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About This Book

The primary objective of this manual is to help programmers provide software that is compatible across the 
family of PowerPC™ processors. Because the PowerPC Architecture is designed to be flexible to support a 
broad range of processors, this book provides a general description of features that are common to PowerPC 
processors and indicates those features that are optional or that may be implemented differently in the design 
of each processor. 

This book describes the PowerPC Architecture from the perspective of the 64-bit architecture. For information 
that pertains only to the 32-bit architecture refer to the PowerPC Microprocessor Family: The Programming 
Environments for 32-Bit Microprocessors. To locate any published errata or updates for this manual, refer to 
the world-wide web at http://www.ibm.com/powerpc. For programmers working with a specific processor, this 
book should be used in conjunction with the user’s manual for that processor. 

This manual distinguishes between the three levels, or programming environments, of the PowerPC Architec-
ture, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to 
which user-level software should conform. 

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the Pow-
erPC Architecture, defines additional user-level functionality that falls outside typical user-level software 
requirements. 

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily 
adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system. 

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA. 

Refer to Section 1.1.2 on page 32 for additional information on the PowerPC Architecture levels.

It is important to note that some resources are defined more generally at one level in the architecture and 
more specifically at another. For example, conditions that can cause a floating-point exception are defined by 
the UISA, while the exception mechanism itself is defined by the OEA.

This book does not attempt to replace the PowerPC Architecture specification (version 2.01), which defines 
the architecture from the perspective of the three programming environments and which remains the defining 
manual for the PowerPC Architecture. 

For ease in reference, this book and the processor user’s manuals have arranged the architecture informa-
tion into topics that build upon one another, beginning with a description and complete summary of registers 
and instructions (for all three environments) and progressing to more specialized topics such as the cache, 
exception, and memory management models. As such, chapters may include information from multiple levels 
of the architecture; for example, the discussion of the cache model uses information from both the VEA and 
the OEA. 

Temporary 64-Bit Bridge

The OEA defines optional features to simplify the migration of 32-bit operating systems to a 64-bit imple-
mentations. 
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It is beyond the scope of this manual to describe individual PowerPC processors. It must be kept in mind that 
each PowerPC processor may be unique in its implementation of the PowerPC Architecture.

The information in this book is subject to change without notice, as described in the disclaimers on the title 
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are 
using the most recent version of the documentation. For more information contact your sales representative 
or visit our web site at: http://www.ibm.com/powerpc. 

Audience

This manual is intended for system software and hardware developers and application programmers who 
want to develop 64-bit products using IBM’s 64-bit PowerPC processors. It is assumed that the reader under-
stands operating systems, microprocessor system design, and the basic principles of RISC processing.

Organization

Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview," is useful for those who want a general understanding of the features and functions 
of the PowerPC Architecture. This chapter describes the flexible nature of the PowerPC Architecture defi-
nition and provides an overview of how the PowerPC Architecture defines the register set, operand con-
ventions, addressing modes, instruction set, cache model, exception model, and memory management 
model.

• Chapter 2, “PowerPC Register Set," is useful for software engineers who need to understand the Pow-
erPC programming model for the three programming environments and the functionality of the PowerPC 
registers. 

• Chapter 3, “Operand Conventions," describes PowerPC conventions for storing data in memory, including 
information regarding alignment, single and double-precision floating-point conventions, and big and little-
endian byte ordering.

• Chapter 4, “Addressing Modes and Instruction Set Summary," provides an overview of the PowerPC 
addressing modes and a description of the PowerPC instructions. Instructions are organized by function.

• Chapter 5, “Cache Model and Memory Coherency," provides a discussion of the cache and memory 
model defined by the VEA and aspects of the cache model that are defined by the OEA.

• Chapter 6, “Exceptions," describes the exception model defined in the OEA.

• Chapter 7, “Memory Management," provides descriptions of the PowerPC address translation and mem-
ory protection mechanism as defined by the OEA.

• Chapter 8, “Instruction Set," functions as a handbook for the PowerPC instruction set. Instructions are 
sorted by mnemonic. Each instruction description includes the instruction formats and an individualized 
legend that provides such information as the level(s) of the PowerPC Architecture in which the instruction 
may be found and the privilege level of the instruction. 

• Appendix A, “PowerPC Instruction Set Listings," lists all the PowerPC instructions. Instructions are 
grouped according to mnemonic, opcode, function, and form. 

• Appendix B, “Multiple-Precision Shifts," describes how multiple-precision shift operations can be pro-
grammed as defined by the UISA.
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• Appendix C, “Floating-Point Models," gives examples of how the floating-point conversion instructions 
can be used to perform various conversions as described in the UISA.

• Appendix D, “Synchronization Programming Examples," gives examples showing how synchronization 
instructions can be used to emulate various synchronization primitives and how to provide more complex 
forms of synchronization.

• Appendix E, “Simplified Mnemonics," provides a set of simplified mnemonic examples and symbols.

• This manual also includes a glossary.

Suggested Reading

This section lists additional reading that provides background for the information in this manual, as well as 
general information about the PowerPC Architecture. 

General Information

The following documentation provides useful information about the PowerPC Architecture and computer 
architecture in general:

• The following books are available via many online bookstores. 

– The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, by 
International Business Machines, Inc.1994.
Note:  This book has been superseded with the PowerPC Architecture Books I-III, Version 2.01 and 
is available at www.ibm.com/powerpc. 

– PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by Apple 
Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

– Macintosh Technology in the Common Hardware Reference Platform, by Apple Computer, Inc.

– Computer Architecture: A Quantitative Approach, Second Edition, by 
John L. Hennessy and David A. Patterson, 

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob Way, 
Reading, MA, 01867.

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books Worldwide, Inc., 919 East 
Hillsdale Boulevard, Suite 400, Foster City, CA, 94404.
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PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

• User’s manuals—These books provide details about individual PowerPC implementations and are 
intended to be used in conjunction with The Programming Environments Manual. Chapter 1, Overview is 
equivalent to previously released Technical Summaries. 

• Addenda/errata to user’s manuals—Because some processors have follow-on parts, an addendum may 
be provided that describes the additional features and changes to functionality of the follow-on part. 
These addenda are intended for use with the corresponding user’s manuals. 

• Programming environments manuals (PEM)—These books provide information about resources defined 
by the PowerPC Architecture that are common to PowerPC processors. There are several PEM versions 
available, this version of the PEM which describes the 64-bit PowerPC Architecture; the PowerPC Micro-
processor Family: The Programming Environments for 32-Bit Microprocessors that describes only the 32-
bit model; and the PowerPC Microprocessor Family: AltiVecTM* Technology Programming Environments 
Manual which describes the vector/SIMD architecture. 

• Datasheets—Datasheets provide specific data regarding bus timing; signal behavior; and AC, DC, and 
thermal characteristics, as well as other design considerations for each PowerPC implementation. 

• PowerPC Microprocessor Family: The Programmer’s Reference Guide: MPRPPCPRG-01 is a concise 
reference that includes the register summary, memory control model, exception vectors, and the Pow-
erPC instruction set.

• PowerPC Quick Reference Guide: This brochure is a Quick Reference Guide to IBM's portfolio of indus-
try-leading PowerPC technology. It includes highlights and specifications for the PowerPC 405, PowerPC 
440, PowerPC 750, and PowerPC 970 based standard products.

• Book I: PowerPC User Instruction Set Architecture (Version 2.01)–This book defines the instructions, reg-
isters, etc., typically used by application programs (for example, Branch, Load, Store, and Arithmetic 
instructions; general purpose and floating-point registers). All Book I facilities and instructions are non-
privileged (are available in problem state). 

• Book II: PowerPC Virtual Environment Architecture (Version 2.01)–This book defines the storage model 
(caches, storage access ordering, etc.) and related instructions, such as the instructions used to manage 
caches and to synchronize storage accesses when storage is shared among programs running on differ-
ent processors. All Book II facilities and instructions are non-privileged, but they are typically used via 
operating-system-provided library subroutines, which application programs call as needed. 

• Book III: PowerPC Operating Environment Architecture (Version 2.01) –This book defines the privileged 
facilities and related instructions (address translation, storage protection, interruptions, etc.). Nearly all 
Book III facilities and instructions are privileged. (Those that are non-privileged are described also in 
Book I or II, but only at the level needed by application programmers.) 

• Application notes—These short documents contain useful information about specific design issues useful 
to programmers and engineers working with PowerPC processors. 

• Documentation for support chips.

For a current list of PowerPC documentation, refer to the world-wide web at http://wwwibm.com/chips. Addi-
tional literature on PowerPC implementations is being released to the web as new processors become avail-
able. 
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Conventions

This manual uses the following notational conventions: 

Additional conventions used with instruction encodings are described in Table 8-2 on page 300. Conventions 
used for pseudocode examples are described in Table 8-3 on page 302.

mnemonics Instruction mnemonics are shown in lowercase bold. 

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

n Used to express an undefined numerical value

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, 
fields, or ranges appear in brackets. For example, MSR[LE] refers to the little-
endian mode enable bit in the machine state register.

x In certain contexts, such as a signal encoding, this indicates a don’t care. 

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written 
to as either ones or zeroes, they are always read as zeros. 

Temporary 64-Bit Bridge

Text that pertains to the optional 64-bit bridge defined by the OEA is presented with a box, as shown 
here. 

0 0 0 0 
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Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this manual. Note that the meanings for some 
acronyms (such as SDR1 and XER) are historical, and the words for which an acronym stands may not be 
intuitively obvious. 

Table i. Acronyms and Abbreviated Terms  

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BIST Built-in self test

BPU Branch processing unit

BUID Bus unit ID

CR Condition register 

CTR Count register 

DABR Data address breakpoint register

DAR Data address register 

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EAR External access register 

ECC Error checking and correction

FIFO First-in-first-out

FPECR Floating-point exception cause register 

FPR Floating-point register

FPSCR Floating-point status and control register 

FPU Floating-point unit

GPR General-purpose register

IEEE® Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache 

LIFO Last-in-first-out

LR Link register 

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

lsq Least-significant quad word

MERSI Modified/exclusive/reserved/shared/invalid–cache coherency protocol
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MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

msq Most-significant quad word

MSR Machine state register 

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register 

PTE Page table entry

PTEG Page table entry group

PVR Processor version register 

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIMD Single instruction stream, multiple data streams

SIMM Signed immediate value

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRR0 Machine status save/restore register 0 

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded – memory attribute bits

XER Register used primarily for indicating conditions such as carries and overflows for integer operations 

Table i. Acronyms and Abbreviated Terms (Continued) 

Term Meaning
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Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology conventions. 

Table iii describes instruction field notation conventions used in this manual. 

Table ii. Terminology Conventions  

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception 

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access 

Swizzling Doubleword swap

Table iii. Instruction Field Conventions  

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)
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1. Overview
10
40

The PowerPC Architecture provides a software model that ensures software compatibility among implemen-
tations of the PowerPC family of microprocessors. In this manual, and in other PowerPC documentation as 
well, the term ‘implementation’ refers to a hardware device (typically a microprocessor) that complies with the 
specifications defined by the architecture. 

 general defines the following:

• Instruction set—The instruction set specifies the families of instructions (such as load/store, integer arith-
metic, and floating-point arithmetic instructions), the specific instructions, and the forms used for encod-
ing the instructions. The instruction set definition also specifies the addressing modes used for accessing 
memory.

• Programming model—The programming model defines the register set and the memory conventions, 
including details regarding the bit and byte ordering, and the conventions for how data (such as integer 
and floating-point values) are stored.

• Memory model—The memory model defines the size of the address space and of the subdivisions of that 
address space. It also defines the ability to configure pages of memory with respect to caching, byte 
ordering (big or little-endian), coherency, and various types of memory protection. 

• Exception model—The exception model defines the common set of exceptions and the conditions that 
can generate those exceptions. The exception model specifies characteristics of the exceptions, such as 
whether they are precise or imprecise, synchronous or asynchronous, and maskable or nonmaskable. 
The exception model defines the exception vectors and a set of registers used when exceptions are 
taken. The exception model also provides memory space for implementation-specific exceptions. (Note 
that exceptions are referred to as interrupts in the architecture specification.)

• Memory management model—The memory management model defines how memory is partitioned, con-
figured, and protected. The memory management model also specifies how memory translation is per-
formed, the real, virtual, and physical address spaces, special memory control instructions, and other 
characteristics. (Physical address is referred to as real address in the architecture specification.)

• Time-keeping model—The time-keeping model defines facilities that permit the time of day to be deter-
mined and the resources and mechanisms required for supporting time-related exceptions. 

These aspects of the PowerPC Architecture are defined at different levels of the architecture, and this chapter 
provides an overview of those levels—the user instruction set architecture (UISA), the virtual environment 
architecture (VEA), and the operating environment architecture (OEA).
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1.1 PowerPC Architecture Overview

The PowerPC Architecture takes advantage of recent technological advances in such areas as process tech-
nology, compiler design, and reduced instruction set computing (RISC) microprocessor design. It provides 
software compatibility across a diverse family of implementations, primarily single-chip microprocessors, 
intended for a wide range of systems, including battery-powered personal computers; embedded controllers; 
high-end scientific and graphics workstations; and multiprocessing, microprocessor-based mainframes. To 
provide a single architecture for such a broad assortment of processor environments, the PowerPC Architec-
ture is both flexible and scalable. 

The flexibility of the PowerPC Architecture offers many price/performance options. Designers can choose 
whether to implement architecturally-defined features in hardware or in software. For example, a processor 
designed for a high-end workstation has a greater need for the performance gained from implementing 
floating-point normalization and denormalization in hardware than a battery-powered, general-purpose 
computer might.

The PowerPC Architecture is scalable to take advantage of continuing technological advances—for example, 
the continued miniaturization of transistors makes it more feasible to implement more execution units and a 
richer set of optimizing features without being constrained by the architecture. 

The PowerPC Architecture defines the following features:

• Separate 32-entry register files for integer and floating-point instructions. The general-purpose registers 
(GPRs) hold source data for integer arithmetic instructions, and the floating-point registers (FPRs) hold 
source and target data for floating-point arithmetic instructions.

• Instructions for loading and storing data between the memory system and either the FPRs or GPRs.

• Uniform-length instructions to allow simplified instruction pipelining and parallel processing instruction 
dispatch mechanisms.

• Nondestructive use of registers for arithmetic instructions in which the second, third, and sometimes the 
fourth operand, typically specify source registers for calculations whose results are typically stored in the 
target register specified by the first operand. 

• A precise exception model (with the option of treating floating-point exceptions imprecisely).

• Floating-point support that includes IEEE-754 floating-point operations.

• A flexible architecture definition that allows certain features to be performed in either hardware or with 
assistance from implementation-specific software depending on the needs of the processor design.

• The ability to perform both single and double-precision floating-point operations.

• User-level instructions for explicitly storing, flushing, and invalidating data in the on-chip caches. The 
architecture also defines special instructions (cache block touch instructions) for speculatively loading 
data before it is needed, reducing the effect of memory latency. 

• Definition of a memory model that allows weakly-ordered memory accesses. This allows bus operations 
to be reordered dynamically, which improves overall performance and in particular reduces the effect of 
memory latency on instruction throughput.

• Support for separate instruction and data caches (Harvard architecture) and for unified caches.

• Support for both big and little-endian addressing modes. 

• Support for 64-bit addressing. 
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This chapter provides an overview of the major characteristics of the PowerPC Architecture in the order in 
which they are addressed in this book:

• Register set and programming model

• Instruction set and addressing modes

• Cache implementations

• Exception model

• Memory management

1.1.1 64-Bit PowerPC Architecture and the 32-Bit Subset 

The PowerPC Architecture is a 64-bit architecture with a 32-bit subset. It is important to distinguish the 
following modes of operations:

• 64-bit implementations/64-bit mode—The PowerPC Architecture provides 64-bit addressing, 64-bit inte-
ger data types, and instructions that perform arithmetic operations on those data types, as well as other 
features to support the wider addressing range. The processor is configured to operate in 64-bit mode by 
setting the MSR[SF] bit.

• 64-bit implementations/32-bit mode—For compatibility with 32-bit implementations, 64-bit implementa-
tions can be configured to operate in 32-bit mode by clearing the MSR[SF] bit. In 32-bit mode, the effec-
tive address is treated as a 32-bit address, condition bits, such as overflow and carry bits, are set based 
on 32-bit arithmetic (for example, integer overflow occurs when the result exceeds 32 bits), and the count 
register (CTR) is tested by branch conditional instructions following conventions for 32-bit implementa-
tions. All applications written for 32-bit implementations will run without modification on 64-bit processors 
running in 32-bit mode.

1.1.1.1 Temporary 64-Bit Bridge 

The OEA defines an additional, optional bridge that may make it easier to migrate a 32-bit operating system 
to the 64-bit architecture. This bridge allows 64-bit implementations to use a simpler memory management 
model to access 32-bit effective address space. Processors that implement this bridge may implement 
resources, such as instructions, that are not supported, and in some cases not permitted by the 64-bit archi-
tecture.

For processors that implement the address translation portion of the bridge, segment descriptors take the 
form of the STEs defined for 64-bit MMUs; however, only 16 STEs are required to define the entire 4-Gbyte 
address space. Like 32-bit implementations, the effective address space is entirely defined by 16 contiguous 
256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment registers as is defined for the 
32-bit MMU, the 16 STEs are implemented and are maintained in 16 SLB entries.

These resources are described more fully in Section 7.6 Migration of Operating Systems from 32-Bit Imple-
mentations to 64-Bit Implementations. These resources are not to be considered a permanent part of the 
PowerPC Architecture.
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1.1.2 Levels of the PowerPC Architecture

The PowerPC Architecture is defined in three levels that correspond to three programming environments, 
roughly described from the most general, user-level instruction set environment, to the more specific, oper-
ating environment. This layering of the architecture provides flexibility, allowing degrees of software compati-
bility across a wide range of implementations. For example, an implementation such as an embedded 
controller will support the user instruction set, whereas it may be impractical for it to adhere to the memory 
management, exception, and cache models. 

The three levels of the PowerPC Architecture are defined as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to 
which user-level (referred to as problem state in the architecture specification) software should conform. 
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point mem-
ory conventions and exception model as seen by user programs, and the memory and programming 
models. The icon shown in the margin identifies text that is relevant with respect to the UISA.

• PowerPC virtual environment architecture (VEA)—The VEA defines additional user-level functionality that 
falls outside typical user-level software requirements. The VEA describes the memory model for an envi-
ronment in which multiple devices can access memory, defines aspects of the cache model, defines 
cache control instructions, and defines the time base facility from a user-level perspective. The icon 
shown in the margin identifies text that is relevant with respect to the VEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as 
privileged state in the architecture specification) resources typically required by an operating system. The 
OEA defines the PowerPC memory management model, supervisor-level registers, synchronization 
requirements, and the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with respect to the OEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level, but may not neces-
sarily adhere to the OEA level; likewise, implementations that conform to the OEA level are also guaranteed 
to conform to the UISA and the VEA levels. 

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC application programs. 
However, there may be different versions of the VEA and OEA than those described here. For example, 
some devices, such as embedded controllers, may not require some of the features as defined by this VEA 
and OEA, and may implement a simpler or modified version of those features. 

The general-purpose PowerPC microprocessors comply both with the UISA and with the VEA and OEA 
discussed here. In this book, these three levels of the architecture are referred to collectively as the PowerPC 
Architecture. The distinctions between the levels of the PowerPC Architecture are maintained clearly 
throughout this manual, using the conventions described in the Section  Conventions on page 25.

1.1.3 Latitude Within the Levels of the PowerPC Architecture 

The PowerPC Architecture defines those parameters necessary to ensure compatibility among PowerPC 
processors, but also allows a wide range of options for individual implementations. These are as follows:

• The PowerPC Architecture defines some facilities (such as registers, bits within registers, instructions, 
and exceptions) as optional. 

• The PowerPC Architecture allows implementations to define additional privileged special-purpose regis-
ters (SPRs), exceptions, and instructions for special system requirements (such as power management 
in processors designed for very low-power operation). 
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• There are many other parameters that the PowerPC Architecture allows implementations to define. For 
example, the PowerPC Architecture may define conditions for which an exception may be taken, such as 
alignment conditions. A particular implementation may choose to solve the alignment problem without 
taking the exception. 

• Processors may implement any architectural facility or instruction with assistance from software (that is, 
they may trap and emulate) as long as the results (aside from performance) are identical to that specified 
by the architecture.

• Some parameters are defined at one level of the architecture and defined more specifically at another. 
For example, the UISA defines conditions that may cause an alignment exception, and the OEA specifies 
the exception itself.

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC Architecture, there are many aspects of the 
processor design, typically relating to the hardware implementation, that the PowerPC Architecture does not 
define, such as the following:

• System bus interface signals—Although numerous implementations may have similar interfaces, the 
PowerPC Architecture does not define individual signals or the bus protocol. For example, the OEA 
allows each implementation to determine the signal or signals that trigger the machine check exception.

• Cache design—The PowerPC Architecture does not define the size, structure, the replacement algorithm, 
or the mechanism used for maintaining cache coherency. The PowerPC Architecture supports, but does 
not require, the use of separate instruction and data caches. Likewise, the PowerPC Architecture does 
not specify the method by which cache coherency is ensured.

• The number and the nature of execution units—The PowerPC Architecture is a reduced instruction set 
computing (RISC) architecture, and as such has been designed to facilitate the design of processors that 
use pipelining and parallel execution units to maximize instruction throughput. However, the PowerPC 
Architecture does not define the internal hardware details of implementations. For example, one proces-
sor may execute load and store operations in the integer unit, while another may execute these instruc-
tions in a dedicated load/store unit. 

• Other internal microarchitecture issues—The PowerPC Architecture does not prescribe which execution 
unit is responsible for executing a particular instruction; it also does not define details regarding the 
instruction fetching mechanism, how instructions are decoded and dispatched, and how results are writ-
ten back. Dispatch and write-back may occur in-order or out-of-order. Also while the architecture specifies 
certain registers, such as the GPRs and FPRs, implementations can implement register renaming or 
other schemes to reduce the impact of data dependencies and register contention.

1.2 The PowerPC Architectural Models 

This section provides overviews of aspects defined by the PowerPC Architecture, following the same order as 
the rest of this book. The topics include the following:

• PowerPC registers and programming model
• PowerPC operand conventions
• PowerPC instruction set and addressing modes
• PowerPC cache model
• PowerPC exception model
• PowerPC memory management model
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1.2.1 PowerPC Registers and Programming Model

The PowerPC Architecture defines register-to-register operations for computational instructions. Source 
operands for these instructions are accessed from the architected registers or are provided as immediate 
values embedded in the instruction. The three-register instruction format allows specification of a target 
register distinct from two source operand registers. This scheme allows efficient code scheduling in a highly 
parallel processor. Load and store instructions are the only instructions that transfer data between registers 
and memory. The PowerPC registers are shown in Figure 1-1. 

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several 
miscellaneous registers. Each implementation may have its own unique set of hardware implementation 
(HID) registers that are not defined by the architecture.

PowerPC processors have two levels of privilege: 

• Supervisor mode—used exclusively by the operating system. Resources defined by the OEA can be 
accessed only by supervisor-level software. 

• User mode—used by the application software and operating system software. (Only resources defined by 
the UISA and VEA can be accessed by user-level software.)

Figure 1-1. Programming Model—PowerPC Registers 

USER MODEL—UISA
• 32 General-Purpose Registers (GPRs)
• 32 Floating-Point Registers (FPRs)
• Condition Register (CR)
• Floating-Point Status and Control Register (FPSCR)
• Fixed-Point Exception Register (XER)
• Link Register (LR)
• Count Register (CTR)

SUPERVISOR MODEL—OEA

Configuration Registers
• Machine State Register (MSR)
• Processor Version Register (PVR)

Memory Management Registers
• SDR1
• Address Space Register (ASR)

Exception Handling Registers
• Data Address Register (DAR)
• DSISR
• Save and Restore Registers (SRR0/SRR1)
• Software Use SPRs (SPRG0–SPRG3)
• Floating-Point Exception Cause Register (FPECR)1

Miscellaneous Registers
• Time Base Facility (TBU and TBL) (For writing)
• Decrementer Register (DEC)
• Data Address Breakpoint Register (DABR)1

• Processor Identification Register (PIR)1

• External Access Register (EAR)1 
• Control Register (CTRL)
• Instruction Address Breakpoint Register (IABR)2

USER MODEL—VEA
• Time Base Facility (TBU and TBL) (For reading)

1. Optional 
2. Implementation specific register



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem1_overview.fm.3.0
July 15, 2005  
 

Overview

Page 35 of 657

These two levels govern the access to registers, as shown in Figure 1-1. The division of privilege allows the 
operating system to control the application environment (providing virtual memory and protecting operating 
system and critical machine resources). Instructions that control the state of the processor, the address trans-
lation mechanism, and supervisor registers can be executed only when the processor is operating in super-
visor mode.

• User Instruction Set Architecture Registers—All UISA registers can be accessed by all software with 
either user or supervisor privileges. These registers include the 32 general-purpose registers (GPRs) and 
the 32 floating-point registers (FPRs), and other registers used for integer, floating-point, and branch 
instructions. 

• Virtual Environment Architecture Registers—The VEA defines the user-level portion of the time base 
facility, which consists of the two 32-bit time base registers. These registers can be read by user-level 
software, but can be written to only by supervisor-level software.

• Operating Environment Architecture Registers—SPRs defined by the OEA are used for system-level 
operations such as memory management, exception handling, and time-keeping.

The PowerPC Architecture also provides room in the SPR space for implementation-specific registers, typi-
cally referred to as HID registers. Individual HIDs are not discussed in this manual. 

1.2.2 Operand Conventions

Operand conventions are defined in two levels of the PowerPC Architecture—user instruction set architecture 
(UISA) and virtual environment architecture (VEA). These conventions define how data is stored in registers 
and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides the option of operating in 
either big or little-endian mode. Big-endian byte ordering is shown in Figure 1-2. 

The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian mode) and ILE (exception 
little-endian mode). The LE bit specifies whether the processor is configured for big-endian or little-endian 
mode; the ILE bit specifies the mode when an exception is taken by being copied into the LE bit of the MSR. 
A value of ’0’ specifies big-endian mode and a value of 1 specifies little-endian mode. 

Note:  Little endian mode is optional. If the processor does not support little endian mode, then MSR[LE] and 
MSR[ILE] are treated as reserved.

Refer to Section 3.1.2 Byte Ordering for details on big-endian and little-endian modes.

Figure 1-2. Big-Endian Byte and Bit Ordering 

Byte 0 Byte 1 Byte N (max)

Big-Endian Byte Ordering

MSB
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1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Memory operands may be bytes, halfwords, words, or doublewords, or for the load/store string/multiple 
instructions, a sequence of bytes or words. The address of a multiple-byte memory operand is the address of 
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the 
operand length. In other words, the natural address of an operand is an integral multiple of the operand 
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is 
misaligned.

1.2.2.3 Floating-Point Conventions

The PowerPC Architecture adheres to the IEEE-754 standard for floating-point arithmetic: 

• Double-precision arithmetic instructions may have single or double-precision operands but always pro-
duce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision values and always pro-
duce single-precision results. Single-precision values are stored in double-precision format in the FPRs—
these values are rounded such that they can be represented in 32-bit, single-precision format (as they are 
in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent 
among all instruction types, permitting decoding to occur in parallel with operand accesses. This fixed instruc-
tion length and consistent format greatly simplifies instruction pipelining. 

1.2.3.1 PowerPC Instruction Set

Although these categories are not defined by the PowerPC Architecture, the PowerPC instructions can be 
grouped as follows: 

• Integer instructions—These instructions are defined by the UISA. They include computational and logical 
instructions. For example, integer arithmetic instructions, integer compare instructions, logical instruc-
tions, and integer rotate and shift instructions.

• Floating-point instructions—These instructions, defined by the UISA, include floating-point computational 
instructions, as well as instructions that manipulate the floating-point status and control register (FPSCR). 
For example, floating-point arithmetic instructions, floating-point multiply/add instructions, floating-point 
compare instructions, floating-point status and control instructions, floating-point move instructions, and 
optional floating-point instructions.

• Load/store instructions—These instructions, defined by the UISA, include integer and floating-point load 
and store instructions. For example, integer load and store instructions, integer load and store with byte 
reverse instructions, integer load and store multiple instructions, integer load and store string instructions, 
and floating-point load and store instructions. 
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• The UISA also provides a set of load/store with reservation instructions (lwarx/ldarx and stwcx./stdcx.) 
that can be used as primitives for constructing atomic memory operations in multiprocessing environ-
ments. These are grouped under synchronization instructions. 

• Synchronization instructions—The UISA and VEA define instructions for memory synchronizing, espe-
cially useful for multiprocessing. For example, load and store with reservation instructions (these UISA-
defined instructions provide primitives for synchronization operations such as test and set, compare and 
swap, and compare memory). The synchronization instruction (sync) is useful for synchronizing load and 
store operations on a memory bus that is shared by multiple devices. The Enforce In-Order Execution of 
I/O (eieio) instruction provides an ordering function for the effects of load and store operations executed 
by a processor. 

• Flow control instructions—These include branching instructions, condition register logical instructions, 
trap instructions, and other instructions that affect the instruction flow. The UISA defines numerous 
instructions that control the program flow, including branch, trap, and system call instructions, as well as 
instructions that read, write, or manipulate bits in the condition register. The OEA defines two flow control 
instructions that provide system linkage (sc, rfid). These instructions are used for entering and returning 
from supervisor level.

• Processor control instructions—These instructions are used for synchronizing memory accesses and 
managing caches and translation lookaside buffers (TLBs). These instructions include move to/from spe-
cial-purpose register instructions (mtspr and mfspr). 

• Memory/cache control instructions—These instructions provide control of caches, SLBs, and TLBs. The 
VEA defines several cache control instructions. The OEA defines several memory control instructions.

•  External control instructions—The VEA defines two optional instructions (eciwx, ecowx) for use with 
special input/output devices.

Note:  This grouping of the instructions does not indicate which execution unit executes a particular instruc-
tion or group of instructions. This is not defined by the PowerPC Architecture.

Temporary 64-Bit Bridge
• The 64-bit bridge allows several instructions to be used in 64-bit implementations that are otherwise 

defined for use in 32-bit implementations only. These include the following:

– Move to Segment Register (mtsr) and Move to Segment Register Indirect (mtsrin) 

– Move from Segment Register (mfsr) and Move from Segment Register Indirect (mfsrin) 

All four of these instructions are implemented as a group and are never implemented individually. 
Attempting to execute one of these instructions on a 64-bit implementation on which these instruc-
tions are not supported causes program exception. 
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1.2.3.2 Calculating Effective Addresses 

The effective address (EA), also called the logical address, is the address computed by the processor when 
executing a memory access or branch instruction or when fetching the next sequential instruction. Unless 
address translation is disabled, this address is converted by the MMU to the appropriate physical address. 

Note:  The architecture specification uses only the term effective address and not logical address.

The PowerPC Architecture supports the following simple addressing modes for memory access instructions: 

• EA = (rA|0) (register indirect)

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)

• EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses. 

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for PowerPC proces-
sors. The PowerPC Architecture does not define hardware aspects of cache implementations. For example, 
some PowerPC processors may have separate instruction and data caches (Harvard architecture), while 
others have a unified cache. 

The PowerPC Architecture allows implementations to control the following memory access modes on a page 
basis: 

• Write-back/write-through mode

• Caching-inhibited mode

• Memory coherency 

• Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform operations on a 
cache block basis. The size of the cache block is implementation-dependent. The term cache block should 
not be confused with the notion of a block in memory, which is described in Section 1.2.6 PowerPC Memory 
Management Model.

The VEA portion of the PowerPC Architecture defines several instructions for cache management. These can 
be used by user-level software to perform such operations as touch operations (which cause the cache block 
to be speculatively loaded), and operations to store, flush, or clear the contents of a cache block. 
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1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change to supervisor state 
as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When 
exceptions occur, information about the state of the processor is saved to various registers and the processor 
begins execution at an address (exception vector) predetermined for each type of exception. Exception 
handler routines begin execution in supervisor mode. The PowerPC exception model is described in detail in 
Chapter 6, Exceptions. 

Note:  Some aspects regarding exception conditions are defined at other levels of the architecture. For exam-
ple, floating-point exception conditions are defined by the UISA, whereas the exception mechanism is defined 
by the OEA.

The PowerPC Architecture requires that exceptions be handled in program order (excluding the optional 
floating-point imprecise modes and the reset and machine check exception); therefore, although a particular 
implementation may recognize exception conditions out of order, they are handled strictly in order. When an 
instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction 
stream, including any that have not yet begun to execute, are required to complete before the exception is 
taken. Any exceptions caused by those instructions must be handled first. Likewise, exceptions that are asyn-
chronous and precise are recognized when they occur, but are not handled until all instructions currently 
executing successfully complete processing and report their results. 

The OEA supports four types of exceptions:

• Synchronous, precise 
• Synchronous, imprecise
• Asynchronous, maskable
• Asynchronous, nonmaskable

1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the PowerPC OEA. The 
primary functions of the MMU in a PowerPC processor are to translate logical (effective) addresses to phys-
ical addresses for memory accesses and I/O accesses (most I/O accesses are assumed to be memory-
mapped), and to provide access protection on a block or page basis. 

Note:  Many aspects of memory management are implementation-dependent. The description in Chapter 7, 
Memory Management describes the conceptual model of a PowerPC MMU; however, PowerPC processors 
may differ in the specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction accesses and 
data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 32 and 64-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 264 bytes of effective address space acces-
sible to supervisor and user programs with support for two page sizes; a 4-Kbyte page size (212) and a large 
page whose size is implementation dependent (2p where 13 ≤ p ≤ 28). The MMU of 64-bit PowerPC proces-
sors uses an interim virtual address (between 65 and 80 bits) and hashed page tables in the generation of 
physical addresses that are ≤ 62 bits in length. Table 7-1 MMU Features Summary summarizes the features 
of PowerPC MMUs for 64-bit implementations.
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Two types of accesses generated by PowerPC processors require address translation: instruction accesses, 
and data accesses to memory generated by load and store instructions. The address translation mechanism 
is defined in terms of segment tables and page tables used by PowerPC processors to locate the logical-to-
physical address mapping for instruction and data accesses. The segment information translates the logical 
address to an interim virtual address, and the page table information translates the virtual address to a phys-
ical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page table entries on-chip. Although their exact characteristics are not specified by the architecture, the 
general concepts that are pertinent to the system software are described. Similarly, 64-bit implementations 
contain segment lookaside buffers (SLBs) on-chip that contain recently-used segment table entries, however 
the PowerPC Architecture does not define the exact characteristics for SLBs.

1.3 Changes to this Manual 

This manual reflects changes made to the PowerPC Architecture, Version 2.01. 

Temporary 64-Bit Bridge

The 64-bit bridge provides resources that may make it easier for a 32-bit operating system to migrate to 
a 64-bit processor. The nature of these resources are largely determined by the fact that in a 32-bit 
address space, only 16 segment descriptors are required to define all 4 Gbytes of memory. That is, 
there are sixteen 256 Mbyte segments, as is the case in the 32-bit architecture description. 
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2. PowerPC Register Set
20
50

This chapter describes the register organization defined by the three levels of the PowerPC Architecture:

• User instruction set architecture (UISA)
• Virtual environment architecture (VEA), and 
• Operating environment architecture (OEA).

The PowerPC Architecture defines register-to-register operations for all computational instructions. Source 
data for these instructions are accessed from the on-chip registers or are provided as immediate values 
embedded in the opcode. The three-register instruction format allows specification of a target register distinct 
from the two source registers, thus preserving the original data for use by other instructions and reducing the 
number of instructions required for certain operations. Data is transferred between memory and registers with 
explicit load and store instructions only.

Note:  The handling of reserved bits in any register is implementation-dependent. Software is permitted to 
write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns ‘0’ if 
the value last written to the bit was ‘0’ and returns an undefined value (may be ‘0’ or ‘1’) otherwise. This 
means that even if the last value written to a reserved bit was ‘1’, reading that bit may return ‘0’.

2.1 Overview of the PowerPC UISA Registers

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user or supervisor-level 
instructions (the architecture specification refers to user-level and supervisor-level as problem state and priv-
ileged state respectively). The general-purpose registers (GPRs) and floating-point registers (FPRs) are 
accessed as instruction operands. Access to registers can be explicit (that is, through the use of specific 
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction. Some registers 
are accessed both explicitly and implicitly. 

The number to the right of the register name indicates the number that is used in the syntax of the instruction 
operand to access the register (for example, the number used to access the XER is SPR 1).
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Figure 2-1. UISA Programming Model—User-Level Registers  

TBR 268

Time Base Facility 1 
(For Reading)

TBL (32)

TBR 269TBU (32)

SUPERVISOR MODEL — OEA

Machine State Register

MSR (64/32) SPR 287PVR (32)

DSISR 1

SPR 18DSISR (32) 

Data Address Register

SPR 19DAR (64)

Save and Restore Registers

SPR 26SRR0 (64/32)

SPR 27SRR1 (64/32)

SPRGs

SPR 272SPRG0 (64)

SPR 273SPRG1 (64)

SPR 274SPRG2 (64)

SPR 275SPRG3 (64/)

SPR 22

Decrementer 1

DEC (32)

Time Base Facility 1

(For Writing)

SPR 284TBL (32)

SPR 285TBU (32)

SPR 282

External Access Register 
(Optional) 1

EAR (32)

SDR1

SPR 25SDR1 (64/32)

Address Space Register 1

SPR 280ASR (64)

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA

SPR 1013DABR (64)

Data Address Breakpoint 
Register (Optional)

1. These registers are on 64-bit implementations only.
2. These registers are implementation dependent. 
3. 64-bit registers operating in 32-bit mode clear the high order 32-bits.

SPR 1

USER MODEL (UISA)

Floating-Point Status 
and Control Register1

CR (32)

FPSCR (32)

Condition Register1 

GPR0 (64)

GPR1 (64)

GPR31 (64)

FPR0 (64)

FPR1 (64)

FPR31 (64)

General-Purpose 
Registers 

Floating-Point 
Registers 

XER (64) 

SPR 8

Link Register

LR (64)

SPR 9

Count Register

CTR (64)

XER Register 

Floating-Point Exception 
Cause Register (Optional)

SPR 1022FPECR

SPR 1023

Processor Identification 
Register (Optional)

PIR

Processor Version Register 1 

(Read Only)



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem2_regset.fm.3.0
July 15, 2005  
 

PowerPC Register Set

Page 43 of 657

The user-level registers can be accessed by all software with either user or supervisor privileges. The 
user-level registers are:

• General-purpose registers (GPRs). The general-purpose register file consists of 32 GPRs designated as 
GPR0–GPR31. The GPRs serve as either the data source or the destination registers for all integer 
instructions and provide data for generating addresses. For more information see Section 2.1.1 General-
Purpose Registers (GPRs) on page 44.

• Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs designated as FPR0–
FPR31; these registers serve as either the data source or the destination for all floating-point instructions. 
While the floating-point model includes data objects of either single or double-precision floating-point for-
mat, the FPRs only contain data in double-precision format. For more information, see Section 2.1.2 
Floating-Point Registers (FPRs) on page 44.

• Condition register (CR). The condition register is a 32-bit register that is divided into eight 4-bit fields, 
CR0–CR7. This register stores the results of certain arithmetic operations and provides a mechanism for 
testing and branching. For more information, see Section 2.1.3 Condition Register (CR) on page 45.

• Floating-point status and control register (FPSCR). The floating-point status and control register contains 
all floating-point exception signal bits, exception summary bits, exception enable bits, and rounding con-
trol bits needed for compliance with the IEEE 754 standard. For more information, see Section 2.1.4 
Floating-Point Status and Control Register (FPSCR) on page 47.

Note:  The architecture specification refers to exceptions as interrupts.

• Fixed point exception register (XER). The fixed point exception register indicates overflows and carry con-
ditions for integer operations and the number of bytes to be transferred by the load/store string indexed 
instructions. For more information, see Section 2.1.5 XER Register (XER) on page 50.

• Link register (LR). The link register provides the branch target address for the Branch Conditional to Link 
Register (bclrx) instructions, and can optionally be used to hold the effective address of the instruction 
that follows a branch with link update instruction in the instruction stream, typically used for loading the 
return pointer for a subroutine. For more information, see Section 2.1.6 Link Register (LR) on page 51.

• Count register (CTR). The count register holds a loop count that can be decremented during execution of 
appropriately coded branch instructions. The CTR can also provide the branch target address for the 
Branch Conditional to Count Register (bcctrx) instructions. For more information, see Section 2.1.7 
Count Register (CTR) on page 52.
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2.1.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2-2. These registers are 64-bit regis-
ters. The GPRs are accessed as either source or destination registers in the instruction syntax.

2.1.2 Floating-Point Registers (FPRs)

The PowerPC Architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These registers are 
accessed as either source or destination registers for floating-point instructions. Each FPR supports the 
double-precision floating-point format. Every instruction that interprets the contents of an FPR as a floating-
point value uses the double-precision floating-point format for this interpretation. 

Instructions for all floating-point arithmetic operations use the data located in the FPRs and, with the excep-
tion of compare instructions, place the result into a FPR. Information about the status of floating-point opera-
tions is placed into the FPSCR and in some cases, into the CR after the completion of instruction execution. 
For information on how the CR is affected for floating-point operations, see Section 2.1.3 Condition Register 
(CR).

Instructions to load and to store floating-point double precision values transfer 64 bits of data between 
memory and the FPRs with no conversion. 

Instructions to load floating-point single precision values are provided to read single-precision floating-point 
values from memory, convert them to double-precision floating-point format, and place them in the target 
floating-point register. 

Instructions to store single-precision values are provided to read double-precision floating-point values from a 
floating-point register, convert them to single-precision floating-point format, and place them in the target 
memory location.

Instructions for single and double-precision arithmetic operations accept values from the FPRs in double-
precision format. For instructions of single-precision arithmetic and store operations, all input values must be 
representable in single-precision format; otherwise, the results placed into the target FPR (or the memory 
location) and the setting of status bits in the FPSCR and in the condition register (if the instruction’s record bit, 
Rc, is set) are undefined.

The floating-point arithmetic instructions produce intermediate results that may be regarded as infinitely 
precise and with unbounded exponent range. This intermediate result is normalized or denormalized if 
required, and then rounded to the destination format. The final result is then placed into the target FPR in the 
double-precision format or in fixed-point format, depending on the instruction. Refer to Section 3.3 Floating-
Point Execution Models—UISA on page 92 for more information.

Figure 2-2. General-Purpose Registers (GPRs) 
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2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations and provides a 
mechanism for testing and branching. The bits in the CR are grouped into eight 4-bit fields, CR0–CR7, as 
shown in Figure 2-4.

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set from a GPR by using the mtcrf and mtocrf instruction. 

• The contents of the XER[0–3] can be moved to another CR field by using the mcrf instruction.

• A specified field of the XER can be copied to a specified field of the CR by using the mcrxr instruction. 

• A specified field of the FPSCR can be copied to a specified field of the CR by using the mcrfs instruction.

• Logical instructions of the condition register can be used to perform logical operations on specified bits in 
the condition register.

• CR0 can be the implicit result of an integer instruction. 

• CR1 can be the implicit result of a floating-point instruction.

• A specified CR field can indicate the result of either an integer or floating-point compare instruction.

Note:  Branch instructions are provided to test individual CR bits.

Figure 2-3. Floating-Point Registers (FPRs) 

Figure 2-4. Condition Register (CR) 
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2.1.3.1 Condition Register CR0 Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is, when Rc = ’1’ ), 
and for addic., andi., and andis., the first three bits of CR0 are set by an algebraic comparison of the result 
to zero; the fourth bit of CR0 is copied from XER[SO]. For integer instructions, CR bits [0–3] are set to reflect 
the result as a signed quantity. 

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined, the value placed 
into the first three bits of CR0 is undefined. The stwcx. and stdcx. instructions also set the CR0 field. 

Note:  If overflow occurs, CR0 may not reflect the true (infinitely precise) result. CR0 bits [0–2] are undefined 
if Rc = 1 for the mulhw, mulhwu, divw, and divwu instructions.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (Rc =1), CR1 (bits [4-7] 
of the CR) is copied from bits [0–3] of the FPSCR and indicates the floating-point exception status. For more 
information about the FPSCR, see Section 2.1.4 Floating-Point Status and Control Register (FPSCR). The bit 
settings for the CR1 field are shown in Table 2-2. 

Table 2-1. Bit Settings for CR0 Field of CR 

CR0 Bit Description

0 Negative (LT)—This bit is set when the result is negative.

1 Positive (GT)—This bit is set when the result is positive (and not zero).

2 Zero (EQ)—This bit is set when the result is zero or when a stwcx. or stdcx. successfully completes.

3 Summary overflow (SO)—This is a copy of the final state of XER[SO] at the completion of the instruction.

Table 2-2. Bit Settings for CR1 Field of CR  

CR1 Bit Description

4 Floating-point exception summary (FX)—This is a copy of the final state of FPSCR[FX] at the completion of the 
instruction.

5 Floating-point enabled exception summary (FEX)—This is a copy of the final state of FPSCR[FEX] at the comple-
tion of the instruction.

6 Floating-point invalid operation exception summary (VX)—This is a copy of the final state of FPSCR[VX] at the 
completion of the instruction.

7 Floating-point overflow exception (OX)—This is a copy of the final state of FPSCR[OX] at the completion of the 
instruction.
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2.1.3.3 Condition Register CRn Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the comparison, the bits of 
the specified field are interpreted as shown in Table 2-3. 

2.1.4 Floating-Point Status and Control Register (FPSCR)

The Floating-Point Status and Control Register (FPSCR), shown in Figure 2-5, is used for: 

• Recording exceptions generated by floating-point operations 

• Recording the type of the result produced by a floating-point operation

• Controlling the rounding mode used by floating-point operations

• Enabling or disabling the reporting of exceptions (that is, invoking the exception handler)

Bits [0–23] are status bits. Bits [24–31] are control bits. Status bits in the FPSCR are updated at the comple-
tion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid operation exception 
summary (VX), the exception condition bits in the FPSCR (bits [3–12] and [21–23]) are sticky. Once set, 
sticky bits remain set until they are cleared by the relevant mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction. 

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not listed among the 
FPSCR bits directly affected by the various instructions.

Table 2-3. CRn Field Bit Settings for Compare Instructions  

CRn Bit 1 Description 2

0
Less than or floating-point less than (LT, FL).
For integer compare instructions: rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison). 
For floating-point compare instructions: frA < frB.

1
Greater than or floating-point greater than (GT, FG).
For integer compare instructions: rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison). 
For floating-point compare instructions: frA > frB.

2
Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, or rB. 
For floating-point compare instructions:  frA = frB.

3
Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions: This is a copy of the final state of XER[SO] at the completion of the instruction. 
For floating-point compare instructions:  One or both of frA and frB is a Not a Number (NaN).

Notes:  

1. Here, the bit indicates the bit number in any one of the 4-bit subfields, CR0–CR7.
2. For a complete description of instruction syntax conventions, refer to Table 8-2 on page 300.
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A listing of FPSCR bit settings is shown in Table 2-4. 

Figure 2-5. Floating-Point Status and Control Register (FPSCR) 

Table 2-4. FPSCR Bit Settings  

Bit(s) Name Description

0 FX

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets 
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from ‘0’ 
to ‘1’. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a 
sticky bit.

1 FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception 
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits 
(FEX = (VX & VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and 
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX
Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation 
exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsb0, and 
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact 
Exception Conditions on page 113.

4 UX Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 116.

5 ZX Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 112.

6 XX

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 117.
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a given 
instruction:

• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old 
value of FPSCR[XX] with the new value of FPSCR[FI].

• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged. 

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

8 VXISI Floating-point invalid operation exception for ∞ – ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

11 VXIMZ Floating-point invalid operation exception for ∞ * 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 111.

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the 
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI
VXISI
VXSNAN

VXZDZ
VXIMZ
VXVC

VXSOFT
VXSQRT
VXCVI

Reserved

FX FEX VX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN
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14 FI

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the 
intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5 
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCR[FI] and 
FPSCR[XX], see the description of the FPSCR[XX] bit. 

15–19 FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result 
placed into the target register, except that if any portion of the result is undefined, the value placed here is 
undefined. 
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set 

this bit with the FPCC bits to indicate the class of the result as shown in Table 2-5.
16–19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the 

FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the 
high-order three bits of the FPCC retain their relational significance indicating that the value is less 
than, greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

Note:  These are not sticky bits. 

20 — Reserved 

21 VXSOFT
Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only 
by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Invalid 
Operation Exception Condition on page 111.

22 VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 111.
Note:  If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square 
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation 
Exception Condition on page 111.

24 VE Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 111.

25 OE IEEE floating-point overflow exception enable. 
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 113.

26 UE IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 116.

27 ZE IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 112.

28 XE Floating-point inexact exception enable. See Inexact Exception Condition on page 117.

29 NI

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other 
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, the result produced is zero (retaining the sign of the denormalized number). Any other effects 
associated with setting this bit are described in the user’s manual for the implementation (the effects are imple-
mentation-dependent). 
Note:  When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be 
approximate, and performance for these operations may be better, more predictable, or less data-dependent 
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may 
return 0 instead of a denormalized number, and may return a large number instead of an infinity.

30–31 RN

Floating-point rounding control. See Section 3.3.5 Rounding.
00 Round to nearest 
01 Round toward zero 
10 Round toward +infinity
11 Round toward –infinity

Table 2-4. FPSCR Bit Settings (Continued) 

Bit(s) Name Description
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Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond 
to FPSCR bits [15–19].

2.1.5 XER Register (XER)

The fixed-point exception register (XER) is a 64-bit, user-level register and is described in Figure 2-6 and 
Table 2-6. 

The bit definitions for XER, shown in Table 2-6, are based on the operation of an instruction considered as a 
whole, not on intermediate results. For example, the result of the Subtract from Carrying (subfcx) instruction 
is specified as the sum of three values. This instruction sets bits in the XER based on the entire operation, not 
on an intermediate sum. 

Table 2-5. Floating-Point Result Flags in FPSCR  

Result Flags (Bits [15–19])
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

Figure 2-6. XER Register 

Reserved

Byte count0 0000 0000 0000 0000 0

6357

SO OV CA

32 33 34 35 56

0000 0000 0000 0000 0000 0000 0000 0000

0 31
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2.1.6 Link Register (LR)

The link register (LR) is a 64-bit register that supplies the branch target address for the Branch Conditional to 
Link Register (bclrx) instructions, and in the case of a branch with link update instruction, can be used to hold 
the logical address of the instruction that follows the branch with link update instruction (for returning from a 
subroutine). The format of LR is shown in Figure 2-7.

Note:  Although the two least-significant bits can accept any values written to them, they are ignored when 
the LR is used as an address. Both conditional and unconditional branch instructions include the option of 
placing the logical address of the instruction following the branch instruction in the LR. 

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8. Prefetching instruc-
tions along the target path (loaded by an mtspr instruction) is possible provided the link register is loaded 
sufficiently ahead of the branch instruction (so that any branch prediction hardware can calculate the branch 
address). Additionally, PowerPC processors can prefetch along a target path loaded by a branch and link 
instruction.

Note:  Some PowerPC processors may keep a stack of the LR values most recently set by branch with link 
update instructions. To benefit from these enhancements, use of the link register should be restricted to the 
manner described in Section 4.2.4.2 Conditional Branch Control.

Table 2-6. XER Bit Definitions  

Bit(s) Name Description

0-31 – Reserved. 

32 SO

Summary overflow. The summary overflow bit [SO] is set whenever an instruction (except mtspr) sets the overflow 
bit [OV]. Once set, the [SO] bit remains set until it is cleared by an mtspr instruction (specifying the XER) or an 
mcrxr instruction. It is not altered by compare instructions, nor by other instructions (except mtspr to the XER, and 
mcrxr) that cannot overflow. Executing an mtspr instruction to the XER, supplying the values zero for [SO] and one 
for [OV], causes [SO] to be cleared and [OV] to be set. 

33 OV

Overflow. The overflow bit [OV] is set to indicate that an overflow has occurred during execution of an instruction. 
Add, subtract from, and negate instructions having OE = ’1’  set the [OV] bit if the carry out of the msb is not equal 
to the carry out of the msb + 1, and clear it otherwise. Multiply low and divide instructions having OE = ’1’  set the 
[OV] bit if the result cannot be represented in 64 bits (mulld, divd, divdu) or in 32 bits (mullw, divw, divwu), and 
clear it otherwise. The [OV] bit is not altered by compare instructions, nor by other instructions that cannot overflow 
(except mtspr to the XER, and mcrxr).

34 CA

Carry. The carry bit [CA] is set during execution of the following instructions: 
• Add carrying, subtract from carrying, add extended, and subtract from extended instructions set [CA] if there is 

a carry out of the msb, and clear it otherwise. 
• Shift right algebraic instructions set [CA] if any 1-bits have been shifted out of a negative operand, and clear it 

otherwise. 
The [CA] bit is not altered by compare instructions, nor by other instructions that cannot carry (except shift right 
algebraic, mtspr to the XER, and mcrxr).

35–56 — Reserved 

57–63 This field specifies the number of bytes to be transferred by a Load String Word Indexed (lswx) or Store String 
Word Indexed (stswx) instruction. 

Figure 2-7. Link Register (LR) 

Branch Address

0 63
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2.1.7 Count Register (CTR)

The count register (CTR) is a 64-bit register that can hold a loop count that can be decremented during 
execution of branch instructions that contain an appropriately coded BO field. If the value in CTR is 0 before 
being decremented, it is -1 afterward; (0xFFFF_FFFF_FFFF_FFFF (264 – 1). The CTR can also provide the 
branch target address for the Branch Conditional to Count Register (bcctrx) instruction. The CTR is shown in 
Figure 2-8.

Prefetching instructions along the target path is also possible provided the count register is loaded sufficiently 
ahead of the branch instruction (so that any branch prediction hardware can calculate the correct value of the 
loop count).

The count register can also be accessed by the mtspr and mfspr instructions by specifying SPR 9. In branch 
conditional instructions, the BO field specifies the conditions under which the branch is taken. The first four 
bits of the BO field specify how the branch is affected by or affects the CR and the CTR. The encoding for the 
BO field is shown in Table 4-20 BO Operand Encodings. 

Figure 2-8. Count Register (CTR) 

CTR

0 63
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2.2 PowerPC VEA Register Set—Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to those defined by the 
UISA. The PowerPC VEA register set can be accessed by all software with either user or supervisor-level 
privileges. Figure 2-9 provides a graphic illustration of the PowerPC VEA register set. Note that the following 
programming model is similar to that found in Figure 2-1, with the additional PowerPC VEA registers. 

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists of two 32-bit regis-
ters—time base upper (TBU) and time base lower (TBL). 

Note:  The time base registers can be accessed by both user and supervisor-level instructions. In the context 
of the VEA, user-level applications are permitted read-only access to the TB. The OEA defines supervisor-
level access to the TB for writing values to the TB. See Section 2.3.11 Time Base Facility (TB)—OEA for 
more information.

In Figure 2-9 the numbers to the right of the register name indicates the number that is used in the syntax of 
the instruction operands to access the register (for example, the number used to access the XER is SPR 1). 
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Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base 
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The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit unsigned integer that is 
incremented periodically. Each increment adds ’1’  to the low-order bit (bit[31] of TBL). The frequency at 
which the counter is incremented is implementation-dependent.

Note:  The TB increments until its value becomes 0xFFFF_FFFF_FFFF_FFFF (264 – 1). At the next incre-
ment its value becomes 0x0000_0000_0000_0000. There is no exception or explicit indication when this 
occurs.

The period of the time base depends on the driving frequency. The TB is implemented such that the following 
requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time base is updated 
and other frequencies, such as the processor clock. The TB update frequency is not required to be constant; 
however, for the system software to maintain time of day and operate interval timers, one of two things is 
required:

• The system provides an implementation-dependent exception to software whenever the update fre-
quency of the time base changes and a means to determine the current update frequency; or

• The system software controls the update frequency of the time base.

Note:  If the operating system initializes the TB to some reasonable value and the update frequency of the TB 
is constant, the TB can be used as a source of values that increase at a constant rate, such as for time 
stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically increasing (except 
when the TB wraps from 264 – 1 to 0). If a trace entry is recorded each time the update frequency changes, 
the sequence of TB values can be postprocessed to become actual time values.

However, successive readings of the time base may return identical values due to implementation-dependent 
factors such as a low update frequency or initialization. 

Figure 2-10. Time Base (TB) 

0 31 0 31

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base
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2.2.1 Reading the Time Base

The mftb instruction is used to read the time base. The following sections discuss reading the time base in 
64-bit modes. For specific details on using the mftb instruction, see Chapter 8, Instruction Set. For informa-
tion on writing the time base, see Section 2.3.11.1 Writing to the Time Base.

2.2.1.1 Reading the Time Base 

The contents of the time base may be read into a GPR by mftb. To read the contents of the TB into register 
rD, execute the following instruction:

mftb rD 

The above example uses the simplified mnemonic (referred to as extended mnemonic in the architecture 
specification) form of the mftb instruction (equivalent to mftb rA,268). Using this instruction copies the entire 
time base (TBU || TBL) into rA. Reading the time base has no effect on the value it contains or the periodic 
incrementing of that value. 

Note:  If the simplified mnemonic form mftbu rA (equivalent to mftb rA,269) is used, the contents of TBU are 
copied to the low-order 32 bits of rA, and the high-order 32 bits of rA are cleared (0 || TBU).

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for converting the current 
value in the time base to time of day is also implementation-dependent.

In a system in which the update frequency of the time base may change over time, it is not possible to convert 
an isolated time base value into time of day. Instead, a time base value has meaning only with respect to the 
current update frequency and the time of day that the update frequency was last changed. Each time the 
update frequency changes, either the system software is notified of the change via an exception, or else the 
change was instigated by the system software itself. At each such change, the system software must 
compute the current time of day using the old update frequency, compute a new value of ticks-per-second for 
the new frequency, and save the time of day, time base value, and tick rate. Subsequent calls to compute 
time of day use the current time base value and the saved data.

A generalized service to compute time of day could take the following as input:

• Time of day at beginning of current epoch

• Time base value at beginning of current epoch

• Time base update frequency

• Time base value for which time of day is desired

For a PowerPC system in which the time base update frequency does not vary, the first three inputs would be 
constant.
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2.3 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) completes the discussion of PowerPC registers. 
Figure 2-11 shows a graphic representation of the entire PowerPC register set—UISA, VEA, and OEA. In 
Figure 2-11 the numbers to the right of the register name indicates the number that is used in the syntax of 
the instruction operands to access the register (for example, the number used to access the XER is SPR 1). 

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any attempt to access 
these SPRs with user-level instructions results in a supervisor-level exception. Some SPRs are implementa-
tion-specific. In some cases, not all of a register’s bits are implemented in hardware. 

If a PowerPC processor executes an mtspr/mfspr instruction with an undefined SPR encoding, it takes 
(depending on the implementation) an illegal instruction program exception, a privileged instruction program 
exception, or the results are boundedly undefined. See Section 6.4.9 Program Exception (0x00700) for more 
information.
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Figure 2-11. OEA Programming Model—All Registers 
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The PowerPC OEA supervisor-level registers are:

• Configuration registers which include:

– Machine state register (MSR). The MSR defines the state of the processor. The MSR can be modi-
fied by the Move to Machine State Register (mtmsrd [or mtmsr]), System Call (sc), and Return from 
Interrupt Doubleword (rfid) instructions. It can be read by the Move from Machine State Register 
(mfmsr) instruction. For more information, see Section 2.3.1 Machine State Register (MSR).

– Processor version register (PVR). The PVR is a read-only register that identifies the version (model) 
and revision level of the PowerPC processor. For more information, see Section 2.3.2 Processor Ver-
sion Register (PVR).

• Memory management registers which include: 

– SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical address 
translation. For more information, see Section 2.3.3 SDR1. (Note that physical address is referred to 
as real address in the architecture specification.)

– Address space register (ASR). The ASR holds the physical address of the segment table. It is found 
only on 64-bit implementations. For more information, see Section 2.3.4 Address Space Register 
(ASR).

• Exception handling registers which include: 

– Data address register (DAR). A data address register (DAR) is set to the effective address generated 
by the a DSI or an alignment exception. For more information, see Section 2.3.5 Data Address Regis-
ter (DAR).

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for operating system use. For more 
information, see Section 2.3.6 Software Use SPRs (SPRG0–SPRG3).

– DSISR. The DSISR defines the cause of DSI and alignment exceptions. For more information, refer 
to Section 2.3.7 Data Storage Interrupt Status Register (DSISR).

– Machine status save/restore register 0 (SRR0). The SRR0 register is used to save machine status on 
exceptions and to restore machine status when an rfid instruction is executed. For more information, 
see Section 2.3.8 Machine Status Save/Restore Register 0 (SRR0). 

– Machine status save/restore register 1 (SRR1). The SRR1 register is used to save machine status on 
exceptions and to restore machine status when an rfid instruction is executed. For more information, 
see Section 2.3.9 Machine Status Save/Restore Register 1 (SRR1).

– Floating-point exception cause register (FPECR). This optional register is used to identify the cause 
of a floating-point exception.
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• Miscellaneous registers which include:

– Time base (TB). The TB is a 64-bit structure that maintains the time of day and operates interval tim-
ers. The TB consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note 
that the time base registers can be accessed by both user and supervisor-level instructions. For more 
information, see Section 2.3.11 Time Base Facility (TB)—OEA and Section 2.2 PowerPC VEA Regis-
ter Set—Time Base.”

– Decrementer register (DEC). The DEC register is a 32-bit decrementing counter that provides a 
mechanism for causing a decrementer exception after a programmable delay; the frequency is a sub-
division of the processor clock. For more information, see Section 2.3.12 Decrementer Register 
(DEC).

– External access register (EAR). This optional register is used in conjunction with the eciwx and 
ecowx instructions. Note that the EAR register and the eciwx and ecowx instructions are optional in 
the PowerPC Architecture and may not be supported in all PowerPC processors that implement the 
OEA. For more information about the external control facility, see Section 4.3.4 External Control 
Instructions.

– Data address breakpoint register (DABR). This optional register is used to control the data address 
breakpoint facility. Note that the DABR is optional in the PowerPC Architecture and may not be sup-
ported in all PowerPC processors that implement the OEA. For more information about the data 
address breakpoint facility, see Section 6.4.3 DSI Exception (0x00300).

– Processor identification register (PIR). This optional register is used to hold a value that distinguishes 
an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)

The machine state register (MSR) is a 64-bit register (see Figure 2-12) and defines the state of the processor. 
When an exception occurs, the contents of the MSR register are saved in SRR1. A new set of bits are loaded 
into the MSR as determined by the exception. The MSR can also be modified by the mtmsrd (or mtmsr), sc, 
and rfid instructions. It can be read by the mfmsr instruction. 

Figure 2-12. Machine State Register (MSR)  

Reserved

SF 000 0000 ... 0000 0

0 1 44 5145 46 47 48 49 50

POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 0 IR DR 0 RI LE

52 53 54 55 56 57 58 59 60 62 6361

PMM
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Table 2-7 shows the bit definitions for the MSR. 

Table 2-7. MSR Bit Settings  

Bit(s) Name Description

0 SF
Sixty-four bit mode
0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.

1 — Reserved

2 ISF
Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF] to select 64 or 
32-bit mode for the context established by the exception.
Note:  If the temporary bridge function is not implemented, this bit is treated as reserved.

3–44 — Reserved

45 POW

Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note:  Power management functions are implementation-dependent. If the function is not implemented, this 
bit is treated as reserved.

46 — Reserved

47 ILE
This is part of the optional little-endian facility. If the little-endian facility is implemented, and an exception 
occurs, this bit is copied into MSR[LE] to select the endian mode for the context established by the excep-
tion.

48 EE

External interrupt enable 
0 While the bit is cleared, the processor delays recognition of external interrupts and decrementer 

exception conditions. 
1 The processor is enabled to take an external interrupt or the decrementer exception.

49 PR

Privilege level 
0 The processor can execute both user and supervisor-level instructions.
1 The processor can only execute user-level instructions.
Note:  Any instruction or event that set MSR[PR] also sets MSR[EE], MSR[IR], and MSR[DR].

50 FP

Floating-point available 
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, 

and moves.
1 The processor can execute floating-point instructions.

51 ME

Machine check enable 
0 Machine check exceptions are disabled. 
1 Machine check exceptions are enabled.
Note:  The only instruction that can alter MSR[ME] is the rfid instruction. 

52 FE0 Floating-point exception mode 0 (see Table 2-8).

53 SE

Single-step trace enable (Optional)
0 The processor executes instructions normally. 
1 The processor generates a single-step trace exception upon the successful execution of the next 

instruction (unless that instruction is rfid, which is never trace). Successful completion means that 
the instruction caused no other interrupt. 

Note:  If the function is not implemented, this bit is treated as reserved.

54 BE

Branch trace enable (Optional)
0 The processor executes branch instructions normally. 
1 The processor generates a branch trace exception after completing the execution of a branch 

instruction, regardless of whether the branch was taken. 
Note:  If the function is not implemented, this bit is treated as reserved.

55 FE1 Floating-point exception mode 1 (See Table 2-8).
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The floating-point exception mode bits [FE0–FE1] are interpreted as shown in Table 2-8. 

56 — Reserved

57 — Reserved

58 IR

Instruction address translation   
0 Instruction address translation is disabled. 
1 Instruction address translation is enabled.
For more information, see Chapter 7, Memory Management.

59 DR

Data address translation   
0 Data address translation is disabled. 
1 Data address translation is enabled.
For more information, see Chapter 7, Memory Management.

60 — Reserved

61 PMM Performance monitor mark. This bit is part of the optional performance monitor facility. If the performance 
monitor facility is not implemented or does not use this bit, then this bit is treated as reserved. 

62 RI 

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable. 
1 Exception is recoverable.
For more information, see Chapter 6, Exceptions.

63 LE

This is part of the optional little-endian facility. If the little-endian facility is implemented, then the bit has the 
following meaning:
0 The processor runs in big-endian mode. 
1 The processor runs in little-endian mode.
If the little-endian facility is not implemented or does not use this bit, then this bit is treated as reserved.

Table 2-8. Floating-Point Exception Mode Bits  

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode

Table 2-7. MSR Bit Settings (Continued) 

Bit(s) Name Description
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Table 2-9 indicates the initial state of the MSR at power up.

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register which contains a value identifying the 
specific version (model) and revision level of the PowerPC processor (see Figure 2-13). The contents of the 
PVR can be copied to a GPR by the mfspr instruction. Read access to the PVR is supervisor-level only; write 
access is not provided.

Table 2-9. State of MSR at Power Up  

Bit Name Default Value

0 SF 1

1 — Unspecified1

2 
(Temporary 64-Bit Bridge) ISF Unspecified1

3–44 — Unspecified1

45 POW 0

46 — Unspecified1

47 ILE 0

48 EE 0

49 PR 0

50 FP 0

51 ME 0

52 FE0 0

53 SE 0

54 BE 0

55 FE1 0

56 — Unspecified1

57 — Unspecified1

58 IR 0

59 DR 0

60 — Unspecified1

61 PMM Unspecified1

62 RI 0

63 LE 0

Note:  

1. Unspecified can be either ‘0’ or ’1’ 
2. 1 is typical, but might be ‘0’
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The PVR distinguishes between processors that differ in attributes that might affect software. It contains two 
16-bit fields:

• Version (bits [0–15])—A 16-bit number that uniquely identifies a particular processor version. This num-
ber can be used to determine the version of a processor; it might not distinguish between different end 
product models if more than one model uses the same processor. 

• Revision (bits [16–31])—A 16-bit number that distinguishes between various releases of a particular ver-
sion (that is, an engineering change level). The value of the revision portion of the PVR is implementa-
tion-specific. The processor revision level is changed for each revision of the device. 

2.3.3 SDR1

The SDR1 is a 64-bit register that is shown in Figure 2-14.

The SDR1 bits are described in Table 2-10. 

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address of the page table. 
Therefore, the page table is constrained to lie on a 218-byte (256 Kbytes) boundary at a minimum. At least 11 
bits from the hash function are used to index into the page table. The page table must consist of at least 256 
Kbytes (211 PTEGs of 128 bytes each).

The page table can be any size 2n where 18≤n≤46. As the table size is increased, more bits are used from 
the hash to index into the table and the value in HTABORG must have more of its low-order bits equal to 0. 
The HTABSIZE field in SDR1 contains an integer value that determines how many bits from the hash are 
used in the page table index. This number must not exceed 28. HTABSIZE is used to generate a mask of the 
form 0b00...011...1; that is, a string of 0 bits followed by a string of 1-bits. The 1-bits determine how many 

Figure 2-13. Processor Version Register (PVR) 

Figure 2-14. SDR1 

Table 2-10. SDR1 Bit Settings 

Bits Name Description

0–1 — Reserved

2-45 HTABORG Physical base address of page table

46–58 — Reserved

59–63 HTABSIZE Encoded size of page table (used to generate mask)

0 15 16 31

Version Revision

Reserved

0 2 45 461 58 59 63

00 HTABORG 0000 0000 0000 0 HTABSIZE
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additional bits (beyond the minimum of 11) from the hash are used in the index. The HTABORG must have 
this same number of low-order bits equal to 0. See Figure 7-17 Example Primary PTEG Address Generation 
for an example of the primary PTEG address generation in a 64-bit implementation.

Example: 
Suppose that the page table is 16,384 (214), 128-byte PTEGs, for a total size of 221 bytes (2 Mbytes). Note 
that a 14-bit index is required. Eleven bits are provided from the hash initially, so three additional bits from the 
hash must be selected. The value in HTABSIZE must be 3 and the value in HTABORG must have its low-
order three bits (bits [43-45] of SDR1) equal to 0. This means that the page table must begin on a 
23 + 11 + 7 = 221 = 2 Mbytes boundary.

On implementations that support a virtual address size of only 64 bits, software should set the HTABSIZE 
field to a value that does not exceed 25. Because the high-order 16 bits of the VSID must be zeros for these 
implementations, the hash value used in the page table search will have the high-order three bits either all 
zeros (primary hash) or all ones (secondary hash). If HTABSIZE > 25, some of these hash value bits will be 
used to index into the page table, resulting in certain PTEGs never being searched.

For more information, refer to Chapter 7, Memory Management.

2.3.4 Address Space Register (ASR) 

The ASR is a 64-bit special purpose register provided for operating system use and can be used to point to a 
segment register. On earlier PowerPC implementations and on 64-bit PowerPC implementations, bits[0-51] 
of the ASR contained the high-order 52 bits of the 64-bit real address of the segment table, and bit[63] of the 
ASR indicated whether the specified segment table should (bit[63] = ‘1’) or should not (bit[63] = ‘0’) be 
searched by the processor when doing address translation.

The bits of the ASR are described in Table 2-11. 

Figure 2-15. Address Space Register (ASR) 

Table 2-11. ASR Bit Settings 

Bits Name Description

0–63 – Reserved

0 63
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Temporary 64-Bit Bridge

Some 64-bit processors implement optional features that simplify the conversion of an operating system 
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows the 
option of defining bit[63] as ASR[V], the STABORG field valid bit. 

If the ASR[V] bit is implemented and is set, the ASR[STABORG] field is valid and functions are as 
described for the 64-bit architecture. However, if the ASR[V] bit is implemented and ASR[V] and 
MSR[SF] are cleared, an operating system can use 16 SLB entries similarly to the way 32-bit implemen-
tations use the segment registers, which are otherwise not supported in the 64-bit architecture. Note 
that if ASR[V] = 0, a reference to a nonexistent address in the STABORG field does not cause a 
machine check exception. 

The ASR, with the optional V bit implemented, is shown in Figure 2-16. 

The bits of the ASR, including the optional V bit, are described in Table 2-12.
 

