA ← b + (rB)
paddr ← address translation of EA
send load word request for paddr to device identified by EAR[RID]
rD ← (32)0 || word from device

EA is the sum (rA|0) + (rB).

A load word request for the physical address (referred to as real address in the architecture specification)
corresponding to EA is sent to the device identified by EAR[RID], bypassing the cache. The word returned by
the device is placed in the low-order 32 bits of rD. The contents of the high-order 32 bits of rD are cleared.

EAR[E] must be ‘1’. If it is not, a DSI exception is generated.

EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = ’0’).
• The results are boundedly undefined.

If this instruction is executed when MSR[DR] = ’0’ (real addressing mode), the results are boundedly unde-
fined. This instruction is treated as a load from the addressed byte with respect to address translation,
memory protection, referenced and changed bit recording, and the ordering performed by eieio. This instruc-
tion is optional in the PowerPC Architecture.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 310 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 349 of 657

ecowx ecowx
External Control Out Word Indexed (x’7C00 036C’)

ecowx rS,rA,rB

The ecowx instruction and the EAR register can be very efficient when mapping special devices such as
graphics devices that use addresses as pointers.

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
paddr ← address translation of EA
send store word request for paddr to device identified by EAR[RID]
send rS[32–63] to device

EA is the sum (rA|0) + (rB).

A store word request for the physical address corresponding to EA and the contents of the low-order 32 bits
of rS are sent to the device identified by EAR[RID], bypassing the cache.

EAR[E] must be ‘1’, if it is not, a DSI exception is generated. EA must be a multiple of four. If it is not, one of
the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = ’0’).
• The results are boundedly undefined.

If this instruction is executed when MSR[DR] = ’0’ (real addressing mode), the results are boundedly unde-
fined. This instruction is treated as a store from the addressed byte with respect to address translation,
memory protection, and referenced and changed bit recording, and the ordering performed by eieio.

Note: Software synchronization is required in order to ensure that the data access is performed in program
order with respect to data accesses caused by other store or ecowx instructions, even though the addressed
byte is assumed to be caching-inhibited and guarded. This instruction is optional in the PowerPC Architec-
ture.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 438 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 350 of 657
pem8.fm.3.0

July 15, 2005

eieio eieio
Enforce In-Order Execution of I/O (x’7C00 06AC’)

The eieio instruction provides an ordering function for the effects of load and store instructions executed by a
processor. These loads and stores are divided into two sets, which are ordered separately. The memory
accesses caused by a dcbz or an ecowx instruction are ordered like a store, and the memory access caused
by an eciwx instruction is ordered as a load. The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores to memory that is
write-through required.

The eieio instruction controls the order in which the accesses are performed in main memory. It ensures
that all applicable memory accesses caused by instructions preceding the eieio instruction have com-
pleted with respect to main memory before any applicable memory accesses caused by instructions fol-
lowing the eieio instruction access main memory. It acts like a barrier that flows through the memory
queues and to main memory, preventing the reordering of memory accesses across the barrier. No
ordering is performed for dcbz if the instruction causes the system alignment error handler to be invoked.

All accesses in this set are ordered as a single set—that is, there is not one order for loads and stores to
caching-inhibited and guarded memory and another order for stores to write-through required memory.

The ordering done by the memory barrier for accesses in this set is not cumulative.

2. Stores to memory that have all of the following attributes—caching-allowed, write-through not required,
and memory-coherency required.

The eieio instruction controls the order in which the accesses are performed with respect to coherent
memory. It ensures that all applicable stores caused by instructions preceding the eieio instruction have
completed with respect to coherent memory before any applicable stores caused by instructions following
the eieio instruction complete with respect to coherent memory.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio
instruction have been performed with respect to main memory or coherent memory as appropriate.

The eieio instruction is intended for use in managing shared data structures, in accessing memory-mapped
I/O, and in preventing load/store combining operations in main memory. For the first use, the shared data
structure and the lock that protects it must be altered only by stores that are in the same set (1 or 2; see
previous discussion). For the second use, eieio can be thought of as placing a barrier into the stream of
memory accesses issued by a processor, such that any given memory access appears to be on the same
side of the barrier to both the processor and the I/O device.

Because the processor performs store operations in order to memory that is designated as both caching-
inhibited and guarded (refer to Section 5.1.1 Memory Access Ordering), the eieio instruction is needed for
such memory only when loads must be ordered with respect to stores or with respect to other loads.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 351 of 657

Note: The eieio instruction does not connect hardware considerations to it such as multiprocessor imple-
mentations that send an eieio address-only broadcast (useful in some designs). For example, if a design has
an external buffer that re-orders loads and stores for better bus efficiency, the eieio broadcast signals to that
buffer that previous loads/stores (marked caching-inhibited, guarded, or write-through required) must com-
plete before any following loads/stores (marked caching-inhibited, guarded, or write-through required).

Other registers altered:

• None

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 352 of 657
pem8.fm.3.0

July 15, 2005

eqvx eqvx
Equivalent (x’7C00 0238’)

eqv rA,rS,rB (Rc = ’0’)
eqv. rA,rS,rB (Rc = ’1’)

rA ← (rS) ≡ (rB)

The contents of rS are XORed with the contents of rB and the complemented result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 21 22 30 31

31 S A B 284 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 353 of 657

extsbx extsbx
Extend Sign Byte (x’7C00 0774’)

extsb rA,rS (Rc = ’0’)
extsb. rA,rS (Rc = ’1’)

S ← rS[56]
rA[56–63] ← rS[56–63]
rA[0–55] ← (56)S

The contents of the low-order eight bits of rS [56-63] are placed into the low-order eight bits of rA . Bit [56] of
rS is placed into bits rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 954 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 354 of 657
pem8.fm.3.0

July 15, 2005

extshx extshx
Extend Sign Halfword (x’7C00 0734’)

extsh rA,rS (Rc = ’0’)
extsh. rA,rS (Rc = ’1’)

S ← rS[48]
rA[48–63] ← rS[48–63]
rA[0–47] ← (48)S

The contents of the low-order 16 bits of rS are placed into the low-order 16 bits of rA. Bit [48] of rS is placed
into the remaining bits of rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 922 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 355 of 657

extswx extswx
Extend Sign Word (x’7C00 07B4’)

extsw rA,rS (Rc = ’0’)
extsw. rA,rS (Rc = ’1’)

S ← rS[32]
rA[32–63] ← rS[32–63]
rA[0–31] ← (32)S

The contents of the low-order 32 bits of rS are placed into the low-order 32 bits of rA. Bit [32] of rS is placed
into the high-order 32 bits of rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 986 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 356 of 657
pem8.fm.3.0

July 15, 2005

fabsx fabsx
Floating Absolute Value (x’FC00 0210’)

fabs frD,frB (Rc = ’0’)
fabs. frD,frB (Rc = ’1’)

The contents of frB with bit [0] cleared are placed into frD.

Note: The fabs instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may be
altered by fabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

B 264 Rc

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 357 of 657

faddx faddx
Floating Add (Double-Precision) (x’FC00 002A’)

fadd frD,frA,frB (Rc = ’0’)
fadd. frD,frA,frB (Rc = ’1’)

The floating-point operand in frA is added to the floating-point operand in frB.

If the most- significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

Floating-point addition is based on exponent comparison and addition of the two significands. The exponents
of the two operands are compared, and the significand accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted, until the two exponents are equal. The two signifi-
cands are then added or subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand, as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased by one.
FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D A B 0 0 0 0 0 21 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 358 of 657
pem8.fm.3.0

July 15, 2005

faddsx faddsx
Floating Add Single (x’EC00 002A’)

fadds frD,frA,frB (Rc = ’0’)
fadds. frD,frA,frB (Rc = ’1’)

The floating-point operand in frA is added to the floating-point operand in frB. If the most-significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to the single-precision under
control of the floating-point rounding control field RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two significands. The exponents
of the two operands are compared, and the significand accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted, until the two exponents are equal. The two signifi-
cands are then added or subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand, as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased by one.
FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D A B 0 0 0 0 0 21 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 359 of 657

fcfidx fcfidx
Floating Convert from Integer Doubleword (x’FC00 069C’)

fcfid frD,frB (Rc = ’0’)
fcfid. frD,frB (Rc = ’1’)

The 64-bit signed fixed-point operand in register frB is converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-precision using the rounding mode specified by
FPSCR[RN] and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

The conversion is described fully in Appendix C.4.3 Floating-Point Convert from Integer Model.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, VX, FEX, OX (if Rc = ’1’)

• Floating-point Status and Control Register:
Affected: FPRF, FR, FI, FX, XX

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0 B 846 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 360 of 657
pem8.fm.3.0

July 15, 2005

fcmpo fcmpo
Floating Compare Ordered (x’FC00 0040’)

fcmpo crfD,frA,frB

if (frA) is a NaN or
(frB) is a NaN then c ← ‘0001’
else if (frA)< (frB) thenc ← ‘1000’
else if (frA)> (frB) thenc ← ‘0100’
else c ← ‘0010’

FPCC ← c
CR[(4 × crfD) – (4 × crfD + 3)] ← c

if (frA) is an SNaN or
(frB) is an SNaN then

VXSNAN ← 1
if VE = 0 then VXVC ← 1

else if (frA) is a QNaN or
(frB) is a QNaN then VXVC ← 1

The floating-point operand in frA is compared to the floating-point operand in frB. The result of the compare is
placed into CR field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crfD and the FPCC are set to reflect
unordered. If one of the operands is a signaling NaN, then VXSNAN is set, and if invalid operation is disabled
(VE = ’0’) then VXVC is set. Otherwise, if one of the operands is a QNaN, then VXVC is set.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:
Affected: FPCC, FX, VXSNAN, VXVC

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 32 063 crfD 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 361 of 657

fcmpu fcmpu
Floating Compare Unordered (x’FC00 0000’)

fcmpu crfD,frA,frB

if (frA) is a NaN or
(frB) is a NaN then c ← ‘0001’
else if (frA) < (frB) thenc ← ‘1000’
else if (frA) > (frB) thenc ← ‘0100’
else c ← ‘0010’

FPCC ← c
CR[(4 × crfD) – (4 × crfD + 3)] ← c

if (frA) is an SNaN or
(frB) is an SNaN then

VXSNAN ← 1

The floating-point operand in register frA is compared to the floating-point operand in register frB. The result
of the compare is placed into CR field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crfD and the FPCC are set to reflect
unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:
Affected: FPCC, FX, VXSNAN

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 063 crfD 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 362 of 657
pem8.fm.3.0

July 15, 2005

fctidx fctidx
Floating Convert to Integer Doubleword (x’FC00 065C’)

fctid frD,frB (Rc = ’0’)
fctid. frD,frB (Rc = ’1’)

The floating-point operand in frB is converted to a 64-bit signed fixed-point integer, using the rounding mode
specified by FPSCR[RN], and placed into frD.

If the operand in frB is greater than 263– 1, then frD is set to 0x7FFF_FFFF_FFFF_FFFF. If the operand in
frB is less than –263, then frD is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the result is
incremented when rounded. FPSCR[FI] is set if the result is inexact.

The conversion is described fully in Appendix C.4.2 Floating-Point Convert to Integer Model.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0 B 814 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 363 of 657

fctidzx fctidzx
Floating Convert to Integer Doubleword with Round toward Zero (x’FC00 065E’)

fctidz frD,frB (Rc = ’0’)
fctidz. frD,frB (Rc = ’1’)

The floating-point operand in frB is converted to a 64-bit signed fixed-point integer, using the rounding mode
round toward zero, and placed into frD.

If the operand in frB is greater than 263 – 1, then frD is set to 0x7FFF_FFFF_FFFF_FFFF. If the operand in
frB is less than –263, then frD is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the result is
incremented when rounded. FPSCR[FI] is set if the result is inexact.

The conversion is described fully in Section C.4.2 Floating-Point Convert to Integer Model.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0 B 815 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 364 of 657
pem8.fm.3.0

July 15, 2005

fctiwx fctiwx
Floating Convert to Integer Word (x’FC00 001C’)

fctiw frD,frB (Rc = ’0’)
fctiw. frD,frB (Rc = ’1’)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the rounding mode
specified by FPSCR[RN], and placed in bits [32–63] of frD. Bits [0–31] of frD are undefined.

If the operand in frB are greater than 231 – 1, bits [32–63] of frD are set to 0x7FFF_FFFF.

If the operand in frB are less than –231, bits [32–63] of frD are set to 0x8000_0000.

The conversion is described fully in Appendix C.4.2 Floating-Point Convert to Integer Model.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the
result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

(Programmers note: A stfiwz instruction should be used to store the 32-bit resultant integer because
bits [0-31] of frD are undefined.)

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 14 Rc63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 365 of 657

fctiwzx fctiwzx
Floating Convert to Integer Word with Round toward Zero (x’FC00 001E’)

fctiwz frD,frB (Rc = ’0’)
fctiwz. frD,frB (Rc = ’1’)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the rounding mode
round toward zero, and placed in bits [32–63] of frD. Bits [0–31] of frD are undefined.

If the operand in frB is greater than 231 – 1, bits [32–63] of frD are set to 0x7FFF_FFFF.
If the operand in frB is less than –231, bits [32–63] of frD are set to 0x 8000_0000.

The conversion is described fully in Appendix C.4.2 Floating-Point Convert to Integer Model.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the
result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

(Programmers note: A stfiwz instruction should be used to store the 32-bit resultant integer because
bits [0-31] of frD are undefined.)

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 15 Rc63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 366 of 657
pem8.fm.3.0

July 15, 2005

fdivx fdivx
Floating Divide (Double-Precision) (x’FC00 0024’)

fdiv frD,frA,frB (Rc = ’0’)
fdiv. frD,frA,frB (Rc = ’1’)

The floating-point operand in register frA is divided by the floating-point operand in register frB. The
remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 367 of 657

fdivsx fdivsx
Floating Divide Single (x’EC00 0024’)

fdivs frD,frA,frB (Rc = ’0’)
fdivs. frD,frA,frB (Rc = ’1’)

The floating-point operand in register frA is divided by the floating-point operand in register frB. The
remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 368 of 657
pem8.fm.3.0

July 15, 2005

fmaddx fmaddx
Floating Multiply-Add (Double-Precision) (x’FC00 003A’)

fmadd frD,frA,frC,frB (Rc = ’0’)
fmadd. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:
frD ← (frA ∗ frC) + frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 369 of 657

fmaddsx fmaddsx
Floating Multiply-Add Single (x’EC00 003A’)

fmadds frD,frA,frC,frB (Rc = ’0’)
fmadds. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:
frD ← (frA × frC) + frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 370 of 657
pem8.fm.3.0

July 15, 2005

fmrx fmrx
Floating Move Register (Double-Precision) (x’FC00 0090’)

fmr frD,frB (Rc = ’0’)
fmr. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← (frB)

The contents of register frB are placed into frD.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 72 Rc63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 371 of 657

fmsubx fmsubx
Floating Multiply-Subtract (Double-Precision) (x’FC00 0038’)

fmsub frD,frA,frC,frB (Rc = ’0’)
fmsub. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:

frD ← [frA × frC] - frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 372 of 657
pem8.fm.3.0

July 15, 2005

fmsubsx fmsubsx
Floating Multiply-Subtract Single (x’EC00 0038’)

fmsubs frD,frA,frC,frB (Rc = ’0’)
fmsubs. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:

frD ← [frA × frC] - frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 373 of 657

fmulx fmulx
Floating Multiply (Double-Precision) (x’FC00 0032’)

fmul frD,frA,frC (Rc = ’0’)
fmul. frD,frA,frC (Rc = ’1’)

The following operation is performed:

frD ← (frA) × (frC)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 374 of 657
pem8.fm.3.0

July 15, 2005

fmulsx fmulsx
Floating Multiply Single (x’EC00 0032’)

fmuls frD,frA,frC (Rc = ’0’)
fmuls. frD,frA,frC (Rc = ’1’)

The following operation is performed:

frD ← (frA) × (frC)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and
placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 375 of 657

fnabsx fnabsx
Floating Negative Absolute Value (x’FC00 0110’)

fnabs frD,frB (Rc = ’0’)
fnabs. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← 1 || frB[1-63]

The contents of register frB with bit [0] set are placed into frD.

Note: The fnabs instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may
be altered by fnabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 136 Rc63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 376 of 657
pem8.fm.3.0

July 15, 2005

fnegx fnegx
Floating Negate (x’FC00 0050’)

fneg frD,frB (Rc = ’0’)
fneg. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← ¬ frB[0] || frB[1-63]

The contents of register frB with bit [0] inverted are placed into frD.

Note: The fneg instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may be
altered by fneg. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 40 Rc63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 377 of 657

fnmaddx fnmaddx
Floating Negative Multiply-Add (Double-Precision) (x’FC00 003E’)

fnmadd frD,frA,frC,frB (Rc = ’0’)
fnmadd. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:

frD ← - ([frA × frC] + frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is added to this intermediate result. If the most-significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to double-precision under
control of the floating-point rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating Multiply-Add (fmaddx)
instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 378 of 657
pem8.fm.3.0

July 15, 2005

fnmaddsx fnmaddsx
Floating Negative Multiply-Add Single (x’EC00 003E’)

fnmadds frD,frA,frC,frB (Rc = ’0’)
fnmadds. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:

frD ← - ([frA × frC] + frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is added to this intermediate result. If the most-significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to single-precision under
control of the floating-point rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating Multiply-Add Single
(fmaddsx) instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 379 of 657

fnmsubx fnmsubx
Floating Negative Multiply-Subtract (Double-Precision) (x’FC00 003C’)

fnmsub frD,frA,frC,frB (Rc = ’0’)
fnmsub. frD,frA,frC,frB (Rc = ’1’)

]

The following operation is performed:

frD ← - ([frA × frC] - frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not one, the result is normalized. The result is rounded
to double-precision under control of the floating-point rounding control field RN of the FPSCR, then negated
and placed into frD.

This instruction produces the same result obtained by negating the result of a Floating Multiply-Subtract
(fmsubx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field)
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 380 of 657
pem8.fm.3.0

July 15, 2005

fnmsubsx fnmsubsx
Floating Negative Multiply-Subtract Single (x’EC00 003C’)

fnmsubs frD,frA,frC,frB (Rc = ’0’)
fnmsubs. frD,frA,frC,frB (Rc = ’1’)

)

The following operation is performed:

frD ← - ([frA × frC] - frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not one, the result is normalized. The result is rounded
to single-precision under control of the floating-point rounding control field RN of the FPSCR, then negated
and placed into frD.

This instruction produces the same result obtained by negating the result of a Floating Multiply-Subtract
Single (fmsubsx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field)
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 381 of 657

fresx fresx
Floating Reciprocal Estimate Single (x’EC00 0030’)

fres frD,frB (Rc = ’0’)
fres. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← estimate[1/(frB)]

A single-precision estimate of the reciprocal of the floating-point operand in register frB is placed into register
frD. The estimate placed into register frD is correct to a precision of one part in 256 of the reciprocal of frB.
That is,

where x is the initial value in frB. Note that the value placed into register frD may vary between implementa-
tions, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Note: The PowerPC Architecture makes no provision for a double-precision version of the fresx instruction.
This is because graphics applications are expected to need only the single-precision version, and no other
important performance-critical applications are expected to require a double-precision version of the fresx
instruction.

Table 8-7. fres Operand Values

Operand Result Exception

–∞ –0 None

–0 –∞(1) ZX

+0 +∞(1) ZX

+∞ +0 None

SNaN QNaN(2) VXSNAN

QNaN QNaN None

Notes:

1. No result if FPSCR[ZE] = ’1’
2. No result if FPSCR[VE] = ’1’

B 0 0 0 0 0 24 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0

ABS
estimate 1

x
---⎝ ⎠
⎛ ⎞–

1
x
---⎝ ⎠
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1
256
----------≤

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 382 of 657
pem8.fm.3.0

July 15, 2005

Note: This instruction is optional in the PowerPC Architecture.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR (undefined), FI (undefined), FX, OX, UX, ZX, VXSNAN

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 383 of 657

frspx frspx
Floating Round to Single (x’FC00 0018’)

frsp frD,frB (Rc = ’0’)
frsp. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← Round_single(frB)

If it is already in single-precision range, the floating-point operand in register frB is placed into frD. Otherwise,
the floating-point operand in register frB is rounded to single-precision using the rounding mode specified by
FPSCR[RN] and placed into frD.

The rounding is described fully in Appendix C.4.1 Floating-Point Round to Single-Precision Model.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 12 Rc63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 384 of 657
pem8.fm.3.0

July 15, 2005

frsqrtex frsqrtex
Floating Reciprocal Square Root Estimate (x’FC00 0034’)

frsqrte frD,frB (Rc = ’0’)
frsqrte. frD,frB (Rc = ’1’)

A double-precision estimate of the reciprocal of the square root of the floating-point operand in register frB is
placed into register frD. The estimate placed into register frD is correct to a precision of one part in 32 of the
reciprocal of the square root of frB. That is,

where x is the initial value in frB. Note that the value placed into register frD may vary between implementa-
tions, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Note: No single-precision version of the frsqrte instruction is provided; however, both frB and frD are repre-
sentable in single-precision format.

Note: This instruction is optional in the PowerPC Architecture.

Table 8-8. frsqrte Operand Values

Operand Result Exception

–∞ QNaN(2) VXSQRT

<0 QNaN(2) VXSQRT

–0 –∞(1) ZX

+0 +∞(1) ZX

+∞ +0 None

SNaN QNaN(2) VXSNAN

QNaN QNaN None

Notes:

1. No result if FPSCR[ZE] = ’1’
2. No result if FPSCR[VE] = ’1’

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

ABS

estimate 1

x
-------⎝ ⎠
⎛ ⎞–

1

x
-------⎝ ⎠
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1
32
------≤

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 385 of 657

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR (undefined), FI (undefined), FX, ZX, VXSNAN, VXSQRT

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 386 of 657
pem8.fm.3.0

July 15, 2005

fselx fselx
Floating Select (x’FC00 002E’)

fsel frD,frA,frC,frB (Rc = ’0’)
fsel. frD,frA,frC,frB (Rc = ’1’)

if (frA) ≥ 0.0
then frD ← (frC)
else frD ← (frB)

The floating-point operand in register frA is compared to the value zero. If the operand is greater than or
equal to zero, register frD is set to the contents of register frC. If the operand is less than zero or is a NaN,
register frD is set to the contents of register frB. The comparison ignores the sign of zero (that is, regards +0
as equal to –0).

Care must be taken in using fsel if IEEE compatibility is required, or if the values being tested can be NaNs or
infinities.

For examples of uses of this instruction, see Appendix C.3 Floating-Point Conversions and
Appendix C.5 Floating-Point Selection.

Note: This instruction is optional in the PowerPC Architecture.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

B C 23 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

63 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 387 of 657

fsqrtx fsqrtx
Floating Square Root (Double-Precision) (x’FC00 002C’)

fsqrt frD,frB (Rc = ’0’)
fsqrt. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← (Square_rootfrB)

The square root of the floating-point operand in register frB is placed into register frD.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR and
placed into register frD.

Operation with various special values of the operand is summarized in Table 8-9.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Note: This instruction is optional in the PowerPC Architecture.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, XX, VXSNAN, VXSQRT

Table 8-9. frsqrt with Special Operand Values

Operand Result Exception

–∞ QNaN(1) VXSQRT

<0 QNaN(1) VXSQRT

–0 –0 None

+∞ +∞ None

SNaN QNaN(1) VXSNAN

QNaN QNaN None

Note:

1. No result if FPSCR[VE] = ’1’

B 0 0 0 0 0 22 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 388 of 657
pem8.fm.3.0

July 15, 2005

fsqrtsx fsqrtsx
Floating Square Root Single (x’EC00 002C’)

fsqrts frD,frB (Rc = ’0’)
fsqrts. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← (Square_rootfrB)

The square root of the floating-point operand in register frB is placed into register frD.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR and
placed into register frD.

Operation with various special values of the operand is summarized in Table 8-9.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Note: This instruction is optional in the PowerPC Architecture.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, XX, VXSNAN, VXSQRT

Table 8-10. frsqrts with Special Operand Values

Operand Result Exception

–∞ QNaN(1) VXSQRT

<0 QNaN(1) VXSQRT

–0 –0 None

+∞ +∞ None

SNaN QNaN(1) VXSNAN

QNaN QNaN None

Note:

1. No result if FPSCR[VE] = ’1’

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 389 of 657

fsubx fsubx
Floating Subtract (Double-Precision) (x’FC00 0028’)

fsub frD,frA,frB (Rc = ’0’)
fsub. frD,frA,frB (Rc = ’1’)

The following operation is performed:

frD ← (frA) – (frB)

The floating-point operand in register frB is subtracted from the floating-point operand in register frA. If the
most-significant bit of the resultant significand is not a one, the result is normalized. The result is rounded to
double-precision under control of the floating-point rounding control field RN of the FPSCR and placed into
frD.

The execution of the fsub instruction is identical to that of fadd, except that the contents of frB participate in
the operation with its sign bit (bit [0]) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc63 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 390 of 657
pem8.fm.3.0

July 15, 2005

fsubsx fsubsx
Floating Subtract Single (x’EC00 0028’)

fsubs frD,frA,frB (Rc = ’0’)
fsubs. frD,frA,frB (Rc = ’1’)

The floating-point operand in register frB is subtracted from the floating-point operand in register frA. If the
most-significant bit of the resultant significand is not a one, the result is normalized. The result is rounded to
single-precision under control of the floating-point rounding control field RN of the FPSCR and placed into
frD.

The execution of the fsubs instruction is identical to that of fadds, except that the contents of frB participate
in the operation with its sign bit (bit [0]) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc59 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 391 of 657

icbi icbi
Instruction Cache Block Invalidate (x’7C00 07AC’)

icbi rA,rB

The effective address is the sum (rA|0) + (rB).

If the block containing the byte addressed by EA is in coherency-required mode, and a block containing the
byte addressed by EA is in the instruction cache of any processor, the block is made invalid in all such
instruction caches, so that subsequent references cause the block to be refetched.

If the block containing the byte addressed by EA is in coherency-not-required mode, and a block containing
the byte addressed by EA is in the instruction cache of this processor, the block is made invalid in that instruc-
tion cache, so that subsequent references cause the block to be refetched.

The function of this instruction is independent of the write-through, write-back, and caching-inhibited/allowed
modes of the block containing the byte addressed by EA.

This instruction is treated as a load from the addressed byte with respect to address translation and memory
protection. It may also be treated as a load for referenced and changed bit recording except that referenced
and changed bit recording may not occur. Implementations with a combined data and instruction cache treat
the icbi instruction as a no-op, except that they may invalidate the target block in the instruction caches of
other processors if the block is in coherency-required mode.

The icbi instruction invalidates the block at EA (rA|0 + rB). If the processor is a multiprocessor implementa-
tion and the block is marked coherency-required, the processor will send an address-only broadcast to other
processors causing those processors to invalidate the block from their instruction caches.

For faster processing, many implementations will not compare the entire EA (rA|0 + rB) with the tag in the
instruction cache. Instead, they will use the bits in the EA to locate the set that the block is in, and invalidate
all blocks in that set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 982 031 0 0 0 0 0 A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 392 of 657
pem8.fm.3.0

July 15, 2005

isync isync
Instruction Synchronize (x’4C00 012C’)

isync

The isync instruction provides an ordering function for the effects of all instructions executed by a processor.
Executing an isync instruction ensures that all instructions preceding the isync instruction have completed
before the isync instruction completes, except that memory accesses caused by those instructions need not
have been performed with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isync instruction completes. Finally, it causes the
processor to discard any prefetched instructions, with the effect that subsequent instructions will be fetched
and executed in the context established by the instructions preceding the isync instruction. The isync instruc-
tion has no effect on the other processors or on their caches.

This instruction is context synchronizing.

Context synchronization is necessary after certain code sequences that perform complex operations within
the processor. These code sequences are usually operating system tasks that involve memory management.
For example, if an instruction A changes the memory translation rules in the memory management unit
(MMU), the isync instruction should be executed so that the instructions following instruction A will be
discarded from the pipeline and refetched according to the new translation rules.

Note: All exceptions and the rfid instruction are also context synchronizing.

Other registers altered:

• None

0 0 0 0 0 150 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 0 0 0 0 0 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 393 of 657

lbz lbz
Load Byte and Zero (x’8800 0000’)

lbz rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← (56)0 || MEM(EA, 1)

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into the low-order eight bits of rD.
The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d34 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 394 of 657
pem8.fm.3.0

July 15, 2005

lbzu lbzu
Load Byte and Zero with Update (x’8C00 0000’)

lbzu rD,d(rA)

EA ← (rA) + EXTS(d)
rD ← (56)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA) + d. The byte in memory addressed by EA is loaded into the low-order eight bits of rD. The
remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d35 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 395 of 657

lbzux lbzux
Load Byte and Zero with Update Indexed (x’7C00 00EE’)

lbzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (56)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA) + (rB). The byte in memory addressed by EA is loaded into the low-order eight bits of rD.
The remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 119 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 396 of 657
pem8.fm.3.0

July 15, 2005

lbzx lbzx
Load Byte and Zero Indexed (x’7C00 00AE’)

lbzx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (56)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into the low-order eight bits of rD.
The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 87 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 397 of 657

ld ld
Load Doubleword (x’E800 0000’)

ld rD,ds(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(ds || ’00’)
rD ← MEM(EA, 8)

EA is the sum (rA|0) + (ds || ’00’). The doubleword in memory addressed by EA is loaded into rD.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

58 D A ds 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 398 of 657
pem8.fm.3.0

July 15, 2005

ldarx ldarx
Load Doubleword and Reserve Indexed (x’7C00 00A8’)

ldarx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
RESERVE ← 1
RESERVE_ADDR ← physical_addr(EA)
rD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB). The doubleword in memory addressed by EA is loaded into rD.

This instruction creates a reservation for use by a Store Doubleword Conditional Indexed (stdcx.) instruction.
An address computed from the EA is associated with the reservation, and replaces any address previously
associated with the reservation.

EA must be a multiple of eight. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined. For additional information about alignment and DSI exceptions, see
Section 6.4.3 DSI Exception (0x00300).

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 84 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 399 of 657

ldu ldu
Load Doubleword with Update (x’E800 0001’)

ldu rD,ds(rA)

EA ← (rA) + EXTS(ds || ’00’)
rD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + (ds || ’00’). The doubleword in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

58 D A ds 0 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 400 of 657
pem8.fm.3.0

July 15, 2005

ldux lduxx
Load Doubleword with Update Indexed (x’7C00 006A’)

ldux rD,rA,rB

EA ← (rA) + (rB)
rD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + (rB). The doubleword in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 53 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 401 of 657

ldx ldx
Load Doubleword Indexed (x’7C00 002A’)

ldx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB). The doubleword in memory addressed by EA is loaded into rD.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 21 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 402 of 657
pem8.fm.3.0

July 15, 2005

lfd lfd
Load Floating-Point Double (x’C800 0000’)

lfd frD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + d.

The doubleword in memory addressed by EA is placed into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d50 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 403 of 657

lfdu lfdu
Load Floating-Point Double with Update (x’CC00 0000’)

lfdu frD,d(rA)

EA ← (rA) + EXTS(d)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + d.

The doubleword in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d51 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 404 of 657
pem8.fm.3.0

July 15, 2005

lfdux lfdux
Load Floating-Point Double with Update Indexed (x’7C00 04EE’)

lfdux frD,rA,rB

EA ← (rA) + (rB)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + (rB).

The doubleword in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 631 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 405 of 657

lfdx lfdx
Load Floating-Point Double Indexed (x’7C00 04AE’)

lfdx frD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB).

The doubleword in memory addressed by EA is placed into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 599 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 406 of 657
pem8.fm.3.0

July 15, 2005

lfs lfs
Load Floating-Point Single (x’C000 0000’)

lfs frD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed
into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d48 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 407 of 657

lfsu lfsu
Load Floating-Point Single with Update (x’C400 0000’)

lfsu frD,d(rA)

EA ← (rA) + EXTS(d)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed
into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d49 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 408 of 657
pem8.fm.3.0

July 15, 2005

lfsux lfsux
Load Floating-Point Single with Update Indexed (x’7C00 046E’)

lfsux frD,rA,rB

EA ← (rA) + (rB)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed
into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 567 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 409 of 657

lfsx lfsx
Load Floating-Point Single Indexed (x’7C00 042E’)

lfsx frD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed
into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 535 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 410 of 657
pem8.fm.3.0

July 15, 2005

lha lha
Load Halfword Algebraic (x’A800 0000’)

lha rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD.
The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d42 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 411 of 657

lhau lhau
Load Halfword Algebraic with Update (x’AC00 0000’)

lhau rD,d(rA)

EA ← (rA) + EXTS(d)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD.
The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d43 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 412 of 657
pem8.fm.3.0

July 15, 2005

lhaux lhaux
Load Halfword Algebraic with Update Indexed (x’7C00 02EE’)

lhaux rD,rA,rB

EA ← (rA) + (rB)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD.
The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 375 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 413 of 657

lhax lhax
Load Halfword Algebraic Indexed (x’7C00 02AE’)

lhax rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of
rD. The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 343 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 414 of 657
pem8.fm.3.0

July 15, 2005

lhbrx lhbrx
Load Halfword Byte-Reverse Indexed (x’7C00 062C’)

lhbrx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (48)0 || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + (rB). Bits [0–7] of the halfword in memory addressed by EA are loaded into the low-
order eight bits of rD. Bits [8–15] of the halfword in memory addressed by EA are loaded into the subsequent
low-order eight bits of rD. The remaining bits in rD are cleared.

The PowerPC Architecture cautions programmers that some implementations of the architecture may run the
lhbrx instructions with greater latency than other types of load instructions.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 790 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 415 of 657

lhz lhz
Load Halfword and Zero (x’A000 0000’)

lhz rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← (48)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD.
The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d40 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 416 of 657
pem8.fm.3.0

July 15, 2005

lhzu lhzu
Load Halfword and Zero with Update (x’A400 0000’)

lhzu rD,d(rA)

EA ← rA + EXTS(d)
rD ← (48)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD.
The remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d41 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 417 of 657

lhzux lhzux
Load Halfword and Zero with Update Indexed (x’7C00 026E’)

lhzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (48)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD.
The remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 311 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 418 of 657
pem8.fm.3.0

July 15, 2005

lhzx lhzx
Load Halfword and Zero Indexed (x’7C00 022E’)

lhzx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (48)0 || MEM(EA, 2)

EA is the sum (rA|0) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of
rD. The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 279 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 419 of 657

lmw lmw
Load Multiple Word (x’B800 0000’)

lmw rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
r ← rD
do while r ≤ 31

GPR(r) ← (32)0 || MEM(EA, 4)
r ← r + 1
EA ← EA + 4

EA is the sum (rA|0) + d.

n = (32 – rD).

n consecutive words starting at EA are loaded into the low-order 32 bits of GPRs rD through r31. The high-
order 32 bits of these GPRs are cleared.

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined. For additional information about alignment and DSI exceptions, see
Section 6.4.3 DSI Exception (0x00300).

If rA is in the range of registers specified to be loaded, including the case in which rA = ’0’, the instruction
form is invalid.

Note: In some implementations, this instruction is likely to have a greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d46 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 420 of 657
pem8.fm.3.0

July 15, 2005

lswi lswi
Load String Word Immediate (x’7C00 04AA’)

lswi rD,rA,NB

if rA = 0 then EA ← 0
else EA ← (rA)
if NB = 0 then n ← 32
elsen ← NB
r ← rD – 1
i ← 32
do while n > 0

if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r)[i–(i + 7)] ← MEM(EA, 1)
i ← i + 8
if i = 64 then i ← 32
EA ← EA + 1
n ← n – 1

The effective address is (rA|0).

Let n = NB if NB ≠ 0, n = 32 if NB = ’0’; n is the number of bytes to load.
Let nr = CEIL(n ÷ 4); nr is the number of registers to be loaded with data.

n consecutive bytes starting at EA are loaded into GPRs rD through rD + nr – 1. Data is loaded into the low-
order four bytes of each GPR; the high-order four bytes are cleared.

Bytes are loaded left to right in each register. The sequence of registers wraps around to r0 if required. If the
low-order four bytes of register rD + nr – 1 are only partially filled, the unfilled low-order byte(s) of that register
are cleared.

If rA is in the range of registers specified to be loaded, including the case in which rA = ’0’, the instruction
form is invalid.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note: In some implementations, this instruction is likely to have greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 597 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 421 of 657

lswx lswx
Load String Word Indexed (x’7C00 042A’)

lswx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
n ← XER[57-63]
r ← rD – 1
i ← 32
rD ← undefined
 do while n > 0
if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r)[i–(i + 7)] ← MEM(EA, 1)
i ← i + 8
if i = 64 then i ← 32
EA ← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Let n = XER[57-63]; n is the number of bytes to load.
Let nr = CEIL(n ÷ 4); nr is the number of registers to receive data.
If n > 0, n consecutive bytes starting at EA are loaded into GPRs rD through rD + nr – 1. Data is loaded into
the low-order four bytes of each GPR; the high-order four bytes are cleared.

Bytes are loaded left to right in each register. The sequence of registers wraps around through r0 if required.
If the low-order four bytes of rD + nr – 1 are only partially filled, the unfilled low-order byte(s) of that register
are cleared. If n = ’0’, the contents of rD are undefined.

If rA or rB is in the range of registers specified to be loaded, including the case in which rA = ’0’, either the
system illegal instruction error handler is invoked or the results are boundedly undefined.

If rD = rA or rD = rB, the instruction form is invalid.

If rD and rA both specify GPR0, the form is invalid.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note: In some implementations, this instruction is likely to have a greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:
• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 533 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 422 of 657
pem8.fm.3.0

July 15, 2005

lwa lwa
Load Word Algebraic (x’E800 0002’)

lwa rD,ds(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(ds || ’00’)
rD ← EXTS(MEM(EA, 4))

EA is the sum (rA|0) + (ds || ’00’). The word in memory addressed by EA is loaded into the low-order 32 bits
of rD. The contents of the high-order 32 bits of rD are filled with a copy of bit [0] of the loaded word.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

58 D A ds 1 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 423 of 657

lwarx lwarx
Load Word and Reserve Indexed (x’7C00 0028’)

lwarx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
RESERVE ← 1
RESERVE_ADDR ← physical_addr(EA)
rD ← (32)0 || MEM(EA,4)

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is loaded into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are cleared.

This instruction creates a reservation for use by a store word conditional indexed (stwcx.) instruction. The
physical address computed from EA is associated with the reservation, and replaces any address previously
associated with the reservation.

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined. For additional information about alignment and DSI exceptions, see
Section 6.4.3 DSI Exception (0x00300).

When the RESERVE bit is set, the processor enables hardware snooping for the block of memory addressed
by the RESERVE address. If the processor detects that another processor writes to the block of memory it
has reserved, it clears the RESERVE bit. The stwcx. instruction will only do a store if the RESERVE bit is set.
The stwcx. instruction sets the CR0[EQ] bit if the store was successful and clears it if it failed. The lwarx and
stwcx. combination can be used for atomic read-modify-write sequences.

Note: The atomic sequence is not guaranteed, but its failure can be detected if CR0[EQ] = ’0’ after the
stwcx. instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 20 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 424 of 657
pem8.fm.3.0

July 15, 2005

lwaux lwaux
Load Word Algebraic with Update Indexed (x’7C00 02EA’)

lwaux rD,rA,rB

EA ← (rA) + (rB)
rD ← EXTS(MEM(EA, 4))
rA ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD.
The high-order 32 bits of rD are filled with a copy of bit 0 of the loaded word.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 373 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 425 of 657

lwax lwax
Load Word Algebraic Indexed (x’7C00 02AA’)

lwax rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← EXTS(MEM(EA, 4))

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD.
The high-order 32 bits of rD are filled with a copy of bit 0 of the loaded word.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 341 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 426 of 657
pem8.fm.3.0

July 15, 2005

lwbrx lwbrx
Load Word Byte-Reverse Indexed (x’7C00 042C’)

lwbrx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (32)0 || MEM(EA + 3, 1) || MEM(EA + 2, 1) || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + rB. Bits 0–7 of the word in memory addressed by EA are loaded into the low-order
8 bits of rD. Bits [8–15] of the word in memory addressed by EA are loaded into the subsequent low-order
8 bits of rD. Bits [16–23] of the word in memory addressed by EA are loaded into the subsequent low-order
8 bits of rD. Bits [24–31] of the word in memory addressed by EA are loaded into the subsequent low-order
8 bits of rD. The high-order 32 bits of rD are cleared.

The PowerPC Architecture cautions programmers that some implementations of the architecture may run the
lwbrx instructions with greater latency than other types of load instructions.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 534 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 427 of 657

lwz lwz
Load Word and Zero (x’8000 0000’)

lwz rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← (32)0 || MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into the low-order 32 bits of rD. The
high-order 32 bits of rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d32 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 428 of 657
pem8.fm.3.0

July 15, 2005

lwzu lwzu
Load Word and Zero with Update (x’8400 0000’)

lwzu rD,d(rA)

EA ← rA + EXTS(d)
rD ← (32)0 || MEM(EA, 4)
rA ← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded into the low-order 32 bits of rD. The
high-order 32 bits of rD are cleared.

EA is placed into rA.

If rA = ’0’, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d33 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 429 of 657

lwzux lwzux
Load Word and Zero with Update Indexed (x’7C00 006E’)

lwzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (32)0 || MEM(EA, 4)
rA ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD.
The high-order 32 bits of rD are cleared.

EA is placed into rA.

If rA = ’0’, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 55 031 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 430 of 657
pem8.fm.3.0

July 15, 2005

lwzx lwzx
Load Word and Zero Indexed (x’7C00 002E’)

lwzx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + rB
rD ← (32)0 || MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD.
The high-order 32 bits of rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 23 031 D A

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005

Instruction Set

Page 431 of 657

mcrf mcrf
Move Condition Register Field (x’4C00 0000’)

mcrf crfD,crfS

CR[(4 × crfD) to (4 × crfD + 3)] ← CR[(4 × crfS) to (4 × crfS + 3)]

The contents of condition register field crfS are copied into condition register field crfD. All other condition
register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, SO

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Instruction Set

Page 432 of 657
pem8.fm.3.0

July 15, 2005

mcrfs mcrfs
Move to Condition Register from FPSCR (x’FC00 0080’)

mcrfs crfD,crfS

The contents of FPSCR field crfS are copied to CR field crfD. All exception bits copied (except FEX and VX)
are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:
Affected: FX, OX (if crfS = ’0’)
Affected: UX, ZX, XX, VXSNAN (if crfS = ‘1’)
Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if crfS = ‘2’)
Affected: VXVC (if crfS = ‘3’)
Affected: VXSOFT, VXSQRT, VXCVI (if crfS = ‘5’)

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 433 of 657

mfcr mfcr
Move from Condition Register (x’7C00 0026’)

mfcr rD

rD ← (32)0 || CR

The contents of the condition register (CR) are placed into the low-order 32 bits of rD. The high-order 32 bits
of rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0 0 0 0 0 19 031 D

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 434 of 657
pem8b.fm.3.0
July 15, 2005

mfocrf mfocrf
Move from One Condition Register Field (x’7C20 0026’)

mfocrf rD,CRM

rD ← undefined
count ← 0
do i = 0 to 7
if CRMi = 1 then
n ← i
count ← count + 1

if count = 1 then rD[(32+4×n) - (32+4×n+3)] ← CR[(4×n) - (4×n+3)]

If exactly one bit of the CRM field is set to 1, let n be the position of that bit in the field (0 ≤ n ≤ 7). The
contents of CR field n (CR bits [(4×n) to (4×n+3)]) are placed into bits [(32+4×n) to (32+4×n + 3)] of register rD
and the contents of the remaining bits of register rD are undefined. Otherwise, the contents of register rD are
undefined.

Note: This form of the mfocrf instruction is intended to replace the old form of the instruction which will even-
tually be phased out of the architecture. The new form is backward compatible with most processors that
comply with versions of the architecture that precede Version 2.01. On those processors, the new form is
treated as the old form. However, on some processors that comply with versions of the architecture that pre-
cede Version 2.01 the new form of mfocrf may copy the contents of an SPR, possibly a privileged SPR, into
register rD.

Other registers altered:

• None

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM31 D 1 0 019

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 435 of 657

mffsx mffsx
Move from FPSCR (x’FC00 048E’)

mffs frD (Rc = ’0’)
mffs. frD (Rc = ’1’)

frD[32-63]← FPSCR

The contents of the floating-point status and control register (FPSCR) are placed into the low-order bits of
register frD. The high-order bits of register frD are undefined.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 0 0 0 0 0 583 Rc63 D

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 436 of 657
pem8b.fm.3.0
July 15, 2005

mfmsr mfmsr
Move from Machine State Register (x’7C00 00A6’)

mfmsr rD

rD ← MSR

The contents of the MSR are placed into rD.

This is a supervisor-level instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 83 031 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 437 of 657

mfspr mfspr
Move from Special-Purpose Register (x’7C00 02A6’)

mfspr rD,SPR

n ← spr[5–9] || spr[0–4]
if length (SPR(n)) = 64 then
rD ← SPR(n)

else
rD ← (32)0 || SPR(n)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-11.
The contents of the designated special-purpose register are placed into rD.

For special-purpose registers that are 32 bits long, the low-order 32 bits of rD receive the contents of the
special-purpose register and the high-order 32 bits of rD are cleared.

If the SPR field contains any value other than one of the values shown in Table 8-11 (and the processor is in
user mode), one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The results are boundedly undefined.

Other registers altered:

• None

Simplified mnemonics:

mfxer rD equivalent to mfspr rD,1
mflr rD equivalent to mfspr rD,8
mfctr rD equivalent to mfspr rD,9

Table 8-11. PowerPC UISA SPR Encodings for mfspr

SPR1

Register Name
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with the actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 339 031 D

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 438 of 657
pem8b.fm.3.0
July 15, 2005

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-12.
The contents of the designated SPR are placed into rD. For SPRs that are 32 bits long, the low-order 32 bits
of rD receive the contents of the SPR and the high-order 32 bits of rD are cleared.

SPR[0] = ’1’ if and only if reading the register is supervisor-level. Execution of this instruction specifying a
defined and supervisor-level register when MSR[PR] = ’1’ will result in a privileged instruction type program
exception.

If MSR[PR] = ’1’, the only effect of executing an instruction with an SPR number that is not shown in
Table 8-12 and has SPR[0] = ’1’ is to cause a supervisor-level instruction type program exception or an illegal
instruction type program exception. For all other cases, MSR[PR] = ‘0’ or SPR[0] = ‘0’. If the SPR field
contains any value that is not shown in Table 8-12, either an illegal instruction type program exception occurs
or the results are boundedly undefined.

Other registers altered:

• None

Table 8-12. PowerPC OEA SPR Encodings for mfspr

SPR
1

Register Name Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

280 01000 11000 ASR2 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

1013 11111 10101 DABR Supervisor

Note:

1. For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary num-
ber in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits [16–20] of the instruction and the low-order five bits in bits [11–15; compared with actual instruction coding].

2. 64-bit implementations only.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 439 of 657

mfsr mfsr
Move from Segment Register (x’7C00 04A6’)

mfsr rD,SR

The contents of the low-order 27 bits of the VSID field, and the contents of the KS, KP, N, and L fields, of the
SLB entry specified by SR are placed into register rD, as follows:

rD[32] is set to ‘0’. The contents of rD[0-31] are undefined.

This is a supervisor-level instruction.

This instruction must be used only to read an SLB entry that was, or could have been, created by mtsr or
mtsrin and has not subsequently been invalidated (i.e., an SLB entry in which ESID< 16, V= ’1’, VSID< 227,
L= ’0’, and C= ’0’). Otherwise the contents of register rD are undefined.

Note: MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

Other registers altered:

• None

SLBE Bit(s) Copied to SLB Field

62 - 88 rD[37-63] VSID[25-51]

89 - 91 rD[33-35] KS KP N

92 rD[36] L (SBE[L] must be ‘0’)

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 595 031 D 0 SR

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 440 of 657
pem8b.fm.3.0
July 15, 2005

mfsrin mfsrin
Move from Segment Register Indirect (x’7C00 0526’)

mfsrin rD,rB

The contents of the low-order 27 bits of the VSID field, and the contents of the KS, KP, N, and L fields, of the
SLB entry specified by rB[32:35] are placed into register rD, as follows:

rD[32] is set to ‘0’. The contents of rD[0-31] are undefined.

This is a supervisor-level instruction.

Note: MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

This instruction must be used only to read an SLB entry that was, or could have been, created by mtsr or
mtsrin and has not subsequently been invalidated (i.e., an SLB entry in which ESID< 16, V= ’1’, VSID< 227,
L= ’0’, and C= ’0’). Otherwise the contents of register rD are undefined.

Other registers altered:

• None

SLBE Bit(s) Copied to SLB Field

62 - 88 rD[37-63] VSID[25-51]

89 - 91 rD[33-35] KS KP N

92 rD[36] L (SBE[L] must be ‘0’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 659 031 D 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 441 of 657

mftb mftb
Move from Time Base (x’7C00 02E6’)

mftb rD,TBR

n ← tbr[5-9] || tbr[0-4]
if n = 268 then
rD ← TB

else if n = 269 then
rD ← (32)0 || TB[0-31]

The TBR field denotes either the Time Base or Time Base Upper, encoded as shown in Table 8-13. The
contents of the designated register are placed into register rD. When reading Time Base Upper, the high-
order 32 bits of register RT are set to zero.

If the TBR field contains any value other than one of the values shown in Table 8-13, then one of the following
occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The results are boundedly undefined.

It is important to note that some implementations may implement mftb and mfspr identically, therefore, a
TBR number must not match an SPR number.

For more information on the time base refer to Section 2.2 PowerPC VEA Register Set—Time Base.

Other registers altered:

• None

Simplified mnemonics:

mftb rD equivalent to mftb rD,268
mftbu rD equivalent to mftb rD,269

Table 8-13. TBR Encodings for mftb

TBR1

Register Name Access
Decimal tbr[5–9] tbr[0–4]

268 01000 01100 TBL User

269 01000 01101 TBU User

1. The order of the two 5-bit halves of the TBR number is reversed.

0 5 6 10 11 20 21 30 31

Reserved

31 D tbr* 371 0

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 442 of 657
pem8b.fm.3.0
July 15, 2005

mtcrf mtcrf
Move to Condition Register Fields (x’7C00 0120’)

mtcrf CRM,rS

mask ← (4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])
CR ← (rS[32-63] & mask) | (CR & ¬ mask)

The contents of the low-order 32 bits of rS are placed into the condition register under control of the field
mask specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in the range 0-7.
If CRM(i) = ’1’, CR field i (CR bits [(4 × i) through (4 × i + 3)]) is set to the contents of the corresponding field
of the low-order 32 bits of rS.

Note: Updating a subset of the eight fields of the condition register may have a substantially poorer perfor-
mance on some implementations than updating all of the fields.

Other registers altered:

• CR fields selected by mask

Simplified mnemonics:

mtcr rS equivalent to mtcrf 0xFF,rS

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 443 of 657

mtfsb0x mtfsb0x
Move to FPSCR Bit 0 (x’FC00 008C’)

mtfsb0 crbD (Rc = ’0’)
mtfsb0. crbD (Rc = ’1’)

Bit crbD of the FPSCR is cleared.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR bit crbD

Note: Bits [1] and [2] (FEX and VX) cannot be explicitly cleared.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 70 Rc63 crbD 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 444 of 657
pem8b.fm.3.0
July 15, 2005

mtfsb1x mtfsb1x
Move to FPSCR Bit 1 (x’FC00 004C’)

mtfsb1 crbD (Rc = ’0’)
mtfsb1. crbD (Rc = ’1’)

Bit crbD of the FPSCR is set.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR bit crbD and FX

Note: Bits [1] and [2] (FEX and VX) cannot be explicitly set.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 38 Rc63 crbD 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 445 of 657

mtfsfx mtfsfx
Move to FPSCR Fields (x’FC00 058E’)

mtfsf FM,frB (Rc = ’0’)
mtfsf. FM,frB (Rc = ’1’)

The low-order 32 bits of frB are placed into the FPSCR under control of the field mask specified by FM. The
field mask identifies the 4-bit fields affected. Let i be an integer in the range 0–7. If FM[i] = ’1’, FPSCR field i
(FPSCR bits [(4 × i) through (4 × i + 3)]) is set to the contents of the corresponding field of the low-order 32
bits of register frB.

FPSCR[FX] is altered only if FM[0] = ’1’.

Note: Updating fewer than all eight fields of the FPSCR may have a substantially poorer performance on
some implementations than updating all the fields.

When FPSCR[0–3] is specified, bits [0] (FX) and [3] (OX) are set to the values of frB[32] and frB[35] (that is,
even if this instruction causes OX to change from ‘0’ to ‘1’, FX is set from frB[32] and not by the usual rule that
FX is set when an exception bit changes from ‘0’ to ‘1’). Bits [1] and [2] (FEX and VX) are set according to the
usual rule and not from frB[33–34].

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR fields selected by mask

0 5 6 7 14 15 16 20 21 30 31

Reserved

63 0 FM 0 B 711 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 446 of 657
pem8b.fm.3.0
July 15, 2005

mtfsfix mtfsfix

Move to FPSCR Field Immediate (x’FC00 010C’)

mtfsfi crfD,IMM (Rc = ’0’)
mtfsfi. crfD,IMM (Rc = ’1’)

FPSCR[crfD] ← IMM

The value of the IMM field is placed into FPSCR field crfD.

FPSCR[FX] is altered only if crfD = ’0’.

When FPSCR[0–3] is specified, bits [0] (FX) and [3] (OX) are set to the values of IMM[0] and IMM[3] (that is,
even if this instruction causes OX to change from ‘0’ to ‘1’, FX is set from IMM[0] and not by the usual rule that
FX is set when an exception bit changes from ‘0’ to ‘1’). Bits [1] and [2] (FEX and VX) are set according to the
usual rule and not from IMM[1–2].

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR field crfD

0 5 6 8 9 10 11 12 15 16 19 20 21 30 31

Reserved

63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 447 of 657

mtmsr mtmsr
Move to Machine State Register (x’7C00 0124’)

mtmsr rS,L

MSR ← (rS)
if L = 0 then
MSR[58] ← (rS[58] | rS[49])
MSR[59] ← (rS[59] | rS[49])
MSR[32-47,49,50,52-57,60-63] ← rS[32-47,49,50,52-57,60-63]

else
MSR[48,62] ← rS[48,62]

The MSR is set based on the contents of register rS and the L field.

This instruction is a supervisor-level instruction. If L= ’0’ this instruction is context synchronizing except with
respect to alterations to the [LE] bit. If L= ’1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction completes.

Note: A reference to an mtmsr instruction that modifies an MSR bit other than the EE or RI bit implies L= ’0’.

Other registers altered:

• MSR

Note: mtmsr serves as both a basic and an extended mnemonic. The assembler will recognize an mtmsr
mnemonic with two operands as the basic form, and an mtmsr mnemonic with one operand as the extended
form. In the extended form the L operand is omitted and assumed to be ‘0’.

L= ‘0’ The result of ORing bits [58] and [49] of register rS is placed into MSR[58]. The result of ORing
bits [59] and [49] of register rS is placed into MSR[59]. Bits [32-47, 49, 50, 52-57, 60-63] of register
rS are placed into the corresponding bits of the MSR. The remaining bits of the MSR are
unchanged.

L= ’1’ Bits [48, 62] of rS are placed into the corresponding bits of the MSR. The remaining bits of the MSR
are unchanged.

0 5 6 10 11 14 15 16 20 21 30 31

Reserved

L 0 0 0 0 0 146 031 S 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 448 of 657
pem8b.fm.3.0
July 15, 2005

mtmsrd mtmsrd
 Move to Machine State Register Doubleword (x’7C00 0164’)

mtmsrd rS,L

The MSR is set based on the contents of register rS and the L field.

This instruction is a supervisor-level instruction. If L= ‘0’ this instruction is context synchronizing except with
respect to alterations to the [LE] bit. If L= ’1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction completes.

Note: Processors designed prior to Version 2.01 of the architecture ignore the L field. These processors set
the MSR as if L were ‘0’, and perform synchronization as if L were ‘1’. Therefore software that uses mtmsrd
and runs on such processors must obey the following rules.

1. If L= ’1’, the contents of bits of register rS other than bits [48] and [62] must be such that if L were ‘0’ the
instruction would not alter the contents of the corresponding MSR bits.

2. If L = ‘0’ and the instruction alters the contents of any of the MSR bits listed below, the instruction must be
followed by a context synchronizing instruction or event in order to ensure that the context alteration
caused by the mtmsrd instruction has taken effect on such processors.

To obtain the best performance on processors, if the context synchronizing instruction is isync the isync
should immediately follow the mtmsrd. (Some such processors treat an isync instruction that immediately
follows an mtmsrd instruction having L = ’0’ as a no-op, thereby avoiding the performance penalty of a
second context synchronization.)

Note: mtmsrd serves as both a basic and an extended mnemonic. The Assembler will recognize an mtm-
srd mnemonic with two operands as the basic form, and an mtmsrd mnemonic with one operand as the
extended form. In the extended form the L operand is omitted and assumed to be ‘0’.

Other registers altered:

• MSR

L= ‘0’ The result of ORing bits [0] and [1] of register rS is placed into MSR[0]. The result of ORing bits [59]
and [49] of register rS is placed into MSR[59]. Bits [1-2, 4-47, 49, 50, 52-57, 60-63] of register rS
are placed into the corresponding bits of the MSR. The remaining bits of the MSR are unchanged.

L= ’1’ Bits [48, 62] of rS are placed into the corresponding bits of the MSR. The remaining bits of the MSR
are unchanged.

0 5 6 10 11 14 15 16 20 21 30 31

Reserved

L 0 0 0 0 0 178 031 S 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 449 of 657

mtocrf mtocrf
Move to One Condition Register Field (x’7C20 0120’)

mtocrf CRM,rS

count ← 0
do i = 0 to 7
if CRMi = 1 then
n ← i
count ← count + 1

if count = 1 then CR[4×n to 4×n+3] ← rS[32+4×n to 32+4×n+3]
else CR ← undefined

If exactly one bit of the CRM field is set to 1, let n be the position of that bit in the field (0 ≤ n ≤ 7). The
contents of bits [32+4×n to 32+4×n + 3] of register rS are placed into CR field n (CR bits [4×n to 4×n+3]).
Otherwise, the contents of the Condition Register are undefined.

Note: This form of the mtocrf instruction is intended to replace the old form of the instruction (mtcrf) which
will eventually be phased out of the architecture. The new form is backward compatible with most processors
that comply with versions of the architecture prior to Version 2.01. On those processors, the new form is
treated as the old form. However, on some processors that comply with versions of the architecture that pre-
cede Version 2.01 the new form of mtocrf may cause the system illegal instruction error handler to be
invoked.

Other registers altered:

• CR fields selected by CRM

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 450 of 657
pem8b.fm.3.0
July 15, 2005

mtspr mtspr
Move to Special-Purpose Register (x’7C00 03A6’)

mtspr SPR,rS

n ← spr[5-9] || spr[0-4]
if length (SPR(n)) = 64 then
SPR(n) ← (rS)

else
SPR(n) ← rS[32-63]

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-14.
The contents of rS are placed into the designated special-purpose register. For special-purpose registers that
are 32 bits long, the low-order 32 bits of rS are placed into the SPR.

If the SPR field contains any value other than one of the values shown in Table 8-14, and the processor is
operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor instruction error handler is invoked.

• The results are boundedly undefined.

Other registers altered: See Table 8-14.

Simplified mnemonics:

mtxer rD equivalent to mtspr 1,rD
mtlr rD equivalent to mtspr 8,rD
mtctr rD equivalent to mtspr 9,rD

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-15.
The contents of rS are placed into the designated special-purpose register. For special-purpose registers that
are 32 bits long, the low-order 32 bits of rS are placed into the SPR.

Table 8-14. PowerPC UISA SPR Encodings for mtspr

 SPR1

Register Name
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 451 of 657

For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers; setting one leaves the other
unaltered.

The value of SPR[0] = ’1’ if and only if writing the register is a supervisor-level operation. Execution of this
instruction specifying a defined and supervisor-level register when MSR[PR] = ’1’ results in a privileged
instruction type program exception.

If MSR[PR] = ’1’ then the only effect of executing an instruction with an SPR number that is not shown in
Table 8-15 and has SPR[0] = ’1’ is to cause a privileged instruction type program exception or an illegal
instruction type program exception. For all other cases, MSR[PR] = ‘0’ or SPR[0] = ‘0’, if the SPR field
contains any value that is not shown in Table 8-15, either an illegal instruction type program exception occurs
or the results are boundedly undefined.

Other registers altered: See Table 8-15.

Table 8-15. PowerPC OEA SPR Encodings for mtspr

SPR
(1)

Register Name Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

280 01000 11000 ASR2 Supervisor

282 01000 11010 EAR Supervisor

284 01000 11100 TBL Supervisor

285 01000 11101 TBU Supervisor

1013 11111 10101 DABR Supervisor

Notes:

1. The order of the two 5-bit halves of the SPR number is reversed. For mtspr and mfspr instructions, the SPR number coded in
assembly language does not appear directly as a 10-bit binary number in the instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the high-order five bits appearing in bits [16–20] of the instruction and the low-order
five bits in bits [11–15].

2. 64-bit implementations only.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 452 of 657
pem8b.fm.3.0
July 15, 2005

mtsr mtsr
Move to Segment Register (x’7C00 01A4’)

mtsr SR,rS

This is a supervisor-level instruction.

Note: MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

The SLB entry specified by SR is loaded from register rS, as follows.

Other registers altered:

• None

SLBE Bit(s) Set to SLB Field(s)

0-31 0x0000 0000 ESID[0-31]

32-35 SR ESID[32-35]

3 ‘1’ V

37-61 0x00_0000 || 0b0 VSID[0-24]

62-88 rS[37-63] VSID[25-51]

89-91 rS[33-35] KS KP N

92 rS[36] L (rS[36] must be ‘0’)

93 ‘0’ C

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 210 031 S 0 SR

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 453 of 657

mtsrin mtsrin
 Move to Segment Register Indirect (x’7C00 01E4’)

mtsrin rS,rB

This is a supervisor-level instruction.

Note: MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

The SLB entry specified by rB[32-35] is loaded from register rS, as follows.

Other registers altered:

• None

SLBE Bit(s) Set to SLB Field(s)

0-31 0x0000 0000 ESID[0-31]

32-35 SR ESID[32-35]

3 ‘1’ V

37-61 0x00_0000 || 0b0 VSID[0-24]

62-88 rS[37-63] VSID[25-51]

89-91 rS[33-35] KS KP N

92 rS[36] L (rS[36] must be ‘0’)

93 ‘0’ C

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 242 031 S 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 454 of 657
pem8b.fm.3.0
July 15, 2005

mulhdx mulhdx
Multiply High Doubleword (x’7C00 0092’)

mulhd rD,rA,rB (Rc = ’0’)
mulhd. rD,rA,rB (Rc = ’1’)

prod[0-127] ← (rA) × (rB)
rD ← prod[0-63]

The 64-bit operands are (rA) and (rB). The high-order 64 bits of the 128-bit product of the operands are
placed into rD.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if rB contains the operand having the smaller
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 64-bit
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 73 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 455 of 657

mulhdux mulhdux
Multiply High Doubleword Unsigned (x’7C00 0012’)

mulhdu rD,rA,rB (Rc = ’0’)
mulhdu. rD,rA,rB (Rc = ’1’)

prod[0-127] ← (rA) × (rB)
rD ← prod[0-63]

The 64-bit operands are (rA) and (rB). The high-order 64 bits of the 128-bit product of the operands are
placed into rD.

Both the operands and the product are interpreted as unsigned integers, except that if Rc = ’1’ the first three
bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations if rB contains the operand having the smaller
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 64-bit
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 9 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 456 of 657
pem8b.fm.3.0
July 15, 2005

mulhwx mulhwx
Multiply High Word (x’7C00 0096’)

mulhw rD,rA,rB (Rc = ’0’)
mulhw. rD,rA,rB (Rc = ’1’)

prod[0-63] ← rA[32-63] × rB[32-63]
rD[32-63] ← prod[0-31]
rD[0-31] ← undefined

The 64-bit product is formed from the contents of the low-order 32 bits of rA and rB. The high-order 32 bits of
the 64-bit product of the operands are placed into the low-order 32 bits of rD. The high-order 32 bits of rD are
undefined.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if rB contains the operand having the smaller
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ’1’ and 64-bit mode)

Note: The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 32-bit
result.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 75 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 457 of 657

mulhwux mulhwux
Multiply High Word Unsigned (x’7C00 0016’)

mulhwu rD,rA,rB (Rc = ’0’)
mulhwu. rD,rA,rB (Rc = ’1’)

prod[0-63] ← rA[32-63] × rB[32-63]
rD[32-63] ← prod[0-31]
rD[0-31] ← undefined

The 32-bit operands are the contents of the low-order 32 bits of rA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed into the low-order 32 bits of rD. The high-order 32 bits of rD are unde-
fined.

Both the operands and the product are interpreted as unsigned integers, except that if Rc = ’1’ the first three
bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations if rB contains the operand having the smaller
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ‘1’ and 64-bit mode)

Note: The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 32-bit
result.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 11 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 458 of 657
pem8b.fm.3.0
July 15, 2005

mulldx mulldx
Multiply Low Doubleword (x’7C00 01D2’)

mulld rD,rA,rB (OE = ’0’ Rc = ’0’)
mulld. rD,rA,rB (OE = ’0’ Rc = ’1’)
mulldo rD,rA,rB (OE = ’1’ Rc = ’0’)
mulldo. rD,rA,rB (OE = ’1’ Rc = ’1’)

prod[0-127] ← (rA) × (rB)
rD ← prod[64-127]

The 64-bit operands are the contents of rA and rB. The low-order 64 bits of the 128-bit product of the oper-
ands are placed into rD.

Both the operands and the product are interpreted as signed integers. The low-order 64 bits of the product
are independent of whether the operands are regarded as signed or unsigned 64-bit integers. If OE = ’1’, then
OV is set if the product cannot be represented in 64 bits.

This instruction may execute faster on some implementations if rB contains the operand having the smaller
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER:
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 233 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 459 of 657

mulli mulli
Multiply Low Immediate (x’1C00 0000’)

mulli rD,rA,SIMM

prod[0-127] ← (rA) × EXTS(SIMM)
rD ← prod[64-127]

The 64-bit first operand is (rA). The 64-bit second operand is the sign-extended value of the SIMM field. The
low-order 64-bits of the 128-bit product of the operands are placed into rD.

Both the operands and the product are interpreted as signed integers. The low-order 64 bits of the product
are calculated independently of whether the operands are treated as signed or unsigned 64-bit integers.

This instruction can be used with mulhdx or mulhwx to calculate a full 128-bit product.

Other registers altered:

• None

0 5 6 10 11 15 16 31

SIMM07 D A

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 460 of 657
pem8b.fm.3.0
July 15, 2005

mullwx mullwx
Multiply Low Word (x’7C00 01D6’)

mullw rD,rA,rB (OE = ’0’ Rc = ’0’)
mullw. rD,rA,rB (OE = ’0’ Rc = ’1’)
mullwo rD,rA,rB (OE = ’1’ Rc = ’0’)
mullwo. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← rA[32-63] × rB[32-63]

The 32-bit operands are the contents of the low-order 32 bits of rA and rB. The low-order 32 bits of the 64-bit
product (rA) × (rB) are placed into rD.

If [OE] = ’1’, then [OV] is set if the product cannot be represented in 32 bits. Both the operands and the
product are interpreted as signed integers.

This instruction can be used with mulhwx to calculate a full 64-bit product.

Note: This instruction may execute faster on some implementations if rB contains the operand having the
smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER:
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 235 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 461 of 657

nandx nandx
NAND (x’7C00 03B8’)

nand rA,rS,rB (Rc = ’0’)
nand. rA,rS,rB (Rc = ’1’)

rA ← ¬ ((rS) & (rB))

The contents of rS are ANDed with the contents of rB and the complemented result is placed into rA.

A nand with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 476 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 462 of 657
pem8b.fm.3.0
July 15, 2005

negx negx
Negate (x’7C00 00D0’)

neg rD,rA (OE = ‘0’ Rc = ‘0’)
neg. rD,rA (OE = ‘0’ Rc = ’1’)
nego rD,rA (OE = ’1’ Rc = ‘0’)
nego. rD,rA (OE = ’1’ Rc = ’1’)

rD ← ¬ (rA) + 1

The value ’1’ is added to the complement of the value in rA, and the resulting two’s complement is placed into
rD.

If executing in the default 64-bit mode and rA contains the most negative 64-bit number
(0x8000_0000_0000_0000), the result is the most negative number and, if OE = ’1’, OV is set. Similarly, if
executing in 32-bit mode of a 64-bit implementation and the low-order 32 bits of rA contains the most nega-
tive 32-bit number (0x8000_0000), then the low-order 32 bits of the result contain the most negative 32-bit
number and, if OE = ’1’, OV is set.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO OV (if OE = ’1’)

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A 0 0 0 0 0 OE 104 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 463 of 657

norx norx
NOR (x’7C00 00F8’)

nor rA,rS,rB (Rc = ’0’)
nor. rA,rS,rB (Rc = ’1’)

rA ← ¬ ((rS) | (rB))

The contents of rS are ORed with the contents of rB and the complemented result is placed into rA.