Figure 2-16. Address Space Register (ASR)—64-Bit Bridge 

0 51 52 62 63

STABORG 0000 0000 000 V

Reserved

Table 2-12. ASR Bit Settings—64-Bit Bridge 

Bits Name Description

0–51 STABORG Physical address of segment table

52–62 — Reserved

63 V
STABORG field valid (V = ’1’ ) or invalid (V = 0).
Note that the [V] bit of the ASR is optional. If the function is not implemented, this bit is 
treated as reserved, except that it is assumed to be set for address translation.
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2.3.5 Data Address Register (DAR)

The DAR is a 64-bit register and is shown in Figure 2-17.

The effective address generated by a memory access instruction is placed in the DAR if the access causes 
an exception (for example, an alignment exception). If the exception occurs in a 64-bit implementation oper-
ating in 32-bit mode, the high-order 32 bits of the DAR are cleared. For information, see Chapter 6, Excep-
tions.

2.3.6 Software Use SPRs (SPRG0–SPRG3)

SPRG0–SPRG3 are 64-bit registers which are provided for general operating system use, such as 
performing a fast state save or for supporting multiprocessor implementations. The formats of SPRG0–
SPRG3 are shown in Figure 2-18.

Table 2-13 provides a description of conventional uses of SPRG0 through SPRG3. 

Figure 2-17. Data Address Register (DAR) 

Figure 2-18. SPRG0–SPRG3 

Table 2-13. Conventional Uses of SPRG0–SPRG3 

Register Description

SPRG0 Software may load a unique physical address in this register to identify an area of memory reserved for use by the 
first-level exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the content of a GPR. 
That GPR then can be loaded from SPRG0 and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3

This register may be used by the operating system as needed.
It is optional whether SPRG3 can be read in user mode. On implementations that provide this ability, SPRG3 may 
be used for information, such as a “thread-id”, that the operating system makes available to application programs.
On implementations for which SPRG3 can be read in user mode, operating systems must ensure that no sensitive 
data are left in SPRG3 when a user mode program is dispatched, and operating systems for secure systems must 
ensure that SPRG3 cannot be used to implement a “covert channel” between user mode programs. These require-
ments can be satisfied by clearing SPRG3 before passing control to a program that will run in user mode.
On such implementations, SPRG3 can be used “orthogonally” for both the purpose described for it above and the 
purpose described for SPRG1. If this is done, SPRG1 can be used for some other purpose.

DAR

0

SPRG0

SPRG1

SPRG2

SPRG3

0 63
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2.3.7 Data Storage Interrupt Status Register (DSISR)

The 32-bit data storage interrupt status register (DSISR), shown in Figure 2-19, identifies the cause of the 
DSI, machine check, data segment, and alignment exceptions.

DSISR bits may be treated as reserved in a given implementation if they are specified as being set either to 0 
or to an undefined value for all interrupts that set the DSISR (including implementation-dependent setting, for 
example, by the Machine Check interrupt or by implementation-specific interrupts). 

For information about bit settings, see Section 6.4.3 DSI Exception (0x00300) and Section 6.4.8 Alignment 
Exception (0x00600).

2.3.8 Machine Status Save/Restore Register 0 (SRR0)

The SRR0 is a 64-bit register that is used to save the effective address on exceptions (interrupts) and return 
to the interrupted program when an rfid instruction is executed. It also holds the EA for the instruction that 
follows the System Call (sc) instruction. The format of SRR0 is shown in Figure 2-20. 

When an exception occurs, SRR0 is set to point to an instruction such that all prior instructions have 
completed execution and no subsequent instruction has begun execution. In the case of an error exception 
the SRR0 register is pointing at the instruction that caused the error. When an rfid instruction is executed, the 
contents of SRR0 are copied to the next instruction address (NIA)—the 64 or 32-bit address of the next 
instruction to be executed. The instruction addressed by SRR0 may not have completed execution, 
depending on the exception type. SRR0 addresses either the instruction causing the exception or the imme-
diately following instruction. The instruction addressed can be determined from the exception type and status 
bits.

If the exception occurs in 32-bit mode of a 64-bit implementation, the high-order 32 bits of the NIA are 
cleared, NIA[32–61] are set from SRR0[32–61], and the two least significant bits of NIA are cleared. 

Note:  In some implementations, every instruction fetch performed while MSR[IR] = ’1’ , and every instruction 
execution requiring address translation when MSR[DR] = ’1’ , may modify SRR0.

For information on how specific exceptions affect SRR0, refer to the descriptions of individual exceptions in 
Chapter 6, Exceptions.

Figure 2-19. DSISR 

Figure 2-20. Machine Status Save/Restore Register 0 (SRR0) 

DSISR

0 31

SRR0

0 61 62  63

00

Reserved
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2.3.9 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 64-bit which is used to save exception status and the machine status register when an rfid 
instruction is executed. The format of SRR1 is shown in Figure 2-21. 

When an exception occurs, bits [33–36] and [42–47] of SRR1 are loaded with exception-specific information 
and bits. The remaining bits of SRR1 are defined as reserved. An implementation may define one or more of 
these bits, and in this case, may also cause them to be saved from MSR on an exception and restored to 
MSR from SRR1 on a rfid. 

Note:  In some implementations, every instruction fetch when MSR[IR] = ’1’ , and every instruction execution 
requiring address translation when MSR[DR] = ’1’ , may modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions in Chapter 6, 
“Exceptions.” 

2.3.10 Floating-Point Exception Cause Register (FPECR)

The FPECR register may be used to identify the cause of a floating-point exception. 

Note:  The FPECR is an optional register in the PowerPC Architecture and may be implemented differently 
(or not at all) in the design of each processor. The user’s manual of a specific processor will describe the 
functionality of the FPECR, if it is implemented in that processor.

2.3.11 Time Base Facility (TB)—OEA

As described in Section 2.2 PowerPC VEA Register Set—Time Base, the time base (TB) provides a long-
period counter driven by an implementation-dependent frequency. The VEA defines user-level read-only 
access to the TB. Writing to the TB is reserved for supervisor-level applications such as operating systems 
and boot-strap routines. The OEA defines supervisor-level, write access to the TB. 

The TB is a volatile resource and must be initialized during reset. Some implementations may initialize the TB 
with a known value; however, there is no guarantee of automatic initialization of the TB when the processor is 
reset. The TB runs continuously after start-up. 

For more information on the user-level aspects of the time base, refer to Section 2.2 PowerPC VEA Register 
Set—Time Base on page 53.

2.3.11.1 Writing to the Time Base

Note:  Writing to the TB is reserved for supervisor-level software. 

Figure 2-21. Machine Status Save/Restore Register 1 (SRR1) 

SRR1

0
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The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB, respectively. The 
simplified mnemonics listed above are for the mtspr instruction; see Appendix E Simplified Mnemonics for 
more information. The mtspr, mttbl, and mttbu instructions treat TBL and TBU as separate 32-bit registers; 
setting one leaves the other unchanged. It is not possible to write the entire 64-bit time base in a single 
instruction. 

The instructions for writing the time base are not dependent on the implementation or mode. Thus, code 
written to set the TB on a 32-bit implementation will work correctly on a 64-bit implementation running in 
either 32 or 64-bit mode. 

The TB can be written by a sequence such as:
lwz rx,upper #load 64-bit value for
lwz ry,lower # TB into rx and ry
li rz,0
mttbl rz #force TBL to 0
mttbu rx #set TBU
mttbl ry #set TBL

Provided that no exceptions occur while the last three instructions are being executed, loading 0 into TBL 
prevents the possibility of a carry from TBL to TBU while the time base is being initialized.

For information on reading the time base, refer to Section 2.2.1 Reading the Time Base on page 56.

2.3.12 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-22, is a 32-bit decrementing counter that provides a 
mechanism for causing a decrementer exception after a programmable delay. The DEC frequency is based 
on the same implementation-dependent frequency that drives the time base.

2.3.12.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes through zero. The 
DEC satisfies the following requirements:

• The operation of the time base and the DEC are coherent (that is, the counters are driven by the same 
fundamental time base).

• Loading a GPR from the DEC has no effect on the DEC.

• Storing the contents of a GPR to the DEC replaces the value in the DEC with the value in the GPR.

• Whenever bit[0] of the DEC changes from 0 to 1, a decrementer exception request is signaled. Multiple 
DEC exception requests may be received before the first exception occurs; however, any additional 
requests are canceled when the exception occurs for the first request.

• If the DEC is altered by software and the content of bit [0] is changed from 0 to 1, an exception request is 
signaled.

Figure 2-22. Decrementer Register (DEC) 

DEC

0 31
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Note:  In systems that change the Time Base update frequency for purposes such as power management, 
the Decrementer input frequency will also change. Software must be aware of this in order to set interval tim-
ers. 

2.3.12.2 Writing and Reading the DEC

The content of the DEC can be read or written using the mfspr and mtspr instructions, both of which are 
supervisor-level when they refer to the DEC. Using a simplified mnemonic for the mtspr instruction, the DEC 
may be written from GPR rA with the following:

mtdec rA

Using a simplified mnemonic for the mfspr instruction, the DEC may be read into GPR rA with the following:
mfdec rA

2.3.12.3 Data Address Compare 

The Data Address Compare mechanism provides a means of detecting load and store accesses to a virtual 
page. The Data Address Compare mechanism is controlled by the Address Compare Control Register 
(ACCR), and by a bit in each Page Table Entry (PTE[AC]).

Note:  The Data Address Compare mechanism does not apply to instruction fetches, or to data accesses in 
real addressing mode (MSR[DR] = 0).

2.3.13 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR. The DABR is a 64-
bit register. However, if the data address breakpoint facility is implemented, it is recommended, but not 
required, that it be implemented as described in this section. 

The data address breakpoint facility provides a means to detect accesses to a designated doubleword. The 
address comparison is done on an effective address, and is done independent of whether address translation 
is enabled or disabled. The data address breakpoint mechanism applies to data accesses only. It does not 
apply to instruction fetches.

The DABR is shown in Figure 2-23.

Table 2-14 describes the fields in the DABR. 

Figure 2-23. Data Address Breakpoint Register (DABR) 

0 60 61 62 63

DAB BT DW DR
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A data address breakpoint match is detected for a load or store instruction if the three following conditions are 
met for any byte accessed:

• EA[0–60] = DABR[DAB]

• MSR[DR] = DABR[BT]

• Instruction is a store and DABR[DW] = ’1’ , or the instruction is a load and DABR[DR] = ’1’ .

Note:  In 32-bit mode the high-order 32 bits of the effective address are treated as zeros for the purpose of 
detecting a match.

If the above conditions are satisfied, a match also occurs for eciwx and ecowx. For the purpose of deter-
mining whether a match occurs, eciwx is treated as a load, and ecowx is treated as a store.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the following cases:

• A store string instruction (stwcx. or stdcx.) in which the store is not performed

• A load or store string instruction (lswx or stswx) with a zero length

• A dcbz instruction. For the purpose of determining whether a match occurs, dcbz is treated as a store. 

The cache management instructions other than dcbz never cause a match. If dcbz causes a match, some or 
all of the target memory locations may have been updated.

A match generates a DSI exception. Refer to Section 6.4.3 DSI Exception (0x00300) for more information on 
the data address breakpoint facility. 

If a match occurs, some or all of the bytes of the memory operand may have been accessed; however, if a 
store or ecowx instruction causes the match, the memory operand is not altered if the instruction is one of the 
following: 

• any store instruction that causes an atomic access
• ecowx 

Note:  The data address breakpoint mechanism does not apply to instruction fetches. If a data address 
breakpoint match occurs for a load instruction for which any byte of the memory operand is in memory that is 
both caching inhibited and guarded, or for an eciwx instruction, it may not be safe for software to restart the 
instruction.

Table 2-14. DABR—Bit Settings 

 Bits
Name Description

64 Bit

0–60 DAB Data address breakpoint

61 BT Breakpoint translation enable

62 DW Data write enable

63 DR Data read enable
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2.3.14 External Access Register (EAR)

The external access register (EAR) is an optional 32-bit SPR that controls access to the external control 
facility and identifies the target device for external control operations. The external control facility provides a 
means for user-level instructions to communicate with special external devices. The EAR is shown in 
Figure 2-24. 

Table 2-15 describes the fields in the external access register. 

The high-order bits of the resource ID (RID) field beyond the width of the RID supported by a particular imple-
mentation are treated as reserved bits. 

The EAR register is provided to support the External Control In Word Indexed (eciwx) and External Control 
Out Word Indexed (ecowx) instructions, which are described in Chapter 8, Instruction Set. Although access 
to the EAR is supervisor-level, the operating system can determine which tasks are allowed to issue external 
access instructions and when they are allowed to do so. The bit settings for the EAR are described in 
Table 2-15. Interpretation of the physical address transmitted by the eciwx and ecowx instructions and the 
32-bit value transmitted by the ecowx instruction is not prescribed by the PowerPC OEA, but is determined 
by the target device. The data access of eciwx and ecowx is performed as though the memory access mode 
bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, the ecowx instruction could 
be used to send the translated physical address of a buffer containing graphics data to the graphics device. 
The eciwx instruction could be used to load status information from the graphics adapter. 

This register can also be accessed by using the mtspr and mfspr instructions. Synchronization requirements 
for the EAR are shown in Table 2-16 Data Access Synchronization and Table 2-17 Instruction Access 
Synchronization.

Figure 2-24. External Access Register (EAR) 

Table 2-15. External Access Register (EAR)—Bit Settings 

 Bits Name Description

0 E

Enable bit
1 Enabled
0 Disabled
If this bit is set, the eciwx and ecowx instructions can perform the specified external operation. 
If the bit is cleared, an eciwx or ecowx instruction causes a DSI exception. 

1-25 – Reserved

26-31 RID Resource id

0 1 25 26 31

E 000 0000 0000 0000 0000 0000 00 RID

Reserved
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2.3.15 Processor Identification Register (PIR)

The PIR register is used to differentiate between individual processors in a multiprocessor environment. 

Note:  The PIR is an optional register in the PowerPC Architecture and may be implemented differently (or 
not at all) in the design of each processor. The user’s manual of a specific processor will describe the func-
tionality of the PIR, if it is implemented in that processor.

2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers

Changing the value in certain system registers, and invalidating SLB and TLB entries, can cause alteration of 
the context in which data addresses and instruction addresses are interpreted, and in which instructions are 
executed. An instruction that alters the context in which data addresses or instruction addresses are inter-
preted, or in which instructions are executed, is called a context-altering instruction. The context synchroniza-
tion required for context-altering instructions is shown in Table 2-16 for data access and Table 2-17 for 
instruction fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system reset or nonrecover-
able machine check) can be used instead of a context-synchronizing instruction. In the tables, if no software 
synchronization is required before (after) a context-altering instruction, the synchronizing instruction before 
(after) the context-altering instruction should be interpreted as meaning the context-altering instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all instructions up to and 
including that synchronizing instruction are fetched and executed in the context that existed before the alter-
ation. A synchronizing instruction after the context-altering instruction ensures that all instructions after that 
synchronizing instruction are fetched and executed in the context established by the alteration. Instructions 
after the first synchronizing instruction, up to and including the second synchronizing instruction, may be 
fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no instructions that are 
affected by any of the context alterations, no software synchronization is required within the sequence.

Note:  Some instructions that occur naturally in the program, such as the rfid at the end of an exception han-
dler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the MSR[POW] or 
MSR[LE] bits; see Table 2-16 and Table 2-17), because mtmsrd (or mtmsr) is execution synchronizing. No 
software synchronization is required before most of the other alterations shown in Table 2-17, because all 
instructions before the context-altering instruction are fetched and decoded before the context-altering 
instruction is executed (the processor must determine whether any of the preceding instructions are context 
synchronizing).
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Table 2-16. Data Access Synchronization  

 Instruction/Event  Required Prior  Required After Notes

Exception None None

rfid None None

sc None None

Trap None None

mtmsrd (SF) None None 3

mtmsrd (or mtmsr) (ILE) None None 3

mtmsrd (or mtmsr) (PR) None None 3

mtmsrd (or mtmsr) (DR)   None None 3

mtmsrd (or mtmsr) (LE) — — 1, 3

mtsr [or mtsrin] Context-synchronizing instruction Context-synchronizing instruction

mtspr (ACCR) Context-synchronizing instruction Context-synchronizing instruction

mtspr (SDR1) ptesync      Context-synchronizing instruction 5, 6

mtspr (DABR) — — 4

mtspr (EAR) Context-synchronizing instruction Context-synchronizing instruction 

slbie Context-synchronizing instruction Context-synchronizing instruction 

slbia Context-synchronizing instruction Context-synchronizing instruction 

slbmte Context-synchronizing instruction Context-synchronizing instruction 13

tlbie Context-synchronizing instruction Context-synchronizing instruction 7, 9

tlbiel Context-synchronizing instruction ptesync 7, 9

tlbia Context-synchronizing instruction Context-synchronizing instruction 7

Store (PTE) none {ptesync, CSI} 8, 9

Note:  Refer to Section 2.3.16.1 on page 77 for explanation of notes. 
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For information on instruction access synchronization requirements, see Table 2-17. 

Table 2-17. Instruction Access Synchronization  

Instruction/Event  Required Prior Required After Notes

Exception None None

rfid None None 

sc None None

Trap None None

mtmsrd (SF) None None 3, 10

mtmsrd (or mtmsr) (ILE) None None 3

mtmsrd (or mtmsr) (EE) None None 2, 3

mtmsrd (or mtmsr) (PR) None None 3, 11

mtmsrd (or mtmsr) (FP) None None 3

mtmsrd (or mtmsr)
(FE0, FE1) None None 3

mtmsrd (or mtmsr) (SE, BE) None None 3

mtmsrd (or mtmsr) (IR) None None 3, 11

mtmsrd (or mtmsr) (RI) None None 3

mtmsrd (or mtmsr) (LE) — — 1, 3

mtsr [or mtsrin] None Context-synchronizing instruction 11

mtspr (SDR1) ptesync Context-synchronizing instruction 5, 6

mtspr (DEC) None None 12

mtspr (CTRL) None None

slbie None Context-synchronizing instruction 

slbia None Context-synchronizing instruction 

slbmte None Context-synchronizing instruction 11, 13

tlbie None Context-synchronizing instruction 7, 9

tlbiel None Context-synchronizing instruction 7, 9

tlbia None Context-synchronizing instruction 7

Store (PTE) none {ptesync, CSI] 8, 9

Note:  Refer to Section 2.3.16.1 on page 77 for explanation of notes. 
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2.3.16.1 Notes for Table 2-16 and Table 2-17

1. Synchronization requirements for changing from one endian mode to the other using the mtmsr[d] 
instruction are implementation-dependent.

2. The effect of changing the EE bit is immediate, even if the mtmsr[d] instruction is not context synchroniz-
ing (i.e., even if L=’1’).

• If an mtmsr[d] instruction sets the [EE] bit to ‘0’, neither an External interrupt nor a Decrementer 
interrupt occurs after the mtmsr[d] is executed.

• If an mtmsr[d] instruction changes the [EE] bit from 0 to 1 when an External, Decrementer, or higher 
priority exception exists, the corresponding interrupt occurs immediately after the mtmsr[d] is exe-
cuted, and before the next instruction is executed in the program that set [EE] to ‘1’.

3. For software that will run on processors that comply with earlier versions of the architecture, a context 
synchronizing instruction is required after the mtmsr[d] instruction.

4. Synchronization requirements for changing the Data Address Breakpoint Register are implementation-
dependent.

5. SDR1 must not be altered when MSR[DR] = ‘1’ or MSR[IR] = ‘1’ ; if it is, the results are undefined.

6. A ptesync instruction is required before the mtspr instruction because (a) SDR1 identifies the Page 
Table and thereby the location of Reference and Change bits, and (b) on some implementations, use of 
SDR1 to update Reference and Change bits may be independent of translating the virtual address. (For 
example, an implementation might identify the PTE in which to update the Reference and Change bits in 
terms of its offset in the Page Table, instead of its real address, and then add the Page Table address 
from SDR1 to the offset to determine the real address at which to update the bits.) To ensure that Refer-
ence and Change bits are updated in the correct Page Table, SDR1 must not be altered until all Refer-
ence and Change bit updates associated with address translations that were performed, by the processor 
executing the mtspr instruction, before the mtspr instruction is executed have been performed with 
respect to that processor. A ptesync instruction guarantees this synchronization of Reference and 
Change bit updates, while neither a context synchronizing operation nor the instruction fetching mecha-
nism does so.

7. For data accesses, the context synchronizing instruction before the tlbie, tlbiel, or tlbia instruction 
ensures that all preceding instructions that access data storage have completed to a point at which they 
have reported all exceptions they will cause. The context synchronizing instruction after the tlbie, tlbiel, 
or tlbia instruction ensures that storage accesses associated with instructions following the context syn-
chronizing instruction will not use the TLB entry(s) being invalidated. (If it is necessary to order storage 
accesses associated with preceding instructions, or Reference and Change bit updates associated with 
preceding address translations, with respect to subsequent data accesses, a ptesync instruction must 
also be used, either before or after the tlbie, tlbiel, or tlbia instruction.

8. The notation “{ ptesync,CSI}” denotes an instruction sequence. Other instructions may be interleaved 
with this sequence, but these instructions must appear in the order shown. 

No software synchronization is required before the Store instruction because (a) stores are not performed 
out-of-order and (b) address translations associated with instructions preceding the Store instruction are 
not performed again after the store has been performed). These properties ensure that all address trans-
lations associated with instructions preceding the Store instruction will be performed using the old con-
tents of the PTE.

The ptesync instruction after the Store instruction ensures that all searches of the Page Table that are 
performed after the ptesync instruction completes will use the value stored (or a value stored subse-
quently). The context synchronizing instruction after the ptesync instruction ensures that any address 
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translations associated with instructions following the context synchronizing instruction that were per-
formed using the old contents of the PTE will be discarded, with the result that these address translations 
will be performed again and, if there is no corresponding TLB entry, will use the value stored (or a value 
stored subsequently).

9. There are additional software synchronization requirements for the tlbie instruction in multiprocessor 
environments. In a multiprocessor system, if software locking is used to help ensure that the require-
ments are satisfied, the isync instruction near the end of the lock acquisition sequence may naturally pro-
vide the context synchronization that is required before the alteration. 

10. The alteration must not cause an implicit branch in effective address space. Thus, when changing 
MSR[SF] from 1 to 0, the mtmsrd instruction must have an effective address that is less than 232 - 4. Fur-
thermore, when changing MSR[SF] from 0 to 1, the mtmsrd instruction must not be at effective address 
232 - 4.

11. The alteration must not cause an implicit branch in real address space. Thus the real address of the con-
text-altering instruction and of each subsequent instruction, up to and including the next context synchro-
nizing instruction, must be independent of whether the alteration has taken effect.

12. The elapsed time between the contents of the Decrementer becoming negative and the signaling of the 
corresponding exception is not defined.

13. If an slbmte instruction alters the mapping, or associated attributes, of a currently mapped ESID, the slb-
mte must be preceded by an slbie (or slbia) instruction that invalidates the existing translation. This 
applies even if the corresponding entry is no longer in the SLB (the translation may still be in implementa-
tion-specific address translation lookaside information). No software synchronization is needed between 
the slbie and the slbmte, regardless of whether the index of the SLB entry (if any) containing the current 
translation is the same as the SLB index specified by the slbmte.

No slbie (or slbia) is needed if the slbmte instruction replaces a valid SLB entry with a mapping of a dif-
ferent ESID (for example, to satisfy an SLB miss). However, the slbie is needed later if and when the 
translation that was contained in the replaced SLB entry is to be invalidated.
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3. Operand Conventions 
30
60

This chapter describes the operand conventions as they are represented in two levels of the PowerPC Archi-
tecture—user instruction set architecture (UISA) and virtual environment architecture (VEA). Detailed 
descriptions are provided of conventions used for storing values in registers and memory, accessing 
PowerPC registers, and representing data in these registers in both big and little-endian modes. Additionally, 
the floating-point data formats and exception conditions are described. Refer to Appendix C Floating-Point 
Models for more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively starting with 0. 
Each number is the address of the corresponding byte. Memory operands may be bytes, halfwords, words, or 
doublewords, or, for the load and store multiple and the load and store string instructions, a sequence of 
bytes or words. The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction. 

The following sections describe the concepts of alignment and byte ordering of data, and their significance to 
the PowerPC Architecture.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment boundary equal to the 
operand length. In other words, the natural address of an operand is an integral multiple of the operand 
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is 
misaligned. Instructions are always four bytes long and word-aligned.

Operands for single-register memory access instructions have the characteristics shown in Table 3-1. 
(Although not permitted as memory operands, quad words are shown because quad-word alignment is desir-
able for certain memory operands.) 
 

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data item 
is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment may affect 
performance. For single-register memory access instructions, the best performance is obtained when 
memory operands are aligned. 

Table 3-1. Memory Operand Alignment  

Operand Length Aligned Address [60–63] (if aligned) 

Byte 8 bits xxxx

Halfword 2 bytes xxx0

Word 4 bytes xx00

Doubleword 8 bytes x000

Quadword 16 bytes 0000

Note:  An x in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.
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3.1.2 Byte Ordering 

If individual data items were indivisible, the concept of byte ordering would be unnecessary. The order of bits 
or groups of bits within the smallest addressable unit of memory is irrelevant, because nothing can be 
observed about such order. Order matters only when scalars, which the processor and programmer regard 
as indivisible quantities, can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and scalars are 
composed of one or more sequential bytes. Many scalars are halfwords, words, or doublewords, which 
consist of groups of bytes. When a word-length scalar (32-bit) is moved from a register to memory, the scalar 
occupies four consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte 
addresses with respect to the value of the scalar: which byte contains the highest-order 8 bits of the scalar, 
which byte contains the next highest-order 8 bits, and so on. 

Although the choice of byte ordering is arbitrary, only two orderings are practical—big-endian and little-
endian. The PowerPC Architecture supports both big and little-endian byte ordering. The default byte 
ordering is big-endian. 

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting) address while the 
least-significant byte (LSB) is stored at the highest (or ending) address. This is called big-endian because the 
big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the least-significant byte is stored at the lowest (or starting) address while the most-
significant byte is stored at the highest (or ending) address. This is called little-endian because the little end of 
the scalar comes first in memory.

3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that contains an assortment of scalars and one array of charac-
ters (a string). The value presumed to be in each structure element is shown in hexadecimal in the comments 
(except for the character array, which is represented by a sequence of characters, each enclosed in single 
quote marks).

The data structure S is used throughout this section to demonstrate how the bytes that comprise each 
element (a, b, c, d, e, and f) are mapped into memory.

Figure 3-1. C Program Example—Data Structure S 

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 doubleword */
char * c; /* 0x3132_3334 word */
char d[7]; /* 'L','M','N','O','P','Q','R' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} S;
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3.1.3.1 Big-Endian Mapping

The big-endian mapping of the structure, S, is shown in Figure 3-2. Addresses are shown in hexadecimal 
below each byte. The content of each byte, as shown in the preceding C programming example, is shown in 
hexadecimal and, for the character array, as characters enclosed in single quote marks. 

Note:  The most-significant byte of each scalar is at the lowest address.

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-2) in the map in order to 
align the scalars on their proper boundaries—four bytes between elements a and b, one byte between 
elements d and e, and two bytes between elements e and f. 

Note:  The padding is dependent on the compiler; it is not a function of the architecture.

Figure 3-2. Big-Endian Mapping of Structure S  

Contents 11 12 13 14 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 31 32 33 34 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 51 52 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 61 62 63 64 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27
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3.1.3.2 Little-Endian Mapping

Figure 3-3 shows the structure, S, using little-endian mapping. 

Note:  The least-significant byte of each scalar is at the lowest address.

Figure 3-3 shows the sequence of doublewords laid out with addresses increasing from left to right. Program-
mers familiar with little-endian byte ordering may be more accustomed to viewing doublewords laid out with 
addresses increasing from right to left, as shown in Figure 3-4. This allows the little-endian programmer to 
view each scalar in its natural byte order of MSB to LSB. However, to demonstrate how the PowerPC Archi-
tecture provides both big and little-endian support, this section uses the convention of showing addresses 
increasing from left to right, as in Figure 3-3.

Figure 3-3. Little-Endian Mapping of Structure S  

Contents 14 13 12 11 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 34 33 32 31 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 52 51 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 64 63 62 61 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27
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3.1.4 PowerPC Byte Ordering

The PowerPC Architecture supports both big and little-endian byte ordering. The default byte ordering is big-
endian. The code sequence used to switch from big to little-endian mode may differ among processors. 

The PowerPC Architecture defines two bits in the MSR for specifying byte ordering—LE (little-endian mode) 
and ILE (interrupt little-endian mode). The LE bit specifies the endian mode in which the processor is 
currently operating and ILE specifies the mode to be used when an exception handler is invoked. That is, 
when an exception occurs, the ILE bit (as set for the interrupted process) is copied into MSR[LE] to select the 
endian mode for the context established by the exception. For both bits, a value of 0 specifies big-endian 
mode and a value of 1 specifies little-endian mode. 

The PowerPC Architecture also provides load and store instructions that reverse byte ordering. These 
instructions have the effect of loading and storing data in the endian mode opposite from that which the 
processor is operating. See Section 4.2.3.4 Integer Load and Store with Byte-Reverse Instructions for more 
information on these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, Addressing Modes and Instruction Set Summary describes the effective address calculation for 
the load and store instructions. For processors in little-endian mode, the effective address is modified before 
being used to access memory. The three low-order address bits of the effective address are exclusive-ORed 
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in 
Table 3-2. This address modification is called ‘munging’. 

Figure 3-4. Little-Endian Mapping of Structure S —Alternate View 

Contents (x) (x) (x) (x) 11 12 13 14

Address 07 06 05 04 03 02 01 00

Contents 21 22 23 24 25 26 27 28

Address 0F 0E 0D 0C 0B 0A 09 08

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 17 16 15 14 13 12 11 10

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 1F 1E 1D 1C 1B 1A 19 18

Contents (x) (x) (x) (x) 61 62 63 64

Address 27 26 25 24 23 22 21 20
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Note:  Although the process is described in the architecture, the actual term ‘munging’ is not defined or used 
in the specification. However, the term is commonly used to describe the effective address modifications nec-
essary for converting big-endian addressed data to little-endian addressed data. 

The munged physical address is passed to the cache or to main memory, and the specified width of the data 
is transferred (in big-endian order—that is, MSB at the lowest address, LSB at the highest address) between 
a GPR or FPR and the addressed memory locations (as modified). 

Munging makes it appear to the processor that individual aligned scalars are stored as little-endian, when in 
fact they are stored in big-endian order, but at different byte addresses within doublewords. Only the address 
is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure S is placed in 
memory as shown in Figure 3-5.

Table 3-2. Little Endian Effective Address Modifications for Individual Aligned Scalars 

Data Width (Bytes) Effective Address Modification

8 No change

4 XOR with 0b100

2 XOR with 0b110

1 XOR with 0b111

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem 

Contents (x) (x) (x) (x) 11 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 10 11 12 13 14 15 16 17

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 18 19 1A 1B 1C 1D 1E 1F

Contents (x) (x) (x) (x) 61 62 63 64

Address 20 21 22 23 24 25 26 27



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005  
 

Operand Conventions

Page 85 of 657

Note:  The mapping shown in Figure 3-5 is not a true little-endian mapping of the structure S. However, 
because the processor munges the address when accessing memory, the physical structure S shown in 
Figure 3-5 appears to the processor as the structure S shown in Figure 3-6.

As seen by the program executing in the processor, the mapping for the structure S (Figure 3-6) is identical to 
the little-endian mapping shown in Figure 3-3. However, from outside of the processor, the addresses of the 
bytes making up the structure S are as shown in Figure 3-5. These addresses match neither the big-endian 
mapping of Figure 3-2 nor the true little-endian mapping of Figure 3-3. This must be taken into account when 
performing I/O operations in little-endian mode; this is discussed in Section 3.1.4.6 PowerPC Input/Output 
Data Transfer Addressing in Little-Endian Mode.

Figure 3-6. Munged Little-Endian Structure S as Seen by Processor 

Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07

Contents 28 27 26 25 24 23 22 21

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 34 33 32 31 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ 52 51

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27
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3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar is aligned on a 
boundary equal to a multiple of its length. Figure 3-7 shows a true little-endian mapping of the four-byte word 
0x1112_1314, stored at address 05.

For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored at address 0x05, the 
next byte (0x13) is stored at address 0x06, the third byte (0x12) is stored at address 0x07, and the most-
significant byte (0x11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store instruction with a 
misaligned effective address, it may take an alignment exception. In this case, a single-register load or store 
instruction means any of the integer load/store, load/store with byte-reverse, floating-point load/store 
(including stfiwx) instructions, and Load And Reserve and Store Conditional.

The Load and Store with Byte Reversal instructions have the effect of loading or storing data in the opposite 
endian mode from that in which the processor is running. Data is loaded or stored in little-endian order if the 
processor is running in big-endian mode, and in big-endian order if the processor is running in little-endian 
mode. 

PowerPC processors in little-endian mode are not required to invoke an alignment exception when such a 
misaligned access is attempted. The processor may handle some or all such accesses without taking an 
alignment exception.

The PowerPC Architecture requires that halfwords, words, and doublewords be placed in memory such that 
the little-endian address of the lowest-order byte is the effective address computed by the load or store 
instruction; the little-endian address of the next-lowest-order byte is one greater, and so on. (Load And 
Reserve and Store Conditional differ somewhat from the rest of the instructions in that neither the implemen-
tation nor the system alignment error handler is expected to handle these four instructions correctly if their 
operands are not aligned.) However, because PowerPC processors in little-endian mode munge the effective 
address, the order of the bytes of a misaligned scalar must be as if they were accessed one at a time. 

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is stored to address 
0x05, the address is XORed with 0b111 to become 0x02. When the next byte (0x13) is stored to address 
0x06, the address is XORed with 0b111 to become 0x01. When the third byte (0x12) is stored to address 
0x07, the address is XORed with 0b111 to become 0x00. Finally, when the most-significant byte (0x11) is 
stored to address 0x08, the address is XORed with 0b111 to become 0x0F. Figure 3-8 shows the misaligned 
word, stored by a little-endian program, as seen by the memory subsystem.

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05 

Contents 14 13 12

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 0A 0B 0C 0D 0E 0F
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Note:  The misaligned word in this example spans two doublewords. The two parts of the misaligned word 
are not contiguous as seen by the memory system. An implementation may support some but not all mis-
aligned little-endian accesses. For example, a misaligned little-endian access that is contained within a dou-
bleword may be supported, while one that spans doublewords may cause an alignment exception.

3.1.4.3 Nonscalars

The PowerPC Architecture has two types of instructions that handle nonscalars (multiple instances of 
scalars):

• Load and store multiple instructions
• Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging cannot be used. 
These types of instructions cause alignment exception conditions when the processor is executing in little-
endian mode. Although string accesses are not supported, they are inherently byte-based operations, and 
can be broken into a series of word-aligned accesses.

3.1.4.4 Page Tables

The layout of the page table in memory is independent of endian mode. A given byte in the page table must 
be accessed using an effective address appropriate to the mode of the executing program (for example, the 
high-order byte of a Page Table Entry must be accessed with an effective address ending with 0b000 in big-
endian mode, and with an effective address ending with 0b111 in little-endian mode).

3.1.4.5 PowerPC Instruction Addressing in Little-Endian Mode

Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch and execute 
instructions as if the current instruction address is incremented by four for each sequential instruction. When 
operating in little-endian mode, the instruction address is munged as described in Section 3.1.4.1 Aligned 
Scalars in Little-Endian Mode for fetching word-length scalars; that is, the instruction address is XORed with 
0b100. A program is thus an array of little-endian words with each word fetched and executed in order (not 
including branches). 

All instruction addresses visible to an executing program are the effective addresses that are computed by 
that program, or, in the case of the exception handlers, effective addresses that were or could have been 
computed by the interrupted program. These effective addresses are independent of the endian mode. 
Examples for little-endian mode include the following:

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem 

Contents 12 13 14

Address 00 01 02 03 04 05 06 07

Contents 11

Address 08 09 0A 0B 0C 0D 0E 0F
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• An instruction address placed in the link register by branch and link operation, or an instruction address 
saved in an SPR when an exception is taken, is the address that a program executing in little-endian 
mode would use to access the instruction as a word of data using a load instruction. 

• An offset in a relative branch instruction reflects the difference between the addresses of the branch and 
target instructions, where the addresses used are those that a program executing in little-endian mode 
would use to access the instructions as data words using a load instruction.

• A target address in an absolute branch instruction is the address that a program executing in little-endian 
mode would use to access the target instruction as a word of data using a load instruction.

• The memory locations that contain the first set of instructions executed by each kind of exception handler 
must be set in a manner consistent with the endian mode in which the exception handler is invoked. Thus, 
if the exception handler is to be invoked in little-endian mode, the first set of instructions comprising each 
kind of exception handler must appear in memory with the instructions within each doubleword reversed 
from the order in which they are to be executed.

3.1.4.6 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory subsystem recog-
nize the same byte as byte 0. However, this is not true for a PowerPC system running in little-endian mode 
because of the munged address bits when the processor accesses memory. 

For I/O transfers in little-endian mode to transfer bytes properly, they must be performed as if the bytes trans-
ferred were accessed one at a time, using the little-endian address modification appropriate for the single-
byte transfers (that is, the lowest order address bits must be XORed with 0b111). This does not mean that I/O 
operations in little-endian PowerPC systems must be performed using only one-byte-wide transfers. Data 
transfers can be as wide as desired, but the order of the bytes within doublewords must be as if they were 
fetched or stored one at a time. That is, for a true little-endian I/O device, the system must provide a mecha-
nism to munge and unmunge the addresses and reverse the bytes within a doubleword (MSB to LSB). 

However, not all I/O done on PowerPC systems is for large areas of storage as described above. I/O can be 
performed with certain devices merely by storing to or loading from addresses that are associated with the 
devices (the terms “memory-mapped I/O” and “programmed I/O” or “PIO” are used for this). For such PIO 
transfers, care must be taken when defining the addresses to be used, for these addresses are subject to the 
effective address modification shown in Table 3-2 Little Endian Effective Address Modifications for Individual 
Aligned Scalars. A Load or Store instruction that maps to a control register on a device may require that the 
value loaded or stored have its bytes reversed; if this is required, the Load and Store with Byte Reversal 
instructions can be used. Any requirement for such byte reversal for a particular I/O device register is inde-
pendent of whether the PowerPC system is running in big-endian or little-endian mode. 

Similarly, the address sent to an I/O device by an eciwx or ecowx instruction is subject to the effective 
address modification shown in Table 3-2.
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3.2 Effect of Operand Placement on Performance—VEA 

The PowerPC VEA states that the placement (location and alignment) of operands in memory affects the 
relative performance of memory accesses. The best performance is guaranteed if memory operands are 
aligned on natural boundaries. For more information on memory access ordering and atomicity, refer to 
Section 5.1 The Virtual Environment.

3.2.1 Summary of Performance Effects

To obtain the best performance across the widest range of PowerPC processor implementations, the 
programmer should assume the performance model described in Table 3-3 and Table 3-4 with respect to the 
placement of memory operands. 

The performance of accesses varies depending on:

• Operand size
• Operand alignment
• Endian mode (big-endian or little-endian)
• Crossing no boundary
• Crossing a cache block boundary
• Crossing a virtual page boundary
• Crossing a segment boundary 

Table 3-3 applies when the processor is in big-endian mode.

Table 3-4 applies when the processor is in little-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode  

Operand Boundary Crossing

Size Byte Alignment None Cache Block Virtual Page1 Segment

Integer

8 byte
8
4

<4

Optimal
Good
Good

—
Good
Good

—
Good
Good

—
Poor
Poor

4 byte 4
<4

Optimal
Good

—
Good

—
Good

—
Poor

2 byte 2
<2

Optimal
Good

—
Good

—
Good

—
Poor

1 byte 1 Optimal — — —

Imw, 
stmw

4
<4

Good
Poor

Good
Poor

Good
Poor

Poor
Poor

String — Good Good Good Poor

Floating Point

8 byte
8
4

<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

Note:  

1. If the memory operand spans two virtual pages that have different memory control attributes, performance is likely to be poor. 
2. If an instruction causes an access that is not atomic and any portion of the operand is in memory that is write through required or 

caching inhibited, performance is likely to be poor. 
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The load/store multiple and the load/store string instructions are supported only in big-endian mode. The 
load/store multiple instructions are defined by the PowerPC Architecture to operate only on aligned operands. 
The load/store string instructions have no alignment requirements. 

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode  

Operand Boundary Crossing

Size Byte Alignment None Cache Block Virtual Page1 Segment

Integer

8 byte
8
4

<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Good

—
Good

—
Poor

—
Poor

2 byte 2
<2

Optimal
Good

—
Good

—
Poor

—
Poor

1 byte 1 Optimal — — —

Floating Point

8 byte
8
4

<4

Optimal
Good
Poor

—
Good
Poor

—
Poor
Poor

—
Poor
Poor

4 byte 4
<4

Optimal
Poor

—
Poor

—
Poor

—
Poor

Note:  

1. If the memory operand spans two virtual pages that have different memory control attributes, performance is likely to be poor. 
2. If an instruction causes an access that is not atomic and any portion of the operand is in memory that is write through required or 

caching inhibited, performance is likely to be poor. 
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3.2.2 Instruction Restart 

In this section the “load instruction” includes the cache management and other instructions that are stated in 
the instruction descriptions to be “treated as a load,” and similarly for “store instruction.” The following instruc-
tions are never restarted after having accessed any portion of the memory operand (unless the instruction 
causes a “data address compare match” or a “data address breakpoint match”).

1. Store instruction that causes an atomic access.

2. Load instruction that causes an atomic access to memory that is both caching inhibited and guarded.

Any other load or store instruction may be partially executed and then aborted after having accessed a 
portion of the memory operand, and then re-executed (i.e., restarted, by the processor or the operating 
system). If an instruction is partially executed, the contents of registers are preserved to the extent that the 
correct result will be produced when the instruction is re-executed. 

There are many events which might cause a load or store instruction to be restarted. For example, a hard-
ware error may cause execution of the instruction to be aborted after part of the access has been performed, 
and the recovery operation could then cause the aborted instruction to be re-executed. 

When an instruction is aborted after being partially executed, the contents of the instruction pointer indicate 
that the instruction has not been executed, however the contents of some registers may have been altered 
and some bytes within the memory operand may have been accessed. The following are examples of an 
instruction being partially executed and altering the program state even though it appears that the instruction 
has not been executed. 

1. Load multiple, load string: some registers in the range of registers to be loaded may have been altered. 

2. Any store instruction, dcbz: some bytes of the memory operand may have been altered.

3. Any floating point load instruction: the target register (frD) may have been altered. 
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3.3 Floating-Point Execution Models—UISA

There are two kinds of floating-point instructions defined for the PowerPC Architecture: computational and 
non computational. The computational instructions consist of those operations defined by the IEEE-754 stan-
dard for 32 and 64-bit arithmetic (those that perform addition, subtraction, multiplication, division, extracting 
the square root, rounding conversion, comparison, and combinations of these) and the multiply-add and 
reciprocal estimate instructions defined by the architecture. The non computational floating-point instructions 
consist of the floating-point load, store, and move instructions. While both the computational and non compu-
tational instructions are considered to be floating-point instructions governed by the MSR[FP] bit (that allows 
floating-point instructions to be executed), only the computational instructions are considered floating-point 
operations throughout this chapter. 

The IEEE standard requires that single-precision arithmetic be provided for single-precision operands. The 
standard permits double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept double-precision 
operands. The guidelines are as follows:

• Double-precision arithmetic instructions may have single-precision operands but always produce double-
precision results.

• Single-precision arithmetic instructions require all operands to be single-precision and always produce 
single-precision results.

For arithmetic instructions, conversion from double to single-precision must be done explicitly by software, 
while conversion from single to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the following execution models to ensure that iden-
tical results are obtained. The definition of the arithmetic instructions for infinities, denormalized numbers, and 
NaNs follow conventions described in the following sections. Appendix C Floating-Point Models has addi-
tional detailed information on the execution models for IEEE operations, as well as the other floating-point 
instructions.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two additional 
bit positions to avoid potential transient overflow conditions. An extra bit is required when denormalized 
double-precision numbers are prenormalized. A second bit is required to permit computation of the adjusted 
exponent value in the following examples when the corresponding exception enable bit is 1 (exceptions are 
referred to as interrupts in the architecture specification):

• Underflow during multiplication using a denormalized operand

• Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format 

The PowerPC UISA defines the representation of a floating-point value in two different binary, fixed-length 
formats. The format is a 32-bit format for a single-precision floating-point value or a 64-bit format for a double-
precision floating-point value. The single-precision format may be used for data in memory. The double-preci-
sion format can be used for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The layout of the single-
precision format is shown in Figure 3-9; the layout of the double-precision format is shown in Figure 3-10.
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Values in floating-point format consist of three fields:

• S (sign bit)

• EXP (exponent + bias)

• FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load or store instruction for a 
byte or halfword (or word in the case of floating-point double-precision format), the value affected depends on 
whether the PowerPC system is using big or little-endian byte ordering, which is described in Section 3.1.2 
Byte Ordering. 

Note:  Big-endian mode is the default.

For numeric values, the significand consists of a leading implied bit concatenated on the right with the FRAC-
TION. This leading implied bit is a 1 for normalized numbers and a 0 for denormalized numbers and is the first 
bit to the left of the binary point. Values representable within the two floating-point formats can be specified by 
the parameters listed in Table 3-5. 

The true value of the exponent can be determined by subtracting 127 for single-precision numbers and 1023 
for double-precision numbers. This is shown in Table 3-6. 

Note:  Two exponent values are reserved to represent special-case values. Setting all bits indicates that the 
value is an infinity or NaN and clearing all bits indicates that the number is either zero or denormalized. 

Figure 3-9. Floating-Point Single-Precision Format 

Figure 3-10. Floating-Point Double-Precision Format 

Table 3-5. IEEE Floating-Point Fields  

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent (unbiased) +127 +1023

Minimum exponent (unbiased) –126 –1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

0 1 8 9 31

S EXP FRACTION

0 1 11 12 63

S EXP FRACTION
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3.3.1.1 Value Representation

The PowerPC UISA defines numeric and nonnumeric values representable within single and double-preci-
sion formats. The numerical values are approximations to the real numbers and include the normalized 
numbers, denormalized numbers, and zero values. The nonnumeric values representable are the positive 
and negative infinities and the Not a Numbers (NaNs). The positive and negative infinities are adjoined to the 
real numbers, but are not numbers themselves, and the standard rules of arithmetic do not hold when they 
appear in an operation. They are related to the real numbers by order alone. It is possible, however, to define 
restricted operations among numbers and infinities as defined below. The relative location on the real number 
line for each of the defined numerical entities is shown in Figure 3-11. Tiny values include denormalized 
numbers and all numbers that are too small to be represented for a particular precision format; they do not 
include zero values. 

The positive and negative NaNs are encodings that convey diagnostic information such as the representation 
of uninitialized variables and are not related to the numbers, ±∞, or each other by order or value.

Table 3-7 describes each of the floating-point formats.

Table 3-6. Biased Exponent Format  

Biased Exponent
(Binary)

Single-Precision
(Unbiased)

Double-Precision
(Unbiased)

11. . . . .11 Reserved for infinities and NaNs

11. . . . .10 +127 +1023

11. . . . .01 +126 +1022

.

.

.

.

.

.

.

.

.

10. . . . .00 1 1

01. . . . .11 0 0

01. . . . .10 –1 –1

.

.

.

.

.

.

.

.

.

00. . . . .01 –126 –1022

00. . . . .00 Reserved for zeros and denormalized numbers

Figure 3-11. Approximation to Real Numbers 

Tiny Tiny

Unrepresentable, small numbers

+0–0

–∞ –NORM –DENORM +∞+NORM+DENORM



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem3_operand_conv.fm.3.0
July 15, 2005  
 

Operand Conventions

Page 95 of 657

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real numbers. Three 
categories of numbers are supported—normalized numbers, denormalized numbers, and zero values.

3.3.1.3 Normalized Numbers (±NORM)

The values for normalized numbers have a biased exponent value in the range:

• 1 to 254 in single-precision format

• 1 to 2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (–1)s x 2E x (1.fraction)

The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand composed of a 
leading unit bit (implied bit) and a fractional part. The format for normalized numbers is shown in Figure 3-12.

Table 3-7. Recognized Floating-Point Numbers  

Sign Bit Biased Exponent Implied Bit Fraction Value

0 Maximum x Nonzero NaN

0 Maximum x Zero +Infinity

0 0 < Exponent < Maximum 1 x +Normalized

0 0 0 Nonzero +Denormalized

0 0 x Zero +0

1 0 x Zero –0

1 0 0 Nonzero –Denormalized

1 0 < Exponent < Maximum 1 x –Normalized

1 Maximum x Zero –Infinity

1 Maximum x Nonzero NaN

Figure 3-12. Format for Normalized Numbers 

MIN < EXPONENT < MAX
(BIASED) FRACTION = ANY BIT PATTERN

SIGN BIT, 0 OR 1
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The ranges covered by the magnitude (M) of a normalized floating-point number are approximated in the 
following decimal representation:

Single-precision format:
1.2x10–38 ≤ M ≤ 3.4x1038 

Double-precision format:
2.2x10–308 ≤ M ≤ 1.8x10308 

3.3.1.4 Zero Values (±0)

Zero values have a biased exponent value of zero and fraction of zero. This is shown in Figure 3-13. Zeros 
can have a positive or negative sign. The sign of zero is ignored by comparison operations (that is, compar-
ison regards +0 as equal to –0). Arithmetic with zero results is always exact and does not signal any excep-
tion, except when an exception occurs due to the invalid operations as described in the Invalid Operation 
Exception Condition on page 111. Rounding a zero only affects the sign (±0).

3.3.1.5 Denormalized Numbers (±DENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The format for denor-
malized numbers is shown in Figure 3-14.

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized numbers. They are 
values in which the implied unit bit is zero. Denormalized numbers are interpreted as follows:

DENORM = (–1)s x 2Emin x (0.fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (–126 for single-precision, 
–1022 for double-precision).

Figure 3-13. Format for Zero Numbers 

Figure 3-14. Format for Denormalized Numbers 

FRACTION = ’0’ 

SIGN BIT, 0 OR 1

EXPONENT = ‘0’
(BIASED)

SIGN BIT, 0 OR 1

EXPONENT = ’0’ 
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN
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3.3.1.6 Infinities (±∞)

These are values that have the maximum biased exponent value of 255 in the single-precision format, 2047 
in the double-precision format, and a zero fraction value. They are used to approximate values greater in 
magnitude than the maximum normalized value. Infinity arithmetic is defined as the limiting case of real arith-
metic, with restricted operations defined among numbers and infinities. Infinities and the real numbers can be 
related by ordering in the affine sense:

–∞ < every finite number < +∞

The format for infinities is shown in Figure 3-15.

Arithmetic using infinite numbers is always exact and does not signal any exception, except when an excep-
tion occurs due to the invalid operations as described in Invalid Operation Exception Condition on page 111.

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for NaNs is shown in 
Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather, it is simply another bit in the NaN. If 
the highest-order bit of the fraction field is a zero, the NaN is a signaling NaN; otherwise it is a quiet NaN 
(QNaN).

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform arithmetic opera-
tions on infinities or NaNs, when the invalid operation exception is disabled (FPSCR[VE] = ’0’ ). Quiet NaNs 
propagate through all operations, except floating-point round to single-precision, ordered comparison, and 
conversion to integer operations, and signal exceptions only for ordered comparison and conversion to 
integer operations. Specific encodings in QNaNs can thus be preserved through a sequence of operations 
and used to convey diagnostic information to help identify results from invalid operations.

Figure 3-15. Format for Positive and Negative Infinities 

Figure 3-16. Format for NaNs 

SIGN BIT, 0 OR 1

EXPONENT = MAXIMUM
(BIASED) FRACTION = ’0’ 

SIGN BIT (ignored)

EXPONENT = MAXIMUM
(BIASED)

FRACTION = ANY NONZERO
BIT PATTERN
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When a QNaN results from an operation because an operand is a NaN or because a QNaN is generated due 
to a disabled invalid operation exception, the following rule is applied to determine the QNaN to be stored as 
the result:

If (frA) is a NaN
Then frD ← (frA)
Else if (frB) is a NaN
Then if instruction is frsp

Then frD ← (frB)[0-34]||(29)0
Else frD ← (frB)

Else if (frC) is a NaN
Then frD ← (frC)
Else if generated QNaN

Then frD ← generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise, if the operand specified 
by frB is a NaN (if the instruction specifies an frB operand), that NaN is stored as the result, with the low-
order 29 bits cleared (if the instruction is frspx). Otherwise, if the operand specified by frC is a NaN (if the 
instruction specifies an frC operand), that NaN is stored as the result. Otherwise, if a QNaN is generated by a 
disabled invalid operation exception, that QNaN is stored as the result. If a QNaN is to be generated as a 
result, the QNaN generated has a sign bit of zero, an exponent field of all ones, and a highest-order fraction 
bit of one with all other fraction bits zero. An instruction that generates a QNaN as the result of a disabled 
invalid operation generates this QNaN (i.e., 0x7FF8_0000_0000_0000). This is shown in Figure 3-17.

A double-precision NaN is considered to be representable in single format if and only if the low-order 29 bits 
of the double-precision NaN's fraction are zero.

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the operation does not yield 
an exception. These rules apply even when the operands or results are zero (0) or ±∞:

• The sign of the result of an addition operation is the sign of the source operand having the larger absolute 
value. If both operands have the same sign, the sign of the result of an addition operation is the same as 
the sign of the operands. The sign of the result of the subtraction operation, x – y, is the same as the sign 
of the result of the addition operation, x + (–y).

When the sum of two operands with opposite sign, or the difference of two operands with the same sign, 
is exactly zero, the sign of the result is positive in all rounding modes except round toward negative infin-
ity (–∞), in which case the sign is negative.

• The sign of the result of a multiplication or division operation is the XOR of the signs of the source oper-
ands.

• The sign of the result of a round to single-precision or convert to/from integer operation is the sign of the 
source operand.

Figure 3-17. Representation of Generated QNaN 

SIGN BIT (ignored)

111...1 1000....00
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• The sign of the result of a square root or reciprocal square root estimate operation is always positive, 
except that the square root of –0 is –0 and the reciprocal square root of –0 is –infinity.

For multiply-add/subtract instructions, these rules are applied first to the multiplication operation and then to 
the addition/subtraction operation (one of the source operands to the addition/subtraction operation is the 
result of the multiplication operation).

3.3.3 Normalization and Denormalization 

The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx) instruction may require 
normalization and/or denormalization. When an intermediate result consists of a sign bit, an exponent, and a 
nonzero significand with a zero leading bit, the result must be normalized (and rounded) before being stored 
to the target.

A number is normalized by shifting its significand left and decrementing its exponent by one for each bit 
shifted until the leading significand bit becomes one. The guard and round bits are also shifted, with zeros 
shifted into the round bit; see Appendix C.1 Execution Model for IEEE Operations on page 597 for informa-
tion about the guard and round bits. During normalization, the exponent is regarded as if its range was unlim-
ited. 

If an intermediate result has a nonzero significand and an exponent that is smaller than the minimum value 
that can be represented in the format specified for the result, this value is referred to as ‘tiny’ and the stored 
result is determined by the rules described in Underflow Exception Condition on page 116. These rules may 
involve denormalization. The sign of the number does not change. 

An exponent can become tiny in either of the following circumstances:

• As the result of an arithmetic or Floating Round to Single-Precision (frspx) instruction or

• As the result of decrementing the exponent in the process of normalization. 

Normalization is the process of coercing the leading significand bit to be a 1 while denormalization is the 
process of coercing the exponent into the target format's range. 

In denormalization, the significand is shifted to the right while the exponent is incremented for each bit shifted 
until the exponent equals the format’s minimum value. The result is then rounded. If any significand bits are 
lost due to the rounding of the shifted value, the result is considered inexact. The sign of the number does not 
change and an Underflow Exception is signaled, see Underflow Exception Condition on page 116. 

3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and memory. For double-
precision format data, the data is not altered during the move. For single-precision data, the format is 
converted to double-precision format when data is loaded from memory into an FPR. A format conversion 
from double to single-precision is performed when data from an FPR is stored as single-precision. These 
operations do not cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point double-precision format.

Floating-point single-precision formats are obtained by using the following four types of instructions:

• Load floating-point single-precision instructions—These instructions access a single-precision operand in 
single-precision format in memory, convert it to double-precision, and load it into an FPR. Floating-point 
exceptions do not occur during the load operation.
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• Floating Round to Single-Precision (frspx) instruction—The frspx instruction rounds a double-precision 
operand to single-precision, checking the exponent for single-precision range and handling any excep-
tions according to respective enable bits in the FPSCR. The instruction places that operand into an FPR 
as a double-precision operand. For results produced by single-precision arithmetic instructions and by 
single-precision loads, this operation does not alter the value.

• Single-precision arithmetic instructions—These instructions take operands from the FPRs in double-pre-
cision format, perform the operation as if it produced an intermediate result correct to infinite precision 
and with unbounded range, and then force this intermediate result to fit in single-precision format. Status 
bits in the FPSCR and in the condition register are set to reflect the single-precision result. The result is 
then converted to double-precision format and placed into an FPR. The result falls within the range sup-
ported by the single-precision format.

Source operands for these instructions must be representable in single-precision format. Otherwise, the 
result placed into the target FPR and the setting of status bits in the FPSCR, and in the condition register 
if update mode is selected, are undefined.

• Store floating-point single-precision instructions—These instructions convert a double-precision operand 
to single-precision format and store that operand into memory. If the operand requires denormalization in 
order to fit in single-precision format, it is automatically denormalized prior to being stored. No exceptions 
are detected on the store operation (the value being stored is effectively assumed to be the result of an 
instruction of one of the preceding three types).

When the result of a Load Floating-Point Single (lfs), Floating Round to Single-Precision (frspx), or single-
precision arithmetic instruction is stored in an FPR, the low-order 29 fraction bits are zero. This is shown in 
Figure 3-18.

The frspx instruction allows conversion from double to single-precision with appropriate exception checking 
and rounding. This instruction should be used to convert double-precision floating-point values (produced by 
double-precision load and arithmetic instructions, and by fcfid) to single-precision values before storing them 
into single-format memory elements or using them as operands for single-precision arithmetic instructions. 
Values produced by single-precision load and arithmetic instructions can be stored directly, or used directly 
as operands for single-precision arithmetic instructions, without being preceded by an frspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse is true only if the 
double-precision value can be represented in single-precision format. Some implementations may execute 
single-precision arithmetic instructions faster than double-precision arithmetic instructions. Therefore, if 
double-precision accuracy is not required, using single-precision data and instructions might speed opera-
tions in some implementations. 

Figure 3-18. Single-Precision Representation in an FPR 
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3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the PowerPC Architecture (except the 
optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal Square Root Estimate (frsqrtex) 
instructions) produce an intermediate result considered to be infinitely precise and with unbounded exponent 
range. This intermediate result is normalized or denormalized if required, and then rounded to the destination 
format. The final result is then placed into the target FPR in the double-precision format or in fixed-point 
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded result differs from the 
infinitely precise value with unbounded range (same as the definition of ‘inexact’). In the PowerPC Architec-
ture this is the way loss of accuracy is detected. 

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or the operand of a 
conversion operation. If Z can be represented exactly in the target format, then the result in all rounding 
modes is exactly Z. If Z cannot be represented exactly in the target format, let Z1 and Z2 be the next larger 
and next smaller numbers representable in the target format that bound Z; then Z1 or Z2 can be used to 
approximate the result in the target format.

Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case. 

Four rounding modes are available through the floating-point rounding control field (RN) in the FPSCR. See 
Section 2.1.4 Floating-Point Status and Control Register (FPSCR). These are encoded as shown in 
Table 3-8. 

See Appendix C.1 Execution Model for IEEE Operations on page 597 for a detailed explanation of rounding. 
Rounding occurs before an overflow condition is detected. This means that while an infinitely precise value 
with unbounded exponent range may be greater than the greatest representable value, the rounding mode 
may allow that value to be rounded to a representable value. In this case, no overflow condition occurs.

Figure 3-19. Relation of Z1 and Z2 

Table 3-8. FPSCR Bit Settings—RN Field  

RN Rounding Mode Rules

00 Round to nearest Choose the best approximation (Z1 or Z2). In case of a tie, choose the one that is 
even (least-significant bit 0).

01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward –infinity Choose Z2.

Negative values

Z2 Z1 0 Z2 Z1

Z Z
Positive values

By incrementing least significant bit of Z

Infinitely precise value

By truncating after least significant bit
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However, the underflow condition is tested before rounding. Therefore, if the value that is infinitely precise 
and with unbounded exponent range falls within the range of unrepresentable values, the underflow condition 
occurs. The results in these cases are defined in Underflow Exception Condition on page 116. Figure 3-20 
shows the selection of Z1 and Z2 for the four possible rounding modes that are provided by FPSCR[RN].

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and FI, according to whether the 
rounded result is inexact (FI) and whether the fraction was incremented (FR) as shown in Figure 3-21. If the 
rounded result is inexact, FI is set and FR may be either set or cleared. If rounding does not change the 
result, both FR and FI are cleared. The optional fresx and frsqrtex instructions set FI and FR to undefined 
values; other floating-point instructions do not alter FR and FI. 

Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes 

Z is infinitely precise 
result or operand

frD ← Z
Z2 < Z < Z1 per Figure 3-19

frD ← Z2frD ← Z1frD ← Z2

frD ← Z1frD ← Best approximation (Z1 or Z2)
If tie, choose even (Z1 or Z2 with least 

significant bit 0)

Z fits 
target format

FPSCR[RN] = 01
(round toward 0)

Z > 0Z < 0FPSCR[RN] = 11
(round toward –∞)

FPSCR[RN] = 00
(round to nearest)

FPSCR[RN] = 10
(round toward +∞)

otherwise

otherwise

otherwise
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3.3.6 Floating-Point Program Exceptions

The computational instructions of the PowerPC Architecture are the only instructions that can cause floating-
point enabled exceptions (subsets of the program exception). 

In the processor, floating-point program exceptions are signaled by condition bits set in the floating-point 
status and control register (FPSCR) as described in this section and in Chapter 2, “PowerPC Register Set.” 
These bits correspond to those conditions identified as IEEE floating-point exceptions and can cause the 
system floating-point enabled exception error handler to be invoked. Handling for floating-point exceptions is 
described in Section 6.4.9 Program Exception (0x00700).

The FPSCR is shown in Figure 3-22.

A listing of FPSCR bit settings is shown in Table 3-9. 

Figure 3-21. Rounding Flags in FPSCR 

Figure 3-22. Floating-Point Status and Control Register (FPSCR) 

Zround is rounded result

FI ← 0
FR ← 0

FI ← 1

FR ← 1 FR ← 0

otherwisefraction 
incremented

Zround ≠ Zotherwise

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

VXIDI
VXISI

VXSNAN

VXZDZ
VXIMZ
VXVC

VXSOFT
VXSQRT
VXCVI

Reserved

FX FEX VX OX UX ZX XX FR FI FPRF 0 VE OE UE ZE XE NI RN
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Table 3-9. FPSCR Bit Settings  

Bit(s) Name Description

0 FX

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets 
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from 0 
to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a sticky 
bit.

1 FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception 
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits 
(FEX = (VX & VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and 
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX
Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation 
exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsb0, and 
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact 
Exception Conditions on page 113.

4 UX Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 116.

5 ZX Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 112.

6 XX

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 117.
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a given 
instruction:

• If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old 
value of FPSCR[XX] with the new value of FPSCR[FI].

• If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged. 

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

8 VXISI Floating-point invalid operation exception for ∞ – ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

11 VXIMZ Floating-point invalid operation exception for ∞ × 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 111.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 111.

13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the 
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.

14 FI

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the 
intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5 
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCR[FI] and 
FPSCR[XX], see the description of the FPSCR[XX] bit. 
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15–19 FPRF

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result 
placed into the target register, except that if any portion of the result is undefined, the value placed here is 
undefined. 
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set 

this bit with the FPCC bits to indicate the class of the result as shown in Table 3-10.
16–19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the 

FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the 
high-order three bits of the FPCC retain their relational significance indicating that the value is less 
than, greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

Note:  These are not sticky bits. 

20 — Reserved 

21 VXSOFT
Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only 
by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Invalid 
Operation Exception Condition on page 111.

22 VXSQRT

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 111.
Note:  If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square 
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation 
Exception Condition on page 111.

24 VE Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 111.

25 OE IEEE floating-point overflow exception enable. 
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 113.

26 UE IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 116.

27 ZE IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 112.

28 XE Floating-point inexact exception enable. See Inexact Exception Condition on page 117.

29 NI

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other 
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, then the result produced is zero (retaining the sign of the denormalized number). Any other 
effects associated with setting this bit are described in the user’s manual for the implementation (the effects 
are implementation-dependent). 
Note:  When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be 
approximate, and performance for these operations may be better, more predictable, or less data-dependent 
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may 
return 0 instead of a denormalized number, and may return a large number instead of an infinity.

30–31 RN

Floating-point rounding control. See Section 3.3.5 Rounding.
00 Round to nearest 
01 Round toward zero 
10 Round toward +infinity
11 Round toward –infinity

Table 3-9. FPSCR Bit Settings (Continued) 

Bit(s) Name Description
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Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond 
to FPSCR bits [15–19] (the FPRF field). 

The following conditions that can cause program exceptions are detected by the processor. These conditions 
may occur during execution of computational floating-point instructions. The corresponding bits set in the 
FPSCR are indicated in parentheses:

• Invalid operation exception condition (VX)

– SNaN condition (VXSNAN)
– Infinity – infinity condition (VXISI)
– Infinity ÷ infinity condition (VXIDI)
– Zero ÷ zero condition (VXZDZ)
– Infinity × zero condition (VXIMZ)
– Invalid compare condition (VXVC)
– Software request condition (VXSOFT)
– Invalid integer convert condition (VXCVI)
– Invalid square root condition (VXSQRT)

These exception conditions are described in Invalid Operation Exception Condition on page 111.

• Zero divide exception condition (ZX). These exception conditions are described in Zero Divide Exception 
Condition on page 112.

• Overflow Exception Condition (OX). These exception conditions are described in Overflow Exception 
Condition on page 115.

• Underflow Exception Condition (UX). These exception conditions are described in Underflow Exception 
Condition on page 116.

• Inexact Exception Condition (XX). These exception conditions are described in Inexact Exception Condi-
tion on page 117.

Each floating-point exception condition and each category of invalid IEEE floating-point operation exception 
condition has a corresponding exception bit in the FPSCR which indicates the occurrence of that condition. 
Generally, the occurrence of an exception condition depends only on the instruction and its arguments (with 
one deviation, described below). When one or more exception conditions arise during the execution of an 
instruction, the way in which the instruction completes execution depends on the value of the IEEE floating-

Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]  

Result Flags (Bits [15–19])
Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity
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point enable bits in the FPSCR which govern those exception conditions. If no governing enable bit is set to 1, 
the instruction delivers a default result. Otherwise, specific condition bits and the FX bit in the FPSCR are set 
and instruction execution is completed by suppressing or delivering a result. Finally, after the instruction 
execution has completed, a nonzero FX bit in the FPSCR causes a program exception if either FE0 or FE1 is 
set in the MSR (invoking the system error handler). The values in the FPRs immediately after the occurrence 
of an enabled exception do not depend on the FE0 and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point instruction (except 
mtfsfi and mtfsf) that causes any of the exception bits in the FPSCR to change from 0 to 1, or by mtfsfi, 
mtfsf, and mtfsb1 instructions that explicitly set one of these bits. FPSCR[FEX] is set when any of the excep-
tion condition bits is set and the exception is enabled (enable bit is one). 

A single instruction may set more than one exception condition bit only in the following cases:

• The inexact exception condition bit (FPSCR[XX]) may be set with the overflow exception condition bit 
(FPSCR[OX]).

• The inexact exception condition bit (FPSCR[XX]) may be set with the underflow exception condition bit 
(FPSCR[UX]). 

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with invalid IEEE 
floating-point operation exception condition bit (∞ × 0) (FPSCR[VXIMZ]) for multiply-add instructions.

• The invalid operation exception condition bit (SNaN) may be set with the invalid IEEE floating-point oper-
ation exception condition bit (invalid compare) (FPRSC[VXVC]) for compare ordered instructions.

• The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with the invalid IEEE 
floating-point operation exception condition bit (invalid integer convert) (FPSCR[VXCVI]) for convert-to-
integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that there is no possi-
bility that one of the operands is lost:

• Enabled invalid IEEE floating-point operation

• Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the destination specified 
by the instruction causing the exception condition. The result may depend on whether the condition is 
enabled or disabled. The kinds of exception conditions that deliver a result are the following:

• Disabled invalid IEEE floating-point operation

• Disabled zero divide

• Disabled overflow

• Disabled underflow

• Disabled inexact

• Enabled overflow

• Enabled underflow

• Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the action taken when 
they are detected.
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The IEEE standard specifies the handling of exception conditions in terms of traps and trap handlers. In the 
PowerPC Architecture, an FPSCR exception enable bit being set causes generation of the result value spec-
ified in the IEEE standard for the trap enabled case—the expectation is that the exception is detected by soft-
ware, which will revise the result. An FPSCR exception enable bit of 0 causes generation of the default result 
value specified for the trap disabled (or no trap occurs or trap is not implemented) case—the expectation is 
that the exception will not be detected by software, which will simply use the default result. The result to be 
delivered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a default value and not to notify 
software, is obtained by clearing all FPSCR exception enable bits and using ignore exceptions mode (see 
Table 3-11). In this case the system floating-point enabled exception error handler is not invoked, even if 
floating-point exceptions occur. If necessary, software can inspect the FPSCR exception bits to determine 
whether exceptions have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit must be set and 
a mode other than ignore exceptions mode must be used. In this case the system floating-point enabled 
exception error handler is invoked if an enabled floating-point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an enabled floating-
point exception occurs is controlled by MSR bits [FE0] and [FE1] as shown in Table 3-11. (The system 
floating-point enabled exception error handler is never invoked if the appropriate floating-point exception is 
disabled.) 

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence of any invoca-
tions of the floating-point enabled exception handler, due to instructions initiated before the FPSCR instruc-
tion. This forcing has no effect in ignore exceptions mode and is superfluous for precise mode. 

In all cases, the question of whether a floating-point result is stored, and what value is stored, is governed by 
the FPSCR exception enable bits, and is not affected by the value of the FE0 and FE1 bits. For the best 
performance across the widest range of implementations, the following guidelines should be considered:

• If the IEEE default results are acceptable to the application, FE0 and FE1 should be cleared (ignore 
exceptions mode). All FPSCR exception enable bits should be cleared.

• If the IEEE default results are unacceptable to the application, an imprecise mode should be used with 
the FPSCR enable bits set as needed. 

Table 3-11. MSR[FE0] and MSR[FE1] Bit Settings for FP Exceptions  

FE0 FE1 Description

0 0 Ignore exceptions mode—Floating-point exceptions do not cause the program exception error handler to be 
invoked.

0 1

Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at some point at or 
beyond the instruction that caused the exception. It may not be possible to identify the offending instruction or the 
data that caused the exception. Results from the offending instruction may have been used by or affected subse-
quent instructions executed before the exception handler was invoked.

1 0

Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled exception handler is 
invoked at some point at or beyond the instruction that caused the exception. Sufficient information is provided to 
the exception handler that it can identify the offending instruction and correct any faulty results. In this mode, no 
results caused by the offending instruction have been used by or affected subsequent instructions that are exe-
cuted before the exception handler is invoked. Running in this mode might cause a degradation in performance.

1 1

Precise mode—The system floating-point enabled exception error handler is invoked precisely at the instruction 
that caused the enabled exception. The architecture ensures that all instructions logically residing before the 
excepting instruction have completed and no instruction after the excepting instruction has been executed. Run-
ning in this mode might cause a degradation in performance.
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• Ignore exceptions mode should not, in general, be used when any FPSCR exception enable bits are set.