A nor with rS = rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

not rD,rS equivalent to nor rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

31 S A B 124 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 464 of 657
pem8b.fm.3.0
July 15, 2005

orx orx
OR (x’7C00 0378’)

or rA,rS,rB (Rc = ’0’)
or. rA,rS,rB (Rc = ’1’)

rA ← (rS) | (rB)

The contents of rS are ORed with the contents of rB and the result is placed into rA.

The simplified mnemonic mr (shown below) demonstrates the use of the or instruction to move register
contents.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

mr rA,rS equivalent to or rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

31 S A B 444 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 465 of 657

orcx orcx
OR with Complement (x’7C00 0338’)

orc rA,rS,rB (Rc = ‘0’)
orc. rA,rS,rB (Rc = ’1’)

rA ← (rS) | ¬ (rB)

The contents of rS are ORed with the complement of the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 412 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 466 of 657
pem8b.fm.3.0
July 15, 2005

ori ori
OR Immediate (x’6000 0000’)

ori rA,rS,UIMM

rA ← (rS) | ((48)0 || UIMM)

The contents of rS are ORed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

The preferred no-op (an instruction that does nothing) is ori 0,0,0.

Other registers altered:

• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

0 5 6 10 11 15 16 31

24 S A UIMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 467 of 657

oris oris
OR Immediate Shifted (x’6400 0000’)

oris rA,rS,UIMM

rA ← (rS) | ((32)0 || UIMM || (16)0)

The contents of rS are ORed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

25 S A UIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 468 of 657
pem8b.fm.3.0
July 15, 2005

rfid rfid
Return from Interrupt Doubleword (x’4C00 0024’)

MSR[0] ← SRR1[0] | SRR1[1]
MSR[58] ← SRR1[58] | SRR1[49]
MSR59] ← SRR1[59] | SRR1[49]
MSR[1-2,4-32,37-41,49-50,52-57,60-63] ← SRR1[1-2,4-32,37-41,49-50,52-57,60-63]
NIA ← iea SRR0[0-61] || ’00’

Bit [0] of SRR1 is placed into MSR[0]. If MSR[3] = ’1’ then bits [3,51] of SRR1 are placed into the corre-
sponding bits of the MSR. The result of ORing bits [58] and [49] of SRR1 is placed into MSR[58]. The result of
ORing bits [59] and [49] of SRR1 is placed into MSR[59]. Bits [1-2, 4-32, 37-41, 48-50, 52-57, and 60-63] of
SRR1 are placed into the corresponding bits of the MSR.

If the new MSR value does not enable any pending exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address SRR0[0–61] || ’00’ (when MSR[SF] = ’1’) or 0x0000_0000 ||
SRR0[32–61] || ’00’ (when MSR[SF] = ’0’). If the new MSR value enables one or more pending exceptions,
the exception associated with the highest priority pending exception is generated; in this case the value
placed into SRR0 by the exception processing mechanism is the address of the instruction that would have
been executed next had the exception not occurred.

Note: An implementation may define additional MSR bits, and in this case, may also cause them to be saved
to SRR1 from MSR on an exception and restored to MSR from SRR1 on an rfid.

This is a supervisor-level, context synchronizing instruction.

Other registers altered:

• MSR

Reserved

0 5 6 10 11 15 16 20 21 30 31

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 469 of 657

rldclx rldclx
Rotate Left Doubleword then Clear Left (x’7800 0010’)

rldcl rA,rS,rB,MB (Rc = ’0’)
rldcl. rA,rS,rB,MB (Rc = ’1’)

n ← rB[58-63]
r ← ROTL[64](rS, n)
b ← mb[5] || mb[0-4]
m ← MASK(b, 63)
rA ← r & m

The contents of rS are rotated left the number of bits specified by operand in the low-order six bits of rB. A
mask is generated having ’1’ bits from bit [MB] through bit [63] and ‘0’ bits elsewhere. The rotated data is
ANDed with the generated mask and the result is placed into rA.

Note that the rldcl instruction can be used to extract and rotate bit fields using the methods shown below:

• To extract an n-bit field, that starts at variable bit position b in register rS, right-justified into rA (clearing
the remaining 64 – n bits of rA), set the low-order six bits of rB to b + n and MB = 64 – n.

• To rotate the contents of a register left by variable n bits, set the low-order six bits of rB to n and MB = ’0’,
and to shift the contents of a register right, set the low-order six bits of rB to(64 – n), and MB = ’0’.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

rotld rA,rS,rB equivalent to rldcl rA,rS,rB,0

0 5 6 10 11 15 16 20 21 26 27 30 31

30 S A B mb* 8 Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 470 of 657
pem8b.fm.3.0
July 15, 2005

rldcrx rldcrx
Rotate Left Doubleword then Clear Right (x’7800 0012’)

rldcr rA,rS,rB,ME (Rc = ’0’)
rldcr. rA,rS,rB,ME (Rc = ’1’)

n ← rB[58-63]
r ← ROTL[64](rS, n)
e ← me[5] || me[0-4]
m ← MASK(0, e)
rA ← r & m

The contents of rS are rotated left the number of bits specified by the low-order six bits of rB. A mask is
generated having ’1’ bits from bit [0] through bit [ME] and 0 bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into rA.

Note that rldcr can be used to extract and rotate bit fields using the methods shown below:

• To extract an n-bit field, that starts at variable bit position b in register rS, left-justified into rA (clearing the
remaining 64 – n bits of rA), set the low-order six bits of rB to b and ME = n – 1.

• To rotate the contents of a register left by variable n bits, set the low-order six bits of rB to n and ME = 63,
and to shift the contents of a register right, set the low-order six bits of rB to(64 – n), and ME = 63.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

For a detailed list of simplified mnemonics for the rldcr instruction, refer to Appendix E Simplified Mnemonics.

0 5 6 10 11 15 16 20 21 26 27 30 31

30 S A B me* 9 Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 471 of 657

rldicx rldicx
Rotate Left Doubleword Immediate then Clear (x’7800 0008’)

rldic rA,rS,SH,MB (Rc = ’0’)
rldic. rA,rS,SH,MB (Rc = ’1’)

n ← sh[5] || sh[0-4]
r ← ROTL[64](rS, n)
b ← mb[5] || mb[0-4]
m ← MASK(b, ¬ n)
rA ← r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’
bits from bit [MB] through bit [63 – SH] and 0 bits elsewhere. The rotated data is ANDed with the generated
mask and the result is placed into rA.

The rldic can be used to clear and shift bit fields using the methods shown below:

• To clear the high-order b bits of the contents of a register and then shift the result left by n bits, set SH = n
and MB = b – n.

• To clear the high-order n bits of a register, set SH = ’0’ and MB = n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

clrlsldi rA,rS,b,n equivalent to rldic rA,rS,n,b – n

For a more detailed list of simplified mnemonics for the rldic instruction, refer to Appendix E Simplified
Mnemonics.

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* mb* 2 sh* Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 472 of 657
pem8b.fm.3.0
July 15, 2005

rldiclx rldiclx
Rotate Left Doubleword Immediate then Clear Left (x’7800 0000’)

rldicl rA,rS,SH,MB (Rc = ’0’)
rldicl. rA,rS,SH,MB (Rc = ’1’)

n ← sh[5] || sh[0-4]
r ← ROTL[64](rS, n)
b ← mb[5] || mb[0-4]
m ← MASK(b, 63)
rA ← r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’
bits from bit MB through bit 63 and 0 bits elsewhere. The rotated data is ANDed with the generated mask and
the result is placed into rA.

The rldicl can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

• To extract an n-bit field, that starts at bit position b in rS, right-justified into rA (clearing the remaining 64-n
bits of rA), set SH = b + n and MB = 64 – n.

• To rotate the contents of a register left by n bits, set SH = n and MB = ’0’; to rotate the contents of a regis-
ter right by n bits, set SH = (64 - n), and MB = ’0’.

• To shift the contents of a register right by n bits, set SH = 64 - n and MB = n.

• To clear the high-order n bits of a register, set SH = ’0’ and MB = n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

extrdi rA,rS,n,b (n > 0) equivalent to rldicl rA,rS,b + n,64 – n
rotldi rA,rS,n equivalent to rldicl rA,rS,n,0
rotrdi rA,rS,n equivalent to rldicl rA,rS,64 – n,0
srdi rA,rS,n (n < 64) equivalent to rldicl rA,rS,64 – n,n
clrldi rA,rS,n (n < 64) equivalent to rldicl rA,rS,0,n

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* mb* 0 sh* Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 473 of 657

rldicrx rldicrx
Rotate Left Doubleword Immediate then Clear Right (x’7800 0004’)

rldicr rA,rS,SH,ME (Rc = ’0’)
rldicr. rA,rS,SH,ME (Rc = ’1’)

n ← sh[5] || sh[0-4]
r ← ROTL[64](rS, n)
e ← me[5] || me[0-4]
m ← MASK(0, e)
rA ← r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’
bits from bit [0] through bit [ME] and ‘0’ bits elsewhere. The rotated data is ANDed with the generated mask
and the result is placed into rA.

The rldicr can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

• To extract an n-bit field, that starts at bit position b in rS, left-justified into rA (clearing the remaining 64-n
bits of rA), set SH = b and ME = n – 1.

• To rotate the contents of a register left (right) by n bits, set SH = n (64 – n) and ME = 63.

• To shift the contents of a register left by n bits, by setting SH = n and ME = 63 – n.

• To clear the low-order n bits of a register, by setting SH = ’0’ and ME = 63 – n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

extldi rA,rS,n,b equivalent to rldicr rA,rS,b,n – 1
sldi rA,rS,n equivalent to rldicr rA,rS,n,63 – n
clrrdi rA,rS,n equivalent to rldicr rA,rS,0,63 – n

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* me* 1 sh* Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 474 of 657
pem8b.fm.3.0
July 15, 2005

rldimix rldimix
Rotate Left Doubleword Immediate then Mask Insert (x’7800 000C’)

rldimi rA,rS,SH,MB (Rc = ’0’)
rldimi. rA,rS,SH,MB (Rc = ’1’)

n ← sh[5] || sh[0-4]
r ← ROTL[64](rS, n)
b ← mb[5] || mb[0-4]
m ← MASK(b, ¬ n)
rA ← (r & m) | (rA & ¬ m)

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’
bits from bit MB through bit 63 – SH and 0 bits elsewhere. The rotated data is inserted into rA under control of
the generated mask.

Note: rldimi can be used to insert an n-bit field, that is right-justified in rS, into rA starting at bit position b, by
setting SH = 64 – (b + n) and MB = b.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

insrdi rA,rS,n,b equivalent to rldimi rA,rS,64 – (b + n),b

For a more detailed list of simplified mnemonics for the rldimi instruction, refer to Appendix E Simplified
Mnemonics.

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* mb* 3 sh* Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 475 of 657

rlwimix rlwimix
Rotate Left Word Immediate then Mask Insert (x’5000 0000’)

rlwimi rA,rS,SH,MB,ME (Rc = ’0’)
rlwimi. rA,rS,SH,MB,ME (Rc = ’1’)

n ← SH
r ← ROTL[32](rS[32-63], n)
m ← MASK(MB + 32, ME + 32)
rA ← (r & m) | (rA & ¬ m)

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ‘1’
bits from bit [MB + 32] through bit [ME + 32] and ‘0’ bits elsewhere. The rotated data is inserted into rA under
control of the generated mask.

rlwimi can be used to insert a bit field into the contents of rA using the methods shown below:

• To insert an n-bit field, that is left-justified in the low-order 32 bits of rS, into the high-order 32 bits of rA
starting at bit position b, set SH = 32 – b, MB = b, and ME = (b + n) – 1.

• To insert an n-bit field, that is right-justified in the low-order 32 bits of rS, into the high-order 32 bits of rA
starting at bit position b, set SH = 32 – (b + n), MB = b, and ME = (b + n) – 1.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

inslwi rA,rS,n,b equivalent to rlwimi rA,rS,32 – b,b,b + n – 1
insrwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

0 5 6 10 11 15 16 20 21 25 26 30 31

20 S A SH MB ME Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 476 of 657
pem8b.fm.3.0
July 15, 2005

rlwinmx rlwinmx
Rotate Left Word Immediate then AND with Mask (x’5400 0000’)

rlwinm rA,rS,SH,MB,ME (Rc = ’0’)
rlwinm. rA,rS,SH,MB,ME (Rc = ’1’)

n ← SH
r ← ROTL[32](rS[32-63], n)
m ← MASK(MB + 32, ME + 32)
rA ← r & m

The contents of rS[32-63] are rotated left the number of bits specified by operand SH. A mask is generated
having ‘1’ bits from bit [MB + 32] through bit [ME + 32] and ‘0’ bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into rA. The upper 32 bits of rA are cleared.

rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

• To extract an n-bit field, that starts at bit position b in the high-order 32 bits of rS, right-justified into rA
(clearing the remaining 32 – n bits of rA), set SH = b + n, MB = 32 – n, and ME = 31.

• To extract an n-bit field, that starts at bit position b in the high-order 32 bits of rS, left-justified into rA
(clearing the remaining 32 – n bits of rA), set SH = b, MB = ’0’, and ME = n – 1.

• To rotate the contents of a register left (or right) by n bits, set SH = n (32 – n), MB = ’0’, and ME = 31.

• To shift the contents of a register right by n bits, by setting SH = 32 – n, MB = n, and ME = 31. It can be
used to clear the high-order b bits of a register and then shift the result left by n bits by setting SH = n,
MB = b – n and ME = 31 – n.

• To clear the low-order n bits of a register, by setting SH = ’0’, MB = ’0’, and ME = 31 – n.

For all uses mentioned, the high-order 32 bits of rA are cleared.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

extlwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b,0,n – 1
extrwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b + n,32 – n,31
rotlwi rA,rS,n equivalent to rlwinm rA,rS,n,0,31
rotrwi rA,rS,n equivalent to rlwinm rA,rS,32 – n,0,31
slwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,n,0,31–n
srwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,32 – n,n,31
clrlwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,n,31
clrrwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,0,31 – n
clrlslwi rA,rS,b,n (n ≤ b < 32) equivalent to rlwinm rA,rS,n,b – n,31 – n

0 5 6 10 11 15 16 20 21 25 26 30 31

21 S A SH MB ME Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 477 of 657

rlwnmx rlwnmx
Rotate Left Word then AND with Mask (x’5C00 0000’)

rlwnm rA,rS,rB,MB,ME (Rc = ’0’)
rlwnm. rA,rS,rB,MB,ME (Rc = ’1’)

n ← rB[59-63]
r ← ROTL[32](rS[32-63], n)
m ← MASK(MB + 32, ME + 32)
rA ← r & m

The contents of rS are rotated left the number of bits specified by the low-order five bits of rB. A mask is
generated having ‘1’ bits from bit [MB + 32] through bit [ME + 32] and ‘0’ bits elsewhere. The rotated data is
ANDed with the generated mask and the result is placed into rA.

rlwnm can be used to extract and rotate bit fields using the methods shown as follows:

• To extract an n-bit field, that starts at variable bit position b in the high-order 32 bits of rS, right-justified
into rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of rB to b + n,
MB = 32 – n, and ME = 31.

• To extract an n-bit field, that starts at variable bit position b in the high-order 32 bits of rS, left-justified into
rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of rB to b, MB = ’0’, and
ME = n – 1.

• To rotate the contents of a register left (or right) by n bits, by setting the low-order five bits of rB to n
(32-n), MB = ’0’, and ME = 31.

For all uses mentioned, the high-order 32 bits of rA are cleared.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

rotlw rA,rS,rB equivalent to rlwnm rA,rS,rB,0,31

0 5 6 10 11 15 16 20 21 25 26 30 31

23 S A B MB ME Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 478 of 657
pem8b.fm.3.0
July 15, 2005

sc sc
System Call (x’4400 0002’)

In the PowerPC UISA, the sc instruction calls the operating system to perform a service. When control is
returned to the program that executed the system call, the content of the registers depends on the register
conventions used by the program providing the system service.

This instruction is context synchronizing, as described in Section 4.1.5.1 Context Synchronizing Instructions.

Other registers altered:

• Dependent on the system service

In PowerPC OEA, the sc instruction does the following:
SRR0 ← iea CIA + 4
SRR1[33-36,42-47] ← 0
SRR1[0] ← MSR[0]
MSR ← new_value (see below)
NIA ← 0x0000 _0000_0000_0C00

The EA of the instruction following the sc instruction is placed into SRR0. Bits [0-32, 37-41, 48-63] of the
MSR are placed into the corresponding bits of SRR1, and bits [33–36 and 42–47]of SRR1 are set to zero.

Note: An implementation may define additional MSR bits, and in this case, may also cause them to be saved
to SRR1 from MSR on an exception and restored to MSR from SRR1 on an rfid.

Then a system call exception is generated. The exception causes the MSR to be altered as described in
Section 6.4 Exception Definitions.

The exception causes the next instruction to be fetched from interrupt vector 0x00C00.

Note: sc serves as both a basic and an extended mnemonic. The Assembler recognizes an sc mnemonic
with one operand as the basic form, and an sc mnemonic with no operand as the extended form.

Other registers altered:

• SRR0
• SRR1
• MSR

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Reserved

0 5 6 10 11 15 16 29 30 31

17 0 0 0 0 0 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 479 of 657

slbia slbia
SLB Invalidate All (x’7C00 03E4’)

for each SLB entry except SLB entry 0 SLBE[V] ← 0
all other fields of SLBE ← undefined

For all SLB entries except SLB entry 0, the [V] bit in the entry is set to 0, making the entry invalid, and the
remaining fields of the entry are set to undefined values. SLB entry 0 is not altered.

Note: If slbia is executed when instruction address translation is enabled (MSR[IR]= ’1’), software can
ensure that attempting to fetch the instruction following the slbia does not cause an Instruction Segment
interrupt by placing the slbia and the subsequent instruction in the effective segment mapped by SLB entry 0.
(This assumes that no other interrupts occur between executing the slbia and executing the subsequent
instruction.)

This instruction is supervisor-level.

It is not necessary that the ASR point to a valid segment table when issuing slbia.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 480 of 657
pem8b.fm.3.0
July 15, 2005

slbie slbie
SLB Invalidate Entry (x’7C00 0364’)

slbie rB

esid ← (rB)0:35
class ← (rB)36
if class = SLBE[C] for SLB entry that translates
 or most recently translated esid

then for SLB entry (if any) that translates esid
 SLBE[V] ← 0
 all other fields of SLBE ← undefined

else translation of esid ← undefined

Let the Effective Segment ID (ESID) be rB[0-35]. Let the class be rB[36]. The class value must be the same
as the class value in the SLB entry that translates the ESID, or the class value that was in the SLB entry that
most recently translated the ESID if the translation is no longer in the SLB. If the class value is not the same,
the results of translating effective addresses for which EA[0-35] = ESID are undefined, and the next para-
graph need not apply.

If the SLB contains an entry that translates the specified ESID, the [V] bit in that entry is set to ‘0’, making the
entry invalid, and the remaining fields of the entry are set to undefined values.

rB[37-63] must be zeroes.

If this instruction is executed in 32-bit mode, rB[0-31] must be zeros (i.e., the ESID must be in the range
[0-15]).

This instruction is supervisor-level.

Note: If the optional “Bridge” facility is implemented, the Move To Segment Register instructions create SLB
entries in which the class value is ‘0’.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 434 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 481 of 657

slbmfee slbmfee
SLB Move From Entry ESID (x’7C00 0726’)

slbmfee rD, rB

If the SLB entry specified by bits [52-63] of register rB is valid (V= ’1’), the contents of the ESID and V fields of
the entry are placed into register rD.

rD[0-35] ESID

rD[36] V

rD[37-63] must be 0b000|| 0x00_0000

rB[0-51] must be 0x0_0000_0000_0000

rB[52-6]3 index, which selects the SLB entry

If the SLB entry specified by bits [52-63] of register rB is invalid (V= ’0’), rD[36] is set to 0 and the contents of
rD[0-35] and rD[37-63] are undefined. The high-order bits of rB[52-63] that correspond to SLB entries beyond
the size of the SLB provided by the implementation must be zeros.

This instruction is supervisor-level.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D 0 0 0 0 0 B 915 0

rD Reserved

ESID V 0s

0 35 36 37 63

rB

0s Index

0 52 6351

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 482 of 657
pem8b.fm.3.0
July 15, 2005

slbmfev slbmfev
SLB Move From Entry VSID (x’7C00 06A6’)

slbmfev rD, rB

If the SLB entry specified by bits [52-63] of register rB is valid (V= ’1’), the contents of the VSID, KS, KP, N, L,
and C fields of the entry are placed into register rD.

rD[0-51] VSID
rD[52] Ks
rD[53] KP
rD[54] N
rD[55] L
rD[56] C
rD[57-63] must be 0b000_0000
rB[0-51] must be 0x0_0000_0000_0000
rB[52-63] index, which selects the SLB entry

On implementations that support a virtual address size of only n bits, n< 80, rD[0 to 79- n] are set to zeros. If
the SLB entry specified by bits [52-63] of register rB is invalid (V= ’0’), the contents of register rD are unde-
fined. The high-order bits of rB[52-63] that correspond to SLB entries beyond the size of the SLB provided by
the implementation must be zeros.

This is a supervisor-level instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D 0 0 0 0 0 B 851 0

0 52 56 57 63

rD Reserved

VSID K5 Kp N L C 0s

0 51 52 63

rB

0s Index

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 483 of 657

slbmte slbmte
SLB Move To Entry (x’7C00 0324’)

slbmte rS, rB

The SLB entry specified by bits [52-63] of register rB is loaded from register rS and from the remainder of
register rB.

rS[0-51] VSID
rS[52]Ks
rS[53] Kp
rS[54] N
rS[55]L
rS[56] C
rS[57-63] must be 0b000_0000
rB[0-35] ESID
rB[36] V
rB[37-5]1 must be 0b000 || 0x000
rB[52-63] index, which selects the SLB entry

On implementations that support a virtual address size of only n bits, n< 80, rS[0 to 79- n] must be zeros. The
high-order bits of rB[52-63] that correspond to SLB entries beyond the size of the SLB provided by the imple-
mentation must be zeros. If this instruction is executed in 32-bit mode, rB[0-31] must be zeros (i.e., the ESID
must be in the range 0-15). This instruction cannot be used to invalidate an SLB. This is a supervisor-level
instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S 0 0 0 0 0 B 402 0

0 51 52 56 63

rS Reserved

VSID K5KpNLC 0s

0 35 36 37 51 52 63

rB

ESID V 0s Index

Reserved

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 484 of 657
pem8b.fm.3.0
July 15, 2005

sldx sldx
Shift Left Doubleword (x’7C00 0036’)

sld rA,rS,rB (Rc = ’0’)
sld. rA,rS,rB (Rc = ’1’)

n ← rB[58-63]
r ← ROTL[64](rS, n)
if rB[57] = 0 then
m ← MASK(0, 63 - n)

else m ← (64)0
rA ← r & m

The contents of rS are shifted left the number of bits specified by the low-order seven bits of rB. Bits shifted
out of position 0 are lost. Zeros are supplied to the vacated positions on the right. The result is placed into rA.
Shift amounts from 64 to 127 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 27 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 485 of 657

slwx slwx
Shift Left Word (x’7C00 0030’)

slw rA,rS,rB (Rc = ’0’)
slw. rA,rS,rB (Rc = ’1’)

n ← rB[59-63]
r ← ROTL[32](rS[32–63], n)
if rB[58] = 0 then
m ← MASK(32, 63 – n)
else m ← (64)0
rA ← r & m

The contents of the low-order 32 bits of rS are shifted left the number of bits specified by the low-order six bits
of rB. Bits shifted out of position 32 are lost. Zeros are supplied to the vacated positions on the right. The
32-bit result is placed into the low-order 32 bits of rA. The high-order 32 bits of rA are cleared. Shift amounts
from 32 to 63 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 24 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 486 of 657
pem8b.fm.3.0
July 15, 2005

sradx sradx
Shift Right Algebraic Doubleword (x’7C00 0634’)

srad rA,rS,rB (Rc = ’0’)
srad. rA,rS,rB (Rc = ’1’)

n ← rB[58-63]
r ← ROTL[64](rS, 64 - n)
if rB[57] = 0 then
m ← MASK(n, 63)

else m ← (64)0
S ← rS[0]
rA ← (r & m) | (((64)S) & ¬ m)
XER[CA] ← S & ((r & ¬ m) ¦ 0)

The contents of rS are shifted right the number of bits specified by the low-order seven bits of rB. Bits shifted
out of position 63 are lost. Bit [0] of rS is replicated to fill the vacated positions on the left. The result is placed
into rA. XER[CA] is set if rS is negative and any ‘1’ bits are shifted out of position 63; otherwise XER[CA] is
cleared. A shift amount of zero causes rA to be set equal to rS, and XER[CA] to be cleared. Shift amounts
from 64 to 127 give a result of 64 sign bits in rA, and cause XER[CA] to receive the sign bit of rS.

Note: The srad instruction, followed by addze, can by used to divide quickly by 2n. The setting of the CA bit,
by srad, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A B 794 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 487 of 657

sradix sradix
Shift Right Algebraic Doubleword Immediate (x’7C00 0674’)

sradi rA,rS,SH (Rc = ’0’)
sradi. rA,rS,SH (Rc = ’1’)

n ← sh[5] || sh[0-4]
r ← ROTL[64](rS, 64 - n)
m ← MASK(n, 63)
S ← rS[0]
rA ← (r & m) | (((64)S) & ¬ m)
XER[CA] ← S & ((r & ¬ m) ≠ 0)

The contents of rS are shifted right SH bits. Bits shifted out of position 63 are lost. Bit 0 of rS is replicated to
fill the vacated positions on the left. The result is placed into rA. XER[CA] is set if rS is negative and any ‘1’
bits are shifted out of position 63; otherwise XER[CA] is cleared. A shift amount of zero causes rA to be set
equal to rS, and XER[CA] to be cleared.

Note: The sradi instruction, followed by addze, can by used to divide quickly by 2n. The setting of the
XER[CA] bit, by sradi, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A sh* 413 sh* Rc

*Note: This is a split field.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 488 of 657
pem8b.fm.3.0
July 15, 2005

srawx srawx
Shift Right Algebraic Word (x’7C00 0630’)

sraw rA,rS,rB (Rc = ’0’)
sraw. rA,rS,rB (Rc = ’1’)

n ← rB[59-63]
r ← ROTL[32](rS[32–63], 64 – n)
if rB[58] = 0 then
m ← MASK(n + 32, 63)
else m ← (64)0
S ← rS[32]
rA ← r & m | (64)S & ¬ m
XER[CA] ← S & (r & ¬ m[32-63] ≠ 0

The contents of the low-order 32 bits of rS are shifted right the number of bits specified by the low-order six
bits of rB. Bits shifted out of position 63 are lost. Bit [32] of rS is replicated to fill the vacated positions on the
left. The 32-bit result is placed into the low-order 32 bits of rA. Bit [32] of rS is replicated to fill the high-order
32 bits of rA. XER[CA] is set if the low-order 32 bits of rS contain a negative number and any ‘1’ bits are
shifted out of position 63; otherwise XER[CA] is cleared. A shift amount of zero causes rA to receive the sign-
extended value of the low-order 32 bits of rS, and XER[CA] to be cleared. Shift amounts from 32 to 63 give a
result of 64 sign bits, and cause XER[CA] to receive the sign bit of the low-order 32 bits of rS.

Note: The sraw instruction, followed by addze, can by used to divide quickly by 2n. The setting of the
XER[CA] bit, by sraw, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A B 792 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 489 of 657

srawix srawix
Shift Right Algebraic Word Immediate (x’7C00 0670’)

srawi rA,rS,SH (Rc = ’0’)
srawi. rA,rS,SH (Rc = ’1’)

n ← SH
r ← ROTL[32](rS[32-63], 64 - n)
m← MASK(n + 32, 63)
S ← rS[32]
rA ← r & m | (64)S & ¬ m
XER[CA] ← S & ((r & ¬ m)[32-63] ≠ 0)

The contents of the low-order 32 bits of rS are shifted right SH bits. Bits shifted out of position 63 are lost.
Bit [32] of rS is replicated to fill the vacated positions on the left. The 32-bit result is placed into the low-order
32 bits of rA. Bit [32] of rS is replicated to fill the high-order 32 bits of rA. XER[CA] is set if the low-order 32
bits of rS contain a negative number and any ‘1’ bits are shifted out of position 63; otherwise XER[CA] is
cleared. A shift amount of zero causes rA to receive the sign-extended value of the low-order 32 bits of rS,
and XER[CA] to be cleared.

Note: The srawi instruction, followed by addze, can be used to divide quickly by 2n. The setting of the CA
bit, by srawi, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A SH 824 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 490 of 657
pem8b.fm.3.0
July 15, 2005

srdx srdx
Shift Right Doubleword (x’7C00 0436’)

srd rA,rS,rB (Rc = ’0’)
srd. rA,rS,rB (Rc = ’1’)

n ← rB[58-63]
r ← ROTL[64](rS, 64 - n)
if rB[57] = 0 then
m ← MASK(n, 63)

else m ← (64)0
rA ← r & m

The contents of rS are shifted right the number of bits specified by the low-order seven bits of rB. Bits shifted
out of position 63 are lost. Zeros are supplied to the vacated positions on the left. The result is placed into rA.
Shift amounts from 64 to 127 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 539 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 491 of 657

srwx srwx
Shift Right Word (x’7C00 0430’)

srw rA,rS,rB (Rc = ’0’)
srw. rA,rS,rB (Rc = ’1’)

n ← rB[58-63]
r ← ROTL[32](rS[32-63], 64 - n)
if rB[58] = 0 then
m ← MASK(n + 32, 63)

else m ← (64)0
rA ← r & m

The contents of the low-order 32 bits of rS are shifted right the number of bits specified by the low-order six
bits of rB. Bits shifted out of position 63 are lost. Zeros are supplied to the vacated positions on the left. The
32-bit result is placed into the low-order 32 bits of rA. The high-order 32 bits of rA are cleared. Shift amounts
from 32 to 63 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 536 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 492 of 657
pem8b.fm.3.0
July 15, 2005

stb stb
Store Byte (x’9800 0000’)

stb rS,d(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(d)
MEM(EA, 1) ← rS[56-63]

The effective address is the sum (rA|0) + d. The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

38 S A d

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 493 of 657

stbu stbu
Store Byte with Update (x’9C00 0000’)

stbu rS,d(rA)

EA ← (rA) + EXTS(d)
MEM(EA, 1) ← rS[56–63]
rA ← EA

The effective address is the sum (rA) + d. The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

39 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 494 of 657
pem8b.fm.3.0
July 15, 2005

stbux stbux
Store Byte with Update Indexed (x’7C00 01EE’)

stbux rS,rA,rB

EA ← (rA) + (rB)
MEM(EA, 1) ← rS[56-63]
rA ← EA

EA is the sum (rA) + (rB). The contents of the low-order eight bits of rS are stored into the byte in memory
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 247 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 495 of 657

stbx stbx
Store Byte Indexed (x’7C00 01AE’)

stbx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 1) ← rS[56-63]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into the byte in memory
addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 215 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 496 of 657
pem8b.fm.3.0
July 15, 2005

std std
Store Doubleword (x’F800 0000’)

std rS,ds(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(ds || ’00’)
(MEM(EA, 8)) ← (rS)

EA is the sum (rA|0) + (ds || ’00’). The contents of rS are stored into the doubleword in memory addressed by
EA.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

62 S A ds 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 497 of 657

stdcx. stdcx.
Store Doubleword Conditional Indexed (x’7C00 01AD’)

stdcx. rS,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
if RESERVE then
if RESERVE_ADDR = physical_addr(EA)
MEM(EA, 8) ← (rS)
CR0 ← ‘00’ || ‘1’ || XER[SO]
else
u ← undefined 1-bit value
if u then MEM(EA, 8) ← (rS)
CR0 ← ’00’ || u || XER[SO]
RESERVE ← 0

else
CR0 ← ’00’ || ’0’ || XER[SO]

EA is the sum (rA|0) + (rB).

If a reservation exists, and the memory address specified by the stdcx. instruction is the same as that speci-
fied by the load and reserve instruction that established the reservation, the contents of rS are stored into the
doubleword in memory addressed by EA and the reservation is cleared.

If a reservation exists, but the memory address specified by the stdcx. instruction is not the same as that
specified by the load and reserve instruction that established the reservation, the reservation is cleared, and it
is undefined whether the contents of rS are stored into the doubleword in memory addressed by EA.

If no reservation exists, the instruction completes without altering memory.

CR0 field is set to reflect whether the store operation was performed as follows.

CR0[LT GT EQ S0] = 0b00 || store_performed || XER[SO]

EA must be a multiple of eight. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined. For additional information about alignment and DSI exceptions, see
Section 6.4.3 DSI Exception (0x00300).

Note: When used correctly, the load and reserve and store conditional instructions can provide an atomic
update function for a single aligned word (load word and reserve and store word conditional) or doubleword
(load doubleword and reserve and store doubleword conditional) of memory.

In general, correct use requires that load word and reserve be paired with store word conditional, and load
doubleword and reserve with store doubleword conditional, with the same memory address specified by both
instructions of the pair. The only exception is that an unpaired store word conditional or store doubleword

0 5 6 10 11 15 16 20 21 30 31

31 S A B 214 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 498 of 657
pem8b.fm.3.0
July 15, 2005

conditional instruction to any (scratch) EA can be used to clear any reservation held by the processor. Exam-
ples of correct uses of these instructions, to emulate primitives such as fetch and add, test and set, and
compare and swap can be found in Appendix D Synchronization Programming Examples.

A reservation is cleared if any of the following events occurs:

• The processor holding the reservation executes another load and reserve instruction; this clears the first
reservation and establishes a new one.

• The processor holding the reservation executes a store conditional instruction to any address.

• Another processor executes any store instruction to the address associated with the reservation.

• Any mechanism, other than the processor holding the reservation, stores to the address associated with
the reservation.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 499 of 657

stdu stdu
Store Doubleword with Update (x’F800 0001’)

stdu rS,ds(rA)

EA ← (rA) + EXTS(ds || ’00’)
(MEM(EA, 8)) ← (rS)
rA ← EA

EA is the sum (rA) + (ds || ’00’). The contents of rS are stored into the doubleword in memory addressed by
EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

62 S A ds 0 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 500 of 657
pem8b.fm.3.0
July 15, 2005

stdux stdux
Store Doubleword with Update Indexed (x’7C00 016A’)

stdux rS,rA,rB

EA ← (rA) + (rB)
MEM(EA, 8) ← (rS)
rA ← EA

EA is the sum (rA) + (rB). The contents of rS are stored into the doubleword in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 181 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 501 of 657

stdx stdx
Store Doubleword Indexed (x’7C00 012A’)

stdx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
(MEM(EA, 8)) ← (rS)

EA is the sum (rA|0) + (rB). The contents of rS are stored into the doubleword in memory addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 149 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 502 of 657
pem8b.fm.3.0
July 15, 2005

stfd stfd
Store Floating-Point Double (x’D800 0000’)

stfd frS,d(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(d)
MEM(EA, 8) ← (frS)

EA is the sum (rA|0) + d.

The contents of register frS are stored into the doubleword in memory addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

54 S A d

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 503 of 657

stfdu stfdu
Store Floating-Point Double with Update (x’DC00 0000’)

stfdu frS,d(rA)

EA ← (rA) + EXTS(d)
MEM(EA, 8) ← (frS)
rA ← EA

EA is the sum (rA) + d.

The contents of register frS are stored into the doubleword in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

55 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 504 of 657
pem8b.fm.3.0
July 15, 2005

stfdux stfdux
Store Floating-Point Double with Update Indexed (x’7C00 05EE’)

stfdux frS,rA,rB

EA ← (rA) + (rB)
MEM(EA, 8) ← (frS)
rA ← EA

EA is the sum (rA) + (rB).

The contents of register frS are stored into the doubleword in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 759 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 505 of 657

stfdx stfdx
Store Floating-Point Double Indexed (x’7C00 05AE’)

stfdx frS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 8) ← (frS)

EA is the sum (rA|0) + (rB).

The contents of register frS are stored into the doubleword in memory addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 727 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 506 of 657
pem8b.fm.3.0
July 15, 2005

stfiwx stfiwx
Store Floating-Point as Integer Word Indexed (x’7C00 07AE’)

stfiwx frS,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA, 4) ← frS[32-63]

EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of register frS are stored, without conversion, into the word in memory
addressed by EA.

If the contents of register frS were produced, either directly or indirectly, by an lfs instruction, a single-preci-
sion arithmetic instruction, or frsp, then the value stored is undefined. The contents of frS are produced
directly by such an instruction if frS is the target register for the instruction. The contents of frS are produced
indirectly by such an instruction if frS is the final target register of a sequence of one or more floating-point
move instructions, with the input to the sequence having been produced directly by such an instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 983 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 507 of 657

stfs stfs
Store Floating-Point Single (x’D000 0000’)

stfs frS,d(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(d)
MEM(EA, 4) ← SINGLE(frS)

EA is the sum (rA|0) + d.

The contents of register frS are converted to single-precision and stored into the word in memory addressed
by EA. Note that the value to be stored should be in single-precision format prior to the execution of the stfs
instruction. For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store
Instructions.

Other registers altered:

• None

0 5 6 10 11 15 16 31

52 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 508 of 657
pem8b.fm.3.0
July 15, 2005

stfsu stfsu
Store Floating-Point Single with Update (x’D400 0000’)

stfsu frS,d(rA)

EA ← (rA) + EXTS(d)
MEM(EA, 4) ← SINGLE(frS)
rA ← EA

EA is the sum (rA) + d.

The contents of frS are converted to single-precision and stored into the word in memory addressed by EA.
Note that the value to be stored should be in single-precision format prior to the execution of the stfsu
instruction. For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store
Instructions.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

53 S A d

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 509 of 657

stfsux stfsux
Store Floating-Point Single with Update Indexed (x’7C00 056E’)

stfsux frS,rA,rB

EA ← (rA) + (rB)
MEM(EA, 4) ← SINGLE(frS)
rA ← EA

EA is the sum (rA) + (rB).

The contents of frS are converted to single-precision and stored into the word in memory addressed by EA.
For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store Instructions.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 695 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 510 of 657
pem8b.fm.3.0
July 15, 2005

stfsx stfsx
Store Floating-Point Single Indexed (x’7C00 052E’)

stfsx frS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 4) ← SINGLE(frS)

EA is the sum (rA|0) + (rB).

The contents of register frS are converted to single-precision and stored into the word in memory addressed
by EA. For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store Instruc-
tions.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 663 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 511 of 657

sth sth
Store Halfword (x’B000 0000’)

sth rS,d(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(d)
MEM(EA, 2) ← rS[48-63]

EA is the sum (rA|0) + d. The contents of the low-order 16 bits of rS are stored into the halfword in memory
addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

44 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 512 of 657
pem8b.fm.3.0
July 15, 2005

sthbrx sthbrx
Store Halfword Byte-Reverse Indexed (x’7C00 072C’)

sthbrx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 2) ← rS[56-63] || rS[48-55]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into bits [0–7] of the half-
word in memory addressed by EA. The contents of the subsequent low-order eight bits of rS are stored into
bits [8–15] of the halfword in memory addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 918 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 513 of 657

sthu sthu
Store Halfword with Update (x’B400 0000’)

sthu rS,d(rA)

EA ← (rA) + EXTS(d)
MEM(EA, 2) ← rS[48-63]
rA ← EA

EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are stored into the halfword in memory
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

45 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 514 of 657
pem8b.fm.3.0
July 15, 2005

sthux sthux
Store Halfword with Update Indexed (x’7C00 036E’)

sthux rS,rA,rB

EA ← (rA) + (rB)
MEM(EA, 2) ← rS[48-63]
rA ← EA

EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS are stored into the halfword in memory
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 439 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 515 of 657

sthx sthx
Store Halfword Indexed (x’7C00 032E’)

sthx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 2) ← rS[48-63]

EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits of rS are stored into the halfword in memory
addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 407 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 516 of 657
pem8b.fm.3.0
July 15, 2005

stmw stmw
Store Multiple Word (x’BC00 0000’)

stmw rS,d(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(d)
r ← rS
do while r ≤ 31
MEM(EA, 4) ← GPR(r)[32-63]
r ← r + 1
EA ← EA + 4

EA is the sum (rA|0) + d.

n = (32 – rS).

n consecutive words starting at EA are stored from the low-order 32 bits of GPRs rS through r31. For
example, if rS = 30, 2 words are stored.

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined. For additional information about alignment and DSI exceptions, see
Section 6.4.3 DSI Exception (0x00300).

Note: In some implementations, this instruction is likely to have a greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

0 5 6 10 11 15 16 31

47 S A d

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 517 of 657

stswi stswi
Store String Word Immediate (x’7C00 05AA’)

stswi rS,rA,NB

if rA = 0 then EA ← 0
elseEA ← (rA)
if NB = 0 then n ← 32
elsen ← NB
r ← rS - 1
i ← 32
do while n > 0
if i = 32 then r ← r + 1 (mod 32)
MEM(EA, 1) ← GPR(r)[i-i + 7]
i ← i + 8
if i = 64 then i ← 32
EA ← EA + 1
n ← n - 1

EA is (rA|0). Let n = NB if NB ≠ 0, n = 32 if NB = ’0’; n is the number of bytes to store. Let nr = CEIL(n ÷ 4);
nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS + nr – 1. Data is stored from the low-
order four bytes of each GPR. Bytes are stored left to right from each register. The sequence of registers
wraps around through r0 if required.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note: In some implementations, this instruction is likely to have a greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A NB 725 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 518 of 657
pem8b.fm.3.0
July 15, 2005

stswx stswx
Store String Word Indexed (x’7C00 052A’)

stswx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
n ← XER[25-31]
r ← rS - 1
i ← 32
do while n > 0
if i = 32 then r ← r + 1 (mod 32)
MEM(EA, 1) ← GPR(r)[i-i + 7]
i ← i + 8
if i = 64 then i ← 32
EA ← EA + 1
n ← n - 1

EA is the sum (rA|0) + (rB). Let n = XER[25–31]; n is the number of bytes to store. Let nr = CEIL(n ÷ 4); nr is
the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS + nr – 1. Data is stored from the low-
order four bytes of each GPR. Bytes are stored left to right from each register. The sequence of registers
wraps around through r0 if required. If n = ’0’, no bytes are stored.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note: In some implementations, this instruction is likely to have a greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 661 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 519 of 657

stw stw
Store Word (x’9000 0000’)

stw rS,d(rA)

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + EXTS(d)
MEM(EA, 4) ← rS[32-63]

EA is the sum (rA|0) + d. The contents of the low-order 32 bits of rS are stored into the word in memory
addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

36 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 520 of 657
pem8b.fm.3.0
July 15, 2005

stwbrx stwbrx
Store Word Byte-Reverse Indexed (x’7C00 052C’)

stwbrx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 4) ← rS[56-63] || rS[48-55] || rS[40-47] || rS[32-39]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into bits [0–7] of the word
in memory addressed by EA. The contents of the subsequent eight low-order bits of rS are stored into bits
[8-15] of the word in memory addressed by EA. The contents of the subsequent eight low-order bits of rS are
stored into bits [16–23] of the word in memory addressed by EA. The contents of the subsequent eight low-
order bits of rS are stored into bits [24–31] of the word in memory addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 662 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 521 of 657

stwcx. stwcx.
Store Word Conditional Indexed (x’7C00 012D’)

stwcx. rS,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
if RESERVE then
if RESERVE_ADDR = physical_addr(EA)
MEM(EA, 4) ← rS[32-63]
CR0 ← ’00’ || ’1’ || XER[SO]
else
u ← undefined 1-bit value
if u then MEM(EA, 4) ← rS[32-63]
CR0 ← ’00’ || u || XER[SO]
RESERVE ← 0

else
CR0 ← ’00’ || ‘0’ || XER[SO]

EA is the sum (rA|0) + (rB). If the reserved bit is set, the stwcx. instruction stores rS to effective address
(rA + rB), clears the reserved bit, and sets CR0[EQ]. If the reserved bit is not set, the stwcx. instruction does
not do a store; it leaves the reserved bit cleared and clears CR0[EQ]. Software must look at CR0[EQ] to see
if the stwcx. was successful.

The reserved bit is set by the lwarx instruction. The reserved bit is cleared by any stwcx. instruction to any
address, and also by snooping logic if it detects that another processor does any kind of store to the block
indicated in the reservation buffer when reserved is set.

If a reservation exists, and the memory address specified by the stwcx. instruction is the same as that speci-
fied by the load and reserve instruction that established the reservation, the contents of the low-order 32 bits
of rS are stored into the word in memory addressed by EA and the reservation is cleared.

If a reservation exists, but the memory address specified by the stwcx. instruction is not the same as that
specified by the load and reserve instruction that established the reservation, the reservation is cleared, and it
is undefined whether the contents of the low-order 32 bits of rS are stored into the word in memory addressed
by EA.

If no reservation exists, the instruction completes without altering memory.

CR0 field is set to reflect whether the store operation was performed as follows:

CR0[LT GT EQ S0] = 0b00 || store_performed || XER[SO]

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined. For additional information about alignment and DSI exceptions, see
Section 6.4.3 DSI Exception (0x00300).

0 5 6 10 11 15 16 20 21 30 31

31 S A B 150 1

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 522 of 657
pem8b.fm.3.0
July 15, 2005

The granularity with which reservations are managed is implementation-dependent. Therefore, the memory
to be accessed by the load and reserve and store conditional instructions should be allocated by a system
library program.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 523 of 657

stwu stwu
Store Word with Update (x’9400 0000’)

stwu rS,d(rA)

EA ← (rA) + EXTS(d)
MEM(EA, 4) ← rS[32-63]
rA ← EA

EA is the sum (rA) + d. The contents of the low-order 32 bits of rS are stored into the word in memory
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

37 S A d

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 524 of 657
pem8b.fm.3.0
July 15, 2005

stwux stwux
Store Word with Update Indexed (x’7C00 016E’)

stwux rS,rA,rB

EA ← (rA) + (rB)
MEM(EA, 4) ← rS[32-63]
rA ← EA

EA is the sum (rA) + (rB). The contents of the low-order 32 bits of rS are stored into the word in memory
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 183 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 525 of 657

stwx stwx
Store Word Indexed (x’7C00 012E’)

stwx rS,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)
EA ← b + (rB)
MEM(EA, 4) ← rS[32-63]

EA is the sum (rA|0) + (rB). The contents of the low-order 32 bits of rS are is stored into the word in memory
addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 151 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 526 of 657
pem8b.fm.3.0
July 15, 2005

subfx subfx
Subtract From (x’7C00 0050’)

subf rD,rA,rB (OE = ’0’ Rc = ’0’)
subf. rD,rA,rB (OE = ’0’ Rc = ’1’)
subfo rD,rA,rB (OE = ’1’ Rc = ’0’)
subfo. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← ¬ (rA) + (rB) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD.

The subf instruction is preferred for subtraction because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO, OV (if OE = ’1’)

Simplified mnemonics:

sub rD,rA,rB equivalent to subf rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 40 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 527 of 657

subfcx subfcx
Subtract from Carrying (x’7C00 0010’)

subfc rD,rA,rB (OE = ‘0’ Rc = ‘0’)
subfc. rD,rA,rB (OE = ‘0’ Rc = ’1’)
subfco rD,rA,rB (OE = ’1’ Rc = ‘0’)
subfco. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← ¬ (rA) + (rB) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

Simplified mnemonics:

subc rD,rA,rB equivalent to subfc rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 8 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 528 of 657
pem8b.fm.3.0
July 15, 2005

subfex subfex
Subtract from Extended (x’7C00 0110’)

subfe rD,rA,rB (OE = ‘0’ Rc = ‘0’)
subfe. rD,rA,rB (OE = ‘0’ Rc = ’1’)
subfeo rD,rA,rB (OE = ’1’ Rc = ‘0’)
subfeo. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← ¬ (rA) + (rB) + XER[CA]

The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 136 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 529 of 657

subfic subfic
Subtract from Immediate Carrying (x’2000 0000’)

subfic rD,rA,SIMM

rD ← ¬ (rA) + EXTS(SIMM) + 1

The sum ¬ (rA) + EXTS(SIMM) + 1 is placed into rD.

Other registers altered:

• XER:
Affected: CA
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 31

08 D A SIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 530 of 657
pem8b.fm.3.0
July 15, 2005

subfmex subfmex
Subtract from Minus One Extended (x’7C00 01D0’)

subfme rD,rA (OE = ’0’ Rc = ’0’)
subfme. rD,rA (OE = ’0’ Rc = ’1’)
subfmeo rD,rA (OE = ’1’ Rc = ’0’)
subfmeo. rD,rA (OE = ’1’ Rc = ’1’)

rD ← ¬ (rA) + XER[CA] - 1

The sum ¬ (rA) + XER[CA] + (64)1 is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 232 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 531 of 657

subfzex subfzex
Subtract from Zero Extended (x’7C00 0190’)

subfze rD,rA (OE = ’0’ Rc = ’0’)
subfze. rD,rA (OE = ’0’ Rc = ’1’)
subfzeo rD,rA (OE = ’1’ Rc = ’0’)
subfzeo. rD,rA (OE = ’1’ Rc = ’1’)

rD ← ¬ (rA) + XER[CA]

The sum ¬ (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 200 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 532 of 657
pem8b.fm.3.0
July 15, 2005

sync sync
Synchronize (x’7C00 04AC’)

sync L

The sync instruction creates a memory barrier. The set of memory accesses that is ordered by the memory
barrier depends on the value of the L field.

The ordering done by the memory barrier is cumulative. The sync instruction may complete before memory
accesses associated with instructions preceding the sync instruction have been performed.

If L= ’0’, the sync instruction has the following additional properties:

• Executing the sync instruction ensures that all instructions preceding the sync instruction have com-
pleted before the sync instruction completes, and that no subsequent instructions are initiated until after
the sync instruction completes.

• The sync instruction is execution synchronizing. However, address translation and reference and change
recording associated with subsequent instructions may be performed before the sync instruction com-
pletes.

• The memory barrier provides the additional ordering function such that if a given instruction that is the
result of a Store in set B is executed, all applicable memory accesses in set A have been performed with
respect to the processor executing the instruction to the extent required by the associated memory coher-

L = ‘0’ (“heavyweight sync”) The memory barrier provides an ordering function for the memory accesses
associated with all instructions that are executed by the processor executing the
sync instruction. The applicable pairs are all pairs ai,bj in which bj is a data
access, except that if ai is the memory access caused by an icbi instruction
then bj may be performed with respect to the processor executing the sync
instruction before ai is performed with respect to that processor.

L= ‘1’ (“lightweight sync”) The memory barrier provides an ordering function for the memory accesses
caused by Load, Store, and dcbz instructions that are executed by the
processor executing the sync instruction and for which the specified memory
location is in memory that is Memory Coherence Required and is neither Write
Through Required nor Caching Inhibited. The applicable pairs are all pairs ai,bj
of such accesses except those in which ai is an access caused by a store or
dcbz instruction and bj is an access caused by a load instruction.

L= ‘2’ (ptesync) This variant of the synchronize instruction is designated the page table entry
sync and is specified by the extended mnemonic ptesync. This variant has all
of the properties of sync with L = ‘0’ and with some additional properties.

L= ‘3’ Reserved. The results of executing a sync instruction with L= ‘3’ are boundedly
undefined.

Reserved

598 00 0 0 0 0 0 0 0 0 031 0 0 0

0 5 6 8 9 10 11 15 16 20 21 30 31

L

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 533 of 657

ence properties. The single exception is that any memory access in set A that is caused by an icbi
instruction executed by the processor executing the sync instruction (P1) may not have been performed
with respect to P1.

The cumulative properties of the barrier apply to the execution of the given instruction as they would to a
Load that returned a value that was the result of a Store in set B.

If L=’2’, the sync instruction (ptesync) has the following additional properties:

• The memory barrier created by the ptesync instruction provides an ordering function for the memory
accesses associated with all instructions that are executed by the processor executing the ptesync
instruction and, as elements of set A, for all reference and change bit updates associated with additional
address translations that were performed, by the processor executing the ptesync instruction, before the
ptesync instruction is executed. The applicable pairs are all pairs ai,bj in which bj is a data access and ai
is not an instruction fetch.

• The ptesync instruction causes all reference and change bit updates associated with address transla-
tions that were performed, by the processor executing the ptesync instruction, before the ptesync
instruction is executed, to be performed with respect to that processor before the ptesync instruction's
memory barrier is created.

• The ptesync instruction provides an ordering function for all stores to the page table caused by store
instructions preceding the ptesync instruction with respect to searches of the page table that are per-
formed, by the processor executing the ptesync instruction, after the ptesync instruction completes.
Executing a ptesync instruction ensures that all such stores will be performed, with respect to the pro-
cessor executing the ptesync instruction, before any implicit accesses to the affected page table entries,
by such page table searches, are performed with respect to that processor.

• In conjunction with the tlbie and tlbsync instructions, the ptesync instruction provides an ordering func-
tion for TLB invalidations and related memory accesses on other processors as described in the tlbsync
instruction description.

Note: The functions performed by the ptesync instruction may take a significant amount of time to complete,
so this form of the instruction should be used only if the functions listed above are needed. Otherwise sync
with L = ‘0’ should be used (or sync with L = ‘1’ or eieio, if appropriate).

This instruction is execution synchronizing. For more information on execution synchronization, see
Section 4.1.5 Synchronizing Instructions.

Other registers altered:

• None

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 534 of 657
pem8b.fm.3.0
July 15, 2005

td td
Trap Doubleword (x’7C00 0088’)

td TO,rA,rB

a ← (rA)
b ← (rB)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of rA are compared with the contents of rB. If any bit in the TO field is set and its corresponding
condition is met by the result of the comparison, then the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tdge rA,rB equivalent to td 12,rA,rB
tdlnl rA,rB equivalent to td 5,rA,rB

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 68 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 535 of 657

tdi tdi
Trap Doubleword Immediate (x’0800 0000’)

tdi TO,rA,SIMM

a ← (rA)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of rA are compared with the sign-extended value of the SIMM field. If any bit in the TO field is
set and its corresponding condition is met by the result of the comparison, then the system trap handler is
invoked.

Other registers altered:

• None

Simplified mnemonics:

tdlti rA,value equivalent to tdi 16,rA,value
tdnei rA,value equivalent to tdi 24,rA,value

0 5 6 10 11 15 16 31

02 TO A SIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 536 of 657
pem8b.fm.3.0
July 15, 2005

tlbia tlbia
Translation Lookaside Buffer Invalidate All (x’7C00 02E4’)

All TLB entries ← invalid

The entire translation lookaside buffer (TLB) is invalidated (that is, all entries are removed).

The TLB is invalidated regardless of the settings of MSR[IR] and MSR[DR]. The invalidation is done without
reference to the SLB, segment table, or segment registers.

This instruction does not cause the entries to be invalidated in other processors.

This is a supervisor-level instruction and optional in the PowerPC Architecture.

Other registers altered:

• None

0 0 0 0 0 370 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 537 of 657

tlbie tlbie
Translation Lookaside Buffer Invalidate Entry (x’7C00 0264’)

tlbie rB, L

if L = 0
then pg_size ← 4 KB
else pg_size ← large page size

p ← log_base_2(pg_size)
for each processor in the partition
for each TLB entry
if (entry_VPN[32 to 79-p] = (RB[16 to63-p]) & (entry_pg_size = pg_size)
then TLB entry ← invalid

The contents of rB[0-15] must be 0x0000. If the L field of the instruction is ‘1’ let the page size be large; other-
wise let the page size be 4 KB.

All TLB entries that have all of the following properties are made invalid on all processors that are in the same
partition as the processor executing the tlbie instruction.

• The entry translates a virtual address for which VPN[32 to 79- p] is equal to rB[16 to 63- p].

• The page size of the entry matches the page size specified by the L field of the instruction.

Additional TLB entries may also be made invalid on any processor that is in the same partition as the
processor executing the tlbie instruction.

MSR[SF] must be ‘1’ when this instruction is executed; otherwise the results are undefined.

The operation performed by this instruction is ordered by the eieio (or sync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed by the processor executing the tlbie instruction. The
operations caused by tlbie and tlbsync are ordered by eieio as a third set of operations, which is indepen-
dent of the other two sets that eieio orders.

This is a supervisor-level instruction and optional in the PowerPC Architecture.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

L31 B0 0 0 0 0 0 0 0 0 306 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 538 of 657
pem8b.fm.3.0
July 15, 2005

tlbiel tlbiel
Translation Lookaside Buffer Invalidate Entry Local (x’7C00 0224’)

tlbiel rB,L

if L = 0
then pg_size ← 4 KB
else pg_size ← large page size

p ← log_base_2(pg_size)
for each TLB entry

if (entry_VPN[32 to (79-p)] = rB[16 to (63-p)] &
(entry_pg_size = pg_size)

then TLB entry ← invalid

The contents of rB[0-15] must be 0x0000. If the L field of the instruction is ‘1’ let the page size be large; other-
wise let the page size be 4KB.

All TLB entries that have all of the following properties are made invalid on the processor which executes this
instruction.

• The entry translates a virtual address for which VPN[32 to (79- p)] is equal to rB[16 to (63- p)].
• The page size of the entry matches the page size specified by the L field of the instruction.

Only TLB entries on the processor executing this instruction are affected. rB[52 - 63] must be zero. MSR[SF]
must be ‘1’ when this instruction is executed; otherwise the results are undefined.

The operation performed by this instruction is ordered by the eieio (or sync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed by the processor executing the tlbiel instruction. The
operations caused by tlbiel and tlbsync are ordered by eieio as a third set of operations, which is indepen-
dent of the other two sets that eieio orders.

This is a supervisor-level instruction and optional in the PowerPC Architecture.

Support of large pages for tlbiel is optional. On implementations that do not support large pages for tlbiel, the
following properties apply:

• The syntax of the instruction is “tlbiel rB”.
• Bit [10] of the instruction is a reserved bit.
• In the RTL, the first three lines and the third from last line are ignored.
• The last list item in the paragraph that begins “All TLB entries ...”, namely “The page size of the entry

matches the page size specified by the L field of the instruction”, is ignored.

Note: To synchronize the completion of this processor local form of tlbie, only a ptesync is required
(tlbsync should not be used).

Other registers altered:
• None

0 5 6 9 10 11 15 16 20 21 30 31

Reserved

rB 274 031 0 0 0 0 0 L 0 0 0 0 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 539 of 657

tlbsync tlbsync
TLB Synchronize (x’7C00 046C’)

If an implementation sends a broadcast for tlbie then it will also send a broadcast for tlbsync. Executing a
tlbsync instruction ensures that all tlbie instructions previously executed by the processor executing the
tlbsync instruction have completed on all other processors.

The operation performed by this instruction is treated as a caching-inhibited and guarded data access with
respect to the ordering done by eieio.

Refer to Section 7.4.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates
and Section 7.5.3 Page Table Updates for other requirements associated with the use of this instruction.

This instruction is supervisor-level and optional in the PowerPC Architecture.

Note: tlbsync should not be used to synchronize the completion of tlbiel.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 540 of 657
pem8b.fm.3.0
July 15, 2005

tw tw
Trap Word (x’7C00 0008’)

tw TO,rA,rB

a ← EXTS(rA[32-63])
b ← EXTS(rB[32-63])
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of the low-order 32 bits of rA are compared with the contents of the low-order 32 bits of rB. If
any bit in the TO field is set and its corresponding condition is met by the result of the comparison, then the
system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tweq rA,rB equivalent to tw 4,rA,rB
twlge rA,rB equivalent to tw 5,rA,rB
trap equivalent to tw 31,0,0

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 4 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 541 of 657

twi twi
Trap Word Immediate (x’0C00 0000’)

twi TO,rA,SIMM

a ← EXTS(rA[32-63])
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of the low-order 32 bits of rA are compared with the sign-extended value of the SIMM field. If
any bit in the TO field is set and its corresponding condition is met by the result of the comparison, then the
system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

twgti rA,value equivalent to twi 8,rA,value
twllei rA,value equivalent to twi 6,rA,value

0 5 6 10 11 15 16 31

03 TO A SIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 542 of 657
pem8b.fm.3.0
July 15, 2005

xorx xorx
XOR (x’7C00 0278’)

xor rA,rS,rB (Rc = ’0’)
xor. rA,rS,rB (Rc = ’1’)

rA ← (rS) ⊕ (rB)

The contents of rS is XORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 316 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005

Page 543 of 657

xori xori
XOR Immediate (x’6800 0000’)

xori rA,rS,UIMM

rA ← (rS) ⊕ ((48)0 || UIMM)

The contents of rS are XORed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

26 S A UIMM

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 544 of 657
pem8b.fm.3.0
July 15, 2005

xoris xoris
XOR Immediate Shifted (x’6C00 0000’)

xoris rA,rS,UIMM

rA ← (rS) ⊕ ((32)0 || UIMM || (16)0)

The contents of rS are XORed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

27 S A UIMM

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app1_InstrSetList.fm.3.0
July 15, 2005

Page 545 of 721

Appendix A. PowerPC Instruction Set Listings

This appendix lists the PowerPC Architecture’s instruction set. Instructions are sorted by mnemonic, opcode,
function, and form. Also included in this appendix is a quick reference table that contains general information,
such as the architecture level, privilege level, and form, and indicates if the instruction is 64-bit and/or
optional.

Note: Split fields, which represent the concatenation of sequences from left to right, are shown in lowercase.
For more information refer to Chapter 8, Instruction Set.

A.1 Instructions Sorted by Mnemonic

Table A-1 lists the instructions implemented in the PowerPC Architecture in alphabetical order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addx 31 D A B OE 266 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

andx 31 S A B 28 Rc

bcctrx 19 BO BI 0 0 0 BH 528 LK

bclrx 19 BO BI 0 0 0 BH 16 LK

bcx 16 BO BI BD AA LK

bx 18 LI AA LK

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Reserved bits

Key:

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 546 of 721
pemA_app1_InstrSetList.fm.3.0

July 15, 2005

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divdux 1 31 D A B OE 457 Rc

divdx 1 31 D A B OE 489 Rc

divwux 31 D A B OE 459 Rc

divwx 31 D A B OE 491 Rc

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app1_InstrSetList.fm.3.0
July 15, 2005

Page 547 of 721

faddx 63 D A B 0 0 0 0 0 21 Rc

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fmaddsx 59 D A B C 29 Rc

fmaddx 63 D A B C 29 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fmsubsx 59 D A B C 28 Rc

fmsubx 63 D A B C 28 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

fnmaddsx 59 D A B C 31 Rc

fnmaddx 63 D A B C 31 Rc

fnmsubsx 59 D A B C 30 Rc

fnmsubx 63 D A B C 30 Rc

fresx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

frsqrtex 2 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 2 63 D A B C 23 Rc

fsqrtsx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtx 2 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 548 of 721
pemA_app1_InstrSetList.fm.3.0

July 15, 2005

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1 58 D A ds 0

ldarx 1 31 D A B 84 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw 4 46 D A d

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwa 1 58 D A ds 2

lwarx 31 D A B 20 0

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app1_InstrSetList.fm.3.0
July 15, 2005

Page 549 of 721

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 3 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfocrf 31 D 1 CRM 0 19 0

mfspr 5 31 D spr 339 0

mfsr 3, 6 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 3, 6 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtmsr 3, 6 31 S 0 0 0 0 L 0 0 0 0 0 146 0

mtmsrd 1, 3 31 S 0 0 0 0 L 0 0 0 0 0 178 0

mtocrf 31 S 1 CRM 0 144 0

mtspr 5 31 S spr 467 0

mtsr 3, 6 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 3, 6 31 S 0 0 0 0 0 B 242 0

mulhdux 1 31 D A B 0 9 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhwux 31 D A B 0 11 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 550 of 721
pemA_app1_InstrSetList.fm.3.0

July 15, 2005

mulhwx 31 D A B 0 75 Rc

mulldx 1 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

orx 31 S A B 444 Rc

rfid 1, 3 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldicx 1 30 S A sh mb 2 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slbia 1,2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

slbmfee 1 31 D 0 0 0 0 0 B 915 0

slbmfev 1 31 D 0 0 0 0 0 B 851 0

slbmte 1 31 D 0 0 0 0 0 B 402 0

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradix 1 31 S A sh 413 sh Rc

sradx 1 31 S A B 794 Rc

srawix 31 S A SH 824 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app1_InstrSetList.fm.3.0
July 15, 2005

Page 551 of 721

srawx 31 S A B 792 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdcx. 1 31 S A B 214 1

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 2 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 4 47 S A d

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 552 of 721
pemA_app1_InstrSetList.fm.3.0

July 15, 2005

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfx 31 D A B OE 40 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 L 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tdi 1 02 TO A SIMM

tlbia 2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2,3 31 0 0 0 0 0 L 0 0 0 0 0 B 306 0

tlbiel 2,3 31 0 0 0 0 0 L 0 0 0 0 0 B 274 0

tlbsync 2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

xorx 31 S A B 316 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app2.fm.3.0
July 15, 2005

Page 553 of 657

A.2 Instructions Sorted by Opcode

Table A-2 lists the instructions defined in the PowerPC Architecture in numeric order by opcode.

.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 1 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 BH 0 0 0 0 0 1 0 0 0 0

rfid 1, 3 0 1 0 0 1 1 0 1 0 0 1 0 0

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 BH 1 0 0 0 0 1 0 0 0 0 LK

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Reserved bits

Key:

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 554 of 657
pemA_app2.fm.3.0

July 15, 2005

rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 1 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 1 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 1 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 1 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 1 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 1 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 1 0 0 0 Rc

mulhdux 1 0 1 1 1 1 1 D A B 0 0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 1 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sldx 1 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE 0 0 0 1 0 1 0 0 0 Rc

ldux 1 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app2.fm.3.0
July 15, 2005

Page 555 of 657

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzdx 1 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 1 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 1 0 1 1 1 1 1 D A B 0 0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 3 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 1 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 3, 6 31 S 0 0 0 0 L 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 1 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

mtmsrd 1, 3 0 1 1 1 1 1 S 0 0 0 0 L 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0

stdux 1 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 0 0 1 0 1 0 Rc

mtsr 6 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 1 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 1 0 1 0 0 0 Rc

mulldx 1 0 1 1 1 1 1 D A B OE 0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 1 0 1 0 1 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 556 of 657
pemA_app2.fm.3.0

July 15, 2005

mullwx 0 1 1 1 1 1 D A B OE 0 1 1 1 0 1 0 1 1 Rc

mtsrin 6 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

mtocrf 0 1 1 1 1 1 S 1 CRM 0 0 0 1 0 0 1 0 0 0 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbiel 3 0 1 1 1 1 1 0 0 0 0 L 0 0 0 0 0 B 0 1 0 0 01 0 0 1 0 0

tlbie 3 0 1 1 1 1 1 0 0 0 0 L 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 5 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 1 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 1 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 1 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 sh Rc

slbie 1, 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 1 0 1 1 1 1 1 D A B OE 1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE 1 1 1 0 0 1 0 1 1 Rc

mtspr 5 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app2.fm.3.0
July 15, 2005

Page 557 of 657

divdx 1 0 1 1 1 1 1 D A B OE 1 1 1 1 0 1 0 0 1 Rc

divwx 0 1 1 1 1 1 D A B OE 1 1 1 1 0 1 0 1 1 Rc

slbia 1, 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

lswx 4 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 1 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync , 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 3, 6 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 4 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 L 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 3, 6 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

slbmfee 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 1 1 0 0 1 0 0 1 1 0

slbmfev 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 1 0 0 1 1 0

slbmte 1 0 1 1 1 1 1 D 0 0 0 0 0 B 0 1 1 0 0 1 0 0 1 0 0

mfocrf 0 1 1 1 1 1 D 1 CRM 0 0 0 0 0 0 1 0 0 1 1 0

stswx 4 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 4 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 1 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 558 of 657
pemA_app2.fm.3.0

July 15, 2005

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 2 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extswx 1 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 4 1 0 1 1 1 0 D A d

stmw 4 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 1 1 1 1 0 1 0 D A ds 0 0

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app2.fm.3.0
July 15, 2005

Page 559 of 657

ldu 1 1 1 1 0 1 0 D A ds 0 1

lwa 1 1 1 1 0 1 0 D A ds 1 0

fdivsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 2 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fresx 2 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 1 1 1 1 1 1 0 S A ds 0 0

stdu 1 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwzx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtx 2 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 2 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 2 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 560 of 657
pemA_app2.fm.3.0

July 15, 2005

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsfx 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app3.fm.3.0
July 15, 2005

Page 561 of 657

A.3 Instructions Grouped by Functional Categories

Table A-3 through Table A-30 list the PowerPC instructions grouped by function.