• Precise mode may degrade performance in some implementations, perhaps substantially, and therefore 
should be used only for debugging and other specialized applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point exception conditions (invalid 
operation and divide by zero conditions). In any of these cases of floating-point exception conditions, if the 
FPSCR[FEX] bit is set (implicitly) and MSR[FE0–FE1] ≠ ‘00’, the processor takes a program exception 
(floating-point enabled exception type). Refer to Chapter 6, Exceptions for more information on exception 
processing. The actions performed for each floating-point exception condition are described in greater detail 
in the following sections.
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Figure 3-23. Initial Flow for Floating-Point Exception Conditions 
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Invalid Operation Exception Condition

An invalid operation exception occurs when an operand is invalid for the specified operation. The invalid oper-
ations are as follows:

• Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities (∞ – ∞)

• Division of infinity by infinity (∞ ÷ ∞)

• Division of zero by zero (0 ÷ 0) 

• Multiplication of infinity by zero (∞ × 0)

• Ordered comparison involving a NaN (invalid compare)

• Square root or reciprocal square root of a negative, nonzero number (invalid square root)

Note:  If the implementation does not support the optional floating-point square root or floating-point 
reciprocal square root estimate instructions, software can simulate the instruction and set the 
FPSCR[VXSQRT] bit to reflect the exception.

• Integer convert involving a number that is too large in magnitude to be represented in the target format, or 
involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition that is not neces-
sarily associated with the execution of a floating-point instruction. For example, it might be set by a program 
that computes a square root if the source operand is negative. This allows PowerPC instructions not imple-
mented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via FPSCR[VXSOFT], 
(regardless of the value of FPSCR[VE]), the following actions are taken:

• One or two invalid operation exception condition bits is set 
 

• If the operation is a compare,
FPSCR[FR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

• If software explicitly requests the exception,
FPSCR[FR, FI, FPRF] are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

There are additional actions performed that depend on the value of FPSCR[VE]. These are described in 
Table 3-12.

FPSCR[VXSNAN] (if SNaN)

FPSCR[VXISI] (if ∞ – ∞)

FPSCR[VXIDI] (if ∞ ÷ ∞)

FPSCR[VXZDZ] (if 0 ÷ 0)

FPSCR[VXIMZ] (if ∞ × 0)

FPSCR[VXVC] (if invalid comparison)

FPSCR[VXSOFT] (if software request)

FPSCR[VXSQRT] (if invalid square root)

FPSCR[VXCVI] (if invalid integer convert)
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Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with a zero divisor value and a 
finite, nonzero dividend value or when an floating reciprocal estimate single (fres) or a floating reciprocal 
square root estimate (frsqrte) instruction is executed with a zero operand value. 

The corresponding result is infinity, where the sign is the sign of the source value, as follows:

• 1/+0.0 → +∞

• 1/-0.0 → -∞

•

•

When a zero divide condition occurs, the following actions are taken:

• Zero divide exception condition bit is set FPSCR[ZX] = ’1’ .

• FPSCR[FR, FI] are cleared.

Table 3-12. Additional Actions Performed for Invalid FP Operations 

Invalid Operation Result Category
Action Performed

FPSCR[VE] = ’1’ FPSCR[VE] = ’0’ 

Arithmetic or floating-point round to single

frD Unchanged QNaN

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Set for QNaN

Convert to 64-bit integer 
(positive number or +∞)

frD[0–63] Unchanged Most positive 64-bit integer 
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 64-bit integer 
(negative number, NaN, or –∞)

frD[0–63] Unchanged Most negative 64-bit integer 
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 32-bit integer 
(positive number or +∞)

frD[0–31] Unchanged Undefined

frD[32–63] Unchanged Most positive 32-bit integer 
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

Convert to 32-bit integer 
(negative number, NaN, or –∞)

frD[0–31] Unchanged Undefined

frD[32–63] Unchanged Most negative 32-bit integer 
value

FPSCR[FR, FI] Cleared Cleared

FPSCR[FPRF] Unchanged Undefined

All cases FPSCR[FEX]
Implicitly set
(causes exception)

Unchanged 

1 +0.0( )⁄ +∞→

1 0.0–( )⁄ -∞→
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Additional actions depend on the setting of the zero divide exception condition enable bit, FPSCR[ZE], as 
described in Table 3-13.

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

As described earlier, the overflow, underflow, and inexact exception conditions are detected after the floating-
point instruction has executed and an infinitely precise result with unbounded range has been computed. 
Figure 3-24 shows the flow for the detection of these conditions and is a continuation of Figure 3-23. As in the 
cases of invalid operation, or zero divide conditions, if the FPSCR[FEX] bit is implicitly set as described in 
Table 3-9 and MSR[FE0–FE1] ≠ 00, the processor takes a program exception (floating-point enabled excep-
tion type). Refer to Chapter 6, Exceptions for more information on exception processing. The actions 
performed for each of these floating-point exception conditions (including the generated result) are described 
in greater detail in the following sections.

Table 3-13. Additional Actions Performed for Zero Divide  

Result Category
Action Performed

FPSCR[ZE] = ’1’ FPSCR[ZE] = ’0’ 

frD Unchanged ±∞ (sign determined by XOR of the signs of the 
operands)

FPSCR[FEX] Implicitly set (causes exception) Unchanged 

FPSCR[FPRF] Unchanged Set to indicate ±∞
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Figure 3-24. Checking of Remaining Floating-Point Exception Conditions 

xNORM ← Normalized x
(xNORM Infinitely Precise and with Unbounded Range)

Check for Overflow, 
Underflow, and Inexact

(from Figure 3-23)

Set FPSCR[FPRF] appropriately

FPSCR[FEX] = 1 (implicitly)

otherwise

If (FPSCR[FEX] = 1) & (MSR[FE0–FE1] ≠ 00), 
then take FP Program Exception; 

otherwise, continue

otherwiseFPSCR[UE] = 0
(underflow disabled)

otherwise magnitude of xround > magnitude of 
largest finite number in result precision

(overflow)

FPSCR[OX] ← 1

otherwise FPSCR[OE] = 0
(overflow disabled)

• FPSCR[FEX] = 1 (implicitly)
• Adjust Exponent per Table 3-14
• frD ← xROUND (adjusted)
• inexact ← xROUND ≠ xNORM

FPSCR[XX] ← 1

• Get default fromTable 3-15
• frD ← default
• FPSCR[FI] ← 1
• FPSCR[FR] ← undefined

FPSCR[XX] ← 1

otherwise

FPSCR[XE] = 0
(inexact disabled)

xROUND ← Rounded xNORM (per FPSCR[RN])

xNORM is tiny

• xDENORM ← Denormalized xnorm
• Round xDENORM (per FPSCR[RN])
• frD ← xROUND ← Rounded xDENORM 
• inexact ← xROUND ≠ xDENORM
• If ‘inexact’, FPSCR[UX] ← 1

• FPSCR[UX] ← 1
• FPSCR[FEX] = 1 (implicitly)
• xADJUST ←Adj. Exp. of xNORM per Table 3-14
• Round xADJUST (per FPSCR[RN])
• frD ← xROUND ← Rounded xADJUST
• inexact ← xROUND ≠ xADJUST

(inexact)

otherwise

• frD ← xround
• inexact ← xROUND ≠ xNORM

inexact = 1
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Overflow Exception Condition

Overflow occurs when the magnitude of what would have been the rounded result (had the exponent range 
been unbounded) is greater than the magnitude of the largest finite number of the specified result precision. 
Regardless of the setting of the overflow exception condition enable bit of the FPSCR, the overflow exception 
condition bit is set FPSCR[OX] = ’1’ .

Additional actions are taken that depend on the setting of the overflow exception condition enable bit of the 
FPSCR as described in Table 3-14.

When the overflow exception condition is disabled (FPSCR[OE] = ’0’ ) and an overflow condition occurs, the 
default result is determined by the rounding mode bit (FPSCR[RN]) and the sign of the intermediate result as 
shown in Table 3-15.

Table 3-14. Additional Actions Performed for Overflow Exception Condition 

Condition Result Category
Action Performed

FPSCR[OE] = ’1’ FPSCR[OE] = ’0’ 

Double-precision arithmetic 
instructions

Exponent of normalized 
intermediate result Adjusted by subtracting 1536 —

Single-precision arithmetic and 
frspx instruction

Exponent of normalized 
intermediate result Adjusted by subtracting 192 —

All cases

frD Rounded result 
(with adjusted exponent) Default result per Table 3-15

FPSCR[XX] Set if rounded result differs from 
intermediate result Set 

FPSCR[FEX] Implicitly set (causes exception) Unchanged 

FPSCR[FPRF] Set to indicate ±normal number Set to indicate ±∞ or 
±normal number

FPSCR[FI] Reflects rounding Set

FPSCR[FR] Reflects rounding Undefined

Table 3-15. Target Result for Overflow Exception Disabled Case 

FPSCR[RN] Sign of Intermediate Result frD

Round to nearest
Positive +Infinity

Negative –Infinity

Round toward zero
Positive Format’s largest finite positive number 

Negative Format’s most negative finite number

Round toward +infinity
Positive +Infinity

Negative Format’s most negative finite number

Round toward –infinity
Positive Format’s largest finite positive number

Negative –Infinity
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Underflow Exception Condition

The underflow exception condition is defined separately for the enabled and disabled states:

• Enabled—Underflow occurs when the intermediate result is tiny.

• Disabled—Underflow occurs when the intermediate result is tiny and the rounded result is inexact.
In this context, the term ‘tiny’ refers to a floating-point value that is too small to be represented for a par-
ticular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero intermediate result value 
computed as though it had infinite precision and unbounded exponent range is less in magnitude than the 
smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared (FPSCR[UE] = ’0’ 
), the intermediate result is denormalized (see Section 3.3.3 Normalization and Denormalization) and 
rounded (see Section 3.3.5 Rounding) before being stored in an FPR. In this case, if the rounding causes the 
delivered result value to differ from what would have been computed were both the exponent range and 
precision unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set. 

The actions performed for underflow exception conditions are described in Table 3-16. 

Note:  The FR and FI bits in the FPSCR allow the system floating-point enabled exception error handler, 
when invoked because of an underflow exception condition, to simulate a trap disabled environment. That is, 
the FR and FI bits allow the system floating-point enabled exception error handler to unround the result, thus 
allowing the result to be denormalized.

Table 3-16. Actions Performed for Underflow Conditions  

Condition Result Category
Action Performed

FPSCR[UE] = ’1’ FPSCR[UE] = ’0’ 

Double-precision arithmetic 
instructions

Exponent of normalized interme-
diate result Adjusted by adding 1536 —

Single-precision arithmetic and 
frspx instructions

Exponent of normalized interme-
diate result Adjusted by adding192 —

All cases

frD Rounded result (with adjusted 
exponent)

Denormalized and rounded 
result

FPSCR[XX] Set if rounded result differs from 
intermediate result

Set if rounded result differs from 
intermediate result

FPSCR[UX] Set Set only if tiny and inexact after 
denormalization and rounding

FPSCR[FPRF] Set to indicate ±normalized 
number

Set to indicate ±denormalized 
number or ±zero

FPSCR[FEX] Implicitly set (causes exception) Unchanged 

FPSCR[FI] Reflects rounding Reflects rounding

FPSCR[FR] Reflects rounding Reflects rounding
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Inexact Exception Condition

The inexact exception condition occurs when one of two conditions occur during rounding:

• The rounded result differs from the intermediate result assuming the intermediate result exponent range 
and precision to be unbounded. (In the case of an enabled overflow or underflow condition, where the 
exponent of the rounded result is adjusted for those conditions, an inexact condition occurs only if the sig-
nificand of the rounded result differs from that of the intermediate result.)

• The rounded result overflows and the overflow exception condition is disabled.

When an inexact exception condition occurs, the following actions are taken independent of the setting of the 
inexact exception condition enable bit of the FPSCR:

• Inexact exception condition bit in the FPSCR is set FPSCR[XX] = ’1’ .

• The rounded or overflowed result is placed into the target FPR.

• FPSCR[FPRF] is set to indicate the class and sign of the result.

In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set, and an inexact 
condition exists, then the FPSCR[FEX] bit is implicitly set, causing the processor to take a floating-point 
enabled program exception. 

In PowerPC implementations, running with inexact exception conditions enabled may have greater latency 
than enabling other types of floating-point exception conditions.
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4. Addressing Modes and Instruction Set Summary
40
70

This chapter describes instructions and addressing modes defined by the three levels of the PowerPC Archi-
tecture—user instruction set architecture (UISA), virtual environment architecture (VEA), and operating envi-
ronment architecture (OEA). These instructions are divided into the following functional categories: 

• Integer instructions—These include arithmetic and logical instructions. For more information, see 
Section 4.2.1 Integer Instructions.

• Floating-point instructions—These include floating-point arithmetic instructions, as well as instructions 
that affect the floating-point status and control register (FPSCR). For more information, see Section 4.2.2 
Floating-Point Instructions.

• Load and store instructions—These include integer and floating-point load and store instructions. For 
more information, see Section 4.2.3 Load and Store Instructions.

• Flow control instructions—These include branching instructions, condition register logical instructions, 
trap instructions, and other instructions that affect the instruction flow. For more information, see 
Section 4.2.4 Branch and Flow Control Instructions.

• Processor control instructions—These instructions are used for synchronizing memory accesses and 
managing of caches, TLBs, and the segment registers. For more information, see Section 4.2.5 Proces-
sor Control Instructions—UISA, Section 4.3.1 Processor Control Instructions—VEA, and Section 4.4.2 
Processor Control Instructions—OEA.

• Memory synchronization instructions—These instructions control the order in which memory operations 
are completed with respect to asynchronous events, and the order in which memory operations are seen 
by other processors or memory access mechanisms. For more information, see Section 4.2.6 Memory 
Synchronization Instructions—UISA, and Section 4.3.2 Memory Synchronization Instructions—VEA.

• Memory control instructions—These include cache management instructions (user-level and supervisor-
level), segment register manipulation instructions, and translation lookaside buffer management instruc-
tions. For more information, see Section 4.3.3 Memory Control Instructions—VEA, and Section 4.4.3 
Memory Control Instructions—OEA.

Note:  User-level and supervisor-level are referred to as problem state and privileged state, respectively, 
in the architecture specification.

• External control instructions—These instructions allow a user-level program to communicate with a spe-
cial-purpose device. For more information, see Section 4.3.4 External Control Instructions.

This grouping of instructions does not necessarily indicate the execution unit that processes a particular 
instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, halfword, word, and doubleword operands. Floating-point instructions 
operate on single-precision and double-precision floating-point operands. The PowerPC Architecture uses 
instructions that are four bytes long and word-aligned. It provides for byte, halfword, word, and doubleword 
operand fetches and stores between memory and a set of 32 general-purpose registers (GPRs). It also 
provides for word and doubleword operand fetches and stores between memory and a set of 32 floating-point 
registers (FPRs). The FPRs and GPRs are 64 bits wide in all PowerPC implementations.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in 
a computation and then modify the same or another memory location, the memory contents must be loaded 
into a register, modified, and then written to the target location using load and store instructions.
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The description of each instruction includes the mnemonic and a formatted list of operands. PowerPC-
compliant assemblers support the mnemonics and operand lists. To simplify assembly language program-
ming, a set of simplified mnemonics (referred to as extended mnemonics in the architecture specification) 
and symbols is provided for some of the most frequently-used instructions; see Appendix E Simplified 
Mnemonics, for a complete list of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation of the three levels of 
the PowerPC Architecture—UISA, VEA, and OEA; Section 4.2 PowerPC UISA Instructions discusses the 
UISA instructions, followed by Section 4.3 PowerPC VEA Instructions that discusses the VEA instructions 
and Section 4.4 PowerPC OEA Instructions that discusses the OEA instructions. See Section 1.1.2 Levels of 
the PowerPC Architecture for more information about the various levels defined by the PowerPC Architec-
ture.

4.1 Conventions

This section describes conventions used for the PowerPC instruction set. Descriptions of computation 
modes, memory addressing, synchronization, and the PowerPC exception summary follow.

4.1.1 Sequential Execution Model

The PowerPC processors appear to execute instructions in program order, regardless of asynchronous 
events or program exceptions. The execution of a sequence of instructions may be interrupted by an excep-
tion caused by one of the instructions in the sequence, or by an asynchronous event. 

Note:  The architecture specification refers to exceptions as interrupts.

For exceptions to the sequential execution model, refer to Chapter 6, Exceptions. For information about the 
synchronization required when using store instructions to access instruction areas of memory, refer to 
Section 4.2.3.3 Integer Store Instructions and Section 5.1.5.2 Instruction Cache Instructions. For information 
regarding instruction fetching, and for information about guarded memory refer to Section 5.2.1.5 Guarded 
Attribute (G).

4.1.2 Computation Modes 

The general-purpose and floating-point registers, and some special-purpose registers (SPRs) are 64 bits 
long, with an effective address of 64 bits. All 64-bit implementations have two modes of operation: 64-bit 
mode (which is the default) and 32-bit mode. The mode controls how the effective address is interpreted, how 
condition bits are set, and how the count register (CTR) is tested by branch conditional instructions. All 
instructions provided for 64-bit implementations are available in both 64 and 32-bit modes.

The machine state register bit [0], MSR[SF], is used to choose between 64 and 32-bit modes. When 
MSR[SF = ‘0’, the processor runs in 32-bit mode, and when MSR[SF] = ’1’ the processor runs in the default 
64-bit mode.

In both 64-bit mode (the default) and 32-bit mode of a 64-bit implementation, instructions that set a 64-bit 
register affect all 64 bits, and the value placed into the register is independent of mode. In both modes, effec-
tive address computations use all 64 bits of the relevant registers (GPRs, LR, CTR, etc.), and produce a 
64-bit result; however, in 32-bit mode (MSR[SF] = ’0’), only the low-order 32 bits of the computed effective 
address are used to address memory. 
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4.1.3 Classes of Instructions

PowerPC instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note:  While the definitions of these terms are consistent among the PowerPC processors, the assignment of 
these classifications is not. For example, an instruction that is specific to 64-bit implementations is considered 
defined for 64-bit implementations, but illegal for 32-bit implementations. 

The class is determined by examining the primary opcode, and the extended opcode if any. If the opcode, or 
the combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruc-
tion, the instruction is illegal.

In future versions of the PowerPC Architecture, instruction codings that are now illegal may become defined 
(by being added to the architecture) or reserved (by being assigned to one of the special purposes). Likewise, 
reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if they could have been 
achieved by executing an arbitrary sequence of instructions, starting in the state the machine was in before 
executing the given instruction. Boundedly undefined results for a given instruction may vary between imple-
mentations, and between different executions on the same implementation.

4.1.3.2 Defined Instruction Class

Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and OEA. Defined 
instructions are guaranteed to be supported in all PowerPC implementations. The only exceptions are 
instructions that are defined only for 64-bit implementations, instructions that are defined only for 32-bit imple-
mentations, and optional instructions, as stated in the instruction descriptions in Chapter 8, Instruction Set. A 
PowerPC processor may invoke the illegal instruction error handler (part of the program exception handler) 
when an unimplemented PowerPC instruction is encountered so that it may be emulated in software, as 
required.

A defined instruction can have preferred and/or invalid forms, as described in the following sections.

Preferred Instruction Forms

A defined instruction may have an instruction form that is preferred (that is, the instruction will execute in an 
efficient manner). Any form other than the preferred form will take significantly longer to execute. The 
following instructions have preferred forms:

• Condition register logical instructions

• Load/store multiple instructions

• Load/store string instructions

• Or immediate instruction (preferred form of no-op)

• Move to condition register fields instruction 
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Invalid Instruction Forms

A defined instruction may have an instruction form that is invalid if one or more operands, excluding the 
opcodes and reserved fields, are coded incorrectly in a manner that can be deduced by examining only the 
instruction encoding (primary and extended opcodes). Attempting to execute an invalid form of an instruction 
either invokes the illegal instruction error handler (a program exception) or yields boundedly-undefined 
results. See Chapter 8, Instruction Set, for individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a reserved bit (shown as 
‘0’) is coded as ‘1’.

The following instructions have invalid forms identified in their individual instruction descriptions:

• Branch conditional instructions
• Load/store with update instructions
• Load multiple instructions
• Load string instructions
• Load/store floating-point with update instructions

Optional Instructions

A defined instruction may be optional. The optional instructions fall into the following categories:

• General-purpose instructions—fsqrt and fsqrts

• Graphics instructions—fres, frsqrte, and fsel

• External control instructions—eciwx and ecowx

• Lookaside buffer management instructions—slbia, slbie, tlbia, tlbie, tlbiel, and tlbsync (with conditions, 
see Chapter 8, Instruction Set for more information)

Any attempt to execute an optional instruction that is not provided by the implementation will cause the illegal 
instruction error handler to be invoked. Exceptions to this rule are stated in the instruction descriptions found 
in Chapter 8, Instruction Set. 

TEMPORARY 64-BIT BRIDGE

The optional 64-bit bridge facility has three other categories of optional instructions for 64-bit implemen-
tations. These are described in greater detail in Section 7.6 Migration of Operating Systems from 32-Bit 
Implementations to 64-Bit Implementations and summarized below:

• 32-bit segment register support instructions—mtsr, mtsrin, mfsr, and mfsrin 
• 32-bit system linkage instructions—mtmsr 
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4.1.3.3 Illegal Instruction Class

Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the PowerPC Architecture. These opcodes are available for 
future extensions of the PowerPC Architecture; that is, future versions of the PowerPC Architecture may 
define any of these instructions to perform new functions. The following primary opcodes are defined as 
illegal but may be used in future extensions to the architecture:

1, 4, 5, 6, 56, 57, 60, 61

Note:  Opcode 4 may be used by the vector instructions as described in the PowerPC Microprocessor 
Family: AltiVec Technology Programming Environments Manual. 

• All unused extended opcodes are illegal. The unused extended opcodes can be determined from infor-
mation in Appendix A.2 Instructions Sorted by Opcode and Section 4.1.3.4 Reserved Instructions. The 
following primary opcodes have unused extended opcodes.

19, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63 

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases the 
probability that an attempt to execute data or uninitialized memory invokes the illegal instruction error 
handler (a program exception). 

Note:  If only the primary opcode consists of all zeros, the instruction is considered a reserved instruction, as 
described in Section 4.1.3.4 Reserved Instructions.

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a program exception) 
but has no other effect. See Section 6.4.9 Program Exception (0x00700) for additional information about 
illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal instructions are available for 
further additions to the PowerPC Architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the 
PowerPC Architecture. An attempt to execute an unimplemented reserved instruction invokes the illegal 
instruction error handler (a program exception). See Section 6.4.9 Program Exception (0x00700) for addi-
tional information about illegal instruction exception.

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the PowerPC Architecture. 

2. Implementation-specific instructions used to conform to the PowerPC Architecture specifications. For 
example, the implementation specific instruction tlbiel, (the processor local form of the TLB Invalidate) for 
the PowerPC 970FX microprocessor. 

3. The instruction with primary opcode 0, when the instruction does not consist entirely of binary zeros and 
the extended opcode: 
256 Service Processor “Attention.” 

4. Any other implementation-specific instructions that are not defined in the UISA, VEA, or OEA.
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4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it 
executes a load, store, branch, or cache instruction, and when it fetches the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the corre-
sponding byte. Within words bytes are numbered from left to right.

Memory operands may be bytes, halfwords, words, or doublewords, or, for the load/store multiple and 
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address 
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction. The 
PowerPC Architecture supports both big-endian and little-endian byte ordering. The default byte and bit 
ordering is big-endian; see Section 3.1.2 Byte Ordering for more information.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the 
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand 
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is 
misaligned. For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32 or 64-bit sum computed by the processor when executing a memory 
access or branch instruction or when fetching the next sequential instruction. For a memory access instruc-
tion, if the sum of the effective address and the operand length exceeds the maximum effective address, the 
memory operand is considered to wrap around from the maximum effective address through effective 
address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 64 or 32-bit unsigned binary arith-
metic. A carry from bit [0] is ignored. The 64-bit current instruction address and next instruction address are 
not affected by a change from 32-bit mode to the default 64-bit mode, but a change from the default 64-bit 
mode to 32-bit mode causes the high-order 32 bits to be cleared.

In the default 64-bit mode, the entire 64-bit result comprises the 64-bit effective address. The effective 
address arithmetic wraps around from the maximum address, 264 – 1, to address 0. 

When a 64-bit implementation executes in 32-bit mode (MSR[SF] = ’0’), the low-order 32 bits of the 64-bit 
result comprise the effective address for the purpose of addressing memory. The high-order 32 bits of the 
64-bit effective address are ignored for the purpose of accessing data, but are included whenever a 64-bit 
effective address is placed into a GPR by load with update and store with update instructions. The high-order 
32 bits of the 64-bit effective address are cleared for the purpose of fetching instructions, and whenever a 
64-bit effective address is placed into the LR by branch instructions having link register update option enabled 
(LK field, bit 31, in the instruction encoding = 1). The high-order 32 bits of the 64-bit effective address are 
cleared in SPRs when an exception error handler is invoked. In the context of addressing memory, the effec-
tive address arithmetic appears to wrap around from the maximum address, 232 – 1, to address 0.

Treating the high-order 32 bits of the effective address as zero effectively truncates the 64-bit effective 
address to a 32-bit effective address, such as would have been generated on a 32-bit implementation.
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In 64-bit implementations (including 32-bit mode in 64-bit implementations), the three low-order bits of the 
calculated effective address may be modified by the processor before accessing memory if the PowerPC 
system is operating in little-endian mode. See Section 3.1.2 Byte Ordering for more information about little-
endian mode.

Load and store operations have three categories of effective address generation that depend on the oper-
ands specified:

• Register indirect with immediate index mode

• Register indirect with index mode

• Register indirect mode

See Section 4.2.3.1 Integer Load and Store Address Generation for a detailed description of effective 
address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate addressing
• Link register indirect 
• Count register indirect

See Section 4.2.4.1 Branch Instruction Address Calculation for a detailed description of effective address 
generation for branch instructions.

Branch instructions can optionally load the link register (LR) with the next sequential instruction address 
(current instruction address + 4). This is used for subroutine call and return.

4.1.5 Synchronizing Instructions

The synchronization described in this section refers to the state of activities within the processor that is 
performing the synchronization. Refer to Section 6.1.2 Synchronization for more detailed information about 
other conditions that can cause context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Call (sc), Return from Interrupt Doubleword (rfid), and Instruction Synchronize (isync) instruc-
tions perform context synchronization by allowing previously issued instructions to complete before 
continuing with program execution. These instructions will flush the instruction prefetch queue and start 
instruction fetching from memory in the context established after all preceding instructions have completed 
execution.

1. No higher priority exception exists (sc) and dispatching is halted.

2. All previous instructions have completed to a point where they can no longer cause an exception. 

3. Previous instructions complete execution in the context (privilege, protection, and address translation) 
under which they were issued.

4. The instructions at the target of the branch of sc, rfid and those following the isync instruction execute in 
the context established by these instructions. For the isync instruction the instruction fetch queue must 
be flushed and instruction fetching restarted at the next sequential instruction. Both sc, and rfid execute 
like a branch and the flushing and refetching is automatic.

5. The operation ensures that the instructions that follow the operation will be fetched and executed in the 
context established by the operation. 
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4.1.5.2 Execution Synchronizing Instructions

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for 
context synchronization. The sync and ptesync instructions are treated like isync with respect to the second 
item described above (that is, the conditions described in the second item apply to the completion of sync 
and ptesync). The sync, ptesync, and mtmsrd instructions are examples of execution-synchronizing 
instructions.

The isync instruction is concerned mainly with the instruction stream in the processor on which it is executed, 
whereas, sync is looking outward towards the caches and memory and is concerned with data arriving at 
memory where it is visible to other processors in a multiprocessor environment. (e.g., cache block store, 
cache block flush, etc.)

All context-synchronizing instructions are execution-synchronizing. Unlike a context synchronizing operation, 
an execution synchronizing instruction need not ensure that the instructions following it execute in the context 
established by that instruction. This new context becomes effective sometime after the execution synchro-
nizing instruction completes and before or at a subsequent context synchronizing operation.

4.1.6 Exception Summary

PowerPC processors have an exception mechanism for handling system functions and error conditions in an 
orderly way. The exception model is defined by the OEA. There are two kinds of exceptions—those caused 
directly by the execution of an instruction and those caused by an asynchronous event. Either may cause 
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program exception) error han-
dler to be invoked. An attempt by a user-level program to execute the supervisor-level instructions listed 
below causes the privileged instruction (program exception) handler to be invoked. 

The PowerPC Architecture provides the following supervisor-level instructions: mfmsr, mfspr, mfsr, 
mfsrin, mtmsr, mtmsrd, mtspr, mtsr, mtsrin, rfid, slbia, slbie, slbmfee, slbmfev, slbmte, tlbia, tlbie, 
tlbiel, and tlbsync (defined by OEA). 

Note:  The privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

• The execution of a defined instruction using an invalid form causes either the illegal instruction error han-
dler or the privileged instruction handler to be invoked.

• The execution of an optional instruction that is not provided by the implementation causes the illegal 
instruction error handler to be invoked.

• An attempt to access memory in a manner that violates memory protection, or an attempt to access 
memory that is not available (page fault), causes the DSI exception handler or ISI exception handler to be 
invoked.

• An attempt to access memory with an effective address alignment that is invalid for the instruction causes 
the alignment exception handler to be invoked.

• The execution of an sc instruction permits a program to call on the system to perform a service, by caus-
ing a system call exception handler to be invoked.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are disabled invokes the float-
ing-point unavailable exception handler. 
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• The execution of an instruction that causes a floating-point exception that is enabled invokes the floating-
point enabled exception handler.

Exceptions caused by asynchronous events are described in Chapter 6, Exceptions.

4.2 PowerPC UISA Instructions

The PowerPC user instruction set architecture (UISA) includes the base user-level instruction set (excluding 
a few user-level cache-control, synchronization, and time base instructions), user-level registers, program-
ming model, data types, and addressing modes. This section discusses the instructions defined in the UISA.

4.2.1 Integer Instructions

The integer instructions consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs. Integer 
arithmetic, shift, rotate, and string move instructions may update or read values from the XER, and the condi-
tion register (CR) fields may be updated if the Rc bit of the instruction is set. 

These instructions treat the source operands as signed integers unless the instruction is explicitly identified 
as performing an unsigned operation. For example, Multiply High-Word Unsigned (mulhwu) and Divide Word 
Unsigned (divwu) instructions interpret both operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer arithmetic instruction, 
addic., set CR bits [0–3] (CR0) to characterize the result of the operation. In the default 64-bit mode, CR0 is 
set to reflect a signed comparison of the 64-bit result to zero. In 32-bit mode (of 64-bit implementations), CR0 
is set to reflect a signed comparison of the low-order 32 bits of the result to zero.

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme, 
addze, and subfze, always set the XER bit [CA], to reflect the carry out of bit [0] in the default 64-bit mode 
and out of bit [32] in 32-bit mode (of 64-bit implementations). Integer arithmetic instructions with the overflow 
enable (OE) bit set in the instruction encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to 
reflect an overflow of the result. Except for the multiply low and divide instructions, these integer arithmetic 
instructions reflect the overflow of the 64-bit result in the default 64-bit mode and overflow of the low-order 
32-bit result in 32-bit mode; however, the multiply low and divide instructions (mulld, mullw, divd, divw, 
divdu, and divwu) with o suffix cause XER[SO] and XER[OV] to reflect overflow of the 64-bit result (mulld, 
divd, and divdu) and overflow of the low-order 32-bit result (mullw, divw, and divwu).

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit [CA] might delay 
the execution of subsequent instructions.

Unless otherwise noted, when CR0 and the XER are set, they characterize the value placed in the target 
register.
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4.2.1.1 Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for the PowerPC processors. 

Table 4-1. Integer Arithmetic Instructions  

Name Mnemonic Operand Syntax Operation

Add Immediate addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into rD.

Add Immediate 
Shifted addis rD,rA,SIMM The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

Add 

add
add.
addo
addo.

rD,rA,rB 

The sum (rA) + (rB) is placed into rD.
add Add
add. Add with CR Update. The dot suffix enables the update of the 

CR.
addo Add with Overflow Enabled. The o suffix enables the overflow bit 

[OV] in the XER. 
addo. Add with Overflow and CR Update. The o. suffix enables the 

update of the CR and enables the overflow bit [OV] in the XER.

Subtract From

subf
subf.
subfo
subfo.

rD,rA,rB 

The sum ¬ (rA) + (rB) +1 is placed into rD.
subf Subtract From
subf. Subtract from with CR Update. The dot suffix enables the update 

of the CR.
subfo Subtract from with Overflow Enabled. The o suffix enables the 

overflow bit [OV] in the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix 

enables the update of the CR and enables the overflow bit [OV] in 
the XER.

Add Immediate 
Carrying

addic
addic.

rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The dot suffix enables the update 
of the CR. XER bit [CA] is altered.

Subtract from 
Immediate 
Carrying

subfic rD,rA,SIMM The sum ¬ (rA) + SIMM + 1 is placed into rD. XER bit [CA] is altered.

Add Carrying 

addc
addc.
addco
addco.

rD,rA,rB

The sum (rA) + (rB) is placed into rD. XER bit [CA] is altered.
addc Add Carrying
addc. Add Carrying with CR Update. The dot suffix enables the update 

of the CR.
addco Add Carrying with Overflow Enabled. The o suffix enables the 

overflow bit [OV] in the XER. 
addco. Add Carrying with Overflow and CR Update. The o. suffix 

enables the update of the CR and enables the overflow bit [OV] in 
the XER.

Subtract from 
Carrying 

subfc
subfc.
subfco
subfco.

rD,rA,rB

The sum ¬ (rA) + (rB) + 1 is placed into rD. XER bit [CA] is altered.
subfc Subtract from Carrying
subfc. Subtract from Carrying with CR Update. The dot suffix enables 

the update of the CR.
subfco Subtract from Carrying with Overflow. The o suffix enables the 

overflow bit [OV] in the XER. 
subfco. Subtract from Carrying with Overflow and CR Update.  The o. 

suffix enables the update of the CR and enables the overflow bit 
[OV] in the XER.
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Add 
Extended 

adde
adde.
addeo
addeo.

rD,rA,rB

The sum (rA) + (rB) + XER[CA] is placed into rD. XER bit [CA] is altered.
adde Add Extended
adde. Add Extended with CR Update. The dot suffix enables the update 

of the CR. 
addeo Add Extended with Overflow. The o suffix enables the overflow 

bit [OV] in the XER. 
addeo. Add Extended with Overflow and CR Update.  The o. suffix 

enables the update of the CR and enables the overflow bit [OV] in 
the XER.

Subtract from 
Extended 

subfe
subfe.
subfeo
subfeo.

rD,rA,rB

The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.
subfe Subtract from Extended
subfe. Subtract from Extended with CR Update. The dot suffix enables 

the update of the CR.
subfeo Subtract from Extended with Overflow. The o suffix enables the 

overflow bit [OV] in the XER. 
subfeo. Subtract from Extended with Overflow and CR Update. The o. 

suffix enables the update of the CR and enables the overflow 
[OV] bit in the XER.

Add to Minus One 
Extended 

addme
addme.
addmeo
addmeo.

rD,rA

The sum (rA) + XER[CA] added to 0xFFFF_FFFF_FFFF_FFFF is placed 
into rD. XER bit [CA] is altered.
addme Add to Minus One Extended
addme. Add to Minus One Extended with CR Update. The dot suffix 

enables the update of the CR.
addmeoAdd to Minus One Extended with Overflow. The o suffix enables 

the overflow bit [OV] in the XER. 
addmeo.Add to Minus One Extended with Overflow and CR Update. The 

o. suffix enables the update of the CR and enables the overflow 
[OV] bit in the XER.

Subtract from 
Minus One 
Extended

subfme
subfme.
subfmeo
subfmeo. 

rD,rA

The sum ¬ (rA) + XER[CA] added to 0xFFFF_FFFF_FFFF_FFFF is 
placed into rD. XER bit [CA] is altered.
subfme Subtract from Minus One Extended
subfme.Subtract from Minus One Extended with CR Update. The dot suf-

fix enables the update of the CR.
subfmeoSubtract from Minus One Extended with Overflow. The o suffix 

enables the overflow bit [OV] in the XER. 
subfmeo.Subtract from Minus One Extended with Overflow and CR 

Update. The o. suffix enables the update of the CR and enables 
the overflow bit [OV] in the XER.

Add to Zero 
Extended 

addze
addze.
addzeo
addzeo.

rD,rA

The sum (rA) + XER[CA] is placed into rD. XER bit [CA] is altered.
addze Add to Zero Extended
addze. Add to Zero Extended with CR Update. The dot suffix enables the 

update of the CR.
addzeo Add to Zero Extended with Overflow. The o suffix enables the 

overflow bit [OV] in the XER. 
addzeo.Add to Zero Extended with Overflow and CR Update. The o. suf-

fix enables the update of the CR and enables the overflow bit 
[OV] in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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Subtract from Zero 
Extended 

subfze
subfze.
subfzeo
subfzeo. 

rD,rA

The sum ¬ (rA) + XER[CA] is placed into rD.
subfze Subtract from Zero Extended
subfze. Subtract from Zero Extended with CR Update.  The dot suffix 

enables the update of the CR.
subfzeoSubtract from Zero Extended with Overflow. The o suffix enables 

the overflow bit [OV] in the XER. 
subfzeo.Subtract from Zero Extended with Overflow and CR Update. The 

o. suffix enables the update of the CR and enables the overflow 
bit [OV] in the XER.

Negate 

neg
neg.
nego
nego. 

rD,rA

The sum ¬ (rA) + 1 is placed into rD.
neg Negate
neg. Negate with CR Update. The dot suffix enables the update of the 

CR.
nego Negate with Overflow. The o suffix enables the overflow bit [OV] 

in the XER. 
nego. Negate with Overflow and CR Update. The o. suffix enables the 

update of the CR and enables the overflow bit [OV] in the XER.

Multiply Low 
Immediate mulli rD,rA,SIMM 

The low-order bits of the 128-bit product (rA) x SIMM are placed into rD.
This instruction can be used with mulhdx or mulhwx to calculate a full 
128-bit (or 64-bit) product.
The low-order 32 bits of the product are the correct 32-bit product for 32-
bit mode in 64-bit implementations.

Multiply Low 

mullw
mullw.
mullwo
mullwo.

rD,rA,rB 

The -bit product (rA) x (rB) is placed into register rD. The 32-bit operands 
are the contents of the low-order 32 bits of rA and of rB.
This instruction can be used with mulhwx to calculate a full 64-bit product. 
The low-order 32 bits of the product are the correct 32-bit product for 32-
bit mode in 64-bit implementations. 
mullw Multiply Low 
mullw. Multiply Low with CR Update. The dot suffix enables the update 

of the CR.
mullwo Multiply Low with Overflow. The o suffix enables the overflow bit 

(OV) in the XER.
mullwo.Multiply Low with Overflow and CR Update. The o. suffix enables 

the update of the condition register and enables the overflow bit 
(OV) in the XER.

Multiply Low 
Doubleword

mulld
mulld.
mulldo
mulldo.

rD,rA,rB

The low-order 64 bits of the 128-bit product (rA) x (rB) are placed into rD. 
mulld Multiply Low Doubleword
mulld. Multiply Low Doubleword with CR Update. The dot suffix enables 

the update of the CR.
mulldo Multiply Low Doubleword with Overflow. The o suffix enables the 

overflow bit [OV] in the XER.
mulldo. Multiply Low Doubleword with Overflow and CR Update. The o. 

suffix enables the update of the CR and enables the overflow bit 
[OV] in the XER.

Multiply High Word 
mulhw
mulhw.

rD,rA,rB

The contents of rA and rB are interpreted as 32-bit signed integers. The 
64-bit product is formed. The high-order 32 bits of the 64-bit product are 
placed into the low-order 32 bits of rD. The value in the high-order 32 bits 
of rD is undefined.
mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables the 

update of the CR.

Table 4-1. Integer Arithmetic Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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Multiply High 
Doubleword

mulhd
mulhd.

rD,rA,rB

The high-order 64 bits of the 128-bit product (rA) x (rB) are placed into 
register rD. Both operands and the product are interpreted as signed inte-
gers.
mulld Multiply High Doubleword
mulld. Multiply High Doubleword with CR Update. The dot suffix enables 

the update of the CR.

Multiply High Word 
Unsigned 

mulhwu
mulhwu.

rD,rA,rB

The contents of rA and of rB are interpreted as 32-bit unsigned integers. 
The 64-bit product is formed. The high-order 32 bits of the 64-bit product 
are placed into the low-order 32 bits of rD. The value in the high-order 32 
bits of rD is undefined.
mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix 

enables the update of the CR.

Multiply High 
Doubleword 
Unsigned

mulhdu
mulhdu.

rD,rA,rB

The high-order 64 bits of the 128-bit product (rA) × (rB) are placed into 
register rD. 
mulhdu Multiply High Word Unsigned
mulhdu. Multiply High Word Unsigned with CR Update. The dot suffix 

enables the update of the CR.

Divide Word 

divw
divw.
divwo
divwo.

rD,rA,rB

The 64-bit dividend is the signed value of the low-order 32 bits of rA. The 
64-bit divisor is the signed value of the low-order 32 bits of rB. The low-
order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of 
rD. The contents of the high-order 32 bits of rD are undefined. The 
remainder is not supplied as a result.
divw Divide Word
divw. Divide Word with CR Update. The dot suffix enables the update 

of the CR.
divwo Divide Word with Overflow. The o suffix enables the overflow bit 

[OV] in the XER.
divwo. Divide Word with Overflow and CR Update. The o. suffix enables 

the update of the CR and enables the overflow bit [OV] in the 
XER.

Table 4-1. Integer Arithmetic Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an addi instruction 
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The subf 
instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are provided 
in which the third operand is subtracted from the second operand. See Appendix E Simplified Mnemonics for 
examples.

4.2.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register rA with either the 
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents of 
register rB. The comparison is signed for the cmpi and cmp instructions, and unsigned for the cmpli and 
cmpl instructions. Table 4-2 summarizes the integer compare instructions.

The PowerPC UISA specifies that the value in the L field determines whether the operands are treated as 32 
or 64-bit values. If the L field is ‘0’ the operand length is 32 bits, and if it is ‘1’ the operand length is 64 bits. 
The simplified mnemonics for integer compare instructions, as shown in Appendix E Simplified Mnemonics 
correctly set or clear the ‘L’ value in the instruction encoding rather than requiring it to be coded as a numeric 
operand. When operands are treated as 32-bit signed quantities, bit [32] of (rA) and (rB) is the sign bit. 

Divide Doubleword

divd
divd.
divdo
divdo.

rD,rA,rB

The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is 
placed into rD. The remainder is not supplied as a result.
divd Divide Doubleword 
divd. Divide Doubleword with CR Update. The dot suffix enables the 

update of the CR.
divdo Divide Doubleword with Overflow. The o suffix enables the over-

flow bit [OV] in the XER.
divdo. Divide Doubleword with Overflow and CR Update. The o. suffix 

enables the update of the CR and enables the overflow bit [OV] in 
the XER.

Divide Word 
Unsigned 

divwu
divwu.
divwuo
divwuo.

rD,rA,rB 

The 64-bit dividend is the zero-extended value in the low-order 32 bits of 
rA. The 64-bit divisor is the zero-extended value in the low-order 32 bits of 
rB. The low-order 32 bits of the 64-bit quotient are placed into the low-
order 32 bits of rD. The contents of the high-order 32 bits of rD are unde-
fined. The remainder is not supplied as a result.
divwu Divide Word Unsigned
divwu. Divide Word Unsigned with CR Update. The dot suffix enables 

the update of the CR.
divwuo Divide Word Unsigned with Overflow. The o suffix enables the 

overflow bit [OV] in the XER.
divwuo.Divide Word Unsigned with Overflow and CR Update. The o. suf-

fix enables the update of the CR and enables the overflow bit 
[OV] in the XER.

Divide Double-
word Unsigned

divdu
divdu.
divduo
divduo.

rD,rA,rB

The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is 
placed into rD. The remainder is not supplied as a result.
divdu Divide Word Unsigned
divdu. Divide Word Unsigned with CR Update. The dot suffix enables 

the update of the CR.
divduo Divide Word Unsigned with Overflow. The o suffix enables the 

overflow bit [OV] in the XER.
divduo. Divide Word Unsigned with Overflow and CR Update. The o. suf-

fix enables the update of the CR and enables the overflow bit 
[OV] in the XER.

Table 4-1. Integer Arithmetic Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of the designated CR 
field, and clear the other two. XER[SO] is copied into bit [3] of the CR field. 

The crfD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise the target 
CR field must be specified in the instruction crfD field, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix E Simplified 
Mnemonics. 

4.2.1.3 Integer Logical Instructions

The logical instructions shown in Table 4-3 perform bit-parallel operations on -bit operands. Logical instruc-
tions with the CR updating enabled (uses dot suffix) and instructions andi. and andis. set CR field CR0 
(bits [0 to 2]) to characterize the result of the logical operation. In the default 64-bit mode, these fields are set 
as if the 64-bit result were compared algebraically to zero. In 32-bit mode of a 64-bit implementation, these 
fields are set as if the sign-extended low-order 32 bits of the result were algebraically compared to zero. 
Logical instructions without CR update and the remaining logical instructions do not modify the CR. Logical 
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix E Simplified Mnemonics for simplified mnemonic examples for integer logical operations. 

Table 4-2. Integer Compare Instructions  

Name Mnemonic Operand Syntax Operation

Compare 
Immediate cmpi crfD,L,rA,SIMM

The value in register rA (rA[32–63] sign-extended to 64 bits if L = ‘0’) is 
compared with the sign-extended value of the SIMM operand, treating the 
operands as signed integers. The result of the comparison is placed into 
the CR field specified by operand crfD.

Compare cmp crfD,L,rA,rB

The value in register rA (rA[32–63] if L = ’0’) is compared with the value in 
register rB (rB[32–63] if L = ’0’), treating the operands as signed integers. 
The result of the comparison is placed into the CR field specified by oper-
and crfD.

Compare Logical 
Immediate cmpli crfD,L,rA,UIMM

The value in register rA (rA[32–63] zero-extended to 64 bits if L = ‘0’) is 
compared with 0x0000_0000_0000 || UIMM, treating the operands as 
unsigned integers. The result of the comparison is placed into the CR field 
specified by operand crfD.

Compare Logical cmpl crfD,L,rA,rB

The value in register rA (rA[32–63] if L = ’0’) is compared with the value in 
register rB (rB[32–63] if L = ’0’), treating the operands as unsigned inte-
gers. The result of the comparison is placed into the CR field specified by 
operand crfD.

Table 4-3. Integer Logical Instructions  

Name Mnemonic Operand Syntax Operation

AND Immediate andi. rA,rS,UIMM
The contents of rS are ANDed with 0x0000_0000_0000 || UIMM and the 
result is placed into rA.
The CR is updated. 

AND Immediate 
Shifted andis. rA,rS,UIMM

The content of rS are ANDed with 0x0000_0000 || UIMM || 0x0000 and 
the result is placed into rA.
The CR is updated. 

OR Immediate ori rA,rS,UIMM
The contents of rS are ORed with 0x0000_0000_0000 || UIMM and the 
result is placed into rA.
The preferred no-op is ori 0,0,0
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OR Immediate 
Shifted oris rA,rS,UIMM The contents of rS are ORed with 0x0000_0000 || UIMM || 0x0000 and 

the result is placed into rA.

XOR Immediate xori rA,rS,UIMM The contents of rS are XORed with 0x0000_0000_0000 || UIMM and the 
result is placed into rA.

XOR Immediate 
Shifted xoris rA,rS,UIMM The contents of rS are XORed with 0x0000_0000 || UIMM || 0x0000 and 

the result is placed into rA.

AND 
and
and.

rA,rS,rB

The contents of rS are ANDed with the contents of register rB and the 
result is placed into rA.
and AND
and. AND with CR Update. The dot suffix enables the update of the 

CR.

OR 
or
or.

rA,rS,rB

The contents of rS are ORed with the contents of rB and the result is 
placed into rA.
or OR
or. OR with CR Update. The dot suffix enables the update of the CR.

XOR 
xor
xor.

rA,rS,rB

The contents of rS are XORed with the contents of rB and the result is 
placed into rA.
xor XOR
xor. XOR with CR Update. The dot suffix enables the update of the 

CR.

NAND 
nand
nand.

rA,rS,rB

The contents of rS are ANDed with the contents of rB and the one’s com-
plement of the result is placed into rA.
nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.
Note:  nandx, with rS = rB, can be used to obtain the one's complement.

NOR
nor
nor.

rA,rS,rB

The contents of rS are ORed with the contents of rB and the one’s com-
plement of the result is placed into rA.
nor NOR
nor. NOR with CR Update. The dot suffix enables the update of the 

CR.
Note:  norx, with rS = rB, can be used to obtain the one's complement.

Equivalent
eqv
eqv.

rA,rS,rB

The contents of rS are XORed with the contents of rB and the comple-
mented result is placed into rA.
eqv Equivalent
eqv. Equivalent with CR Update. The dot suffix enables the update of 

the CR.

AND with 
Complement

andc
andc.

rA,rS,rB

The contents of rS are ANDed with the one’s complement of the contents 
of rB and the result is placed into rA.
andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables 

the update of the CR.

OR with 
Complement

orc 
orc.

rA,rS,rB

The contents of rS are ORed with the complement of the contents of rB 
and the result is placed into rA.
orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix enables the 

update of the CR.

Extend Sign Byte
extsb
extsb.

rA,rS

The contents of the low-order eight bits of rS are placed into the low-order 
eight bits of rA. Bit [56] of rS is placed into the remaining high-order bits of 
rA.
extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the 

update of the CR.

Table 4-3. Integer Logical Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned to 
a GPR. The rotation operations rotate a 64-bit quantity left by a specified number of bit positions. Bits that exit 
from position 0 enter at position . 

Two types of rotation operation are supported:

1. ROTL64 or rotate64 – the value rotated is the given 64-bit value. The rotate64 operation is used to rotate 
a given 64-bit quantity.

2. ROTL32 or rotate32 – the value rotated consists of two copies of bits [32-63] of the given 64-bit value, 
one copy in bits [0-31] and the other in bits [32-63]. The rotate32 operation is used to rotate a given 32-bit 
quantity.

The rotate and shift instructions employ a mask generator. The mask is 64 bits long and consists of ‘1’ bits 
from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’ bits elsewhere. The values of Mstart 
and Mstop range from 0 to . If Mstart > Mstop, the ‘1’ bits wrap around from position to position 0. Thus the 
mask is formed as follows:

if Mstart ≤ Mstop then
mask[mstart–mstop] = ones
mask[all other bits] = zeros

else
mask[mstart–] = ones
mask[0–mstop] = ones
mask[all other bits] = zeros

Extend Sign 
Halfword

extsh
extsh.

rA,rS

The contents of the low-order 16 bits of rS are placed into the low-order 
16 bits of rA. Bit [48] of rS is placed into the remaining high-order bits of 
rA.
extsh Extend Sign Half-word
extsh. Extend Sign Half-word with CR Update. The dot suffix enables 

the update of the CR.

Extend Sign Word
extsw
extsw.

rA,rS

The contents of the low-order 32 bits of rS are placed into the low-order 
32 bits of rA. Bit [32] of rS is placed into the remaining high-order bits of 
rA.
extsw Extend Sign Word
extsw. Extend Sign Word with CR Update. The dot suffix enables the 

update of the CR.

Count Leading 
Zeros Word

cntlzw
cntlzw.

rA,rS

A count of the number of consecutive zero bits starting at bit [32] of rS is 
placed into rA. This number ranges from 0 to 32, inclusive. 
If Rc = ’1’ (dot suffix), LT is cleared in CR0.
cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix 

enables the update of the CR.

Count Leading 
Zeros Doubleword

cntlzd
cntlzd.

rA,rS

A count of the number of consecutive zero bits starting at bit [0] of rS is 
placed into rA. This number ranges from 0 to 64, inclusive. 
If Rc = ’1’ (dot suffix), LT is cleared in CR0.
cntlzd Count Leading Zeros Doubleword
cntlzd. Count Leading Zeros Doubleword with CR Update. The dot suffix 

enables the update of the CR.

Table 4-3. Integer Logical Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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It is not possible to specify an all-zero mask. The use of the mask is described in the following sections.

If CR updating is enabled, rotate and shift instructions set CR0[0–2] according to the contents of rA at the 
completion of the instruction. Rotate and shift instructions do not change the values of XER[OV] and 
XER[SO] bits. Rotate and shift instructions, except algebraic right shifts, do not change the XER[CA] bit.

See Appendix E Simplified Mnemonics for a complete list of simplified mnemonics that allows simpler coding 
of often-used functions such as clearing the leftmost or rightmost bits of a register, left justifying or right justi-
fying an arbitrary field, and simple rotates and shifts. 

Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into the 
target register under control of a mask (if a mask bit is ‘1’ the associated bit of the rotated data is placed into 
the target register, and if the mask bit is 0 the associated bit in the target register is unchanged), or ANDed 
with a mask before being placed into the target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by a left-rotation of 
64 - n, where n is the number of bits by which to rotate right. It also allows right-rotation of the contents of the 
low-order 32 bits of a register to be performed by a left-rotation of 32 - n, where n is the number of bits by 
which to rotate right.

The integer rotate instructions are summarized in Table 4-4 

Table 4-4. Integer Rotate Instructions  

Name Mnemonic Operand Syntax Operation

Rotate Left 
Doubleword 
Immediate then 
Clear Left 

rldicl
rldicl.

rA,rS,SH,MB

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB through bit [63] and 0 bits elsewhere. The rotated data is ANDed 
with the generated mask and the result is placed into register rA.
rldicl Rotate Left Doubleword Immediate then Clear Left
rldicl. Rotate Left Doubleword Immediate then Clear Left with CR 

Update. The dot suffix enables the update of the CR.

Rotate Left 
Doubleword 
Immediate then 
Clear Right

rldicr
rldicr.

rA,rS,SH,ME

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from bit [0] through the bit 
specified by operand ME and 0 bits elsewhere. The rotated data is ANDed 
with the generated mask and the result is placed into register rA.
rldicr Rotate Left Doubleword Immediate then Clear Right
rldicl. Rotate Left Doubleword Immediate then Clear Right with CR 

Update. The dot suffix enables the update of the CR.

Rotate Left 
Doubleword 
Immediate then 
Clear

rldic
rldic.

rA,rS,SH,MB

The contents of register rS are rotated left by the number of bits specified 
by operand SH. A mask is generated having ’1’ bits from the bit specified 
by operand MB through bit [63 – SH], and 0 bits elsewhere. The rotated 
data is ANDed with the generated mask and the result is placed into regis-
ter rA.
rldic Rotate Left Doubleword Immediate then Clear 
rldic. Rotate Left Doubleword Immediate then Clear with CR Update. 

The dot suffix enables the update of the CR.
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Rotate Left Word 
Immediate then 
AND with Mask

rlwinm
rlwinm.

rA,rS,SH,MB,ME

The contents of register rS are rotated left by the number of bits specified 
by operand SH. A mask is generated having ’1’ bits from the bit specified 
by operand MB + 32 through the bit specified by operand ME + 32 and 0 
bits elsewhere. The rotated data is ANDed with the generated mask and 
the result is placed into register rA.
rlwinm Rotate Left Word Immediate then AND with Mask
rlwinm. Rotate Left Word Immediate then AND with Mask with CR 

Update. The dot suffix enables the update of the CR.

Rotate Left 
Doubleword then 
Clear Left

rldcl
rldcl.

rA,rS,rB,MB

The contents of register rS are rotated left by the number of bits specified 
by operand in the low-order six bits of rB. A mask is generated having ’1’ 
bits from the bit specified by operand MB through bit [63] and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result 
is placed into register rA.
rldcl Rotate Left Doubleword then Clear Left
rldcl. Rotate Left Doubleword then Clear Left with CR Update. The dot 

suffix enables the update of the CR.

Rotate Left 
Doubleword then 
Clear Right

rldcr
rldcr.

rA,rS,rB,ME

The contents of register rS are rotated left by the number of bits specified 
by operand in the low-order six bits of rB. A mask is generated having ’1’ 
bits from bit [0] through the bit specified by operand ME and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result 
is placed into register rA.
rldcr Rotate Left Doubleword then Clear Right
rldcr. Rotate Left Doubleword then Clear Right with CR Update. The 

dot suffix enables the update of the CR.

Rotate Left Word 
then AND with 
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME

The contents of rS are rotated left by the number of bits specified by oper-
and in the low-order five bits of rB. A mask is generated having ’1’ bits 
from the bit specified by operand MB + 32 through the bit specified by 
operand ME + 32 and 0 bits elsewhere. The rotated word is ANDed with 
the generated mask and the result is placed into rA.
rlwnm Rotate Left Word then AND with Mask
rlwnm. Rotate Left Word then AND with Mask with CR Update. The dot 
suffix enables the update of the CR.

Rotate Left Word 
Immediate then 
Mask Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB + 32 through the bit specified by operand ME + 32 and 0 bits 
elsewhere. The rotated word is inserted into rA under control of the gener-
ated mask.
rlwimi Rotate Left Word Immediate then Mask
rlwimi. Rotate Left Word Immediate then Mask Insert with CR Update. 
The dot suffix enables the update of the CR.

Rotate Left 
Doubleword 
Immediate then 
Mask Insert

rldimi
rldimi.

rA,rS,SH,MB

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having ’1’ bits from the bit specified by oper-
and MB through [63 – SH] (the bit specified by SH), and 0 bits elsewhere. 
The rotated data is inserted into rA under control of the generated mask.
rldimi Rotate Left Word Immediate then Mask
rldimi. Rotate Left Word Immediate then Mask Insert with CR Update. 
The dot suffix enables the update of the CR.

Table 4-4. Integer Rotate Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift operations 
are obtained by specifying masks and shift values for certain rotate instructions. Simplified mnemonics 
(shown in Appendix E Simplified Mnemonics) are provided to make coding of such shifts simpler and easier 
to understand. 

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by 2n. The setting of 
XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix B Multiple-Precision Shifts.

The integer shift instructions are summarized in Table 4-5. 

Table 4-5. Integer Shift Instructions   

Name Mnemonic Operand Syntax Operation

Shift Left 
Doubleword

sld
sld.

rA,rS,rB

The contents of rS are shifted left the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 0 are lost. Zeros are sup-
plied to the vacated positions on the right. The result is placed into rA. 
Shift amounts from 64 to 127 give a zero result.
sld Shift Left Doubleword 
sld. Shift Left Doubleword with CR Update. The dot suffix enables the 

update of the CR.

Shift Left Word
slw
slw.

rA,rS,rB

The contents of the low-order 32 bits of rS are shifted left the number of 
bits specified by operand in the low-order six bits of rB. Bits shifted out of 
position 32 are lost. Zeros are supplied to the vacated positions on the 
right. The 32-bit result is placed into the low-order 32 bits of rA. The value 
in the high-order 32 bits of rA is cleared, and shift amounts from 32 to 63 
give a zero result.
slw Shift Left Word 
slw. Shift Left Word with CR Update. The dot suffix enables the 

update of the CR.

Shift Right 
Doubleword

srd
srd.

rA,rS,rB

The contents of rS are shifted right the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 63 are lost. Zeros are 
supplied to the vacated positions on the left. The result is placed into rA. 
Shift amounts from 64 to 127 give a zero result.
srd Shift Right Doubleword 
srd. Shift Right Doubleword with CR Update. The dot suffix enables 

the update of the CR.

Shift Right Word 
srw
srw.

rA,rS,rB

The contents of the low-order 32 bits of rS are shifted right the number of 
bits specified by the low-order six bits of rB. Bits shifted out of position 63 
are lost. Zeros are supplied to the vacated positions on the left. The 32-bit 
result is placed into the low-order 32 bits of rA. The value in the high-order 
32 bits of rA is cleared to zero, and shift amounts from 32 to 63 give a zero 
result.
srw Shift Right Word 
srw. Shift Right Word with CR Update. The dot suffix enables the 

update of the CR.

Shift Right 
Algebraic 
Doubleword 
Immediate

sradi
sradi.

rA,rS,SH

The contents of rS are shifted right the number of bits specified by oper-
and SH. Bits shifted out of position 63 are lost. Bit [0] of rS is replicated to 
fill the vacated positions on the left. The result is placed into rA. XER[CA] 
is set if rS contains a negative number and any ’1’ bits are shifted out of 
position 63; otherwise XER[CA] is cleared. An operand SH of zero causes 
rA to be loaded with the contents of rS and XER[CA] to be cleared to zero.
sradi Shift Right Algebraic Doubleword Immediate
sradi. Shift Right Algebraic Doubleword Immediate with CR Update. 

The dot suffix enables the update of the CR.
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4.2.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions

• Floating-point multiply-add instructions

• Floating-point rounding and conversion instructions

• Floating-point compare instructions

• Floating-point status and control register instructions

• Floating-point move instructions

Note:  MSR[FP] must be set in order for any of these instructions (including the floating-point loads and 
stores) to be executed. If MSR[FP] = ’0’ when any floating-point instruction is attempted, the floating-point 
unavailable exception is taken (see Section 6.4.10 Floating-Point Unavailable Exception (0x00800)). See 
Section 4.2.3 Load and Store Instructions for information about floating-point loads and stores.

The PowerPC Architecture supports a floating-point system as defined in the IEEE-754 standard, but requires 
software support to conform with that standard. Floating-point operations conform to the IEEE-754 standard, 
with the exception of operations performed with the fmadd, fres, fsel, and frsqrte instructions, or if software 
sets the non-IEEE mode bit [NI] in the FPSCR. Refer to Section 3.3 Floating-Point Execution Models—UISA, 
for detailed information about the floating-point formats and exception conditions. Also, refer to 
Appendix C Floating-Point Models for more information on the floating-point execution models used by the 
PowerPC Architecture.

Shift Right 
Algebraic Word 
Immediate

srawi
srawi.

rA,rS,SH

The contents of the low-order 32 bits of rS are shifted right the number of 
bits specified by operand SH. Bits shifted out of position 63 are lost. Bit 
[32] of rS is replicated to fill the vacated positions on the left. The 32-bit 
result is sign extended and placed into the low-order 32 bits of rA. 
srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot 

suffix enables the update of the CR.

Shift Right 
Algebraic 
Doubleword

srad
srad.

rA,rS,rB

The contents of rS are shifted right the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 63 are lost. Bit [0] of rS is 
replicated to fill the vacated positions on the left. The result is placed into 
rA. 
srad Shift Right Algebraic Doubleword 
srad. Shift Right Algebraic Doubleword with CR Update. The dot suffix 

enables the update of the CR.

Shift Right 
Algebraic Word 

sraw
sraw.

rA,rS,rB

The contents of the low-order 32 bits of rS are shifted right the number of 
bits specified by the low-order six bits of rB. Bits shifted out of position 63 
are lost. Bit [32] of rS is replicated to fill the vacated positions on the left. 
The 32-bit result is placed into the low-order 32 bits of rA. 
sraw Shift Right Algebraic Word 
sraw. Shift Right Algebraic Word with CR Update. The dot suffix 

enables the update of the CR.

Table 4-5. Integer Shift Instructions (Continued)  

Name Mnemonic Operand Syntax Operation
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4.2.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-6. 

Table 4-6. Floating-Point Arithmetic Instructions  

Name Mnemonic Operand Syntax Operation

Floating Add
(Double- 
Precision)

fadd
fadd.

frD,frA,frB

The floating-point operand in register frA is added to the floating-point 
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN 
of the FPSCR and placed into register frD.
fadd Floating Add (Double-Precision)
fadd. Floating Add (Double-Precision) with CR Update. The dot suffix 

enables the update of the CR.

Floating Add 
Single

fadds
fadds.

frD,frA,frB

The floating-point operand in register frA is added to the floating-point 
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN 
of the FPSCR and placed into register frD.
fadds Floating Add Single 
fadds. Floating Add Single with CR Update. The dot suffix enables the 

update of the CR.

Floating Subtract 
(Double- 
Precision)

fsub
fsub.

frD,frA,frB

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN 
of the FPSCR and placed into register frD.
fsub Floating Subtract (Double-Precision)
fsub. Floating Subtract (Double-Precision) with CR Update. The dot 

suffix enables the update of the CR.

Floating Subtract 
Single

fsubs
fsubs.

frD,frA,frB

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN 
of the FPSCR and placed into frD.
fsubs Floating Subtract Single 
fsubs. Floating Subtract Single with CR Update. The dot suffix enables 

the update of the CR.

Floating Multiply 
(Double-Precision)

fmul
fmul.

frD,frA,frC

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC.
fmul Floating Multiply (Double-Precision)
fmul. Floating Multiply (Double-Precision) with CR Update. The dot suf-

fix enables the update of the CR.

Floating Multiply 
Single

fmuls
fmuls.

frD,frA,frC

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC.
fmuls Floating Multiply Single 
fmuls. Floating Multiply Single with CR Update. The dot suffix enables 

the update of the CR.

Floating Divide
(Double-Precision)

fdiv
fdiv.

frD,frA,frB

The floating-point operand in register frA is divided by the floating-point 
operand in register frB. No remainder is preserved.
fdiv Floating Divide (Double-Precision)
fdiv. Floating Divide (Double-Precision) with CR Update. The dot suf-

fix enables the update of the CR.
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Floating Divide 
Single

fdivs
fdivs.

frD,frA,frB

The floating-point operand in register frA is divided by the floating-point 
operand in register frB. No remainder is preserved.
fdivs Floating Divide Single
fdivs. Floating Divide Single with CR Update. The dot suffix enables the 

update of the CR.

Floating Square 
Root 
(Double-Precision)

fsqrt
fsqrt.

frD,frB

The square root of the floating-point operand in register frB is placed into 
register frD.
fsqrt Floating Square Root (Double-Precision)
fsqrt. Floating Square Root (Double-Precision) with CR Update. The 

dot suffix enables the update of the CR.
Note:  This instruction is optional.

Floating Square 
Root Single

fsqrts
fsqrts.

frD,frB

The square root of the floating-point operand in register frB is placed into 
register frD.
fsqrts Floating Square Root Single
fsqrts. Floating Square Root Single with CR Update. The dot suffix 

enables the update of the CR.
Note:  This instruction is optional.

Floating Recipro-
cal Estimate Single

fres
fres.

frD,frB

A single-precision estimate of the reciprocal of the floating-point operand 
in register frB is placed into frD. The estimate placed into frD is correct to 
a precision of one part in 256 of the reciprocal of frB.
fres Floating Reciprocal Estimate Single
fres. Floating Reciprocal Estimate Single with CR Update. The dot suf-

fix enables the update of the CR.
Note:  This instruction is optional.

Floating Recipro-
cal Square Root 
Estimate

frsqrte
frsqrte.

frD,frB

A double-precision estimate of the reciprocal of the square root of the 
floating-point operand in register frB is placed into frD. The estimate 
placed into frD is correct to a precision of one part in 32 of the reciprocal 
of the square root of frB. 
frsqrte Floating Reciprocal Square Root Estimate
frsqrte. Floating Reciprocal Square Root estimate with CR Update. The 

dot suffix enables the update of the CR.
Note:  This instruction is optional.

Floating Select fsel frD,frA,frC,frB

The floating-point operand in frA is compared to the value zero. If the 
operand is greater than or equal to zero, frD is set to the contents of frC. If 
the operand is less than zero or is a NaN, frD is set to the contents of frB. 
The comparison ignores the sign of zero (that is, regards ‘+0’ as equal 
to ‘-0’).
fsel Floating Select
fsel. Floating Select with CR Update. The dot suffix enables the 

update of the CR.
Note:  This instruction is optional.

Table 4-6. Floating-Point Arithmetic Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The 
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract 
portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the [FR] and [FI] bits, and the FPRF field are set based 
on the final result of the operation, and not on the result of the multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were performed using two 
separate instructions (fmuls, followed by fadds or fsubs). That is, multiplication of infinity by zero or of 
anything by an SNaN, and/or addition of an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7. 

Table 4-7. Floating-Point Multiply-Add Instructions  

Name Mnemonic Operand Syntax Operation

Floating Multiply- 
Add 
(Double-Precision)

fmadd
fmadd.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is added 
to this intermediate result.
fmadd Floating Multiply-Add (Double-Precision)
fmadd. Floating Multiply-Add (Double-Precision) with CR Update. The 

dot suffix enables the update of the CR.

Floating Multiply- 
Add Single 

fmadds
fmadds.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is added 
to this intermediate result.
fmadds Floating Multiply-Add Single 
fmadds.Floating Multiply-Add Single with CR Update. The dot suffix 

enables the update of the CR.

Floating Multiply- 
Subtract 
(Double-Precision)

fmsub
fmsub.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fmsub Floating Multiply-Subtract (Double-Precision)
fmsub. Floating Multiply-Subtract (Double-Precision) with CR Update. 

The dot suffix enables the update of the CR.

Floating Multiply- 
Subtract Single

fmsubs
fmsubs.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fmsubs Floating Multiply-Subtract Single
fmsubs.Floating Multiply-Subtract Single with CR Update. The dot suffix 

enables the update of the CR.

Floating Negative 
Multiply- Add 
(Double-Precision)

fnmadd
fnmadd.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is added 
to this intermediate result.
fnmadd Floating Negative Multiply-Add (Double-Precision)
fnmadd.Floating Negative Multiply-Add (Double-Precision) with CR 

Update. The dot suffix enables update of the CR.
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For more information on multiply-add instructions, refer to Appendix C.2 Execution Model for Multiply-Add 
Type Instructions.

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision number 
to a 32-bit single-precision floating-point number. The floating-point convert instructions convert a 64-bit 
double-precision floating-point number to a 32-bit signed integer number.

The PowerPC Architecture defines bits [0–31] of floating-point register frD as undefined when executing the 
Floating Convert to Integer Word (fctiw) and Floating Convert to Integer Word with Round toward Zero 
(fctiwz) instructions. The floating-point rounding instructions are shown in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in Appendix C Floating-
Point Models.

Floating Negative 
Multiply- Add 
Single 

fnmadds
fnmadds.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is added 
to this intermediate result.
fnmaddsFloating Negative Multiply-Add Single 
fnmadds.Floating Negative Multiply-Add Single with CR Update. The dot 

suffix enables the update of the CR.

Floating Negative 
Multiply- Subtract 
(Double-Precision)

fnmsub
fnmsub.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fnmsub Floating Negative Multiply-Subtract (Double-Precision)
fnmsub.Floating Negative Multiply-Subtract (Double-Precision) with CR 

Update. The dot suffix enables the update of the CR.

Floating Negative 
Multiply- Subtract 
Single

fnmsubs
fnmsubs.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the floating-point 
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.
fnmsubsFloating Negative Multiply-Subtract Single
fnmsubs.Floating Negative Multiply-Subtract Single with CR Update. The 

dot suffix enables the update of the CR.

Table 4-7. Floating-Point Multiply-Add Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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Table 4-8. Floating-Point Rounding and Conversion Instructions  

Name Mnemonic Operand Syntax Operation

Floating Round to 
Single-Precision 

frsp
frsp.

frD,frB

The floating-point operand in frB is rounded to single-precision using the 
rounding mode specified by FPSCR[RN] and placed into frD.
frsp Floating Round to Single-Precision 
frsp. Floating Round to Single-Precision with CR Update. The dot suf-

fix enables the update of the CR.

Floating Convert 
from Integer 
Doubleword

fcfid
fcfid.

frD,frB

The 64-bit signed integer operand in frB is converted to an infinitely pre-
cise floating-point integer. The result of the conversion is rounded to dou-
ble-precision using the rounding mode specified by FPSCR[RN] and 
placed into register frD.
fcfid Floating Convert from Integer Doubleword
fcfid. Floating Convert from Integer Doubleword with CR Update. The 

dot suffix enables the update of the CR.