Table A-3. Integer Arithmetic Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 1 31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhdux1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulld 1 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Note:

1. 64-bit instruction

Reserved bitsKey:

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 562 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-4. Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Table A-5. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app3.fm.3.0
July 15, 2005

Page 563 of 657

Table A-6. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

rldicx 1 30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

Note:

1. 64-bit instruction

Table A-7. Integer Shift Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

sradix 1 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 564 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-8. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Note:

1. Optional instruction

Table A-9. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app3.fm.3.0
July 15, 2005

Page 565 of 657

Table A-10. Floating-Point Rounding and Conversion Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Note:

1. 64-bit instruction

Table A-11. Floating-Point Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Table A-12. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 566 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1 58 D A ds 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 1 58 D A ds 2

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app3.fm.3.0
July 15, 2005

Page 567 of 657

Table A-14. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Note:

1. 64-bit instruction

Table A-15. Integer Load and Store with Byte Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 1 46 D A d

stmw 1 47 S A d

Note:

1. Load/store string/multiple instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 568 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-17. Integer Load and Store String Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 1 31 D A NB 597 0

lswx 1 31 D A B 533 0

stswi 1 31 S A NB 725 0

stswx 1 31 S A B 661 0

Note:

1. Load/store string/multiple instruction

Table A-18. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 1 31 D A B 84 0

lwarx 31 D A B 20 0

stdcx. 1 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 L 0 0 0 0 0 0 0 0 0 0 598 0

Note:

1. 64-bit instruction

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app3.fm.3.0
July 15, 2005

Page 569 of 657

Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Note:

1. Optional instruction

Table A-21. Floating-Point Move Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 BH 528 LK

bclrx 19 BO BI 0 0 0 BH 16 LK

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 570 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-23. Condition Register Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A-24. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfid 1, 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

sc 17 0 1 0

Note:

1. Supervisor-level instruction
2. 64-bit instruction

Table A-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 1 31 TO A B 68 0

tdi 1 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app3.fm.3.0
July 15, 2005

Page 571 of 657

Table A-26. Processor Control Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfocrf 31 D 1 CRM 0 19 0

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtocrf 31 S 1 CRM 0 144 0

mtmsr 1, 3 31 S 0 0 0 0 L 0 0 0 0 0 146 0

mtmsrd 1, 4 31 S 0 0 0 0 L 0 0 0 0 0 178 0

mtspr 2 31 D spr 467 0

Note:

1. Supervisor-level instruction
2. Supervisor and user-level instruction
3. Optional 64-bit bridge instruction
4. 64-bit instruction

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 572 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-28. Segment Register Manipulation Instructions

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1, 2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1, 2 31 D 0 0 0 0 0 B 659 0

mtsr 1, 2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1, 2 31 S 0 0 0 0 0 B 242 0

Note:

1. Supervisor-level instruction
2. Optional 64-bit bridge instruction

Table A-29. Lookaside Buffer Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

slbmfee 3 31 D 0 0 0 0 0 B 915 0

slbmfev 3 31 D 0 0 0 0 0 B 851 0

slbmte 3 31 D 0 0 0 0 0 B 402 0

tlbia 1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,2 31 0 0 0 0 L 0 0 0 0 0 B 306 0

tlbiel 1,2 31 0 0 0 0 L 0 0 0 0 0 B 274 0

tlbsync 1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Note:

1. Supervisor-level instruction
2. Optional instruction
3. 64-bit instruction

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4.fm.3.0
July 15, 2005

Page 573 of 657

A.4 Instructions Sorted by Form

Table A-31 through Table A-45 list the PowerPC instructions grouped by form.

.

Table A-31. I-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

Table A-32. B-Form

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

Table A-33. SC-Form

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

Reserved bits

Key:

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 574 of 657
pemA_app4.fm.3.0

July 15, 2005

Table A-34. D-Form

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 1 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

Note:

1. Load/store string/multiple instruction
2. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4.fm.3.0
July 15, 2005

Page 575 of 657

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 1 47 S A d

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 2 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

Table A-35. DS-Form

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 1 58 D A ds 0

ldu 1 58 D A ds 1

lwa 1 58 D A ds 2

std 1 62 S A ds 0

stdu 1 62 S A ds 1

Note:

1. 64-bit instruction

Table A-34. D-Form

Note:

1. Load/store string/multiple instruction
2. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 576 of 657
pemA_app4.fm.3.0

July 15, 2005

Table A-36. X-Form

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0

Note:

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4.fm.3.0
July 15, 2005

Page 577 of 657

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 1 31 D A B 84 0

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

Table A-36. X-Form

Note:

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 578 of 657
pemA_app4.fm.3.0

July 15, 2005

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfocrf 31 D 1 CRM 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 3 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 3 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 3 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 3 31 S 0 0 0 0 L 0 0 0 0 0 146 0

mtmsrd 1, 3 31 S 0 0 0 0 L 0 0 0 0 0 178 0

mtsr 3 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 3 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slbia 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

slbmfee 1 31 D 0 0 0 0 0 B 915 0

slbmfev 1 31 D 0 0 0 0 0 B 851 0

slbmte 1 31 D 0 0 0 0 0 B 402 0

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

Table A-36. X-Form

Note:

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4.fm.3.0
July 15, 2005

Page 579 of 657

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 1 31 S A B 214 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 2 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 L 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tlbia 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2, 3 31 0 0 0 0 L 0 0 0 0 0 B 306 0

tlbiel 2, 3 31 0 0 0 0 L 0 0 0 0 0 B 274 0

tlbsync 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

Table A-36. X-Form

Note:

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 580 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

Table A-37. XL-Form

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 BH 528 LK

bclrx 19 BO BI 0 0 0 BH 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfid 1, 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

Note:

1. Supervisor-level instruction
2. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4_2-2.fm.3.0
July 15, 2005

Page 581 of 657

Table A-38. XFX-Form

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 1 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtocrf 31 S 1 CRM 0 144 0

mtspr 1 31 D spr 467 0

Note:

1. Supervisor and user-level instruction

Table A-39. XFL-Form

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 63 0 FM 0 B 711 Rc

Table A-40. XS-Form

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradix 1 31 S A sh 413 sh Rc

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 582 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

Table A-41. XO-Form

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 1 31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhdux 1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 1 31 D A B OE 233 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4_2-2.fm.3.0
July 15, 2005

Page 583 of 657

Table A-42. A-Form

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

Note:

1. Optional instruction

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 584 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

Table A-43. M-Form

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

Table A-44. MD-Form

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldicx 1 30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

Note:

1. 64-bit instruction

Table A-45. MDS-Form

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

Note:

1. 64-bit instruction

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4_2-2.fm.3.0
July 15, 2005

Page 585 of 657

A.5 Instruction Set Legend

Table A-46 provides general information on the PowerPC instruction set (such as the architectural level, priv-
ilege level, and form).

Table A-46. PowerPC Instruction Set Legend

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

addx Yes XO

addcx Yes XO

addex Yes XO

addi Yes D

addic Yes D

addic. Yes D

addis Yes D

addmex Yes XO

addzex Yes XO

andx Yes X

andcx Yes X

andi. Yes D

andis. Yes D

bx Yes I

bcx Yes B

bcctrx Yes XL

bclrx Yes XL

cmp Yes X

cmpi Yes D

cmpl Yes X

cmpli Yes D

cntlzdx Yes Yes X

cntlzwx Yes X

crand Yes XL

crandc Yes XL

creqv Yes XL

crnand Yes XL

crnor Yes XL

cror Yes XL

crorc Yes XL

crxor Yes XL

dcbf Yes X

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 586 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

dcbst Yes X

dcbt Yes X

dcbtst Yes X

dcbz Yes X

divdx Yes Yes XO

divdux Yes Yes XO

divwx Yes XO

divwux Yes XO

eciwx Yes Yes X

ecowx Yes Yes X

eieio Yes X

eqvx Yes X

extsbx Yes X

extshx Yes X

extswx Yes Yes X

fabsx Yes X

faddx Yes A

faddsx Yes A

fcfidx Yes Yes X

fcmpo Yes X

fcmpu Yes X

fctidx Yes Yes X

fctidzx Yes Yes X

fctiwx Yes X

fctiwzx Yes Yes X

fdivx Yes A

fdivsx Yes A

fmaddx Yes A

fmaddsx Yes A

fmrx Yes X

fmsubx Yes A

fmsubsx Yes A

fmulx Yes A

fmulsx Yes A

fnabsx Yes X

fnegx Yes X

Table A-46. PowerPC Instruction Set Legend (Continued)

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4_2-2.fm.3.0
July 15, 2005

Page 587 of 657

fnmaddx Yes A

fnmaddsx Yes A

fnmsubx Yes A

fnmsubsx Yes A

fresx Yes Yes A

frspx Yes X

frsqrtex Yes Yes A

fselx Yes Yes A

fsqrtx Yes Yes A

fsqrtsx Yes Yes A

fsubx Yes A

fsubsx Yes A

icbi Yes X

isync Yes XL

lbz Yes D

lbzu Yes D

lbzux Yes X

lbzx Yes X

ld Yes Yes DS

ldarx Yes Yes X

ldu Yes Yes DS

ldux Yes Yes X

ldx Yes Yes X

lfd Yes D

lfdu Yes D

lfdux Yes X

lfdx Yes X

lfs Yes D

lfsu Yes D

lfsux Yes X

lfsx Yes X

lha Yes D

lhau Yes D

lhaux Yes X

lhax Yes X

lhbrx Yes X

Table A-46. PowerPC Instruction Set Legend (Continued)

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 588 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

lhz Yes D

lhzu Yes D

lhzux Yes X

lhzx Yes X

lmw 1 Yes D

lswi 1 Yes X

lswx 1 Yes X

lwa Yes Yes DS

lwarx Yes X

lwaux Yes Yes X

lwax Yes Yes X

lwbrx Yes X

lwz Yes D

lwzu Yes D

lwzux Yes X

lwzx Yes X

mcrf Yes XL

mcrfs Yes X

mfcr Yes X

mfocrf 3

mffs Yes X

mfmsr Yes Yes X

mfspr 1 Yes Yes Yes XFX

mfsr Yes Yes Yes Yes X

mfsrin Yes Yes Yes Yes X

mftb Yes XFX

mtcrf Yes XFX

mtocrf 3

mtfsb0x Yes X

mtfsb1x Yes X

mtfsfx Yes XFL

mtfsfix Yes X

mtmsr Yes Yes Yes Yes X

mtmsrd Yes Yes Yes X

mtspr 1 Yes Yes Yes XFX

mtsr Yes Yes Yes Yes X

Table A-46. PowerPC Instruction Set Legend (Continued)

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4_2-2.fm.3.0
July 15, 2005

Page 589 of 657

mtsrin Yes Yes Yes Yes X

mulhdx Yes Yes XO

mulhdux Yes Yes XO

mulhwx Yes XO

mulhwux Yes XO

mulldx Yes Yes XO

mulli Yes D

mullwx Yes XO

nandx Yes X

negx Yes XO

norx Yes X

orx Yes X

orcx Yes X

ori Yes D

oris Yes D

rfid Yes Yes Yes Yes XL

rldclx Yes Yes MDS

rldcrx Yes Yes MDS

rldicx Yes Yes MD

rldiclx Yes Yes MD

rldicrx Yes Yes MD

rldimix Yes Yes MD

rlwimix Yes M

rlwinmx Yes M

rlwnmx Yes M

sc Yes Yes SC

slbia Yes Yes Yes Yes X

slbie Yes Yes Yes Yes X

slbmfee 3 Yes Yes Yes

slbmfev 3 Yes Yes Yes

slbmte 3 Yes Yes Yes

sldx Yes Yes X

slwx Yes X

sradx Yes Yes X

sradix Yes Yes XS

srawx Yes X

Table A-46. PowerPC Instruction Set Legend (Continued)

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 590 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

srawix Yes X

srdx Yes Yes X

srwx Yes X

stb Yes D

stbu Yes D

stbux Yes X

stbx Yes X

std Yes Yes DS

stdcx. Yes Yes X

stdu Yes Yes DS

stdux Yes Yes X

stdx Yes Yes X

stfd Yes D

stfdu Yes D

stfdux Yes X

stfdx Yes X

stfiwx Yes X

stfs Yes D

stfsu Yes D

stfsux Yes X

stfsx Yes X

sth Yes D

sthbrx Yes X

sthu Yes D

sthux Yes X

sthx Yes X

stmw 2 Yes D

stswi 2 Yes X

stswx 2 Yes X

stw Yes D

stwbrx Yes X

stwcx. Yes X

stwu Yes D

stwux Yes X

stwx Yes X

subfx Yes XO

Table A-46. PowerPC Instruction Set Legend (Continued)

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app4_2-2.fm.3.0
July 15, 2005

Page 591 of 657

subfcx Yes XO

subfex Yes XO

subfic Yes D

subfmex Yes XO

subfzex Yes XO

sync Yes X

td Yes Yes X

tdi Yes Yes D

tlbiax Yes Yes Yes X

tlbiex Yes Yes Yes X

tlbiel 3 Yes Yes Yes X

tlbsync Yes Yes Yes X

tw Yes X

twi Yes D

xorx Yes X

xori Yes D

xoris Yes D

Table A-46. PowerPC Instruction Set Legend (Continued)

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 592 of 657
pemA_app4_2-2.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemB_appMultPrec_Shift.fm.3.0
July 15, 2005

Page 593 of 657

Appendix B. Multiple-Precision Shifts

This appendix gives examples of how multiple precision shifts can be programmed. A multiple-precision shift
is initially defined to be a shift of an n-double word quantity (64-bit mode) or an n-word quantity (32-bit mode),
where n > 1. The quantity to be shifted is contained in n registers (in the low-order 32 bits in 32-bit mode). The
shift amount is specified either by an immediate value in the instruction or by bits [57–63] (64-bit mode) or
[58-63] (32-bit mode) of a register.

The examples shown below distinguish between the cases n = 2 and n > 2. If n = 2, the shift amount may be
in the range 0–127 (64-bit mode), or 0–63 (32-bit mode), which are the maximum ranges supported by the
shift instructions used. However if n > 2, the shift amount must be in the range 0–63 (64-bit mode), or 0–31
(32-bit mode), for the examples to yield the desired result. The specific instance shown for n > 2 is n = 3:
extending those instruction sequences to larger n is straightforward, as is reducing them to the case n = 2
when the more stringent restriction on shift amount is met. For shifts with immediate shift amounts, only the
case n = 3 is shown because the more stringent restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be shifted, and that the result
is to be placed into the same registers, except for the immediate left shifts in 64-bit mode for which the result
is placed into GPRs 3, 4, and 5. In all cases, for both input and result, the lowest-numbered register contains
the highest-order part of the data and highest-numbered register contains the lowest-order part. In 32-bit
mode, the high-order 32 bits of these registers are assumed not to be part of the quantity to be shifted nor of
the result. For non-immediate shifts, the shift amount is assumed to be in bits [57–63] (64-bit mode), or
[58-63] (32-bit mode), of GPR6. For immediate shifts, the shift amount is assumed to be greater than zero.
GPRs 0-31 are used as scratch registers. For n > 2, the number of instructions required is 2n – 1 (immediate
shifts) or 3n – 1 (non-immediate shifts).

The following section provide an example of multiple-precision shifts in 64-bit mode.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 594 of 657
pemB_appMultPrec_Shift.fm.3.0

July 15, 2005

B.1 Multiple-Precision Shifts

Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit Mode)

64-bit Mode 32-bit Mode

Shift Left Immediate, n = 3 (Shift Amount < 64)

rldicr r5,r4,sh,63 – sh
rldimi r4,r3,0,sh
rldicl r4,r4,sh,0
rldimi r3,r2,0,sh
rldicl r3,r3,sh,0

Shift Left Immediate, n = 3 (Shift Amount < 32)

rlwinm r2,r2,sh,0,31 – sh
rlwimi r2,r3,sh,32 – sh,31
rlwinm r3,r3,sh,0,31 – sh
rlwimi r3,r4,sh,32 – sh,31
rlwinm r4,r4,sh,0,31 – sh

Shift Left, n = 2 (Shift Amount < 128)

subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
addi r31,r6,–64
sld r0,r3,r31
or r2,r2,r0
sld r3,r3,r6

Shift Left, n = 2 (Shift Amount < 64)

subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
addi r31,r6,–32
slw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6

Shift Left, n = 3 (Shift Amount < 64)

subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
sld r3,r3,r6
srd r0,r4,r31
or r3,r3,r0
sld r4,r4,r6

Shift Left, n = 3 (Shift Amount < 32)

subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6
srw r0,r4,r31
or r3,r3,r0
slw r4,r4,r6

Shift Right Immediate, n = 3 (Shift Amount < 64)

rldimi r4,r3,0,64 – sh
rldicl r4,r4,64 – sh,0
rldimi r3,r2,0,64 – sh
rldicl r3,r3,64 – sh,0
rldicl r2,r2,64 – sh,sh

Shift Right Immediate, n = 3 (Shift Amount < 32)

rlwinm r4,r4,32 – sh,sh,31
rlwimi r4,r3,32 – sh,0,sh – 1
rlwinm r3,r3,32 – sh,sh,31
rlwimi r3,r2,32 – sh,0,sh – 1
rlwinm r2,r2,32 – sh,sh,31

Shift Right, n = 2 (Shift Amount < 128)

subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addi r31,r6,–64
srd r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, n = 2 (Shift Amount < 64)

subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addi r31,r6, –32
srw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemB_appMultPrec_Shift.fm.3.0
July 15, 2005

Page 595 of 657

Shift Right, n = 3 (Shift Amount < 64)

subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, n = 3 (Shift Amount < 32)

subfic r31,r6,–32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Shift Right Algebraic Immediate, n = 3
(Shift Amount < 64)

rldimi r4,r4,0,64 – sh
rldicl r4,r4,64 – sh,0
rldimi r3,r2,0,64 – sh
rldicl r3,r3,64 – sh,0
sradi r2,r2,sh

Shift Right Algebraic Immediate, n = 3
(Shift Amount < 32)

rlwinm r4,r4,32 – sh,sh,31
rlwimi r4,r3,32 – sh,0,sh – 1
rlwinm r3,r3,32 – sh,sh,31
rlwimi r3,r2,32 – sh,0,sh – 1
srawi r2,r2,sh

Shift Right Algebraic, n = 2 (Shift Amount < 128)

subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addic. r31,r6,–64
srad r0,r2,r31
ble $+8
ori r3,r0,0
srad r2,r2,r6

Shift Right Algebraic, n = 2 (Shift Amount < 64)

subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic. r31,r6,–32
sraw r0,r2,r31
ble $+8
ori r3,r0,0
sraw r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 64)

subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srad r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 32)

subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
sraw r2,r2,r6

Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit Mode)

64-bit Mode 32-bit Mode

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 596 of 657
pemB_appMultPrec_Shift.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 597 of 657

Appendix C. Floating-Point Models

This appendix describes the execution model for IEEE operations and gives examples of how the floating-
point conversion instructions can be used to perform various conversions as well as providing models for
floating-point instructions.

C.1 Execution Model for IEEE Operations

The following description uses double-precision arithmetic as an example; single-precision arithmetic is
similar except that the fraction field is a 23-bit field and the single-precision guard, round, and sticky bits
(described in this section) are logically adjacent to the 23-bit FRACTION field.

IEEE-conforming significand arithmetic is performed with a floating-point accumulator where bits [0–55],
shown in Figure C-1, comprise the significand of the intermediate result.

The bits and fields for the IEEE double-precision execution model are defined as follows:

• The S bit is the sign bit.

• The C bit is the carry bit that captures the carry out of the significand.

• The L bit is the leading unit bit of the significand that receives the implicit bit from the operands.

• The FRACTION is a 52-bit field that accepts the fraction of the operands.

• The guard (G), round (R), and sticky (X) bits are extensions to the low-order bits of the accumulator. The
G and R bits are required for postnormalization of the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is equally near the two nearest representable values. The
X bit serves as an extension to the G and R bits by representing the logical OR of all bits that may appear
to the low-order side of the R bit, due to either shifting the accumulator right or to other generation of low-
order result bits. The G and R bits participate in the left shifts with zeros being shifted into the R bit.

Table C-1 shows the significance of the G, R, and X bits with respect to the intermediate result (IR), the next
lower in magnitude representable number (NL), and the next higher in magnitude representable number
(NH).

Figure C-1. IEEE 64-Bit Execution Model

Table C-1. Interpretation of G, R, and X Bits

G R X Interpretation

0 0 0 IR is exact

0 0 1

IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL & NH

S C L FRACTION XG R

0 1 52 53 54 55

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 598 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

The significand of the intermediate result is made up of the L bit, the FRACTION, and the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in bits L, FRACTION, G, R,
and X of the floating-point accumulator.

After normalization, the intermediate result is rounded, using the rounding mode specified by FPSCR[RN]. If
rounding causes a carry into C, the significand is shifted right one position and the exponent is incremented
by one. This causes an inexact result and possibly exponent overflow. Fraction bits to the left of the bit posi-
tion used for rounding are stored into the FPR, and low-order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through FPSCR[RN] as described in Section 3.3.5
Rounding. For rounding, the conceptual guard, round, and sticky bits are defined in terms of accumulator bits.

Table C-2 shows the positions of the guard, round, and sticky bits for double-precision and single-precision
floating-point numbers in the IEEE execution model.

Rounding can be treated as though the significand were shifted right, if required, until the least-significant bit
to be retained is in the low-order bit position of the FRACTION. If any of the guard, round, or sticky bits are
nonzero, the result is inexact.

Z1 and Z2, defined in Section 3.3.5 Rounding, can be used to approximate the result in the target format
when one of the following rules is used:

• Round to nearest

– Guard bit = ‘0’: The result is truncated. (Result exact (GRX = ‘000’) or closest to next lower value in
magnitude (GRX = ‘001’, ‘010’, or ‘011’).

– Guard bit = ‘1’: Depends on round and sticky bits:

Case a: If the round or sticky bit is one (inclusive), the result is incremented (result closest to next
higher value in magnitude (GRX = ‘101’, ‘110’, or ‘111’).

Case b: If the round and sticky bits are zero (result midway between closest representable values)
then if the low-order bit of the result is one, the result is incremented. Otherwise (the low-order bit of
the result is zero) the result is truncated (this is the case of a tie rounded to even).

If during the round-to-nearest process, truncation of the unrounded number produces the maximum mag-
nitude for the specified precision, the following action is taken:

– Guard bit = ‘1’: Store infinity with the sign of the unrounded result.
– Guard bit = ‘0’: Store the truncated (maximum magnitude) value.

1 0 1

IR closer to NH1 1 0

1 1 1

Table C-2. Location of the Guard, Round, and Sticky Bits—IEEE Execution Model

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of [26–52], G, R, X

Table C-1. Interpretation of G, R, and X Bits (Continued)

G R X Interpretation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 599 of 657

• Round toward zero—Choose the smaller in magnitude of Z1 or Z2. If the guard, round, or sticky bit is non-
zero, the result is inexact.

• Round toward +infinity—Choose Z1.

• Round toward –infinity—Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction is a floating round to single-
precision or single-precision arithmetic instruction, the intermediate result either is normalized or is placed in
correct denormalized form before being rounded.

C.2 Execution Model for Multiply-Add Type Instructions

The PowerPC Architecture makes use of a special instruction form that performs up to three operations in
one instruction (a multiply, an add, and a negate). With this added capability comes the special ability to
produce a more exact intermediate result as an input to the rounder. Single-precision arithmetic is similar
except that the fraction field is smaller. Note that the rounding occurs only after add; therefore, the computa-
tion of the sum and product together are infinitely precise before the final result is rounded to a representable
format.

The multiply-add significand arithmetic is considered to be performed with a floating-point accumulator,
where bits [1–106] comprise the significand of the intermediate result. The format is shown in Figure C-2.

The first part of the operation is a multiply. The multiply has two 53-bit significands as inputs, which are
assumed to be prenormalized, and produces a result conforming to the above model. If there is a carry out of
the significand (into the C bit), the significand is shifted right one position, placing the L bit into the most-
significant bit of the FRACTION and placing the C bit into the L bit. All 106 bits (L bit plus the fraction) of the
product take part in the add operation. If the exponents of the two inputs to the adder are not equal, the signif-
icand of the operand with the smaller exponent is aligned (shifted) to the right by an amount added to that
exponent to make it equal to the other input’s exponent. Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand are ORed into the X' bit. The add operation also
produces a result conforming to the above model with the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the X' bit, participating in the
shift. The normalized result serves as the intermediate result that is input to the rounder.

For rounding, the conceptual guard, round, and sticky bits are defined in terms of accumulator bits. Table C-3
shows the positions of the guard, round, and sticky bits for double-precision and single-precision floating-
point numbers in the multiply-add execution model.

Figure C-2. Multiply-Add 64-Bit Execution Model

Table C-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution Model

Format Guard Round Sticky

Double 53 54 OR of [55–105], X'

Single 24 25 OR of [26–10]5, X'

S C L FRACTION X'

0 1 105 106

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 600 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

The rules for rounding the intermediate result are the same as those given in Appendix C.1 Execution Model
for IEEE Operations.

If the instruction is floating negative multiply-add or floating negative multiply-subtract, the final result is
negated.

Floating-point multiply-add instructions combine a multiply and an add operation without an intermediate
rounding operation. The fraction part of the intermediate product is 106 bits wide, and all 106 bits take part in
the add/subtract portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF field are set based on
the final result of the operation, and not on the result of the multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were performed using two
separate instructions (for example, an fmul instruction followed by an fadd instruction). That is, multipli-
cation of infinity by 0 or of anything by an SNaN, causes the corresponding exception bits to be set.

C.3 Floating-Point Conversions

This section provides examples of floating-point conversion instructions. Note that some of the examples use
the optional Floating Select (fsel) instruction. Care must be taken in using fsel if IEEE compatibility is
required, or if the values being tested can be NaNs or infinities.

C.3.1 Conversion from Floating-Point Number to Floating-Point Integer

The full convert to floating-point integer function can be implemented with the following sequence assuming
the floating-point value to be converted is in FPR1, and the result is returned in FPR3.

mtfsb0 23 #clear VXCVI
fctid[z] f3,f1 #convert to fx int
fcfid f3,f3 #convert back again
mcrfs 7,5 #VXCVI to CR
bf 31,$+8 #skip if VXCVI was 0
fmr f3,f1 #input was fp int

C.3.2 Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word

The full convert to signed fixed-point integer double word function can be implemented with the following
sequence, assuming the floating-point value to be converted is in FPR1, the result is returned in GPR3, and a
double word at displacement (disp) from the address in GPR1 can be used as scratch space.

fctid[z] f2,f1 #convert to dword int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 601 of 657

C.3.3 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word

The full convert to unsigned fixed-point integer double word function can be implemented with the following
sequence, assuming the floating-point value to be converted is in FPR1, the value zero is in FPR0, the value
264 – 2048 is in FPR3, the value 263 is in FPR4 and GPR4, the result is returned in GPR3, and a double word
at displacement (disp) from the address in GPR1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f5,f3,f1 #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4 #subtract 2**63
fcmpu cr2,f2,f4 #use diff if 2**63
fsel f2,f5,f5,f2
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword
blt cr2,$+8 #add 2**63 if input
add r3,r3,r4 #was 2**63

C.3.4 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word

The full convert to signed fixed-point integer word function can be implemented with the following sequence,
assuming that the floating-point value to be converted is in FPR1, the result is returned in GPR3, and a
double word at displacement (disp) from the address in GPR1 can be used as scratch space.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwa r3,disp + 4(r1) #load word algebraic

#(use lwz on a 32-bit implementation)

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 602 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

C.3.5 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word

The full convert to unsigned fixed-point integer word function can be implemented with the following
sequence, assuming the floating-point value to be converted is in FPR1, the value zero is in FPR0, the value
232 – 1 is in FPR3, the result is returned in GPR3, and a double word at displacement (disp) from the address
in GPR1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f4,f3,f1 #use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp + 4(r1) #load word and zero

C.3.6 Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number

The full convert from signed fixed-point integer double word function, using the rounding mode specified by
FPSCR[RN], can be implemented with the following sequence, assuming the fixed-point value to be
converted is in GPR3, the result is returned in FPR1, and a double word at displacement (disp) from the
address in GPR1 can be used as scratch space.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int

C.3.7 Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number

The full convert from unsigned fixed point integer double word function, using the rounding mode specified by
FPSCR[RN], can be implemented with the following sequence, assuming the fixed-point value to be
converted is in GPR3, the value 232 is in FPR4, the result is returned in FPR1, and two double words at
displacement (disp) from the address in GPR1 is used as scratch space.

rldicl r2,r3,32,32 #isolate high half
rldicl r0,r3,0,32 #isolate low half
std r2,disp(r1) #store dword both
std r0,disp + 8(r1)
lfd f2,disp(r1) #load float both
lfd f1,disp + 8(r1) #load float both
fcfid f2,f2 #convert each half to
fcfid f1,f1 #fpu int (no rnd)
fmadd f1,f4,f2,f1 #(2**32)*high+low

(only add can rnd)

An alternative, shorter, sequence can be used if rounding according to FPSCR[RN] is desired and
FPSCR[RN] specifies round toward +infinity or round toward –infinity, or if it is acceptable for the rounded
answer to be either of the two representable floating-point integers nearest to the given fixed-point integer. In
this case the full convert from unsigned fixed-point integer double word function can be implemented with the
following sequence, assuming the value 264 is in FPR2.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int
fadd f4,f1,f2 #add 2**64
fsel f1,f1,f1,f4 #if r3 < 0

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 603 of 657

C.3.8 Conversion from Signed Fixed-Point Integer Word to Floating-Point Number

The full convert from signed fixed-point integer word function can be implemented with the following
sequence, assuming the fixed-point value to be converted is in GPR3, the result is returned in FPR1, and a
double word at displacement (disp) from the address in GPR1 can be used as scratch space. (The result is
exact.)

extsw r3,r3 #extend sign
std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int

C.3.9 Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number

The full convert from unsigned fixed-point integer word function can be implemented with the following
sequence, assuming the fixed-point value to be converted is in GPR3, the result is returned in FPR1, and a
double word at displacement (disp) from the address in GPR1 can be used as scratch space. (The result is
exact.)

rldicl r0,r3,0,32 #zero-extend
std r0,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int

C.4 Floating-Point Models

This section describes models for floating-point instructions.

C.4.1 Floating-Point Round to Single-Precision Model

The following algorithm describes the operation of the Floating Round to Single-Precision (frsp) instruction.

If frB[1–11] < 897 and frB[1-63] > 0 then
Do

If FPSCR[UE] = 0 then goto Disabled Exponent Underflow
If FPSCR[UE] = 1 then goto Enabled Exponent Underflow

End

If frB[1-11] > 1150 and frB[1-11] < 2047 then
Do
If FPSCR[OE] = 0 then goto Disabled Exponent Overflow
If FPSCR[OE] = 1 then goto Enabled Exponent Overflow
End

If frB[1-11] > 896 and frB[1-11] < 1151 then goto Normal Operand

If frB[1-63] = 0 then goto Zero Operand

If frB[1-11] = 2047 then
Do
If frB[12-63] = 0 then goto Infinity Operand
If frB[12] = 1 then goto QNaN Operand
If frB[12] = 0 and frB[13-63] > 0 then goto SNaN Operand
End

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 604 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

Disabled Exponent Underflow

sign ← frB[0]
If frB[1-11] = 0 then

Do
exp ← -1022
frac[0-52] ← 0b0 || frB[12-63]
End

If frB[1-11] > 0 then
Do
exp ← frB[1-11] - 1023
frac[0-52] ← 0b1 || frB[12-63]
End

Denormalize operand:
G || R || X ← 0b000
Do while exp < -126
exp ← exp + 1
frac[0-52] || G || R || X ← 0b0 || frac || G || (R | X)
End

FPSCR[UX] ← frac[24-52] || G || R || X > 0
Round single(sign,exp,frac[0-52],G,R,X)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If frac[0-52] = 0 then

Do
frD[0] ← sign
frD[1-63] ← 0
If sign = 0 then FPSCR[FPRF] ← +zero
If sign = 1 then FPSCR[FPRF] ← -zero
End

If frac[0-52] > 0 then
Do
If frac[0] = 1 then

Do
If sign = 0 then FPSCR[FPRF] ← +normal number
If sign = 1 then FPSCR[FPRF] ← -normal number

End
If frac[0] = 0 then

Do
If sign = 0 then FPSCR[FPRF] ← +denormalized number
If sign = 1 then FPSCR[FPRF] ← -denormalized number

End
Normalize operand:

Do while frac[0] = 0
exp ← exp - 1
frac[0-52] ← frac[1-52] || 0b0

End
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
End

Done

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 605 of 657

Enabled Exponent Underflow

FPSCR[UX] ← 1
sign ← frB[0]
If frB[1-11] = 0 then

Do
exp ← -1022
frac[0-52] ← 0b0 || frB[12-63]

End
If frB[1-11] > 0 then

Do
exp ← frB[1-11] - 1023
frac[0-52] ← 0b1 || frB[12-63]

End
Normalize operand:

Do while frac[0] = 0
exp ← exp - 1
frac[0-52] ← frac[1-52] || 0b0

End
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
exp ← exp + 192
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
If sign = 0 then FPSCR[FPRF] ← +normal number
If sign = 1 then FPSCR[FPRF] ← -normal number
Done

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 606 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

Disabled Exponent Overflow

FPSCR[OX] ← 1
If FPSCR[RN] = 0b00 then /* Round to Nearest */

Do
If frB[0] = 0 then frD ← 0x7FF0_0000_0000_0000
If frB[0] = 1 then frD ← 0xFFF0_0000_0000_0000
If frB[0] = 0 then FPSCR[FPRF] ← +infinity
If frB[0] = 1 then FPSCR[FPRF] ← -infinity

End
If FPSCR[RN] = 0b01 then /* Round Truncate */

Do
If frB[0] = 0 then frD ← 0x47EF_FFFF_E000_0000
If frB[0] = 1 then frD ← 0xC7EF_FFFF_E000_0000
If frB[0] = 0 then FPSCR[FPRF] ← +normal number
If frB[0] = 1 then FPSCR[FPRF] ← -normal number

End
If FPSCR[RN] = 0b10 then /* Round to +Infinity */

Do
If frB[0] = 0 then frD ← 0x7FF0_0000_0000_0000
If frB[0] = 1 then frD ← 0xC7EF_FFFF_E000_0000
If frB[0] = 0 then FPSCR[FPRF] ← +infinity
If frB[0] = 1 then FPSCR[FPRF] ← -normal number

End
If FPSCR[RN] = 0b11 then /* Round to -Infinity */

Do
If frB[0] = 0 then frD ← 0x47EF_FFFF_E000_0000
If frB[0] = 1 then frD ← 0xFFF0_0000_0000_0000
If frB[0] = 0 then FPSCR[FPRF] ← +normal number
If frB[0] = 1 then FPSCR[FPRF] ← -infinity

End
FPSCR[FR] ← undefined
FPSCR[FI] ← 1
FPSCR[XX] ← 1
Done

Enabled Exponent Overflow

sign ← frB[0]
exp ← frB[1-11] - 1023

frac[0-52] ← 0b1 || frB[12-63]
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]

Enabled Overflow
FPSCR[OX] ← 1
exp ← exp - 192
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
If sign = 0 then FPSCR[FPRF] ← +normal number
If sign = 1 then FPSCR[FPRF] ← -normal number

Done

Zero Operand

frD ← frB
If frB[0] = 0 then FPSCR[FPRF] ← +zero
If frB[0] = 1 then FPSCR[FPRF] ← -zero
FPSCR[FR FI] ← 0b00
Done

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 607 of 657

Infinity Operand

frD ← frB
If frB[0] = 0 then FPSCR[FPRF] ← +infinity
If frB[0] = 1 then FPSCR[FPRF] ← -infinity
Done

QNaN Operand
frD ← frB[0-34] || 0b0_0000_0000_0000_0000_0000_0000_0000
FPSCR[FPRF] ← QNaN
FPSCR[FR FI] ← 0b00
Done

SNaN Operand
FPSCR[VXSNAN] ← 1
If FPSCR[VE] = 0 then

Do
frD[0-11] ← frB[0-11]
frD[12] ← 1
frD[13-63] ← frB[13-34] ||

0b0_0000_0000_0000_0000_0000_0000_0000
FPSCR[FPRF] ← QNaN

End
FPSCR[FR FI] ← 0b00
Done

Normal Operand

sign ← frB[0]
exp ← frB[1-11] - 1023
frac[0-52] ← 0b1 || frB[12-63]
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If exp > +127 and FPSCR[OE] = 0 then go to Disabled Exponent Overflow
If exp > +127 and FPSCR[OE] = 1 then go to Enabled Overflow
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
If sign = 0 then FPSCR[FPRF] ← +normal number
If sign = 1 then FPSCR[FPRF] ← -normal number
Done

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 608 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

Round Single (sign,exp,frac[0–52],G,R,X)

inc ← 0
lsb ← frac[23]
gbit ← frac[24]
rbit ← frac[25]
xbit ← (frac[26-52] || G || R || X) ¦ 0
If FPSCR[RN] = 0b00 then

Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If FPSCR[RN] = 0b10 then

Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If FPSCR[RN] = 0b11 then

Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac[0-23] ← frac[0-23] + inc
If carry_out =1 then

Do
frac[0-23] ← 0b1 || frac[0-22]
exp ← exp + 1

End
frac[24-52] ← (29)0
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 609 of 657

C.4.2 Floating-Point Convert to Integer Model

The following algorithm describes the operation of the floating-point convert to integer instructions. In this
example, ‘u’ represents an undefined hexadecimal digit.

If Floating Convert to Integer Word
Then Do

Then round_mode ← FPSCR[RN]
tgt_precision ← 32-bit integer

End
If Floating Convert to Integer Word with round toward Zero

Then Do
round_mode ← 0b01
tgt_precision ← 32-bit integer

End
If Floating Convert to Integer Double Word

Then Do
round_mode ← FPSCR[RN]
tgt_precision ← 64-bit integer

End
If Floating Convert to Integer Double Word with Round toward Zero

Then Do
round_mode ← 0b01
tgt_precision ← 64-bit integer

End
sign ← frB[0]
If frB[1-11] = 2047 and frB[12-63] = 0 then goto Infinity Operand
If frB[1-11] = 2047 and frB[12] = 0 then goto SNaN Operand
If frB[1-11] = 2047 and frB[12] = 1 then goto QNaN Operand
If frB[1-11] > 1054 then goto Large Operand

If frB[1-11] > 0 then exp ← frB[1-11] - 1023 /* exp - bias */
If frB[1-11] = 0 then exp ← -1022
If frB[1-11] > 0 then frac[0-64]← 0b01 || frB[12-63] || (11)0 /*normal*/
If frB[1-11] = 0 then frac[0-64]← 0b00 || frB[12-63] || (11)0 /*denormal*/

gbit || rbit || xbit ← 0b000
Do i = 1,63 - exp /*do the loop 0 times if exp = 63*/

frac[0-64] || gbit || rbit || xbit ← 0b0 || frac[0-64] || gbit || (rbit
| xbit)
End

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 610 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

Round Integer (sign,frac[0–64],gbit,rbit,xbit,round_mode)

In this example, ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u bits.

If sign = 1 then frac[0-64] ← ¬frac[0-64] + 1 /* needed leading 0 for -264 < frB

< -263*/

If tgt_precision = 32-bit integer and frac[0-64] > +231 - 1
then goto Large Operand

If tgt_precision = 64-bit integer and frac[0-64] > +263 - 1
then goto Large Operand

If tgt_precision = 32-bit integer and frac[0-64] < -231 then goto Large Operand

FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]

If tgt_precision = 64-bit integer and frac[0-64] < -263 then goto Large Operand
If tgt_precision = 32-bit integer

then frD ← 0xxuuu_uuuu || frac[33-64]
If tgt_precision = 64-bit integer then frD ← frac[1-64]
FPSCR[FPRF] ← undefined
Done

Round Integer(sign,frac[0–64],gbit,rbit,xbit,round_mode)

In this example, ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u bits.

inc ← 0
If round_mode = 0b00 then

Do
If sign || frac[64] || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0bu01u1 then inc ← 1
End

If round_mode = 0b10 then
Do
If sign || frac[64] || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b0uuu1 then inc ← 1
End

If round_mode = 0b11 then
Do
If sign || frac[64] || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b1uuu1 then inc ← 1
End

frac[0-64] ← frac[0-64] + inc
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 611 of 657

Infinity Operand

FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do

If tgt_precision = 32-bit integer then
Do
If sign = 0 then frD ← 0xuuuu_uuuu_7FFF_FFFF

 If sign = 1 then frD ← 0xuuuu_uuuu_8000_0000
End

Else
Do
If sign = 0 then frD ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then frD ← 0x8000_0000_0000_0000
End

FPSCR[FPRF] ← undefined
End

Done

SNaN Operand

FPSCR[FR FI VXCVI VXSNAN] ← 0b0011
If FPSCR[VE] = 0 then

Do
If tgt_precision = 32-bit integer

then frD ← 0xuuuu_uuuu_8000_0000
If tgt_precision = 64-bit integer

then frD ← 0x8000_0000_0000_0000
FPSCR[FPRF] ← undefined

End
Done

QNaN Operand

FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE] = 0 then

Do
If tgt_precision = 32-bit integer then frD ← 0xuuuu_uuuu_8000_0000
If tgt_precision = 64-bit integer then frD ← 0x8000_0000_0000_0000

FPSCR[FPRF] ← undefined
End

Done

Large Operand

FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do

If tgt_precision = 32-bit integer then
Do
If sign = 0 then frD ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 then frD ← 0xuuuu_uuuu_8000_0000
End

Else
Do
If sign = 0 then frD ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then frD ← 0x8000_0000_0000_0000
End

FPSCR[FPRF] ← undefined
End

Done

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 612 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

C.4.3 Floating-Point Convert from Integer Model

The following describes, algorithmically, the operation of the floating-point convert from integer instructions.

sign ← frB[0]
exp ← 63
frac[0-63] ← frB

If frac[0-63] = 0 then go to Zero Operand

If sign = 1 then frac[0-63] ← ¬frac[0-63] + 1

Do while frac[0] = 0
frac[0-63] ← frac[1-63] || '0'
exp ← exp - 1

End

Round Float(sign,exp,frac[0–63],FPSCR[RN])

If sign = 1 then FPSCR[FPRF] ← -normal number
If sign = 0 then FPSCR[FPRF] ← +normal number
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
Done

Zero Operand

FPSCR[FR FI] ← 0b00
FPSCR[FPRF] ← “+zero”
frD ← 0x0000_0000_0000_0000
Done

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 613 of 657

Round Float(sign,exp,frac[0–63],round_mode)

In this example ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u bits.

inc ← 0
lsb ← frac[52]
gbit ← frac[53]
rbit ← frac[54]
xbit ← frac[55-63] > 0
If round_mode = 0b00 then

Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1
End

If round_mode = 0b10 then
Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1
End

If round_mode = 0b11 then
Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1
End

frac[0-52] ← frac[0-52] + inc
If carry_out = 1 then exp ← exp + 1
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
Return

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 614 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

C.5 Floating-Point Selection

The following are examples of how the optional fsel instruction can be used to implement floating-point
minimum and maximum functions, and certain simple forms of if-then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming language, and the
corresponding program fragment using fsel and other PowerPC instructions. In the examples, a, b, x, y, and
z are floating-point variables, which are assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be
available for scratch space.

Additional examples can be found in Appendix C.3 Floating-Point Conversions.

Note: Care must be taken in using fsel if IEEE compatibility is required, or if the values being tested can be
NaNs or infinities.

C.5.1 Comparison to Zero

This section provides examples in a program fragment code sequence for the comparison to zero case.

C.5.2 Minimum and Maximum

This section provides examples in a program fragment code sequence for the minimum and maximum cases.

Table C-4. Comparison to Zero

High Level Language PowerPC Note(s) from Appendix C.5.4 Notes

if a ≥ 0.0 then x ← y
else x ← z fsel fx, fa, fy, fz 1

if a > 0.0 then x ← y
else x ← z

fneg fs, fa
fsel fx, fs, fz, fy

1, 2

if a = 0.0 then x ←y
else x ← z

fsel fx, fa, fy, fz
fneg fs, fa
fsel fx, fs, fx, fz

1

Table C-5. Minimum and Maximum

High Level Language PowerPC Note(s) from Appendix C.5.4 Notes

x ← min(a, b) fsub fs, fa, fb
fsel fx, fs, fb, fa 3, 4, 5

x ← max(a, b) fsub fs, fa, fb
fsel fx, fs, fa, fb 3, 4, 5

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 615 of 657

C.5.3 Simple If-Then-Else Constructions

This section provides examples in a program fragment code sequence for simple if-then-else statements.

C.5.4 Notes

The following notes apply to the examples found in Appendix C.5.1 Comparison to Zero,
Appendix C.5.2 Minimum and Maximum, and Appendix C.5.3 Simple If-Then-Else Constructions, and to the
corresponding cases using the other three arithmetic relations (<, ≥, and ≠). These notes should also be
considered when any other use of fsel is contemplated.

In these notes the “optimized program” is the PowerPC program shown, and the “unoptimized program” (not
shown) is the corresponding PowerPC program that uses fcmpu and branch conditional instructions instead
of fsel.

1. The unoptimized program affects the VXSNAN bit of the FPSCR, and therefore may cause the system
error handler to be invoked if the corresponding exception is enabled, while the optimized program does
not affect this bit. This property of the optimized program is incompatible with the IEEE standard. (Note
that the architecture specification also refers to exceptions as interrupts.)

2. The optimized program gives the incorrect result if ‘a’ is a NaN.

3. The optimized program gives the incorrect result if ‘a’ and/or ‘b’ is a NaN (except that it may give the cor-
rect result in some cases for the minimum and maximum functions, depending on how those functions
are defined to operate on NaNs).

4. The optimized program gives the incorrect result if ‘a’ and ‘b’ are infinities of the same sign. (Here it is
assumed that invalid operation exceptions are disabled, in which case the result of the subtraction is a
NaN. The analysis is more complicated if invalid operation exceptions are enabled, because in that case
the target register of the subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX, and VXISI bits of the FPSCR, and therefore may cause
the system error handler to be invoked if the corresponding exceptions are enabled, while the unopti-
mized program does not affect these bits. This property of the optimized program is incompatible with the
IEEE standard.

Table C-6. Simple If-Then-Else

High Level Language PowerPC Note(s) from Appendix C.5.4 Notes

if a ≥ b then x ← y
else x ←z

fsub fs, fa, fb
fsel fx, fs, fy, fz 4, 5

if a >b then x ← y
else x ← z

fsub fs, fb, fa
fsel fx, fs, fz, fy 3, 4, 5

if a = b then x← y
else x ←z

fsub fs, fa, fb
fsel fx, fs, fy, fz
fneg fs, fs
fsel fx, fs, fx, fz

4, 5

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 616 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

C.6 Floating-Point Load Instructions

There are two basic forms of load instruction—single-precision and double-precision. Because the FPRs
support only floating-point double format, single-precision load floating-point instructions convert single-preci-
sion data to double-precision format prior to loading the operands into the target FPR. The conversion and
loading steps follow:

Let WORD[0–31] be the floating point single-precision operand accessed from memory.

Normalized Operand

If WORD[1-8] > 0 and WORD[1-8] < 255
frD[0-1] ← WORD[0-1]
frD[2] ← ¬ WORD[1]
frD[3] ← ¬ WORD[1]
frD[4] ← ¬ WORD[1]
frD[5-63] ← WORD[2-31] || (29)0

Denormalized Operand

If WORD[1-8] = 0 and WORD[9-31] ¦ 0
sign ← WORD[0]
exp ← -126
frac[0-52] ← 0b0 || WORD[9-31] || (29)0
normalize the operand
Do while frac[0] = 0

frac ← frac[1-52] || 0b0
exp ← exp - 1
End
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]

Infinity / QNaN / SNaN / Zero

If WORD[1-8] = 255 or WORD[1-31] = 0
frD[0-1] ← WORD[0-1]
frD[2] ← WORD[1]
frD[3] ← WORD[1]
frD[4] ← WORD[1]
frD[5-63] ← WORD[2-31] || (29)0

For double-precision floating-point load instructions, no conversion is required as the data from memory is
copied directly into the FPRs.

Many floating-point load instructions have an update form in which register rA is updated with the EA. For
these forms, if operand rA ≠ 0, the effective address (EA) is placed into register rA and the memory element
(word or double word) addressed by the EA is loaded into the floating-point register specified by operand frD;
if operand rA = 0, the instruction form is invalid.

Recall that rA, rB, and rD denote GPRs, while frA, frB, frC, frS, and frD denote FPRs.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemC_appFP_model.fm.3.0
July 15, 2005

Page 617 of 657

C.7 Floating-Point Store Instructions

There are three basic forms of store instruction—single-precision, double-precision, and integer. The integer
form is provided by the stfiwx instruction. Because the FPRs support only floating-point double format for
floating-point data, single-precision store floating-point instructions convert double-precision data to single-
precision format prior to storing the operands into memory. The conversion steps follow:

Let WORD[0–31] be the word written to in memory.

No Denormalization Required (includes Zero/Infinity/NaN)

if frS[1-11] > 896 or frS[1-63] = 0 then
WORD[0-1] ← frS[0-1]
WORD[2-31] ← frS[5-34]

Denormalization Required

if 874 ≤ frS[1-11] ≤ 896 then
sign ← frS[0]
exp ← frS[1-11] - 1023
frac ← 0b1 || frS[12-63]
Denormalize operand

Do while exp < -126
frac ← 0b0 || frac[0-62]
exp ← exp + 1

End
WORD[0] ← sign
WORD[1-8] ← 0x00
WORD[9-31] ← frac[1-23]

else WORD ← undefined

Notice that if the value to be stored by a single-precision store floating-point instruction is larger in magnitude
than the maximum number representable in single format, the first case mentioned, “No Denormalization
Required,” applies. The result stored in WORD is then a well-defined value, but is not numerically equal to the
value in the source register (that is, the result of a single-precision load floating-point from WORD will not
compare equal to the contents of the original source register).

Note: The description of conversion steps presented here is only a model. The actual implementation may
vary from this description but must produce results equivalent to what this model would produce.

It is important to note that for double-precision store floating-point instructions and for the store floating-point
as integer word instruction no conversion is required as the data from the FPR is copied directly into memory.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 618 of 657
pemC_appFP_model.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemD_appSynch.fm.3.0
July 15, 2005

Page 619 of 657

Appendix D. Synchronization Programming Examples

The examples in this appendix show how synchronization instructions can be used to emulate various
synchronization primitives and how to provide more complex forms of synchronization.

For each of these examples, it is assumed that a similar sequence of instructions is used by all processes
requiring synchronization of the accessed data.

D.1 General Information

The following points provide general information about the lwarx and stwcx. instructions:

• In general, lwarx and stwcx. instructions should be paired, with the same effective address (EA) used for
both. The only exception is that an unpaired stwcx. instruction to any (scratch) effective address can be
used to clear any reservation held by the processor.

• It is acceptable to execute an lwarx instruction for which no stwcx. instruction is executed. Such a dan-
gling lwarx instruction occurs in the example shown in Appendix D.2.5 Test and Set if the value loaded is
not zero.

• To increase the likelihood that forward progress is made, it is important that looping on lwarx/stwcx. pairs
be minimized. For example, in the sequence shown in Appendix D.2.5 Test and Set this is achieved by
testing the old value before attempting the store—were the order reversed, more stwcx. instructions
might be executed, and reservations might more often be lost between the lwarx and the stwcx. instruc-
tions.

• The manner in which lwarx and stwcx. are communicated to other processors and mechanisms, and
between levels of the memory subsystem within a given processor, is implementation-dependent. In
some implementations, performance may be improved by minimizing looping on an lwarx instruction that
fails to return a desired value. For example, in the example provided in Appendix D.2.5 Test and Set if the
program stays in the loop until the word loaded is zero, the programmer can change the “bne- $+12” to
“bne- loop.”

In some implementations, better performance may be obtained by using an ordinary load instruction to do
the initial checking of the value, as follows:

loop: lwz r5,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne- loop #not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpwi r5,0 #(likely to succeed)
bne loop #try to store nonzero
stwcx. r4,0,r3 #
bne- loop #loop if lost reservation

• In a multiprocessor, livelock (a state in which processors interact in a way such that no processor makes
progress) is possible if a loop containing an lwarx/stwcx. pair also contains an ordinary store instruction
for which any byte of the affected memory area is in the reservation granule of the reservation. For exam-
ple, the first code sequence shown in Appendix D.5 List Insertion can cause livelock if two list elements
have next element pointers in the same reservation granule.

Note: The examples in this appendix use the lwarx/stwcx. instructions, which address words in memory.
For 64-bit implementations, these examples can be modified to address double words by changing all lwarx
instructions to ldarx instructions, all stwcx. instructions to stdcx. instructions, all stw instructions to std
instructions, and all cmpw and cmpwi extended mnemonics to cmpd and cmpdi, respectively.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 620 of 657
pemD_appSynch.fm.3.0

July 15, 2005

D.2 Synchronization Primitives

The following examples show how the lwarx and stwcx. instructions can be used to emulate various
synchronization primitives. The sequences used to emulate the various primitives consist primarily of a loop
using the lwarx and stwcx. instructions. Additional synchronization is unnecessary, because the stwcx. will
fail, clearing the EQ bit, if the word loaded by lwarx has changed before the stwcx. is executed.

D.2.1 Fetch and No-Op

The fetch and no-op primitive atomically loads the current value in a word in memory. In this example, it is
assumed that the address of the word to be loaded is in GPR3 and the data loaded are returned in GPR4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bne- loop #loop if lost reservation

The stwcx., if it succeeds, stores to the destination location the same value that was loaded by the preceding
lwarx. While the store is redundant with respect to the value in the location, its success ensures that the
value loaded by the lwarx was the current value (that is, the source of the value loaded by the lwarx was the
last store to the location that preceded the stwcx. in the coherence order for the location).

D.2.2 Fetch and Store

The fetch and store primitive atomically loads and replaces a word in memory.

In this example, it is assumed that the address of the word to be loaded and replaced is in GPR3, the new
value is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

D.2.3 Fetch and Add

The fetch and add primitive atomically increments a word in memory.

In this example, it is assumed that the address of the word to be incremented is in GPR3, the increment is in
GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemD_appSynch.fm.3.0
July 15, 2005

Page 621 of 657

D.2.4 Fetch and AND

The fetch and AND primitive atomically ANDs a value into a word in memory.

In this example, it is assumed that the address of the word to be ANDed is in GPR3, the value to AND into it
is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically on a word in memory,
simply by changing the AND instruction to the desired Boolean instruction (OR, XOR, etc.).

D.2.5 Test and Set

This version of the test and set primitive atomically loads a word from memory, ensures that the word in
memory is a nonzero value, and sets CR0[EQ] according to whether the value loaded is zero.

In this example, it is assumed that the address of the word to be tested is in GPR3, the new value (nonzero)
is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5, 0 #done if word
bne $+12 #not equal to 0
stwcx. r4,0,r3 #try to store non-zero
bne- loop #loop if lost reservation

D.3 Compare and Swap

The compare and swap primitive atomically compares a value in a register with a word in memory. If they are
equal, it stores the value from a second register into the word in memory. If they are unequal, it loads the
word from memory into the first register, and sets the EQ bit of the CR0 field to indicate the result of the
comparison.

In this example, it is assumed that the address of the word to be tested is in GPR3, the word that is compared
is in GPR4, the new value is in GPR5, and the old value is returned in GPR4.

loop: lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #first 2 operands equal ?
bne- exit #skip if not
stwcx. r5,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

exit: mr r4,r6 #return value from memory

Notes:

1. The semantics in this example are based on the IBM System/370™ compare and swap instruction. Other
architectures may define this instruction differently.

2. Compare and swap is shown primarily for pedagogical reasons. It is useful on machines that lack the bet-
ter synchronization facilities provided by the lwarx and stwcx. instructions. Although the instruction is
atomic, it checks only for whether the current value matches the old value. An error can occur if the value
had been changed and restored before being tested.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 622 of 657
pemD_appSynch.fm.3.0

July 15, 2005

3. In some applications, the second bne- instruction and/or the mr instruction can be omitted. The first bne-
is needed only if the application requires that if the EQ bit of CR0 field on exit indicates not equal, then the
original compared value in r4 and r6 are in fact not equal. The mr is needed only if the application
requires that if the compared values are not equal, then the word from memory is loaded into the register
with which it was compared (rather than into a third register). If either, or both, of these instructions is
omitted, the resulting compare and swap does not obey the IBM System/370 semantics.

D.4 Lock Acquisition and Release

This section gives examples of how dependencies and the synchronization instructions can be used to imple-
ment locks, import and export barriers, and similar constructs.

D.4.1 Lock Acquisition and Import Barriers

An “import barrier” is an instruction or sequence of instructions that prevents memory accesses caused by
instructions following the barrier from being performed before memory accesses that acquire a lock have
been performed. An import barrier can be used to ensure that a shared data structure protected by a lock is
not accessed until the lock has been acquired. A sync instruction can be used as an import barrier, but the
approaches shown below will generally yield better performance because they order only the relevant
memory accesses.

D.4.1.1 Acquire Lock and Import Shared Memory

If lwarx and stwcx. instructions are used to obtain the lock, an import barrier can be constructed by placing
an isync instruction immediately following the loop containing the lwarx and stwcx.. The following example
uses the “Compare and Swap” primitive to acquire the lock.

In this example it is assumed that the address of the lock is in GPR 3, the value indicating that the lock is free
is in GPR 4, the value to which the lock should be set is in GPR 5, the old value of the lock is returned in GPR
6, and the address of the shared data structure is in GPR 9.

loop: lwarx r6,0,r3 #load lock and reserve
cmpw r4,r6 #skip ahead if
bne- wait # lock not free
stwcx. r5,0,r3 #try to set lock
bne- loop #loop if lost reservation
isync #import barrier
lwz r7,data1(r9) #load shared data
..
wait: ... #wait for lock to free

The second bne- does not complete until CR0 has been set by the stwcx.. The stwcx. does not set CR0 until
it has completed (successfully or unsuccessfully). The lock is acquired when the stwcx. completes success-
fully. Together, the second bne- and the subsequent isync create an import barrier that prevents the load
from “data1” from being performed until the branch has been resolved not to be taken.

If the shared data structure is in memory that is neither Write Through Required nor Caching Inhibited, an
lwsync instruction can be used instead of the isync instruction. If lwsync is used, the load from “data1” may
be performed before the stwcx.. But if the stwcx. fails, the second branch is taken and the lwarx is reexe-
cuted. If the stwcx. succeeds, the value returned by the load from “data1” is valid even if the load is
performed before the stwcx., because the lwsync ensures that the load is performed after the instance of the
lwarx that created the reservation used by the successful stwcx..

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemD_appSynch.fm.3.0
July 15, 2005

Page 623 of 657

D.4.1.2 Obtain Pointer and Import Shared Memory

If lwarx and stwcx. instructions are used to obtain a pointer into a shared data structure, an import barrier is
not needed if all the accesses to the shared data structure depend on the value obtained for the pointer. The
following example uses the “Fetch and Add” primitive to obtain and increment the pointer.

In this example it is assumed that the address of the pointer is in GPR 3, the value to be added to the pointer
is in GPR 4, and the old value of the pointer is returned in GPR 5.

loop: lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5 #increment the pointer
stwcx. r0,0,r3 #try to store new value
bne- loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the pointer value has been loaded into GPR 5 by the lwarx.
The load from “data1” may be performed before the stwcx., but if the stwcx. fails, the branch is taken and the
value returned by the load from “data1” is discarded. If the stwcx. succeeds, the value returned by the load
from “data1” is valid even if the load is performed before the stwcx., because the load uses the pointer value
returned by the instance of the lwarx that created the reservation used by the successful stwcx..

An isync instruction could be placed between the bne- and the subsequent lwz, but no isync is needed if all
accesses to the shared data structure depend on the value returned by the lwarx.

D.4.2 Lock Release and Export Barriers

An “export barrier” is an instruction or sequence of instructions that prevents the store that releases a lock
from being performed before stores caused by instructions preceding the barrier have been performed. An
export barrier can be used to ensure that all stores to a shared data structure protected by a lock will be
performed with respect to any other processor before the store that releases the lock is performed with
respect to that processor.

D.4.2.1 Export Shared Memory and Release Lock

A sync instruction can be used as an export barrier independent of the memory control attributes (for
example, presence or absence of the Caching Inhibited attribute) of the memory containing the shared data
structure. Because the lock must be in memory that is neither Write Through Required nor Caching Inhibited,
if the shared data structure is in memory that is Write Through Required or Caching Inhibited a sync instruc-
tion must be used as the export barrier.

In this example it is assumed that the shared data structure is in memory that is Caching Inhibited, the
address of the lock is in GPR 3, the value indicating that the lock is free is in GPR 4, and the address of the
shared data structure is in GPR 9.

stw r7,data1(r9) #store shared data (last)
sync #export barrier
stw r4,lock(r3) #release lock

The sync ensures that the store that releases the lock will not be performed with respect to any other
processor until all stores caused by instructions preceding the sync have been performed with respect to that
processor.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 624 of 657
pemD_appSynch.fm.3.0

July 15, 2005

D.4.2.2 Export Shared Memory and Release Lock using EIEIO or LYSYNC

If the shared data structure is in memory that is neither Write Through Required nor Caching Inhibited, an
eieio instruction can be used as the export barrier. Using eieio rather than sync will yield better performance
in most systems.

In this example it is assumed that the shared data structure is in memory that is neither Write Through
Required nor Caching Inhibited, the address of the lock is in GPR 3, the value indicating that the lock is free is
in GPR 4, and the address of the shared data structure is in GPR 9.

stw r7,data1(r9) #store shared data (last)
eieio #export barrier
stw r4,lock(r3) #release lock

The eieio ensures that the store that releases the lock will not be performed with respect to any other
processor until all stores caused by instructions preceding the eieio have been performed with respect to that
processor.

However, for memory that is neither Write Through Required nor Caching Inhibited, eieio orders only stores
and has no effect on loads. If the portion of the program preceding the eieio contains loads from the shared
data structure and the stores to the shared data structure do not depend on the values returned by those
loads, the store that releases the lock could be performed before those loads. If it is necessary to ensure that
those loads are performed before the store that releases the lock, lwsync should be used instead of eieio.
Alternatively, the technique described inAppendix D.4.3 Safe Fetch can be used.

D.4.3 Safe Fetch

If a load must be performed before a subsequent store (for example, the store that releases a lock protecting
a shared data structure), a technique similar to the following can be used.

In this example it is assumed that the address of the memory operand to be loaded is in GPR 3, the contents
of the memory operand are returned in GPR 4, and the address of the memory operand to be stored is in
GPR 5.

lwz r4,0(r3) #load shared data
cmpw r4,r4 #set CR0 to "equal"
bne- $-8 #branch never taken
stw r7,0(r5) #store other shared data

An alternative is to use a technique similar to that described in Appendix D.4.1.2 Obtain Pointer and Import
Shared Memory, by causing the stw to depend on the value returned by the lwz and omitting the cmpw and
bne-. The dependency could be created by ANDing the value returned by the lwz with zero and then adding
the result to the value to be stored by the stw. If both memory operands are in memory that is neither Write
Through Required nor Caching Inhibited, another alternative is to replace the cmpw and bne- with an lwsync
instruction.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemD_appSynch.fm.3.0
July 15, 2005

Page 625 of 657

D.5 List Insertion

The following example shows how the lwarx and stwcx. instructions can be used to implement simple LIFO
(last-in-first-out) insertion into a singly-linked list. (Complicated list insertion, in which multiple values must be
changed atomically, or in which the correct order of insertion depends on the contents of the elements,
cannot be implemented in the manner shown below, and requires a more complicated strategy such as using
locks.)

The next element pointer from the list element after which the new element is to be inserted, here called the
parent element, is stored into the new element, so that the new element points to the next element in the
list—this store is performed unconditionally. Then the address of the new element is conditionally stored into
the parent element, thereby adding the new element to the list.

In this example, it is assumed that the address of the parent element is in GPR3, the address of the new
element is in GPR4, and the next element pointer is at offset zero from the start of the element. It is also
assumed that the next element pointer of each list element is in a reservation granule separate from that of
the next element pointer of all other list elements.

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
eieio #order stw before stwcx.
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, lwsync can be used instead of eieio.

In the preceding example, if two list elements have next element pointers in the same reservation granule in a
multiprocessor system, livelock can occur. Livelock is a state in which processors interact in a way such that
no processor makes forward progress.

If it is not possible to allocate list elements such that each element’s next element pointer is in a different
reservation granule, then livelock can be avoided by using the following sequence:

lwz r2,0(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #order stw before stwcx.

and before lwarx

loop2: lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne- loopl #else progressed)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if failed

In the preceding example, livelock is avoided by the fact that each processor reexecutes the stw only if some
other processor has made forward progress.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 626 of 657
pemD_appSynch.fm.3.0

July 15, 2005

D.6 Notes
1. To increase the likelihood that forward progress is made, it is important that looping on lwarx/stwcx. pairs

be minimized. For example, in the “Test and Set” sequence shown in Appendix D.2.5 , this is achieved by
testing the old value before attempting the store; were the order reversed, more stwcx. instructions might
be executed, and reservations might more often be lost between the lwarx and the stwcx..

2. The manner in which lwarx and stwcx. are communicated to other processors and mechanisms, and
between levels of the memory hierarchy within a given processor, is implementation-dependent. In some
implementations performance may be improved by minimizing looping on a lwarx instruction that fails to
return a desired value. For example, in the “Test and Set” sequence shown in Appendix D.2.5 , if the pro-
grammer wishes to stay in the loop until the word loaded is zero, he could change the “bne- $+12” to
“bne- loop”. However, in some implementations better performance may be obtained by using an ordinary
Load instruction to do the initial checking of the value, as follows.

loop: lwz r5,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne- loop # not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpwi r5,0 # (likely to succeed)
bne- loop
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reservation

3. In a multiprocessor, livelock is possible if there is a Store instruction (or any other instruction that can
clear another processor's reservation) between the lwarx and the stwcx. of a lwarx/stwcx. loop and any
byte of the memory location specified by the Store is in the reservation granule. For example, the first
code sequence shown in Appendix D.5 List Insertion can cause livelock if two list elements have next ele-
ment pointers in the same reservation granule.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 627 of 657

Appendix E. Simplified Mnemonics

This appendix is provided in order to simplify the writing and comprehension of assembler language
programs. Included are a set of simplified mnemonics and symbols that define the simple shorthand used for
the most frequently-used forms of branch conditional, compare, trap, rotate and shift, and certain other
instructions.

Note: The architecture specification refers to simplified mnemonics as extended mnemonics.

E.1 Symbols

The symbols in Table E-1 are defined for use in instructions (basic or simplified mnemonics) that specify a
condition register (CR) field or a bit in the CR.

Note: The simplified mnemonics in Appendix E.5.2 Basic Branch Mnemonics and Appendix E.6 Simplified
Mnemonics for Condition Register Logical Instructions require identification of a CR bit—if one of the CR field
symbols is used, it must be multiplied by 4 and added to a bit-number-within-CR-field (value in the range of
[0–3], explicit or symbolic). The simplified mnemonics in Appendix E.5.3 Branch Mnemonics Incorporating
Conditions and Appendix E.3 Simplified Mnemonics for Compare Instructions require identification of a CR
field—if one of the CR field symbols is used, it must not be multiplied by 4. (For the simplified mnemonics in
Appendix E.5.3 Branch Mnemonics Incorporating Conditions the bit number within the CR field is part of the
simplified mnemonic. The CR field is identified, and the assembler does the multiplication and addition
required to produce a CR bit number for the BI field of the underlying basic mnemonic.)

Table E-1. Condition Register Bit and Identification Symbol Descriptions

Symbol Value Bit Field
Range Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number in a CR field.

cr0 0 0–3 CR0 field

cr1 1 4–7 CR1 field

cr2 2 8–11 CR2 field

cr3 3 12–15 CR3 field

cr4 4 16–19 CR4 field

cr5 5 20–23 CR5 field

cr6 6 24–27 CR6 field

cr7 7 28–31 CR7 field

Note: To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a bit-number-within-CR-field
symbol can be used.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 628 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

E.2 Simplified Mnemonics for Subtract Instructions

This section discusses simplified mnemonics for the subtract instructions.

E.2.1 Subtract Immediate

Although there is no subtract immediate instruction, its effect can be achieved by using an add immediate
instruction with the immediate operand negated. Simplified mnemonics are provided that include this nega-
tion, making the intent of the computation more clear.

subi rD,rA,value (equivalent to addi rD,rA,–value)
subis rD,rA,value (equivalent to addis rD,rA,–value)
subic rD,rA,value (equivalent to addic rD,rA,–value)
subic. rD,rA,value (equivalent to addic. rD,rA,–value)

E.2.2 Subtract

The subtract from instructions subtract the second operand (rA) from the third (rB). Simplified mnemonics are
provided that use the more normal order in which the third operand is subtracted from the second. Both these
mnemonics can be coded with an o suffix and/or dot (.) suffix to cause the OE and/or Rc bit to be set in the
underlying instruction.

sub rD,rA,rB (equivalent to subf rD,rB,rA)
subc rD,rA,rB (equivalent to subfc rD,rB,rA)

E.3 Simplified Mnemonics for Compare Instructions

The L field in the integer compare instructions controls whether the operands are treated as 64-bit quantities
(when L = ‘1’) or as 32-bit quantities (when L = ‘0’). Simplified mnemonics are provided that represent the
L value in the mnemonic rather than requiring it to be coded as a numeric operand.

The crfD field can be omitted if the result of the comparison is to be placed into the CR0 field. Otherwise, the
target CR field must be specified as the first operand. One of the CR field symbols defined in
Appendix E.1 Symbols can be used for this operand.

Note: The crfD field can normally be omitted when the CR0 field is the target, if L is specified the assembler
requires that crfD be specified explicitly.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 629 of 657

E.3.1 Double-Word Comparisons

The instructions listed in Table E-2 are simplified mnemonics that should be supported by assemblers
provided for 64-bit implementations.

Following are examples using the double-word compare mnemonics.