Floating Convert to 
Integer 
Doubleword

fctid
fctid.

frD,frB

The floating-point operand in register frB is converted to a 64-bit signed 
integer, using the rounding mode specified by FPSCR[RN], and placed in 
frD.
fctiw Floating Convert to Integer Doubleword 
fctiw. Floating Convert to Integer Doubleword with CR Update. The dot 

suffix enables the update of the CR.

Floating Convert to 
Integer Double-
word with Round 
toward Zero

fctidz
fctidz.

frD,frB

The floating-point operand in register frB is converted to a 64-bit signed 
integer, using the rounding mode Round toward Zero and placed in frD.
fctidz Floating Convert to Integer Doubleword with Round toward Zero
fctidz. Floating Convert to Integer Doubleword with Round toward Zero 

with CR Update. The dot suffix enables the update of the CR.

Floating Convert to 
Integer Word 

fctiw
fctiw.

frD,frB

The floating-point operand in register frB is converted to a 32-bit signed 
integer, using the rounding mode specified by FPSCR[RN], and placed in 
the low-order 32 bits of frD. Bits [0–31] of frD are undefined.
fctiw Floating Convert to Integer Word 
fctiw. Floating Convert to Integer Word with CR Update. The dot suffix 

enables the update of the CR.

Floating Convert to 
Integer Word with 
Round toward Zero

fctiwz
fctiwz.

frD,frB

The floating-point operand in register frB is converted to a 32-bit signed 
integer, using the rounding mode Round toward Zero, and placed in the 
low-order 32 bits of frD. Bits [0–31] of frD are undefined.
fctiwz Floating Convert to Integer Word with Round toward Zero 
fctiwz. Floating Convert to Integer Word with Round toward Zero with 

CR Update. The dot suffix enables the update of the CR.
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4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers and the comparison 
ignores the sign of zero (that is ‘+0’ = ‘-0’). The comparison can be ordered or unordered. The comparison 
sets one bit in the designated CR field and clears the other three bits. The floating-point condition code 
(FPCC ) in bits [16–19] of the floating-point status and control register (FPSCR) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9. 

The floating-point compare instructions are summarized in Table 4-10. 

4.2.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by a 
given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initi-
ated by the given processor appear to have completed before the FPSCR instruction is initiated and that no 
subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR instruc-
tion has completed. In particular:

• All exceptions caused by the previously initiated instructions are recorded in the FPSCR before the 
FPSCR instruction is initiated.

• All invocations of the floating-point exception handler caused by the previously initiated instructions have 
occurred before the FPSCR instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the settings of any FPSCR bits 
appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR instructions.

The FPSCR instructions are summarized in Table 4-11. 

Table 4-9. CR Bit Settings  

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

Note:  A result of “unordered” indicates that at least one of operations of the comparison was a NaN. 

Table 4-10. Floating-Point Compare Instructions 

Name Mnemonic Operand Syntax Operation

Floating Compare 
Unordered fcmpu crfD,frA,frB The floating-point operand in frA is compared to the floating-point operand 

in frB. The result of the compare is placed into crfD and the FPCC.

Floating Compare 
Ordered fcmpo crfD,frA,frB The floating-point operand in frA is compared to the floating-point operand 

in frB. The result of the compare is placed into crfD and the FPCC.
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Table 4-11. Floating-Point Status and Control Register Instructions  

Name Mnemonic Operand Syntax Operation

Move from FPSCR
mffs
mffs.

frD

The contents of the FPSCR are placed into bits [32–63] of frD. Bits [0–31] 
of frD are undefined.
mffs Move from FPSCR
mffs. Move from FPSCR with CR Update. The dot suffix enables the 

update of the CR.

Move to Condition 
Register from 
FPSCR

mcrfs crfD,crfS
The contents of FPSCR field specified by operand crfS are copied to the 
CR field specified by operand crfD. All exception bits copied (except FEX 
and VX bits) are cleared in the FPSCR.

Move to FPSCR 
Field Immediate

mtfsfi
mtfsfi.

crfD,IMM

The contents of the IMM field are placed into FPSCR field crfD. The con-
tents of FPSCR[FX] are altered only if crfD = ’0’.
mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot suffix 

enables the update of the CR.

Move to FPSCR 
Fields 

mtfsf
mtfsf.

FM,frB

Bits [32–63] of frB are placed into the FPSCR under control of the field 
mask specified by FM. The field mask identifies the 4-bit fields affected. 
Let i be an integer in the range 0–7. If FM[i] = ‘1’, FPSCR field i (FPSCR 
bits 4×i through 4×i+3) is set to the contents of the corresponding field of 
the low-order 32 bits of frB.
The contents of FPSCR[FX] are altered only if FM[0] = ‘1’.
mtfsf Move to FPSCR Fields 
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables 

the update of the CR.

Move to FPSCR 
Bit 0

mtfsb0
mtfsb0.

crbD

The FPSCR bit location specified by operand crbD is cleared. 
Bits [1, 2] (FEX and VX) cannot be reset explicitly.
mtfsb0 Move to FPSCR Bit [0]
mtfsb0. Move to FPSCR Bit [0] with CR Update. The dot suffix enables 

the update of the CR.

Move to FPSCR 
Bit 1

mtfsb1
mtfsb1.

crbD

The FPSCR bit location specified by operand crbD is set. 
Bits [1, 2] (FEX and VX) cannot be set explicitly.
mtfsb1 Move to FPSCR Bit [1]
mtfsb1. Move to FPSCR Bit [1] with CR Update. The dot suffix enables 

the update of the CR.
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4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altering the sign bit (bit [0]) as described 
for the fneg, fabs, and fnabs instructions in Table 4-12. The fneg, fabs, and fnabs instructions may alter the 
sign bit of a NaN. The floating-point move instructions do not modify the FPSCR. The CR update option in 
these instructions controls the placing of result status into CR1. If the CR update option is enabled, CR1 is 
set; otherwise, CR1 is unchanged. 

Table 4-12 provides a summary of the floating-point move instructions. 

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can occur out 
of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the load 
and store instructions, which consist of the following:

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Floating-point load instructions

• Floating-point store instructions

• Memory synchronization instructions

Table 4-12. Floating-Point Move Instructions  

Name Mnemonic Operand Syntax Operation

Floating Move 
Register

fmr
fmr.

frD,frB

The contents of frB are placed into frD.
fmr Floating Move Register
fmr. Floating Move Register with CR Update. The dot suffix enables 

the update of the CR.

Floating Negate
fneg
fneg.

frD,frB

The contents of frB with bit [0] inverted are placed into frD.
fneg Floating Negate
fneg. Floating Negate with CR Update. The dot suffix enables the 

update of the CR.

Floating Absolute 
Value 

fabs
fabs.

frD,frB

The contents of frB with bit [0] cleared are placed into frD.
fabs Floating Absolute Value 
fabs. Floating Absolute Value with CR Update. The dot suffix enables 

the update of the CR.

Floating Negative 
Absolute Value 

fnabs
fnabs.

frD,frB

The contents of frB with bit [0] set are placed into frD.
fnabs Floating Negative Absolute Value
fnabs. Floating Negative Absolute Value with CR Update. The dot suffix 

enables the update of the CR.
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4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index 
mode (register contents + immediate), register indirect with index mode (register contents + register 
contents), or register indirect mode (register contents only). See Section 4.1.4.2 Effective Address Calcula-
tion for information about calculating effective addresses. 

Note:  In some implementations, operations that are not naturally aligned may suffer performance degrada-
tion. Refer to Section 6.4.8.1 Integer Alignment Exceptions for additional information about load and store 
address alignment exceptions.

Register indirect addressing for integer loads and stores is discussed in the following sections: 

• Register Indirect with Immediate Index Addressing for Integer Loads and Stores

• Register Indirect with Index Addressing for Integer Loads and Stores

• Register Indirect Addressing for Integer Loads and Stores

Register Indirect with Immediate Index Addressing for Integer Loads and Stores 

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign 
extended, and added to the contents of a general-purpose register specified in the instruction (rA operand) to 
generate the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the 
immediate index (d operand) in place of the contents of r0. The option to specify rA or 0 is shown in the 
instruction descriptions as (rA|0). 

Figure 4-1 shows how an effective address is generated when using register indirect with immediate index 
addressing.

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Stores 
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Register Indirect with Index Addressing for Integer Loads and Stores

Instructions using this addressing mode cause the contents of two general-purpose registers (specified as 
operands rA and rB) to be added in the generation of the effective address. A zero in place of the rA operand 
causes a zero to be added to the contents of the general-purpose register specified in operand rB (or the 
value zero for lswi and stswi instructions). The option to specify rA or 0 is shown in the instruction descrip-
tions as (rA|0). 

Figure 4-2 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores 
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Register Indirect Addressing for Integer Loads and Stores 

Instructions using this addressing mode use the contents of the general-purpose register specified by the rA 
operand as the effective address. A zero in the rA operand causes an effective address of zero to be gener-
ated. The option to specify rA or 0 is shown in the instruction descriptions as (rA|0). 

Figure 4-3 shows how an effective address is generated when using register indirect addressing.

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores 
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4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, halfword, word, or doubleword addressed by the effective address 
(EA) is loaded into rD. Many integer load instructions have an update form, in which rA is updated with the 
generated effective address. For these forms, if rA ≠ 0 and rA ≠ rD (otherwise invalid), the EA is placed into 
rA and the memory element (byte, halfword, word, or doubleword) addressed by the EA is loaded into rD. 

Note:  The PowerPC Architecture defines load with update instructions with operand rA = 0 or rA = rD as 
invalid forms.

The default byte and bit ordering is big-endian in the PowerPC Architecture; see Section 3.1.2 Byte Ordering 
for information about little-endian byte ordering.

Note:  In some implementations of the architecture, the load algebraic instructions (lha, lhax, lwa, lwax) and 
the load with update (lbzu, lbzux, lhzu, lhzux, lhau, lhaux, lwaux, ldu, ldux) instructions may execute with 
a greater latency than other types of load instructions. Moreover, the load with update instructions might take 
longer to execute in some implementations than the corresponding pair of a nonupdate load followed by an 
add instruction to update the register.

Table 4-13 summarizes the integer load instructions. 

Table 4-13. Integer Load Instructions  

Name Mnemonic Operand Syntax Operation

Load Byte and 
Zero lbz rD,d(rA)

The EA is the sum (rA|0) + d. The byte in memory addressed by the EA is 
loaded into the low-order eight bits of rD. The remaining bits in rD are 
cleared.

Load Byte and 
Zero Indexed lbzx rD,rA,rB

The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA 
is loaded into the low-order eight bits of rD. The remaining bits in rD are 
cleared.

Load Byte and 
Zero with Update lbzu rD,d(rA)

The EA is the sum (rA) + d. The byte in memory addressed by the EA is 
loaded into the low-order eight bits of rD. The remaining bits in rD are 
cleared. The EA is placed into rA. 

Load Byte and 
Zero with Update 
Indexed 

lbzux rD,rA,rB
The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is 
loaded into the low-order eight bits of rD. The remaining bits in rD are 
cleared. The EA is placed into rA. 

Load Halfword and 
Zero lhz rD,d(rA)

The EA is the sum (rA|0) + d. The halfword in memory addressed by the 
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
cleared. 

Load Halfword and 
Zero Indexed lhzx rD,rA,rB

The EA is the sum (rA|0) + (rB). The halfword in memory addressed by the 
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
cleared. 

Load Halfword and 
Zero with Update lhzu rD,d(rA)

The EA is the sum (rA) + d. The halfword in memory addressed by the EA 
is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
cleared. The EA is placed into rA.

Load Halfword and 
Zero with Update 
Indexed

lhzux rD,rA,rB
The EA is the sum (rA) + (rB). The halfword in memory addressed by the 
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
cleared. The EA is placed into rA. 

Load Halfword 
Algebraic lha rD,d(rA)

The EA is the sum (rA|0) + d. The halfword in memory addressed by the 
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
filled with a copy of the most significant bit of the loaded halfword.

Load Halfword 
Algebraic Indexed lhax rD,rA,rB

The EA is the sum (rA|0) + (rB). The halfword in memory addressed by the 
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
filled with a copy of the most significant bit of the loaded halfword.
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Load Halfword 
Algebraic with 
Update 

lhau rD,d(rA)

The EA is the sum (rA) + d. The halfword in memory addressed by the EA 
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled 
with a copy of the most significant bit of the loaded halfword. The EA is 
placed into rA. 

Load Halfword 
Algebraic with 
Update Indexed 

lhaux rD,rA,rB

The EA is the sum (rA) + (rB). The halfword in memory addressed by the 
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are 
filled with a copy of the most significant bit of the loaded halfword. The EA 
is placed into rA. 

Load Word and 
Zero lwz rD,d(rA)

The EA is the sum (rA|0) + d. The word in memory addressed by the EA is 
loaded into the low-order 32 bits of rD. The remaining bits in the high-order 
32 bits of rD are cleared.

Load Word and 
Zero Indexed lwzx rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA 
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared.

Load Word and 
Zero with Update lwzu rD,d(rA)

The EA is the sum (rA) + d. The word in memory addressed by the EA is 
loaded into the low-order 32 bits of rD. The remaining bits in the high-order 
32 bits of rD are cleared. The EA is placed into rA. 

Load Word and 
Zero with Update 
Indexed

lwzux rD,rA,rB
The EA is the sum (rA) + (rB). The word in memory addressed by the EA 
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared. The EA is placed into rA. 

Load Word 
Algebraic lwa rD,ds(rA)

The EA is the sum (rA|0) + (ds||’00’). The word in memory addressed by 
the EA is loaded into the low-order 32 bits of rD. The remaining bits in the 
high-order 32 bits of rD are filled with a copy of the most significant bit of 
the loaded word.

Load Word 
Algebraic Indexed lwax rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA 
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are filled with a copy of the most significant bit of the 
loaded word.

Load Word 
Algebraic with 
Update Indexed

lwaux rD,rA,rB

The EA is the sum (rA) + (rB). The word in memory addressed by the EA 
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are filled with a copy of the most significant bit of the 
loaded word. The EA is placed into rA. 

Load Doubleword ld rD,ds(rA) The EA is the sum (rA|0) + (ds||’00’). The doubleword in memory 
addressed by the EA is loaded into rD.

Load Doubleword 
Indexed ldx rD,rA,rB The EA is the sum (rA|0) + (rB). The doubleword in memory addressed by 

the EA is loaded into rD.

Load Doubleword 
with Update ldu rD,ds(rA) The EA is the sum (rA) + (ds||’00’). The doubleword in memory addressed 

by the EA is loaded into rD. The EA is placed into rA. 

Load Doubleword 
with Update 
Indexed

ldux rD,rA,rB The EA is the sum (rA) + (rB). The doubleword in memory addressed by 
the EA is loaded into rD. The EA is placed into rA.

Table 4-13. Integer Load Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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4.2.3.3 Integer Store Instructions 

For integer store instructions, the contents of rS are stored into the byte, halfword, word, or doubleword in 
memory addressed by the EA (effective address). Many store instructions have an update form, in which rA is 
updated with the EA. For these forms, the following rules apply:

• If rA ≠ 0, the effective address is placed into rA.

• If rS = rA, the contents of register rS are copied to the target memory element, then the generated EA is 
placed into rA (rS). 

In general, the PowerPC Architecture defines a sequential execution model. However, when a store instruc-
tion modifies a memory location that contains an instruction, software synchronization (isync)is required to 
ensure that subsequent instruction fetches from that location obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate system library 
program before attempting to execute the modified instructions to ensure that the modifications have taken 
effect with respect to instruction fetching.

The PowerPC Architecture defines store with update instructions with rA = ’0’ as an invalid form. In addition, 
it defines integer store instructions with the CR update option enabled (Rc field, bit [31], in the instruction 
encoding = ‘1’) to be an invalid form. Table 4-14 provides a summary of the integer store instructions. 

Table 4-14. Integer Store Instructions  

Name Mnemonic Operand Syntax Operation

Store Byte stb rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order eight bits of rS 
are stored into the byte in memory addressed by the EA. 

Store Byte Indexed stbx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of 
rS are stored into the byte in memory addressed by the EA. 

Store Byte with 
Update stbu rS,d(rA)

The EA is the sum (rA) + d. The contents of the low-order eight bits of rS 
are stored into the byte in memory addressed by the EA. The EA is placed 
into rA. 

Store Byte with 
Update Indexed stbux rS,rA,rB

The EA is the sum (rA) + (rB). The contents of the low-order eight bits of 
rS are stored into the byte in memory addressed by the EA. The EA is 
placed into rA. 

Store Halfword sth rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order 16 bits of rS 
are stored into the halfword in memory addressed by the EA. 

Store Halfword 
Indexed sthx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits of 

rS are stored into the halfword in memory addressed by the EA. 

Store Halfword 
with Update sthu rS,d(rA)

The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are 
stored into the halfword in memory addressed by the EA. The EA is 
placed into rA. 

Store Halfword 
with Update 
Indexed

sthux rS,rA,rB
The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS 
are stored into the halfword in memory addressed by the EA. The EA is 
placed into rA. 

Store Word stw rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order 32 bits of rS 
are stored into the word in memory addressed by the EA. 

Store Word 
Indexed stwx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order 32 bits of 

rS are stored into the word in memory addressed by the EA.

Store Word with 
Update stwu rS,d(rA)

The EA is the sum (rA) + d. The contents of the low-order 32 bits of rS are 
stored into the word in memory addressed by the EA. The EA is placed 
into rA. 
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4.2.3.4 Integer Load and Store with Byte-Reverse Instructions

Table 4-15 describes integer load and store with byte-reverse instructions. Note that in some PowerPC imple-
mentations, load byte-reverse instructions might have a greater latency than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these instructions have 
the effect of loading and storing data in little-endian order. Likewise, when used in a PowerPC system oper-
ating with little-endian byte order, these instructions have the effect of loading and storing data in big-endian 
order. For more information about big-endian and little-endian byte ordering, see Section 3.1.2 Byte Ordering.

Store Word with 
Update Indexed stwux rS,rA,rB

The EA is the sum (rA) + (rB). The contents of the low-order 32 bits of rS 
are stored into the word in memory addressed by the EA. The EA is 
placed into rA. 

Store Doubleword std rS,ds(rA) The EA is the sum (rA|0) + (ds||’00’). The contents of rS are stored into 
the doubleword in memory addressed by the EA.

Store Doubleword 
Indexed stdx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of rS are stored into the 

doubleword in memory addressed by the EA.

Store Doubleword 
with Update stdu rS,ds(rA) The EA is the sum (rA) + (ds||’00’). The contents of rS are stored into the 

doubleword in memory addressed by the EA. The EA is placed into rA.

Store Doubleword 
with Update 
Indexed

stdux rS,rA,rB The EA is the sum (rA) + (rB). The contents of rS are stored into the dou-
bleword in memory addressed by the EA. The EA is placed into rA. 

Table 4-15. Integer Load and Store with Byte-Reverse Instructions  

Name Mnemonic Operand Syntax Operation

Load Halfword 
Byte-Reverse 
Indexed 

lhbrx rD,rA,rB

The EA is the sum (rA|0) + (rB). The high-order eight bits of the halfword 
addressed by the EA are loaded into the low-order eight bits of rD. The 
next eight higher-order bits of the halfword in memory addressed by the 
EA are loaded into the next eight lower-order bits of rD. The remaining rD 
bits are cleared. 

Load Word Byte- 
Reverse Indexed lwbrx rD,rA,rB

The EA is the sum (rA|0) + (rB). Bits [0–7] of the word in memory 
addressed by the EA are loaded into the low-order eight bits of rD. 
Bits [8–15] of the word in memory addressed by the EA are loaded into 
bits [48–55] of rD. Bits [16-23] of the word in memory addressed by the 
EA are loaded into bits [40–47] of rD. Bits [24–31] of the word in memory 
addressed by the EA are loaded into bits [32–39] of rD. The remaining 
bits in rD are cleared.

Store Halfword 
Byte- Reverse 
Indexed

sthbrx rS,rA,rB

The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of 
rS are stored into the high-order eight bits of the halfword in memory 
addressed by the EA. The contents of the next lower-order eight bits of rS 
are stored into the next eight higher-order bits of the halfword in memory 
addressed by the EA. 

Store Word Byte- 
Reverse Indexed stwbrx rS,rA,rB

The effective address is the sum (rA|0) + (rB). The contents of the low-
order eight bits of rS are stored into bits [0–7] of the word in memory 
addressed by EA. The contents of the next eight lower-order bits of rS are 
stored into bits [8–15] of the word in memory addressed by the EA. The 
contents of the next eight lower-order bits of rS are stored into bits [16-23] 
of the word in memory addressed by the EA. The contents of the next 
eight lower-order bits of rS are stored into bits [24–31] of the word 
addressed by the EA.

Table 4-14. Integer Store Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load multiple 
and store multiple instructions may have operands that require memory accesses crossing a 4-Kbyte page 
boundary. As a result, these instructions may be interrupted by a DSI exception associated with the address 
translation of the second page. Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that the low-order byte of 
GPR31 is loaded from or stored into the last byte of an aligned quad word in memory; if the effective address 
is not correctly aligned, it may take significantly longer to execute. 

In some PowerPC implementations operating with little-endian byte order, execution of an lmw or stmw 
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for 
more information.

The PowerPC Architecture defines the load multiple word (lmw) instruction with rA in the range of registers to 
be loaded, including the case in which rA = ’0’ as an invalid form. 

4.2.3.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from regis-
ters to memory without concern for alignment. These instructions can be used for a short move between arbi-
trary memory locations or to initiate a long move between misaligned memory fields. However, in some 
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps 
much longer, than a sequence of individual load or store instructions that produce the same results. 
Table 4-17 summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS = ‘4’ or ‘5’, and the last register 
loaded or stored is less than or equal to ‘12’.

In some PowerPC implementations operating with little-endian byte order, execution of a load or string 
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for 
more information. 

Table 4-16. Integer Load and Store Multiple Instructions  

Name Mnemonic Operand Syntax Operation

Load Multiple 
Word lmw rD,d(rA) The EA is the sum (rA|0) + d. n = (32 – rD).

Store Multiple 
Word stmw rS,d(rA) The EA is the sum (rA|0) + d. n = (32 – rS).
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Load string and store string instructions may involve operands that are not word-aligned. As described in 
Section 6.4.8 Alignment Exception (0x00600), a misaligned string operation suffers a performance penalty 
compared to an aligned operation of the same type. A nonword-aligned string operation that crosses a 
doubleword boundary is also slower than a word-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with imme-
diate index addressing mode and register indirect with index addressing mode. 

The following sections discuss index addressing for floating-point loads and stores: 

• Register Indirect with Immediate Index Addressing for Floating-point Loads and Stores

• Register Indirect with Index Addressing for Floating-point Loads and Stores

Register Indirect with Immediate Index Addressing for Floating-Point Loads and Stores 

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign 
extended to 64 bits, and added to the contents of a GPR specified in the instruction (rA operand) to generate 
the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the immediate 
index (d operand) in place of the contents of r0. The option to specify rA or ‘0’ is shown in the instruction 
descriptions as (rA|0). 

Figure 4-4 shows how an effective address is generated when using register indirect with immediate index 
addressing for floating-point loads and stores.

Table 4-17. Integer Load and Store String Instructions  

Name Mnemonic Operand Syntax Operation

Load String Word 
Immediate lswi rD,rA,NB The EA is (rA|0). 

Load String Word 
Indexed lswx rD,rA,rB The EA is the sum (rA|0) + (rB). 

Store String Word 
Immediate stswi rS,rA,NB The EA is (rA|0). 

Store String Word 
Indexed stswx rS,rA,rB The EA is the sum (rA|0) + (rB). 
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Register Indirect with Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in operands rA and rB) to 
generate the effective address. A zero in the rA operand causes a zero to be added to the contents of the 
GPR specified in operand rB. This is shown in the instruction descriptions as (rA|0). 

Figure 4-5 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-4. Register Indirect (Contents) with Immediate Index Addressing for Floating-Point Loads/Stores 

Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores 

No

0

Store

Load

Yes

Instruction Encoding:

Effective Address

rA=0

Memory 
AccessFPR (frD/frS)

GPR (rA)

0 63

0 63

0 63

0 6347 48

Sign Extension d

Opcode frD/frS rA d

0 5 6 10 11 1516 31

+

No

GPR (rA)

0

FPR (frD/frS)
Memory 
Access

Store

Load

Yes

0 63

GPR (rB)

Effective Address

Instruction Encoding:

rA = ’0’?

Reserved
0 5 6 10 11 15 16 3120 21 30

Opcode frD/frS rA rB Subopcode 0

0 63 0 63

0 63

+



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Addressing Modes and Instruction Set Summary

Page 158 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

The PowerPC Architecture defines floating-point load and store with update instructions (lfsu, lfsux, lfdu, 
lfdux, stfsu, stfsux, stfdu, stfdux) with operand rA = ’0’ as invalid forms of the instructions. In addition, it 
defines floating-point load and store instructions with the CR updating option enabled (Rc bit, bit [31] = ’1’) to 
be an invalid form. 

The PowerPC Architecture defines that the FPSCR[UE] bit should not be used to determine whether denor-
malization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-precision operand 
formats. Because the FPRs support only the floating-point double-precision format, single-precision floating-
point load instructions convert single-precision data to double-precision format before loading the operands 
into the target FPR. This conversion is described fully in Appendix C.6 Floating-Point Load Instructions. 
Table 4-18 provides a summary of the floating-point load instructions.

Note:  The PowerPC Architecture defines load with update instructions with rA = ’0’ as an invalid form. 

Table 4-18. Floating-Point Load Instructions  

Name Mnemonic Operand Syntax Operation

Load Floating-
Point Single lfs frD,d(rA)

The EA is the sum (rA|0) + d.
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point 
double-precision format and placed into frD.

Load Floating-
Point Single 
Indexed

lfsx frD,rA,rB

The EA is the sum (rA|0) + (rB).
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point 
double-precision format and placed into frD.

Load Floating-
Point Single with 
Update

lfsu frD,d(rA)

The EA is the sum (rA) + d.
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point 
double-precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating-
Point Single with 
Update Indexed

lfsux frD,rA,rB

The EA is the sum (rA) + (rB).
The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point 
double-precision format and placed into frD.
The EA is placed into the register specified by rA.

Load Floating-
Point Double lfd frD,d(rA)

The EA is the sum (rA|0) + d.
The doubleword in memory addressed by the EA is placed into register 
frD.

Load Floating-
Point Double 
Indexed

lfdx frD,rA,rB
The EA is the sum (rA|0) + (rB).
The doubleword in memory addressed by the EA is placed into register 
frD.

Load Floating-
Point Double with 
Update 

lfdu frD,d(rA)

The EA is the sum (rA) + d.
The doubleword in memory addressed by the EA is placed into register 
frD.
The EA is placed into the register specified by rA. 

Load Floating-
Point Double with 
Update Indexed

lfdux frD,rA,rB

The EA is the sum (rA) + (rB).
The doubleword in memory addressed by the EA is placed into register 
frD.
The EA is placed into the register specified by rA.
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4.2.3.9 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the store instruction—
single-precision, double-precision, and integer. The integer form is supported by the stfiwx instruction. 

Because the FPRs support only floating-point, double-precision format for floating-point data, single-precision 
floating-point store instructions convert double-precision data to single-precision format before storing the 
operands. The conversion steps are described fully in Appendix C.7 Floating-Point Store Instructions. 
Table 4-19 provides a summary of the floating-point store instructions.

Note:  The PowerPC Architecture defines store with update instructions with rA = ’0’ as an invalid form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.

Table 4-19. Floating-Point Store Instructions  

Name Mnemonic Operand Syntax Operation

Store Floating-
Point Single stfs frS,d(rA)

The EA is the sum (rA|0) + d.
The contents of frS are converted to single-precision and stored into the 
word in memory addressed by the EA. 

Store Floating-
Point Single 
Indexed

stfsx frS,rA,rB
The EA is the sum (rA|0) + (rB).
The contents of frS are converted to single-precision and stored into the 
word in memory addressed by the EA. 

Store Floating-
Point Single with 
Update 

stfsu frS,d(rA)

The EA is the sum (rA) + d.
The contents of frS are converted to single-precision and stored into the 
word in memory addressed by the EA. 
The EA is placed into rA. 

Store Floating-
Point Single with 
Update Indexed

stfsux frS,rA,rB

The EA is the sum (rA) + (rB).
The contents of frS are converted to single-precision and stored into the 
word in memory addressed by the EA. 
The EA is placed into the rA. 

Store Floating-
Point Double stfd frS,d(rA)

The EA is the sum (rA|0) + d.
The contents of frS are stored into the doubleword in memory addressed 
by the EA. 

Store Floating-
Point Double 
Indexed

stfdx frS,rA,rB
The EA is the sum (rA|0) + (rB).
The contents of frS are stored into the doubleword in memory addressed 
by the EA. 

Store Floating-
Point Double with 
Update 

stfdu frS,d(rA)

The EA is the sum (rA) + d.
The contents of frS are stored into the doubleword in memory addressed 
by the EA. 
The EA is placed into rA. 

Store Floating-
Point Double with 
Update Indexed

stfdux frS,rA,rB

The EA is the sum (rA) + (rB).
The contents of frS are stored into the doubleword in memory addressed 
by EA. 
The EA is placed into register rA. 

Store Floating-
Point as Integer 
Word Indexed

stfiwx frS,rA,rB
The EA is the sum (rA|0) + (rB).
The contents of the low-order 32 bits of frS are stored, without conversion, 
into the word in memory addressed by the EA. 
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4.2.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the CR. 
When the processor encounters one of these instructions, it can attempt to resolve the branch direction 
immediately, or predict the branch direction and defer its resolution.

When the branch cannot be resolved immediately, it may be predicted based on the 'at' bits (as described in 
Table 4-20 and Table 4-21), or by using dynamic prediction. At some point before the branch instruction can 
complete, the branch direction will be resolved based on the value of the CR bit. If the prediction is correct, 
the branch is considered completed and instruction fetching continues along the predicted path. If the predic-
tion is incorrect, the fetched instructions are purged, and instruction fetching continues along the alternate 
path.

4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always 
assumed to be word aligned; the PowerPC processors ignore the two low-order bits (bits [62, 63]) of the 
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address using the following 
addressing modes:

• Branch relative 

• Branch conditional to relative address

• Branch to absolute address 

• Branch conditional to absolute address 

• Branch conditional to link register 

• Branch conditional to count register

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is clearing the high-
order 32 bits of the target address. 

Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by sign extending and 
appending ‘00’ to the immediate displacement operand LI, and adding the resultant value to the current 
instruction address. Branches using this addressing mode have the absolute addressing option disabled (AA 
field, bit [30], in the instruction encoding = ‘0’). The link register (LR) update option can be enabled (LK field, 
bit [31], in the instruction encoding = ‘1’). This option causes the effective address of the instruction following 
the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative addressing 
mode.



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005  
 

Addressing Modes and Instruction Set Summary

Page 161 of 657

Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative addressing mode 
generate the next instruction address by sign extending and appending ‘00’ to the immediate displacement 
operand (BD) and adding the resultant value to the current instruction address. Branches using this 
addressing mode have the absolute addressing option disabled (AA field, bit[30], in the instruction 
encoding = ‘0’). The link register update option can be enabled (LK field, bit[31], in the instruction 
encoding = ‘1’). This option causes the effective address of the instruction following the branch instruction to 
be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch conditional relative 
addressing mode.

Figure 4-6. Branch Relative Addressing 
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Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction address by sign 
extending and appending ‘00’ to the LI operand. Branches using this addressing mode have the absolute 
addressing option enabled (AA field, bit[30], in the instruction encoding = ‘1’). The link register update option 
can be enabled (LK field, bit[31], in the instruction encoding = ’1’). This option causes the effective address of 
the instruction following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to absolute addressing 
mode.

Figure 4-7. Branch Conditional Relative Addressing 

Figure 4-8. Branch to Absolute Addressing 
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Branch Conditional to Absolute Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to absolute addressing mode 
generate the next instruction address by sign extending and appending ‘00’ to the BD operand. Branches 
using this addressing mode have the absolute addressing option enabled (AA field, bit[30], in the instruction 
encoding = ’1’). The link register update option can be enabled (LK field, bit[31], in the instruction 
encoding = ‘1’). This option causes the effective address of the instruction following the branch instruction to 
be placed in the LR.

Figure 4-9 shows how the branch target address is generated when using the branch conditional to absolute 
addressing mode.

Figure 4-9. Branch Conditional to Absolute Addressing 
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Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates the next instruc-
tion address by using the contents of the LR and clearing the two low-order bits to zero. The result becomes 
the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit[31], in the instruction encoding = ’1’). This option 
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is 
done even if the branch is not taken.

Figure 4-10 shows how the branch target address is generated when using the branch conditional to link 
register addressing mode.

Figure 4-10. Branch Conditional to Link Register Addressing 
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Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction generates the next 
instruction address by using the contents of the count register (CTR) and clearing the two low-order bits to 
zero. The result becomes the effective address from which the next instructions are fetched. 

The link register update option can be enabled (LK field, bit[31], in the instruction encoding = ‘1’). This option 
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is 
done even if the branch is not taken.

Figure 4-11 shows how the branch target address is generated when using the branch conditional to count 
register addressing mode.

Figure 4-11. Branch Conditional to Count Register Addressing 
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4.2.4.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is taken. 
The encodings for the BO operands are shown in Table 4-20. M = ‘32’ in 32-bit mode (of a 64-bit implementa-
tion) and M = ‘0’ in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the 
entire 64-bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode. 

The “a” and ”t” bits of the BO field can be used by software to provide a hint about whether the branch is likely 
to be taken or is likely not to be taken (see Table 4-21).

Note:  Many implementations have dynamic mechanisms for predicting whether a branch will be taken. 
Because the dynamic prediction is likely to be very accurate, and is likely to be overridden by any hint pro-
vided by the “at” bits, the “at” bits should be set to ‘00’ unless the static prediction implied by at=’10’ or at=’11’ 
is very likely to be correct.

For Branch Conditional to Link Register and Branch Conditional to Count Register instructions, the BH field 
provides a hint about the use of the instruction, as shown in Table 4-22.

Table 4-20. BO Operand Encodings  

BO Description

0000z Decrement the CTR, then branch if the decremented CTR[M–63] ≠ ‘0’ and CR[BI] = ‘0’ (condition is false).

0001z Decrement the CTR, then branch if the decremented CTR[M–63] = ’0’ and CR[BI] = ‘0’ (condition is false).

001at Branch if CR[BI] = 0 (false).

0100z Decrement the CTR, then branch if the decremented CTR[M–63] ≠’0’ and CR[BI] = ’1’ (condition is true).

0101z Decrement the CTR, then branch if the decremented CTR[M–63] = ’0’ and CR[BI] = ’1’ (condition is true).

011at Branch if CR[BI] = ’1’ (condition is true).

1a00t Decrement the CTR, then branch if the decremented CTR[M–63] ≠ ‘0’.

1a01t Decrement the CTR, then branch if the decremented CTR[M–63] = ’0’.

1z1zz Branch always.

Note:  

1. “z” denotes a bit that is ignored. 
2. The “a” and “t” bits are used as described below. 

Table 4-21. “a” and “t” Bits of the BO Field 

“a” “t” Hint

00 No hint is given

01 Reserved

10 Branch is very likely not to be taken

11 Branch is very likely to be taken
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Note:  The hint provided by the BH field is independent of the hint provided by the “at” bits (e.g., the BH field 
provides no indication of whether the branch is likely to be taken).

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the CR represents the 
bit to test. 

The 5-bit BO and BI fields control whether the branch is taken. 

When the branch instructions contain immediate addressing operands, the branch target addresses can be 
computed sufficiently ahead of the branch execution and instructions can be fetched along the branch target 
path (if the branch is predicted to be taken or is an unconditional branch). If the branch instructions use the 
link or count register contents for the branch target address, instructions along the branch-taken path of a 
branch can be fetched if the link or count register is loaded sufficiently ahead of the branch instruction execu-
tion.

Branching can be conditional or unconditional. The branch target address is first calculated from the contents 
of the count or link register or from the branch immediate field. Optionally, a branch return address can be 
loaded into the LR register (this sets the return address for subroutine calls). When this option is selected 
(LK = ’1’) the LR is loaded with the effective address of the instruction following the branch instruction.

Some processors may keep a stack of the link register values most recently set by branch and link instruc-
tions, with the possible exception of the form shown below for obtaining the address of the next instruction. To 
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

• Obtaining the address of the next instruction–use the following form of branch and link:
bcl 20,31,$+4

• Loop counts:
Keep loop counts in the count register, and use one of the branch conditional instructions (LK = ’0’) to 
decrement the count and to control branching (for example, branching back to the start of a loop if the 
decremented counter value is nonzero).

• Computed GOTOs, case statements, etc.:
Use the count register to hold the address to branch to, and use the bcctr instruction with the link register 
option disabled (LK = ‘0’ and BH = ‘11’ if appropriate) to branch to the selected address.

• Direct subroutine linkage—where A calls B and B returns to A. The two branches should be as follows:

– A calls B: use a branch instruction (bl, bcl) that enables the link register (LK = ’1’).

Table 4-22. BH Field Encodings 

BH Hint

00
bclr[l]: The instruction is a subroutine return
bcctr[l]: The instruction is not a subroutine return; the target address is likely to be the same as the target 

address used the preceding time the branch was taken. 

01
bclr[l]: The instruction is not a subroutine return; the target address is likely to be the same as the target 

address used the preceding time the branch was taken. 
bcctr[l]: Reserved.

10 Reserved.

11 bclr[l] and bcctr[l]: The target address is not predictable. 
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– B returns to A: use the bclr instruction with the link register option disabled (LK = ’0’) (the return 
address is in, or can be restored to, the link register).

• Indirect subroutine linkage:
Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a calling sequence is 
common in linkage code used when the subroutine that the programmer wants to call, here B, is in a dif-
ferent module from the caller: the binder inserts “glue” code to mediate the branch.) The three branches 
should be as follows:

– A calls Glue: use a branch instruction (bl, bcl) that sets the link register with the link register option 
enabled (LK = ’1’).

– Glue calls B: place the address of B in the count register, and use the bcctr instruction with the link 
register option disabled (LK = ‘0’).

– B returns to A: use the bclr instruction with the link register option disabled (LK = ’0’) (the return 
address is in, or can be restored to, the link register).

• Function call:
Here A calls a function, the identity of which may vary from one instance of the call to another, instead of 
calling a specific program B. This case should be handled using the conventions of the preceding two bul-
lets, depending on whether the call is direct or indirect, with the following differences.

– If the call is direct, place the address of the function into the count register, and use a bcctrl instruc-
tion (LK = ’1’) instead of a bl or bcl instruction. 

– For the bcctr[l] instruction that branches to the function, use BH = ’11’ if appropriate.
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4.2.4.3 Branch Instructions

Table 4-23 describes the branch instructions provided by the PowerPC processors. 

Table 4-23. Branch Instructions  

Name Mnemonic Operand Syntax Operation

Branch

b
ba
bl
bla

target_addr 

b Branch. Branch to the address computed as the sum of the 
immediate address and the address of the current instruction.

ba Branch Absolute. Branch to the absolute address specified.
bl Branch then Link. Branch to the address computed as the sum of 

the immediate address and the address of the current instruction. 
The instruction address following this instruction is placed into the 
link register (LR).

bla Branch Absolute then Link. Branch to the absolute address spec-
ified. The instruction address following this instruction is placed 
into the LR.

Branch Conditional 

bc
bca
bcl
bcla

BO,BI,target_addr

The BI operand specifies the bit in the CR to be used as the condition of 
the branch. The BO operand is used as described in Table 4-20.
bc Branch Conditional. Branch conditionally to the address com-

puted as the sum of the immediate address and the address of 
the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the absolute 
address specified.

bcl Branch Conditional then Link. Branch conditionally to the address 
computed as the sum of the immediate address and the address 
of the current instruction. The instruction address following this 
instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to 
the absolute address specified. The instruction address following 
this instruction is placed into the LR.

Branch Conditional 
to Link Register

bclr
bclrl

BO,BI,BH

The BI operand specifies the bit in the CR to be used as the condition of 
the branch. The BO operand is used as described in Table 4-20. The BH 
field is used as described in Table 4-22 and the branch target address is 
LR[0–61] || ’00’, with the high-order 32 bits of the branch target address 
cleared in the 32-bit mode of a 64-bit implementation.
bclr Branch Conditional to Link Register. Branch conditionally to the 

address in the LR.
bclrl Branch Conditional to Link Register then Link. Branch condition-

ally to the address specified in the LR. The instruction address 
following this instruction is then placed into the LR.

Branch Condi-
tional to Count 
Register

bcctr
bcctrl

BO,BI,BH

The BI operand specifies the bit in the CR to be used as the condition of 
the branch. The BO operand is used as described in Table 4-20. The BH 
field is used as described in Table 4-22 and the branch target address is 
CTR[0–61] || ‘00’, with the high-order 32 bits of the branch target address 
cleared in the 32-bit mode of a 64-bit implementation.
bcctr Branch Conditional to Count Register. Branch conditionally to the 

address specified in the count register.
bcctrl Branch Conditional to Count Register then Link. Branch condi-

tionally to the address specified in the count register. The instruc-
tion address following this instruction is placed into the LR.

Note:  If the “decrement and test CTR” option is specified (BO[2] = ’0’), the 
instruction form is invalid.
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4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols is provided for the 
most frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other instruc-
tions. See Appendix E Simplified Mnemonics for a list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 4-24, and the Move Condition Register Field (mcrf) 
instruction are also defined as flow control instructions.

Note:  If the LR update option is enabled for any of these instructions, the PowerPC Architecture defines 
these forms of the instructions as invalid. 

Table 4-24. Condition Register Logical Instructions  

Name Mnemonic Operand Syntax Operation

Condition Register 
AND crand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified by crbB. 

The result is placed into the CR bit specified by crbD.

Condition Register 
OR cror crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified by crbB. 

The result is placed into the CR bit specified by crbD.

Condition Register 
XOR crxor crbD,crbA,crbB The CR bit specified by crbA is XORed with the CR bit specified by crbB. 

The result is placed into the CR bit specified by crbD.

Condition Register 
NAND crnand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified by crbB. 

The complemented result is placed into the CR bit specified by crbD.

Condition Register 
NOR crnor crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified by crbB. 

The complemented result is placed into the CR bit specified by crbD.

Condition Register 
Equivalent creqv crbD,crbA, crbB The CR bit specified by crbA is XORed with the CR bit specified by crbB. 

The complemented result is placed into the CR bit specified by crbD.

Condition Register 
AND with 
Complement 

crandc crbD,crbA, crbB
The CR bit specified by crbA is ANDed with the complement of the CR bit 
specified by crbB and the result is placed into the CR bit specified by 
crbD.

Condition Register 
OR with 
Complement 

crorc crbD,crbA, crbB
The CR bit specified by crbA is ORed with the complement of the CR bit 
specified by crbB and the result is placed into the CR bit specified by 
crbD.

Move Condition 
Register Field mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition register 

fields are changed.



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem4_instr_Set.fm.3.0
July 15, 2005  
 

Addressing Modes and Instruction Set Summary

Page 171 of 657

4.2.4.6 Trap Instructions

The trap instructions shown in Table 4-25 are provided to test for a specified set of conditions. If any of the 
conditions tested by a trap instruction are met, the system trap handler is invoked. If the tested conditions are 
not met, instruction execution continues normally. See Appendix E Simplified Mnemonics for a complete set 
of simplified mnemonics. 

4.2.4.7 System Linkage Instruction—UISA

Table 4-26 describes the System Call (sc) instruction that permits a program to call on the system to perform 
a service. See Section 4.4.1 System Linkage Instructions—OEA for a complete description of the sc instruc-
tion. 

Table 4-25. Trap Instructions  

Name Mnemonic Operand Syntax Operand Syntax

Trap Doubleword 
Immediate tdi TO,rA,SIMM

The contents of rA are compared with the sign-extended SIMM operand. If 
any bit in the TO operand is set and its corresponding condition is met by 
the result of the comparison, the system trap handler is invoked.

Trap Word Imme-
diate twi TO,rA,SIMM

The contents of the low-order 32 bits of rA are compared with the sign-
extended SIMM operand. If any bit in the TO operand is set and its corre-
sponding condition is met by the result of the comparison, the system trap 
handler is invoked.

Trap Doubleword td TO,rA,rB
The contents of rA are compared with the contents of rB. If any bit in the 
TO operand is set and its corresponding condition is met by the result of 
the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB

The contents of the low-order 32 bits of rA are compared with the contents 
of the low-order 32 bits of rB. If any bit in the TO operand is set and its cor-
responding condition is met by the result of the comparison, the system 
trap handler is invoked.

Table 4-26. System Linkage Instruction—UISA  

Name Mnemonic Operand Syntax Operation

System Call sc —

This instruction calls the operating system to perform a service. 
When control is returned to the program that executed the system call, the 
content of the registers will depend on the register conventions used by 
the program providing the system service. This instruction is context syn-
chronizing as described in Section 4.1.5.1 Context Synchronizing Instruc-
tions.
See Section 4.4.1 System Linkage Instructions—OEA for a complete 
description of the sc instruction.
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4.2.5 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR), machine state 
register (MSR), and special-purpose registers (SPRs). See Section 4.3.1 Processor Control Instructions—
VEA for the mftb instruction and Section 4.4.2 Processor Control Instructions—OEA for information about the 
instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions

Table 4-27 summarizes the instructions for reading from or writing to the condition register. 

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Figure 4-28 provides a brief description of the mtspr and mfspr instructions. For more detailed information 
refer to Section 8 Instruction Set.

Table 4-27. Move to/from Condition Register Instructions  

Name Mnemonic Operand Syntax Operation

Move to Condition 
Register Fields mtcrf CRM,rS

The contents of the low-order 32 bits of rS are placed into the CR under 
control of the field mask specified by operand CRM. The field mask iden-
tifies the 4-bit fields affected. Let i be an integer in the range 0–7. If 
CRM[i] = 1, CR field i (CR bits 4 × i through 4 × i + 3) is set to the contents 
of the corresponding field of the low-order 32 bits of rS.

Move to Condition 
One Register 
Fields

mtocrf CRM,rS

This form of the mtocrf instruction is intended to replace the old form 
(mtcrf) of the instruction which will eventually be phased out of the archi-
tecture. The new form is backward compatible with most processors that 
comply with versions of the architecture that precede Version 2.01.

Move from 
Condition Register mfcr rD The contents of the CR are placed into the low-order 32 bits of rD. The 

contents of the high-order 32 bits of rD are cleared.

Move from One 
Condition Register 
Field

mfocrf rD,CRM

This form of the mfocrf instruction is intended to replace the old form 
(mfcr) of the instruction which is being phased out of the architecture. 
The new form is backward compatible with most processors that comply 
with versions of the architecture that precede Version 2.01. 
Refer to page 434 for details.

Table 4-28. Move to/from Special-Purpose Register Instructions (UISA) 

Name Mnemonic Operand Syntax Operation

Move to Special-
Purpose Register mtspr SPR,rS The value specified by rS are placed in the specified SPR. For 32-bit 

SPRs, the low-order 32 bits of rS are placed into the SPR.

Move from 
Special-Purpose 
Register 

mfspr rD,SPR
The contents of the specified SPR are placed in rD. For 32-bit SPRs, the 
low-order 32 bits of rD receive the contents of the SPR. The high-order 32 
bits of rD are cleared.
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4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with 
respect to asynchronous events, and the order in which memory operations are seen by other processors or 
memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system parameters and on the 
processor's state when the instruction is issued. As a result, frequent use of this instruction may degrade 
performance slightly. The eieio instruction may be more appropriate than sync for many cases.

The PowerPC Architecture defines the sync instruction with CR update enabled (Rc field, bit [31] = ‘1’) to be 
an invalid form.

The concept behind the use of the lwarx, ldarx, stwcx., and stdcx. instructions is that a processor may load 
a semaphore from memory, compute a result based on the value of the semaphore, and conditionally store it 
back to the same location. Examples of these semaphore operations can be found in 
Appendix D Synchronization Programming Examples. The lwarx instruction must be paired with an stwcx. 
instruction, and ldarx instruction with an stdcx. instruction, with the same effective address specified by both 
instructions of the pair. The only exception is that an unpaired stwcx. or stdcx. instruction to any (scratch) 
effective address can be used to clear any reservation held by the processor. The conditional store is 
performed based upon the existence of a reservation established by the preceding lwarx or ldarx instruction. 
If the reservation exists when the store is executed, the store is performed and a bit is set in the CR. If the 
reservation does not exist when the store is executed, the target memory location is not modified and a bit is 
cleared in the CR.

Note:  The reservation granularity is implementation-dependent.

The lwarx, ldarx, stwcx., and stdcx. primitives allow software to read a semaphore, compute a result based 
on the value of the semaphore, store the new value back into the semaphore location only if that location has 
not been modified since it was first read, and determine if the store was successful. If the store was 
successful, the sequence of instructions from the read of the semaphore to the store that updated the sema-
phore appear to have been executed atomically (that is, no other processor or mechanism modified the 
semaphore location between the read and the update), thus providing the equivalent of a real atomic opera-
tion. However, in reality, other processors may have read from the location during this operation.

The lwarx, ldarx,stwcx., and stdcx. instructions require the effective address to be aligned. 

In general, the lwarx, ldarx, stwcx., and stdcx. instructions should be used only in system programs, which 
can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated with the reservation 
can be changed by a subsequent lwarx or ldarx instruction. The conditional store is performed based upon 
the existence of a reservation established by the preceding lwarx or ldarx. instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth and fifth bullet 
items) by one of the following:

• The processor holding the reservation executes another lwarx or ldarx instruction; this clears the first 
reservation and establishes a new one.

• The processor holding the reservation executes any stwcx. or stdcx. instruction regardless of whether its 
address matches that of the lwarx.

• Some other processor executes a store or dcbz to the same reservation granule, or modifies a refer-
enced or changed bit in the same reservation granule.
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• Some other processor executes a dcbtst, dcbst, or dcbf to the same reservation granule; whether the 
reservation is cleared is undefined.

• Some other mechanism modifies a memory location in the same reservation granule.

Note:  Exceptions do not clear reservations; however, system software invoked by exceptions may clear res-
ervations.

Table 4-29 summarizes the memory synchronization instructions as defined in the UISA. See Section 4.3.2 
Memory Synchronization Instructions—VEA for details about additional memory synchronization (eieio and 
isync) instructions. 

Table 4-29. Memory Synchronization Instructions—UISA  

Name Mnemonic Operand Syntax Operation

Load Doubleword 
and Reserve 
Indexed

ldarx rD,rA,rB The EA is the sum (rA|0) + (rB). The doubleword in memory addressed by 
the EA is loaded into rD and the reservation is established.

Load Word and 
Reserve Indexed lwarx rD,rA,rB

The EA is the sum (rA|0) + (rB). The word in memory addressed by the 
EA is loaded into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are cleared.

Store Doubleword 
Conditional 
Indexed

stdcx. rS,rA,rB

The EA is the sum (rA|0) + (rB).
If a reservation exists and the effective address specified by the stdcx. 
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the contents of rS are stored into the 
doubleword in memory addressed by the EA, and the reservation is 
cleared.
If a reservation exists but the effective address specified by the stdcx. 
instruction is not the same as that specified by the load and reserve 
instruction that established the reservation, the reservation is cleared, and 
it is undefined whether the contents of rS are stored into the doubleword 
in memory addressed by the EA.
If a reservation does not exist, the instruction completes without altering 
memory or the contents of the cache.

Store Word Condi-
tional Indexed stwcx. rS,rA,rB

The EA is the sum (rA|0) + (rB).
If a reservation exists and the effective address specified by the stwcx. 
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the low-order 32 bits of rS are stored 
into the word in memory addressed by the EA, and the reservation is 
cleared.
If a reservation exists but the effective address specified by the stwcx. 
instruction is not the same as that specified by the load and reserve 
instruction that established the reservation, the reservation is cleared, and 
it is undefined whether the low-order 32 bits of rS are stored into the word 
in memory addressed by the EA.
If a reservation does not exist, the instruction completes without altering 
memory or the contents of the cache.

Synchronize sync L

Executing a sync instruction ensures that all instructions preceding the 
sync instruction appear to have completed before the sync instruction 
completes, and that no subsequent instructions are initiated by the pro-
cessor until after the sync instruction completes. When the sync instruc-
tion completes, all memory accesses caused by instructions preceding 
the sync instruction will have been performed with respect to all other 
mechanisms that access memory, on the L=0,1, and 2 variants of this 
instruction. 
See Chapter 8, Instruction Set for more information.
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Note:  The architecture is likely to be changed in the future to permit the reservation to be lost if a dcbf 
instruction is executed on the processor holding the reservation. Therefore dcbf instructions should not be 
placed between a load and reserve instruction and the subsequent store conditional instruction. 

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most 
frequently used operations (such as no-op, load immediate, load address, move register, and complement 
register). Assemblers should provide the simplified mnemonics listed in Appendix E.9 Recommended Simpli-
fied Mnemonics. Programs written to be portable across the various assemblers for the PowerPC Architec-
ture should not assume the existence of mnemonics not described in this manual. 

For a complete list of simplified mnemonics, see Appendix E Simplified Mnemonics.
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4.3 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can 
be assumed by software processes, and includes descriptions of the cache model, cache-control instructions, 
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA, 
but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA

The VEA defines the mftb instruction (user-level instruction) for reading the contents of the time base 
register; see Chapter 5, Cache Model and Memory Coherency for more information. Table 4-30 describes the 
mftb instruction.

Simplified mnemonics are provided (See Appendix E.8 Simplified Mnemonics for Special-Purpose Registers) 
for the mftb instruction so it can be coded with the TBR name as part of the mnemonic rather than requiring it 
to be coded as an operand. The simplified mnemonics Move from Time Base (mftb) and Move from Time 
Base Upper (mftbu) are variants of the mftb instruction rather than of the mfspr instruction. The mftb 
instruction serves as both a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic with 
two operands as the basic form, and an mftb mnemonic with one operand as the simplified form. 

The mftb simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR, and the 
mftbu simplified mnemonic moves from the upper half of the time base (TBU) to a GPR. 

Table 4-31 summarizes the time base (TBL/TBU) register encodings to which user-level access (using mftb) 
is permitted (as specified by the VEA). 

Table 4-30. Move from Time Base Instruction 

Name Mnemonic Operand Syntax Operation

Move from Time 
Base mftb rD, TBR

The TBR field denotes either time base lower or time base upper, 
encoded as shown in Table 4-31 and Table 4-32. The contents of the des-
ignated register are copied to rD. When reading TBU the high-order 32 
bits of rD are cleared. When reading TBL the 64 bits of the time base are 
copied to rD.

Table 4-31. User-Level TBR Encodings (VEA) 

Decimal Value in TBR Field TBR[0–4] TBR[5–9] Register Name Description

268 01100 01000 TBL Time base lower (read-only)

269 01101 01000 TBU Time base upper (read-only)
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Table 4-32 summarizes the TBL and TBU register encodings to which supervisor-level access (using mtspr) 
is permitted. 

4.3.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed with 
respect to asynchronous events, and the order in which memory operations are seen by other processors or 
memory access mechanisms. See Chapter 5, Cache Model and Memory Coherency for additional informa-
tion about these instructions and about related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the hardware signaling 
caused by a sync operation and perform the appropriate actions to guarantee that memory references that 
may be queued internally to the second-level cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order Execution of I/O 
(eieio) and Instruction Synchronize (isync) instructions; see Table 4-33. The number of cycles required to 
complete an eieio instruction depends on system parameters and on the processor's state when the instruc-
tion is issued. As a result, frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to complete, discard all 
prefetched instructions, and then branch to the next sequential instruction after isync (which has the effect of 
clearing the pipeline of prefetched instructions).

Table 4-32. Supervisor-Level TBR Encodings (VEA)  

Decimal Value in SPR Field SPR[0–4] SPR[5–9] Register Name Description

284 11100 01000 TBL1 Time base lower (write only)

285 11101 01000 TBU1 Time base upper (write only)

Note:  

1. Moving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

Table 4-33. Memory Synchronization Instructions—VEA 

Name Mnemonic Operand Syntax Operation

Enforce In-Order 
Execution of I/O eieio — The eieio instruction provides an ordering function for the effects of loads 

and stores executed by a processor. 

Instruction 
Synchronize isync —

Executing an isync instruction ensures that all previous instructions com-
plete before the isync instruction completes, although memory accesses 
caused by those instructions need not have been performed with respect 
to other processors and mechanisms. It also ensures that the processor 
initiates no subsequent instructions until the isync instruction completes. 
Finally, it causes the processor to discard any prefetched instructions, so 
subsequent instructions will be fetched and executed in the context estab-
lished by the instructions preceding the isync instruction. 
This instruction does not affect other processors or their caches.
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4.3.3 Memory Control Instructions—VEA

Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. See Section 4.4.3 
Memory Control Instructions—OEA for more information about supervisor-level cache, segment register 
manipulation, and translation lookaside buffer management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to manage on-chip caches 
if they are implemented. See Chapter 5, Cache Model and Memory Coherency for more information about 
cache topics.

As with other memory-related instructions, the effect of the cache management instructions on memory are 
weakly ordered. If the programmer needs to ensure that cache or other instructions have been performed 
with respect to all other processors and system mechanisms, a sync instruction must be placed in the 
program following those instructions.

Note:  When data address translation is disabled (MSR[DR] = ’0’), the Data Cache Block Clear to Zero 
(dcbz) instruction allocates a cache block in the cache and might not verify that the physical address 
(referred to as real address in the architecture specification) is valid. If a cache block is created for an invalid 
physical address, a machine check condition may result when an attempt is made to write that cache block 
back to memory. The cache block could be written back as a result of the execution of an instruction that 
causes a cache miss and the invalid addressed cache block is the target for replacement or a Data Cache 
Block Store (dcbst) instruction.

Table 4-34 summarizes the cache instructions defined by the VEA. 

Note:  These instructions are accessible to user-level programs. 
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Table 4-34. User-Level Cache Instructions  

Name Mnemonic Operand Syntax Operation

Data Cache Block 
Touch dcbt rA,rB

The EA is the sum (rA|0) + (rB).
This instruction is a hint that performance will probably be improved if the 
block containing the byte addressed by EA is fetched into the data cache, 
because the program will probably soon load from the addressed byte. 
The hint is ignored if the block is caching inhibited or guarded. 

Data Cache Block 
Touch for Store dcbtst rA,rB

The EA is the sum (rA|0) + (rB).
This instruction is a hint that performance will probably be improved if the 
block containing the byte addressed by EA is fetched into the data cache, 
because the program will probably soon store into the addressed byte. 
The hint is ignored if the block is caching inhibited or guarded. 

Data Cache Block 
Clear to Zero dcbz rA,rB

The EA is the sum (rA|0) + (rB). 
If the cache block containing the byte addressed by the EA is in the data 
cache, all bytes of the cache block are cleared to zero. 
If the page containing the byte addressed by the EA is not in the data 
cache and the corresponding page is marked caching allowed (I = ’0’), the 
cache block is established in the data cache without fetching the block 
from main memory, and all bytes of the cache block are cleared to zero. 
If the page containing the byte addressed by the EA is marked caching 
inhibited (WIM = ‘x1x’) or write-through (WIM = ‘1xx’), either all bytes of 
the area of main memory that corresponds to the addressed cache block 
are cleared to zero, or an alignment exception occurs.
If the cache block addressed by the EA is located in a page marked as 
memory coherent (WIM = ‘xx1’) and the cache block exists in the caches 
of other processors, memory coherence is maintained in those caches.
The dcbz instruction is treated as a store to the addressed byte with 
respect to address translation, memory protection, referenced and 
changed recording, and the ordering enforced by eieio or by the combina-
tion of caching-inhibited and guarded attributes for a page.



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Addressing Modes and Instruction Set Summary

Page 180 of 657
pem4_instr_Set.fm.3.0

July 15, 2005

Data Cache Block 
Store dcbst rA,rB

The EA is the sum(rA|0) + (rB). 
If the cache block containing the byte addressed by the EA is located in a 
page marked memory coherent (WIM = ‘xx1’), and a cache block contain-
ing the byte addressed by EA is in the data cache of any processor and 
has been modified, the cache block is written to main memory.
If the cache block containing the byte addressed by the EA is located in a 
page not marked memory coherent (WIM = ‘xx0’), and a cache block con-
taining the byte addressed by EA is in the data cache of this processor 
and has been modified, the cache block is written to main memory.
The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block 
containing the byte addressed by the EA.
The dcbst instruction is treated as a load from the addressed byte with 
respect to address translation and memory protection. It may also be 
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

Data Cache Block 
Flush dcbf rA,rB

The EA is the sum (rA|0) + (rB).
The action taken depends on the memory mode associated with the tar-
get, and on the state of the block. The following list describes the action 
taken for the various cases, regardless of whether the page or block con-
taining the addressed byte is designated as write-through or if it is in the 
caching-inhibited or caching-allowed mode.

• Coherency required (WIM = ‘xx1’)
— Unmodified block—Invalidates copies of the block in the caches of 
all processors.
— Modified block—Copies the block to memory. Invalidates copies 
of the block in the caches of all processors.
— Absent block—If modified copies of the block are in the caches of 
other processors, causes them to be copied to memory and invali-
dated. If unmodified copies are in the caches of other processors, 
causes those copies to be invalidated.

• Coherency not required (WIM = ‘xx0’)
— Unmodified block—Invalidates the block in the processor’s cache.
— Modified block—Copies the block to memory. Invalidates the 
block in the processor’s cache.
— Absent block—Does nothing.

The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block 
containing the byte addressed by the EA.
The dcbf instruction is treated as a load from the addressed byte with 
respect to address translation and memory protection. It may also be 
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

Table 4-34. User-Level Cache Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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Note:  In response to the hint provided by dcbt and dcbtst, the processor may prefetch the specified block 
into the data cache, or take other actions that reduce the latency of subsequent load or store instructions that 
refer to the block.

Instruction Cache 
Block Invalidate icbi rA,rB

The EA is the sum (rA|0) + (rB). 
If the cache block containing the byte addressed by EA is located in a 
page marked memory coherent (WIM = ‘xx1’), and a cache block contain-
ing the byte addressed by EA is in the instruction cache of any processor, 
the cache block is made invalid in all such instruction caches, so that the 
next reference causes the cache block to be refetched.
If the cache block containing the byte addressed by EA is located in a 
page not marked memory coherent (WIM = ‘xx0’), and a cache block con-
taining the byte addressed by EA is in the instruction cache of this proces-
sor, the cache block is made invalid in that instruction cache, so that the 
next reference causes the cache block to be refetched.
The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block 
containing the byte addressed by the EA.
The icbi instruction is treated as a load from the addressed byte with 
respect to address translation and memory protection. It may also be 
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur. 
Note:  The invalidation of the specified instruction cache block cannot be 
assumed to have been performed with respect to the processor executing 
the instruction until a subsequent isync instruction has been executed by 
the processor. No other instruction or event has the corresponding effect. 

Table 4-34. User-Level Cache Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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4.3.4 External Control Instructions

The external control instructions allow a user-level program to communicate with a special-purpose device. 
Two instructions are provided and are summarized in Table 4-35. 

Table 4-35. External Control Instructions 

Name Mnemonic Operand Syntax Operation

External Control In 
Word Indexed eciwx rD,rA,rB

The EA is the sum (rA|0) + (rB).
A load word request for the physical address corresponding to the EA is 
sent to the device identified by the EAR[RID] (bits [26–31]), bypassing the 
cache. The word returned by the device is placed into the low-order 32 
bits of rD. The value in the high-order 32 bits of rD is cleared to zero. The 
EA sent to the device must be word-aligned. 
This instruction is treated as a load from the addressed byte with respect 
to address translation, memory protection, referenced and changed 
recording, and the ordering performed by eieio.
This instruction is optional.

External Control 
Out Word Indexed ecowx rS,rA,rB

The EA is the sum (rA|0) + (rB).
A store word request for the physical address corresponding to the EA 
and the contents of the low-order 32 bits of rS are sent to the device iden-
tified by EAR[RID] (bits [26–31]), bypassing the cache. The EA sent to the 
device must be word-aligned. 
This instruction is treated as a store to the addressed byte with respect to 
address translation, memory protection, referenced and changed record-
ing, and the ordering performed by eieio. Software synchronization is 
required in order to ensure that the data access is performed in program 
order with respect to data accesses caused by other store or ecowx 
instructions, even though the addressed byte is assumed to be caching-
inhibited and guarded.
This instruction is optional.
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4.4 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory management 
model, supervisor-level registers, and the exception model. Implementations that conform to the OEA also 
adhere to the UISA and the VEA. This section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 4-36). The sc instruction is a user-level 
instruction that permits a user program to call on the system to perform a service and causes the processor to 
take an exception. The rfid instruction is supervisor-level instructions that are useful for returning from an 
exception handler. 

Table 4-36. System Linkage Instructions—OEA  

Name Mnemonic Operand Syntax Operation

System Call sc —

When executed, the effective address of the instruction following the sc 
instruction is placed into SRR0. Bits [33–36 and 42–47] of SRR1 are 
cleared. Additionally, bits [48–55, 57–59,and 62–63] of the MSR are 
placed into the corresponding bits of SRR1. Depending on the implemen-
tation, additional bits of MSR may also be saved in SRR1. Then a system 
call exception is generated. The exception causes the MSR to be altered 
as described in Section 6.4 Exception Definitions.
The exception causes the next instruction to be fetched from offset 
0x0000_0000_0000_0C00 from the physical base address determined by 
the value of HIOR.
This instruction is context synchronizing.

Return from 
Interrupt 
Doubleword 

rfid —

Bits [0-2, 4-32, 37-41, 48-50, 52-57, 60-63] of SRR1 are placed into the 
corresponding bits of the MSR. Depending on the implementation, addi-
tional bits of MSR may also be restored from SRR1.
If the new MSR value does not enable any pending exceptions, the next 
instruction is fetched, under control of the new MSR value, from the 
address SRR0[0–61] || ’00’ (default 64-bit mode) or (32)0 || the low-order 
32 bits of SRR0 || ’00’ (32-bit mode of 64-bit implementations). 
If the new MSR value enables one or more pending exceptions, the 
exception associated with the highest priority pending exception is gener-
ated; in this case, the value placed into SRR0 (machine status 
save/restore 0) by the exception processing mechanism is the address of 
the instruction that would have been executed next had the exception not 
occurred.
This is a supervisor-level instruction and is context-synchronizing.
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4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and write to the MSR and 
the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions

Table 4-37 summarizes the instructions used for reading from and writing to the MSR. 

Table 4-37. Move to/from Machine State Register Instructions 

Name Mnemonic Operand Syntax Operation

Move to Machine 
State Register mtmsr rS,L

The MSR is set based on the contents of register rS and the L field. 
L=’0’ The result of ORing bits [58] and [49] of register rS is placed into 

MSR[58]. The result of ORing bits [59] and [49] of register rS is 
placed into MSR[59]. Bits [32-47, 49-50, 52-57, 60-63] of register 
rS are placed into the corresponding bits of the MSR. The high 
order 32 bits of the MSR are unchanged. 

L=’’1 Bits [48, 62] of rS are placed into the corresponding bits of the 
MSR. The remaining bits of the MSR are unchanged. 

This instruction is a supervisor-level instruction. If L=’0’ this instruction is 
context synchronizing except with respect to alterations to the [LE] bit. If 
L=’1’ this instruction is execution synchronizing; in addition, the alterations 
of the [EE] and [RI] bits take effect as soon as the instruction completes. 

Move to Machine 
State Register 
Doubleword

mtmsrd rS,L

The MSR is set based on the contents of register rS and the L field. 
L=’0’ The result of ORing bits [0] and [1] of register rS is placed into 

MSR[0]. The result of ORing bits [59] and [49] of register rS is 
placed into MSR[59]. Bits [1-2, 4-47, 49, 50, 52-57, 60-63] of reg-
ister rS are placed into the corresponding bits of the MSR. The 
high order 32 bits of the MSR are unchanged. 

L=’1’ Bits [48, 62] of rS are placed into the corresponding bits of the 
MSR. The remaining bits of the MSR are unchanged. 

This instruction is a supervisor-level instruction. If L = ’0’ this instruction is 
context synchronizing except with respect to alterations to the [LE] bit. If 
L = ’1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction com-
pletes. 

Move from 
Machine State 
Register

mfmsr rD The contents of the MSR are placed into rD. This is a supervisor-level 
instruction.
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4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)

Provided is a brief description of the mtspr and mfspr instructions (see Table 4-38). For more detailed infor-
mation, see Chapter 8, Instruction Set. Simplified mnemonics are provided for the mtspr and mfspr instruc-
tions in Appendix E Simplified Mnemonics. For a discussion of context synchronization requirements when 
altering certain SPRs, refer to Appendix D Synchronization Programming Examples.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as 
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in 
the instruction encoding, with the high-order 5 bits appearing in bits [16–20] of the instruction encoding and 
the low-order 5 bits in bits [11–15].

For information on SPR encodings (both user and supervisor-level), see Chapter 8, Instruction Set.

Note:  There are additional SPRs specific to each implementation; for implementation-specific SPRs, see the 
user’s manual for your particular processor.

4.4.3 Memory Control Instructions—OEA

Memory control instructions include the following types of instructions:

• Cache management instructions (supervisor-level and user-level)

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 4.3.3 Memory Control 
Instructions—VEA for more information about user-level cache management instructions.

Table 4-38. Move to/from Special-Purpose Register Instructions (OEA)  

Name Mnemonic Operand Syntax Operation

Move to Special- 
Purpose Register mtspr SPR,rS

The SPR field denotes a special-purpose register. The contents of rS are 
placed into the designated SPR. For SPRs that are 32 bits long, the con-
tents of the low-order 32 bits of rS are placed into the SPR.
For this instruction, SPRs TBL and TBU are treated as separate 32-bit 
registers; setting one leaves the other unaltered. 

Move from 
Special- Purpose 
Register 

mfspr rD,SPR The SPR field denotes a special-purpose register. The contents of the 
designated SPR are placed into rD.
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4.4.3.1 Segment Register Manipulation Instructions

The instructions listed in Table 4-39 allow software to associate effective segments 0 through 15 with any of 
virtual segments 0 through 227- 1. SLB entries [0-15] serve as virtual Segment Registers, with SLB entry i 
used to emulate Segment Register i. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a 
selected SLB entry. The mfsr and mfsrin instructions move 32 bits from a selected SLB entry to a selected 
GPR. These instructions operate completely independent of the MSR[IR] and MSR[DR] bit settings. Refer to 
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers for serializa-
tion requirements and other recommended precautions to observe when manipulating the segment registers.

4.4.3.2 Translation and Segment Lookaside Buffer Management Instructions 

The address translation mechanism is defined in terms of segment descriptors and page table entries (PTEs) 
used by PowerPC processors to locate the logical-to-physical address mapping for a particular access. 
These segment descriptors and PTEs reside in segment tables and page tables in memory, respectively.

All implementations have a segment lookaside buffer (SLB) to cache a portion of the segment table. For 
performance reasons, most implementations have one or more translation lookaside buffers (TLB) to cache a 
portion of the page table. As changes are made to the segment and page tables, it is necessary to maintain 
coherence between these lookaside buffers and the translation tables. 

This is done by invalidating SLB or TLB entries, or occasionally by invalidating the entire SLB or TLB, and 
allowing the translation caching mechanism to refetch from the segment and page tables. For this purpose, 
each implementation provides the SLB management instructions described in Table 4-40. Each implementa-
tion that has a TLB provides a means for invalidating a single TLB entry, and a means for invalidating the 
entire TLB. If a processor does not implement a TLB, it treats the TLB managment instructions (also 
described in Table 4-40) either as no-ops or as illegal instructions.

Refer to Chapter 7, Memory Management for more information about TLB operation. Table 4-40 summarizes 
the operation of the SLB and TLB instructions. 

Table 4-39. Segment Register Manipulation Instructions  

Name Mnemonic Operand Syntax Operation

64-Bit Bridge

Move to Segment 
Register

mtsr SR,rS

The SLB entry specified by SR is loaded from register rS as described in 
Section 8.2 PowerPC Instruction Set. MSR[SF] must be ‘0’ when this 
instruction is executed, otherwise the results are boundedly undefined. 
This instruction is a supervisor-level instruction.