1. Compare rA and immediate value 100 as unsigned 64-bit integers and place result in CR0.

cmpldi rA,100 (equivalent to cmpli 0,1,rA,100)

2. Same as (1), but place result in CR4.

cmpldi cr4,rA,100 (equivalent to cmpli 4,1,rA,100)

3. Compare rA and rB as signed 64-bit integers and place result in CR0.

cmpd rA,rB (equivalent to cmp 0,1,rA,rB)

E.3.2 Word Comparisons

The instructions listed in Table E-3 are simplified mnemonics that should be supported by assemblers for all
PowerPC implementations.

Following are examples using the word compare mnemonics.

1. Compare rA[32–63] with immediate value 100 as signed 32-bit integers and place result in CR0.

cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

2. Same as (1), but place results in CR4.

cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

3. Compare rA[32–63] and rB[32–63] as unsigned 32-bit integers and place result in CR0.

cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

Table E-2. Simplified Mnemonics for Double-Word Compare Instructions

Operation Simplified Mnemonic Equivalent to:

Compare Double Word Immediate cmpdi crfD,rA,SIMM cmpi crfD,1,rA,SIMM

Compare Double Word cmpd crfD,rA,rB cmp crfD,1,rA,rB

Compare Logical Double Word Immediate cmpldi crfD,rA,UIMM cmpli crfD,1,rA,UIMM

Compare Logical Double Word cmpld crfD,rA,rB cmpl crfD,1,rA,rB

Table E-3. Simplified Mnemonics for Word Compare Instructions

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM cmpi crfD,0,rA,SIMM

Compare Word cmpw crfD,rA,rB cmp crfD,0,rA,rB

Compare Logical Word Immediate cmplwi crfD,rA,UIMM cmpli crfD,0,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB cmpl crfD,0,rA,rB

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 630 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

E.4 Simplified Mnemonics for Rotate and Shift Instructions

The rotate and shift instructions provide powerful and general ways to manipulate register contents, but can
be difficult to understand. Simplified mnemonics that allow some of the simpler operations to be coded easily
are provided for the following types of operations:

E.4.1 Operations on Double Words

The operations shown in Table E-4 are available only in 64-bit implementations. All these mnemonics can be
coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

Extract Select a field of n bits starting at bit position b in the source register; left or right
justify this field in the target register; clear all other bits of the target register.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this
field starting at bit position b of the target register; leave other bits of the target
register unchanged. (No simplified mnemonic is provided for insertion of a left-justi-
fied field, when operating on double words, because such an insertion requires
more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift).

Clear Clear the leftmost or rightmost n bits of a register.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This oper-
ation can be used to scale a (known non-negative) array index by the width of an
element.

Table E-4. Double-Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extldi rA,rS,n,b (n > 0) rldicr rA,rS,b,n – 1

Extract and right justify immediate extrdi rA,rS,n,b (n > 0) rldicl rA,rS,b + n, 64 – n

Insert from right immediate insrdi rA,rS,n,b (n > 0) rldimi rA,rS,64 – (b + n),b

Rotate left immediate rotldi rA,rS,n rldicl rA,rS,n,0

Rotate right immediate rotrdi rA,rS,n rldicl rA,rS,64 – n,0

Rotate left rotld rA,rS,rB rldcl rA,rS,rB,0

Shift left immediate sldi rA,rS,n (n < 64) rldicr rA,rS,n,63 – n

Shift right immediate srdi rA,rS,n (n < 64) rldicl rA,rS,64 – n,n

Clear left immediate clrldi rA,rS,n (n < 64) rldicl rA,rS,0,n

Clear right immediate clrrdi rA,rS,n (n < 64) rldicr rA,rS,0,63 – n

Clear left and shift left immediate clrlsldi rA,rS,b,n (n ≤ b ≤ 63) rldic rA,rS,n,b – n

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 631 of 657

Examples using double-word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.

extrdi rA,rS,1,0 (equivalent to rldicl rA,rS,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit [0]) of rB.

insrdi rB,rA,1,0 (equivalent to rldimi rB,rA,63,0)

3. Shift the contents of rA left 8 bits.

sldi rA,rA,8 (equivalent to rldicr rA,rA,8,55)

4. Clear the high-order 32 bits of rS and place the result into rA.

clrldi rA,rS,32 (equivalent to rldicl rA,rS,0,32)

E.4.2 Operations on Words

The operations shown in Table E-5 are available in all implementations. All these mnemonics can be coded
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction. The operations, as described in
Appendix E.4.1 Operations on Double Words apply only to the low-order 32 bits of the registers. The insert
operations either preserve the high-order 32 bits of the target register or place rotated data there; the other
operations clear these bits.

Examples using word mnemonics follow:

1. Extract the sign bit (bit [32]) of rS and place the result right-justified into rA.

extrwi rA,rS,1,0 (equivalent to rlwinm rA,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit [32]) of rB.

insrwi rB,rA,1,0 (equivalent to rlwimi rB,rA,31,0,0)

Table E-5. Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 632 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

3. Shift the contents of rA left 8 bits, clearing the high-order 32 bits.

slwi rA,rA,8 (equivalent to rlwinm rA,rA,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of rS and place the result into rA, clearing the high-
order 32 bits of rA.

clrlwi rA,rS,16 (equivalent to rlwinm rA,rS,0,16,31)

E.5 Simplified Mnemonics for Branch Instructions

Mnemonics are provided so that branch conditional instructions can be coded with the condition as part of the
instruction mnemonic rather than as a numeric operand. Some of these are shown as examples with the
branch instructions.

The mnemonics discussed in this section are variations of the branch conditional instructions.

E.5.1 BO and BI Fields

The 5-bit BO field in branch conditional instructions encodes the following operations.

• Decrement count register (CTR)

• Test CTR equal to zero

• Test CTR not equal to zero

• Test condition true

• Test condition false

• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in the CR represents the
condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI fields would require
210 = 1024 mnemonics and most of these would be only marginally useful. The abbreviated set found in
Appendix E.5.2 Basic Branch Mnemonics, is intended to cover the most useful cases. Unusual cases can be
coded using a basic branch conditional mnemonic (bc, bclr, bcctr) with the condition to be tested specified
as a numeric operand.

E.5.2 Basic Branch Mnemonics

The mnemonics in Table E-6 allow all the common BO operand encodings to be specified as part of the
mnemonic, along with the absolute address (AA), and set link register (LR) bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional branches. For these,
the basic mnemonics b, ba, bl, and bla are used.

Table E-6 provides the abbreviated set of simplified mnemonics for the most commonly performed condi-
tional branches.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 633 of 657

The simplified mnemonics shown in Table E-6 that test a condition require a corresponding CR bit as the first
operand of the instruction. The symbols defined in Appendix E.1 Symbols can be used in the operand in
place of a numeric value.

The simplified mnemonics found in Table E-6 are used in the following examples:

Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into CTR).
bdnz target (equivalent to bc 16,0,target)

Same as (1) but branch only if CTR is non-zero and condition in CR0 is “equal.”
bdnzt eq,target (equivalent to bc 8,2,target)

Same as (2), but “equal” condition is in CR5.
bdnzt 4 * cr5 + eq,target (equivalent to bc 8,22,target)

Branch if bit 27 of CR is false.
bf 27,target (equivalent to bc 4,27,target)

Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target (equivalent to bcl 4,27,target)

Table E-7 provides the simplified mnemonics for the bc and bca instructions without link register updating,
and the syntax associated with these instructions.

Note: The default condition register specified by the simplified mnemonics in the table is CR0.

Table E-6. Simplified Branch Mnemonics

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch unconditionally — — blr bctr — — blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if
CTR non-zero bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR, branch if
CTR non-zero AND condition
true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR, branch if
CTR non-zero AND condition
false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR, branch if
CTR zero bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR, branch if
CTR zero AND condition true bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR, branch if
CTR zero AND condition false bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 634 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

Table E-8 provides the simplified mnemonics for the bclr and bcclr instructions without link register updating,
and the syntax associated with these instructions. Note that the default condition register specified by the
simplified mnemonics in the table is CR0.

Table E-9 provides the simplified mnemonics for the bcl and bcla instructions with link register updating, and
the syntax associated with these instructions. Note that the default condition register specified by the simpli-
fied mnemonics in the table is CR0.

Table E-7. Simplified Branch Mnemonics for bc and bca Instructions without Link Register Update

Branch Semantics

LR Update Not Enabled

bc
 Relative Simplified Mnemonic bca

Absolute Simplified Mnemonic

Branch unconditionally — — — —

Branch if condition true bc 12,0,target bt 0,target bca 12,0,target bta 0,target

Branch if condition false bc 4,0,target bf 0,target bca 4,0,target bfa 0,target

Decrement CTR, branch if CTR nonzero bc 16,0,target bdnz target bca 16,0,target bdnza target

Decrement CTR, branch if CTR nonzero AND
condition true bc 8,0,target bdnzt 0,target bca 8,0,target bdnzta 0,target

Decrement CTR, branch if CTR nonzero AND
condition false bc 0,0,target bdnzf 0,target bca 0,0,target bdnzfa 0,target

Decrement CTR, branch if CTR zero bc 18,0,target bdz target bca 18,0,target bdza target

Decrement CTR, branch if CTR zero AND condi-
tion true bc 10,0,target bdzt 0,target bca 10,0,target bdzta 0,target

Decrement CTR, branch if CTR zero AND condi-
tion false bc 2,0,target bdzf 0,target bca 2,0,target bdzfa 0,target

Table E-8. Simplified Branch Mnemonics for bclr and bcclr Instructions without Link Register Update

Branch Semantics

LR Update Not Enabled

bclr
to LR Simplified Mnemonic bcctr to CTR Simplified Mnemonic

Branch unconditionally bclr 20,0 blr bcctr 20,0 bctr

Branch if condition true bclr 12,0 btlr 0 bcctr 12,0 btctr 0

Branch if condition false bclr 4,0 bflr 0 bcctr 4,0 bfctr 0

Decrement CTR, branch if CTR nonzero bclr 16,0 bdnzlr — —

Decrement CTR, branch if CTR nonzero
AND condition true bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR nonzero
AND condition false bclr 0,0 bdnzflr 0 — —

Decrement CTR, branch if CTR zero bclr 18,0 bdzlr — —

Decrement CTR, branch if CTR zero AND
condition true bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR zero AND
condition false bcctr 0,0 bdzflr 0 — —

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 635 of 657

Table E-10 provides the simplified mnemonics for the bclrl and bcctrl instructions with link register updating,
and the syntax associated with these instructions. Note that the default condition register specified by the
simplified mnemonics in the table is CR0.

Table E-9. Simplified Branch Mnemonics for bcl and bcla Instructions with Link Register Update

Branch Semantics
LR Update Enabled

bcl Relative Simplified Mnemonic bcla Absolute Simplified Mnemonic

Branch unconditionally — — — —

Branch if condition true bcl 1 2,0,target btl 0,target bcla 12,0,target btla 0,target

Branch if condition false bcl 4,0,target bfl 0,target bcla 4,0,target bfla 0,target

Decrement CTR, branch if CTR nonzero bcl 16,0,target bdnzl target bcla 16,0,target bdnzla target

Decrement CTR, branch if CTR nonzero AND
condition true bcl 8,0,target bdnztl 0,target bcla 8,0,target bdnztla 0,target

Decrement CTR, branch if CTR nonzero AND
condition false bcl 0,0,target bdnzfl 0,target bcla 0,0,target bdnzfla 0,target

Decrement CTR, branch if CTR zero bcl 18,0,target bdzl target bcla 18,0,target bdzla target

Decrement CTR, branch if CTR zero AND
condition true bcl 10,0,target bdztl 0,target bcla 10,0,target bdztla 0,target

Decrement CTR, branch if CTR zero AND
condition false bcl 2,0,target bdzfl 0,target bcla 2,0,target bdzfla 0,target

Table E-10. Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link Register Update

Branch Semantics

LR Update Enabled

bclrl
to LR Simplified Mnemonic bcctrl

to CTR Simplified Mnemonic

Branch unconditionally bclrl 20,0 blrl bcctrl 20,0 bctrl

Branch if condition true bclrl 12,0 btlrl 0 bcctrl 12,0 btctrl 0

Branch if condition false bclrl 4,0 bflrl 0 bcctrl 4,0 bfctrl 0

Decrement CTR, branch if CTR nonzero bclrl 16,0 bdnzlrl — —

Decrement CTR, branch if CTR nonzero AND
condition true bclrl 8,0 bdnztlrl 0 — —

Decrement CTR, branch if CTR nonzero AND
condition false bclrl 0,0 bdnzflrl 0 — —

Decrement CTR, branch if CTR zero bclrl 18,0 bdzlrl — —

Decrement CTR, branch if CTR zero AND
condition true bdztlrl 0 bdztlrl 0 — —

Decrement CTR, branch if CTR zero AND
condition false bclrl 4,0 bflrl 0 — —

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 636 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

E.5.3 Branch Mnemonics Incorporating Conditions

The mnemonics defined in Table E-6 are variations of the branch if condition true and branch if condition
false BO encodings, with the most useful values of BI represented in the mnemonic rather than specified as a
numeric operand.

A standard set of codes (shown in Table E-11) has been adopted for the most common combinations of
branch conditions.

Table E-12 shows the simplified branch mnemonics incorporating conditions.

Table E-11. Standard Coding for Branch Conditions

Code Description

lt Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

Table E-12. Simplified Branch Mnemonics with Comparison Conditions

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr to
CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl to
CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or
equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 637 of 657

Instructions using the mnemonics in Table E-12 specify the condition register field in an optional first
operand. If the CR field being tested is CR0, this operand need not be specified. One of the CR field symbols
defined in Appendix E.1 Symbols can be used for this operand.

The simplified mnemonics found in Table E-12 are used in the following examples:

1. Branch if CR0 reflects condition “not equal.”
bne target (equivalent to bc 4,2,target)

2. Same as (1) but condition is in CR3.
bne cr3,target (equivalent to bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the link register. This is a form of con-
ditional “call.”

bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 (equivalent to bcctrl 12,17)

Table E-13 shows the simplified branch mnemonics for the bc and bca instructions without link register
updating, and the syntax associated with these instructions. Note that the default condition register specified
by the simplified mnemonics in the table is CR0.

Branch if not summary over-
flow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Table E-13. Simplified Branch Mnemonics for bc and bca Instructions without Comparison Conditions and
Link Register Updating

Branch Semantics

LR Update Not Enabled

bc
Relative Simplified Mnemonic bca

Absolute Simplified Mnemonic

Branch if less than bc 12,0,target blt target bca 12,0,target blta target

Branch if less than or equal bc 4,1,target ble target bca 4,1,target blea target

Branch if equal bc 12,2,target beq target bca 12,2,target beqa target

Branch if greater than or equal bc 4,0,target bge target bca 4,0,target bgea target

Branch if greater than bc 12,1,target bgt target bca 12,1,target bgta target

Branch if not less than bc 4,0,target bnl target bca 4,0,target bnla target

Branch if not equal bc 4,2,target bne target bca 4,2,target bnea target

Branch if not greater than bc 4,1,target bng target bca 4,1,target bnga target

Branch if summary overflow bc 12,3,target bso target bca 12,3,target bsoa target

Table E-12. Simplified Branch Mnemonics with Comparison Conditions (Continued)

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr to
CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl to
CTR

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 638 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

Table E-14 shows the simplified branch mnemonics for the bclr and bcctr instructions without link register
updating, and the syntax associated with these instructions.

Note: The default condition register specified by the simplified mnemonics in the table is CR0.

Table E-15 shows the simplified branch mnemonics for the bcl and bcla instructions with link register
updating, and the syntax associated with these instructions.

Note: The default condition register specified by the simplified mnemonics in the table is CR0.

Branch if not summary overflow bc 4,3,target bns target bca 4,3,target bnsa target

Branch if unordered bc 12,3,target bun target bca 12,3,target buna target

Branch if not unordered bc 4,3,target bnu target bca 4,3,target bnua target

Table E-14. Simplified Branch Mnemonics for bclr and bcctr Instructions without Comparison Conditions and
Link Register Updating

Branch Semantics
LR Update Not Enabled

bclr to LR Simplified Mnemonic bcctr to CTR Simplified Mnemonic

Branch if less than bclr 12,0 bltlr bcctr 12,0 bltctr

Branch if less than or equal bclr 4,1 blelr bcctr 4,1 blectr

Branch if equal bclr 12,2 beqlr bcctr 12,2 beqctr

Branch if greater than or equal bclr 4,0 bgelr bcctr 4,0 bgectr

Branch if greater than bclr 12,1 bgtlr bcctr 12,1 bgtctr

Branch if not less than bclr 4,0 bnllr bcctr 4,0 bnlctr

Branch if not equal bclr 4,2 bnelr bcctr 4,2 bnectr

Branch if not greater than bclr 4,1 bnglr bcctr 4,1 bngctr

Branch if summary overflow bclr 12,3 bsolr bcctr 12,3 bsoctr

Branch if not summary overflow bclr 4,3 bnslr bcctr 4,3 bnsctr

Branch if unordered bclr 12,3 bunlr bcctr 12,3 bunctr

Branch if not unordered bclr 4,3 bnulr bcctr 4,3 bnuctr

Table E-13. Simplified Branch Mnemonics for bc and bca Instructions without Comparison Conditions and
Link Register Updating

Branch Semantics

LR Update Not Enabled

bc
Relative Simplified Mnemonic bca

Absolute Simplified Mnemonic

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 639 of 657

Table E-16 shows the simplified branch mnemonics for the bclrl and bcctl instructions with link register
updating, and the syntax associated with these instructions.

Note: The default condition register specified by the simplified mnemonics in the table is CR0.

Table E-15. Simplified Branch Mnemonics for bcl and bcla Instructions with Comparison Conditions and Link
Register Update

Branch Semantics

LR Update Enabled

bcl
Relative Simplified Mnemonic bcla

Absolute Simplified Mnemonic

Branch if less than bcl 12,0,target bltl target bcla 12,0,target bltla target

Branch if less than or equal bcl 4,1,target blel target bcla 4,1,target blela target

Branch if equal beql target beql target bcla 12,2,target beqla target

Branch if greater than or equal bcl 4,0,target bgel target bcla 4,0,target bgela target

Branch if greater than bcl 12,1,target bgtl target bcla 12,1,target bgtla target

Branch if not less than bcl 4,0,target bnll target bcla 4,0,target bnlla target

Branch if not equal bcl 4,2,target bnel target bcla 4,2,target bnela target

Branch if not greater than bcl 4,1,target bngl target bcla 4,1,target bngla target

Branch if summary overflow bcl 12,3,target bsol target bcla 12,3,target bsola target

Branch if not summary overflow bcl 4,3,target bnsl target bcla 4,3,target bnsla target

Branch if unordered bcl 12,3,target bunl target bcla 12,3,target bunla target

Branch if not unordered bcl 4,3,target bnul target bcla 4,3,target bnula target

Table E-16. Simplified Branch Mnemonics for bclrl and bcctl Instructions with Comparison Conditions and
Link Register Update

Branch Semantics
LR Update Enabled

bclrl to LR Simplified Mnemonic bcctrl to CTR Simplified Mnemonic

Branch if less than bclrl 12,0 bltlrl 0 bcctrl 12,0 bltctrl 0

Branch if less than or equal bclrl 4,1 blelrl 0 bcctrl 4,1 blectrl 0

Branch if equal bclrl 12,2 beqlrl 0 bcctrl 12,2 beqctrl 0

Branch if greater than or equal bclrl 4,0 bgelrl 0 bcctrl 4,0 bgectrl 0

Branch if greater than bclrl 12,1 bgtlrl 0 bcctrl 12,1 bgtctrl 0

Branch if not less than bclrl 4,0 bnllrl 0 bcctrl 4,0 bnlctrl 0

Branch if not equal bclrl 4,2 bnelrl 0 bcctrl 4,2 bnectrl 0

Branch if not greater than bclrl 4,1 bnglrl 0 bcctrl 4,1 bngctrl 0

Branch if summary overflow bclrl 12,3 bsolrl 0 bcctrl 12,3 bsoctrl 0

Branch if not summary overflow bclrl 4,3 bnslrl 0 bcctrl 4,3 bnsctrl 0

Branch if unordered bclrl 12,3 bunlrl 0 bcctrl 12,3 bunctrl 0

Branch if not unordered bclrl 4,3 bnulrl 0 bcctrl 4,3 bnuctrl 0

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 640 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

E.5.4 Branch Prediction

Software can use the “at” bits of Branch Conditional instructions to provide a hint to the processor about the
behavior of the branch. If, for a given such instruction, the branch is almost always taken or almost always not
taken, a suffix can be added to the mnemonic indicating the value to be used for the “at” bits.

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended, that tests either
the Count Register or a CR bit (but not both). Assemblers should use 0b00 as the default value for the “at”
bits, indicating that software has offered no prediction.

E.5.4.1 Examples of Branch Prediction

Examples of branch prediction are as follows:

1. Branch if CR0 reflects condition “less than”, specifying that the branch should be predicted to be taken.
blt+ target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be
taken.

bltlr–

E.6 Simplified Mnemonics for Condition Register Logical Instructions

The condition register logical instructions, shown in Table E-17, can be used to set, clear, copy, or invert a
given condition register bit. Simplified mnemonics are provided that allow these operations to be coded
easily. Note that the symbols defined in Appendix E.1 Symbols can be used to identify the condition register
bit.

+ Predict branch to be taken (at=’11’)

- Predict branch not to be taken (at=’10’)

Table E-17. Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 641 of 657

Examples using the condition register logical mnemonics follow:

1. Set CR bit 25.
crset 25 (equivalent to creqv 25,25,25)

2. Clear the SO bit of CR0.
crclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
crclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CR5.
crnot 4 * cr5 + eq, 4 * cr4 + eq (equivalent to crnor 22,18,18)

E.7 Simplified Mnemonics for Trap Instructions

A standard set of codes, shown in Table E-18, has been adopted for the most common combinations of trap
conditions.

The mnemonics defined in Table E-19 are variations of trap instructions, with the most useful values of TO
represented in the mnemonic rather than specified as a numeric operand.

Table E-18. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Note: The symbol “<U” indicates an unsigned less than evaluation will be performed. The symbol “>U” indicates an unsigned greater
than evaluation will be performed.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 642 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

Examples of the uses of trap mnemonics, shown in Table E-19, follow:

1. Trap if 64-bit register rA is not zero.
tdnei rA,0 (equivalent to tdi 24,rA,0)

2. Trap if 64-bit register rA is not equal to rB.
tdne rA, rB (equivalent to td 24,rA,rB)

3. Trap if rA, considered as a 32-bit quantity, is logically greater than 0x7FF.
twlgti rA, 0x7FF (equivalent to twi 1,rA, 0x7FF)

4. Trap unconditionally.
trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows:

• The contents of register rA are compared with either the sign-extended SIMM field or the contents of reg-
ister rB, depending on the trap instruction.

• For tdi and td, the entire contents of rA (and rB) participate in the comparison; for twi and tw, only the
contents of the low- order 32 bits of rA (and rB) participate in the comparison.

The comparison results in five conditions which are ANDed with operand TO. If the result is not 0, the trap
exception handler is invoked. (Note that exceptions are referred to as interrupts in the architecture specifica-
tion.) See Table E-20 for these conditions.

Table E-19. Trap Mnemonics

Trap Semantics
64-Bit Comparison 32-Bit Comparison

tdi Immediate td Register twi Immediate tw Register

Trap unconditionally — — — trap

Trap if less than tdlti tdlt twlti twlt

Trap if less than or equal tdlei tdle twlei twle

Trap if equal tdeqi tdeq tweqi tweq

Trap if greater than or equal tdgei tdge twgei twge

Trap if greater than tdgti tdgt twgti twgt

Trap if not less than tdnli tdnl twnli twnl

Trap if not equal tdnei tdne twnei twne

Trap if not greater than tdngi tdng twngi twng

Trap if logically less than tdllti tdllt twllti twllt

Trap if logically less than or equal tdllei tdlle twllei twlle

Trap if logically greater than or equal tdlgei tdlge twlgei twlge

Trap if logically greater than tdlgti tdlgt twlgti twlgt

Trap if logically not less than tdlnli tdlnl twlnli twlnl

Trap if logically not greater than tdlngi tdlng twlngi twlng

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 643 of 657

E.8 Simplified Mnemonics for Special-Purpose Registers

The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric operand. Simplified
mnemonics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as a
numeric operand. Table E-21 provides a list of the simplified mnemonics that should be provided by assem-
blers for SPR operations.

Table E-20. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table E-21. Simplified Mnemonics for SPRs

Special-Purpose Register
Move to SPR Move from SPR

Simplified Mnemonic Equivalent to Simplified Mnemonic Equivalent to

XER mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DSISR mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

SDR1 mtsdr1 rS mtspr 25,rS mfsdr1 rD mfspr rD,25

Save and restore register 0 mtsrr0 rS mtspr 26,rS mfsrr0 rD mfspr rD,26

Save and restore register 1 mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27

SPRG0–SPRG3 mtspr n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

Address space register mtasr rS mtspr 280,rS mfasr rD mfspr rD,280

External access register mtear rS mtspr 282,rS mfear rD mfspr rD,282

Time base lower mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base upper mttbu rS mtspr 285,rS mftbu rD mftb rD,269

Processor version register — — mfpvr rD mfspr rD,287

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 644 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

Following are examples using the SPR simplified mnemonics found in Table E-21:

1. Copy the contents of the low-order 32 bits of rS to the XER.
mtxer rS (equivalent to mtspr 1,rS)

2. Copy the contents of the LR to rS.
mflr rS (equivalent to mfspr rS,8)

3. Copy the contents of rS to the CTR.
mtctr rS (equivalent to mtspr 9,rS)

E.9 Recommended Simplified Mnemonics

This section describes some of the most commonly-used operations (such as no-op, load immediate, load
address, move register, and complement register).

E.9.1 No-Op (nop)

Many PowerPC instructions can be coded in a way that, effectively, no operation is performed. An additional
mnemonic is provided for the preferred form of no-op. If an implementation performs any type of run-time
optimization related to no-ops, the preferred form is the no-op that triggers the following:

nop (equivalent to ori 0,0,0)

E.9.2 Load Immediate (li)

The addi and addis instructions can be used to load an immediate value into a register. Additional
mnemonics are provided to convey the idea that no addition is being performed but that data is being moved
from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value (equivalent to addi rD,0,value)

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD.
lis rD,value (equivalent to addis rD,0,value)

E.9.3 Load Address (la)

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction
which normally requires a separate register and immediate operands.

la rD,d(rA) (equivalent to addi rD,rA,d)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the assembler
to supply the base register number and compute the displacement. If the variable v is located at offset dv
bytes from the address in register rv, and the assembler has been told to use register rv as a base for refer-
ences to the data structure containing v, the following line causes the address of v to be loaded into register
rD:

la rD,v (equivalent to addi rD,rv,dv)

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemE_appSimpMn.fm.3.0
July 15, 2005

Page 645 of 657

E.9.4 Move Register (mr)

Several PowerPC instructions can be coded to copy the contents of one register to another. A simplified
mnemonic is provided that signifies that no computation is being performed, but merely that data is being
moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded with a dot (.) suffix to
cause the Rc bit to be set in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rS)

E.9.5 Complement Register (not)

Several PowerPC instructions can be coded in a way that they complement the contents of one register and
place the result into another register. A simplified mnemonic is provided that allows this operation to be coded
easily.

The following instruction complements the contents of rS and places the result into rA. This mnemonic can be
coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

not rA,rS (equivalent to nor rA,rS,rS)

E.9.6 Move to/from Condition Register (mtcr/mfcr)

This mnemonic permits copying the contents of the low-order 32 bits of a GPR to the condition register, using
the same syntax as the mfcr instruction.

mtcr rS (equivalent to mtcrf 0xFF,rS)

The following instructions may generate either the (old) mtcrf or mfcr instructions or the (new) mtocrf or
mfocrf instruction, respectively, depending on the target machine type assembler parameter.

mtcrf CRM,rS
mfcr rS

All three extended mnemonics in this subsection are being phased out. In future assemblers the form
"mtcr rS" may not exist, and the mtcrf and mfcr mnemonics may generate the old form instructions
(with bit 11 = 0) regardless of the target machine type assembler parameter, or may cease to exist.

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 646 of 657
pemE_appSimpMn.fm.3.0

July 15, 2005

THIS PAGE INTENTIONALLY LEFT BLANK

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_glossaryPEM.fm.3.0
July 15, 2005

Page 647 of 657

Appendix F. Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. Some of the
terms and definitions included in the glossary are reprinted from IEEE Std. 754-1985, IEEE Standard for
Binary Floating-Point Arithmetic, copyright ©1985 by the Institute of Electrical and Electronics Engineers, Inc.
with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book.

Architecture. A detailed specification of requirements for a processor or computer system. It
does not specify details of how the processor or computer system must be implemented; instead
it provides a template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to the processor’s
execution. In this manual, the term ‘asynchronous exception’ is used interchangeably with the
word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation to the same
address uninterrupted by any other access to that address (the term refers to the fact that the
transactions are indivisible). The PowerPC Architecture implements atomic accesses through the
lwarx/stwcx. (ldarx/stdcx. in 64-bit implementations) instruction pair.

Biased exponent. An exponent whose range of values is shifted by a constant (bias). Typically a
bias is provided to allow a range of positive values to express a range that includes both positive
and negative values.

Big-endian. A byte-ordering method in memory where the address n of a word corresponds to
the most-significant byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1,
2, 3, with 0 being the most-significant byte. See Little-endian.

Boundedly undefined. A characteristic of results of certain operations that are not rigidly
prescribed by the PowerPC Architecture. Boundedly undefined results for a given operation may
vary among implementations, and between execution attempts in the same implementation.

Although the architecture does not prescribe the exact behavior for when results are allowed to
be boundedly undefined, the results of executing instructions in contexts where results are
allowed to be boundedly undefined are constrained to ones that could have been achieved by
executing an arbitrary sequence of defined instructions, in valid form, starting in the state the
machine was in before attempting to execute the given instruction.

Cache. High-speed memory component containing recently-accessed data and/or instructions
(subset of main memory).

Cache block. A small region of contiguous memory that is copied from memory into a cache.
The size of a cache block may vary among processors; the maximum block size is one page. In
PowerPC processors, cache coherency is maintained on a cache-block basis. Note that the term
‘cache block’ is often used interchangeably with ‘cache line’.

Cache coherency. An attribute wherein an accurate and common view of memory is provided to
all devices that share the same memory system. Caches are coherent if a processor performing
a read from its cache is supplied with data corresponding to the most recent value written to
memory or to another processor’s cache.

A

B

C

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 648 of 657
pem_glossaryPEM.fm.3.0

July 15, 2005

Cache flush. An operation that removes from a cache any data from a specified address range.
This operation ensures that any modified data within the specified address range is written back
to main memory. This operation is generated typically by a Data Cache Block Flush (dcbf)
instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed and the load or
store is performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss causes a cache
block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The processor
sets the changed bit if any store is performed into the page. See also Page access history bits
and Referenced bit.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Context synchronization. An operation that ensures that all instructions in execution complete
past the point where they can produce an exception, that all instructions in execution complete in
the context in which they began execution, and that all subsequent instructions are fetched and
executed in the new context. Context synchronization may result from executing specific instruc-
tions (such as isync or rfid) or when certain events occur (such as an exception).

Copy-back. An operation in which modified data in a cache block is copied back to memory.

Denormalized number. A nonzero floating-point number whose exponent has a reserved value,
usually the format's minimum, and whose explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can appear in only one
location within the cache, operates more quickly when the memory request is a cache hit.

Effective address (EA). The 32 or 64-bit address specified for a load, store, or an instruction
fetch. This address is then submitted to the MMU for translation to either a physical memory
address or an I/O address.

Exception. A condition encountered by the processor that requires special, supervisor-level
processing.

Exception handler. A software routine that executes when an exception is taken. Normally, the
exception handler corrects the condition that caused the exception, or performs some other
meaningful task (that may include aborting the program that caused the exception). The address
for each exception handler is identified by an exception vector offset defined by the architecture
and a prefix selected via the MSR.

Extended opcode. A secondary opcode field generally located in instruction bits [21–30], that
further defines the instruction type. All PowerPC instructions are one word in length. The most
significant 6 bits of the instruction are the primary opcode, identifying the type of instruction. See
also Primary opcode.

Execution synchronization. A mechanism by which all instructions in execution are architectur-
ally complete before beginning execution (appearing to begin execution) of the next instruction.
Similar to context synchronization, but doesn't force the contents of the instruction buffers to be
deleted and refetched.

D

E

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_glossaryPEM.fm.3.0
July 15, 2005

Page 649 of 657

Exponent. In the binary representation of a floating-point number, the exponent is the compo-
nent that normally signifies the integer power to which the value two is raised in determining the
value of the represented number. See also Biased exponent.

Fetch. Retrieving instructions from either the cache or main memory and placing them into the
instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point register file. These
registers provide the source operands and destination results for floating-point instructions. Load
instructions move data from memory to FPRs and store instructions move data from FPRs to
memory. The FPRs are 64 bits wide and store floating-point values in double-precision format.

Fraction. In the binary representation of a floating-point number, the field of the significand that
lies to the right of its implied binary point.

Fully-associative. Addressing scheme where every cache location (every byte) can have any
possible address.

General-purpose register (GPR). Any of the 32 registers in the general-purpose register file.
These registers provide the source operands and destination results for all integer data manipu-
lation instructions. Integer load instructions move data from memory to GPRs and store instruc-
tions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is designated
as guarded, instructions and data cannot be accessed out-of-order.

Harvard architecture. An architectural model featuring separate caches for instruction and data.

Hashing. An algorithm used in the page table search process.

IEEE 754. A standard written by the Institute of Electrical and Electronics Engineers that defines
operations and representations of binary floating-point arithmetic.

Illegal instructions. A class of instructions that are not implemented for a particular PowerPC
processor. These include instructions not defined by the PowerPC Architecture. In addition, for
32-bit implementations, instructions that are defined only for 64-bit implementations are consid-
ered to be illegal instructions. For 64-bit implementations instructions that are defined only for
32-bit implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC Architecture, but may
differ from other architecture-compliant implementations for example in design, feature set, and
implementation of optional features. The PowerPC Architecture has many different implementa-
tions.

Implementation-dependent. An aspect of a feature in a processor’s design that is defined by a
processor’s design specifications rather than by the PowerPC Architecture.

Implementation-specific. An aspect of a feature in a processor’s design that is not required by
the PowerPC Architecture, but for which the PowerPC Architecture may provide concessions to
ensure that processors that implement the feature do so consistently.

Imprecise exception. A type of synchronous exception that is allowed not to adhere to the
precise exception model (see Precise exception). The PowerPC Architecture allows only
floating-point exceptions to be handled imprecisely.