64-Bit Bridge

Move to Segment 
Register Indirect

mtsrin rS,rB

The SLB entry specified by rB[32-35] is loaded from rS as described in 
Section 8.2 PowerPC Instruction Set. MSR[SF] must be ‘0’ when this 
instruction is executed, otherwise the results are boundedly undefined. 
This is a supervisor-level instruction.

64-Bit Bridge

Move from Seg-
ment Register

mfsr rD,SR

This instruction must be used only to read an SLB entry that was, or could 
have been, created by mtsr or mtsrin and has not subsequently been 
invalidated. Otherwise the contents of register rD is undefined. Refer to 
Section 8.2 PowerPC Instruction Set for details.
This instruction is a supervisor-level instruction.

64-Bit Bridge

Move from Seg-
ment Register Indi-
rect

mfsrin rD,rB

This instruction must be used only to read an SLB entry that was, or could 
have been, created by mtsr or mtsrin and has not subsequently been 
invalidated. Otherwise the contents of register rD is undefined. Refer to 
Section 8.2 PowerPC Instruction Set for details.
This instruction is a supervisor-level instruction.
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Table 4-40. Lookaside Buffer Management Instructions  

Name Mnemonic Operand Syntax Operation

SLB Invalidate All slbia —

For all SLB entries, except SLB entry 0, the V-bit in the entry is set to 0, 
making the entry invalid, and all other fields undefined. SLB entry 0 is 
undefined. 
This is a supervisor-level instruction.
Note:  slbia does not affect SLBs on other processors. 

SLB Invalidate 
Entry slbie rB

The Effective Segment ID (ESID) is rB[0-35]. The class is rB[36]. The 
class value must be the same as the class value in the SLB entry that 
translates the ESID, or the class value that was in the SLB entry that most 
recently translated the ESID if the translation is no longer in the SLB. If the 
class value is not the same, the results of translating effective addresses 
for which EA[0-35] = ESID are undefined. 
The only SLB entry that is invalidated is the entry that translates the spec-
ified ESID. slbie does not affect SLBs on other processors.
If this instruction is executed in 32-bit mode, rB[0:31] must be zeros. 
This is a supervisor-level instruction.
Note:  If the optional “bridge” facility is implemented, the move to segment 
register instructions create SLB entries in which the class value = ‘0’. 

SLB Move to Entry slbmte rS,rB

The SLB entry specified by rB[52-63] is loaded from register rS and from 
the remainder of register rB. 
This instruction cannot be used to invalidate an SLB entry. 
This is a supervisor-level instruction. 
For more information refer to Section 8.2 PowerPC Instruction Set.

SLB Move from 
Entry slbmfev rS,rB

If the SLB entry specified by bits [52-63] of register rB is valid (V = ’1’), the 
contents of the VSID, Ks, Kp, N, L, and C fields of the entry are placed into 
register rS.
This is a supervisor-level instruction. 
For more information refer to Section 8.2 PowerPC Instruction Set.

SLB Move from 
Entry ESID slbmfee rS,rB

If the SLB entry specified by bits [52-63] of register rB is valid (V = ’1’), the 
contents of the ESID and V fields of the entry are placed into register rS. 
This is a supervisor-level instruction. 
For more information refer to Section 8.2 PowerPC Instruction Set.

TLB Invalidate 
Entry tlbie rB,L

The contents of rB specify the VPN of target TLB entries. See Section 8.2 
PowerPC Instruction Set for further details. If L = ’0’, target entries are for 
4KB pages, otherwise large pages. 
This instruction causes the target TLB entry to be invalidated in all proces-
sors.
The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by 
eieio (or sync or ptesync).
When this instruction is executed MSR[SF] must be one, otherwise the 
results are boundedly undefined. 
This is a supervisor-level instruction and optional in the PowerPC Archi-
tecture.
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Because the presence and exact semantics of the translation lookaside buffer management instructions is 
implementation-dependent, system software should incorporate uses of the instruction into subroutines to 
minimize compatibility problems.

TLB Invalidate 
Entry Local tlbiel rB,L

The contents of rB specify the VPN of target TLB entries. See Section 8.2 
PowerPC Instruction Set for further details. If L = ’0’, target entries are for 
4KB pages, otherwise large pages. 
Support of large pages for tlbiel is optional. 
To synchronize the completion of this processor local form of tlbie, only a 
ptesync is required. 
rB[52-63] must be zero. 
This is a supervisor-level instruction and optional.

TLB Invalidate All tlbia —

All TLB entries are made invalid. The TLB is invalidated regardless of the 
settings of MSR[IR] and MSR[DR].
This instruction does not cause the entries to be invalidated in other pro-
cessors.
This is a supervisor-level instruction and optional.

TLB Synchronize tlbsync —

Executing a tlbsync instruction ensures that all tlbie instructions previ-
ously executed by the processor executing the tlbsync instruction have 
completed on all processors.
The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by 
eieio (or sync or ptesync).
tlbsync should not be used to synchronize the completion of tlbiel. 
This is a supervisor-level instruction and optional.

Table 4-40. Lookaside Buffer Management Instructions (Continued) 

Name Mnemonic Operand Syntax Operation
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5. Cache Model and Memory Coherency 
50
80

This chapter summarizes the cache model as defined by the virtual environment architecture (VEA), as well 
as the built-in architectural controls for maintaining memory coherency. This chapter describes the cache 
control instructions and special concerns for memory coherency in single-processor and multiprocessor 
systems. Aspects of the operating environment architecture (OEA) as they relate to the cache model and 
memory coherency are also covered. 

The PowerPC Architecture provides for relaxed memory coherency. Features such as write-back caching 
and out-of-order execution allow software engineers to exploit the performance benefits of weakly-ordered 
memory access. The architecture also provides the means to control the order of accesses for order-critical 
operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache coherency. In this context, 
a system could include other devices that access system memory, maintain independent caches, and func-
tion as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA defines this cacheable 
unit as a block. Since the term ‘block’ is easily confused with the unit of memory addressed by the block 
address translation (BAT) mechanism, this chapter uses the term ‘cache block’ to indicate the cacheable unit. 
The size of the cache block can vary by instruction and by implementation. In addition, the unit of memory at 
which coherency is maintained is called the coherence block. The size of the coherence block is also imple-
mentation-specific. However, the coherence block is often the same size as the cache block.

5.1 The Virtual Environment

The User Instruction Set Architecture (UISA) relies upon a memory space of 264 bytes for applications. The 
VEA expands upon the memory model by introducing virtual memory, caches, and shared memory multipro-
cessing. Although many applications will not need to access the features introduced by the VEA, it is impor-
tant that programmers are aware that they are working in a virtual environment where the physical memory 
may be shared by multiple processes running on one or more processors. 

This section describes load and store ordering, atomicity, the cache model, memory coherency, and the VEA 
cache management instructions. The features of the VEA are accessible to both user-level and supervisor-
level applications (referred to as problem state and privileged state, respectively, in the architecture specifica-
tion).

The mechanism for controlling the virtual memory space is defined by the OEA. The features of the OEA are 
accessible to supervisor-level applications only (typically operating systems). For more information on the 
address translation mechanism, refer to Chapter 7, Memory Management. 
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5.1.1 Memory Access Ordering

The VEA specifies a weakly consistent memory model for shared memory multiprocessor systems. This 
model provides an opportunity for significantly improved performance over a model that has stronger consis-
tency rules, but places the responsibility for access ordering on the programmer. When a program requires 
strict access ordering for proper execution, the programmer must insert the appropriate ordering or synchro-
nization instructions into the program.

The order in which the processor performs memory accesses, the order in which those accesses complete in 
memory, and the order in which those accesses are viewed as occurring by another processor may all be 
different. A means of enforcing memory access ordering is provided to allow programs (or instances of 
programs) to share memory. Similar means are needed to allow programs executing on a processor to share 
memory with some other mechanism, such as an I/O device, that can also access memory. 

Various facilities are provided that enable programs to control the order in which memory accesses are 
performed by separate instructions. First, if separate store instructions access memory that is designated as 
both caching-inhibited and guarded, the accesses are performed in the order specified by the program. Refer 
to Section 5.1.4 Memory Coherency and Section 5.2.1 Memory/Cache Access Attributes for a complete 
description of the caching-inhibited and guarded attributes. Additionally, two instructions, eieio and sync, are 
provided that enable the program to control the order in which the memory accesses caused by separate 
instructions are performed. 

No ordering should be assumed among the memory accesses caused by a single instruction (that is, by an 
instruction for which multiple accesses are not atomic), and no means are provided for controlling that order. 
Chapter 4, Addressing Modes and Instruction Set Summary contains additional information about the sync 
and eieio instructions.

5.1.1.1 Enforce In-Order Execution of I/O Instruction

The eieio instruction permits the program to control the order in which loads and stores are performed when 
the accessed memory has certain attributes, as described in Chapter 8, Instruction Set. For example, eieio 
can be used to ensure that a sequence of load and store operations to an I/O device’s control registers 
updates those registers in the desired order. The eieio instruction can also be used to ensure that all stores 
to a shared data structure are visible to other processors before the store that releases the lock is visible to 
them.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio 
instruction have been performed with respect to system memory or coherent storage as appropriate.

If stronger ordering is desired, the sync instruction must be used.

5.1.1.2 Synchronize Instruction

When a portion of memory that requires coherency must be forced to a known state, it is necessary to 
synchronize memory with respect to other processors and mechanisms. This synchronization is accom-
plished by requiring programs to indicate explicitly in the instruction stream, by inserting a sync instruction, 
that synchronization is required. Only when sync completes are the effects of all coherent memory accesses 
previously executed by the program guaranteed to have been performed with respect to all other processors 
and mechanisms that access those locations coherently.
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The sync instruction ensures that all the coherent memory accesses, initiated by a program, have been 
performed with respect to all other processors and mechanisms that access the target locations coherently, 
before its next instruction is executed. A program can use this instruction to ensure that all updates to a 
shared data structure, accessed coherently, are visible to all other processors that access the data structure 
coherently, before executing a store that will release a lock on that data structure. Execution of the sync 
instruction does the following:

• Performs the functions described for the sync instruction in Section 4.2.6 Memory Synchronization 
Instructions—UISA.

• Ensures that consistency operations, and the effects of icbi, dcbz, dcbst, and dcbf instructions previ-
ously executed by the processor executing sync, have completed on such other processors as the mem-
ory/cache access attributes of the target locations require.

• Ensures that TLB invalidate operations previously executed by the processor executing the sync have 
completed on that processor. The sync instruction does not wait for such invalidates to complete on other 
processors. 

• Ensures that memory accesses due to instructions previously executed by the processor executing the 
sync are recorded in the R and C bits in the page table and that the new values of those bits are visible to 
all processors and mechanisms; refer to Section 7.4.3 Page History Recording.

The sync instruction is execution synchronizing. It is not context synchronizing, and therefore need not 
discard prefetched instructions.

For memory that does not require coherency, the sync instruction operates as described above except that 
its only effect on memory operations is to ensure that all previous memory operations have completed, with 
respect to the processor executing the sync instruction, to the level of memory specified by the 
memory/cache access attributes (including the updating of R and C bits).

See Chapter 8, Instruction Set for a description of the sync instruction, including the L=’1’ (lwsync) and 
L=’2’ (ptesync) variants.

5.1.2 Atomicity

An access is atomic if it is always performed in its entirety with no visible fragmentation. Atomic accesses are 
thus serialized—each happens in its entirety in some order, even when that order is neither specified in the 
program nor enforced between processors. 

Only the following single-register accesses are guaranteed to be atomic:

• Byte accesses (all bytes are aligned on byte boundaries)

• Halfword accesses aligned on halfword boundaries

• Word accesses aligned on word boundaries

• Doubleword accesses aligned on doubleword boundaries 

No other accesses are guaranteed to be atomic. In particular, the accesses caused by the following instruc-
tions are not guaranteed to be atomic:

• Load and store instructions with misaligned operands

• lmw, stmw, lswi, lswx, stswi, or stswx instructions

• Any cache management instructions
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The ldarx/stdcx. and lwarx/stwcx. instruction combinations can be used to perform atomic memory refer-
ences. The ldarx instruction is a load from a doubleword–aligned location that has two side effects:

1. A reservation for a subsequent  instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the memory location accessed 
by the ldarx.

The stdcx. instruction is a store to a doubleword–aligned location that is conditioned on the existence of the 
reservation created by ldarx and on whether the same memory location is specified by both instructions and 
whether the instructions are issued by the same processor.

The lwarx and stwcx. instructions are the word-aligned forms of the ldarx and stwcx. instructions. To 
emulate an atomic operation with these instructions, it is necessary that both ldarx and stdcx. (or lwarx and 
stwcx.) access the same memory location. 

Note:  When a reservation is made to a word in memory by the lwarx or ldarx instruction, an address is 
saved and a reservation is set. Both of these are necessary for the memory coherence mechanism, however, 
some processors do not implement the address compare for the stwcx. instruction. Only the reservation 
needs to be established in order for the stwcx./stdcx. to be successful. This requires that exception handlers 
clear reservations if control is passed to another program. Programmers should read the specifications for 
each individual processor.

In a multiprocessor system, every processor (other than the one executing ldarx/stdcx. or lwarx/stwcx.) that 
might update the location must configure the addressed page as memory coherency required. The 
ldarx/stdcx. and lwarx/stwcx. instructions function in caching-inhibited, as well as in caching-allowed, 
memory. If the addressed memory is in write-through mode, it is implementation-dependent whether these 
instructions function correctly or cause the DSI exception handler to be invoked.

The ldarx/stdcx. and lwarx/stwcx. instruction combinations are described in Section 4.2.6 Memory 
Synchronization Instructions—UISA and Chapter 8, Instruction Set. 

5.1.3 Cache Model

The PowerPC Architecture does not specify the type, organization, implementation, or even the existence of 
a cache. The standard cache model has separate instruction and data caches, also known as a Harvard 
cache model. However, the architecture allows for many different cache types. Some implementations will 
have a unified cache (where there is a single cache for both instructions and data). Other implementations 
may not have a cache at all. 

The function of the cache management instructions depends on the implementation of the cache(s) and the 
setting of the memory/cache access modes. For a program to execute properly on all implementations, soft-
ware should use the Harvard model. In cases where a processor is implemented without a cache, the archi-
tecture guarantees that instructions affecting the nonimplemented cache will not halt execution.

Note:  dcbz may cause an alignment exception on some implementations. For example, a processor with no 
cache may treat a cache instruction as a no-op. Or, a processor with a unified cache may treat the icbi 
instruction as a no-op. In this manner, programs written for separate instruction and data caches will run on 
all compliant implementations. 
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5.1.4 Memory Coherency 

The primary objective of a coherent memory system is to provide the same image of memory to all devices 
using the system. The VEA and OEA define coherency controls that facilitate synchronization, cooperative 
use of shared resources, and task migration among processors. These controls include the memory/cache 
access attributes, the sync and eieio instructions, and the ldarx/stdcx. and lwarx/stwcx. instruction pairs. 
Without these controls, the processor could not support a weakly-ordered memory access model. 

A strongly-ordered memory access model hinders performance by requiring excessive overhead, particularly 
in multiprocessor environments. For example, a processor performing a store operation in a strongly-ordered 
system requires exclusive access to an address before making an update, to prevent another device from 
using stale data.

The VEA defines a page as a unit of memory for which protection and control attributes are independently 
specifiable. The OEA (supervisor level) specifies the size of a page as 4 Kbytes or a large page whose size is 
implementation dependent. 

Note:  The VEA (user level) does not specify the page size.

5.1.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement these modes. 
Refer to Section 5.2.1 Memory/Cache Access Attributes for more information. However, the VEA specifies 
that at the user level, the operating system can be expected to provide the following attributes for each page 
of memory: 

• Write-through or write-back
• Caching-inhibited or caching-allowed
• Memory coherency required or memory coherency not required
• Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating system service.

Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache and also update 
the data in main memory. The processor writes to the cache and through to main memory. Load operations 
use the data in the cache, if it is present. 

In write-back mode, the processor is only required to update data in the cache. The processor may (but is not 
required to) update main memory. Load and store operations use the data in the cache, if it is present. The 
data in main memory does not necessarily stay consistent with that same location’s data in the cache. Many 
implementations automatically update main memory in response to a memory access by another device (for 
example, a snoop hit). In addition, the dcbst and dcbf instructions can be used to explicitly force an update of 
main memory. 

The write-through attribute is meaningless for locations designated as caching-inhibited.
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Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and performs load and 
store operations to main memory. When a page is designated as caching-allowed, the processor uses the 
cache and performs load and store operations to the cache or main memory depending on the other 
memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the memory/cache 
access attribute for the page from caching-allowed to caching-inhibited. It is considered a programming error 
if a caching-inhibited memory location is found in the cache. Software must ensure that the location has not 
previously been brought into the cache, or, if it has, that it has been flushed from the cache. If the program-
ming error occurs, the result of the access is boundedly undefined.

Pages Designated as Memory Coherency Required

When a page is designated as memory coherency required, store operations to that location are serialized 
with all stores to that same location by all other processors that also access the location coherently. This can 
be implemented, for example, by an ownership protocol that allows at most one processor at a time to store 
to the location. Moreover, the current copy of a cache block that is in this mode may be copied to main 
storage any number of times, for example, by successive dcbst instructions.

Coherency does not ensure that the result of a store by one processor is visible immediately to all other 
processors and mechanisms. Only after a program has executed the sync instruction are the previous 
storage accesses it executed guaranteed to have been performed with respect to all other processors and 
mechanisms.

Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must ensure that the data 
cache is consistent with main storage before changing the mode or allowing another device to access the 
area. 

Executing a dcbst or dcbf instruction specifying a cache block that is in this mode causes the block to be 
copied to main memory if and only if the processor modified the contents of a location in the block and the 
modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory coherency; therefore, 
using memory coherency not required mode improves performance. 

Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Out-of-Order Accesses to Guarded Memory 
on page 203 for more information about out-of-order execution.

When a page is designated as guarded, instructions and data cannot be accessed out of order. Additionally, 
if separate store instructions access memory that is both caching-inhibited and guarded, the accesses are 
performed in the order specified by the program. When a page is designated as not guarded, out-of-order 
fetches and accesses are allowed.

Guarded pages are traditionally used for memory-mapped I/O devices.
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5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor and multi-
processor systems. When the memory/cache access attributes are changed, it is critical that the cache 
contents reflect the new attribute settings. For example, if a page that had allowed caching becomes caching-
inhibited, the appropriate cache blocks should be flushed to leave no indication that caching had previously 
been allowed.

Although coherency paradoxes are considered programming errors, specific implementations may attempt to 
handle the offending conditions and minimize the negative effects on memory coherency. Bus operations that 
are generated for specific instructions and state conditions are not defined by the architecture.

5.1.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For implementations that 
have a unified instruction/data cache, instruction cache control instructions are valid instructions, but may 
function differently. 

This section briefly describes the cache management instructions available to programs at the user privilege 
level. Additional descriptions of coding the VEA cache management instructions is provided in Chapter 4, 
Addressing Modes and Instruction Set Summary and Chapter 8, Instruction Set. In the following instruction 
descriptions, the target is the cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified), memory, and I/O data 
transfers. To ensure consistency, aliased effective addresses (two effective addresses that map to the same 
physical address) must have the same page offset. 

Note:  Physical address is referred to as real address in the architecture specification.

Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of software-initiated prefetch 
hints. However, these instructions do not guarantee that a cache block will be fetched.

A program uses the dcbt instruction to request a cache block fetch before it is needed by the program. The 
program can then use the data from the cache rather than fetching from main memory. 

The dcbtst instruction behaves similarly to the dcbt instruction. A program uses dcbtst to request a cache 
block fetch to guarantee that a subsequent store will be to a cached location. 

The processor does not invoke the exception handler for translation or protection violations caused by either 
of the touch instructions. Additionally, memory accesses caused by these instructions are not necessarily 
recorded in the page tables. If an access is recorded, then it is treated in a manner similar to that of a load 
from the addressed byte. Some implementations may not take any action based on the execution of these 
instructions, or they may prefetch the cache block corresponding to the effective address into their cache. For 
information about the R and C bits, see Section 7.4.3 Page History Recording.

Both dcbt and dcbtst are provided for performance optimization. These instructions do not affect the correct 
execution of a program, regardless of whether they succeed (fetch the cache block) or fail (do not fetch the 
cache block). If the target block is not accessible to the program for loads, then no operation occurs.
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Data Cache Block Set to Zero (dcbz) Instruction

The dcbz instruction clears a single cache block as follows:

• If the target is in the data cache, all bytes of the cache block are cleared.

• If the target is not in the data cache and the corresponding page is caching-allowed, the cache block is 
established in the data cache (without fetching the cache block from main memory), and all bytes of the 
cache block are cleared.

• If the target is designated as either caching-inhibited or write-through, then either all bytes in main mem-
ory that correspond to the addressed cache block are cleared, or the alignment exception handler is 
invoked. The exception handler should clear all the bytes in main memory that correspond to the 
addressed cache block.

• If the target is designated as coherency required, and the cache block exists in the data cache(s) of any 
other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address translation, protec-
tion, referenced and changed recording, and the ordering enforced by eieio or by the combination of caching-
inhibited and guarded attributes for a page.

Refer to Chapter 6, Exceptions for more information about a possible delayed machine check exception that 
can occur by using dcbz when the operating system has set up an incorrect memory mapping.

Data Cache Block Store (dcbst) Instruction

The dcbst instruction permits the program to ensure that the latest version of the target cache block is in 
main memory. The dcbst instruction executes as follows:

• Coherency required—If the target exists in the data cache of any processor and has been modified, the 
data is written to main memory. Only one processor in a multiprocessor system should have possession 
of a modified cache block.

• Coherency not required—If the target exists in the data cache of the executing processor and has been 
modified, the data is written to main memory.

The PowerPC Architecture does not specify whether the modified status of the cache block is left unchanged 
or is cleared (cleared implies valid-shared or valid-exclusive). That decision is left to the implementation of 
individual processors. Either state is logically correct. 

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbst instruction is not necessarily recorded in the page tables. If the 
access is recorded, then it is treated as a load operation (not as a store operation).
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Data Cache Block Flush (dcbf) Instruction

The action taken depends on the memory/cache access mode associated with the target, and on the state of 
the cache block. The following list describes the action taken for the various cases:

• Coherency required

– Unmodified cache block—Invalidates copies of the cache block in the data caches of all processors.

– Modified cache block—Copies the cache block to memory. Invalidates the copy of the cache block in 
the data cache of any processor where it is found. There should only be one modified cache block in 
a coherency required multiprocessor system.

– Target block not in cache—If a modified copy of the cache block is in the data cache(s) of another 
processor, dcbf causes the modified cache block to be copied to memory and then invalidated. If 
unmodified copies are in the data caches of other processors, dcbf causes those copies to be invali-
dated.

• Coherency not required

– Unmodified cache block—Invalidates the cache block in the executing processor's data cache.

– Modified cache block—Copies the data cache block to memory and then invalidates the cache block 
in the executing processor. 

– Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbf instruction is not necessarily recorded in the page tables. If the access 
is recorded, then it is treated as a load operation (not as a store operation).

5.1.5.2 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory, or I/O data trans-
fers. Software must use the appropriate cache management instructions to ensure that instruction caches are 
kept coherent when instructions are modified by the processor or by input data transfer. When a processor 
alters a memory location that may be contained in an instruction cache, software must ensure that updates to 
memory are visible to the instruction fetching mechanism. Although the instructions to enforce consistency 
vary among implementations, the following sequence for a uniprocessor system is typical:

1. dcbst (update memory)

2. sync (wait for update)

3. icbi (invalidate copy in instruction cache)

4. isync (perform context synchronization)

Note:  Most operating systems will provide a system service for this function. These operations are neces-
sary because the memory may be designated as write-back. Since instruction fetching may bypass the data 
cache, changes made to items in the data cache may not otherwise be reflected in memory until after the 
instruction fetch completes.
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For implementations used in multiprocessor systems, variations on this sequence may be recommended. For 
example, in a multiprocessor system with a unified instruction/data cache (at any level), if instructions are 
fetched without coherency being enforced, the preceding instruction sequence is inadequate. Because the 
icbi instruction does not invalidate blocks in a unified cache, a dcbf instruction should be used instead of a 
dcbst instruction for this case.

Instruction Cache Block Invalidate Instruction (icbi)

The icbi instruction executes as follows: 

• Coherency required
If the target is in the instruction cache of any processor, the cache block is made invalid in all such pro-
cessors, so that the next reference causes the cache block to be refetched.

• Coherency not required
If the target is in the instruction cache of the executing processor, the cache block is made invalid in the 
executing processor so that the next reference causes the cache block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data caches. The effective 
address is computed, translated, and checked for protection violations as defined in Chapter 7, Memory 
Management. If the target block is not accessible to the program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by an icbi instruction is not necessarily recorded in the page tables. If the 
access is recorded, then it is treated as a load operation. Implementations that have a unified cache treat the 
icbi instruction as a no-op except that they may invalidate the target cache block in the instruction caches of 
other processors (in coherency required mode). 

Note:  The invalidation of the specified instruction cache block cannot be assumed to have been performed 
with respect to the processor executing the instruction until a subsequent isync instruction has been exe-
cuted by the processor. No other instruction or event has the corresponding effect. 

Instruction Synchronize Instruction (isync)

The isync instruction provides an ordering function for the effects of all instructions executed by a processor. 
Executing an isync instruction ensures that all instructions preceding the isync instruction have completed 
before the isync instruction completes, except that memory accesses caused by those instructions need not 
have been performed with respect to other processors and mechanisms. It also ensures that no subsequent 
instructions are initiated by the processor until after the isync instruction completes. Finally, it causes the 
processor to discard any prefetched instructions, with the effect that subsequent instructions will be fetched 
and executed in the context established by the instructions preceding the isync instruction. The isync 
instruction has no effect on other processors or on their caches.
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5.2 The Operating Environment

The OEA defines the mechanism for controlling the memory/cache access modes introduced in 
Section 5.1.4.1 Memory/Cache Access Modes. This section describes the cache-related aspects of the OEA 
including the memory/cache access attributes, out-of-order execution, and the dcbi instruction. The features 
of the OEA are accessible to supervisor-level applications only. The mechanism for controlling the virtual 
memory space is described in Chapter 7, Memory Management.

The memory model of PowerPC processors provides the following features:

• Flexibility to allow performance benefits of weakly-ordered memory access

• A mechanism to maintain memory coherency among processors and between a processor and I/O 
devices controlled at the block and page level

• Instructions that can be used to ensure a consistent memory state

• Guaranteed processor access order

The memory implementations in PowerPC systems can take advantage of the performance benefits of weak 
ordering of memory accesses between processors or between processors and other external devices without 
any additional complications. Memory coherency can be enforced externally by a snooping bus design, a 
centralized cache directory design, or other designs that can take advantage of the coherency features of 
PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from the view of the 
programming model but may complete out of order with respect to the ultimate destination in the memory 
hierarchy. Order is guaranteed at each level of the memory hierarchy for accesses to the same address from 
the same processor. The dcbf, dcbst, eieio, icbi, isync, ldarx, lwarx, stdcx., stwcx., sync, and tlbsync 
instructions allow the programmer to ensure a consistent and ordered memory state. 

5.2.1 Memory/Cache Access Attributes

All instruction and data accesses are performed under the control of the four memory/cache access 
attributes:

• Write-through (W attribute)

• Caching-inhibited (I attribute)

• Memory coherency (M attribute)

• Guarded (G attribute)

These attributes are maintained in the PTEs by the operating system for each page. The operating system 
stores the WIMG bits for each page into the PTEs in system memory as it sets up the page tables. The W and 
I attributes control how the processor performing an access uses its own cache. The M attribute ensures that 
coherency is maintained for all copies of the addressed memory location. When an access requires coher-
ency, the processor performing the access must inform the coherency mechanisms throughout the system 
that the access requires memory coherency. The G attribute prevents out-of-order loading and prefetching 
from the addressed memory location.

Note:  The memory/cache access attributes are relevant only when an effective address is translated by the 
processor performing the access. Also, not all combinations of settings of these bits are supported. The 
attributes are not saved along with data in the cache (for cacheable accesses), nor are they associated with 
subsequent accesses made by other processors.
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Note:  For data accesses performed in real addressing mode (MSR[DR] = ‘0’), the WIMG bits are assumed to 
be ‘0011’ (the data is write-back, caching is enabled, memory coherency is enforced, and memory is 
guarded). For instruction accesses performed in real addressing mode (MSR[IR] = ‘0’), the WIMG bits are 
assumed to be ‘0001’ (the data is write-back, caching is enabled, memory coherency is not enforced, and 
memory is guarded).

5.2.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = ‘1’), if the data is in the cache, a store operation updates 
the cached copy of the data. In addition, the update is written to the memory location. The definition of the 
memory location to be written to (in addition to the cache) depends on the implementation of the memory 
system but can be illustrated by the following examples:

• RAM—The store is sent to the RAM controller to be written into the target RAM.

• I/O device—The store is sent to the memory-mapped I/O controller to be written to the target register or 
memory location.

In systems with multilevel caching, the store must be written to at least a depth in the memory hierarchy that 
is seen by all processors and devices.

Multiple store instructions may be combined for write-through accesses except when the store instructions 
are separated by a sync or eieio instruction. A store operation to a memory location designated as write-
through may cause any part of the cache block to be written back to main memory.

Accesses that correspond to W = ‘0’ are considered write-back. For this case, although the store operation is 
performed to the cache, the data is copied to memory only when a copy-back operation is required. Use of 
the write-back mode (W = ‘0’) can improve overall performance for areas of the memory space that are 
seldom referenced by other processors or devices in the system. 

Accesses to the same memory location using two effective addresses for which the W-bit setting differs meet 
the memory-coherency requirements if the accesses are performed by a single processor. If the accesses 
are performed by two or more processors, coherence is enforced by the hardware only if the write-through 
attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (I)

If I=’1’, the memory access is completed by referencing the location in main memory, bypassing the cache. 
During the access, the addressed location is not loaded into the cache nor is the location allocated in the 
cache. 

It is considered a programming error if a copy of the target location of an access to caching-inhibited memory 
is resident in the cache. Software must ensure that the location has not been previously loaded into the 
cache, or if it has, that it has been flushed from the cache. 

Data accesses from more than one instruction may be combined for cache-inhibited operations, except when 
the accesses are separated by a sync instruction, or by an eieio instruction when the page is also designated 
as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory location using two 
effective addresses for which the I-bit setting differs must meet the requirement that a copy of the target loca-
tion of an access to caching-inhibited memory not be in the cache. Violation of this requirement is considered 
a programming error; software must ensure that the location has not previously been brought into the cache 
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or, if it has, that it has been flushed from the cache. If the programming error occurs, the result of the access 
is boundedly undefined. It is not considered a programming error if the target location of any other cache 
management instruction to caching-inhibited memory is in the cache. 

5.2.1.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-enforced coherency is 
relatively slow, and software is able to enforce the required coherency. When M=’0’, there are no require-
ments to enforce data coherency. When M=’1’, the processor enforces data coherency. 

When the M attribute is set, and the access is performed to memory, there is a hardware indication to the rest 
of the system that the access is global. Other processors affected by the access must then respond to this 
global access. For example, in a snooping bus design, the processor may assert some type of global access 
signal. Other processors affected by the access respond and signal whether the data is being shared. If the 
data in another processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some implementations may 
ignore the M attribute for instruction accesses. In a single-processor (or single-cache) system, performance 
might be improved by designating all pages as memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M-bit settings differ may 
require explicit software synchronization before accessing the location with M = ‘1’ if the location has previ-
ously been accessed with M = ‘0’. Any such requirement is system-dependent. For example, no software 
synchronization may be required for systems that use bus snooping. In some directory-based systems, soft-
ware may be required to execute dcbf instructions on each processor to flush all storage locations accessed 
with M=’0’ before accessing those locations with M=’1’.

5.2.1.4 W, I, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The combinations where 
WIM = ‘11x’ are not supported. 

Note:  Either a ‘0’ or ‘1’ setting for the G-bit is allowed for each of these WIM bit combinations. 

Table 5-1. Combinations of W, I, and M Bits  

WIM Setting Meaning

000
The processor may cache data (or instructions). 
A load or store operation whose target hits in the cache may use that entry in the cache. 
The processor does not need to enforce memory coherency for accesses it initiates.

001
Data (or instructions) may be cached. 
A load or store operation whose target hits in the cache may use that entry in the cache. 
The processor enforces memory coherency for accesses it initiates.

010
Caching is inhibited. 
The access is performed to memory, completely bypassing the cache. 
The processor does not need to enforce memory coherency for accesses it initiates.
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5.2.1.5 Guarded Attribute (G)

When the guarded bit is set, the memory area (page) is designated as guarded. This setting can be used to 
protect certain pages from read accesses made by the processor that are not dictated directly by the 
program. If there are areas of physical memory that are not fully populated (in other words, there are holes in 
the physical memory map within this area), this setting can protect the system from undesired accesses 
caused by out-of-order load operations or instruction prefetches that could lead to the generation of the 
machine check exception. Also, the guarded bit can be used to prevent out-of-order (speculative) load opera-
tions or prefetches from occurring to certain peripheral devices that produce undesired results when 
accessed in this way. 

Performing Operations Out of Order

An operation is said to be performed in-order if it is guaranteed to be required by the sequential execution 
model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results will be needed by 
an instruction that will be required by the sequential execution model. Whether the results are really needed 
is contingent on everything that might divert the control flow away from the instruction, such as branch, trap, 
system call, and return from interrupt instructions, and exceptions, and on everything that might change the 
context in which the instruction is executed.

Typically, the hardware performs operations out of order when it has resources that would otherwise be idle, 
so the operation incurs little or no cost. If subsequent events such as branches or exceptions indicate that the 
operation would not have been performed in the sequential execution model, the processor abandons any 
results of the operation (except as described below).

Most operations can be performed out of order, as long as the machine appears to follow the sequential 
execution model. Certain out-of-order operations are restricted, as follows.

• Stores – A store instruction may not be executed out of order in a manner such that the alteration of the 
target location can be observed by other processors or mechanisms.

• Accessing guarded memory – The restrictions for this case are given in Out-of-Order Accesses to 
Guarded Memory on page 203.

011
Caching is inhibited. 
The access is performed to memory, completely bypassing the cache. 
The processor enforces memory coherency for accesses it initiates.

100

Data (or instructions) may be cached. 
A load operation whose target hits in the cache may use that entry in the cache. 
Store operations are written to memory. The target location of the store may be cached and is updated on a hit. 
The processor does not need to enforce memory coherency for accesses it initiates.

101

Data (or instructions) may be cached. 
A load operation whose target hits in the cache may use that entry in the cache. 
Store operations are written to memory. The target location of the store may be cached and is updated on a hit. 
The processor enforces memory coherency for accesses it initiates.

Table 5-1. Combinations of W, I, and M Bits (Continued) 

WIM Setting Meaning
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No error of any kind other than a machine check exception may be reported due to an operation that is 
performed out of order, until such time as it is known that the operation is required by the sequential execu-
tion model. The only other permitted side effects (other than machine check) of performing an operation out 
of order are the following:

• Referenced and changed bits may be set as described in Section 7.2.5 Page History Information.

• Nonguarded memory locations that could be fetched into a cache by in-order execution may be fetched 
out of order into that cache.

Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not defective, and if 
the effects of a single access to it are indistinguishable from the effects of multiple identical accesses to it. 
Data and instructions can be fetched out of order from well-behaved memory without causing undesired side 
effects.

Memory is said to be guarded if either:
(a) the G-bit is ’1’ in the relevant PTE or 
(b) the processor is in real addressing mode (MSR[IR] = ‘0’ or MSR[DR] = ‘0’ for instruction fetches or data 
accesses respectively). 

In case (b), all of memory is guarded for the corresponding accesses. In general, memory that is not well-
behaved should be guarded. Because such memory may represent an I/O device or may include locations 
that do not exist, an out-of-order access to such memory may cause an I/O device to perform incorrect oper-
ations or may result in a machine check.

Note:  If separate store instructions access memory that is both caching-inhibited and guarded, the accesses 
are performed in the order specified by the program. If an aligned, elementary load or store to caching-inhib-
ited, guarded memory has accessed main memory and an external, decrementer, or imprecise-mode float-
ing-point enabled exception is pending, the load or store is completed before the exception is taken.

Out-of-Order Accesses to Guarded Memory

The circumstances in which guarded memory may be accessed out of order are as follows:

• Load instruction – If a copy of the target location is in a cache, the location may be accessed in the cache 
or in main memory.

• Instruction fetch – In real addressing mode (MSR[IR] = ‘0’), an instruction may be fetched if any of the fol-
lowing conditions is met:

– The instruction is in a cache. In this case, it may be fetched from that cache.

– The instruction is in the same physical page as an instruction that is required by the sequential execu-
tion model or is in the physical page immediately following such a page.

If MSR[IR] = ‘1’, instructions may not be fetched from either no-execute segments or guarded memory. If 
the effective address of the current instruction is mapped to either of these kinds of memory when 
MSR[IR] = ‘1’, an ISI exception is generated. However, it is permissible for an instruction from either of 
these kinds of memory to be in the instruction cache if it was fetched into that cache when its effective 
address was mapped to some other kind of memory. Thus, for example, the operating system can 
access an application's instruction segments as no-execute without having to invalidate them in the 
instruction cache.
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Note:  Software should ensure that only well-behaved memory is loaded into a cache, either by marking as 
caching-inhibited (and guarded) all memory that may not be well-behaved, or by marking such memory cach-
ing-allowed (and guarded) and referring only to cache blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode (MSR[IR] = ‘0’), soft-
ware should ensure that this physical page and the next physical page contain only well-behaved memory.

5.2.2 I/O Interface Considerations

Memory-mapped I/O interface operations are considered to address memory space and are therefore subject 
to the same coherency control as memory accesses. Depending on the specific I/O interface, the 
memory/cache access attributes (WIMG) and the degree of access ordering (requiring eieio or sync instruc-
tions) need to be considered. This is the recommended way of accessing I/O. 
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6.  Exceptions
60
90

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism 
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions may be defined at other levels of the architecture. For example, the user instruc-
tion set architecture (UISA) defines conditions that may cause floating-point exceptions; the OEA defines the 
mechanism by which the exception is taken. 

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of 
external signals, errors, or unusual conditions arising in the execution of instructions. When exceptions occur, 
information about the state of the processor is saved to certain registers and the processor begins execution 
at an address (exception vector) predetermined for each exception. Processing of exceptions begins in 
supervisor mode. 

Although multiple exception conditions can map to a single exception vector, a more specific condition may 
be determined by examining a register associated with the exception—for example, the DSISR and the 
floating-point status and control register (FPSCR). Additionally, certain exception conditions can be explicitly 
enabled or disabled by software. 

The PowerPC Architecture requires that exceptions be taken in program order; therefore, although a partic-
ular implementation may recognize exception conditions out of order, they are handled strictly in order with 
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted 
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute 
state, are required to complete before the exception is taken. For example, if a single instruction encounters 
multiple exception conditions, those exceptions are taken and handled sequentially. Likewise, exceptions that 
are asynchronous and precise are recognized when they occur, but are not handled until all instructions 
currently in the execute stage successfully complete execution and report their results.

Note:  Exceptions can occur while an exception handler routine is executing, and multiple exceptions can 
become nested. It is up to the exception handler to save the appropriate machine state if it is desired to allow 
control to ultimately return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to execute the instruc-
tion that caused the exception. Instruction execution continues until the next exception condition is encoun-
tered. This method of recognizing and handling exception conditions sequentially guarantees that the 
machine state is recoverable and processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information stored in SRR0 and 
SRR1 soon after the exception is taken to prevent this information from being lost due to another exception 
being taken. 

In this chapter, the following terminology is used to describe the various stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is identified by 
the processor. 

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler; that is, the context is saved and the instruction at the appropriate vector offset is 
fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset. Excep-
tion handling is begun in supervisor mode (referred to as privileged state in the architecture 
specification).
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6.1 Exception Classes

As specified by the PowerPC Architecture, all exceptions can be described as either precise or imprecise and 
either synchronous or asynchronous. Asynchronous exceptions are caused by events external to the 
processor’s execution; synchronous exceptions are caused by instructions. 

The PowerPC exception types are shown in Table 6-1.

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The exception 
vectors described in the table correspond to physical address locations, relative to address 0. Refer to 
Section 7.2.1.2 Predefined Physical Memory Locations for a complete list of the predefined physical memory 
areas. Remaining sections in this chapter provide more complete descriptions of the exceptions and of the 
conditions that cause them. 

Table 6-1. PowerPC Exception Classifications  

Type Exception 

Asynchronous/nonmaskable
Machine Check
System Reset

Asynchronous/maskable
External interrupt
Decrementer

Synchronous/Precise Instruction-caused exceptions, excluding floating-point imprecise exceptions

Synchronous/Imprecise
Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Table 6-2. Exceptions and Conditions—Overview  

Exception Type Vector Offset (hex) Causing Conditions

System reset 00100

The causes of system reset exceptions are implementation-dependent. If the conditions that 
cause the exception also cause the processor state to be corrupted such that the contents of 
SRR0 and SRR1 are no longer valid or such that other processor resources are so corrupted 
that the processor cannot reliably resume execution, the copy of the RI bit copied from the 
MSR to SRR1 is cleared. 

Machine check 00200

The causes for machine check exceptions are implementation-dependent, but typically these 
causes are related to conditions such as bus parity errors or attempting to access an invalid 
physical address. Typically, these exceptions are triggered by an input signal to the processor.
Note:  Not all processors provide the same level of error checking. 

The machine check exception is disabled when MSR[ME] = ’0’. If a machine check exception 
condition exists and the ME bit is cleared, the processor goes into the checkstop state.
If the conditions that cause the exception also cause the processor state to be corrupted such 
that the contents of SRR0 and SRR1 are no longer valid or such that other processor 
resources are so corrupted that the processor cannot reliably resume execution, the copy of 
the RI bit written from the MSR to SRR1 is cleared.
Note:  The physical address is referred to as real address in the architecture specification.)

DSI 00300

A DSI exception occurs when a data memory access cannot be performed for any of the rea-
sons described in Section 6.4.3 DSI Exception (0x00300). Such accesses can be generated 
by load/store instructions, certain memory control instructions, and certain cache control 
instructions.

Data Segment 00380
A Data Segment interrupt occurs if MSR[DR] = ’1’ and the translation of the effective address 
of any byte of the specified storage location is not found in the SLB. Refer to Section 6.4.4 
Data Segment Exception (0x00380) for details. 

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed for a variety of reasons 
described in Section 6.4.5 ISI Exception (0x00400).
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Instruction 
Segment 00480

An instruction segment exception occurs when no higher priority exception exists and next 
instruction to be executed cannot be fetched because instruction address translation is 
enabled (MSR[IR]=1) and the effective address cannot be translated to a virtual address.

External interrupt 00500 An external interrupt is generated only when an external interrupt is pending (typically sig-
nalled by a signal defined by the implementation) and the interrupt is enabled (MSR[EE] = ’1’).

Alignment 00600

An alignment exception may occur when the processor cannot perform a memory access for 
reasons described in Section 6.4.8 Alignment Exception (0x00600).
Note:  An implementation is allowed to perform the operation correctly and not cause an align-
ment exception. 

Program 00700

A program exception is caused by one of the following exception conditions, which correspond 
to bit settings in SRR1 and arise during execution of an instruction:

• Floating-point enabled exception—A floating-point enabled exception condition is gener-
ated when MSR[FE0–FE1] ≠ ‘00’ and FPSCR[FEX] is set. The settings of FE0 and FE1 
are described in Table 6-3.
FPSCR[FEX] is set by the execution of a floating-point instruction that causes an enabled 
exception or by the execution of a Move to FPSCR instruction that sets both an exception 
condition bit and its corresponding enable bit in the FPSCR. These exceptions are 
described in Section 3.3.6 Floating-Point Program Exceptions.”

• Illegal instruction—An illegal instruction program exception is generated when execution 
of an instruction is attempted with an illegal opcode or illegal combination of opcode and 
extended opcode fields or when execution of an optional instruction not provided in the 
specific implementation is attempted (these do not include those optional instructions that 
are treated as no-ops). The PowerPC instruction set is described in Chapter 4, “Address-
ing Modes and Instruction Set Summary.” See Section 6.4.9 Program Exception 
(0x00700) for a complete list of causes for an illegal instruction program exception.

• Privileged instruction—A privileged instruction type program exception is generated when 
the execution of a privileged instruction is attempted and the MSR user privilege bit, 
MSR[PR], is set. This exception is also generated for mtspr or mfspr with an invalid SPR 
field if spr[0] = ’1’ and MSR[PR] = ’1’.

• Trap—A trap type program exception is generated when any of the conditions specified in 
a trap instruction is met. 

For more information, refer to Section 6.4.9 Program Exception (0x00700).”

Floating-point 
unavailable 00800

A floating-point unavailable exception is caused by an attempt to execute a floating-point 
instruction (including floating-point load, store, and move instructions) when the floating-point 
available bit is cleared, MSR[FP] = ’0’.

Decrementer 00900
The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] = ’1’), and it 
is pending. The exception is created when the most-significant bit of the decrementer changes 
from 0 to 1. If it is not enabled, the exception remains pending until it is taken.

Reserved 00A00 This is reserved for implementation-specific exceptions. 

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed. 

Trace 00D00

Implementation of the trace exception is optional. If implemented, it occurs if either the 
MSR[SE] = ’1’ and almost any instruction successfully completed or MSR[BE] = ’1’ and a 
branch instruction is completed. See Section 6.4.13 Trace Exception (0x00D00) for more infor-
mation.

Reserved 00E00–00FFF —

Performance 
monitor 00F00

The performance monitor exception is part of the optional performance monitor facility. If the 
performance monitor facility is not implemented or does not use this interrupt, the correspond-
ing interrupt vector is treated as reserved. 

Reserved 01000–02FFF This is reserved for implementation-specific purposes. May be used for implementation-spe-
cific exception vectors or other uses.

Table 6-2. Exceptions and Conditions—Overview  (Continued) 

Exception Type Vector Offset (hex) Causing Conditions
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6.1.1 Precise Exceptions

When any precise exception occurs, SRR0 points to either the instruction causing the exception or the 
instruction immediately following. The exception type and status bits determine which instruction is 
addressed. However, depending on the exception type, the instruction addressed by SRR0 and those 
following it might have started, but might not have completed execution. 

When an exception occurs, instruction dispatch (the issuance of instructions by the instruction fetch unit to 
any instruction execution mechanism) is halted and the following synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction stream to complete to a 
point where they will not report any exceptions.

2. The processor ensures that all previous instructions in the instruction stream complete in the context in 
which they began execution.

3. The exception mechanism implemented in hardware (the loading of registers SRR0 and SRR1) and the 
software handler (saving SRR0 and SRR1 in the stack and updating stack pointer, etc.) are responsible 
for saving and restoring the processor state.

The synchronization described conforms to the requirements for context synchronization. A complete 
description of context synchronization is described in Section 6.1.2.1 Context Synchronization. 

6.1.2 Synchronization

The synchronization described in this section refers to the state of activities within the processor that 
performs the synchronization.

6.1.2.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies all the requirements listed below. Such instruc-
tions and events are collectively called context-synchronizing operations. Examples of context-synchronizing 
operations include the isync, sc, and rfid instructions, the mtmsr[d] instruction if L = ‘0’, and most excep-
tions. A context-synchronizing operation has the following characteristics:

1. The operation causes instruction fetching and dispatching (the issuance of instructions by the instruction 
fetch mechanism to any instruction execution mechanism) to be halted.

2. The operation is not initiated or, in the case of isync, does not complete, until all instructions in execution 
have completed to a point at which they have reported all exceptions they will cause. 

3. The operation ensures that the instructions that precede the operation will complete execution in the con-
text (privilege, relocation, memory protection, etc.) in which they were initiated, except that the operation 
has no effect on the context in which the associated Reference and Change bit updates are performed.

4. If the operation either directly causes an exception (for example, the sc instruction causes a system call 
exception) or is an exception, then the operation is not initiated until there is no exception having a higher 
priority than the exception associated with the context-synchronizing operation. 

5. The operation ensures that the instructions that follow the operation will be fetched and executed in the 
context established by the operation. (This requirement dictates that any prefetched instructions be dis-
carded and that any effects and side effects of executing them out-of-order also be discarded, except as 
described in the Section  Out-of-Order Accesses to Guarded Memory.) 
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A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync instruction, a 
context-synchronizing operation need not wait for memory-related operations to complete on this or other 
processors, or for Referenced and Changed bits in the page table to be updated.

6.1.2.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for 
context synchronization. The sync and ptesync instructions are treated like isync with respect to the second 
item described above (that is, the conditions described in the second item apply to the completion of sync). 
The sync and mtmsr instructions are examples of execution-synchronizing instructions.

All context-synchronizing instructions are execution-synchronizing. Unlike a context-synchronizing operation, 
an execution-synchronizing instruction need not ensure that the subsequent instructions execute in the 
context established by this and previous instructions. This new context becomes effective sometime after the 
execution-synchronizing instruction completes and before or at a subsequent context-synchronizing opera-
tion.

6.1.2.3 Synchronous/Precise Exceptions

When instruction execution causes a precise exception, the following conditions exist at the exception point:

• SRR0 always points to the instruction causing the exception except for the sc instruction. In this case 
SRR0 points to the immediately following instruction. The instruction addressed can be determined from 
the exception type and status bits, which are defined in the description of each exception. In all cases 
SRR0 points to the first instruction that has not completed execution. The sc instruction always com-
pletes execution, updates the instruction pointer and reports the exception. Hence, SRR0 points to the 
instructions following sc.

• All instructions that precede the excepting instruction complete to a point where they will not report 
exceptions before the exception is processed. However, some memory accesses generated by these pre-
ceding instructions may not have been performed with respect to all other processors or system devices. 

• The instruction causing the exception may not have begun execution, may have partially completed, or 
may have completed, depending on the exception type. Handling of partially executed instructions is 
described in Section 6.1.4 Partially Executed Instructions.

• Architecturally, no subsequent instruction has begun execution. 

While instruction parallelism allows the possibility of multiple instructions reporting exceptions during the 
same cycle, they are handled one at a time in program order. Exception priorities are described in 
Section 6.1.5 Exception Priorities.
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6.1.2.4 Asynchronous Exceptions

There are four asynchronous exceptions—system reset and machine check, which are nonmaskable and 
highest-priority exceptions, and external interrupt and decrementer exceptions which are maskable and low-
priority. These two types of asynchronous exceptions are discussed separately.

System Reset and Machine Check Exceptions

System reset and machine check exceptions have the highest priority and can occur while other exceptions 
are being processed. 

Note:  Nonmaskable, asynchronous exceptions are never delayed; therefore, if two of these exceptions occur 
in immediate succession, the state information saved by the first exception may be overwritten when the sub-
sequent exception occurs. Also, these exceptions are context-synchronizing if they are recoverable; the sys-
tem uses the MSR[RI] to detect whether an exception is recoverable.

While a system is running the MSR[RI] bit is set. When an exception occurs a copy of the MSR register is 
stored in SRR1. Then most bits in the MSR are cleared including the RI bit with various exceptions (see the 
exceptions types for new setting of the MSR bits). The exception handler saves the state of the machine 
(saving SRR0 and SRR1 into the stack and updating the stack pointer) to a point that it can incur another 
exception. At this point the exception handler sets the MSR[RI] bit. Also the external interrupt can be re-
enabled. Now you can clearly understand that if the exception handler ever sees in the SRR1 register a case 
where the MSR[RI] bit is not set, the exception is not recoverable (because the exception occurred while the 
machine state was being saved) and a system restart procedure should be initiated.

System reset and machine check exceptions cannot be masked by using the MSR[EE] bit. Furthermore, if the 
machine check enable bit, MSR[ME], is cleared and a machine check exception condition occurs, the 
processor goes directly into checkstop state as the result of the exception condition. Clearly, one never wants 
to run in this mode (MSR[ME] cleared) for extended periods of time. When one of these exceptions occur, the 
following conditions exist at the exception point:

• For system reset exceptions, SRR0 addresses the instruction that would have attempted to execute next 
if the exception had not occurred.

• For machine check exceptions, SRR0 holds either an instruction that would have completed or some 
instruction following it that would have completed if the exception had not occurred.

• An exception is generated such that all instructions preceding the instruction addressed by SRR0 appear 
to have completed with respect to the executing processor.

Note:  MSR[RI] indicates whether enough of the machine state was saved to allow the processor to resume 
processing.
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External Interrupt and Decrementer Exceptions

For the external interrupt and decrementer exceptions, the following conditions exist at the exception point 
(assuming these exceptions are enabled (MSR[EE] bit is set)):

• All instructions issued before the exception is taken and any instructions that precede those instructions 
in the instruction stream appear to have completed before the exception is processed. 

• No subsequent instructions in the instruction stream have begun execution. 

• SRR0 addresses the first instruction that has not completed execution. 

That is, these exceptions are context-synchronizing. The external interrupt and decrementer exceptions are 
maskable. When the machine state register external interrupt enable bit is cleared (MSR[EE] = ’0’), these 
exception conditions are not recognized until the EE bit is set. MSR[EE] is cleared automatically when an 
exception is taken, to delay recognition of subsequent exception conditions. No two precise exceptions can 
be recognized simultaneously. Exception handling does not begin until all currently executing instructions 
complete and any synchronous, precise exceptions caused by those instructions have been handled. Excep-
tion priorities are described in Section 6.1.5 Exception Priorities.

6.1.3 Imprecise Exceptions

The PowerPC Architecture defines one imprecise exception, the imprecise mode floating-point enabled 
exception. This is implemented as one of the conditions that can cause a program exception. 

6.1.3.1 Imprecise Exception Status Description

When the execution of an instruction causes an imprecise exception, SRR0 contains information related to 
the address of the excepting instruction as follows:

• SRR0 addresses either the instruction causing the exception or some instruction following the instruction 
causing the exception that generated the interrupt.

• The exception is generated such that all instructions preceding the instruction addressed by SRR0 have 
completed with respect to the processor.

• If the imprecise exception is caused by the context-synchronizing mechanism (due to an instruction that 
caused another exception—for example, an alignment or DSI exception), then SRR0 contains the 
address of the instruction that caused the exception, and that instruction may have been partially exe-
cuted (refer to Section 6.1.4 Partially Executed Instructions).

• If the imprecise exception is caused by an execution-synchronizing instruction other than sync, isync, or 
ptesync, then SRR0 addresses the instruction causing the exception. Additionally, besides causing the 
exception, that instruction is considered not to have begun execution. If the exception is caused by the 
sync, isync, or ptesync instruction, SRR0 may address either the sync, isync, or ptesync instruction, 
or the following instruction.

• If the imprecise exception is not forced by either the context-synchronizing mechanism or the execution-
synchronizing mechanism, then the instruction addressed by SRR0 is considered not to have begun exe-
cution if it is not the instruction that caused the exception.

• When an imprecise exception occurs, no instruction following the instruction addressed by SRR0 is con-
sidered to have begun execution.
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6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions

The enabled IEEE floating-point exception mode bits in the MSR (FE0 and FE1) together define whether 
IEEE floating-point exceptions are handled precisely, imprecisely, or whether they are taken at all. The 
possible settings are shown in Table 6-3. For further details, see Section 3.3.6 Floating-Point Program 
Exceptions.

As shown in the table, the imprecise floating-point enabled exception has two modes—nonrecoverable and 
recoverable. These modes are specified by setting the MSR[FE0] and MSR[FE1] bits and are described as 
follows:

• Imprecise nonrecoverable floating-point enabled mode. MSR[FE0] = ’0’; MSR[FE1] = ‘1’. When an excep-
tion occurs, the exception handler is invoked at some point at or beyond the instruction that caused the 
exception. It may not be possible to identify the offending instruction or the data that caused the excep-
tion. Results from the offending instruction may have been used by or affected data of subsequent 
instructions executed before the exception handler was invoked.

• Imprecise recoverable floating-point enabled mode. MSR[FE0] = ’1’; MSR[FE1] = ’0’. When an exception 
occurs, the floating-point enabled exception handler is invoked at some point at or beyond the offending 
instruction that caused the exception. Sufficient information is provided to the exception handler that it 
can identify the offending instruction and correct any faulty data. In this mode, no incorrect data caused 
by the offending instruction have been used by or affected data of subsequent instructions that are exe-
cuted before the exception handler is invoked. 

Although these exceptions are maskable with these bits, they differ from other maskable exceptions in that 
the masking is usually controlled by the application program rather than by the operating system.

Table 6-3. IEEE Floating-Point Program Exception Mode Bits  

FE0 FE1 Mode

0 0 Floating-point exceptions ignored

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable

1 1 Floating-point precise mode
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6.1.4 Partially Executed Instructions

The architecture permits certain instructions to be partially executed when an alignment exception or DSI 
exception occurs, or an imprecise floating-point exception is forced by an instruction that causes an align-
ment or DSI exception. They are as follows:

• Load multiple/string instructions that cause an alignment or DSI exception—Some registers in the range 
of registers to be loaded may have been loaded.

• Store multiple/string instructions that cause an alignment or DSI exception—Some bytes in the 
addressed memory range may have been updated.

• Non-multiple/string store instructions that cause an alignment or DSI exception—Some bytes just before 
the boundary may have been updated. If the instruction normally alters CR0 (stwcx. or stdcx.), CR0 is 
set to an undefined value. For instructions that perform register updates, the update register (rA) is not 
altered.

• Floating-point load instructions that cause an alignment or DSI exception—The target register may be 
altered. For update forms, the update register (rA) is not altered.

In the cases above, the number of registers and the amount of memory altered are implementation, instruc-
tion, and boundary-dependent. However, memory protection is not violated.

Note:  An exception may result in the partial execution of a Load or Store instruction. For example, if the 
Page Table Entry that translates the address of the memory operand is altered, by a program running on 
another processor, such that the new contents of the Page Table Entry preclude performing the access, the 
alteration could cause the Load or Store instruction to be aborted after having been partially executed.

Partial execution is not allowed when integer load operations (except multiple/string operations) cause an 
alignment or DSI exception. The target register is not altered. For update forms of the integer load instruc-
tions, the update register (rA) is not altered.

6.1.5 Exception Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—system reset and 
machine check exceptions (although the machine check exception condition can be disabled so that the 
condition causes the processor to go directly into the checkstop state). These two types of exceptions in 
this class cannot be delayed by exceptions in other classes, and do not wait for the completion of any pre-
cise exception handling. 

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order. 

3. If an imprecise exception exists (the instruction that caused the exception has been completed and is 
required by the sequential execution model), exceptions signaled by instructions subsequent to the 
instruction that caused the exception are not permitted to change the architectural state of the processor. 
The exception causes an imprecise program exception unless a machine check or system reset excep-
tion is pending.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions) have lowest priority. 

The exceptions are listed in Table 6-4 in order of highest to lowest priority. 
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Table 6-4. Exception Priorities  

Exception Class Priority Exception

Nonmaskable, 
asynchronous

1

System reset—The system reset exception has the highest priority of all exceptions. If this exception 
exists, the exception mechanism ignores all other exceptions and generates a system reset exception. 
When the system reset exception is generated, previously issued instructions can no longer generate 
exception conditions that cause a nonmaskable exception.

2

Machine check—The machine check exception is the second-highest priority exception. If this exception 
occurs, the exception mechanism ignores all other exceptions (except reset) and generates a machine 
check exception. When the machine check exception is generated, previously issued instructions can no 
longer generate exception conditions that cause a nonmaskable exception.

Synchronous, 
precise 3

Instruction dependent— When an instruction causes an exception, the exception mechanism waits for 
any instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions 
caused by these instructions are handled first. It then generates the appropriate exception if no higher 
priority exception exists when the exception is to be generated. 
Note:  A single instruction can cause multiple exceptions. When this occurs, those exceptions are 
ordered in priority as indicated in the following:

A. Integer loads and stores
a. Program-illegal instruction
b. DSI, Data Segment, or Alignment
c. Trace (if implemented)

B. Floating-point loads and stores
a. Program-illegal instruction
b. Floating-point unavailable
c. DSI, Data Segment, or Alignment
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented)

D. rfid and mtmsrd (or mtmsr)
a. Program—Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsrd (or mtmsr) only
If precise-mode IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is 
set, a program exception occurs no later than the next synchronizing event.

E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
—Program: Trap
— System call (sc)
—Program: Privileged Instruction
—Program: Illegal Instruction
b. Trace (if implemented)

F. ISI or Instruction Segment exception
The ISI or Instruction Segment exception has the lowest priority in this category. It is only recog-
nized when all instructions prior to the instruction causing this exception appear to have com-
pleted and that instruction is to be executed. The priority of this exception is specified for 
completeness and to ensure that it is not given more favorable treatment. An implementation 
can treat this exception as though it had a lower priority.
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Nonmaskable, asynchronous exceptions (namely, system reset or machine check exceptions) may occur at 
any time. That is, these exceptions are not delayed if another exception is being handled (although machine 
check exceptions can be delayed by system reset exceptions). As a result, state information for the inter-
rupted exception handler may be lost. 

All other exceptions have lower priority than system reset and machine check exceptions, and the exception 
might not be taken immediately when it is recognized. Only one synchronous, precise exception can be 
reported at a time. If a maskable, asynchronous or an imprecise exception condition occurs while instruction-
caused exceptions are being processed, its handling is delayed until all exceptions caused by previous 
instructions in the program flow are handled and those instructions complete execution. 

6.2 Exception Processing

Associated with each kind of exception is an exception vector, which contains the initial sequence of instruc-
tions that is executed when the corresponding exception occurs. Exception processing consists of saving a 
small part of the processor's state in certain registers, identifying the cause of the exception in other registers, 
and continuing execution at the corresponding exception vector location. 

When an exception is taken, the processor uses the save/restore registers, SRR1 and SRR0, respectively, to 
save the contents of the MSR for the interrupted process and to help determine where instruction execution 
should resume after the exception is handled.

When an exception occurs, the address saved in SRR0 is used to help calculate where instruction processing 
should resume when the exception handler returns control to the interrupted process. Depending on the 
exception, this may be the address in SRR0 or at the next address in the program flow. All instructions in the 
program flow preceding this one will have completed execution and no subsequent instruction will have 
completed execution. This may be the address of the instruction that caused the exception or the next one 
(as in the case of a system call or trap exception). The SRR0 register is shown in Figure 6-1.

Imprecise 4

Program imprecise floating-point mode enabled exceptions—When this exception occurs, the exception 
handler is invoked at or beyond the floating-point instruction that caused the exception. The PowerPC 
Architecture supports recoverable and nonrecoverable imprecise modes, which are enabled by setting 
MSR[FE0-FE1] = ‘10’ or ‘01’, respectively. For more information see, Section 6.1.3 Imprecise Excep-
tions.

Maskable, 
asynchronous

5

External interrupt—The external interrupt mechanism waits for instructions currently or previously dis-
patched to complete execution. After all such instructions are completed, and any exceptions caused by 
those instructions have been handled, the exception mechanism generates this exception if no higher 
priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is zero when 
the exception is detected, it is delayed until the bit is set. 

5

Decrementer—This exception is the lowest priority exception. When this exception is created, the excep-
tion mechanism waits for all other possible exceptions to be reported. It then generates this exception if 
no higher priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is 
zero when the exception is detected, it is delayed until the bit is set. 

Table 6-4. Exception Priorities (Continued) 

Exception Class Priority Exception
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The save/restore register 1 (SRR1) is used to save machine status (selected bits from the MSR and other 
implementation-specific status bits as well) on exceptions and to restore those values when rfid is executed. 
SRR1 is shown in Figure 6-2.

When an exception occurs, SRR1 bits [33–36] and [42–47] are loaded with exception-specific information 
and MSR bits [0, 48–55, 57–59,62–63] are placed into the corresponding bit positions of SRR1. Depending 
on the implementation, additional bits of the MSR may be copied to SRR1.

Note:  In some implementations, every instruction fetch when MSR[IR] = ’1’, and every data access requiring 
address translation when MSR[DR] = ’1’, can modify SRR0 and SRR1.

The MSR bits are shown in Figure 6-3. 

Figure 6-1. Machine Status Save/Restore Register 0 

Figure 6-2. Machine Status Save/Restore Register 1 

Figure 6-3. Machine State Register (MSR)  
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Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings  

Bit(s) Name Description

0 SF
Sixty-four bit mode
0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.

1 — Reserved

64-BIT BRIDGE

2
ISF

Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF] to select 64 or 
32-bit mode for the context established by the exception.
Note:  If the bridge function is not implemented, this bit is treated as reserved.

3–44 — Reserved

45 POW

Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note:  Power management functions are implementation-dependent. If the function is not implemented, this 
bit is treated as reserved.

46 — Reserved

47 ILE
This is part of the optional little-endian facility. If the little-endian facility is implemented, and an exception 
occurs, this bit is copied into MSR[LE] to select the endian mode for the context established by the excep-
tion.

48 EE

External interrupt enable 
0 While the bit is cleared, the processor delays recognition of external interrupts and decrementer 

exception conditions. 
1 The processor is enabled to take an external interrupt or the decrementer exception.

49 PR

Privilege level 
0 The processor can execute both user and supervisor-level instructions.
1 The processor can only execute user-level instructions.
Note:  Any instruction or event that set MSR[PR] also sets MSR[EE], MSR[IR], and MSR[DR].

50 FP

Floating-point available 
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, 

and moves.
1 The processor can execute floating-point instructions.

51 ME

Machine check enable 
0 Machine check exceptions are disabled. 
1 Machine check exceptions are enabled.
Note:  The only instruction that can alter MSR[ME] is the rfid instruction. 

52 FE0 Floating-point exception mode 0 (see Table 2-8).

53 SE

Single-step trace enable (Optional)
0 The processor executes instructions normally. 
1 The processor generates a single-step trace exception upon the successful execution of the next 

instruction (unless that instruction is rfid, which is never trace). Successful completion means that 
the instruction caused no other interrupt. 

Note:  If the function is not implemented, this bit is treated as reserved.

54 BE

Branch trace enable (Optional)
0 The processor executes branch instructions normally. 
1 The processor generates a branch trace exception after completing the execution of a branch 

instruction, regardless of whether the branch was taken. 
Note:  If the function is not implemented, this bit is treated as reserved.

55 FE1 Floating-point exception mode 1 (See Table 2-8).



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Exceptions

Page 218 of 657
pem6_exceptions.fm.3.0

July 15, 2005

.

When an exception occurs instruction fetching, dispatching, decoding of instructions stops. The processor 
waits until all previous instructions have completed to a point where no other exceptions will be reported. 
SRR0 is loaded with the address where program execution will resume when the exception has been 
processed. SRR1 is loaded with the MSR register along with any status bits for this exception. A new value is 
loaded into the MSR and instruction execution resumes at the entry point for the exception handler under the 
influence of the new MSR.

The data address register (DAR) may be used by several exceptions (for example, DSI and alignment excep-
tions) to identify the address of a memory element.

56 — Reserved

57 — Reserved

58 IR

Instruction address translation   
0 Instruction address translation is disabled. 
1 Instruction address translation is enabled.
For more information, see Chapter 7, Memory Management.

59 DR

Data address translation   
0 Data address translation is disabled. 
1 Data address translation is enabled.
For more information, see Chapter 7, Memory Management.

60 — Reserved

61 PMM Performance monitor mark. This bit is part of the optional performance monitor facility. If the performance 
monitor facility is not implemented or does not use this bit, then this bit is treated as reserved. 

62 RI 

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable. 
1 Exception is recoverable.
For more information, see Chapter 6, Exceptions.

63 LE

This is part of the optional little-endian facility. If the little-endian facility is implemented, then the bit has the 
following meaning:
0 The processor runs in big-endian mode. 
1 The processor runs in little-endian mode.
If the little-endian facility is not implemented or does not use this bit, then this bit is treated as reserved.

TEMPORARY 64-BIT BRIDGE

Bit [2] of the MSR (MSR[ISF]) may optionally be used by a 64-bit implementation to control the mode 
(64-bit or 32-bit) that is entered when an exception is taken. If this bit is implemented, it has the following 
properties:

• When an exception is taken, the value of MSR[ISF] is copied to MSR[SF].

• When an exception is taken, MSR[ISF] is not altered.

• No software synchronization is required before or after altering MSR[ISF]. Refer to Section 2.3.16 
Synchronization Requirements for Special Registers and for Lookaside Buffers for more information 
on synchronization requirements for altering other bits in the MSR. 

If the MSR[ISF] bit is not implemented, it is treated as reserved except that the value is assumed to be 
‘1’ for exception processing. 

Table 6-5. MSR Bit Settings (Continued) 

Bit(s) Name Description
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6.2.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the 
exception is enabled for that condition as follows: 

• IEEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FE0] 
and MSR[FE1] are cleared. If either of these bits is set, all IEEE enabled floating-point exceptions are 
taken and cause a program exception. 

• Asynchronous, maskable exceptions (that is, the external and decrementer interrupts) are enabled by 
setting the MSR[EE] bit. When MSR[EE] = ’0’, recognition of these exception conditions is delayed. 
MSR[EE] is cleared automatically when an exception is taken, to delay recognition of conditions causing 
those exceptions.

• A machine check exception can only occur if the machine check enable bit, MSR[ME], is set. If MSR[ME] 
is cleared, the processor goes directly into a checkstop state when a machine check exception condition 
occurs.

6.2.2 Steps for Exception Processing 

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions 
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled 
for the exception condition), the processor does the following: 

1. The machine status save/restore register 0 (SRR0) is loaded with an instruction address that depends on 
the type of exception. See the individual exception description for details about how this register is used 
for specific exceptions. Normally, SRR0 contains the address to the first instruction to execute if the 
exception handler resumes program execution.

2. SRR1 bits [33–36] and [42–47] are loaded with information specific to the exception type.

3. SRR1 bits [0-32, 37-41, 48–63] are loaded with a copy of the corresponding bits of the MSR. 
Depending on the implementation, additional bits from the MSR may be saved in SRR1.

4. The MSR is set as described in Table 6-6. The new values take effect beginning with the fetching of the 
first instruction of the exception-handler routine located at the exception vector address. 

Note:  MSR[IR] and MSR[DR] are cleared for all exception types; therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine. The MSR[ILE] bit setting at the time of the exception is copied to MSR[LE] when the 
exception is taken (as shown in Table 6-6). 

TEMPORARY 64-BIT BRIDGE

Similar to MSR[ILE], the MSR[ISF] bit setting at the time of the exception is copied to MSR[SF] when 
the exception is taken (if the ISF bit is implemented). 
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5. The MSR[RI] bit is cleared. This indicates that the interrupt handler is operating in the “window-of-vulner-
ability” and cannot recover if another exception now occurs. After the machine state is saved (SRR0 and 
SRR1) and stack pointer has been updated, the exception handler sets this bit to indicate that it could 
now handle another exception. See System Reset and Machine Check Exceptions on page 210 for more 
details. 

6. Instruction fetch and execution resumes, using the new MSR value, at the address specified by the 
exception’s vector offset. For a machine check exception that occurs when MSR[ME] = ’0’ (machine 
check exceptions are disabled), the checkstop state is entered (the machine stops executing instruc-
tions). See Section 6.4.2 Machine Check Exception (0x00200).

In some implementations, any instruction fetch with MSR[IR] = ’1’ and any load or store with MSR[DR] = ’1’ 
might cause SRR0 and SRR1 to be modified.

Note:  Exceptions do not clear reservations obtained with lwarx or ldarx. 

6.2.3 Returning from an Exception Handler

The Return from Interrupt Doubleword (rfid) instruction performs context synchronization by allowing previ-
ously issued instructions to complete before returning to the interrupted process. Execution of the rfid instruc-
tion ensures the following:

• All previous instructions have completed to a point where they can no longer cause an exception. 

• Previous instructions complete execution in the context (privilege, protection, and address translation) 
under which they were issued.

• The rfid instruction copies SRR1 bits back into the MSR. 

• The instructions following this instruction execute in the context established by this instruction.

For a complete description of context synchronization, refer to Section 6.1.2.1 Context Synchronization. 

6.3 Process Switching

The operating system should execute the following when processes are switched: 

• The sync instruction, which orders the effects of instruction execution. All instructions previously initiated 
appear to have completed before the sync instruction completes, and no subsequent instructions appear 
to be initiated until the sync instruction completes. 

• The isync/rfid instruction, which waits for all previous instructions to complete and then discards any 
fetched instructions, causing subsequent instructions to be fetched (or refetched) from memory and to 
execute in the context (privilege, translation, protection, etc.) established by the previous instructions. 

• The stwcx./stdcx. instruction, to clear any outstanding reservations, which ensures that an lwarx/ldarx 
instruction in the old process is not paired with an stwcx./stdcx. instruction in the new process. This is 
necessary because some implementations of the PowerPC Architecture do not do an address compare 
when the stwcx./stdcx. is executed. Only the reservation is required for the stwcx./stdcx. to be success-
ful. 

The operating system should handle MSR[RI] as follows:

• In machine check and system reset exception handlers—if the SRR1 bit corresponding to MSR[RI] is 
cleared, the exception is not recoverable. 
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• In each exception handler—when enough state information has been saved that a machine check or sys-
tem reset exception can reconstruct the previous state, set MSR[RI].

• At the end of each exception handler—clear MSR[RI], set the SRR0 and SRR1 registers appropriately, 
update stack pointers, and then execute rfid.

Note:  The [RI] bit being set indicates that, with respect to the processor, enough processor state data is valid 
for the processor to continue, but it does not guarantee that the interrupted process can resume.

6.4 Exception Definitions

Table 6-6 shows all the types of exceptions that can occur and certain MSR bit settings when the exception 
handler is invoked. Depending on the exception, certain of these bits are stored in SRR1 when an exception 
is taken. The following subsections describe each exception in detail. 

Table 6-6. MSR Setting Due to Exception   

Exception Type 
MSR Bit

SF1,2 ISF2 POW ILE EE PR FP ME FE0 SE BE FE1 PMM IR DR RI LE

System reset 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Machine check 1 — 0 — 0 0 0 0 0 0 0 0 0 0 0 0 ILE

DSI 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Data segment 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

ISI 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Instruction 
Segment 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

External 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Alignment 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Program 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Floating-point 
unavailable 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Decrementer 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

System call 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Trace exception 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

Performance 
Monitor 1 — 0 — 0 0 0 — 0 0 0 0 0 0 0 0 ILE

0 Bit is cleared.
1 Bit is set.
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered.
Reading of reserved bits may return 0, even if the value last written to it was 1.
164-bit implementations only. 

Temporary 64-Bit Bridge
2 When the 64-bit bridge is implemented in a 64-bit processor and the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is cop-
ied to the MSR[SF] bit when an exception is taken.
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6.4.1 System Reset Exception (0x00100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the processor typically 
through the assertion of a system-defined signal; see Table 6-7. 
.

When a system reset exception is taken, instruction execution continues at effective address 
0x0000_0000_0000_0100. 

If the exception is recoverable, the value of the MSR[RI] bit is copied to the corresponding SRR1 bit. The 
exception functions as a context-synchronizing operation. If a reset exception causes the loss of:

• A machine check exception, 

• An external exception (interrupt or decrementer),

• Floating-point enabled type program exception,

then the exception is not recoverable. If the SRR1 bit corresponding to MSR[RI] is cleared, the exception is 
context-synchronizing only with respect to subsequent instructions. 

Note:  Each implementation provides a means for software to distinguish between power-on reset and other 
types of system resets (such as soft reset). 

Table 6-7. System Reset Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present. 

SRR1

0
33–36
42–47
48–55
57–59
62

63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable; otherwise 
cleared. 
Loaded with equivalent bit from the MSR

Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

If the processor state is corrupted to the extent that execution cannot resume reliably, the bit corresponding to 
MSR[RI], (SRR1[62] in 64-bit implementations and SRR1[30] in 32-bit implementations), is cleared.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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6.4.2 Machine Check Exception (0x00200)

If no higher-priority exception is pending (namely, a system reset exception), the processor initiates a 
machine check exception when the appropriate condition is detected. 

Note:  The causes of machine check exceptions are implementation and system-dependent, and are typically 
signalled to the processor by the assertion of a specified signal on the processor interface. 

When a machine check condition occurs and MSR[ME] = ’1’, the exception is recognized and handled. If 
MSR[ME] = ’0’ and a machine check occurs, the processor generates an internal checkstop condition. When 
a processor is in checkstop state, instruction processing is suspended and generally cannot continue without 
resetting the processor. Some implementations may preserve some or all of the internal state of the 
processor when entering the checkstop state, so that the state can be analyzed as an aid in problem determi-
nation.

In general, it is expected that a bus error signal would be used by a memory controller to indicate a memory 
parity error or an uncorrectable memory ECC error. 

Note:  The resulting machine check exception has priority over any exceptions caused by the instruction that 
generated the bus operation. 

If a machine check exception causes an exception that is not context-synchronizing, the exception is not 
recoverable. Also, a machine check exception is not recoverable if it causes the loss of one of the following:

• An external exception (interrupt or decrementer)

• Floating-point enabled type program exception

If the SRR1 bit corresponding to MSR[RI] is cleared, the exception is context-synchronizing only with respect 
to subsequent instructions. If the exception is recoverable, the SRR1 bit corresponding to MSR[RI] is set and 
the exception is context-synchronizing. 

Note:  If the error is caused by the memory subsystem, incorrect data could be loaded into the processor and 
register contents could be corrupted regardless of whether the exception is considered recoverable by the 
SRR1 bit corresponding to MSR[RI].

On some implementations, a machine check exception may be caused by referring to a nonexistent physical 
(real) address, either because translation is disabled (MSR[IR] or MSR[DR] = ’0’) or through an invalid trans-
lation. On such a system, execution of the dcbz instruction can cause a delayed machine check exception by 
introducing a block into the data cache that is associated with an invalid physical (real) address. A machine 
check exception could eventually occur when and if a subsequent attempt is made to store that block to 
memory (for example, as the block becomes the target for replacement, or as the result of executing a dcbst 
instruction).
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When a machine check exception is taken, registers are updated as shown in Table 6-8. 

If MSR[RI] is set, the machine check exception may still be unrecoverable in the sense that execution can 
resume in the same context that existed before the exception. 

When a machine check exception is taken, instruction execution continues at effective address 
0x0000_0000_0000_0200.

6.4.3 DSI Exception (0x00300)

A DSI (data storage interrupt) exception occurs when no higher priority exception exists and a data memory 
access cannot be performed. The condition that caused the DSI exception can be determined by reading the 
DSISR, a supervisor-level SPR (SPR18) register that can be read by using the mfspr instruction. Table 6-9 
lists bit settings and indicates which memory element is pointed to by the DAR. DSI exceptions can be gener-
ated by load/store instructions, cache-control instructions (icbi, dcbi, dcbz, dcbst, and dcbf), or the 
eciwx/ecowx instructions for any of the following reasons:

• The effective address cannot be translated. That is, there is a page fault for this portion of the translation, 
so a DSI exception must be taken to retrieve the page and update the translation tables. For example 
read a page from a storage device such as a hard disk drive.

• The instruction is not supported for the type of memory addressed. For lwarx/stwcx. and ldarx/stdcx. 
instructions that reference a memory location that is write-through required. If the exception is not taken, 
the instructions execute correctly. 

• The access violates memory protection.

• The execution of an eciwx or ecowx instruction is disallowed because the external access register 
enable bit (EAR[E]) is cleared. 

• A data address compare match occurs. 

Table 6-8. Machine Check Exception—Register Settings  

Register Setting Description

SRR0 On a best-effort basis, implementations can set this to an EA of some instruction that was executing or about to be 
executing when the machine check condition occurred. 

SRR1 Bit [62] is loaded from MSR[RI] if the processor is in a recoverable state. Otherwise cleared. The setting of all other 
SRR1 bits is implementation-dependent. 

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME 1 —
FE0 0

BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR Implementation dependent.

DAR Implementation dependent.

1. When a machine check exception is taken, the exception handler should set MSR[ME] as soon as it is practical to handle another 
machine check exception. Otherwise, subsequent machine check exceptions cause the processor to automatically enter the 
checkstop state.
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• A data address breakpoint register (DABR) match occurs. The DABR facility is optional to the PowerPC 
Architecture, but if one is implemented, it is recommended, but not required, that it be implemented as fol-
lows. A data address breakpoint match is detected for a load or store instruction if the three following con-
ditions are met for any byte accessed:

– EA[0–60] = DABR[DAB]
– MSR[DR] = DABR[BT]
– The instruction is a store and DABR[DW] = ’1’, or the instruction is a load and DABR[DR] = ’1’.

The DABR is described in Section 2.3.13 Data Address Breakpoint Register (DABR). In 32-bit mode of 
64-bit implementations, the high-order 32 bits of the EA are treated as zero for the purpose of detecting a 
match; the DAR settings are described in Table 6-9. If the above conditions are satisfied, it is undefined 
whether a match occurs in the following cases:

– The instruction is store conditional but the store is not performed.
– The instruction is a load/store string of zero length.
– The instruction is dcbz, eciwx, or ecowx. 

The cache management instructions other than dcbz never cause a match. If dcbz causes a match, 
some or all of the target memory locations may have been updated. For the purpose of determining 
whether a match occurs, eciwx is treated as a load, and ecowx and dcbz are treated as stores. 

If an stwcx./stdcx. instruction has an effective address for which a normal store operation would cause a DSI 
exception but the processor does not have the reservation from lwarx/ldarx, whether a DSI exception is 
taken is then implementation-dependent.

If the value in XER[25–31] indicates that a load or store string instruction has a length of zero, a DSI excep-
tion does not occur, regardless of the effective address. 

The condition that caused the exception is defined in the DSISR. As shown in Table 6-9, this exception also 
sets the data address register (DAR). 
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When a DSI exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0300.

Table 6-9. DSI Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

33–36
42–47
Others

Cleared
Cleared
Loaded with equivalent bits from the MSR

Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR

0 Set to ‘0’.
1 Set if MSR[DR] = ’1’ and the translation for an attempted access is not found in the primary page table 

entry group (PTEG), or in the secondary PTEG (page fault condition); otherwise cleared. 
2–3 Cleared
4 Set if a memory access is not permitted by the memory protection mechanism; otherwise cleared. 
5 Set if the access is due to a lwarx, ldarx, stwcx., or stdcx. instruction that addresses memory that is Write 

Through Required or Caching Inhibited; otherwise cleared.
6 Set for a store, dcbz, or ecowx instruction otherwise cleared. 
7–8 Cleared
9 Set if a data address compare match or a DABR match occurs. Otherwise cleared.
10 Cleared
11 Set if the instruction is an eciwx or ecowx and EAR[E] = ’0’; otherwise cleared.
12–14 Cleared
15 Set if MSR[DR] = ’1’, the translation for an attempted access is found in the SLB, the translation is not 

found in the primary PTEG or in the secondary PTEG, and LSLBE[L] = ’1’; otherwise cleared. 
16–31 Cleared
If multiple Data Storage exceptions occur for a given effective address, any one or more of the bits corresponding to 
these exceptions may be set in the DSISR.

DAR

Set to the effective address of a memory element as described in the following list:
• A Data Storage exception occurs for reasons other than DABR match or, for eciwx and ecowx, EAR[E] = ’0’

– A byte in the block that caused the exception, for a cache management instruction

– A byte in the first aligned doubleword for which access was attempted in the page that caused the excep-
tion, for a Load, Store, eciwx, or ecowx instruction

Note:  If the exception occurs when a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared. 
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6.4.4 Data Segment Exception (0x00380)

A data segment interrupt occurs when no higher priority exception exists and a data access cannot be 
performed because data address translation is enabled (MSR[DR] = ’1’) and the effective address of any byte 
of the memory location specified by a Load, Store, icbi, dcbz, dcbst, dcbf, eciwx, or ecowx instruction 
cannot be translated to a virtual address.

If a stwcx. or stdcx. would not perform its store in the absence of a data segment interrupt, and a noncondi-
tional Store to the specified effective address would cause a data segment interrupt, it is implementation-
dependent whether a data segment interrupt occurs.

If a Move Assist instruction has a length of zero (in the XER), a data segment interrupt does not occur, 
regardless of the effective address.

Table 6-10 describes the registers affected by the data segment exception.

Execution resumes at effective address 0x0000_0000_0000_0380.

Table 6-10. Data Segment Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

33–36
42–47
48–55
57–59
62–63

Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR Set to an undefined value

DAR

Set to the effective address of a memory element as described in the following list:
• A Data Storage exception occurs for reasons other than DABR match or, for eciwx and ecowx, EAR[E] = ’0’

– A byte in the block that caused the exception, for a cache management instruction

– A byte in the first aligned doubleword for which access was attempted in the page that caused the excep-
tion, for a Load, Store, eciwx, or ecowx instruction

Note:  If the exception occurs when a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared. 
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6.4.5 ISI Exception (0x00400)

An instruction storage interrupt (ISI) exception occurs when no higher priority exception exists and an attempt 
to fetch the next instruction to be executed fails for any of the following reasons:

• Instruction address translation is enabled (MSR[IR] = ’1’) and the virtual address cannot be translated to 
a real address.

• The fetch access violates memory protection.

Register settings for ISI exceptions are shown in Table 6-11. 

If multiple instruction storage exceptions occur due to attempting to fetch a single instruction, any one or more 
of the bits corresponding to these exceptions may be set to ‘1’ in SRR1. More than one bit may be set to ‘1’ in 
SRR1 in the following combinations.

33, 35
33, 47
33, 35, 47
35, 36

When an ISI exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0400.

Table 6-11. ISI Exception—Register Settings  

Register Setting Description 

SRR0
Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present (if the exception occurs on attempting to fetch a branch target, SRR0 is set to the 
branch target address).

SRR1

0-32 Loaded with equivalent bit from the MSR

33 Set if MSR[IR] = ’1’ and the translation of an attempted access is not found in the pri-
mary page table entry group (PTEG), or in the secondary PTEG; otherwise cleared

34 Cleared

35
Set if the fetch access occurs when MSR[IR] = ’1’ and is to No-execute storage, to 
Guarded storage, or to a segment for which bit [57] of the Segment Table Entry is set to 
1;. Otherwise, cleared.

36 Set if a memory access is not permitted by the page protection mechanism, described 
in Chapter 7, Memory Management”; otherwise cleared. 

42–47 Cleared 

Others Loaded with equivalent bits from the MSR

Note:  Only one of the bits [33, 35, 36, and 42] can be set. 
Also, note that depending on the implementation, additional bits in the MSR may be copied to SRR1. 

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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6.4.6 Instruction Segment Exception (x0480) 

An instruction segment exception occurs when no higher priority exception exists and the next instruction to 
be executed cannot be fetched because instruction address translation is enabled (MSR[IR] = ’1’) and the 
translation of the effective address of the next instruction to be executed is not found in the SLB.

Register settings for instruction segment exceptions are shown in Table 6-11. 

When an instruction segment exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0480.

Table 6-12. Instruction Segment Exception—Register Settings  

Register Setting Description 

SRR0
Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present (if the exception occurs on attempting to fetch a branch target, SRR0 is set to the 
branch target address).

SRR1

32-36 Cleared

42–47 Cleared 

Others Loaded with equivalent bits from the MSR

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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6.4.7 External Interrupt (0x00500)

An external interrupt exception is signaled to the processor by the assertion of the external interrupt signal. 
The exception may be delayed by other higher priority exceptions or if the MSR[EE] bit is ‘0’ when the excep-
tion is detected. 

Note:  The occurrence of this exception does not cancel the external request.

The register settings for the external interrupt exception are shown in Table 6-13. 

When an external interrupt exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0500.

6.4.8 Alignment Exception (0x00600)

This section describes conditions that can cause alignment exceptions in the processor. Similar to DSI 
exceptions, alignment exceptions use the SRR0 and SRR1 to save the machine state and the DSISR to 
determine the source of the exception. An alignment exception occurs when no higher priority exception 
exists and the implementation cannot perform a memory access for one of the following reasons: 

• The operand of a floating-point load or store instruction is not word-aligned or crosses a virtual page 
boundary.

• The operand of lmw, stmw, lwarx, ldarx, stwcx., stdcx., eciwx, or ecowx is not aligned.

• The operand of a single-register load or store is not aligned and the processor is in little-endian mode.

• The instruction is lmw, stmw, lswi, lswx, stswi, or stswx and the operand is in memory that is Write 
Through Required or Caching Inhibited, or the processor is in little-endian mode.

• The operand of lmw or stmw crosses a segment boundary, or crosses a boundary between virtual pages 
that have different memory control attributes.

• The operand of a load or store is not aligned and is in memory that is write-through required or caching 
inhibited. 

• The operand of dcbz, lwarx, ldarx, stwcx., or stdcx., is in memory that is write-through-required or 
caching inhibited. 

Table 6-13. External Interrupt—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no inter-
rupt conditions were present. 

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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If a stwcx. or stdcx. would not perform its store in the absence of an alignment exception and the specified 
effective address refers to memory that is Write Through Required or Caching Inhibited, it is implementation-
dependent whether an alignment exception occurs.

Setting the DSISR and DAR as described below is optional for implementations on which alignment excep-
tions occur rarely, if ever, for cases that the alignment exception handler emulates. For such implementa-
tions, if the DSISR and DAR are not set as described below they are set to undefined values.

The term, ‘protection boundary’, refers to the boundary between protection domains. A protection domain is a 
segment, a virtual 4-Kbyte page or implementation specific larger size, or a range of unmapped effective 
addresses. Protection domains are defined only when the corresponding address translation (instruction or 
data) is enabled (MSR[IR] or MSR[DR] = ’1’).

The register settings for alignment exceptions are shown in Table 6-14. 

Table 6-14. Alignment Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

DSISR

0–11 Cleared 
12–13 For 64-bit instructions that use immediate addressing—set to bits [30–31] if DS-form. Otherwise cleared. 
14 Cleared
15–16 For instructions that use register indirect with index addressing (X-form)—set to bits [29–30] of the instruc-

tion encoding.
For instructions that use register indirect with immediate index addressing (D or DS-form)—cleared 

17 For instructions that use register indirect with index addressing (X-form)—set to bit [25] of the instruction 
encoding.
For instructions that use register indirect with immediate index addressing (D or DS-form)— set to bit [5] of 
the instruction encoding.

18–21 For instructions that use register indirect with index addressing (X-form)—set to bits [21–24] of the instruc-
tion encoding. 
For instructions that use register indirect with immediate index addressing (D or DS-form)—set to bits [1–4] 
of the instruction encoding. 

22–26 Set to bits [6–10] (identifying either the source or destination) of the instruction encoding. Undefined for 
dcbz.

27–31 Set to bits [11–15] of the instruction encoding (rA) for update-form instructions
Set to either bits [11–15] of the instruction encoding or to any register number not in the range of registers 
loaded by a valid form instruction for lmw, lswi, and lswx instructions. Otherwise undefined.

DAR
Set to the EA of the data access as computed by the instruction causing the alignment exception. 
Note:  If a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared.
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For load or store instructions that use register indirect with index addressing, the DSISR can be set to the 
same value that would have resulted if the corresponding instruction uses register indirect with immediate 
index addressing had caused the exception. Similarly, for load or store instructions that use register indirect 
with immediate index addressing, DSISR can hold a value that would have resulted from an instruction that 
uses register indirect with index addressing. For example, a misaligned lwarx instruction that crosses a 
protection boundary would normally cause the DSISR to be set to the following binary value:

000000000000 00 0 01 0 0101 ttttt ?????

The value ttttt refers to the destination and ????? indicates undefined bits. 

However, this register may be set as if the instruction were lwa, as follows:
000000000000 10 0 00 0 1101 ttttt ?????

If there is no corresponding instruction (such as for the lwaux instruction), no alternative value can be speci-
fied.

The instruction pairs that can use the same DSISR values are as follows: 

The architecture does not support the use of a misaligned effective address by load/store with reservation 
instructions or by the eciwx and ecowx instructions. If one of these instructions specifies a misaligned effec-
tive address, the exception handler should not emulate the instruction, but should treat the occurrence as a 
programming error. 

When an alignment exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0600.

6.4.8.1 Integer Alignment Exceptions 

Operations that are not naturally aligned may suffer performance degradation, depending on the processor 
design, the type of operation, the boundaries crossed, and the mode that the processor is in during execution. 
More specifically, these operations may either cause an alignment exception or they may cause the 
processor to break the memory access into multiple, smaller accesses with respect to the cache and the 
memory subsystem.

lhz / lhzx lhzu / lhzux lha / lhax lhau / lhaux

lwz / lwzx lwzu / lwzux lwa / lwax

ld / ldx ldu / ldux

sth / sthx sthu / sthux stw / stwx stwu / stwux

std / stdx stdu / stdux

lfs / lfsx lfsu / lfsux lfd / lfdx lfdu / lfdux

stfs / stfsx stfsu / stfsux stfd / stfdx stfdu / stfdux



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem6_exceptions.fm.3.0
July 15, 2005   

Exceptions

Page 233 of 657

Page Address Translation Access Considerations

A page address translation access occurs when MSR[DR] is set. 

Note:  A dcbz instruction causes an alignment exception if the access is to a page with the write-through (W) 
or cache-inhibit (I) bit set.

Misaligned memory accesses that do not cause an alignment exception may not perform as well as an 
aligned access of the same type. The resulting performance degradation due to misaligned accesses 
depends on how well each individual access behaves with respect to the memory hierarchy. 

Particular details regarding page address translation is implementation-dependent; the reader should consult 
the user’s manual for the appropriate processor for more information.

6.4.8.2 Little-Endian Mode Alignment Exceptions

The OEA allows implementations to take alignment exceptions on misaligned accesses (as described in 
Section 3.1.4 PowerPC Byte Ordering) in little-endian mode but does not require them to do so. Some imple-
mentations may perform some misaligned accesses without taking an alignment exception.

6.4.8.3 Interpretation of the DSISR as Set by an Alignment Exception

For most alignment exceptions, an exception handler may be designed to emulate the instruction that causes 
the exception. To do this, the handler requires the following characteristics of the instruction:

• Load or store

• Length (halfword, word, or doubleword)

• String, multiple, or normal load/store

• Integer or floating-point

• Whether the instruction performs update 

• Whether the instruction performs byte reversal

• Whether it is a dcbz instruction

The PowerPC Architecture provides this information implicitly, by setting opcode bits in the DSISR that iden-
tify the excepting instruction type. The exception handler does not need to load the excepting instruction from 
memory. The mapping for all exception possibilities is unique except for the few exceptions discussed below. 

Table 6-15 shows the inverse mapping—how the DSISR bits identify the instruction that caused the excep-
tion.

The alignment exception handler cannot distinguish a floating-point load or store that causes an exception 
because it is misaligned, However, this does not matter; in either case it is emulated with integer instructions. 
Floating-point instructions are distinguished from integer instructions because different register files must be 
accessed while emulating each class. Bits [15-21] of the DSISR are used to identify whether the instruction is 
integer or floating-point. 
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Table 6-15. DSISR(15–21) Settings to Determine Misaligned Instruction   

DSISR[15–21]  Instruction DSISR[15–21]  Instruction

00 0 0000 lwarx, lwz, special cases1 01 1 0010 stdux

00 0 0010 ldarx 01 1 0101 lwaux

00 0 0010 stw 10 0 0010 stwcx.

00 0 0100 lhz 10 0 0011 stdcx.

00 0 0101 lha 10 0 1000 lwbrx

00 0 0110 sth 10 0 1010 stwbrx

00 0 0111 lmw 10 0 1100 lhbrx

00 0 1000 lfs 10 0 1110 sthbrx

00 0 1001 lfd 10 1 0100 eciwx

00 0 1010 stfs 10 1 0110 ecowx

00 0 1011 stfd 10 1 1111 dcbz

00 0 1101 ld, ldu, lwa2 11 0 0000 lwzx

00 0 1111 std, stdu2 11 0 0010 stwx

00 1 0000 lwzu 11 0 0100 lhzx

00 1 0010 stwu 11 0 0101 lhax

00 1 0100 lhzu 11 0 0110 sthx

00 1 0101 lhau 11 0 1000 lfsx

00 1 0110 sthu 11 0 1001 lfdx

00 1 0111 stmw 11 0 1010 stfsx

00 1 1000 lfsu 11 0 1011 stfdx

00 1 1001 lfdu 11 0 1111 stfiwx

00 1 1010 stfsu 11 1 0000 lwzux

00 1 1011 stfdu 11 1 0010 stwux

01 0 0000 ldx 11 1 0100 lhzux

01 0 0010 stdx 11 1 0101 lhaux

01 0 0101 lwax 11 1 0110 sthux

01 0 1000 lswx 11 1 1000 lfsux

01 0 1001 lswi 11 1 1001 lfdux

01 0 1010 stswx 11 1 1010 stfsux

01 0 1011 stswi 11 1 1011 stfdux

01 1 0000 ldux

1. The instructions lwz and lwarx give the same DSISR bits (all zero). But if lwarx causes an alignment exception, it is an invalid 
form, so it need not be emulated in any precise way. It is adequate for the alignment exception handler to simply emulate the 
instruction as if it were an lwz. It is important that the emulator use the address in the DAR, rather than computing it from rA/rB/D, 
because lwz and lwarx use different addressing modes.

If opcode 0 (“illegal or reserved”) can cause an alignment exception, it will be indistinguishable to the exception handler from lwarx 
and lwz.

2. These instructions are distinguished by DSISR[12–13], which are not shown in this table.
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6.4.9 Program Exception (0x00700) 

A program exception occurs when no higher priority exception exists and one or more of the following excep-
tion conditions, which correspond to bit settings in SRR1, occur during execution of an instruction:

• System IEEE floating-point enabled exception—A system IEEE floating-point enabled exception can be 
generated when FPSCR[FEX] is set and either (or both) of the MSR[FE0] or MSR[FE1] bits is set.   

FPSCR[FEX] is set by the execution of a floating-point instruction that causes an enabled exception or by 
the execution of a “move to FPSCR” type instruction that sets an exception bit when its corresponding 
enable bit is set. Floating-point exceptions are described in Section 3.3.6 Floating-Point Program Excep-
tions.

• Illegal instruction—An illegal instruction program exception is generated when execution of an instruction 
is attempted with an illegal opcode or illegal combination of opcode and extended opcode fields (these 
include PowerPC instructions not implemented in the processor), or when execution of an optional or a 
reserved instruction not provided in the processor is attempted.

Implementations are permitted to generate an illegal instruction program exception when encountering 
the following instructions. If an illegal instruction exception is not generated, then the alternative is shown 
in parenthesis.

– An instruction corresponds to an invalid class (the results may be boundedly undefined)

– An lswx instruction for which rA or rB is in the range of registers to be loaded (may cause results that 
are boundedly undefined)

– An mtspr or mfspr instruction with an SPR field that does not contain one of the defined values, or 
an mftb instruction with a TBR field that does not contain one of the defined values

• Privileged instruction—A privileged instruction type program exception is generated when the execution 
of a privileged instruction is attempted and the processor is operating in user mode (MSR[PR] is set). It is 
also generated for mtspr or mfspr instructions that have an invalid SPR field that contain one of the 
defined values having spr[0] = ’1’ and if MSR[PR] = ’1’. Some implementations may also generate a priv-
ileged instruction program exception if a specified SPR field (for a move to/from SPR instruction) is not 
defined for a particular implementation, but spr[0] = ’1’; in this case, the implementation may cause either 
a privileged instruction program exception, or an illegal instruction program exception may occur instead.

• Trap—A trap program exception is generated when any of the conditions specified in a trap instruction is 
met. Trap instructions are described in Section 4.2.4.6 Trap Instructions.
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The register settings when a program exception is taken are shown in Table 6-16. 

When a program exception is taken, instruction execution resumes at effective address 
0x000_0000_0000_0700.

Table 6-16. Program Exception—Register Settings  

Register Setting Description

SRR0

The contents of SRR0 differ according to the following situations:
• For all program exceptions except floating-point enabled exceptions when operating in imprecise mode 

(MSR[FE0-FE1] = ’10’ or ‘01’ respectively), SRR0 contains the effective address of the instruction that caused 
the exception.

• When the processor is in floating-point imprecise mode, SRR0 may contain the effective address of the 
excepting instruction or that of a subsequent unexecuted instruction. If the subsequent instruction is sync, 
ptesync, or isync, SRR0 points not more than four bytes beyond the sync, ptesync, or isync instruction.

• If FPSCR[FEX] = ’1’, but IEEE floating-point enabled exceptions are disabled (MSR[FE0] = MSR[FE1] = ’0’), 
the program exception occurs before the next synchronizing event if an instruction alters those bits (thus 
enabling the program exception). When this occurs, SRR0 points to the instruction that would have executed 
next and not to the instruction that modified MSR. 

SRR1

0
33–36
42
43
44
45
46
47

48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Set for an IEEE floating-point enabled program exception; otherwise cleared.
Set for an illegal instruction program exception; otherwise cleared. 
Set for a privileged instruction program exception; otherwise cleared.
Set for a trap program exception; otherwise cleared.
Cleared if SRR0 contains the address of the instruction causing the exception, and set 
if SRR0 contains the address of a subsequent instruction.
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note:  Only one of bits [43:46] can be set to 1. 

Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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6.4.10 Floating-Point Unavailable Exception (0x00800)

A floating-point unavailable exception occurs when no higher priority exception exists, an attempt is made to 
execute a floating-point instruction (including floating-point load, store, or move instructions), and the floating-
point available bit in the MSR is cleared, (MSR[FP] = ’0’).

The register settings for floating-point unavailable exceptions are shown in Table 6-17. 

When a floating-point unavailable exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0800.

6.4.11 Decrementer Exception (0x00900)

A decrementer exception occurs when no higher priority exception exists, a decrementer exception condition 
occurs (for example, the decrementer register has completed decrementing), and MSR[EE] = ’1’. The decre-
menter register counts down, causing an exception request when it passes through zero. A decrementer 
exception request remains pending until the decrementer exception is taken and then it is cancelled. The 
decrementer implementation meets the following requirements:

• The counters for the decrementer and the time-base counter are driven by the same fundamental time 
base.

• Loading a GPR from the decrementer does not affect the decrementer.

• Storing a GPR value to the decrementer replaces the value in the decrementer with the value in the GPR.

• Whenever bit [0] of the decrementer changes from ‘0’ to ‘1’, a decrementer exception request is signaled. 
If multiple decrementer exception requests are received before the first can be reported, only one excep-
tion is reported. The occurrence of a decrementer exception cancels the request.

• If the decrementer is altered by software and if bit [0] is changed from ‘0’ to ‘1’, an exception request is 
signaled.

Table 6-17. Floating-Point Unavailable Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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The register settings for the decrementer exception are shown in Table 6-18. 

When a decrementer exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0900.

6.4.12 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. The effective address of the 
instruction following the sc instruction is placed into SRR0. MSR bits are saved in SRR1, as shown in 
Table 6-19, and then a system call exception is generated. 

The system call exception causes the next instruction to be fetched from effective address 
0x0000_0000_0000_0C00. As with most other exceptions, this exception is context-synchronizing. Refer to 
Context Synchronization on page 208 for more information on the actions performed by a context-synchro-
nizing operation. Register settings are shown in Table 6-19. 

When a system call exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0C00.

Table 6-18. Decrementer Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE

Table 6-19. System Call Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction following the System Call instruction

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared
Cleared
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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6.4.13 Trace Exception (0x00D00)

The trace exception is optional to the PowerPC Architecture, and specific information about how it is imple-
mented can be found in user’s manuals for individual processors. 

The trace exception provides a means of tracing the flow of control of a program for debugging and perfor-
mance analysis purposes. It is controlled by MSR bits [SE] and [BE] as follows:

• MSR[SE] = ’1’ and any instruction except rfid is successfully completed.

• MSR[BE] = ’1’: the processor generates a branch-type trace exception after completing the execution of a 
branch instruction, whether or not the branch is taken.

If this facility is implemented, a trace exception occurs when no higher priority exception exists and either of 
the conditions described above exist. The following are not traced:

• rfid instruction

• sc, and trap instructions that trap

• Other instructions that cause exceptions (other than trace exceptions)

• The first instruction of any exception handler

• Instructions that are emulated by software

MSR[SE, BE] are both cleared when the trace exception is taken. In the normal use of this function, 
MSR[SE,  BE] are restored when the exception handler returns to the interrupted program using an rfid 
instruction.

Register settings for the trace mode are described in Table 6-20. 

When a trace exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0D00.

Table 6-20. Trace Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the next instruction to be executed in the program for which the trace exception was 
generated.

SRR1

0
33–36
42–47
48–55
57–59
62–63

Loaded with equivalent bit from the MSR
Cleared 
Cleared 
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR
Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF 1
POW 0
ILE —
EE 0

PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0

DR 0
PMM 0
RI 0
LE Set to value of ILE
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6.4.14 Performance Monitor Exception (0x00F00)

The performance monitor exception is part of the optional performance monitor facility. If the performance 
monitor facility is not implemented or does not use this interrupt, the corresponding interrupt vector is treated 
as reserved. 

A performance monitor facility provides a means of collecting information about program and system perfor-
mance. The resources (for example, SPR numbers) that a performance monitor facility may use are identified 
elsewhere in this manual. All other aspects of any performance monitor facility are implementation-depen-
dent.

When a performance monitor exception is taken, instruction execution resumes at effective address 
0x0000_0000_0000_0F00.
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7. Memory Management 
70
100

This chapter describes the memory management unit (MMU) specifications provided by the PowerPC oper-
ating environment architecture (OEA) for PowerPC processors. The primary function of the MMU in a 
PowerPC processor is to translate logical (effective) addresses to physical addresses (referred to as real 
addresses in the architecture specification) for memory accesses and I/O accesses (most I/O accesses are 
assumed to be memory-mapped). In addition, the MMU provides various levels of access protection on a 
segment, block, or page basis. 

Note:  There are many aspects of memory management that are implementation-specific. This chapter 
describes the conceptual model of a PowerPC MMU; however, PowerPC processors may differ in the spe-
cific hardware used to implement the MMU model of the OEA, depending on the many design trade-offs 
inherent in each implementation.

Two general types of accesses generated by PowerPC processors require address translation—instruction 
accesses, and data accesses to memory generated by load and store instructions. In addition, the addresses 
specified by cache instructions and the optional external control instructions also require translation. Gener-
ally, the address translation mechanism is defined in terms of segment descriptors and page tables used by 
PowerPC processors to locate the effective to physical address mapping for instruction and data accesses. 
The segment information translates the effective address to an interim virtual address, and the page table 
information translates the virtual address to a physical address. 

The definition of the segment and page table data structures provides significant flexibility for the implementa-
tion of performance enhancement features in a wide range of processors. Therefore, the performance 
enhancements used to store the segment or page table information on-chip vary from implementation to 
implementation. 

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page address translations on-chip. Although their exact characteristics are not specified in the OEA, the 
general concepts that are pertinent to the system software are described. 

Note:  In contrast to earlier versions of the architecture, an implementation is required to have an SLB, but 
explicit representation of a segment table in memory is not required. The SLB is software managed, and so 
memory management software can maintain an explicit segment table in memory, or can implement an 
implicit segment table by generating new SLB entries as needed. References to the segment table in this 
chapter do not presume the explicit table in memory that was specified in previous versions of the architec-
ture. 

The segment information, used to generate the interim virtual addresses, is stored as segment descriptors. 
These descriptors may reside in segment table entries (STEs) in memory. In much the same way that TLBs 
cache recently-used page address translations, 64-bit processors may contain segment lookaside buffers 
(SLBs) on-chip that cache recently-used segment table entries. Although the exact characteristics of SLBs 
are not specified, there is general information pertinent to those implementations that provide SLBs. 
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The MMU, together with the exception processing mechanism, provides the necessary support for the oper-
ating system to implement a paged virtual memory environment and for enforcing protection of designated 
memory areas. Exception processing is described in Chapter 6, Exceptions. Section 2.3.1 Machine State 
Register (MSR) describes the MSR, which controls some of the critical functionality of the MMU. 

7.1 MMU Features

The memory management specification of the PowerPC OEA includes models for both 32 and 64-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 264 bytes of effective address space acces-
sible to supervisor and user programs with support for two page sizes; a 4-Kbyte page size (212) and a large 
page whose size is implementation dependent (2p where 13 ≤ p ≤ 28). The MMU of 64-bit PowerPC proces-
sors uses an interim virtual address (between 65 and 80 bits) and hashed page tables in the generation of 
physical addresses that are ≤ 62 bits in length.

Table 7-1 summarizes the features of PowerPC MMUs for 64-bit implementations.

Temporary 64-Bit Bridge

The OEA defines an additional, optional bridge to the 64-bit architecture that may make it easier for 32-
bit operating systems to migrate to 64-bit processors. The 64-bit bridge retains certain aspects of the 
32-bit architecture that otherwise are not supported, and in some cases not permitted, by the 64-bit ver-
sion of the architecture. In processors that implement this bridge, segment descriptors are implemented 
by using 16 SLB entries to emulate segment registers, which, like those defined for the 32-bit architec-
ture, divide the 32-bit memory space (4 Gbytes) into sixteen 256-Mbyte segments. These segment 
descriptors however use the format of the segment table entries as defined in the 64-bit architecture 
and are maintained in SLBs rather than in architecture-defined segment registers. 
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Note:  This chapter describes address translation mechanisms from the perspective of the programming 
model. As such, it describes the structure of the page and segment tables, the MMU conditions that cause 
exceptions, the instructions provided for programming the MMU, and the MMU registers. The hardware 
implementation details of a particular MMU (including whether the hardware automatically performs a page 
table search in memory) are not contained in the architectural definition of PowerPC processors and are 
invisible to the PowerPC programming model; therefore, they are not described in this manual. In the case 
that some of the OEA model is implemented with some software assist mechanism, this software should be 
contained in the area of memory reserved for implementation-specific use and should not be visible to the 
operating system.

Table 7-1. MMU Features Summary  

Feature Category
64-Bit Implementations

Conventional Temporary 64-Bit Bridge

Address ranges

264 bytes of effective address 232 bytes of effective address

2n where 65 ≤ n ≤ 80 bytes of virtual address 252 bytes of virtual address

< 2m (m≤62) bytes of physical address < 232 bytes of physical address

Page size
4 Kbytes
Some large page sizes 
(2p where 13 ≤ p ≤ 28)

4 Kbytes

Segment size 256 Mbytes Same

Block address translation
Not applicable Not applicable

Not applicable Not applicable

Memory protection

Segments selectable as no-execute Same

Pages selectable as user/supervisor and read-only Same

Blocks selectable as user/supervisor and read-only Same

Page history Referenced and changed bits defined and main-
tained Same

Page address 
translation

Translations stored as PTEs in hashed page tables 
in memory Same

Page table size determined by size programmed 
into SDR1 register Same

TLBs Instructions for maintaining optional TLBs Same

Segment 
descriptors

Stored as STEs (explicit or implicit segment tables) Stored in 16 SLB entries in the same format as the 
STEs defined for 64-bit implementations. 

Instructions for maintaining SLBs

16 SLB entries are required to emulate the segment 
registers defined for 32-bit addressing. The slbie 
and slbia instructions should not be executed when 
using the 64-bit bridge. 
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7.2 MMU Overview

The PowerPC MMU and exception models support demand-paged virtual memory. Virtual memory manage-
ment permits execution of programs larger than the size of physical memory; the term demand paged implies 
that individual pages are loaded into physical memory from backing storage only as they are accessed by an 
executing program. 

The memory management model includes the concept of a virtual address that is not only larger than that of 
the maximum physical memory allowed, but a virtual address space that is also larger than the effective 
address space. Effective addresses generated by 64-bit implementations are 64 bits wide. In the address 
translation process, the processor converts an effective address to a virtual address between 65 and 80 bits, 
as per the information in the selected descriptor. Then the address is translated back to a physical address 
the size (or less) of the effective address. 

Implementations for 64-bit designs have the option of supporting virtual address in the range of 65 to 80 bits. 
The remainder of this chapter describes the virtual address for 64-bit processors as consisting of 65 ≤ n ≤ 80 
bits. For implementations that support a virtual address less than 80 bits, the high-order bits of the 80-bit 
virtual address are assumed to be zero. 

Note:  For 64-bit implementations the physical address space size is 2m bytes, where m ≤ 62. The value of 
“m” is implementation dependent. When used to address memory, the high-order “62-m” bits of the 62-bit 
physical address must be zeros. 

The operating system manages the system’s physical memory resources. Consequently, the operating 
system initializes the MMU registers (address space register (ASR) and SDR1 register) and sets up page 
tables and segment tables in memory appropriately. The MMU then assists the operating system by 
managing page status and optionally caching the recently-used address translation information on-chip for 
quick access. 

Effective address spaces are divided into 256-Mbyte regions called segments for virtual addressing. 
Segments that correspond to virtual memory can be further subdivided into pages (4KB or large page size 
whose size is implementation dependent). For programs using virtual addressing, only the most recently used 
4-Kbyte (or large) pages need be resident in memory.

Temporary 64-Bit Bridge

In addition to the features described above, the OEA provides optional features that facilitate the migra-
tion of operating systems from 32-bit processor designs to 64-bit processors. These features, which can 
be implemented in part or in whole, include the following:

• Support for several 32-bit instructions that are otherwise defined as illegal in 64-bit processors. 
These include the following—mtsr, mtsrin, mfsr, mfsrin.

• The mtmsr instruction, which is otherwise illegal in the 64-bit architecture may optionally be imple-
mented in 64-bit bridge implementations. 

• The bridge defines the optional bit ASR[V] (bit [63]) may be implemented to indicate whether 
ASR[STABORG] holds a valid physical base address for the segment table.

To determine whether a processor implements any or all of the bridge features, consult the user’s man-
ual for that processor. 
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For each page, the operating system creates an address descriptor (page table entry (PTE)). The MMU then 
uses these descriptors to generate the physical address, the protection information, and other access control 
information each time an address within the page is accessed. Address descriptors for the pages reside in 
tables (as PTEs) in memory and can be cached in the TLBs. 

This section provides an overview of the high-level organization and operational concepts of the MMU in 
PowerPC processors, and a summary of all MMU control registers. For more information about the MSR, see 
Section 2.3.1 Machine State Register (MSR). Section 7.5.1.1 SDR1 Register Definition describes the SDR1. 

7.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it 
executes a load, store, branch, or cache instruction, and when it fetches the next instruction. The effective 
address is translated to a physical (real) address according to the procedures described throughout this 
chapter. The memory subsystem uses the physical address for the access.

7.2.1.1 Effective Addresses in 32-Bit Mode

In addition to the 64 and 32-bit memory management models defined by the OEA, the PowerPC Architecture 
also defines a 32-bit mode of operation for 64-bit implementations. In this 32-bit mode (MSR[SF] = 0), the 
64-bit effective address is first calculated as usual, and then the high-order 32 bits of the effective address are 
treated as zero for the purposes of addressing memory. This occurs for both instruction and data accesses, 
and occurs independently from the setting of the MSR[IR] and MSR[DR] bits that enable instruction and data 
address translation, respectively. The truncation of the effective address is the only way in which memory 
accesses are affected by the 32-bit mode of operation. 

For a complete discussion of effective address calculation, see Section 4.1.4.2 Effective Address Calculation.

Temporary 64-Bit Bridge

Some 64-bit processors implement optional features that simplify the conversion of an operating system 
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows an 
operating system to use 16 on-chip SLB entries in the same manner that 32-bit implementations use the 
segment registers, which are otherwise not supported in the 64-bit architecture. These bridge features 
are available if the ASR[V] bit is implemented, and they are enabled when both ASR[V] and MSR[SF] 
are cleared.
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7.2.1.2 Predefined Physical Memory Locations

There are four areas of the physical memory map that have predefined uses. Except for the first 256 bytes, 
which are reserved for software use, the physical (real) page beginning at physical address 
0x0000_0000_0000_0000 is used for exception vectors. The two contiguous real pages beginning at real 
address 0x0000_0000_0000_1000 are reserved for implementation-specific purposes. A contiguous 
sequence of real pages beginning at the physical address specified by the SDR1 contains the Page Table. 
These predefined memory areas are summarized in Table 7-2. Refer to Chapter 6, Exceptions for more 
detailed information on the assignment of the exception vector offsets.

7.2.2 MMU Organization

Figure 7-1 shows the conceptual organization of the MMU; note that it does not describe the specific hard-
ware used to implement the memory management function for a particular processor, and other hardware 
features (invisible to the system software) not depicted in the figure may be implemented. For example, the 
memory management function can be implemented with parallel MMUs that translate addresses for instruc-
tion and data accesses independently.

The instruction addresses shown in Figure 7-1 are generated by the processor for sequential instruction 
fetches and addresses that correspond to a change of program flow. Memory addresses are generated by 
load and store instructions, by cache instructions, and by the optional external control instructions. 

As shown in Figure 7-1, for 4KB pages, bits EA0-EA51 are translated; for a large page translation, bits 
EA0-EAx are translated, where x=63-p if the size of large pages is 2p. The lower-order address bits are 
untranslated and therefore identical for both effective and physical addresses. After translating the address, 
the MMU passes the resulting 64-bit physical address to the memory subsystem.

In addition to the higher-order address bits, the MMU automatically keeps an indicator of whether each 
access was generated as an instruction or data access and a supervisor/user indicator that reflects the state 
of the MSR[PR] bit when the effective address was generated. In addition, for data accesses, there is an indi-
cator of whether the access is for a load or a store operation. This information is then used by the MMU to 
appropriately direct the address translation and to enforce the protection hierarchy programmed by the oper-
ating system. See Section 2.3.1 Machine State Register (MSR) for more information about the MSR.

Table 7-2. Predefined Physical Memory Locations  

Memory Area Physical Address Range Predefined Use

1 0x0_0000 – 0x0_00FF Operating system

2 0x0_0100 – 0x0_0FFF Exception vectors

3 0x0_1000 – 0x0_2FFF Implementation-specific 

4
Software-specified—contiguous sequence of physical pages
Software-specified—single physical page

Page table
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Figure 7-1. MMU Conceptual Block Diagram 
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As shown in Figure 7-1, processors optionally implement on-chip translation lookaside buffers (TLBs) and 
optionally support the automatic search of the page tables for page table entries (PTEs).

The address space register (ASR) can be used to define the physical address of the base of the segment 
table in memory, if it exits. The architecture does not require that such a table be built. Instead, segment 
descriptors can be generated as needed by memory management software, and placed in the on-chip SLB. 

7.2.3 Address Translation Mechanisms

PowerPC processors support the following two types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte or large page size

• Real addressing mode—when address translation is disabled, the physical address is identical to the 
effective address.

Figure 7-2 shows the address translation mechanisms provided by the MMU. The segment descriptors 
shown in the figure controls the page address translation mechanism. When an access uses the page 
address translation, the appropriate segment descriptor is required. In 64-bit implementations, the segment 
descriptor is located via a search of the segment table in memory for the appropriate segment table entry 
(STE), if an explicit table is used, and is otherwise generated by the operating system. 

For memory accesses translated by a segment descriptor, the interim virtual address is generated using the 
information in the segment descriptor. Page address translation corresponds to the conversion of this virtual 
address into the 64-bit physical address used by the memory subsystem. In some cases, the physical 
address for the page resides in an on-chip TLB and is available for quick access. However, if the page 
address translation misses in a TLB, the MMU searches the page table in memory (using the virtual address 
information and a hashing function) to locate the required physical address. Some implementations may have 
dedicated hardware to perform the page table search automatically, while others may define an exception 
handler routine that searches the page table with software.

Temporary 64-Bit Bridge

Processors that implement the 64-bit bridge implement segment descriptors as a table of 16 segment 
table entries. 

Temporary 64-Bit Bridge

Processors that implement the 64-bit bridge divide the 32-bit address space into sixteen 256-Mbyte 
segments defined by a table of 16 STEs maintained in 16 SLB entries. 
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Figure 7-2. Address Translation Types  
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Real addressing mode address translation occurs when address translation is disabled; in this case, the 
physical address generated is identical to the effective address. Instruction and data address translation is 
enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus, when the processor generates an access, 
and the corresponding address translation enable bit in the MSR (MSR[IR] for instruction accesses and 
MSR[DR] for data accesses) is cleared, the resulting physical address is identical to the effective address and 
all other translation mechanisms are ignored. See Section 7.2.6.1 Real Addressing Mode Selection for more 
information. 

7.2.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMU provides access protec-
tion of supervisor areas from user access and can designate areas of memory as read-only, as well as no-
execute. Table 7-3 shows the eight protection options supported by the MMU for pages. 

The operating system programs whether or not instruction fetches are allowed from an area of memory with 
the no-execute option provided in the segment descriptor. The remaining options are enforced based on a 
combination of information in the segment descriptor and the page table entry. Thus, the supervisor-only 
option allows only read and write operations generated while the processor is operating in supervisor mode 
(corresponding to MSR[PR] = ‘0’) to access the page. User accesses that map into a supervisor-only page 
cause an exception to be taken. 

Note:  Independent of the protection mechanisms, care must be taken when writing to instruction areas as 
coherency must be maintained with on-chip copies of instructions that may have been prefetched into a 
queue or an instruction cache. Refer to Section 5.1.5.2 Instruction Cache Instructions for more information on 
coherency within instruction areas.

As shown in the table, the supervisor-write-only option allows both user and supervisor accesses to read from 
the page, but only supervisor programs can write to that area. There is also an option that allows both super-
visor and user programs read and write access (both user/supervisor option), and finally, there is an option to 
designate a page as read-only, both for user and supervisor programs (both read-only option).

Table 7-3. Access Protection Options for Pages  

Option
User Read

User Write
Supervisor Read

Supervisor Write
I-Fetch Data I-Fetch Data

Supervisor-only — — — Y Y Y

Supervisor-only-no-execute — — — — Y Y

Supervisor-write-only Y Y — Y Y Y

Supervisor-write-only-no-execute — Y — — Y Y

Both user/supervisor Y Y Y Y Y Y

Both user/supervisor-no-execute — Y Y — Y Y

Both read-only Y Y — Y Y —

Both read-only-no-execute — Y — — Y —

Y Access permitted
 — Protection violation
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A facility defined in the VEA and OEA allows pages to be designated as guarded, preventing out-of-order 
accesses that may cause undesired side effects. For example, areas of the memory map that are used to 
control I/O devices can be marked as guarded so that accesses (such as, instruction prefetches) do not occur 
unless they are explicitly required by the program. Refer to Out-of-Order Accesses to Guarded Memory on 
page 203, for a complete description of how accesses to guarded memory are restricted.

7.2.5 Page History Information

The MMU of PowerPC processors also defines referenced (R) and changed (C) bits in the page address 
translation mechanism that can be used as history information relevant to the usage of a page. The C-bit is 
used by the operating system to determine which pages have changed and must be written back to disk when 
new pages are replacing them in main memory. The R-bit is used to determine that a reference (for example 
a load instruction) has been made to a page and the operating system can use this information when trying to 
decide which page not to remove from memory. While these bits are initially allocated by the operating 
system into the page table, the architecture specifies that the R and C-bits are updated by the processor 
when a program executes a load (R) or store (C) to a page.

7.2.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective 
addresses to virtual and then physical addresses. 

Note:  Although there are references to the concept of an on-chip TLB, they may not be present in a particu-
lar hardware implementation for performance enhancement (and a particular implementation may have one 
or more TLBs). Thus, TLBs are shown here as optional and only the software ramifications of the existence of 
a TLB is discussed.

7.2.6.1 Real Addressing Mode Selection 

When an instruction or data access is generated and the corresponding instruction or data translation is 
disabled (MSR[IR] = ‘0’ or MSR[DR] = ‘0’), real addressing mode translation is used (physical address equals 
effective address) and the access continues to the memory subsystem as described in Section 7.3 Real 
Addressing Mode. 

Figure 7-3 shows the flow used by the MMU in determining whether to select real addressing mode or to use 
the segment descriptor to select page address translation. 
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7.2.6.2 Page Address Translation Selection 

If address translation is enabled (real addressing mode translation not selected), then the segment descriptor 
must be located. Figure 7-4 also shows the way in which the no-execute protection is enforced; if the N-bit in 
the segment descriptor is set and the access is an instruction fetch, the access is faulted.

Figure 7-3. General Flow of Address Translation (Real Addressing Mode) 
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Figure 7-4. General Flow of Page Address Translation  
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The segment descriptor for each access is generated by the operating system and placed in the SLB. Alter-
nately, an explicit segment table can be built by the operating system, from which segment descriptors are 
copied, as needed, into the SLB.

Temporary 64-Bit Bridge

Processors that implement the 64-bit bridge maintain segment descriptors on-chip by emulating seg-
ment tables in 16 SLB entries. As shown in Figure 7-5, this feature is enabled by clearing the optional 
ASR[V] bit. This indicates that any value in the STABORG is invalid and that segment table hashing is 
not implemented. 

Figure 7-5.  Location of Segment Descriptors  
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Selection of Page Address Translation 

The information in the segment descriptor is used to generate the n-bit (65 ≤ n ≤ 80) virtual address. The 
virtual address is then used to identify the page address translation information (stored as page table entries 
(PTEs) in a page table in memory). Although the architecture does not require the existence of a TLB, one or 
more TLBs may be implemented in the hardware to store copies of recently-used PTEs on-chip for increased 
performance. A TLB is used like a small cache of the much larger PTE tables in memory. 

If an access hits in the TLB, the page translation occurs and the physical address bits are forwarded to the 
memory subsystem. If the translation is not found in the TLB, the MMU requires a search of the page table. 
The hardware of some implementations may perform the table search automatically, while others may trap to 
an exception handler for the system software to perform the page table search. If the translation is found, a 
new TLB entry is created and the page translation is once again attempted. This time, the TLB is guaranteed 
to hit. When the PTE is located, the access is qualified with the appropriate protection bits. If the access is 
determined to be protected (not allowed), an exception (ISI or DSI exception) is generated.

If the PTE is not found by the table search operation, an ISI or DSI exception is generated. This is also known 
as a page fault. 

7.2.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be translated to a physical address. A 
translation exception condition occurs if this translation fails for one of the following reasons:

• There is no valid entry in the page table for the page specified by the effective address (and segment 
descriptor).

• There is no valid segment descriptor.

• An address translation is found but the access is not allowed by the memory protection mechanism.

The translation exception conditions cause either the ISI or the DSI exception to be taken as shown in 
Table 7-4. The state saved by the processor for each of these exceptions contains information that identifies 
the address of the failing instruction. Refer to Chapter 6, Exceptions for a more detailed description of excep-
tion processing, and the bit settings of SRR1 and DSISR when an exception occurs. 
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In addition to the translation exceptions, there are other MMU-related conditions (some of them implementa-
tion-specific) that can cause an exception to occur. These conditions map to the exceptions as shown in 
Table 7-5. The only MMU exception conditions that occur when MSR[DR] = ‘0’ are the conditions that cause 
the alignment exception for data accesses. For more detailed information about the conditions that cause the 
alignment exception (in particular for string/multiple instructions), see Section 6.4.8 Alignment Exception 
(0x00600). Refer to Chapter 6, Exceptions for a complete description of the SRR1 and DSISR bit settings for 
these exceptions. 

Table 7-4. Translation Exception Conditions 

Condition Description Exception 

Page fault (no PTE found) No matching PTE found in page tables 

I access: ISI exception
SRR1[33] = ‘1’

D access: DSI exception
DSISR[1] = ‘1’

Segment fault (no STE found) No matching STE found in the segment tables

I access: ISI exception
SRR1[42] = ‘1’

D access: DSI exception
DSISR[10] = ’1’

Page protection violation Conditions described in Table 7-12 for page protection

I access: ISI exception
SRR1[36] = ‘1’

D access: DSI exception
DSISR[4] = ‘1’

No-execute protection violation Attempt to fetch instruction when SR[N] = ‘1’ or 
STE[N] = ‘1’

ISI exception
SRR1[35] = ‘1’ 

Instruction fetch from guarded memory Attempt to fetch instruction when MSR[IR] = ‘1’ and 
PTE[G] = ‘1’ 

ISI exception
SRR1[35] = ‘1’ 

Table 7-5. Other MMU Exception Conditions  

Condition Description Exception 

dcbz with W = ‘1’ or I = ‘1’ (might cause 
exception or operation might be performed 
to memory)

dcbz instruction to write-through or 
cache-inhibited segment

Alignment exception (implementation-
dependent)

ldarx, stdcx., lwarx, or stwcx. with W = ‘1’ 
(might cause exception or execute correctly)

Reservation instruction to write-through 
segment

DSI exception (implementation-dependent)
DSISR[5] = ‘1’

eciwx or ecowx attempted when external 
control facility disabled

eciwx or ecowx attempted with 
EAR[E] = ‘0’

DSI exception
DSISR[11] = ‘1’

lmw, stmw, lswi, lswx, stswi, or stswx 
instruction attempted in little-endian mode

lmw, stmw, lswi, lswx, stswi, or stswx 
instruction attempted while MSR[LE] = ‘1’ Alignment exception 

Operand misalignment
Translation enabled and operand is mis-
aligned as described in Chapter 6, Excep-
tions.

Alignment exception (some of these cases 
are implementation-dependent)
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7.2.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up the segment 
descriptors in the SLB, and the page table in memory from which entries can be cached in a TLB, if imple-
mented.

Note:  Because the implementation of TLBs is optional, the instructions that refer to these structures are also 
optional. However, as these structures serve as caches of the page table, there must be a software protocol 
for maintaining coherency between these caches and the tables in memory whenever changes are made to 
the tables in memory. Therefore, the PowerPC OEA specifies that a processor implementing a TLB is guar-
anteed to have a means for doing the following:

• Invalidating an individual TLB entry (the architecture defines the optional tlbie instruction for this pur-
pose)

• Invalidating the entire TLB (the architecture defines the optional tlbia instruction for this purpose)

Similarly, a processor is guaranteed to have a means for doing the following:

• Invalidating an individual SLB entry (the architecture defines the slbie instruction for this purpose)

• Invalidating the entire SLB (the architecture defines the slbia instruction for this purpose)

When the tables in memory are changed, the operating system purges these caches of the corresponding 
entries, allowing the translation caching mechanism to refetch from the tables when the corresponding entries 
are required.

A processor may implement one or more of the instructions described in this section to support table invalida-
tion. Alternatively, an algorithm may be specified that performs one of the functions listed above (for example, 
a loop invalidating individual TLB entries may be used to invalidate the entire TLB), or different instructions 
may be provided.

A processor may also perform additional functions (not described here), as well as those described in the 
implementation of some of these instructions. For example, the tlbie instruction may be implemented to 
purge all TLB entries in a congruence class (that is, all TLB entries indexed by the specified effective address 
which can include corresponding entries in data and instruction TLBs) or the entire TLB. 

Note:  If a processor does not implement an optional instruction it treats the instruction as a no-op or as an 
illegal instruction, depending on the implementation. Also, note that the TLB concepts described here are 
conceptual; that is, a processor may implement parallel sets of TLBs for instructions and data.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the software 
that uses these instructions and registers be encapsulated into subroutines to minimize the impact of 
migrating across the family of implementations.

Table 7-6 summarizes the PowerPC instructions that specifically control the MMU. For more detailed infor-
mation about the instructions, refer to Chapter 8, Instruction Set. 

TEMPORARY 64-BIT BRIDGE

When the processor is using the 64-bit bridge, neither the slbie or slbia instruction should be executed.
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The operating system uses the SDR1 register to program the MMU. The SDR1 register specifies the base 
and size of the page tables in memory. SDR1 is defined as a 64-bit register and is a special-purpose register 
that is accessed by the mtspr and mfspr instructions. 

7.2.9 TLB Entry Invalidation

Optionally, PowerPC processors implement TLB structures that store on-chip copies of the PTEs that are 
resident in physical memory. These processors have the ability to invalidate resident TLB entries through the 
use of the tlbie and tlbia instructions. Additionally, these instructions may also enable a TLB invalidate 
signalling mechanism in hardware so that other processors also invalidate their resident copies of the 
matching PTE. See Chapter 8, Instruction Set for detailed information about the tlbie and tlbia instructions.

Table 7-6. Instruction Summary—Control MMU  

Instruction Description

mtsr SR,rS
Move to Segment Register
SR[SR]← rS
64-bit bridge only 

mtsrin rS,rB
Move to Segment Register Indirect
SR[rB[0–3]]←rS
64-bit bridge only

mfsr rD,SR
Move from Segment Register
rD←SR[SR]
64-bit bridge only 

mfsrin rD,rB
Move from Segment Register Indirect
rD←SR[rB[0–3]] 
64-bit bridge only

tlbia
(optional)

Translation Lookaside Buffer Invalidate All
For all TLB entries, TLB[V]←0 
Causes invalidation of TLB entries only for the processor that executed the tlbia

tlbie rB
(optional)

Translation Lookaside Buffer Invalidate Entry
If TLB hit (for effective address specified as rB), TLB[V]←0 
Causes TLB invalidation of entry in all processors in the system

tlbsync
(optional)

Translation Lookaside Buffer Synchronize
Ensures that all tlbie instructions previously executed by the processor executing the tlbsync 
instruction have completed on all processors

slbia
Segment Table Lookaside Buffer Invalidate All
For all SLB entries, SLB[V]←0 
64-bit implementations only 

slbie rB
(optional)

Segment Table Lookaside Buffer Invalidate Entry
If SLB hit (for effective address specified as rB), SLB[V]←0 
64-bit implementations only 

slbmte rS, rB
SLB Move to Entry
SLB[rB(52..63)]← rS,rB

slbmfev rD, rB
SLB Move from Entry VSID
rD← SLB[rB(52..63)]VSID 

slbmfee rD, rB
SLB Move from Entry ESID
rD← SLB[rB(52..63)]ESID 
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7.3 Real Addressing Mode

If address translation is disabled (MSR[IR] = ‘0’ or MSR[DR] = ‘0’) for a particular access, the effective 
address is treated as the physical address and is passed directly to the memory subsystem as a real 
addressing mode address translation. If an implementation has a smaller physical address range than effec-
tive address range, the extra high-order bits of the effective address may be ignored in the generation of the 
physical address. 

Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers describes the 
synchronization requirements for changes to MSR[IR] and MSR[DR].

The addresses for accesses that occur in real addressing mode bypass all memory protection checks as 
described in Section 7.4.4 Page Memory Protection and do not cause the recording of referenced and 
changed information (described in Section 7.4.3 Page History Recording). 

For data accesses that use real addressing mode, the memory access mode bits (WIMG) are assumed to be 
‘0011’. That is, the cache is write-back and memory does not need to be updated immediately (W = ‘0’), 
caching is enabled (I = ‘0’), data coherency is enforced with memory, I/O, and other processors (caches) 
(M = ‘1’, so data is global), and the memory is guarded (G = ‘1’). For instruction accesses in real addressing 
mode, the memory access mode bits (WIMG) are assumed to be either ‘0001’ or ‘0011’. That is, caching is 
enabled (I = ‘0’) and the memory is guarded (G = ‘1’). Additionally, coherency may or may not be enforced 
with memory, I/O, and other processors (caches) (M = ‘0’ or ‘1’, so data may or may not be considered 
global). For a complete description of the WIMG bits, refer to Section 5.2.1 Memory/Cache Access Attributes.

Note:  The attempted execution of the eciwx or ecowx instructions while MSR[DR] = ‘0’ causes boundedly-
undefined results.

Whenever an exception occurs, the processor clears both the MSR[IR] and MSR[DR] bits. Therefore, at least 
at the beginning of all exception handlers (including reset), the processor operates in real addressing mode 
for instruction and data accesses. If address translation is required for the exception handler code, the soft-
ware must explicitly enable address translation by accessing the MSR as described in Chapter 2, PowerPC 
Register Set.

Note:  An attempt to access a physical address that is not physically present in the system may cause a 
machine check exception (or even a checkstop condition), depending on the response by the system for this 
case. Thus, care must be taken when generating addresses in real addressing mode. This can also occur 
when translation is enabled and the ASR or SDR1 registers set up the translation such that nonexistent mem-
ory is accessed. See Section 6.4.2 Machine Check Exception (0x00200) for more information on machine 
check exceptions. 

TEMPORARY 64-BIT BRIDGE

Note:  If ASR[V] = ‘0’, a reference to a nonexistent address in the STABORG field does not cause a 
machine check exception. 



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Memory Management

Page 260 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.4 Memory Segment Model

Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented memory model provides 
a way to map 4-Kbyte (or implementation specific larger size) pages of effective addresses to pages in phys-
ical memory (page address translation), while providing the programming flexibility afforded by a large virtual 
address space (up to 80 bits).

The page translation proceeds in the following two steps: 

1. From effective address to the virtual address, and

2. From virtual address to physical address.

The page address translation mechanism is described in the following sections, followed by a summary of 
page address translation with a detailed flow diagram. 

7.4.1 Recognition of Addresses in Segments 

The page address translation uses segment descriptors, which provide virtual address and protection infor-
mation, and page table entries (PTEs), which provide the physical address and page protection information. 
The segment descriptors are programmed by the operating system to provide the virtual ID for a segment. In 
addition, the operating system also creates the page table in memory that provides the virtual-to-physical 
address mappings (in the form of PTEs) for the pages in memory. 

Segments in the OEA can be classified as memory segments. An effective address in these segments repre-
sents a virtual address that is used to define the physical address of the page.

All accesses generated by the processor can be mapped to a segment descriptor; however, if translation is 
disabled (MSR[IR] = ‘0’ or MSR[DR] = ‘0’ for an instruction or data access, respectively), real addressing 
mode translation is performed as described in Section 7.3 Real Addressing Mode. Otherwise the access 
maps to memory space and page address translation is performed. 

After a memory segment is selected, the processor creates the virtual address for the segment and searches 
for the PTE that dictates the physical page number to be used for the access. 

Note:  I/O devices can be easily mapped into memory space and used as memory-mapped I/O. 

7.4.2 Page Address Translation Overview

The first step in page address translation for 64-bit implementations is the conversion of the 64-bit effective 
address of an access into the virtual address (between 65 and 80 bits depending on the implementation). The 
virtual address is then used to locate the PTE in the page table in memory. The physical page number is then 
extracted from the PTE and used in the formation of the physical address of the access. 

Note:  For increased performance, some processors may implement on-chip TLBs to store copies of 
recently-used PTEs.

Figure 7-6 shows an overview of the translation of an effective address to a physical address for 64-bit imple-
mentations (assuming an 80-bit virtual address) as follows:

• Bits [0–35] of the effective address comprise the effective segment ID (ESID) used to select a segment 
descriptor, from which the virtual segment ID (VSID) is extracted. 

• Bits [36–(63-p)] of the effective address correspond to the page number (index) within the segment; these 
bits are concatenated with the VSID from the segment descriptor to form the virtual page number (VPN). 
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The VPN is used to search for the PTE in either an on-chip TLB or the page table. The PTE then provides 
the physical page number (also known as the real page number or RPN). 

Note:  Bits [36–40] form the abbreviated page index (API) which is used to compare with page table 
entries during hashing. This is described in detail in Section 7.5.1.8 PTEG Address Mapping Example on 
page 284.

• Bits [(64-p)–63] of the effective address are the byte offset within the page; these are concatenated with 
the real page number (RPN) field of a PTE to form the physical (real) address used to access memory.

TEMPORARY 64-BIT BRIDGE

Because processors that implement the 64-bit bridge access only a 32-bit address space, only 16 STEs 
are required to define the entire 4-Gbyte address space. Page address translation for 64-bit processors 
using the 64-bit bridge uses a subset of the functionality described here for 64-bit implementations. For 
example, only bits [32–35] are used to select a segment descriptor, and as in the 32-bit portion of the 
architecture, only 16 on-chip segment registers are required. These segment descriptors are main-
tained in 16 SLB entries. 

Refer to Section 7.6 Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementa-
tions on page 292 for details concerning the 64-bit bridge.

Figure 7-6. Page Address Translation Overview 

80-Bit Virtual Address

64-Bit Effective Address

62-Bit Physical Address

Page Byte Offset
(28-p Bit (p Bit)

Virtual Segment ID (VSID) Page Index Byte Offset
(52 Bit) (28-p Bit) (p Bit)

Physical Page Number (RPN) Byte Offset
(62-p Bit) (p Bit)

TLB/
Page Table

Page Index (16 Bit)

PTE

0 35 36 63-p 64-p 63

SLB/
Segment Table

0 51 52 79-p  80-p 79

Virtual Page Number (VPN)

Effective Segment ID
(36 Bit)

0 61-p 62-p 62
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7.4.2.1 Segment Lookaside Buffer (SLB) 

The Segment Lookaside Buffer (SLB) specifies the mapping between Effective Segment IDs (ESIDs) and 
Virtual Segment IDs (VSIDs). The number of SLB entries is implementation-dependent, except that all imple-
mentations provide at least 32 entries.

The contents of the SLB are managed by software, using the instructions described in Table 7-6. See 
Section 4.1.5.1 Context Synchronizing Instructions for the rules that software must follow when updating the 
SLB.

Each SLB entry (SLBE) maps one ESID to one VSID. Figure 7-7 illustrates an SLB entry.

On implementations that support a virtual address size of only n bits, n< 80, bits [0 to 79-n] of the VSID field 
are treated as reserved bits, and software must set them to zeros.

A No-execute segment (N=’1’) contains data that should not be executed.

The L bit selects between the two virtual page sizes, 4 KB (p=12) and “large.” The large page size is an imple-
mentation-dependent value that is a power of 2 and is in the range 8 KB to 256 MB (13 ≤ p ≤ 28). Some 
implementations may provide a means by which software can select the large page size from a set of several 
implementation-dependent sizes during system initialization.

If “large page” is used in reference to physical (real) memory, it means the sequence of contiguous real 
(4 KB) pages to which a large virtual page is mapped. The Class field is used in conjunction with the slbie 
instruction. 

Software must ensure that the SLB contains at most one entry that translates a given effective address (for 
example, that a given ESID is contained in no more than one SLB entry).

Figure 7-7. SLB Entry 

Table 7-7. SLB Entry Bit Description – 64-bit Implementations 

Bit Name Description

0-35 ESID Effective segment ID

36 V Entry valid (V=’1’) or invalid (V=’0’)

37-88 VSID Virtual segment ID

89 KS Supervisor state storage key

90 KP User (problem) state storage key

91 N No-execute segment if N=1

92 L Virtual pages are large (L=1) or 4KB (L=0)

93 C Class

0 35 37 89 9388

ESID V VSID KS KP N L

90 91 92

C
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Because the virtual page size is used both in searching the Page Table and in forming the real address using 
the matching Page Table Entry (PTE), and PTEs contain no indication of the virtual page size, the virtual 
page size must be the same for all address translations that use a given VSID value. This has the following 
consequences, which apply collectively to all processors that use the same Page Table.

• The value of the L bit must be the same in all SLB entries that contain a given VSID value.

• Before changing the value of the L bit in an SLB entry, software must invalidate all SLB entries, TLB 
entries, and PTEs that contain the corresponding VSID value.

SLB Search

When the hardware searches the SLB, all entries are tested for a match with the EA. For a match to exist, the 
following must be true:

• SLBE[V] = ‘1’

• SLBE[ESID] = EA[0-35]

If the SLB search succeeds, the virtual address (VA) is formed by concatenating the VSID from the matching 
SLB entry with bits [36-63] of the effective address. 

The Virtual Page Number (VPN) is bits [0 to 79-p] of the virtual address.

If the SLB search fails, a segment fault occurs. This is an Instruction Segment exception or a Data Segment 
exception, depending on whether the effective address is for an instruction fetch or for a data access.

7.4.2.2 Page Table Entry (PTE) Definition and Format

Page table entries (PTEs) are generated and placed in a page table in memory by the operating system using 
the hashing algorithm described in Section 7.5.1.3 Page Table Hashing Functions. Some of the fields are 
defined as follows:

• The virtual segment ID field corresponds to the high-order bits of the virtual page number (VPN), and, 
along with the H, V, and API fields, it is used to locate the PTE (used as match criteria in comparing the 
PTE with the segment information). 