F

G

H

I

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 650 of 657
pem_glossaryPEM.fm.3.0

July 15, 2005

Inexact. Loss of accuracy in an arithmetic operation when the rounded result differs from the infi-
nitely precise value with unbounded range.

In-order. An aspect of an operation that adheres to a sequential model. An operation is said to
be performed in-order if, at the time that it is performed, it is known to be required by the sequen-
tial execution model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute an instruction and
make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows instructions to be
processed in parallel.

Interrupt. An asynchronous exception. On PowerPC processors, interrupts are a special case of
exceptions. See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid copy of a cache block
from memory.

Key bits. A set of key bits referred to as Ks and Kp in each SLB entry. The key bits determine
whether supervisor or user programs can access a page within that segment.

Kill. An operation that causes a cache block to be invalidated.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, data element, or
instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register, data element, or
instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a word corresponds to
the least-significant byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2,
1, 0, with 3 being the most-significant byte. See Big-endian.

Loop unrolling. Loop unrolling provides a way of increasing performance by allowing more
instructions to be issued in a clock cycle. The compiler replicates the loop body to increase the
number of instructions executed between a loop branch.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used to manage caches
on different devices that share a memory system. Note that the PowerPC Architecture does not
specify the implementation of a MESI protocol to ensure cache coherency.

Memory access ordering. The specific order in which the processor performs load and store
memory accesses and the order in which those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page address translation
mechanisms provided by the MMU and that occur externally with the bus protocol defined for
memory.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of
memory is provided to all devices that share system memory.

K

L

M

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_glossaryPEM.fm.3.0
July 15, 2005

Page 651 of 657

Memory consistency. Refers to agreement of levels of memory with respect to a single
processor and system memory (for example, on-chip cache, secondary cache, and system
memory).

Memory management unit (MMU). The functional unit that is capable of translating an effective
(logical) address to a physical address, providing protection mechanisms, and defining caching
methods.

Microarchitecture. The hardware details of a microprocessor’s design. Such details are not
defined by the PowerPC Architecture.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. When a cache block is in the modified state, it has been modified by the
processor since it was copied from memory. See MESI.

Munging. A modification performed on an effective address that allows it to appear to the
processor that individual aligned scalars are stored as little-endian values, when in fact it is
stored in big-endian order, but at different byte addresses within doublewords.

Note: Munging affects only the effective address and not the byte order. This term is not used by
the PowerPC Architecture.

Multiprocessing. The capability of software, especially operating systems, to support execution
on more than one processor at the same time.

Most-significant bit (msb). The highest-order bit in an address, registers, data element, or
instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address, registers, data element, or
instruction encoding.

NaN. An abbreviation for ‘Not a Number’; a symbolic entity encoded in floating-point format.
There are two types of NaNs—signaling NaNs (SNaNs) and quiet NaNs (QNaNs).

No-op. No-operation. A single-cycle operation that does not affect registers or generate bus
activity.

Normalization. A process by which a floating-point value is manipulated such that it can be
represented in the format for the appropriate precision (single or double-precision). For a
floating-point value to be representable in the single or double-precision format, the leading
implied bit must be a 1.

OEA (Operating Environment Architecture). The level of the architecture that describes the
PowerPC memory management model, supervisor-level registers, synchronization require-
ments, and the exception model. It also defines the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is defined by the
PowerPC Architecture but not required to be implemented.

N

O

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 652 of 657
pem_glossaryPEM.fm.3.0

July 15, 2005

Out-of-order. An aspect of an operation that allows it to be performed ahead of one that may
have preceded it in the sequential model, for example, speculative operations. An operation is
said to be performed out-of-order if, at the time that it is performed, it is not known to be required
by the sequential execution model. See In-order.

Out-of-order execution. A technique that allows instructions to be issued and completed in an
order that differs from their sequence in the instruction stream.

Overflow. An error condition that occurs during arithmetic operations when the result cannot be
stored accurately in the destination register(s). For example, if two 32-bit numbers are multiplied,
the result may not be representable in 32 bits.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of memory, aligned on a
4-Kbyte boundary or a large page size which is implementation dependent.

Page access history bits. The changed and referenced bits in the PTE keep track of the access
history within the page. The referenced bit is set by the MMU whenever the page is accessed for
a read or write operation. The processor sets the changed bit if any store is performed into the
page. See Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor attempts to access a
memory location that does not reside within a page not currently resident in physical memory. On
PowerPC processors, a page fault exception condition occurs when a matching, valid page table
entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs. It is further organized
into eight PTEs per PTEG (page table entry group). The number of PTEGs in the page table
depends on the size of the page table (as specified in the SDR1 register).

Page table entry (PTE). A 16-byte data structure containing information used to translate a
virtual page address to a physical page address. A page is either 4 KB or an implementation-
specific sized large page.

Physical memory. The actual memory that can be accessed through the system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus transac-
tions, into smaller distinct stages or tenures (respectively) so that a subsequent operation can
begin before the previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be stopped so instruc-
tions that preceded the faulting instruction can complete, and subsequent instructions can be
flushed and redispatched after exception handling has completed. See Imprecise exceptions.

Primary opcode. The most-significant 6 bits (bits [0–5]) of the instruction encoding that identifies
the type of instruction. See Secondary opcode.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, or a range of unmapped
effective addresses. It is defined only when the appropriate relocate bit in the MSR ([IR] or [DR])
is ‘1’.

P

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_glossaryPEM.fm.3.0
July 15, 2005

Page 653 of 657

Quad word. A group of 16 contiguous locations starting at an address divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic operations without
signaling exceptions. A quiet NaN is used to represent the results of certain invalid operations,
such as invalid arithmetic operations on infinities or on NaNs, when invalid. See Signaling NaN.

rA. The rA instruction field is used to specify a GPR to be used as a source or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is performed and the effective
address specified is the same as the physical address. The processor’s MMU is operating in real
address mode if its ability to perform address translation has been disabled through the MSR
registers IR and/or DR bits.

Record bit. Bit [31] (or the Rc bit) in the instruction encoding. When it is set, updates the condi-
tion register (CR) to reflect the result of the operation.

Referenced bit. One of two page history bits found in each page table entry (PTE). The
processor sets the referenced bit whenever the page is accessed for a read or write. See also
Page access history bits.

Register indirect addressing. A form of addressing that specifies one GPR that contains the
address for the load or store.

Register indirect with immediate index addressing. A form of addressing that specifies an
immediate value to be added to the contents of a specified GPR to form the target address for
the load or store.

Register indirect with index addressing. A form of addressing that specifies that the contents
of two GPRs be added together to yield the target address for the load or store.

Reservation. The processor establishes a reservation on a cache block of memory space when
it executes an lwarx or ldarx instruction to read a memory semaphore into a GPR.

Reserved field. In a register, a reserved field is one that is not assigned a function. A reserved
field may be a single bit. The handling of reserved bits is implementation-dependent. Software is
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value
last written to the bit was 0 and returns an undefined value (‘0’ or ‘1’) otherwise.

RISC (Reduced Instruction Set Computing). An architecture characterized by fixed-length
instructions with nonoverlapping functionality and by a separate set of load and store instructions
that perform memory accesses.

Q

R

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 654 of 657
pem_glossaryPEM.fm.3.0

July 15, 2005

SLB (Segment Lookaside Buffer). An optional cache that holds recently-used segment table
entries.

Scalability. The capability of an architecture to generate implementations specific for a wide
range of purposes, and in particular implementations of significantly greater performance and/or
functionality than at present, while maintaining compatibility with current implementations.

Secondary cache. A cache memory that is typically larger and has a longer access time than
the primary cache. A secondary cache may be shared by multiple devices. Also referred to as L2,
or level-2 cache.

Segment. A 256-Mbyte area of virtual memory that is the most basic memory space defined by
the PowerPC Architecture. Each segment is configured through a unique segment descriptor.

Segment descriptors. Information used to generate the interim virtual address. The segment
descriptors reside as segment table entries in a hashed segment table in memory.

Segment table entry (STE). Data structures containing information used to translate effective
address to physical address. STEs are implemented on 64-bit processors only.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ may also
be used to generally describe the updating of a bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given location in any one of
the sets, typically corresponding to its lower-order address bits. Because several memory loca-
tions can map to the same location, cached data is typically placed in the set whose cache block
corresponding to that address was used least recently. See Set-associative.

Set-associative. Aspect of cache organization in which the cache space is divided into sections,
called sets. The cache controller associates a particular main memory address with the contents
of a particular set, or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program exception when it is
specified as arithmetic operands. See Quiet NaN.

Significand. The component of a binary floating-point number that consists of an explicit or
implicit leading bit to the left of its implied binary point and a fraction field to the right.

Simplified mnemonics. Assembler mnemonics that represent a more complex form of a
common operation.

Static branch prediction. Mechanism by which software (for example, compilers) can give a
hint to the machine hardware about the direction a branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Strong ordering. A memory access model that requires exclusive access to an address before
making an update, to prevent another device from using stale data.

Superscalar machine. A machine that can issue multiple instructions concurrently from a
conventional linear instruction stream.

S

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_glossaryPEM.fm.3.0
July 15, 2005

Page 655 of 657

Supervisor mode. The privileged operation state of a processor. In supervisor mode, software,
typically the operating system, can access all control registers and can access the supervisor
memory space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order. See Context
synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of a particular instruc-
tion or instruction sequence. There are two types of synchronous exceptions, precise and impre-
cise.

System memory. The physical memory available to a processor.

TLB (translation lookaside buffer) A cache that holds recently-used page table entries.

Throughput. The measure of the number of instructions that are processed per clock cycle.

Tiny. A floating-point value that is too small to be represented for a particular precision format,
including denormalized numbers; they do not include ±0.

UISA (user instruction set architecture). The level of the architecture to which user-level soft-
ware should conform. The UISA defines the base user-level instruction set, user-level registers,
data types, floating-point memory conventions and exception model as seen by user programs,
and the memory and programming models.

Underflow. An error condition that occurs during arithmetic operations when the result cannot be
represented accurately in the destination register. For example, underflow can happen if two
floating-point fractions are multiplied and the result requires a smaller exponent and/or mantissa
than the single-precision format can provide. In other words, the result is too small to be repre-
sented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor used typically by application soft-
ware. In user mode, software can only access certain control registers and can access only user
memory space. No privileged operations can be performed. Also referred to as problem state.

VEA (virtual environment architecture). The level of the architecture that describes the
memory model for an environment in which multiple devices can access memory, defines
aspects of the cache model, defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the PowerPC VEA also adhere to
the UISA, but may not necessarily adhere to the OEA.

Virtual address. An intermediate address used in the translation of an effective address to a
physical address.

Virtual memory. The address space created using the memory management facilities of the
processor. Program access to virtual memory is possible only when it coincides with physical
memory.

Weak ordering. A memory access model that allows bus operations to be reordered dynami-
cally, which improves overall performance and in particular reduces the effect of memory latency
on instruction throughput.

T

U

V

V
W

Programming Environments Manual for 64-Bit Microprocessors

PowerPC RISC Microprocessor Family

Page 656 of 657
pem_glossaryPEM.fm.3.0

July 15, 2005

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles are directly written
only to the cache. External memory is updated only indirectly, for example, when a modified
cache block is cast out to make room for newer data.

Write-through. A cache memory update policy in which all processor write cycles are written to
both the cache and memory.

Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_revlog.fm.3.0
July 15, 2005

Revision Log

Page 657 of 657

Revision Log

Revision Date Page Affected Contents of Modification

July 15, 2005
Version 3.0

• Removed 32-bit implementation information
• Removed obsolete instructions: dcbi, mcrxr, mtsrd, mtsrdin, rfi

March 31, 2005
486, 506, 544, 545, 546,

601,
386, , 512, 513, 529

Version 2.23
Updates to include changes to the PowerPC Architecture 2.01 (from PowerPC
Architecture 1.10).
This includes the addition of the following instructions:

• mfocrf, mtocrf, slbmfee, slbmfev, slbmte, tlbiel
The following instructions are considered obsolete in the PowerPC Architecture
(2.01), however they are presented in this version:

• dcbi, mcrxr, mtsrd, mtsrdin, rfi
The following instruction is considered obsolete in the PowerPC Architecture (2.01)
and has been deleted from this manual:

• dcba

	Copyright and Disclaimer
	Title Page
	Contents
	List of Tables
	List of Figures
	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	PowerPC Documentation

	Conventions
	Acronyms and Abbreviations
	Terminology Conventions

	1.� Overview
	1.1� PowerPC Architecture Overview
	1.1.1� 64-Bit PowerPC Architecture and the 32-Bit Subset
	1.1.1.1� Temporary 64-Bit Bridge

	1.1.2� Levels of the PowerPC Architecture
	1.1.3� Latitude Within the Levels of the PowerPC Architecture
	1.1.4� Features Not Defined by the PowerPC Architecture

	1.2� The PowerPC Architectural Models
	1.2.1� PowerPC Registers and Programming Model
	1.2.2� Operand Conventions
	1.2.2.1� Byte Ordering
	1.2.2.2� Data Organization in Memory and Data Transfers
	1.2.2.3� Floating-Point Conventions

	1.2.3� PowerPC Instruction Set and Addressing Modes
	1.2.3.1� PowerPC Instruction Set
	1.2.3.2� Calculating Effective Addresses

	1.2.4� PowerPC Cache Model
	1.2.5� PowerPC Exception Model
	1.2.6� PowerPC Memory Management Model

	1.3� Changes to this Manual

	2.� PowerPC Register Set
	2.1� Overview of the PowerPC UISA Registers
	2.1.1� General-Purpose Registers (GPRs)
	2.1.2� Floating-Point Registers (FPRs)
	2.1.3� Condition Register (CR)
	2.1.3.1� Condition Register CR0 Field Definition
	2.1.3.2� Condition Register CR1 Field Definition
	2.1.3.3� Condition Register CRn Field—Compare Instruction

	2.1.4� Floating-Point Status and Control Register (FPSCR)
	2.1.5� XER Register (XER)
	2.1.6� Link Register (LR)
	2.1.7� Count Register (CTR)

	2.2� PowerPC VEA Register Set—Time Base
	2.2.1� Reading the Time Base
	2.2.1.1� Reading the Time Base

	2.2.2� Computing Time of Day from the Time Base

	2.3� PowerPC OEA Register Set
	2.3.1� Machine State Register (MSR)
	2.3.2� Processor Version Register (PVR)
	2.3.3� SDR1
	2.3.4� Address Space Register (ASR)
	2.3.5� Data Address Register (DAR)
	2.3.6� Software Use SPRs (SPRG0–SPRG3)
	2.3.7� Data Storage Interrupt Status Register (DSISR)
	2.3.8� Machine Status Save/Restore Register 0 (SRR0)
	2.3.9� Machine Status Save/Restore Register 1 (SRR1)
	2.3.10� Floating-Point Exception Cause Register (FPECR)
	2.3.11� Time Base Facility (TB)—OEA
	2.3.11.1� Writing to the Time Base

	2.3.12� Decrementer Register (DEC)
	2.3.12.1� Decrementer Operation
	2.3.12.2� Writing and Reading the DEC
	2.3.12.3� Data Address Compare

	2.3.13� Data Address Breakpoint Register (DABR)
	2.3.14� External Access Register (EAR)
	2.3.15� Processor Identification Register (PIR)
	2.3.16� Synchronization Requirements for Special Registers and for Lookaside Buffers
	2.3.16.1� Notes for Table�2�16 and Table�2�17

	3.� Operand Conventions
	3.1� Data Organization in Memory and Data Transfers
	3.1.1� Aligned and Misaligned Accesses
	3.1.2� Byte Ordering
	3.1.2.1� Big-Endian Byte Ordering
	3.1.2.2� Little-Endian Byte Ordering

	3.1.3� Structure Mapping Examples
	3.1.3.1� Big-Endian Mapping
	3.1.3.2� Little-Endian Mapping

	3.1.4� PowerPC Byte Ordering
	3.1.4.1� Aligned Scalars in Little-Endian Mode
	3.1.4.2� Misaligned Scalars in Little-Endian Mode
	3.1.4.3� Nonscalars
	3.1.4.4� Page Tables
	3.1.4.5� PowerPC Instruction Addressing in Little-Endian Mode
	3.1.4.6� PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode

	3.2� Effect of Operand Placement on Performance—VEA
	3.2.1� Summary of Performance Effects
	3.2.2� Instruction Restart

	3.3� Floating-Point Execution Models—UISA
	3.3.1� Floating-Point Data Format
	3.3.1.1� Value Representation
	3.3.1.2� Binary Floating-Point Numbers
	3.3.1.3� Normalized Numbers (±NORM)
	3.3.1.4� Zero Values (±0)
	3.3.1.5� Denormalized Numbers (±DENORM)
	3.3.1.6� Infinities (±•)
	3.3.1.7� Not a Numbers (NaNs)

	3.3.2� Sign of Result
	3.3.3� Normalization and Denormalization
	3.3.4� Data Handling and Precision
	3.3.5� Rounding
	3.3.6� Floating-Point Program Exceptions
	3.3.6.1� Invalid Operation and Zero Divide Exception Conditions
	3.3.6.2� Overflow, Underflow, and Inexact Exception Conditions

	4.� Addressing Modes and Instruction Set Summary
	4.1� Conventions
	4.1.1� Sequential Execution Model
	4.1.2� Computation Modes
	4.1.3� Classes of Instructions
	4.1.3.1� Definition of Boundedly Undefined
	4.1.3.2� Defined Instruction Class
	4.1.3.3� Illegal Instruction Class
	4.1.3.4� Reserved Instructions

	4.1.4� Memory Addressing
	4.1.4.1� Memory Operands
	4.1.4.2� Effective Address Calculation

	4.1.5� Synchronizing Instructions
	4.1.5.1� Context Synchronizing Instructions
	4.1.5.2� Execution Synchronizing Instructions

	4.1.6� Exception Summary

	4.2� PowerPC UISA Instructions
	4.2.1� Integer Instructions
	4.2.1.1� Integer Arithmetic Instructions
	4.2.1.2� Integer Compare Instructions
	4.2.1.3� Integer Logical Instructions
	4.2.1.4� Integer Rotate and Shift Instructions

	4.2.2� Floating-Point Instructions
	4.2.2.1� Floating-Point Arithmetic Instructions
	4.2.2.2� Floating-Point Multiply-Add Instructions
	4.2.2.3� Floating-Point Rounding and Conversion Instructions
	4.2.2.4� Floating-Point Compare Instructions
	4.2.2.5� Floating-Point Status and Control Register Instructions
	4.2.2.6� Floating-Point Move Instructions

	4.2.3� Load and Store Instructions
	4.2.3.1� Integer Load and Store Address Generation
	4.2.3.2� Integer Load Instructions
	4.2.3.3� Integer Store Instructions
	4.2.3.4� Integer Load and Store with Byte-Reverse Instructions
	4.2.3.5� Integer Load and Store Multiple Instructions
	4.2.3.6� Integer Load and Store String Instructions
	4.2.3.7� Floating-Point Load and Store Address Generation
	4.2.3.8� Floating-Point Load Instructions
	4.2.3.9� Floating-Point Store Instructions

	4.2.4� Branch and Flow Control Instructions
	4.2.4.1� Branch Instruction Address Calculation
	4.2.4.2� Conditional Branch Control
	4.2.4.3� Branch Instructions
	4.2.4.4� Simplified Mnemonics for Branch Processor Instructions
	4.2.4.5� Condition Register Logical Instructions
	4.2.4.6� Trap Instructions
	4.2.4.7� System Linkage Instruction—UISA

	4.2.5� Processor Control Instructions—UISA
	4.2.5.1� Move to/from Condition Register Instructions
	4.2.5.2� Move to/from Special-Purpose Register Instructions (UISA)

	4.2.6� Memory Synchronization Instructions—UISA
	4.2.7� Recommended Simplified Mnemonics

	4.3� PowerPC VEA Instructions
	4.3.1� Processor Control Instructions—VEA
	4.3.2� Memory Synchronization Instructions—VEA
	4.3.3� Memory Control Instructions—VEA
	4.3.3.1� User-Level Cache Instructions—VEA

	4.3.4� External Control Instructions

	4.4� PowerPC OEA Instructions
	4.4.1� System Linkage Instructions—OEA
	4.4.2� Processor Control Instructions—OEA
	4.4.2.1� Move to/from Machine State Register Instructions
	4.4.2.2� Move to/from Special-Purpose Register Instructions (OEA)

	4.4.3� Memory Control Instructions—OEA
	4.4.3.1� Segment Register Manipulation Instructions
	4.4.3.2� Translation and Segment Lookaside Buffer Management Instructions

	5.� Cache Model and Memory Coherency
	5.1� The Virtual Environment
	5.1.1� Memory Access Ordering
	5.1.1.1� Enforce In-Order Execution of I/O Instruction
	5.1.1.2� Synchronize Instruction

	5.1.2� Atomicity
	5.1.3� Cache Model
	5.1.4� Memory Coherency
	5.1.4.1� Memory/Cache Access Modes
	5.1.4.2� Coherency Precautions

	5.1.5� VEA Cache Management Instructions
	5.1.5.1� Data Cache Instructions
	5.1.5.2� Instruction Cache Instructions

	5.2� The Operating Environment
	5.2.1� Memory/Cache Access Attributes
	5.2.1.1� Write-Through Attribute (W)
	5.2.1.2� Caching-Inhibited Attribute (I)
	5.2.1.3� Memory Coherency Attribute (M)
	5.2.1.4� W, I, and M Bit Combinations
	5.2.1.5� Guarded Attribute (G)

	5.2.2� I/O Interface Considerations

	6.� Exceptions
	6.1� Exception Classes
	6.1.1� Precise Exceptions
	6.1.2� Synchronization
	6.1.2.1� Context Synchronization
	6.1.2.2� Execution Synchronization
	6.1.2.3� Synchronous/Precise Exceptions
	6.1.2.4� Asynchronous Exceptions

	6.1.3� Imprecise Exceptions
	6.1.3.1� Imprecise Exception Status Description
	6.1.3.2� Recoverability of Imprecise Floating-Point Exceptions

	6.1.4� Partially Executed Instructions
	6.1.5� Exception Priorities

	6.2� Exception Processing
	6.2.1� Enabling and Disabling Exceptions
	6.2.2� Steps for Exception Processing
	6.2.3� Returning from an Exception Handler

	6.3� Process Switching
	6.4� Exception Definitions
	6.4.1� System Reset Exception (0x00100)
	6.4.2� Machine Check Exception (0x00200)
	6.4.3� DSI Exception (0x00300)
	6.4.4� Data Segment Exception (0x00380)
	6.4.5� ISI Exception (0x00400)
	6.4.6� Instruction Segment Exception (x0480)
	6.4.7� External Interrupt (0x00500)
	6.4.8� Alignment Exception (0x00600)
	6.4.8.1� Integer Alignment Exceptions
	6.4.8.2� Little-Endian Mode Alignment Exceptions
	6.4.8.3� Interpretation of the DSISR as Set by an Alignment Exception

	6.4.9� Program Exception (0x00700)
	6.4.10� Floating-Point Unavailable Exception (0x00800)
	6.4.11� Decrementer Exception (0x00900)
	6.4.12� System Call Exception (0x00C00)
	6.4.13� Trace Exception (0x00D00)
	6.4.14� Performance Monitor Exception (0x00F00)

	7.� Memory Management
	7.1� MMU Features
	7.2� MMU Overview
	7.2.1� Memory Addressing
	7.2.1.1� Effective Addresses in 32-Bit Mode
	7.2.1.2� Predefined Physical Memory Locations

	7.2.2� MMU Organization
	7.2.3� Address Translation Mechanisms
	7.2.4� Memory Protection Facilities
	7.2.5� Page History Information
	7.2.6� General Flow of MMU Address Translation
	7.2.6.1� Real Addressing Mode Selection
	7.2.6.2� Page Address Translation Selection

	7.2.7� MMU Exceptions Summary
	7.2.8� MMU Instructions and Register Summary
	7.2.9� TLB Entry Invalidation

	7.3� Real Addressing Mode
	7.4� Memory Segment Model
	7.4.1� Recognition of Addresses in Segments
	7.4.2� Page Address Translation Overview
	7.4.2.1� Segment Lookaside Buffer (SLB)
	7.4.2.2� Page Table Entry (PTE) Definition and Format

	7.4.3� Page History Recording
	7.4.3.1� Referenced Bit
	7.4.3.2� Changed Bit
	7.4.3.3� Scenarios for Referenced and Changed Bit Recording
	7.4.3.4� Synchronization of Memory Accesses and Referenced and Changed Bit Updates

	7.4.4� Page Memory Protection
	7.4.5� Page Address Translation Summary

	7.5� Hashed Page Tables
	7.5.1� Page Table Definition
	7.5.1.1� SDR1 Register Definition
	7.5.1.2� Page Table Size
	7.5.1.3� Page Table Hashing Functions
	7.5.1.4� Translation Lookaside Buffer (TLB)
	7.5.1.5� Page Table Address Generation
	7.5.1.6� Page Table Structure Summary
	7.5.1.7� Page Table Structure Example
	7.5.1.8� PTEG Address Mapping Example

	7.5.2� Page Table Search Process
	7.5.2.1� Flow for Page Table Search Operation

	7.5.3� Page Table Updates
	7.5.3.1� Adding a Page Table Entry
	7.5.3.2� Modifying a Page Table Entry
	7.5.3.3� Deleting a Page Table Entry

	7.5.4� ASR Updates

	7.6� Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementations
	7.6.1� Segment Register Manipulation Instructions in the 64-Bit Bridge
	7.6.2� 64-Bit Bridge Implementation of Segment Register Instruction
	7.6.2.1� Move from Segment Register—mfsr
	7.6.2.2� Move from Segment Register Indirect—mfsrin
	7.6.2.3� Move to Segment Register—mtsr
	7.6.2.4� Move to Segment Register Indirect—mtsrin

	8.� Instruction Set
	8.1� Instruction Formats
	8.1.1� Split-Field Notation
	8.1.2� Instruction Fields
	8.1.3� Notation and Conventions
	8.1.4� Computation Modes

	8.2� PowerPC Instruction Set
	addx addx
	addx addx
	addcx addcx
	addex addex
	addi addi
	addic addic
	addic. addic.
	addis addis
	addmex addmex
	addzex addzex
	andx andx
	andcx andcx
	andi. andi.
	andis. andis.
	bx bx
	bcx bcx
	bcctrx bcctrx
	bclrx bclrx
	cmp cmp
	cmpi cmpi
	cmpl cmpl
	cmpli cmpli
	cntlzdx cntlzdx
	cntlzwx cntlzwx
	crand crand
	crandc crandc
	creqv creqv
	crnand crnand
	crnor crnor
	cror cror
	crorc crorc
	crxor crxor
	dcbf dcbf
	dcbst dcbst
	dcbt dcbt
	dcbtst dcbtst
	dcbz dcbz
	divdx divdx
	divdux divdux
	divwx divwx
	divwux divwux
	eciwx eciwx
	ecowx ecowx
	eieio eieio
	eqvx eqvx
	extsbx extsbx
	extshx extshx
	extswx extswx
	fabsx fabsx
	faddx faddx
	faddsx faddsx
	fcfidx fcfidx
	fcmpo fcmpo
	fcmpu fcmpu
	fctidx fctidx
	fctidzx fctidzx
	fctiwx fctiwx
	fctiwzx fctiwzx
	fdivx fdivx
	fdivsx fdivsx
	fmaddx fmaddx
	fmaddsx fmaddsx
	fmrx fmrx
	fmsubx fmsubx
	fmsubsx fmsubsx
	fmulx fmulx
	fmulsx fmulsx
	fnabsx fnabsx
	fnegx fnegx
	fnmaddx fnmaddx
	fnmaddsx fnmaddsx
	fnmsubx fnmsubx
	fnmsubsx fnmsubsx
	fresx fresx
	frspx frspx
	frsqrtex frsqrtex
	fselx fselx
	fsqrtx fsqrtx
	fsqrtsx fsqrtsx
	fsubx fsubx
	fsubsx fsubsx
	icbi icbi
	isync isync
	lbz lbz
	lbzu lbzu
	lbzux lbzux
	lbzx lbzx
	ld ld
	ldarx ldarx
	ldu ldu
	ldux lduxx
	ldx ldx
	lfd lfd
	lfdu lfdu
	lfdux lfdux
	lfdx lfdx
	lfs lfs
	lfsu lfsu
	lfsux lfsux
	lfsx lfsx
	lha lha
	lhau lhau
	lhaux lhaux
	lhax lhax
	lhbrx lhbrx
	lhz lhz
	lhzu lhzu
	lhzux lhzux
	lhzx lhzx
	lmw lmw
	lswi lswi
	lswx lswx
	lwa lwa
	lwarx lwarx
	lwaux lwaux
	lwax lwax
	lwbrx lwbrx
	lwz lwz
	lwzu lwzu
	lwzux lwzux
	lwzx lwzx
	mcrf mcrf
	mcrfs mcrfs
	mfcr mfcr
	mfocrf mfocrf
	mffsx mffsx
	mfmsr mfmsr
	mfspr mfspr
	mfsr mfsr
	mfsrin mfsrin
	mftb mftb
	mtcrf mtcrf
	mtfsb0x mtfsb0x
	mtfsb1x mtfsb1x
	mtfsfx mtfsfx
	mtfsfix mtfsfix
	mtmsr mtmsr
	mtmsrd mtmsrd
	mtocrf mtocrf
	mtspr mtspr
	mtsr mtsr
	mtsrin mtsrin
	mulhdx mulhdx
	mulhdux mulhdux
	mulhwx mulhwx
	mulhwux mulhwux
	mulldx mulldx
	mulli mulli
	mullwx mullwx
	nandx nandx
	negx negx
	norx norx
	orx orx
	orcx orcx
	ori ori
	oris oris
	rfid rfid
	rldclx rldclx
	rldcrx rldcrx
	rldicx rldicx
	rldiclx rldiclx
	rldicrx rldicrx
	rldimix rldimix
	rlwimix rlwimix
	rlwinmx rlwinmx
	rlwnmx rlwnmx
	sc sc
	slbia slbia
	slbie slbie
	slbmfee slbmfee
	slbmfev slbmfev
	slbmte slbmte
	sldx sldx
	slwx slwx
	sradx sradx
	sradix sradix
	srawx srawx
	srawix srawix
	srdx srdx
	srwx srwx
	stb stb
	stbu stbu
	stbux stbux
	stbx stbx
	std std
	stdcx. stdcx.
	stdu stdu
	stdux stdux
	stdx stdx
	stfd stfd
	stfdu stfdu
	stfdux stfdux
	stfdx stfdx
	stfiwx stfiwx
	stfs stfs
	stfsu stfsu
	stfsux stfsux
	stfsx stfsx
	sth sth
	sthbrx sthbrx
	sthu sthu
	sthux sthux
	sthx sthx
	stmw stmw
	stswi stswi
	stswx stswx
	stw stw
	stwbrx stwbrx
	stwcx. stwcx.
	stwu stwu
	stwux stwux
	stwx stwx
	subfx subfx
	subfcx subfcx
	subfex subfex
	subfic subfic
	subfmex subfmex
	subfzex subfzex
	sync sync
	td td
	tdi tdi
	tlbia tlbia
	tlbie tlbie
	tlbiel tlbiel
	tlbsync tlbsync
	tw tw
	twi twi
	xorx xorx
	xori xori
	xoris xoris

	Appendix A.� PowerPC Instruction Set Listings
	A.1� Instructions Sorted by Mnemonic
	A.2� Instructions Sorted by Opcode
	A.3� Instructions Grouped by Functional Categories
	A.4� Instructions Sorted by Form
	A.5� Instruction Set Legend

	Appendix B.� Multiple-Precision Shifts
	B.1� Multiple-Precision Shifts

	Appendix C.� Floating-Point Models
	C.1� Execution Model for IEEE Operations
	C.2� Execution Model for Multiply-Add Type Instructions
	C.3� Floating-Point Conversions
	C.3.1� Conversion from Floating-Point Number to Floating-Point Integer
	C.3.2� Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word
	C.3.3� Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word
	C.3.4� Conversion from Floating-Point Number to Signed Fixed-Point Integer Word
	C.3.5� Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word
	C.3.6� Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number
	C.3.7� Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number
	C.3.8� Conversion from Signed Fixed-Point Integer Word to Floating-Point Number
	C.3.9� Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number

	C.4� Floating-Point Models
	C.4.1� Floating-Point Round to Single-Precision Model
	C.4.2� Floating-Point Convert to Integer Model
	C.4.3� Floating-Point Convert from Integer Model

	C.5� Floating-Point Selection
	C.5.1� Comparison to Zero
	C.5.2� Minimum and Maximum
	C.5.3� Simple If-Then-Else Constructions
	C.5.4� Notes

	C.6� Floating-Point Load Instructions
	C.7� Floating-Point Store Instructions

	Appendix D.� Synchronization Programming Examples
	D.1� General Information
	D.2� Synchronization Primitives
	D.2.1� Fetch and No-Op
	D.2.2� Fetch and Store
	D.2.3� Fetch and Add
	D.2.4� Fetch and AND
	D.2.5� Test and Set

	D.3� Compare and Swap
	D.4� Lock Acquisition and Release
	D.4.1� Lock Acquisition and Import Barriers
	D.4.1.1� Acquire Lock and Import Shared Memory
	D.4.1.2� Obtain Pointer and Import Shared Memory

	D.4.2� Lock Release and Export Barriers
	D.4.2.1� Export Shared Memory and Release Lock
	D.4.2.2� Export Shared Memory and Release Lock using EIEIO or LYSYNC

	D.4.3� Safe Fetch

	D.5� List Insertion
	D.6� Notes

	Appendix E.� Simplified Mnemonics
	E.1� Symbols
	E.2� Simplified Mnemonics for Subtract Instructions
	E.2.1� Subtract Immediate
	E.2.2� Subtract

	E.3� Simplified Mnemonics for Compare Instructions
	E.3.1� Double-Word Comparisons
	E.3.2� Word Comparisons

	E.4� Simplified Mnemonics for Rotate and Shift Instructions
	E.4.1� Operations on Double Words
	E.4.2� Operations on Words

	E.5� Simplified Mnemonics for Branch Instructions
	E.5.1� BO and BI Fields
	E.5.2� Basic Branch Mnemonics
	E.5.3� Branch Mnemonics Incorporating Conditions
	E.5.4� Branch Prediction
	E.5.4.1� Examples of Branch Prediction

	E.6� Simplified Mnemonics for Condition Register Logical Instructions
	E.7� Simplified Mnemonics for Trap Instructions
	E.8� Simplified Mnemonics for Special-Purpose Registers
	E.9� Recommended Simplified Mnemonics
	E.9.1� No-Op (nop)
	E.9.2� Load Immediate (li)
	E.9.3� Load Address (la)
	E.9.4� Move Register (mr)
	E.9.5� Complement Register (not)
	E.9.6� Move to/from Condition Register (mtcr/mfcr)

	Appendix F.� Glossary of Terms and Abbreviations
	Revision Log