• The R and C bits maintain history information for the page as described in Section 7.4.3 Page History 
Recording.

• The WIMG bits define the memory/cache control mode for accesses to the page.

•  The PP bits define the remaining access protection constraints for the page. The page protection pro-
vided by PowerPC processors is described in Section 7.4.4 Page Memory Protection.

Conceptually, the page table in memory must be searched to translate the address of every reference. For 
performance reasons, however, some processors use on-chip TLBs to cache copies of recently-used PTEs 
so that the table search time is eliminated for most accesses. In this case, the TLB is searched for the 
address translation first. If a copy of the PTE is found, then no page table search is performed. As TLBs are 
noncoherent caches of PTEs, software that changes the page table in any way must perform the appropriate 
TLB invalidate operations to keep the on-chip TLBs coherent with respect to the page table in memory.

Each PTE is a 128-bit entity (two doublewords) that maps a virtual page number (VPN) to a physical page 
number (RPN). Information in the PTE is used in the page table search process (to determine a page table 
hit) and provides input to the memory protection mechanism. Figure 7-8 shows the format of the two double-
words that comprise a PTE for 64-bit implementations.
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Table 7-8 lists the corresponding bit definitions for each doubleword in a PTE as defined. 

If p ≤ 23, the Abbreviated Virtual Page Number (AVPN) field contains bits [0-56] of the VPN. Otherwise bits 
[0 - (79-p)] of the AVPN field contain bits [0 to (79-p)] of the VPN, and bits [(80-p) to 56] of the AVPN field 
must be zeros.

Note:  If p ≤ 23, the AVPN field omits the low-order (23-p) bits of the VPN. These bits are not needed in the 
PTE, because the low-order 11 bits of the VPN are always used in selecting the PTEGs to be searched.

On implementations that support a virtual address size of only n bits, n< 80, bits [0 to (79-n)] of the AVPN field 
must be zeros.

The RPN field contains the page number of the real page that contains the first byte of the block of real 
storage to which the virtual page is mapped. If p> 12, the low-order p-12 bits of the RPN field (bits 
[(64-p) to 51] of doubleword 1 of the PTE) must be ‘0’. On implementations that support a real address size of 
only m bits, m< 62, bits [0 to (61-m)] of the RPN field must be zeros.

Note:  For a large virtual page, the high-order [62-p] bits of the RPN field (bits [0 to (61-p)]) comprise the large 
real page number.

Figure 7-8. Page Table Entry Format 

Table 7-8. PTE Bit Definitions 

Doubleword Bit Name Description

0

0-56 AVPN Abbreviated virtual page number 

57-60 SW Available for software use

61 — Reserved 

62 H Hash function identifier

63 V Entry valid (V = ‘1’) or invalid (V = ‘0’) 

1

0-1 — Reserved 

2-51 RPN Physical page number

52–53 — Reserved 

54 AC Address compare bit 

55 R Referenced bit

56 C Changed bit

57–60 WIMG Memory/cache access control bits

61 N No execute page if N = ‘1’ 

62–63 PP Page protection bits

Reserved

0 51 52 54 55 56 57 60 61 62 63

0 56 57 61 62 63

AVPN SW 0 H V

0 0 RPN AC R C WIMG N PP0 0
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7.4.3 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about the page. The 
operating system then uses this information to determine which areas of memory to write back to disk when 
new pages must be allocated in main memory. Furthermore, R and C bits are maintained only for accesses 
made while address translation is enabled (MSR[IR] = ‘1’ or MSR[DR] = ‘1’). 

In general, the referenced and changed bits are updated to reflect the status of the page based on the 
access, as shown in Table 7-9. 

In processors that implement a TLB, the processor may perform the R and C-bit updates based on the copies 
of these bits resident in the TLB. For example, the processor may update the C-bit based only on the status of 
the C-bit in the TLB entry in the case of a TLB hit (the R-bit may be assumed to be set in the page tables if 
there is a TLB hit). Therefore, when software clears the R and C-bits in the page tables in memory, it must 
invalidate the TLB entries associated with the pages whose referenced and changed bits were cleared. See 
Section 7.5.3 Page Table Updates for all of the constraints imposed on the software when updating the refer-
enced and changed bits in the page tables.

The R-bit for a page may be set by the execution of the dcbt or dcbtst instruction to that page. However, 
neither of these instructions cause the C-bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if address translation 
were disabled (real addressing mode address). 

7.4.3.1 Referenced Bit

The referenced bit for each virtual (real) page is located in the PTE. Every time a page is referenced (by an 
instruction fetch, or any other read or write access) the referenced bit is set in the page table. The referenced 
bit may be set immediately, or the setting may be delayed until the memory access is determined to be 
successful. Because the reference to a page is what causes a PTE to be loaded into the TLB, some proces-
sors may assume the R-bit in the TLB is always set. The processor never automatically clears the referenced 
bit. 

The referenced bit is only a hint to the operating system about the activity of a page. At times, the referenced 
bit may be set although the access was not logically required by the program or even if the access was 
prevented by memory protection. Examples of this include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by a stwcx. or stdcx. instruction when no store is performed 

• Accesses that cause exceptions and are not completed

Table 7-9. Table Search Operations to Update History Bits 

R and C bits Processor Action

00
Read: Table search operation to update R 
Write: Table search operation to update R and C

01 Combination doesn’t occur

10
Read: No special action
Write: Table search operation to update C

11 No special action for read or write



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Memory Management

Page 266 of 657
pem7_MMU.fm.3.0

July 15, 2005

7.4.3.2 Changed Bit

The changed bit for each virtual page is located both in the PTE in the page table and in the copy of the PTE 
loaded into the TLB (if a TLB is implemented). Whenever a data store instruction is executed successfully, if 
the TLB search (for page address translation) results in a hit, the changed bit in the matching TLB entry is 
checked. If it is already set, no additional action is required. If the TLB changed bit is ‘0’, it is set and a table 
search operation is performed to set the C-bit in the corresponding PTE in the page table.

Processors cause the changed bit (in both the PTE in the page tables and in the TLB if implemented) to be 
set only when a store operation is allowed by the page memory protection mechanism and the store is guar-
anteed to be in the execution path, unless an exception, other than those caused by one of the following 
occurs:

• System-caused interrupts (system reset, machine check, external, and decrementer interrupts)

• Floating-point enabled exception type program exceptions when the processor is in an imprecise mode

• Floating-point assist exceptions for instructions that cause no other kind of precise exception 

Furthermore, the following conditions may cause the C-bit to be set:

• The execution of an stwcx. or stdcx. instruction is allowed by the memory protection mechanism but a 
store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection mechanism but a store opera-
tion is not performed because the specified length is zero.

No other cases cause the C-bit to be set. 
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7.4.3.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) used by PowerPC processors that main-
tain the referenced and changed bits automatically in hardware, in the setting of the R and C-bits. In some 
scenarios, the bits are guaranteed to be set by the processor; in some scenarios, the architecture allows that 
the bits may be set (not absolutely required); and in some scenarios, the bits are guaranteed to not be set. 
Note that when the hardware updates the R and C-bits in memory, the accesses are performed as a physical 
memory access, as if the WIMG bit settings were ‘0010’ (that is, as unguarded cacheable operations in which 
coherency is required).

In implementations that do not maintain the R and C-bits in hardware, software assistance is required. For 
these processors, the information in this section still applies, except that the software performing the updates 
is constrained to the rules described (that is, must set bits shown as guaranteed to be set and must not set 
bits shown as guaranteed to not be set). 

Note:  This software should be contained in the area of memory reserved for implementation-specific use and 
should be invisible to the operating system. 

Table 7-10 defines a prioritized list of the R and C-bit settings for all scenarios. The entries in the table are 
prioritized from top to bottom, such that a matching scenario occurring closer to the top of the table takes 
precedence over a matching scenario closer to the bottom of the table. For example, if an stwcx. instruction 
causes a protection violation and there is no reservation, the C-bit is not altered, as shown for the protection 
violation case. 

Note:  In Table 7-10, load operations include those generated by load instructions, by the eciwx instruction, 
and by the cache management instructions that are treated as loads with respect to address translation. Sim-
ilarly, store operations include those operations generated by store instructions, by the ecowx instruction, 
and by the cache management instructions that are treated as stores with respect to address translation. 

Table 7-10. Model for Guaranteed R and C Bit Settings  

Priority Scenario Causes Setting of R-Bit Causes Setting of C-Bit

1 Page protection violation Maybe No

2 Out-of-order instruction fetch or load operation Maybe No

3
Out-of-order store operation for instructions that will cause no other 
kind of precise exception (in the absence of system-caused, impre-
cise, or floating-point assist exceptions)

Maybe1 Maybe1

4 All other out-of-order store operations Maybe1 No

5 In-order Load-type instruction Maybe No

6 In-order Store-type instruction Maybe Maybe1

7 In-order instruction fetch Yes2 No

8 Load instruction or eciwx Yes No

9 Store instruction, ecowx or dcbz instruction Yes Yes

10 icbi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe No

Note:   
1 If C is set, R is guaranteed to also be set.
2 This includes the case in which the instruction was fetched out of order and R was not set.
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7.4.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates

Although the processor updates the referenced and changed bits in the page tables automatically, these 
updates are not guaranteed to be immediately visible to the program after the load, store, or instruction fetch 
operation that caused the update. If processor A executes a load or store or fetches an instruction, the 
following conditions are met with respect to performing the access and performing any R and C-bit updates:

• If processor A subsequently executes a sync instruction, both the updates to the bits in the page table 
and the load or store operation are guaranteed to be performed with respect to all processors and mech-
anisms before the sync instruction completes on processor A.

• Additionally, if processor B executes a tlbie instruction that 

– signals the invalidation to the hardware,

– invalidates the TLB entry for the access in processor A, and

– is detected by processor A after processor A has begun the access,

and processor B executes a tlbsync instruction after it executes the tlbie, both the updates to the bits 
and the original access are guaranteed to be performed with respect to all processors and mechanisms 
before the tlbsync instruction completes on processor A.

7.4.4 Page Memory Protection

In addition to the no-execute option that can be programmed at the segment descriptor level to prevent 
instructions from being fetched from a given segment (shown in Figure 7-4). There are a number of other 
memory protection options that can be programmed at the page level. The page memory protection mecha-
nism allows selectively granting read access, granting read/write access, and prohibiting access to areas of 
memory based on a number of control criteria.

The memory protection used by the page address translation mechanism is different in that the page address 
translation protection defines a key bit that, in conjunction with the PP bits, determines whether supervisor 
and user programs can access a page.

For page address translation, the memory protection mechanism is controlled by the following:

• MSR[PR] which defines the mode of the access as follows:
–  MSR[PR] = ‘0’ corresponds to supervisor mode 
–  MSR[PR] = ‘1’ corresponds to user mode

• KS and KP, the supervisor and user key bits, which define the key for the page

• The PP bits, which define the access options for the page

• For instruction fetches only:
– No-execute (N) value used for the access
– PTE[G], the guarded (G) bit in the page table entry used to translate the effective address. 

The key bits (KS and KP) and the PP bits are located as follows for page address translation:

• KS and KP are located in the segment descriptor.

• The PP bits are located in the PTE.
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The key bits, the PP bits, and the MSR[PR] bit are used as follows:

• When an access is generated, one of the key bits is selected to be the key as follows:
–  For supervisor accesses (MSR[PR] = ‘0’), the KS bit is used and KP is ignored
–  For user accesses (MSR[PR] = ‘1’), the KP bit is used and KS is ignored

That is, key = (KP & MSR[PR]) | (KS & ¬MSR[PR])

• For an instruction fetch, the access is not permitted if the N = ‘1’ or PTE[G] = ‘1’

• The selected key is used with the PP bits to determine if instruction fetching, load access, or store access 
is allowed 

Table 7-11 shows the types of accesses that are allowed for the general case (all possible Ks, Kp, and PP bit 
combinations), assuming that the N-bit in the segment descriptor is cleared (the no-execute option is not 
selected). 

Thus, the conditions that cause a protection violation (not including the no-execute protection option for 
instruction fetches) are depicted in Table 7-12 and as a flow diagram in Figure 7-11. Any access attempted 
(read or write) when the key = ‘1’ and PP = ‘00’, causes a protection violation exception condition. When 
key = ‘1’ and PP = ‘01’, an attempt to perform a write access causes a protection violation exception condi-
tion. When PP = ‘10’, all accesses are allowed, and when PP = ‘11’, write accesses always cause an excep-
tion. The processor takes either the ISI or the DSI exception (for an instruction or data access, respectively) 
when there is an attempt to violate the memory protection.

Table 7-11. Access Protection Control with Key  

Key1 PP2 Page Type

0 00 Read/write

0 01 Read/write

0 10 Read/write

0 11 Read only

1 00 No access

1 01 Read only

1 10 Read/write

1 11 Read only

Note:  
1 KS or KP selected by state of MSR[PR] 
2 PP protection option bits in PTE

Table 7-12. Exception Conditions for Key and PP Combinations  

Key PP Prohibited Accesses

0 0x None

1 00 Read/write

1 01 Write

x 10 None

x 11 Write
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Any combination of the KS, KP, and PP bits is allowed. One example is if the KS and KP bits are programmed 
so that the value of the key bit for Table 7-11 directly matches the MSR[PR] bit for the access. In this case, 
the encoding of KS = ‘0’ and KP = ‘1’ is used for the PTE, and the PP bits then enforce the protection options 
shown in Table 7-13.

However, if the setting KS = ‘1’ is used, supervisor accesses are treated as user reads and writes with respect 
to Table 7-13. Likewise, if the setting KP = ‘0’ is used, user accesses to the page are treated as supervisor 
accesses in relation to Table 7-13. Therefore, by modifying one of the key bits (in the segment descriptor), 
the way the processor interprets accesses (supervisor or user) in a particular segment can easily be 
changed. 

Note:  Only supervisor programs are allowed to modify the key bits for the segment descriptor. Although 
access to the ASR is privileged, the operating system must protect write accesses to the segment table as 
well. 

As shown in Figure 7-9, when the memory protection mechanism prohibits a reference, one of the following 
occurs depending on the type of access that was attempted:

• For data accesses, a DSI exception is generated and DSISR[4] is set. If the access is a store, DSISR[6] is 
also set.

• For instruction accesses, 

– an ISI exception is generated and SRR1[36] is set, or
– an ISI exception is generated and SRR1[35] is set if the segment is designated as no-execute.

Table 7-13. Access Protection Encoding of PP Bits for KS = ‘0’ and KP = ‘1’ 

PP Field Option User Read
(Key = ‘1’)

User Write
(Key = ‘1’)

Supervisor Read
(Key = ‘0’)

Supervisor Write
(Key = ‘0’)

00 Supervisor-only Violation Violation Y Y

01 Supervisor-write-only Y Violation Y Y

10 Both user/supervisor Y Y Y Y

11 Both read-only Y Violation Y Violation
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If the page protection mechanism prohibits a store operation, the changed bit is not set (in either the TLB or in 
the page tables in memory); however, a prohibited store access may cause a PTE to be loaded into the TLB 
and consequently cause the referenced bit to be set in a PTE (both in the TLB and in the page table in 
memory).

7.4.5 Page Address Translation Summary

Figure 7-10 provides the detailed flow for the page address translation mechanism in 64-bit implementations. 
The figure includes the checking of the N-bit in the segment descriptor and then expands on the ‘TLB Hit’ 
branch of Figure 7-4. The detailed flow for the ‘TLB Miss’ branch of Figure 7-4 is described in Section 7.5.2 
Page Table Search Process. The checking of memory protection violation conditions for page address trans-
lation is shown in Figure 7-11. The ‘Invalidate TLB Entry’ box shown in Figure 7-10 is marked as implementa-
tion-specific as this level of detail for TLBs (and the existence of TLBs) is not dictated by the architecture. 

Note:  The figure does not show the detection of all exception conditions shown in Table 7-4 and Table 7-5; 
the flow for many of these exceptions is implementation-specific. 

Figure 7-9. Memory Protection Violation Flow for Pages 
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Figure 7-10. Page Address Translation Flow—TLB Hit 
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7.5 Hashed Page Tables

If a copy of the PTE corresponding to the VPN for an access is not resident in a TLB (corresponding to a miss 
in the TLB, provided a TLB is implemented), the processor must search for the PTE in the page tables set up 
by the operating. 

The algorithm specified by the architecture for accessing the page tables includes a hashing function on 
some of the virtual address bits. Thus, the addresses for PTEs are allocated more evenly within the page 
tables and the hit rate of the page tables is maximized. This algorithm must be synthesized by the operating 
system for it to correctly place the page table entries in main memory.

If page table search operations are performed automatically by the hardware, they are performed using phys-
ical addresses and as if the memory access attribute bit M = ‘1’ (memory coherency enforced in hardware). If 
the software performs the page table search operations, the accesses must be performed in real addressing 
mode (MSR[DR] = ‘0’); this additionally guarantees that M = ‘1’. 

This section describes the format of the page tables and the algorithm used to access them. In addition, the 
constraints imposed on the software in updating the page tables (and other MMU resources) are described.

Figure 7-11. Page Memory Protection Violation Conditions for Page Address Translation 
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7.5.1 Page Table Definition

The hashed page table is a variable-sized data structure that defines the mapping between virtual page 
numbers and physical page numbers. The page table size is a power of ‘2’, its starting address is a multiple of 
its size, and the table must reside in memory with the WIMG attributes of ‘0010’.

The page table contains a number of page table entry groups (PTEGs). For 64-bit implementations, a PTEG 
contains eight page table entries (PTEs) of 16 bytes each; therefore, each PTEG is 128 bytes long. PTEG 
addresses are entry points for table search operations. Figure 7-12 shows two PTEG addresses (PTEGaddr1 
and PTEGaddr2) where a given PTE may reside.

A given PTE can reside in one of two possible PTEGS—one is the primary PTEG and the other is the 
secondary PTEG. Additionally, a given PTE can reside in any of the PTE locations within an addressed 
PTEG. Thus, a given PTE may reside in one of 16 possible locations within the page table. If a given PTE is 
not in either the primary or secondary PTEG, a page table miss occurs, corresponding to a page fault condi-
tion.

A table search operation is defined as the search for a PTE within a primary and secondary PTEG. When a 
table search operation commences, a primary hashing function is performed on the virtual address. The 
output of the hashing function is then concatenated with bits programmed into the SDR1 register by the oper-
ating system to create the physical address of the primary PTEG. The PTEs in the PTEG are then checked, 
one by one, to see if there is a hit within the PTEG. If the PTE is not located, a secondary hashing function is 
performed, a new physical address is generated for the PTEG, and the PTE is searched for again, using the 
secondary PTEG address. 

Figure 7-12. Page Table Definitions 

16 bytes

PTE0 PTE1 PTE7 PTEG0

PTEG7FFF
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Note:  Although a given PTE may reside in one of 16 possible locations, an address that is a primary PTEG 
address for some accesses also functions as a secondary PTEG address for a second set of accesses (as 
defined by the secondary hashing function). Therefore, these 16 possible locations are really shared by two 
different sets of effective addresses. Section 7.5.1.7 Page Table Structure Example, illustrates how PTEs 
map into the 16 possible locations as primary and secondary PTEs.

7.5.1.1 SDR1 Register Definition 

The Storage Description Register 1 (SDR1) contains the control information for the page table structure in 
that it defines the high-order bits for the physical base address of the page table and it defines the size of the 
table. Note that there are certain synchronization requirements for writing to SDR1 that are described in 
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers. 

The format of the SDR1 register is shown in Figure 7-13. 

The bit settings for SDR1 are described in Table 7-14. 

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address of the page table. 
Therefore, the beginning of the page table lies on a 218 byte (256 Kbyte) boundary at a minimum. If the 
processor does not support 64 bits of physical address, software should write zeros to those unsupported bits 
in the HTABORG field (as the implementation treats them as reserved). Otherwise, a machine check excep-
tion can occur.

A page table can be any size 2
n bytes where 18 ≤ n ≤ 46. The HTABSIZE field in SDR1 contains an integer 

value that specifies how many bits from the output of the hashing function are used as the page table index. 
This number must not exceed 28. HTABSIZE is used to generate a mask of the form ‘00...011...1’ (a string of 
n ‘0’ bits (where n is 28 – HTABSIZE) followed by a string of ‘1’ bits, the number of which is equal to the value 
of HTABSIZE). As the table size increases, more bits are used from the output of the hashing function to 
index into the table. The ‘1’ bits in the mask determine how many additional bits (beyond the minimum of 11) 
from the hash are used in the index; the HTABORG field must have this same number of low-order bits equal 
to 0. See Figure 7-17 for an example of the primary PTEG address generation in a 64-bit implementation.

On implementations that support a real address size of only m bits, m< 62, bits [0 to (61- m)] of the 
HTABORG field are treated as reserved bits, and software must set them to zeros.

Figure 7-13. SDR1 Register Format 

Table 7-14. SDR1 Register Bit Settings 

Bits Name Description

0–1 — Reserved 

2–45 HTABORG Physical base address of page table 

46–58 — Reserved

59-63 HTABSIZE Encoded size of page table (used to generate mask)

0 0  0 0 0 0  0 0 0 0 0 0 0 HTABSIZE

Reserved

0 45 46 58 59 63
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Let n equal the virtual address size (in bits) supported by the implementation. If n< 67, software should set the 
HTABSIZE field to a value that does not exceed n- 39. Because the high-order [80- n] bits of the VSID are 
assumed to be zeros, the hash value used in the Page Table search will have the high-order [67- n] bits either 
all ‘0’s (primary hash) or all ‘1’s (secondary hash). If HTABSIZE > [n- 39], some of these hash value bits will 
be used to index into the Page Table, with the result that certain PTEGs will not be searched.

7.5.1.2 Page Table Size 

The number of entries in the page table directly affects performance because it influences the hit ratio in the 
page table and thus the rate of page fault exception conditions. If the table is too small, not all virtual pages 
that have physical page frames assigned may be mapped via the page table. This can happen if more than 
16 entries map to the same primary/secondary pair of PTEGs; in this case, many hash collisions may occur.

The minimum allowable size for a page table is 256 Kbytes (211 PTEGs of 128 bytes each). However, it is 
recommended that the total number of PTEGs in the page table be at least half the number of physical page 
frames to be mapped. While avoidance of hash collisions cannot be guaranteed for any size page table, 
making the page table larger than the recommended minimum size reduces the frequency of such collisions, 
by making the primary PTEGs more sparsely populated, and further reducing the need to use the secondary 
PTEGs.

Table 7-15 shows example sizes for total main memory. The recommended minimum page table sizes for 
these example memory sizes are then outlined, along with their corresponding HTABORG and HTABSIZE 
settings. 

Note:  Systems with less than 16 Mbytes of main memory may be designed with 64-bit implementations, but 
the minimum amount of memory that can be used for the page tables is 256 Kbytes in these cases. 
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As an example, if the physical memory size is 231 bytes (2 Gbyte), there are 231 – 212 (4 Kbyte page size) = 
219 (512 Kbyte) total page frames. If this number of page frames is divided by 2, the resultant minimum 
recommended page table size is 218 PTEGs, or 225 bytes (32 Mbytes) of memory for the page tables.

7.5.1.3 Page Table Hashing Functions

The MMU uses two different hashing functions, a primary and a secondary, in the creation of the physical 
addresses used in a page table search operation. These hashing functions distribute the PTEs within the 
page table, in that there are two possible PTEGs where a given PTE can reside. Additionally, there are eight 
possible PTE locations within a PTEG where a given PTE can reside. If a PTE is not found using the primary 
hashing function, the secondary hashing function is performed, and the secondary PTEG is searched. 

Note:  These two functions must also be used by the operating system to set up the page tables in memory 
appropriately.

Typically, the hashing functions provide a high probability that a required PTE is resident in the page table, 
without requiring the definition of all possible PTEs in main memory. However, if a PTE is not found in the 
secondary PTEG, a page fault occurs and an exception is taken. Thus, the required PTE can then be placed 
into either the primary or secondary PTEG by the system software, and on the next TLB miss to this page (in 
those processors that implement a TLB), the PTE will be found in the page tables (and loaded into an on-chip 
TLB).

The address of a PTEG is derived from the HTABORG field of the SDR1 register, and the output of the corre-
sponding hashing function (primary hashing function for primary PTEG and secondary hashing function for a 
secondary PTEG). The value in the HTABSIZE field of SDR1 determines how many of the higher-order hash 
value bits are masked and how many are used in the generation of the physical address of the PTEG.

Table 7-15. Minimum Recommended Page Table Sizes 

Total Main Memory

 Recommended Minimum Settings for Recommended Minimum

Memory for Page Tables
Number of 

Mapped Pages 
(PTEs)

Number of 
PTEGs

HTABORG 
(Maskable Bits 

[18-45])

HTABSIZE 
(28-Bit Mask)

16 Mbytes (224) 256 Kbytes (218) 214 211 x . . . . xxxx 0 0000
(0 . . . . 0000)

32 Mbytes (225) 512 Kbytes (219) 215 212 x . . . . xxx0 0 0001
(0 . . . . 0001)

64 Mbytes (226) 1 Mbyte (220) 216 213 x . . . . xx00 0 0010
(0 . . . . 0011)

128 Mbytes (227) 2 Mbytes (221) 217 214 x . . . . x000 0 0011
(0 . . . . 0111)

256 Mbytes (228) 4 Mbytes (222) 218 215 x . . .x 0000 0 0100
(0 . . .0 1111)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

251 Bytes 245 Bytes 241 238 x 0 . . . 0000 1 1011
(0 1 . . . 1111)

252 Bytes 246 Bytes 242 239 0 . . . . 0000 1 1100
(1 . . . .1111)



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Memory Management

Page 278 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-14 depicts the hashing functions defined by the PowerPC OEA for page tables (4KB page size). The 
inputs to the primary hashing function are the lower-order 39 bits of the VSID field of the STE (bits [13–51] of 
the 80-bit virtual address), and the page index field of the effective address (bits [52–67] of the virtual 
address) concatenated with 23 higher-order bits of zero. The XOR of these two values generates the output 
of the primary hashing function (hash value 1).

When the secondary hashing function is required, the output of the primary hashing function is comple-
mented with one’s complement arithmetic, to provide Hash Value 2.

Figure 7-14. Hashing Functions for Page Tables (4KB page size) 

Lower-Order 39 Bits of VSID (from Segment Descriptor)
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7.5.1.4 Translation Lookaside Buffer (TLB) 

Conceptually, the page table is searched by the address relocation hardware to translate every reference. 
For performance reasons, the hardware usually keeps a Translation Lookaside Buffer (TLB) that holds PTEs 
that have recently been used. The TLB is searched prior to searching the page table. As a consequence, 
when software makes changes to the page table it must perform the appropriate TLB invalidate operations to 
maintain the consistency of the TLB with the page table.

Page table entries may or may not be cached in a TLB. It is possible that the hardware implements more than 
one TLB, such as one for data and one for instructions. In this case the size and shape of the TLBs may 
differ, as may the values contained therein. A tlbie or tlbia instruction should be used to ensure that the TLB 
no longer contains a mapping corresponding to an entry that has been deleted from the page table.

7.5.1.5 Page Table Address Generation

The following section illustrates the generation of the addresses used for accessing the hashed page tables. 
As stated earlier, the operating system must synthesize the table search algorithm for setting up the tables. 

Two of the elements that define the virtual address (the VSID field of the segment descriptor and the page 
index field of the effective address) are used as inputs into a hashing function. Depending on whether the 
primary or secondary PTEG is to be accessed, the processor uses either the primary or secondary hashing 
function as described in Section 7.5.1.3 Page Table Hashing Functions.

Note:  When address translation is enabled (MSR[DR] or MSR[IR] = ‘1’), the SDR1 must point to a valid page 
table. Otherwise, a machine check exception can occur. 

Additionally, care should be given that page table addresses not conflict with those that correspond to areas 
of the physical address map reserved for the exception vector table or other implementation-specific 
purposes (refer to Section 7.2.1.2 Predefined Physical Memory Locations). 

The base address of the page table is defined by the high-order bits of SDR1[HTABORG]. Effectively, bits 
[18–45] of the PTEG address are derived from the masking of the higher-order bits of the hash value (as 
defined by SDR1[HTABSIZE]) concatenated with (implemented as an OR function) the high-order bits of 
SDR1[HTABORG] as defined by HTABSIZE. Bits [46–56] of the PTEG address are the 11 lower-order bits of 
the hash value, and bits [57–63] of the PTEG address are zero. In the process of searching for a PTE, the 
processor checks up to eight PTEs located in the primary PTEG and up to eight PTEs located in the 
secondary PTEG, if required, searching for a match. Figure 7-15 provides a graphical description of the 
generation of the PTEG addresses.
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Figure 7-15. Generation of Addresses for Page Tables 
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7.5.1.6 Page Table Structure Summary

In the process of searching for a PTE, the processor interprets the values read from memory as described in 
Section 7.4.2.2 Page Table Entry (PTE) Definition and Format. The VSID and the abbreviated page index 
(API) fields of the virtual address of the access are compared to those same fields of the PTEs in memory. In 
addition, the valid (V) bit and the hashing function (H) bit are also checked. For a hit to occur, the V-bit of the 
PTE in memory must be set. If the fields match and the entry is valid, the PTE is considered a hit if the H-bit is 
set as follows:

• If this is the primary PTEG, H = ‘0’
• If this is the secondary PTEG, H = ‘1’

The physical address of the PTE(s) to be checked is derived as shown in Figure 7-15, and the generated 
address is the address of a group of eight PTEs (a PTEG). During a table search operation, the processor 
compares up to 16 PTEs: PTE0–PTE7 of the primary PTEG (defined by the primary hashing function) and 
PTE0–PTE7 of the secondary PTEG (defined by the secondary hashing function).

If the VSID and API fields do not match (or if V or H are not set appropriately) for any of these PTEs, a page 
fault occurs and an exception is taken. Thus, if a valid PTE is located in the page tables, the page is consid-
ered resident; if no matching (and valid) PTE is found for an access, the page in question is interpreted as 
nonresident (page fault) and the operating system must load the page into main memory and update the PTE 
accordingly. 

The architecture does not specify the order in which the PTEs are checked. Note that for maximum perfor-
mance however, PTEs should be allocated by the operating system first beginning with the PTE0 location 
within the primary PTEG, then PTE1, and so on. If more than eight PTEs are required within the address 
space that defines a PTEG address, the secondary PTEG can be used (again, allocation of PTE0 of the 
secondary PTEG first, and so on is recommended). Additionally, it may be desirable to place the PTEs that 
will require most frequent access at the beginning of a PTEG and reserve the PTEs in the secondary PTEG 
for the least frequently accessed PTEs.

The architecture also allows for multiple matching entries to be found within a table search operation. Multiple 
matching PTEs are allowed if they meet the match criteria described above, as well as have identical RPN, 
WIMG, and PP values, allowing for differences in the R and C-bits. In this case, one of the matching PTEs is 
used and the R and C-bits are updated according to this PTE. In the case that multiple PTEs are found that 
meet the match criteria but differ in the RPN, WIMG, or PP fields, the translation is undefined and the 
resultant R and C-bits in the matching entries are also undefined.

Note:  Multiple matching entries can also differ in the setting of the H-bit, but the H-bit must be set according 
to whether the PTE was located in the primary or secondary PTEG, as described above.

7.5.1.7 Page Table Structure Example 

Figure 7-16 shows the structure of an example page table. The base address of the page table is defined by 
SDR1[HTABORG] concatenated with 18 zero bits. In this example, the address is identified by bits [0–41] in 
SDR1[HTABORG]; note that bits [42–45] of HTABORG must be zero because the HTABSIZE field specifies 
an integer mask size of four, which decodes to four mask bits of ones. The addresses for individual PTEGs 
within this page table are then defined by bits [42–56] as an offset from bits [0–41] of this base address. Thus, 
the size of the page table is defined as 0x7FFF (32K) PTEGs.

Two example PTEG addresses are shown in Figure 7-16 as PTEGaddr1 and PTEGaddr2. Bits [42–56] of 
each PTEG address in this example page table are derived from the output of the hashing function (bits 
[57-63] are zero to start with PTE0 of the PTEG). In this example, the ‘b’ bits in PTEGaddr2 are the one’s 
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complement of the ‘a’ bits in PTEGaddr1. The ‘n’ bits are also the one’s complement of the ‘m’ bits, but these 
four bits are generated from bits [24–27] of the output of the hashing function, logically ORed with bits [42–45] 
of the HTABORG field (which must be zero). If bits [42–56] of PTEGaddr1 were derived by using the primary 
hashing function, PTEGaddr2 corresponds to the secondary PTEG. 

Note:  Bits [42–56] in PTEGaddr2 can also be derived from a combination of effective address bits, segment 
descriptor bits, and the primary hashing function. In this case, then PTEGaddr1 corresponds to the secondary 
PTEG. Thus, while a PTEG may be considered a primary PTEG for some effective addresses (and segment 
descriptor bits), it may also correspond to the secondary PTEG for a different effective address (and segment 
descriptor value). 

It is the value of the H-bit in each of the individual PTEs that identifies a particular PTE as either primary or 
secondary (there may be PTEs that correspond to a primary PTEG and PTEs that correspond to a secondary 
PTEG, all within the same physical PTEG address space). Thus, only the PTEs that have H = ‘0’ are checked 
for a hit during a primary PTEG search. Likewise, only PTEs with H = ‘1’ are checked in the case of a 
secondary PTEG search.
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Figure 7-16. Example Page Table Structure 
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7.5.1.8 PTEG Address Mapping Example 

This section contains a sample effective address and how its address translation (the PTE) maps into the 
primary PTEG in physical memory. This example illustrates how the processor generates PTEG addresses 
for a table search operation; this is also the algorithm that must be used by the operating system in creating 
page tables.

In the example shown in Figure 7-17, the value in SDR1 defines a page table at address 
0x0F05_8400_0F00_0000 that contains 217 PTEGs. The highest order 36 bits of the effective address 
uniquely map to a segment descriptor. The segment descriptor is then located and the contents of the 
segment descriptor are used along with bits [36–63] of the effective address to create the 80-bit virtual 
address.

To generate the address of the primary PTEG, bits [13–51], and bits [52–67] of the virtual address are then 
used as inputs into the primary hashing function (XOR) to generate hash value 1. The low-order 17 bits of 
hash value 1 are then concatenated with the high-order 40 bits of HTABORG and with seven low-order ‘0’ 
bits, defining the address of the primary PTEG (0x0F05_8400_0F3F_F300). The ANDing of the 28 high-order 
bits of hash value 1 with the mask (defined by the HTABSIZE field) and the ORing with bits [18–45] of 
HTABORG are implicitly shown in the figure. The ANDing with the mask selects six additional bits of hash 
value 1 to be used (in addition to the 11 prescribed bits) producing a total of 17 bits of hash value 1 bits to be 
used. The ORing causes those selected six bits of hash value 1 to comprise bits [40–45] of the PTEG 
address (as bits [40–45] of HTABORG should be zero).



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem7_MMU.fm.3.0
July 15, 2005  
 

Memory Management

Page 285 of 657

Figure 7-17. Example Primary PTEG Address Generation 

Byte Offset

0 39 40 45 46 56 57 63

Page Index

Example:

Given: SDR1

0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 0000 0000 0000 0000 0000 0110

0 39 45 59 63HTABORG

HTABSIZE

EA = 0x0027_0000_00FF_A01B:

Second Doubleword of STE:

Segment Descriptor Search

0 0 0 0 0 2 0 C A 7 0 1 C

0 51

12 13 51 52 67

Virtual Address: VSID

Primary Hash:

000 0000 0010 0000 1100 1010 0111 0000 0001 1100

XOR

000 0000 0000 0000 0000 0000 0000 1111 1111 1010

Hash Value 1

000 0000 0010 0000 1100 1010 0111 1111 1110 0110

28-bits 11-bits

0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 0011 1111 1111 0011 0000 0000

0 F 0 5 8 4 0 0 0 F 3 F F 3 0 0

Primary PTEG Address: Start at PTE0

HTABORG

0 35 51 52 63

0000 0000 0010 0111 0000 0000 0000 0000 0000 0000 1111 1111 1010 0000 0001 1011

0 F 0 5 8 4 0 0 0 F

0000 0000 0000 0000 0000 0010 0000 1100 1010 0111 0000 0001 1100 000...000

0000 0000 0000 0000 0000 0010 0000 1100 1010 0111 0000 0001 1100 0000 11111111 1010 0000 0001 1011

mask (0...011
decode



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Memory Management

Page 286 of 657
pem7_MMU.fm.3.0

July 15, 2005

Figure 7-18 shows the generation of the secondary PTEG address for this example. If the secondary PTEG is 
required, the secondary hash function is performed and the low-order 17 bits of hash value 2 are then ORed 
with the high-order 46 bits of HTABORG (bits [40–45] should be zero), and concatenated with seven low-
order 0 bits, defining the address of the secondary PTEG (0x0F05_8400_0FC0_0C80). 

As described in Figure 7-15, the 11 low-order bits of the page index field are always used in the generation of 
a PTEG address (through the hashing function). This is why only the 5-bit abbreviated page index (API) is 
defined for a PTE (the entire page index field does not need to be checked). For a given effective address, 
the low-order 11 bits of the page index (at least) contribute to the PTEG address (both primary and 
secondary) where the corresponding PTE may reside in memory. Therefore, if the high-order 5 bits (the API 
field) of the page index match with the API field of a PTE within the specified PTEG, the PTE mapping is 
guaranteed to be the unique PTE required.

Note:  A given PTEG address does not map back to a unique effective address. Not only can a given PTEG 
be considered both a primary and a secondary PTEG (as described in Section 7.5.1.7 Page Table Structure 
Example), but if the mask defined has four ‘1’ bits or less (not the case shown in the example in the figure), 
some bits of the page index field of the virtual address are not used to generate the PTEG address. There-
fore, any combination of these unused bits will map to the same pair of PTEG addresses. (However, these 
bits are part of the API and are therefore compared for each PTE within the PTEG to determine if there is a 

Figure 7-18. Example Secondary PTEG Address Generation 
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hit.) Furthermore, an effective address can select a different segment descriptor with a different value such 
that the output of the primary (or secondary) hashing function happens to equal the hash values shown in the 
example. Thus, these effective addresses would also map to the same PTEG addresses shown.

7.5.2 Page Table Search Process

An outline of the page table search process is as follows:

1. The 64-bit physical addresses of the primary and secondary PTEGs are generated as described in 
Section 7.5.1.5 Page Table Address Generation on page 279.

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from memory (the architecture 
does not specify the order of these reads, allowing multiple reads to occur in parallel). PTE reads occur 
with an implied WIM memory/cache mode control bit setting of ‘001’. Therefore, they are considered 
cacheable. 

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number (VPN) of the 
access. The VPN is the VSID concatenated with the page index field of the virtual address. For a match 
to occur, the following must be true:

– PTE[H] = ‘0’ for primary PTEG; PTE[H] = ‘1’ for secondary PTEG
– PTE[V] = ‘1’
– PTE[VSID] = VA[0-51]
– PTE[API] = VA[52-56] 

4.  If a match is not found within the eight PTEs of the primary PTEG and the eight PTEs of the secondary 
PTEG, an exception is generated as described in step 8. If a match (or multiple matches) is found, the 
table search process continues.

5. If multiple matches are found, all of the following must be true:

– PTE[RPN] is equal for all matching entries
– PTE[WIMG] is equal for all matching entries
– PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and C-bit of matching 
entries are undefined. Otherwise, the R and C-bits are updated based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB (if implemented) and the R-bit is updated in the PTE in 
memory (if necessary). If there is no memory protection violation, the C-bit is also updated in memory (if 
necessary) and the table search is complete. 

8. If a match is not found within the primary or secondary PTEG, the search fails, and a page fault exception 
condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed as if the WIMG bit settings were ‘0010’ 
(that is, as unguarded cacheable operations in which coherency is required).

7.5.2.1 Flow for Page Table Search Operation

Figure 7-19 Page Table Search Flow provides a detailed flow diagram of a page table search operation. 

Note:  The references to TLBs are shown as optional because TLBs are not required; if they do exist, the 
specifics of how they are maintained are implementation-specific. 

Figure 7-19 shows only a few cases of R-bit and C-bit updates. For a complete list of the R and C-bit updates 
dictated by the architecture, refer to Table 7-10 Model for Guaranteed R and C Bit Settings.
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Figure 7-19. Page Table Search Flow 
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7.5.3 Page Table Updates

This section describes the requirements on the software when updating page tables in memory via some 
pseudocode examples. Multiprocessor systems must follow the rules described in this section so that all 
processors operate with a consistent set of page tables. Even single processor systems must follow certain 
rules, because software changes must be synchronized with the other instructions in execution and with auto-
matic updates that may be made by the hardware (referenced and changed bit updates). Updates to the 
tables include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C-bits of a PTE
• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately synchronized by 
software locking of (that is, guaranteeing exclusive access to) PTEs or PTEGs if more than one processor 
can modify the table at that time. In the examples below, software locks should be performed to provide 
exclusive access to the PTE being updated. However, the architecture does not dictate the specific protocol 
to be used for locking (for example, a single lock, a lock per PTEG, or a lock per PTE can be used). See 
Appendix D Synchronization Programming Examples for more information about the use of the reservation 
instructions (such as the lwarx and stwcx. instructions) to perform software locking.

When TLBs are implemented they are defined as noncoherent caches of the page tables. TLB entries must 
be invalidated explicitly with the TLB invalidate entry instruction (tlbie) whenever the corresponding PTE is 
modified. In a multiprocessor system, the tlbie instruction must be controlled by software locking, so that the 
tlbie is issued on only one processor at a time. 

The PowerPC OEA defines the tlbsync instruction that ensures that TLB invalidate operations executed by 
this processor have caused all appropriate actions in other processors. In a system that contains multiple 
processors, the tlbsync functionality must be used in order to ensure proper synchronization with the other 
PowerPC processors. 

Note:  A sync (or ptesync) instruction must also follow the tlbsync to ensure that the tlbsync has completed 
execution on this processor.

On single processor systems, PTEs need not be locked and the eieio instructions (in between the tlbie and 
tlbsync instructions) and the tlbsync instructions themselves are not required. The sync instructions shown 
are required even for single processor systems (to ensure that all previous changes to the page tables and all 
preceding tlbie instructions have completed).

Any processor, including the processor modifying the page table, may access the page table at any time in an 
attempt to reload a TLB entry. An inconsistent PTE must never accidentally become visible (if V = ‘1’); thus, 
there must be synchronization between modifications to the valid bit and any other modifications (to avoid 
corrupted data). 

In the pseudocode examples that follow, changes made to a PTE or STE shown as a single line in the 
example is assumed to be performed with an atomic store instruction. Appropriate modifications must be 
made to these examples if this assumption is not satisfied (for example, if a store doubleword operation is 
performed with two store word instructions). 

Updates of R and C-bits by the processor are not synchronized with the accesses that cause the updates. 
When modifying the low-order half of a PTE, software must take care to avoid overwriting a processor update 
of these bits and to avoid having the value written by a store instruction overwritten by a processor update. 
The processor does not alter any other fields of the PTE.
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Explicitly altering certain MSR bits (using the mtmsrd instruction), or explicitly altering STEs, PTEs, or certain 
system registers, may have the side effect of changing the effective or physical addresses from which the 
current instruction stream is being fetched. This kind of side effect is defined as an implicit branch. For 
example, an mtmsrd instruction may change the value of MSR[SF], changing the effective addresses from 
which the current instruction stream is being fetched, causing an implicit branch. Implicit branches are not 
supported and an attempt to perform one causes boundedly-undefined results. Therefore, PTEs and STEs 
must not be changed in a manner that causes an implicit branch. Section 2.3.16 Synchronization Require-
ments for Special Registers and for Lookaside Buffers lists the possible implicit branch conditions that can 
occur when system registers and MSR bits are changed. 

For a complete list of the synchronization requirements for executing the MMU instructions, see 
Section 2.3.16 Synchronization Requirements for Special Registers and for Lookaside Buffers.

The following examples show the required sequence of operations. However, other instructions may be inter-
leaved within the sequences shown.

7.5.3.1 Adding a Page Table Entry

This is the simplest page table case. The valid bit of the old entry is assumed to be ‘0’. The following 
sequence can be used to create a PTE, maintain a consistent state, and ensure that a subsequent reference 
to the virtual address translated by the new entry will use the correct real address and associated attributes.

PTE[RPN,AC,R,C,WIMG,N,PP] ← new values
eieio /* order 1st update before 2nd */
PTE[AVPN,SW,H,V] ← new values (V = 1)
ptesync /* order updates before next page table search and before next data access */

7.5.3.2 Modifying a Page Table Entry

This section describes several scenarios for modifying a PTE.

General Case

If a valid entry is to be modified and the translation instantiated by the entry being modified is to be invali-
dated, the following sequence can be used to modify the PTE, maintain a consistent state, ensure that the 
translation instantiated by the old entry is no longer available, and ensure that a subsequent reference to the 
virtual address translated by the new entry will use the correct real address and associated attributes. (The 
sequence is equivalent to deleting the PTE and then adding a new one.)

PTE[V] ← 0 /* (other fields don’t matter) */
ptesync /* order updated before tlbie and before next page table search */
tblie (old_VPN[32-79-p, OLD_L] /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tblie before ptesync */
ptesync /* order tlbie, tlbsync and first update before second update */
PTE[RPN,AC,R,C,WIMG,N,PP] ← new values
eieio /* order second update before third */
PTE[AVPN,SW,H,V] ← new values (V = ‘1’)
ptesync /* order second and third updates before next page table search and before

next data access */
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Clearing the Referenced (R) Bit

When the PTE is modified only to clear the R bit to ‘0’, a much simpler algorithm suffices because the R-bit 
need not be maintained exactly.

lock(PTE)
oldR ←PTE[R] /*get old R */
if oldR = 1, then 
PTE[R] ← 0 /* store byte (R = ‘0’, other bits unchanged) */
tlbie(PTE) /* invalidate entry */
eieio /* order tlbie before tlbsync */
tlbsync /* ensure tlbie completed on all processors */
ptesync /* order tlbie, tlbsync, and update before next page table 

search and before next data access */
unlock(PTE)

Since only the R and C-bits are modified by the processor, and since they reside in different bytes, the R-bit 
can be cleared by reading the current contents of the byte in the PTE containing R (bits [48–55] of the second 
doubleword), ANDing the value with ‘FE’, and storing the byte back into the PTE.

Modifying the Virtual Address

If the virtual address translated by a valid PTE is to be modified and the new virtual address hashes to the 
same two PTEGs as does the old virtual address, the following sequence can be used to modify the PTE, 
maintain a consistent state, ensure that the translation instantiated by the old entry is no longer available, and 
ensure that a subsequent reference to the virtual address translated by the new entry uses the correct real 
address and associated attributes.

PTE[AVPN,SW,H,V] ← new values (V = 1)
ptesync /* order update before tblie and before next page table search */
tlbie(old_EA) /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync and update before next data access */
unlock(PTE)

To modify the AC, N, or PP bits without overwriting a reference or change bit update being performed by the 
processor or by some other processor, a sequence similar to that shown above can be used except that the 
first line would be replaced by a ptesync instruction followed by a loop containing a ldarx/stdcx. pair that 
emulates an atomic “Compare and Swap” of the low-order doubleword of the PTE.
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7.5.3.3 Deleting a Page Table Entry

The following sequence can be used to ensure that the translation instantiated by an existing entry is no 
longer available.

lock(PTE)
PTE[V] ← 0 /* (other fields don’t matter) */
ptesync /* order update before tlbie and before next page table search */
tlbie(old_EA) /* invalidate old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync and update before next data access */
unlock(PTE)

7.5.4 ASR Updates

There are certain synchronization requirements for writing to the ASR or using the move to segment register 
instructions. These are described in Section 2.3.16 Synchronization Requirements for Special Registers and 
for Lookaside Buffers. 

7.6 Migration of Operating Systems from 32-Bit Implementations to 64-Bit 
Implementations

The facilities and instructions described in this section may optionally be provided by a 64-bit implementation 
to reduce the amount of software change required to migrate an operating system from a 32-bit implementa-
tion to a 64-bit implementation. Using the bridge facility allows the operating system to treat the MSR as a 
32-bit register and to continue to use the segment register manipulation instructions (mtsr, mtsrin, mfsr, and 
mfsrin) which are defined for 32-bit implementations. These instructions are otherwise illegal in the 64-bit 
architecture. Although the 64-bit bridge does not literally implement the 16 registers as they are defined by 
the 32-bit portion of the architecture, the segment register manipulation instructions are used to access the 
16 predefined segment descriptors stored in the on-chip SLBs. 

The bridge features do not conceal the differences in format of the page table and SDR1 between 32-bit and 
64-bit implementations—the operating system must be converted explicitly to use the 64-bit formats. 

Note:  An operating system that uses the bridge features does not take full advantage of the 64-bit implemen-
tation (for example, it can generate only 32-bit effective addresses).

An operating system that uses the 64-bit bridge architecture should observe the following:

• The boot process should do the following:

– Clear MSR[SF].

– Initialize the ASR, clearing ASR[V].

– Invalidate all SLB entries. 

• The operating system should do the following: 

– Support only 32-bit applications. 

– If any 64-bit instructions are used, for example, to modify a PTE or a 64-bit SPR, ensure either that 
exceptions cannot occur or that the exception handler saves and restores all 64 bits of the GPRs. 
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– Manipulate only the low-order 32 bits of the MSR, leaving the high-order 32 bits unchanged. 

– Always have ASR[V] = 0. 

– Manage virtual segments using the 32-bit segment register manipulation instructions (mtsr, mtsrin, 
mfsr, and mfsrin). 

– Always map segments 0–15 in the SLB when translation is enabled. They may be mapped with a 
VSID for which there are no valid PTEs. 

– Never execute an slbie or slbia instruction. 

– Never generate an effective address greater than 232 – 1 when MSR[SF] = ‘1’. 

7.6.1 Segment Register Manipulation Instructions in the 64-Bit Bridge

The four segment register manipulation instructions, mtsr, mtsrin, mfsr, and mfsrin, defined as part of the 
32-bit portion of the architecture may optionally be provided by a 64-bit implementation that uses the 64-bit 
bridge. As part of the 64-bit bridge, these instructions operate as described below, and are implemented as a 
group and not individually. Attempting to execute one of these instructions on a 64-bit processor on which it is 
not supported causes an illegal instruction type program exception.

These instructions allow software to associate effective segments 0 through 15 with any of virtual segments 0 
through 224 – 1 without altering the segment table in memory. Sixteen indexed SLB entries serve as virtual 
segment registers. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a selected SLB 
entry. The mfsr and mfsrin instructions move 64 bits from a selected SLB entry to a selected GPR and can 
be used to read an SLB entry that was created with mtsr or mtsrin. 

The software synchronization requirements for any of the move to segment register instructions in a 64-bit 
implementation are the same as for those defined by the 32-bit architecture. 

To ensure that SLB entries contain unique ESIDs when the bridge is used, an ESID mapped by any of the 
move to segment register instructions must not have been mapped to that SLB entry by the segment table 
when ASR[V] was set. 

If an SLB entry that software established using one of the move to segment register instructions is overwritten 
while ASR[V] = ‘1’, software must be able to handle any exception caused when a segment descriptor cannot 
be located. 

Executing an mfsr or mfsrin instruction may set rD to an undefined value if ASR[V] has been set at any time 
since execution of the mtsr or mtsrin instruction that established the selected SLB entry, because that SLB 
entry may have been overwritten by the processor in the meantime. 

Typically, 16 fixed SLB entries are used by the segment register manipulation instructions, while SLB reload 
from the segment table selects SLB entries based on some other replacement policy such as LRU. 

With respect to updating any SLB replacement history used by the SLB replacement policy, implementations 
will treat the execution of an mtsr or mtsrin instruction the same as an SLB reload from the segment table. 

The following sections describe the move to and move from segment register instructions as they are defined 
for the 64-bit bridge.
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7.6.2 64-Bit Bridge Implementation of Segment Register Instruction 

The following sections describe the mfsr, mfsrin, mtsr, and mtsrin instructions that are defined for the 32-bit 
architecture and are allowed in the 64-bit bridge architecture only if ASR[V] is implemented. Otherwise, 
attempting to execute one of these instructions is illegal on a 64-bit implementation. 

7.6.2.1 Move from Segment Register—mfsr 

The mfsr instruction syntax is as follows:

mfsr rD,SR

The operation of the instruction is described as follows:

rD ← SLB(SR)

When executed as part of the 64-bit bridge, the contents of the SLB entry selected by SR are placed into rD; 
the contents of rD correspond to a segment table entry containing values as shown in Table 7-16. 

If the SLB entry selected by SR was not created by an mtsr instruction, the contents of rD are undefined. 
Formatting for GPR contents is shown in Figure 7-20. Fields shown as x’s are ignored. Fields shown as 
slashes correspond to reserved bits in the segment table entry. 

This is a supervisor-level instruction.

Table 7-16. Contents of rD after Executing mfsr  

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 SR ESID[32–35]

36–57 — —

58–59 rD[33–34] Ks, Kp

60–61 rD[35–36] N, reserved bit, or ‘0’

62–63 — —

1

0–24 rD[7–31] VSID[0–24] 

25–51 rD[37–63] VSID[25–51] 

52–63 — —

Note:  The contents of rD[0–6] are cleared automatically.
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7.6.2.2 Move from Segment Register Indirect—mfsrin 

The mfsrin instruction syntax is as follows:

mfsrin rD,rB

The operation of the instruction is described as follows:

rD ← SLB(rB[32–35])

The contents of the SLB entry selected by rB[32–35] are placed into rD; the contents of rD correspond to a 
segment table entry containing values as shown in Table 7-17. 

If the SLB entry selected by rB[32–35] was not created by an mtsr instruction, the contents of rD are unde-
fined. Formatting for GPR contents is shown in Figure 7-20. Fields shown as x’s are ignored. Fields shown as 
slashes correspond to reserved bits in the segment table entry. 

This is a supervisor-level instruction.

Figure 7-20. GPR Contents for mfsr and mfsrin  

Table 7-17. Contents of rD after Executing mtsr  

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 rB[32–35] ESID[32–35]

36–57 — —

58–59 rD[33–34] Ks, Kp

60–61 rD[35–36] N, reserved bit, or ‘0’

1

0–24 rD[7–31] VSID[0–24] 

25–51 rD[37–63] VSID[25–51]

52–63 — —

Note:  The contents of rD[0–6] are cleared automatically.

0 6 7 31 32 33 34 35 36 37 63

0 0 0 0  0 0 VSID{0–24]  0 Ks Kp N 0 VSID[25–51]

0 31 32 35 36 63

x x x x  x x x x  x x x x  x x x x  x x x x  x x x x  x x x x  ESID x x x x  x x x x  x x x x x x x x  x x x x  x x x x  x x x x  

rS/rD 

rB (for mfsrin)
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7.6.2.3 Move to Segment Register—mtsr

The mtsr instruction syntax is as follows:

mtsr SR,rS

The operation of the instruction is described as follows:

SLB(SR) ← (rS[32–63])

The SLB entry selected by SR is set as though it were loaded from a segment table entry, as shown in 
Table 7-18. 

This is a supervisor-level instruction. Formatting for GPR contents is shown in Figure 7-21. Fields shown as 
x’s are ignored. Fields shown as slashes correspond to reserved bits in the segment table entry. 

Note:  When creating a memory segment using the mtsr instruction, rS[36–39] should be cleared. 

Table 7-18. SLB Entry selected by SR 

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 SR ESID[32–35]

36–55 — —

56 0b1 V

57 — —

58–59 rS[33–34] Ks, Kp

60–61 rS[35–36] N, reserved bit, or ‘0’

62–63 — —

1

0–24 0x0000_00||0b0 VSID[0–24]

25–51 rS[37–63] VSID[25–51]

51–63 — —

Figure 7-21. GPR Contents for mtsr and mtsrin  

0 3132 33 34 35 36 39 40 63

x x x x  x x x x  x x x x  x x x x  x x x x  x x x x  x x x x  0 Ks Kp N 0 0 0 0 VSID[28–51]

rS

rB 

0 31 32 35 36 63

x x x x  x x x x  x x x x  x x x x  x x x x  x x x x  x x x x  ESID x x x x  x x x x  x x x x x x x x  x x x x  x x x x  x x x x  
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7.6.2.4 Move to Segment Register Indirect—mtsrin

The mtsrin instruction syntax is as follows:

mtsrin rS,rB

The operation of the instruction is described as follows:

SLB(rB[32–35]) ← (rS[32–63])

The SLB entry selected by bits [32–35] of rB is set as though it were loaded from a segment table entry, as 
shown in Table 7-19. 

This is a supervisor-level instruction. Formatting for GPR contents is shown in Figure 7-21. Fields shown as 
x’s are ignored. Fields shown as slashes correspond to reserved bits in the segment table entry.

Note:  When creating a memory segment using the mtsrin instruction, rS[36–39] should be cleared.

Table 7-19. SLB Entry Selected by Bits [32-35] or rB 

Doubleword Bit(s) Contents Description

0

0–31 0x0000_0000 ESID[0–31]

32–35 rB[32–35] ESID[32–35]

36–55 — —

56 0b1 V

57 — —

58–59 rS[33–34] Ks, Kp

60–61 rS[35–36] N, reserved bit, or ‘0’

62–63 — —

1

0–24 0x0000_00||0b0 VSID[0–24] 

25–51 rS[37–63] VSID[25–51]

52–63 — —
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8. Instruction Set
80
110

This chapter lists the PowerPC instruction set in alphabetical order by mnemonic and the instruction format. 
The format diagrams show, horizontally, all valid combinations of instruction fields; for a graphical representa-
tion of these instruction formats, see Appendix A PowerPC Instruction Set Listings. A description of the 
instruction fields and pseudocode conventions are also provided. 

For more information on the PowerPC instruction set, refer to Chapter 4, Addressing Modes and Instruction 
Set Summary.

Note:  The architecture specification refers to user-level and supervisor-level as problem state and privileged 
state, respectively.

8.1 Instruction Formats 

Instructions are four bytes long and word-aligned, so when instruction addresses are presented to the 
processor (as in branch instructions) the two low-order bits are ignored. Similarly, whenever the processor 
develops an instruction address, its two low-order bits are zero.

Bits [0–5] always specify the primary opcode. Many instructions also have an extended opcode. The 
remaining bits of the instruction contain one or more fields for the different instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the individual instruction 
layouts. If a reserved field does not have all bits cleared, or if a field that must contain a particular value does 
not contain that value, the instruction form is invalid and the results are as described in Chapter 4, Addressing 
Modes and Instruction Set Summary.

Within the instruction format diagram the instruction operation code and extended operation code (if extended 
form) are specified in decimal. These fields have been converted to hexadecimal and are shown on line two 
for each instruction definition. 
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8.1.1 Split-Field Notation

Some instruction fields occupy more than one contiguous sequence of bits or occupy a contiguous sequence 
of bits used in permuted order. Such a field is called a split field. Split fields that represent the concatenation 
of the sequences from left to right are shown in lowercase letters. These split fields—mb, me, sh, spr, and 
tbr—are described in Table 8-1.

Split fields that represent the concatenation of the sequences in some order, which need not be left to right 
(as described for each affected instruction), are shown in uppercase letters. These split fields—MB, ME, and 
SH—are described in Table 8-2. 

8.1.2 Instruction Fields 

Table 8-2 describes the instruction fields used in the various instruction formats.
 

Table 8-1. Split-Field Notation and Conventions 

Field Description

mb (21–26) This field is used in rotate instructions to specify the first 1 bit of a 64-bit mask, as described in Section 4.2.1.4 
Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

me (21–26) This field is used in rotate instructions to specify the last 1 bit of a 64-bit mask, as described in Section 4.2.1.4 
Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

sh (16–20) and 
sh (30) These fields are used to specify a shift amount (64-bit implementations only).

spr (11–20) This field is used to specify a special-purpose register for the mtspr and mfspr instructions. The encoding is 
described in Section 4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA).

tbr (11–20) This field is used to specify either the time base lower (TBL) or time base upper (TBU).

Table 8-2. Instruction Syntax Conventions  

Field Description

 AA (30)

Absolute address bit.
0 The immediate field represents an address relative to the current instruction address (CIA). (For more 

information on the CIA, see Table 8-3.) The effective (logical) address of the branch is either the sum 
of the LI field sign-extended to 64 bits and the address of the branch instruction or the sum of the BD 
field sign-extended to 64 bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch is the 
LI field sign-extended to 64 bits or the BD field sign-extended to 64 bits.

BD (16–29) Immediate field specifying a 14-bit signed two's complement branch displacement that is concatenated on the 
right with ‘00’ and sign-extended to 64 bits.

BI (11–15) This field is used to specify a bit in the CR to be used as the condition of a branch conditional instruction.

BO (6–10) This field is used to specify options for the branch conditional instructions. The encoding is described in 
Section 4.2.4.2 Conditional Branch Control.

crbA (11–15) This field is used to specify a bit in the CR to be used as a source.

crbB (16–20) This field is used to specify a bit in the CR to be used as a source.

crbD (6–10) This field is used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an instruction.

crfD (6–8) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

crfS (11–13) This field is used to specify one of the CR fields, or one of the FPSCR fields, as a source.

CRM (12–19) This field mask is used to identify the CR fields that are to be updated by the mtcrf instruction.

d (16–31) Immediate field specifying a 16-bit signed two's complement integer that is sign-extended to 64 bits. 
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ds (16–29) Immediate field specifying a 14-bit signed two’s complement integer which is concatenated on the right with 
‘00’ and sign-extended to 64 bits. This field is defined in 64-bit implementations only.

FM (7–14) This field mask is used to identify the FPSCR fields that are to be updated by the mtfsf instruction.

frA (11–15) This field is used to specify an FPR as a source.

frB (16–20) This field is used to specify an FPR as a source.

frC (21–25) This field is used to specify an FPR as a source. 

frD (6–10) This field is used to specify an FPR as the destination. 

frS (6–10) This field is used to specify an FPR as a source. 

IMM (16–19) Immediate field used as the data to be placed into a field in the FPSCR.

L (9-10) Field used by the synchronize instruction. This field is defined in 64-bit implementations only.

L (10) 
Field used to specify whether an integer compare instruction is to compare 64-bit numbers or 32-bit numbers. 
This field is defined in 64-bit implementations only.
Field used by the TLB Invalidate Entry instruction. 

L (15) 
Field used to specify whether an integer compare instruction is to compare 64-bit numbers or 32-bit numbers. 
This field is defined in 64-bit implementations only.
Field used by the Move To Machine State Register instruction.

LI (6–29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the right with ‘00’ 
and sign-extended to 64 bits.

LK (31)

Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction following the 

branch instruction is placed into the LR.

MB (21–25) and 
ME (26–30)

These fields are used in rotate instructions to specify a -bit mask consisting of ‘1’ bits from bit MB + 32 through 
bit ME + 32 inclusive, and ‘0’ bits elsewhere, as described in Section 4.2.1.4 Integer Rotate and Shift Instruc-
tions.

MB (21–26) Field used in the MD-form and MDS-form instructions to specify the first ‘1’ bit of a 64-bit mask as described in 
Section 4.2.1.4 Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

ME (21–26) Field used in the MD-form and MDS-form instructions to specify the last ‘1’ bit of a 64-bit mask as described in 
Section 4.2.1.4 Integer Rotate and Shift Instructions. This field is defined in 64-bit implementations only.

NB (16–20) This field is used to specify the number of bytes to move in an immediate string load or store.

OE (21) This field is used for extended arithmetic to enable setting OV and SO in the XER.

OPCD (0–5) Primary opcode field.

rA (11–15) This field is used to specify a GPR to be used as a source or destination.

rB (16–20) This field is used to specify a GPR to be used as a source.

Rc (31)

Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits [0–2] are set to reflect the result as a signed quantity and CR bit [3] 
receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned quantity or a bit 
string can be deduced from the EQ bit. For floating-point instructions, CR bits [4–7] are set to reflect 
floating-point exception, floating-point enabled exception, floating-point invalid operation exception, 
and floating-point overflow exception. 

Note:  Eexceptions are referred to as interrupts in the architecture specification.

rD (6–10) This field is used to specify a GPR to be used as a destination.

rS (6–10) This field is used to specify a GPR to be used as a source.

Table 8-2. Instruction Syntax Conventions (Continued) 

Field Description
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8.1.3 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode). See Table 8-3 for a 
list of pseudocode notation and conventions used throughout this chapter.

S (10) Field used by the tlbie instruction that is part of the optional large page facility. 

SH (16–20, or 
16–20 and 30) This field is used to specify a shift amount. 

SIMM (16–31) This immediate field is used to specify a 16-bit signed integer.

SPR (11–20) Field used to specify a Special Purpose Register for the mtspr and mfspr instructions. 

64-BIT BRIDGE

SR (12–15) 
This field is used to specify one of the 16 segment registers in 64-bit implementations that provide the optional 
mtsr and mfsr instructions. 

TBR (11–20) Field used by the move from time base instruction. 

TH (9–10) Field used by the optional data stream variant of the dcbt instruction. 

TO (6–10) This field is used to specify the conditions on which to trap. The encoding is described in Section 4.2.4.6 Trap 
Instructions.

UIMM (16–31) This immediate field is used to specify a 16-bit unsigned integer.

XO (21–29, 21–30, 
22–30, 26–30, 27–29, 
27–30, or 30–31)

Extended opcode field.
Bits [21–29, 27–29, 27–30, 30–31] pertain to 64-bit implementations only.

Table 8-3. Notation and Conventions  

Notation/Convention Meaning

← Assignment

←iea
Assignment of an instruction effective address. In 32-bit mode of a 64-bit implementation the high-order 
32 bits of the 64-bit target are cleared.

¬ NOT logical operator

×, ∗ Multiplication

÷ Division (yielding quotient)

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

=, ≠ Equals and Not Equals relations

<, ≤, >, ≥ Signed comparison relations

. (period) Update. When used as a character of an instruction mnemonic, a period (.) means that the instruction updates 
the condition register field.

c Carry. When used as a character of an instruction mnemonic, a ‘c’ indicates a carry out in XER[CA].

e
Extended Precision.
When used as the last character of an instruction mnemonic, an ‘e’ indicates the use of XER[CA] as an oper-
and in the instruction and records a carry out in XER[CA].

o Overflow. When used as a character of an instruction mnemonic, an ‘o’ indicates the record of an overflow in 
XER[OV] and CR0[SO] for integer instructions or CR1[SO] for floating-point instructions.

<U, >U Unsigned comparison relations

Table 8-2. Instruction Syntax Conventions (Continued) 

Field Description
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? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as ‘010111’)

⊕, ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn or x’nnnn nnnn’ A number expressed in hexadecimal format.

(n)x

The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:
• (n)0 means a field of n bits with each bit equal to ‘0’. Thus (5)0 is equivalent to ‘00000’.
• (n)1 means a field of n bits with each bit equal to ‘1’. Thus (5)1 is equivalent to ‘11111’.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value ‘0’ if the rA field is ‘0’.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA 

Current instruction address.
The 64 or 32-bit address of the instruction being described by a sequence of pseudocode. Used by relative 
branches to set the next instruction address (NIA) and by branch instructions with LK = ’1’ to set the link regis-
ter. 
Note:  In 32-bit mode of 64-bit implementations, the high-order 32 bits of CIA are always cleared. Does not 
correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate and shift instructions.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to scale 
a known non-negative array index by the width of an element. These operations are used for rotate and shift 
instructions.

Cleared Bits are set to ‘0’.

Do

Do loop.
• Indenting shows range. 
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point double-precision format.

Extract
Select a field of n bits starting at bit position b in the source register, right or left justify this field in the target 
register, and clear all other bits of the target register to zero. This operation is used for rotate and shift instruc-
tions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert

Select a field of n bits in the source register, insert this field starting at bit position b of the target register, and 
leave other bits of the target register unchanged. (No simplified mnemonic is provided for insertion of a field 
when operating on doublewords; such an insertion requires more than one instruction.) This operation is used 
for rotate and shift instructions. 
Note:  Simplified mnemonics are referred to as extended mnemonics in the architecture specification.

Table 8-3. Notation and Conventions (Continued) 

Notation/Convention Meaning
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Table 8-4 describes instruction field notation conventions used throughout this chapter. 

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x, y)
Contents of y bytes of memory starting at address x. 
Note:  In 32-bit mode of a 64-bit implementation, the high-order 32 bits of the 64-bit value x are ignored.

NIA

Next instruction address, which is the 64 or 32-bit address of the next instruction to be executed (the branch 
destination) after a successful branch. In pseudocode, a successful branch is indicated by assigning a value 
to NIA. For instructions which do not branch, the next instruction address is CIA + 4. 
Note:  In 32-bit mode of 64-bit implementations, the high-order 32 bits of NIA are always cleared. Does not 
correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used for rotate and shift 
instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to ‘1’.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This operation is used for 
rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from one execution to 
another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 8-4. Instruction Field Conventions  

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table 8-3. Notation and Conventions (Continued) 

Notation/Convention Meaning
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Precedence rules for pseudocode operators are summarized in Table 8-5.

Operators higher in Table 8-5 are applied before those lower in the table. Operators at the same level in the 
table associate from left to right, from right to left, or not at all, as shown. For example, “–” (unary minus) 
associates from left to right, so a – b – c = (a – b) – c. Parentheses are used to override the evaluation order 
implied by Table 8-5, or to increase clarity; parenthesized expressions are evaluated before serving as oper-
ands.

8.1.4 Computation Modes

The PowerPC Architecture allows for the following types of implementations:

•  64-bit implementations, in which all registers except some special-purpose registers (SPRs) are 64 bits 
long and effective addresses are 64 bits long. All 64-bit implementations have two modes of operation: 
64-bit mode (which is the default) and 32-bit mode. The mode controls how the effective address is inter-
preted, how condition bits are set, and how the count register (CTR) is tested by branch conditional 
instructions. All instructions provided for 64-bit implementations are available in both 64 and 32-bit 
modes.

• 32-bit implementations, in which all registers except the FPRs are 32 bits long and effective addresses 
are 32 bits long.

Instructions defined in this chapter are provided in both 64-bit implementations and 32-bit implementations 
unless otherwise stated. Instructions that are provided only for 64-bit implementations are illegal in 32-bit 
implementations, and vice versa. 

Note:  All pseudocode examples are given in the default 64-bit mode (unless otherwise stated). To determine 
32-bit mode bit field equivalents, simply subtract 32. 

Table 8-5.  Precedence Rules 

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication, 
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

– (range) None

←, ←iea None
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8.2 PowerPC Instruction Set

The remainder of this chapter lists and describes the instruction set for the PowerPC Architecture. The 
instructions are listed in alphabetical order by mnemonic. Figure 8-1 shows the format for each instruction 
description page.

Note:  The execution unit that executes the instruction may not be the same for all PowerPC processors.

Figure 8-1. Instruction Description 

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = ’0’ Rc = ’0’)
add. rD,rA,rB (OE = ’0’ Rc = ’1’) 
addo rD,rA,rB (OE = ’1’ Rc = ’0’) 
addo. rD,rA,rB (OE = ’1’ Rc = ’1’) 

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

•Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

•XER:
Affected: SO, OV (if OE = ’1’)

B OE 266 Rc
0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Instruction name
Name (Instruction operation codes in 
hexadecimal) 

Instruction syntax

Instruction encoding

Pseudocode description of 
instruction operation

Text description of instruction operation

Registers altered by instruction
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addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = ’0’ Rc = ’0’)
add. rD,rA,rB (OE = ’0’ Rc = ’1’) 
addo  rD,rA,rB (OE = ’1’ Rc = ’0’) 
addo.  rD,rA,rB (OE = ’1’ Rc = ’1’) 

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note:  CR0 field may not reflect the infinitely precise result if overflow occurs (see next bullet item).

• XER
Affected: SO, OV (if OE = ’1’)

Note:  For more information on condition codes see Section 2.1.3 Condition Register (CR) and 
Section 2.1.5 XER Register (XER). 

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 266 Rc
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addcx addcx
Add Carrying (x’7C00 0014’) 

addc rD,rA,rB (OE = ’0’ Rc = ’0’)
addc. rD,rA,rB  (OE = ’0’ Rc = ’1’)
addco rD,rA,rB  (OE = ’1’ Rc = ’0’)
addco. rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA 
Affected: SO, OV  (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 10 Rc
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addex  addex
Add Extended (x’7C00 0114’)

adde rD,rA,rB (OE = ’0’ Rc = ’0’) 
adde. rD,rA,rB (OE = ’0’ Rc = ’1’) 
addeo rD,rA,rB (OE = ’1’ Rc = ’0’) 
addeo. rD,rA,rB (OE = ’1’ Rc = ’1’) 

rD ← (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 138 Rc
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addi addi
Add Immediate (x’3800 0000’)

addi rD,rA,SIMM 

if rA = 0 then rD ← EXTS(SIMM)
else rD ← rA + EXTS(SIMM)

The sum (rA|0) + sign extended SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few status bits. 

Note:  addi uses the value ‘0’, not the contents of GPR0, if rA = ’0’.

Other registers altered:

• None

Simplified mnemonics:

li rD,value equivalent to addi rD,0,value
la rD,disp(rA) equivalent to addi rD,rA,disp
subi rD,rA,value equivalent to addi rD,rA,–value

0 5 6 10 11 15 16 31

14 D A SIMM
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addic addic
Add Immediate Carrying (x’3000 0000’)

addic  rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER
Affected: CA

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes. 

Simplified mnemonics:

subic rD,rA,value equivalent to addic rD,rA,–value

0 5 6 10 11 15 16 31

12 D A SIMM
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addic. addic.
Add Immediate Carrying and Record (x’3400 0000’)

addic. rD,rA,SIMM

rD ← (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

Simplified mnemonics:

subic. rD,rA,value equivalent to addic. rD,rA,–value

0 5 6 10 11 15 16 31

13 D A SIMM
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addis addis 
Add Immediate Shifted (x’3C00 0000’)

addis rD,rA,SIMM

if rA = 0 then rD ← EXTS(SIMM || (16)0)
else   rD ← (rA) + EXTS(SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

The addis instruction is preferred for addition because it sets few status bits. 

Note:  addis uses the value ‘0’, not the contents of GPR0, if rA = ‘0’.

Other registers altered:

• None

Simplified mnemonics:

lis rD,value equivalent to addis rD,0,value
subis rD,rA,value equivalent to addis rD,rA,–value

0 5 6 10 11 15 16 31

15 D A SIMM
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addmex addmex
Add to Minus One Extended (x’7C00 01D4’)

addme  rD,rA  (OE = ’0’ Rc = ’0’)
addme.  rD,rA (OE = ’0’ Rc = ‘1’)
addmeo rD,rA (OE = ‘1’ Rc = ’0’)
addmeo.  rD,rA (OE = ‘1’ Rc = ‘1’)

rD ← (rA) + XER[CA] – 1

The sum (rA) + XER[CA] + 0xFFFF_FFFF_FFFF_FFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes.

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 234 Rc
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addzex addzex
Add to Zero Extended (x’7C00 0194’)

addze rD,rA  (OE = ’0’ Rc = ’0’)
addze. rD,rA (OE = ’0’ Rc = ’1’)
addzeo  rD,rA (OE = ’1’ Rc = ’0’)
addzeo. rD,rA (OE = ’1’ Rc = ’1’)

rD ← (rA) + XER[CA]

The sum (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER
Affected: CA
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 4.1.2, Computation Modes. 

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 202 Rc
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andx andx
AND (x’7C00 0038’)

and rA,rS,rB (Rc = ’0’)
and. rA,rS,rB (Rc = ’1’)

rA ← (rS) & (rB)

The contents of rS are ANDed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 28 Rc



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8.fm.3.0
July 15, 2005  
 

Instruction Set

Page 317 of 657

andcx andcx
AND with Complement (x’7C00 0078’)

andc  rA,rS,rB (Rc = ’0’)
andc.  rA,rS,rB (Rc = ’1’)

rA ← (rS) + ¬ (rB)

The contents of rS are ANDed with the one’s complement of the contents of rB and the result is placed into 
rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 60 Rc
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andi. andi.
AND Immediate (x’7000 0000’)

andi. rA,rS,UIMM

rA ← (rS) & ((48)0 || UIMM)

The contents of rS are ANDed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO

0 5 6 10 11 15 16 31

28 S A UIMM
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andis. andis. 
AND Immediate Shifted (x’7400 0000’)

andis. rA,rS,UIMM

rA ← (rS) + ((32)0 || UIMM || (16)0)

The contents of rS are ANDed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered: 

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO

0 5 6 10 11 15 16 31

29 S A UIMM
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bx bx
Branch (x’4800 0000’)

b target_addr  (AA = ’0’ LK = ’0’)
ba target_addr (AA = ’1’ LK = ’0’)
bl target_addr (AA = ’0’ LK = ’1’)
bla target_addr  (AA = ’1’ LK = ’1’)

if AA then NIA ←iea EXTS(LI || ’00’)
else NIA ←iea CIA + EXTS(LI || ’00’)
if LK then LR ←iea CIA + 4

target_addr specifies the branch target address.

If AA = ’0’, then the branch target address is the sum of LI || ‘00’ sign-extended and the address of this 
instruction, with the high-order 32 bits of the branch target address cleared in 32-bit mode of 64-bit implemen-
tations. 

If AA = ’1’, then the branch target address is the value LI || ‘00’ sign-extended, with the high-order 32 bits of 
the branch target address cleared in 32-bit mode of 64-bit implementations.

If LK = ’1’, then the effective address of the instruction following the branch instruction is placed into the link 
register.

Other registers altered:

• Affected: Link Register (LR) (if LK = ’1’)

0 5 6 29 30 31

18 LI AA LK
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bcx bcx
Branch Conditional (x’4000 0000’)

bc BO,BI,target_addr (AA = ’0’ LK = ’0’)
bca BO,BI,target_addr (AA = ’1’ LK = ’0’)
bcl BO,BI,target_addr (AA = ’0’ LK = ’1’)
bcla BO,BI,target_addr (AA = ’1’ LK = ’1’)

if (64-bit implementation) & (64-bit mode)
then m ← 0
else m ← 32
if ¬ BO[2] then CTR ← CTR – 1
ctr_ok ← BO[2] | ((CTR[m–63] ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then
 if AA then NIA ←iea EXTS(BD || ’00’)
 else NIA ←iea CIA + EXTS(BD || ’00’)
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register (CR) to be used as the condition of the branch. The BO 
field is encoded as described in Table 4-20 BO Operand Encodings. Additional information about BO field 
encoding is provided in Section 4.2.4.2 Conditional Branch Control. target_addr specifies the branch target 
address.

If AA = ’0’, then the branch target address is the sum of BD || ’00’ sign-extended and the address of this 
instruction, with the high-order 32 bits of the branch target address cleared in 32-bit mode of 64-bit implemen-
tations.

If AA = ’1’, the branch target address is the value BD || ’00’ sign-extended, with the high-order 32 bits of the 
branch target address cleared in 32-bit mode of 64-bit implementations.

If LK = ’1’, the effective address of the instruction following the branch instruction is placed into the link 
register.

Other registers altered:

• Count Register (CTR) (if BO[2] = ’0’)

• Link Register (LR) (if LK = ’1’)

Simplified mnemonics:

blt target equivalent to bc 12,0,target
bne  cr2,target equivalent to bc 4,10,target
bdnz  target equivalent to bc 16,0,target

0 5 6 10 11 15 16 29 30 31

16 BO BI BD AA LK
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bcctrx bcctrx
Branch Conditional to Count Register (x’4C00 0420’)

bcctr BO,BI,BH (LK = ’0’)
bcctrl BO,BI,BH (LK = ’1’) 

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok then
 NIA ←iea CTR[0–61] || ’00’
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the branch. The BO field is 
encoded as described in Table 4-20 BO Operand Encodings. The BH field is used as described in Table 4-22 
BH Field Encodings. The branch target address is CTR[0–61] || ’00’, with the high-order 32 bits of the branch 
target address cleared in 32-bit mode of 64-bit implementations. Additional information about BO field 
encoding is provided in Section 4.2.4.2 Conditional Branch Control.

If LK = ’1’ the effective address of the instruction following the branch instruction is placed into the link 
register.

If the “decrement and test CTR” option is specified (BO[2] = ‘0’), the instruction form is invalid.

Other registers altered:

• Link Register (LR)  (if LK = ‘1’)

Simplified mnemonics:

bcctr 4,6 equivalent to bcctr 4,6,0
bltctr equivalent to bcctr 12,0,0
bnectr cr2 equivalent to bcctr 4,10,0

0 5 6 10 11 15 16 18 19 20 21 30 31

Reserved

19 BO BI 0 0 0 BH 528 LK
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bclrx bclrx
Branch Conditional to Link Register (x’4C00 0020’)

bclr BO,BI,BH (LK = ’0’)
bclrl BO,BI,BH (LK = ’1’) 

if (64-bit implementation) & (64-bit mode)
then m ← 0
else m ← 32
if ¬ BO[2] then CTR ← CTR – 1
ctr_ok ← BO[2] | ((CTR[m–63] ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then
 NIA ←iea LR[0–61] || ’00’
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the branch. The BO field is 
encoded as described in Table 4-20 BO Operand Encodings. The BH field is used as described in Table 4-22 
BH Field Encodings. The branch target address is LR[0–61] || ’00’, with the high-order 32 bits of the branch 
target address cleared in 32-bit mode of a 64-bit implementations. Additional information about BO field 
encoding is provided in Section 4.2.4.2 Conditional Branch Control.

If LK = ’1’, then the effective address of the instruction following the branch instruction is placed into the link 
register.

Other registers altered:

• Count Register (CTR) (if BO[2] = ’0’)

• Link Register (LR) (if LK = ’1’)

Simplified mnemonics:

bclr 4,6 equivelent to bclr 4,6,0
bltlr equivalent to bclr 12,0,0
bnelr cr2 equivalent to bclr 4,10,0
bdnzlr equivalent to bclr 16,0,0

0 5 6 10 11 15 16 18 19 20 21 30 31

Reserved

19 BO BI 0 0 0 BH 16 LK
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cmp cmp 
Compare (x’7C00 0000’)

cmp crfD,L,rA,rB

if L = ’0’ then a ← EXTS(rA[32-63])
b ← EXTS(rB[32-63])

else a ← (rA)
b ← (rB)

if a < b then c ← ’100’
else if a > b then c ← ‘010’
else c ← ’001’
CR[(4 × crfD) - (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA if L = ’0’) are compared with the contents of rB (or the low-
order 32 bits of rB if L = ’0’), treating the operands as signed integers. The result of the comparison is placed 
into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpd rA,rB equivalent to cmp 0,1,rA,rB
cmpw cr3,rA,rB equivalent to cmp 3,0,rA,rB

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B  0 031 crfD 0 L A
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cmpi cmpi
Compare Immediate (x’2C00 0000’)

cmpi  crfD,L,rA,SIMM

if L = ’0’ then a ← EXTS(rA[32–63])
elsea ← (rA)

if a < EXTS(SIMM) then c ← ’100’
else if a > EXTS(SIMM) then c ← ‘010’
else c ← ’001’
CR[(4 × crfD) - (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA sign-extended to 64 bits if L = ’0’) are compared with the 
sign-extended value of the SIMM field, treating the operands as signed integers. The result of the comparison 
is placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdi rA,value equivalent to cmpi 0,1,rA,value
cmpwi  cr3,rA,value equivalent to cmpi 3,0,rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM11 crfD 0 L A
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cmpl cmpl
Compare Logical (x’7C00 0040’)

cmpl crfD,L,rA,rB

if L = 0 then a ← (32)0 || rA[32–63]
b ← (32)0 || rB[32–63]

else a ← (rA)
b ← (rB)

if a <U b then c ← ’100’
else if a >U b then c ← ’010’
else c ← ’001’
CR[(4 × crfD) − (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA if L = ’0’) are compared with the contents of rB (or the low-
order 32 bits of rB if L = ’0’), treating the operands as unsigned integers. The result of the comparison is 
placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpld rA,rB equivalent to cmpl 0,1,rA,rB
cmplw  cr3,rA,rB equivalent to cmpl 3,0,rA,rB

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

31 crfD 0 L A B 32 0
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cmpli cmpli 
Compare Logical Immediate (x’2800 0000’)

cmpli crfD,L,rA,UIMM

if L = 0 then a ← (32)0 || rA[32–63]
else a ← (rA)

if a <U ((48)0 || UIMM) then c ← ’100’
else if a >U ((48)0 || UIMM) then c ← ’010’
else  c ← ’00’1
CR[(4 × crfD) - (4 × crfD + 3)] ← c || XER[SO]

The contents of rA (or the low-order 32 bits of rA zero-extended to 64-bits if L = ’0’) are compared with 
0x0000_0000_0000 || UIMM, treating the operands as unsigned integers. The result of the comparison is 
placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD)
Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldi r A,value equivalent to cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalent to cmpli 3,0,rA,value

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM10 crfD 0 L A
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cntlzdx  cntlzdx
Count Leading Zeros Doubleword (x’7C00 0074’)

cntlzd rA,rS (Rc = ’0’)
cntlzd. rA,rS (Rc = ’1’)

n  ← 0
do while n < 64

if rS[n] = 1 then leave
n ← n + 1

rA ← n 

A count of the number of consecutive zero bits starting at bit [0] of register rS is placed into rA. This number 
ranges from 0 to 64, inclusive.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (Rc = ’1’)

Note: If Rc = ’1’, then LT is cleared in the CR0 field.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 58 Rc
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cntlzwx cntlzwx
Count Leading Zeros Word (x’7C00 0034’)

cntlzw rA,rS (Rc = ’0’)
cntlzw. rA,rS (Rc = ’1’) 

n ← 32
do while n < 64
if rS[n] = 1 then leave
n ← n + 1
rA ← n – 32

A count of the number of consecutive zero bits starting at bit [32] of rS is placed into rA. This number ranges 
from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 field)
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note: If Rc = ’1’, then LT is cleared in the CR0 field.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 26 Rc
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crand crand
Condition Register AND (x’4C00 0202’)

crand crbD,crbA,crbB

CR[crbD] ← CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition register specified by 
crbB. The result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

crbB 257 019 crbD crbA
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crandc crandc
Condition Register AND with Complement (x’4C00 0102’)

crandc crbD,crbA,crbB

CR[crbD] ← CR[crbA] & ¬ CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the bit in the condition 
register specified by crbB and the result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 129 0
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creqv creqv
Condition Register Equivalent (x’4C00 0242’)

creqv crbD,crbA,crbB

CR[crbD] ← CR[crbA] ≡ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition register specified by 
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

Simplified mnemonics:

crset crbD equivalent to creqv crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 289 0
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crnand crnand
Condition Register NAND (x’4C00 01C2’)

crnand crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] & CR[crbB])

The bit in the condition register specified by crbA is ANDed with the bit in the condition register specified by 
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 225 0
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crnor crnor
Condition Register NOR (x’4C00 0042’)

crnor crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] | CR[crbB])

The bit in the condition register specified by crbA is ORed with the bit in the condition register specified by 
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

Simplified mnemonics:

crnot crbD,crbA equivalent to crnor crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 33 0
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cror cror
Condition Register OR (x’4C00 0382’)

cror crbD,crbA,crbB

CR[crbD] ← CR[crbA] | CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition register specified by 
crbB. The result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

Simplified mnemonics:

crmove crbD,crbA equivalent to cror crbD,crbA,crbA

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 449 0
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crorc crorc
Condition Register OR with Complement (x’4C00 0342’)

crorc crbD,crbA,crbB

CR[crbD] ← CR[crbA] | ¬ CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the condition register bit 
specified by crbB and the result is placed into the condition register bit specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by operand crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 417 0
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crxor crxor
Condition Register XOR (x’4C00 0182’)

crxor crbD,crbA,crbB

CR[crbD] ← CR[crbA] ⊕ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition register specified by 
crbB and the result is placed into the condition register specified by crbD.

Other registers altered:

• Condition Register
Affected: Bit specified by crbD

Simplified mnemonics:

crclr crbD equivalent to crxor crbD,crbD,crbD

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 193 0
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dcbf dcbf
Data Cache Block Flush (x’7C00 00AC’)

dcbf rA,rB

EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the block containing the byte addressed and 
the state of that block. If the system is a multiprocessor implementation, then the block is marked coherency-
required, the processor will, if necessary, send an address-only broadcast to other processors. The broadcast 
of the dcbf instruction causes another processor to copy the block to memory, if it has dirty data, and then 
invalidate the block from the cache. The list below describes the action taken for the two states of the memory 
coherency attribute (M-bit).

• Coherency required (requires the use of address broadcast)

– Unmodified block—Invalidates copies of the block in the data caches of all processors.

– Modified block— Copies the block to memory and invalidates it. (In whatever processor it resides, 
there should be only one modified block).

– Absent block—If modified copies of the block are in the data caches of other processors, it causes 
them to be copied to memory and invalidated in those data caches. If unmodified copies are in the 
data caches of other processors, it causes those copies to be invalidated in those data caches.

• Coherency not required (no address broadcast required)

– Unmodified block—Invalidates the block in the processor’s data cache.

– Modified block—Copies the block to memory. Invalidates the block in the processor’s data cache.

– Absent block—No action is taken.

The function of this instruction is independent of the write-through, write-back and caching-inhibited/allowed 
modes of the block containing the byte addressed by the effective address.

This instruction is treated as a load from the addressed byte with respect to address translation and memory 
protection. It is also treated as a load for referenced and changed bit recording except that referenced and 
changed bit recording may not occur.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 86 031 0 0 0 0 0 A
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dcbst dcbst
Data Cache Block Store (x’7C00 006C’)

dcbst rA,rB

EA is the sum (rA|0) + (rB).

The dcbst instruction executes as follows:

• Coherency required (requires the use of address broadcast)

– Unmodified block—No action in this processor. Signals other processors to copy to memory any 
modified cache block.

– Modified block—The cache block is written to memory. (Only one processor should have a copy of a 
modified block)

– Absent block —No action in this processor. If a modified copy of the block is in the data cache of 
another processor, the cache line is written to memory.

• Coherency not required (no address broadcast required)

– Unmodified block—No action is taken.

– Modified block— The cache block is written to memory.

– Absent block—No action is taken.

Note:  For modified cache blocks written to memory the architecture does not stipulate whether or not to 
clear the modified state of the cache block. It is left up to the processor designer to determine the final 
state of the cache block. Either modified or valid is logically correct. 

The function of this instruction is independent of the write-through and caching-inhibited/allowed modes of the 
block containing the byte addressed by EA.

The processor treats this instruction as a load from the addressed byte with respect to address translation 
and memory protection, except that the system data storage error handler is not invoked, and the reference 
and change recording does not need to be done. 

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 54 031 0 0 0 0 0 A
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dcbt dcbt
Data Cache Block Touch (x’7C00 022C’)

dcbt rA,rB,TH

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte addressed 
by EA and the TH field is fetched into the data cache, because the program will probably soon load from the 
addressed byte. If the block is caching-inhibited, the hint is ignored and the instruction is treated as a no-op. 
Executing dcbt does not cause the system alignment error handler to be invoked.

The encodings of the TH field are as follows:

The actions (if any) taken by the processor in response to the hint are not considered to be “caused by” or 
“associated with” the dcbt instruction (for example, dcbt is considered not to cause any data accesses). No 
means are provided by which software can synchronize these actions with the execution of the instruction 
stream. For example, these actions are not ordered by memory barriers.

This instruction is treated as a load from the addressed byte with respect to address translation, memory 
protection, and reference and change recording except that referenced and changed bit recording may not 
occur. Additionally, no exception occurs in the case of a translation fault or protection violation.

The program uses the dcbt instruction to request a cache block fetch before it is actually needed by the 
program. The program can later execute load instructions to put data into registers. However, the processor 
is not obliged to load the addressed block into the data cache. 

Note:  This instruction is defined architecturally to perform the same functions as the dcbtst instruction. Both 
are defined in order to allow implementations to differentiate the bus actions when fetching into the cache for 
the case of a load and for a store.

In response to the hint provided by dcbt, the processor may prefetch the specified block into the data cache, 
or take other actions that reduce the latency of subsequent load or store instructions that refer to the block.

Table 8-6. Encodings of the TH Field 

TH Description

00 The memory location is the block containing the byte addressed by the effective address.

01 The memory locations are the block containing the byte addressed by the effective address and sequentially following 
blocks (i.e., the blocks containing the bytes addressed by EA + n × block_size, where n = 0, 1, 2, ...).

10
Reserved
Note:  The TH field should not be set to ’10’, because the value may be assigned a meaning in some future version of 
the architecture. 

11 The memory locations are the block containing the byte addressed by the effective address and sequentially preceding 
blocks (i.e., the blocks containing the bytes addressed by EA - n × block_size, where n = 0, 1, 2, ...).

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 278 031 0 0 0 TH A
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Note:  Earlier implementations that do not support the optional version of dcbt ignore the TH field (i.e., treat it 
as if it were set to ’00’), and do not necessarily ignore the hint provided by dcbt if the specified block is in stor-
age that is Guarded and not Caching Inhibited. Therefore a dcbt instruction with TH[1] = ‘1’ should not spec-
ify an EA in such memory if the program is to be run on such implementations.

Earlier implementations do not necessarily ignore the hint provided by dcbt if the specified block is in memory 
that is Guarded and not Caching Inhibited. Therefore a dcbt instruction should not specify an EA in such 
memory if the program is to be run on such implementations.

Other registers altered:

• None
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dcbtst dcbtst
Data Cache Block Touch for Store (x’7C00 01EC’)

dcbtst  rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte addressed 
by EA is fetched into the data cache, because the program will probably soon store from the addressed byte. 
If the block is caching-inhibited or guarded, the hint is ignored and the instruction is treated as a no-op. 
Executing dcbtst does not cause the system alignment error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address translation, memory 
protection, and reference and change recording except that referenced and changed bit recording may not 
occur. Additionally, no exception occurs in the case of a translation fault or protection violation.

The program uses dcbtst to request a cache block fetch to potentially improve performance for a subsequent 
store to that EA, as that store would then be to a cached location. However, the processor is not obliged to 
load the addressed block into the data cache. 

Note:  This instruction is defined architecturally to perform the same functions as the dcbt instruction. Both 
are defined in order to allow implementations to differentiate the bus actions when fetching into the cache for 
the case of a load and for a store.

Note:  In response to the hint provided by dcbtst, the processor may prefetch the specified block into the 
data cache, or take other actions that reduce the latency of subsequent load or store instructions that refer to 
the block.

Earlier implementations do not necessarily ignore the hint provided by dcbtst if the specified block is in 
memory that is Guarded and not Caching Inhibited. Therefore a dcbtst instruction should not specify an EA 
in such memory if the program is to be run on such implementations.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 246 031 0 0 0 0 0 A
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dcbz dcbz
Data Cache Block Clear to Zero (x’7C00 07EC’)

dcbz rA,rB

if A = 0 then b ← 0
else b ← (RA)
EA ← b + (B)
n ← block size (bytes)
m ← log2(n)
ea ← EA[(0-63)-m || (m)0)
MEM(ea, n) ← (n)0x00

EA is the sum (rA|0) + (rB).

All bytes in the block containing the byte addressed by the effective address are set to zero.

This instruction is treated as a store to the addressed byte with respect to address translation, memory 
protection, referenced and changed recording. It is also treated as a store with respect to the ordering 
enforced by eieio and the ordering enforced by the combination of caching-inhibited and guarded attributes 
for a page (or block).

The dcbz instruction executes as follows:

• dcbz does not cause the block to exist in the data cache if the block is in memory that is caching inhib-
ited.

• For memory that is neither write-through required nor caching inhibited, dcbz provides an efficient means 
of setting blocks of memory to zero. It can be used to initialize large areas of such memory, in a manner 
that is likely to consume less memory bandwidth than an equivalent sequence of store instructions.

• If the page containing the byte addressed by EA is in caching-inhibited or write-through mode, either all 
bytes of main memory that correspond to the addressed cache block are cleared or the alignment excep-
tion handler is invoked. The exception handler can then clear all bytes in main memory that correspond to 
the addressed cache block. 

• For memory that is either write-through required or caching inhibited, dcbz is likely to take significantly 
longer to execute than an equivalent sequence of store instructions. 

Other registers altered:

• None

The PowerPC OEA describes how the dcbz instruction may establish a block in the data cache without veri-
fying that the associated physical address is valid. This scenario can cause a delayed machine check excep-
tion; see Chapter 6, Exceptions for a discussion about this type of machine check exception.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 1014 031 0 0 0 0 0 A
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divdx divdx
Divide Doubleword (x’7C00 03D2’)

divd rD,rA,rB (OE = ’0’ Rc = ’0’)
divd. rD,rA,rB (OE = ’0’ Rc = ’1’)
divdo rD,rA,rB (OE = ’1’ Rc = ’0’)
divdo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0–63] ← (rA)
divisor[0–63] ← (rB)
rD ← dividend + divisor

The 64-bit dividend is the contents of rA. The 64-bit divisor is the contents of rB. The 64-bit quotient is placed 
into rD. The remainder is not supplied as a result. 

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed 
integer that satisfies the equation—dividend = (quotient × divisor) + r—where 0 ≤ r < |divisor| if the dividend is 
non-negative, and –|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform the divisions—0x8000_0000_0000_0000 ÷ –1 or <anything> ÷ 0—the 
contents of rD are undefined, as are the contents of the LT, GT, and EQ bits of the CR0 field (if Rc = ’1’). In 
this case, if OE = ’1’ then OV is set.

The 64-bit signed remainder of dividing (rA) by (rB) can be computed as follows, except in the case that 
(rA) = –263 and (rB) = –1:

divd rD,rA,rB # rD = quotient
mulld rD,rD,rB # rD = quotient × divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit 
result. 

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 489 Rc
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divdux divdux
Divide Doubleword Unsigned (x’7C00 0392’)

divdu rD,rA,rB (OE = ’0’ Rc = ’0’)
divdu. rD,rA,rB (OE = ’0’ Rc = ’1’)
divduo rD,rA,rB (OE = ’1’ Rc = ’0’)
divduo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0–63] ← (rA)
divisor[0–63] ← (rB)
rD ← dividend ÷ divisor

The 64-bit dividend is the contents of rA. The 64-bit divisor is the contents of rB. The 64-bit quotient of the 
dividend and divisor is placed into rD. The remainder is not supplied as a result. 

Both the operands and the quotient are interpreted as unsigned integers, except that if Rc is set to 1, then the 
first three bits of CR0 field are set by signed comparison of the result to zero. The quotient is the unique 
unsigned integer that satisfies the equation—dividend = (quotient × divisor) + r—where 0 ≤ r < divisor.

If an attempt is made to perform the division—<anything> ÷ 0—the contents of rD are undefined as are the 
contents of the LT, GT, and EQ bits of the CR0 field (if Rc = ’1’). In this case, if OE = ’1’ then OV is set.

The 64-bit unsigned remainder of dividing (rA) by (rB) can be computed as follows:

divdu rD,rA,rB # rD = quotient
mulld rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit 
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 457 Rc
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divwx divwx
Divide Word (x’7C00 03D6’)

divw rD,rA,rB (OE = ’0’ Rc = ’0’)
divw. rD,rA,rB (OE = ’0’ Rc = ’1’) 
divwo rD,rA,rB (OE = ’1’ Rc = ’0’) 
divwo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0-63] ← EXTS(rA[32-63])
divisor[0-63] ← EXTS(rB[32-63])
rD[32-63] ← dividend ÷ divisor
rD[0-31] ← undefined

The 64-bit dividend is the sign-extended value of the contents of the low-order 32 bits of rA. The 64-bit divisor 
is the sign-extended value of the contents of the low-order 32 bits of rB. The 64-bit quotient is formed. The 
low-order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are undefined. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed 
integer that satisfies the equation—dividend = (quotient × divisor) + r where 0 ≤ r < |divisor| (if the dividend is 
non-negative), and –|divisor| < r ≤ 0 (if the dividend is negative).

If an attempt is made to perform either of the divisions— 0x8000_0000 ÷ –1 or <anything> ÷ 0, 
then the contents of rD are undefined, as are the contents of the LT, GT, and EQ bits of the CR0 field (if 
Rc = 1). In this case, if OE = ’1’ then OV is set.

The 32-bit signed remainder of dividing the contents of the low-order 32 bits of rA by the contents of the low-
order 32 bits of rB can be computed as follows, except in the case that the contents of the low-order 32 bits of 
rA = –231 and the contents of the low-order 32 bits of rB = ‘–1’.

divw rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient × divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’) 
LT, GT, EQ undefined (if Rc = ‘1’ and 64-bit mode)

• XER:
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result. 

0 5 6 10 11 15 16 20 21 22 30 31
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divwux divwux
Divide Word Unsigned (x’7C00 0396’)

divwu rD,rA,rB (OE = ’0’ Rc = ’0’)
divwu. rD,rA,rB (OE = ’0’ Rc = ’1’)
divwuo rD,rA,rB (OE = ’1’ Rc = ’0’)
divwuo. rD,rA,rB (OE = ’1’ Rc = ’1’)

dividend[0–63] ← (32)0 || rA[32–63]
divisor[0–63] ← (32)0 || rB[32–63]
rD[32–63] ← dividend ÷ divisor
rD[0–31] ← undefined

The 64-bit dividend is the zero-extended value of the contents of the low-order 32 bits of rA. The 64-bit divisor 
is the zero-extended value the contents of the low-order 32 bits of rB. A 64-bit quotient is formed. The low-
order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of rD. The contents of the high-order 
32 bits of rD are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = ’1’ the first three bits 
of CR0 field are set by signed comparison of the result to zero. The quotient is the unique unsigned integer 
that satisfies the equation—dividend = (quotient × divisor) + r (where 0 ≤ r < divisor). If an attempt is made to 
perform the division—<anything> ÷ 0—then the contents of rD are undefined as are the contents of the LT, 
GT, and EQ bits of the CR0 field (if Rc = ’1’). In this case, if OE = ’1’ then OV is set.

The 32-bit unsigned remainder of dividing the contents of the low-order 32 bits of rA by the contents of the 
low-order 32 bits of rB can be computed as follows:

divwu rD,rA,rB # rD = quotient
mullw  rD,rD,rB # rD = quotient × divisor
subf  rD,rD,rA  # rD = remainder

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ‘1’ and 64-bit mode)

• XER:
Affected: SO, OV (if OE = ’1’)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result. 

0 5 6 10 11 15 16 20 21 22 30 31
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eciwx eciwx
External Control In Word Indexed (x’7C00 026C’)

eciwx rD,rA,rB

The eciwx instruction and the EAR register can be very efficient when mapping special devices such as 
graphics devices that use addresses as pointers.

if rA = 0 then b ← 0
else b← (rA)
EA ← b + (rB)
paddr ← address translation of EA
send load word request for paddr to device identified by EAR[RID]
rD ← (32)0 || word from device

EA is the sum (rA|0) + (rB).

A load word request for the physical address (referred to as real address in the architecture specification) 
corresponding to EA is sent to the device identified by EAR[RID], bypassing the cache. The word returned by 
the device is placed in the low-order 32 bits of rD. The contents of the high-order 32 bits of rD are cleared. 

EAR[E] must be ‘1’. If it is not, a DSI exception is generated. 

EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = ’0’). 
• The results are boundedly undefined.

If this instruction is executed when MSR[DR] = ’0’ (real addressing mode), the results are boundedly unde-
fined. This instruction is treated as a load from the addressed byte with respect to address translation, 
memory protection, referenced and changed bit recording, and the ordering performed by eieio. This instruc-
tion is optional in the PowerPC Architecture.

Other registers altered:

• None 

0 5 6 10 11 15 16 20 21 30 31

Reserved
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ecowx ecowx
External Control Out Word Indexed (x’7C00 036C’)

ecowx rS,rA,rB 

The ecowx instruction and the EAR register can be very efficient when mapping special devices such as 
graphics devices that use addresses as pointers.

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
paddr ← address translation of EA
send store word request for paddr to device identified by EAR[RID]
send rS[32–63] to device

EA is the sum (rA|0) + (rB).

A store word request for the physical address corresponding to EA and the contents of the low-order 32 bits 
of rS are sent to the device identified by EAR[RID], bypassing the cache. 

EAR[E] must be ‘1’, if it is not, a DSI exception is generated. EA must be a multiple of four. If it is not, one of 
the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = ’0’). 
• The results are boundedly undefined.

If this instruction is executed when MSR[DR] = ’0’ (real addressing mode), the results are boundedly unde-
fined. This instruction is treated as a store from the addressed byte with respect to address translation, 
memory protection, and referenced and changed bit recording, and the ordering performed by eieio. 

Note:  Software synchronization is required in order to ensure that the data access is performed in program 
order with respect to data accesses caused by other store or ecowx instructions, even though the addressed 
byte is assumed to be caching-inhibited and guarded. This instruction is optional in the PowerPC Architec-
ture.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved
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eieio eieio
Enforce In-Order Execution of I/O (x’7C00 06AC’)

The eieio instruction provides an ordering function for the effects of load and store instructions executed by a 
processor. These loads and stores are divided into two sets, which are ordered separately. The memory 
accesses caused by a dcbz or an ecowx instruction are ordered like a store, and the memory access caused 
by an eciwx instruction is ordered as a load. The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores to memory that is 
write-through required.

The eieio instruction controls the order in which the accesses are performed in main memory. It ensures 
that all applicable memory accesses caused by instructions preceding the eieio instruction have com-
pleted with respect to main memory before any applicable memory accesses caused by instructions fol-
lowing the eieio instruction access main memory. It acts like a barrier that flows through the memory 
queues and to main memory, preventing the reordering of memory accesses across the barrier. No 
ordering is performed for dcbz if the instruction causes the system alignment error handler to be invoked.

All accesses in this set are ordered as a single set—that is, there is not one order for loads and stores to 
caching-inhibited and guarded memory and another order for stores to write-through required memory.

The ordering done by the memory barrier for accesses in this set is not cumulative.

2. Stores to memory that have all of the following attributes—caching-allowed, write-through not required, 
and memory-coherency required.

The eieio instruction controls the order in which the accesses are performed with respect to coherent 
memory. It ensures that all applicable stores caused by instructions preceding the eieio instruction have 
completed with respect to coherent memory before any applicable stores caused by instructions following 
the eieio instruction complete with respect to coherent memory.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio 
instruction have been performed with respect to main memory or coherent memory as appropriate. 

The eieio instruction is intended for use in managing shared data structures, in accessing memory-mapped 
I/O, and in preventing load/store combining operations in main memory. For the first use, the shared data 
structure and the lock that protects it must be altered only by stores that are in the same set (1 or 2; see 
previous discussion). For the second use, eieio can be thought of as placing a barrier into the stream of 
memory accesses issued by a processor, such that any given memory access appears to be on the same 
side of the barrier to both the processor and the I/O device.

Because the processor performs store operations in order to memory that is designated as both caching-
inhibited and guarded (refer to Section 5.1.1 Memory Access Ordering), the eieio instruction is needed for 
such memory only when loads must be ordered with respect to stores or with respect to other loads.

0 5 6 10 11 15 16 20 21 30 31
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Note:  The eieio instruction does not connect hardware considerations to it such as multiprocessor imple-
mentations that send an eieio address-only broadcast (useful in some designs). For example, if a design has 
an external buffer that re-orders loads and stores for better bus efficiency, the eieio broadcast signals to that 
buffer that previous loads/stores (marked caching-inhibited, guarded, or write-through required) must com-
plete before any following loads/stores (marked caching-inhibited, guarded, or write-through required).

Other registers altered:

• None
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eqvx eqvx
Equivalent (x’7C00 0238’)

eqv rA,rS,rB (Rc = ’0’)
eqv. rA,rS,rB (Rc = ’1’)

rA ← (rS) ≡ (rB)

The contents of rS are XORed with the contents of rB and the complemented result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 21 22 30 31
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extsbx extsbx
Extend Sign Byte (x’7C00 0774’)

extsb rA,rS (Rc = ’0’)
extsb. rA,rS (Rc = ’1’)

S ← rS[56]
rA[56–63] ← rS[56–63]
rA[0–55] ← (56)S

The contents of the low-order eight bits of rS [56-63] are placed into the low-order eight bits of rA . Bit [56] of 
rS is placed into bits rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved
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extshx extshx
Extend Sign Halfword (x’7C00 0734’)

extsh rA,rS (Rc = ’0’)
extsh. rA,rS (Rc = ’1’) 

S ← rS[48]
rA[48–63] ← rS[48–63]
rA[0–47] ← (48)S

The contents of the low-order 16 bits of rS are placed into the low-order 16 bits of rA. Bit [48] of rS is placed 
into the remaining bits of rA. 

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved
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extswx  extswx
Extend Sign Word (x’7C00 07B4’)

extsw rA,rS (Rc = ’0’)
extsw. rA,rS (Rc = ’1’)

S ← rS[32]
rA[32–63] ← rS[32–63]
rA[0–31] ← (32)S

The contents of the low-order 32 bits of rS are placed into the low-order 32 bits of rA. Bit [32] of rS is placed 
into the high-order 32 bits of rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved
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fabsx fabsx
Floating Absolute Value (x’FC00 0210’)

fabs frD,frB  (Rc = ’0’)
fabs. frD,frB  (Rc = ’1’)

The contents of frB with bit [0] cleared are placed into frD.

Note:  The fabs instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may be 
altered by fabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

B 264 Rc

0 5 6 10 11 15 16 20 21 30 31
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faddx faddx
Floating Add (Double-Precision) (x’FC00 002A’)

fadd frD,frA,frB (Rc = ’0’)
fadd. frD,frA,frB  (Rc = ’1’)

The floating-point operand in frA is added to the floating-point operand in frB. 

If the most- significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

Floating-point addition is based on exponent comparison and addition of the two significands. The exponents 
of the two operands are compared, and the significand accompanying the smaller exponent is shifted right, 
with its exponent increased by one for each bit shifted, until the two exponents are equal. The two signifi-
cands are then added or subtracted as appropriate, depending on the signs of the operands. All 53 bits in the 
significand, as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased by one. 
FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX  (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved
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faddsx faddsx
Floating Add Single (x’EC00 002A’)

fadds frD,frA,frB  (Rc = ’0’)
fadds. frD,frA,frB (Rc = ’1’)

The floating-point operand in frA is added to the floating-point operand in frB. If the most-significant bit of the 
resultant significand is not a one, the result is normalized. The result is rounded to the single-precision under 
control of the floating-point rounding control field RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two significands. The exponents 
of the two operands are compared, and the significand accompanying the smaller exponent is shifted right, 
with its exponent increased by one for each bit shifted, until the two exponents are equal. The two signifi-
cands are then added or subtracted as appropriate, depending on the signs of the operands. All 53 bits in the 
significand, as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased by one. 
FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX  (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved
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fcfidx fcfidx
Floating Convert from Integer Doubleword (x’FC00 069C’)

fcfid frD,frB (Rc = ’0’)
fcfid. frD,frB (Rc = ’1’)

The 64-bit signed fixed-point operand in register frB is converted to an infinitely precise floating-point integer. 
The result of the conversion is rounded to double-precision using the rounding mode specified by 
FPSCR[RN] and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is incremented when 
rounded. FPSCR[FI] is set if the result is inexact.

The conversion is described fully in Appendix C.4.3 Floating-Point Convert from Integer Model.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, VX, FEX, OX (if Rc = ’1’)

• Floating-point Status and Control Register:
Affected: FPRF, FR, FI, FX, XX

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0 B 846 Rc
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fcmpo fcmpo 
Floating Compare Ordered (x’FC00 0040’)

fcmpo crfD,frA,frB

if (frA) is a NaN or
(frB) is a NaN then c ← ‘0001’
else if (frA)< (frB) thenc ← ‘1000’
else if (frA)> (frB) thenc ← ‘0100’
else c ← ‘0010’

FPCC ← c
CR[(4 × crfD) – (4 × crfD + 3)] ← c 

if (frA) is an SNaN or
(frB) is an SNaN then

VXSNAN ← 1
if VE = 0 then VXVC ← 1

else if (frA) is a QNaN or
(frB) is a QNaN then VXVC ← 1

The floating-point operand in frA is compared to the floating-point operand in frB. The result of the compare is 
placed into CR field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crfD and the FPCC are set to reflect 
unordered. If one of the operands is a signaling NaN, then VXSNAN is set, and if invalid operation is disabled 
(VE = ’0’) then VXVC is set. Otherwise, if one of the operands is a QNaN, then VXVC is set.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:
Affected: FPCC, FX, VXSNAN, VXVC

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 32 063 crfD 0 0 A
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fcmpu fcmpu 
Floating Compare Unordered (x’FC00 0000’)

fcmpu crfD,frA,frB

if (frA) is a NaN or
(frB) is a NaN then c ← ‘0001’
else if (frA) < (frB) thenc ← ‘1000’
else if (frA) > (frB) thenc ← ‘0100’
else c ← ‘0010’

FPCC ← c
CR[(4 × crfD) – (4 × crfD + 3)] ← c 

if (frA) is an SNaN or
(frB) is an SNaN then

VXSNAN ← 1

The floating-point operand in register frA is compared to the floating-point operand in register frB. The result 
of the compare is placed into CR field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crfD and the FPCC are set to reflect 
unordered. If one of the operands is a signaling NaN, then VXSNAN is set.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, UN

• Floating-Point Status and Control Register:
Affected: FPCC, FX, VXSNAN

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved
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fctidx fctidx
Floating Convert to Integer Doubleword (x’FC00 065C’)

fctid frD,frB (Rc = ’0’)
fctid. frD,frB (Rc = ’1’)

The floating-point operand in frB is converted to a 64-bit signed fixed-point integer, using the rounding mode 
specified by FPSCR[RN], and placed into frD.

If the operand in frB is greater than 263– 1, then frD is set to 0x7FFF_FFFF_FFFF_FFFF. If the operand in 
frB is less than –263, then frD is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the result is 
incremented when rounded. FPSCR[FI] is set if the result is inexact.

The conversion is described fully in Appendix C.4.2 Floating-Point Convert to Integer Model.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved
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fctidzx fctidzx
Floating Convert to Integer Doubleword with Round toward Zero (x’FC00 065E’)

fctidz frD,frB (Rc = ’0’)
fctidz. frD,frB (Rc = ’1’)

The floating-point operand in frB is converted to a 64-bit signed fixed-point integer, using the rounding mode 
round toward zero, and placed into frD.

If the operand in frB is greater than 263 – 1, then frD is set to 0x7FFF_FFFF_FFFF_FFFF. If the operand in 
frB is less than –263, then frD is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the result is 
incremented when rounded. FPSCR[FI] is set if the result is inexact.

The conversion is described fully in Section C.4.2 Floating-Point Convert to Integer Model.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

63 D 0 0 0 0 0 B 815 Rc
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fctiwx fctiwx
Floating Convert to Integer Word (x’FC00 001C’)

fctiw frD,frB (Rc = ’0’)
fctiw. frD,frB  (Rc = ’1’)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the rounding mode 
specified by FPSCR[RN], and placed in bits [32–63] of frD. Bits [0–31] of frD are undefined.

If the operand in frB are greater than 231 – 1, bits [32–63] of frD are set to 0x7FFF_FFFF. 

If the operand in frB are less than –231, bits [32–63] of frD are set to 0x8000_0000.

The conversion is described fully in Appendix C.4.2 Floating-Point Convert to Integer Model.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the 
result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

(Programmers note: A stfiwz instruction should be used to store the 32-bit resultant integer because 
bits [0-31] of frD are undefined.)

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX  (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 14 Rc63 D 0 0 0 0 0
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fctiwzx fctiwzx
Floating Convert to Integer Word with Round toward Zero (x’FC00 001E’)

fctiwz frD,frB  (Rc = ’0’)
fctiwz.  frD,frB  (Rc = ’1’)

The floating-point operand in register frB is converted to a 32-bit signed integer, using the rounding mode 
round toward zero, and placed in bits [32–63] of frD. Bits [0–31] of frD are undefined.

If the operand in frB is greater than 231 – 1, bits [32–63] of frD are set to 0x7FFF_FFFF. 
If the operand in frB is less than –231, bits [32–63] of frD are set to 0x 8000_0000.

The conversion is described fully in Appendix C.4.2 Floating-Point Convert to Integer Model.

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the 
result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

(Programmers note: A stfiwz instruction should be used to store the 32-bit resultant integer because 
bits [0-31] of frD are undefined.)

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF (undefined), FR, FI, FX, XX, VXSNAN, VXCVI

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 15 Rc63 D 0 0 0 0 0
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fdivx fdivx
Floating Divide (Double-Precision) (x’FC00 0024’)

fdiv frD,frA,frB (Rc = ’0’)
fdiv. frD,frA,frB  (Rc = ’1’)

The floating-point operand in register frA is divided by the floating-point operand in register frB. The 
remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc63 D A
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fdivsx fdivsx
Floating Divide Single (x’EC00 0024’)

fdivs frD,frA,frB  (Rc = ’0’)
fdivs. frD,frA,frB (Rc = ’1’)

The floating-point operand in register frA is divided by the floating-point operand in register frB. The 
remainder is not supplied as a result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, ZX, XX, VXSNAN, VXIDI, VXZDZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 18 Rc59 D A
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fmaddx  fmaddx
Floating Multiply-Add (Double-Precision) (x’FC00 003A’)

fmadd frD,frA,frC,frB (Rc = ’0’)
fmadd. frD,frA,frC,frB (Rc = ’1’) 

The following operation is performed:
frD ← (frA ∗ frC) + frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc63 D A
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fmaddsx  fmaddsx
Floating Multiply-Add Single (x’EC00 003A’)

fmadds frD,frA,frC,frB (Rc = ’0’) 
fmadds. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:
frD ← (frA × frC) + frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is added to this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 29 Rc59 D A
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fmrx fmrx
Floating Move Register (Double-Precision) (x’FC00 0090’)

fmr  frD,frB  (Rc = ’0’)
fmr. frD,frB  (Rc = ’1’)

The following operation is performed: 

frD ← (frB)

The contents of register frB are placed into frD.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 72 Rc63 D 0 0 0 0 0
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fmsubx fmsubx
Floating Multiply-Subtract (Double-Precision) (x’FC00 0038’)

fmsub frD,frA,frC,frB (Rc = ’0’)
fmsub. frD,frA,frC,frB (Rc = ’1’) 

The following operation is performed:

frD ← [frA × frC] - frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc63 D A
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fmsubsx fmsubsx
Floating Multiply-Subtract Single (x’EC00 0038’)

fmsubs frD,frA,frC,frB (Rc = ’0’)
fmsubs. frD,frA,frC,frB (Rc = ’1’) 

The following operation is performed:

frD ← [frA × frC] - frB

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 28 Rc59 D A
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fmulx fmulx
Floating Multiply (Double-Precision) (x’FC00 0032’)

fmul frD,frA,frC (Rc = ’0’)
fmul. frD,frA,frC  (Rc = ’1’)

The following operation is performed:

frD ← (frA) × (frC) 

The floating-point operand in register frA is multiplied by the floating-point operand in register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to double-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc63 D A



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Instruction Set

Page 374 of 657
pem8.fm.3.0

July 15, 2005

fmulsx fmulsx
Floating Multiply Single (x’EC00 0032’)

fmuls frD,frA,frC  (Rc = ’0’)
fmuls. frD,frA,frC (Rc = ’1’)

The following operation is performed:

frD ← (frA) × (frC)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC.

If the most-significant bit of the resultant significand is not a one, the result is normalized. The result is 
rounded to single-precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

0 0 0 0 0 C 25 Rc59 D A
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fnabsx fnabsx
Floating Negative Absolute Value (x’FC00 0110’)

fnabs frD,frB  (Rc = ’0’)
fnabs. frD,frB  (Rc = ’1’)

The following operation is performed:

frD ← 1 || frB[1-63]

The contents of register frB with bit [0] set are placed into frD.

Note:  The fnabs instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may 
be altered by fnabs. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 136 Rc63 D 0 0 0 0 0
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fnegx fnegx
Floating Negate (x’FC00 0050’)

fneg frD,frB (Rc = ’0’)
fneg. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← ¬ frB[0] || frB[1-63]

The contents of register frB with bit [0] inverted are placed into frD.

Note:  The fneg instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may be 
altered by fneg. This instruction does not alter the FPSCR.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 40 Rc63 D 0 0 0 0 0
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fnmaddx fnmaddx 
Floating Negative Multiply-Add (Double-Precision) (x’FC00 003E’)

fnmadd frD,frA,frC,frB (Rc = ’0’)
fnmadd.  frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:

frD ← - ([frA × frC] + frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is added to this intermediate result. If the most-significant bit of the 
resultant significand is not a one, the result is normalized. The result is rounded to double-precision under 
control of the floating-point rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating Multiply-Add (fmaddx) 
instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign 
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ 

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc63 D A
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fnmaddsx fnmaddsx 
Floating Negative Multiply-Add Single (x’EC00 003E’)

fnmadds frD,frA,frC,frB (Rc = ’0’)
fnmadds. frD,frA,frC,frB (Rc = ’1’)

The following operation is performed:

frD ← - ([frA × frC] + frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is added to this intermediate result. If the most-significant bit of the 
resultant significand is not a one, the result is normalized. The result is rounded to single-precision under 
control of the floating-point rounding control field RN of the FPSCR, then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating Multiply-Add Single 
(fmaddsx) instruction and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign 
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ 

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 31 Rc59 D A
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fnmsubx fnmsubx
Floating Negative Multiply-Subtract (Double-Precision) (x’FC00 003C’)

fnmsub frD,frA,frC,frB (Rc = ’0’)
fnmsub. frD,frA,frC,frB (Rc = ’1’)

]

The following operation is performed:

frD ← - ([frA × frC] - frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not one, the result is normalized. The result is rounded 
to double-precision under control of the floating-point rounding control field RN of the FPSCR, then negated 
and placed into frD.

This instruction produces the same result obtained by negating the result of a Floating Multiply-Subtract 
(fmsubx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign 
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field)
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc63 D A
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fnmsubsx fnmsubsx
Floating Negative Multiply-Subtract Single (x’EC00 003C’)

fnmsubs frD,frA,frC,frB (Rc = ’0’)
fnmsubs. frD,frA,frC,frB (Rc = ’1’)

)

The following operation is performed:

frD ← - ([frA × frC] - frB)

The floating-point operand in register frA is multiplied by the floating-point operand in register frC. The 
floating-point operand in register frB is subtracted from this intermediate result.

If the most-significant bit of the resultant significand is not one, the result is normalized. The result is rounded 
to single-precision under control of the floating-point rounding control field RN of the FPSCR, then negated 
and placed into frD.

This instruction produces the same result obtained by negating the result of a Floating Multiply-Subtract 
Single (fmsubsx) instruction with the following exceptions:

• QNaNs propagate with no effect on their sign bit.

• QNaNs that are generated as the result of a disabled invalid operation exception have a sign bit of zero.

• SNaNs that are converted to QNaNs as the result of a disabled invalid operation exception retain the sign 
bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field)
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI, VXIMZ

0 5 6 10 11 15 16 20 21 25 26 30 31

B C 30 Rc59 D A
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fresx fresx
Floating Reciprocal Estimate Single (x’EC00 0030’)

fres frD,frB (Rc = ’0’)
fres. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← estimate[1/(frB)]

A single-precision estimate of the reciprocal of the floating-point operand in register frB is placed into register 
frD. The estimate placed into register frD is correct to a precision of one part in 256 of the reciprocal of frB. 
That is, 

where x is the initial value in frB. Note that the value placed into register frD may vary between implementa-
tions, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Note:  The PowerPC Architecture makes no provision for a double-precision version of the fresx instruction. 
This is because graphics applications are expected to need only the single-precision version, and no other 
important performance-critical applications are expected to require a double-precision version of the fresx 
instruction. 

Table 8-7. fres Operand Values 

Operand Result Exception

–∞ –0 None

–0 –∞(1) ZX

+0 +∞(1) ZX

+∞ +0 None

SNaN QNaN(2) VXSNAN

QNaN QNaN None

Notes:  

1. No result if FPSCR[ZE] = ’1’
2. No result if FPSCR[VE] = ’1’

B 0 0 0 0 0 24 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0
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Note:  This instruction is optional in the PowerPC Architecture.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR (undefined), FI (undefined), FX, OX, UX, ZX, VXSNAN
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frspx frspx
Floating Round to Single (x’FC00 0018’)

frsp  frD,frB  (Rc = ’0’)
frsp.  frD,frB  (Rc = ’1’)

The following operation is performed:

frD ← Round_single( frB ) 

If it is already in single-precision range, the floating-point operand in register frB is placed into frD. Otherwise, 
the floating-point operand in register frB is rounded to single-precision using the rounding mode specified by 
FPSCR[RN] and placed into frD.

The rounding is described fully in Appendix C.4.1 Floating-Point Round to Single-Precision Model.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 12 Rc63 D 0 0 0 0 0
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frsqrtex frsqrtex
Floating Reciprocal Square Root Estimate (x’FC00 0034’)

frsqrte frD,frB (Rc = ’0’)
frsqrte. frD,frB (Rc = ’1’)

A double-precision estimate of the reciprocal of the square root of the floating-point operand in register frB is 
placed into register frD. The estimate placed into register frD is correct to a precision of one part in 32 of the 
reciprocal of the square root of frB. That is,
 

where x is the initial value in frB. Note that the value placed into register frD may vary between implementa-
tions, and between different executions on the same implementation.

Operation with various special values of the operand is summarized below:

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’ and zero divide exceptions when FPSCR[ZE] = ’1’.

Note:  No single-precision version of the frsqrte instruction is provided; however, both frB and frD are repre-
sentable in single-precision format. 

Note:  This instruction is optional in the PowerPC Architecture.

Table 8-8. frsqrte Operand Values 

Operand Result Exception

–∞ QNaN(2) VXSQRT

<0 QNaN(2) VXSQRT

–0 –∞(1) ZX

+0 +∞(1) ZX

+∞ +0 None

SNaN QNaN(2) VXSNAN

QNaN QNaN None

Notes:  

1. No result if FPSCR[ZE] = ’1’
2. No result if FPSCR[VE] = ’1’

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc
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Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR (undefined), FI (undefined), FX, ZX, VXSNAN, VXSQRT
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fselx fselx
Floating Select (x’FC00 002E’)

fsel frD,frA,frC,frB (Rc = ’0’)
fsel. frD,frA,frC,frB (Rc = ’1’)

if (frA) ≥ 0.0 
then frD ← (frC)
else frD ← (frB)

The floating-point operand in register frA is compared to the value zero. If the operand is greater than or 
equal to zero, register frD is set to the contents of register frC. If the operand is less than zero or is a NaN, 
register frD is set to the contents of register frB. The comparison ignores the sign of zero (that is, regards +0 
as equal to –0).

Care must be taken in using fsel if IEEE compatibility is required, or if the values being tested can be NaNs or 
infinities.

For examples of uses of this instruction, see Appendix C.3 Floating-Point Conversions and 
Appendix C.5 Floating-Point Selection.

Note:  This instruction is optional in the PowerPC Architecture.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

B C 23 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

63 D A
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fsqrtx fsqrtx
Floating Square Root (Double-Precision) (x’FC00 002C’)

fsqrt frD,frB (Rc = ’0’)
fsqrt. frD,frB (Rc = ’1’)

The following operation is performed:

frD ← (Square_rootfrB)

The square root of the floating-point operand in register frB is placed into register frD.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is 
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into register frD.

Operation with various special values of the operand is summarized in Table 8-9.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Note:  This instruction is optional in the PowerPC Architecture. 

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, XX, VXSNAN, VXSQRT

Table 8-9. frsqrt with Special Operand Values 

Operand Result Exception

–∞ QNaN(1) VXSQRT

<0 QNaN(1) VXSQRT

–0 –0 None

+∞ +∞ None

SNaN QNaN(1) VXSNAN

QNaN QNaN None

Note:  

1. No result if FPSCR[VE] = ’1’

B 0 0 0 0 0 22 Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

63 D 0 0 0 0 0
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fsqrtsx fsqrtsx
Floating Square Root Single (x’EC00 002C’)

fsqrts  frD,frB (Rc = ’0’)
fsqrts. frD,frB  (Rc = ’1’)

The following operation is performed:

frD ← (Square_rootfrB)

The square root of the floating-point operand in register frB is placed into register frD.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is 
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR and 
placed into register frD.

Operation with various special values of the operand is summarized in Table 8-9.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Note:  This instruction is optional in the PowerPC Architecture. 

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, XX, VXSNAN, VXSQRT

Table 8-10. frsqrts with Special Operand Values 

Operand Result Exception

–∞ QNaN(1) VXSQRT

<0 QNaN(1) VXSQRT

–0 –0 None

+∞ +∞ None

SNaN QNaN(1) VXSNAN

QNaN QNaN None

Note:  

1. No result if FPSCR[VE] = ’1’

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc
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fsubx fsubx
Floating Subtract (Double-Precision) (x’FC00 0028’)

fsub frD,frA,frB (Rc = ’0’)
fsub. frD,frA,frB  (Rc = ’1’)

The following operation is performed:

frD ← (frA) – (frB)

The floating-point operand in register frB is subtracted from the floating-point operand in register frA. If the 
most-significant bit of the resultant significand is not a one, the result is normalized. The result is rounded to 
double-precision under control of the floating-point rounding control field RN of the FPSCR and placed into 
frD.

The execution of the fsub instruction is identical to that of fadd, except that the contents of frB participate in 
the operation with its sign bit (bit [0]) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc63 D A
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fsubsx fsubsx
Floating Subtract Single (x’EC00 0028’)

fsubs frD,frA,frB  (Rc = ’0’)
fsubs. frD,frA,frB (Rc = ’1’)

The floating-point operand in register frB is subtracted from the floating-point operand in register frA. If the 
most-significant bit of the resultant significand is not a one, the result is normalized. The result is rounded to 
single-precision under control of the floating-point rounding control field RN of the FPSCR and placed into 
frD.

The execution of the fsubs instruction is identical to that of fadds, except that the contents of frB participate 
in the operation with its sign bit (bit [0]) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when 
FPSCR[VE] = ’1’.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPRF, FR, FI, FX, OX, UX, XX, VXSNAN, VXISI

0 5 6 10 11 15 16 20 21 25 26 30 31

Reserved

B 0 0 0 0 0 20 Rc59 D A
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icbi icbi
Instruction Cache Block Invalidate (x’7C00 07AC’)

icbi rA,rB

The effective address is the sum (rA|0) + (rB). 

If the block containing the byte addressed by EA is in coherency-required mode, and a block containing the 
byte addressed by EA is in the instruction cache of any processor, the block is made invalid in all such 
instruction caches, so that subsequent references cause the block to be refetched.

If the block containing the byte addressed by EA is in coherency-not-required mode, and a block containing 
the byte addressed by EA is in the instruction cache of this processor, the block is made invalid in that instruc-
tion cache, so that subsequent references cause the block to be refetched.

The function of this instruction is independent of the write-through, write-back, and caching-inhibited/allowed 
modes of the block containing the byte addressed by EA.

This instruction is treated as a load from the addressed byte with respect to address translation and memory 
protection. It may also be treated as a load for referenced and changed bit recording except that referenced 
and changed bit recording may not occur. Implementations with a combined data and instruction cache treat 
the icbi instruction as a no-op, except that they may invalidate the target block in the instruction caches of 
other processors if the block is in coherency-required mode.

The icbi instruction invalidates the block at EA (rA|0 + rB). If the processor is a multiprocessor implementa-
tion and the block is marked coherency-required, the processor will send an address-only broadcast to other 
processors causing those processors to invalidate the block from their instruction caches. 

For faster processing, many implementations will not compare the entire EA (rA|0 + rB) with the tag in the 
instruction cache. Instead, they will use the bits in the EA to locate the set that the block is in, and invalidate 
all blocks in that set.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 982 031 0 0 0 0 0 A
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isync isync
Instruction Synchronize (x’4C00 012C’)

isync

The isync instruction provides an ordering function for the effects of all instructions executed by a processor. 
Executing an isync instruction ensures that all instructions preceding the isync instruction have completed 
before the isync instruction completes, except that memory accesses caused by those instructions need not 
have been performed with respect to other processors and mechanisms. It also ensures that no subsequent 
instructions are initiated by the processor until after the isync instruction completes. Finally, it causes the 
processor to discard any prefetched instructions, with the effect that subsequent instructions will be fetched 
and executed in the context established by the instructions preceding the isync instruction. The isync instruc-
tion has no effect on the other processors or on their caches.

This instruction is context synchronizing.

Context synchronization is necessary after certain code sequences that perform complex operations within 
the processor. These code sequences are usually operating system tasks that involve memory management. 
For example, if an instruction A changes the memory translation rules in the memory management unit 
(MMU), the isync instruction should be executed so that the instructions following instruction A will be 
discarded from the pipeline and refetched according to the new translation rules.

Note:  All exceptions and the rfid instruction are also context synchronizing. 

Other registers altered:

• None

0 0 0 0 0 150 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 0 0 0 0 0 0 0 0 0 0
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lbz lbz
Load Byte and Zero (x’8800 0000’)

lbz  rD,d(rA)

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + EXTS(d)
rD ← (56)0 || MEM(EA, 1)

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into the low-order eight bits of rD. 
The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d34 D A
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lbzu lbzu
Load Byte and Zero with Update (x’8C00 0000’)

lbzu rD,d(rA)

EA ← (rA) + EXTS(d)
rD ← (56)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA) + d. The byte in memory addressed by EA is loaded into the low-order eight bits of rD. The 
remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d35 D A
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lbzux lbzux
Load Byte and Zero with Update Indexed (x’7C00 00EE’)

lbzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (56)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA) + (rB). The byte in memory addressed by EA is loaded into the low-order eight bits of rD. 
The remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 119 031 D A
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lbzx lbzx
Load Byte and Zero Indexed (x’7C00 00AE’)

lbzx rD,rA,rB

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + (rB)
rD ← (56)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into the low-order eight bits of rD. 
The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 87 031 D A
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ld ld
Load Doubleword (x’E800 0000’)

ld rD,ds(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(ds || ’00’)
rD ← MEM(EA, 8)

EA is the sum (rA|0) + (ds || ’00’). The doubleword in memory addressed by EA is loaded into rD.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

58 D A  ds 0 0
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ldarx ldarx
Load Doubleword and Reserve Indexed (x’7C00 00A8’)

ldarx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
RESERVE ← 1
RESERVE_ADDR ← physical_addr(EA)
rD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB). The doubleword in memory addressed by EA is loaded into rD.

This instruction creates a reservation for use by a Store Doubleword Conditional Indexed (stdcx.) instruction. 
An address computed from the EA is associated with the reservation, and replaces any address previously 
associated with the reservation.

EA must be a multiple of eight. If it is not, either the system alignment exception handler is invoked or the 
results are boundedly undefined. For additional information about alignment and DSI exceptions, see 
Section 6.4.3 DSI Exception (0x00300).

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 84 0
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ldu ldu
Load Doubleword with Update (x’E800 0001’)

ldu rD,ds(rA)

EA ← (rA) + EXTS(ds || ’00’)
rD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + (ds || ’00’). The doubleword in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

58 D A  ds 0 1
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ldux lduxx
Load Doubleword with Update Indexed (x’7C00 006A’)

ldux rD,rA,rB

EA ← (rA) + (rB)
rD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + (rB). The doubleword in memory addressed by EA is loaded into rD.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 53 0
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ldx ldx
Load Doubleword Indexed (x’7C00 002A’)

ldx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB). The doubleword in memory addressed by EA is loaded into rD.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 21 0
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lfd  lfd 
Load Floating-Point Double (x’C800 0000’)  

lfd frD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + d.

The doubleword in memory addressed by EA is placed into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d50 D A
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lfdu lfdu 
Load Floating-Point Double with Update (x’CC00 0000’)  

lfdu frD,d(rA)

EA ← (rA) + EXTS(d)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + d.

The doubleword in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d51 D A



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Instruction Set

Page 404 of 657
pem8.fm.3.0

July 15, 2005

lfdux lfdux 
Load Floating-Point Double with Update Indexed (x’7C00 04EE’)  

lfdux frD,rA,rB

EA ← (rA) + (rB)
frD ← MEM(EA, 8)
rA ← EA

EA is the sum (rA) + (rB).

The doubleword in memory addressed by EA is placed into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 631 031 D A
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lfdx lfdx 
Load Floating-Point Double Indexed (x’7C00 04AE’)

lfdx frD,rA,rB

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + (rB)
frD ← MEM(EA, 8)

EA is the sum (rA|0) + (rB).

The doubleword in memory addressed by EA is placed into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 599 031 D A
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lfs lfs 
Load Floating-Point Single (x’C000 0000’)  

lfs frD,d(rA)

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + EXTS(d)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is 
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed 
into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d48 D A
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lfsu lfsu 
Load Floating-Point Single with Update (x’C400 0000’)  

lfsu frD,d(rA)

EA ← (rA) + EXTS(d)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA) + d.

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is 
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed 
into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d49 D A
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lfsux   lfsux 
Load Floating-Point Single with Update Indexed (x’7C00 046E’)  

lfsux  frD,rA,rB

EA ← (rA) + (rB)
frD ← DOUBLE(MEM(EA, 4))
rA ← EA

EA is the sum (rA) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is 
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed 
into frD.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 567 031 D A
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lfsx lfsx 
Load Floating-Point Single Indexed (x’7C00 042E’)

lfsx  frD,rA,rB

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + (rB)
frD ← DOUBLE(MEM(EA, 4))

EA is the sum (rA|0) + (rB).

The word in memory addressed by EA is interpreted as a floating-point single-precision operand. This word is 
converted to floating-point double-precision (see Appendix C.6 Floating-Point Load Instructions) and placed 
into frD.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 535 031 D A
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lha lha 
Load Halfword Algebraic (x’A800 0000’)

lha rD,d(rA)

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + EXTS(d)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD. 
The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d42 D A
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lhau lhau
Load Halfword Algebraic with Update (x’AC00 0000’)

lhau rD,d(rA)

EA ← (rA) + EXTS(d)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD. 
The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d43 D A
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lhaux lhaux
Load Halfword Algebraic with Update Indexed (x’7C00 02EE’)

lhaux  rD,rA,rB

EA ← (rA) + (rB)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD. 
The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 375 031 D A
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lhax lhax
Load Halfword Algebraic Indexed (x’7C00 02AE’)

lhax rD,rA,rB

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + (rB)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of 
rD. The remaining bits in rD are filled with a copy of the most-significant bit of the loaded halfword.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 343 031 D A
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lhbrx lhbrx
Load Halfword Byte-Reverse Indexed (x’7C00 062C’)

lhbrx rD,rA,rB

if rA = 0 then b ← 0
else  b ← (rA)
EA ← b + (rB)
rD ← (48)0 || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + (rB). Bits [0–7] of the halfword in memory addressed by EA are loaded into the low-
order eight bits of rD. Bits [8–15] of the halfword in memory addressed by EA are loaded into the subsequent 
low-order eight bits of rD. The remaining bits in rD are cleared.

The PowerPC Architecture cautions programmers that some implementations of the architecture may run the 
lhbrx instructions with greater latency than other types of load instructions. 

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 790 031 D A
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lhz lhz
Load Halfword and Zero (x’A000 0000’)

lhz  rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← (48)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD. 
The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d40 D A
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lhzu lhzu
Load Halfword and Zero with Update (x’A400 0000’)

lhzu rD,d(rA)

EA ← rA + EXTS(d)
rD ← (48)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA) + d. The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD. 
The remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d41 D A
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lhzux lhzux
Load Halfword and Zero with Update Indexed (x’7C00 026E’)

lhzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (48)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of rD. 
The remaining bits in rD are cleared.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 311 031 D A
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lhzx lhzx
Load Halfword and Zero Indexed (x’7C00 022E’)

lhzx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (48)0 || MEM(EA, 2)

EA is the sum (rA|0) + (rB). The halfword in memory addressed by EA is loaded into the low-order 16 bits of 
rD. The remaining bits in rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 279 031 D A
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lmw lmw
Load Multiple Word (x’B800 0000’)

lmw rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
r ← rD
do while r ≤ 31

GPR(r) ← (32)0 || MEM(EA, 4)
r ← r + 1
EA ← EA + 4

EA is the sum (rA|0) + d.

n = (32 – rD). 

n consecutive words starting at EA are loaded into the low-order 32 bits of GPRs rD through r31. The high-
order 32 bits of these GPRs are cleared. 

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the 
results are boundedly undefined. For additional information about alignment and DSI exceptions, see 
Section 6.4.3 DSI Exception (0x00300). 

If rA is in the range of registers specified to be loaded, including the case in which rA = ’0’, the instruction 
form is invalid.

Note:  In some implementations, this instruction is likely to have a greater latency and take longer to execute, 
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d46 D A
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lswi lswi
Load String Word Immediate (x’7C00 04AA’)

lswi rD,rA,NB

if rA = 0 then EA ← 0
else EA ← (rA)
if NB = 0 then n ← 32
elsen ← NB
r ← rD – 1
i ← 32
do while n > 0

if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r)[i–(i + 7)] ← MEM(EA, 1)
i ← i + 8
if i = 64 then i ← 32
EA ← EA + 1
n ← n – 1

The effective address is (rA|0). 

Let n = NB if NB ≠ 0, n = 32 if NB = ’0’; n is the number of bytes to load. 
Let nr = CEIL(n ÷ 4); nr is the number of registers to be loaded with data. 

n consecutive bytes starting at EA are loaded into GPRs rD through rD + nr – 1. Data is loaded into the low-
order four bytes of each GPR; the high-order four bytes are cleared.

Bytes are loaded left to right in each register. The sequence of registers wraps around to r0 if required. If the 
low-order four bytes of register rD + nr – 1 are only partially filled, the unfilled low-order byte(s) of that register 
are cleared. 

If rA is in the range of registers specified to be loaded, including the case in which rA = ’0’, the instruction 
form is invalid.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler 
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note:  In some implementations, this instruction is likely to have greater latency and take longer to execute, 
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 597 031 D A
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lswx lswx
Load String Word Indexed (x’7C00 042A’)

lswx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
n ← XER[57-63]
r ← rD – 1
i ← 32
rD ← undefined
 do while n > 0
if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r)[i–(i + 7)] ← MEM(EA, 1)
i ← i + 8
if i = 64 then i ← 32
EA ← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Let n = XER[57-63]; n is the number of bytes to load. 
Let nr = CEIL(n ÷ 4); nr is the number of registers to receive data. 
If n > 0, n consecutive bytes starting at EA are loaded into GPRs rD through rD + nr – 1. Data is loaded into 
the low-order four bytes of each GPR; the high-order four bytes are cleared.

Bytes are loaded left to right in each register. The sequence of registers wraps around through r0 if required. 
If the low-order four bytes of rD + nr – 1 are only partially filled, the unfilled low-order byte(s) of that register 
are cleared. If n = ’0’, the contents of rD are undefined. 

If rA or rB is in the range of registers specified to be loaded, including the case in which rA = ’0’, either the 
system illegal instruction error handler is invoked or the results are boundedly undefined. 

If rD = rA or rD = rB, the instruction form is invalid.

If rD and rA both specify GPR0, the form is invalid. 

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler 
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note:  In some implementations, this instruction is likely to have a greater latency and take longer to execute, 
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:
• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 533 031 D A
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lwa lwa
Load Word Algebraic (x’E800 0002’)

lwa rD,ds(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(ds || ’00’)
rD ← EXTS(MEM(EA, 4))

EA is the sum (rA|0) + (ds || ’00’). The word in memory addressed by EA is loaded into the low-order 32 bits 
of rD. The contents of the high-order 32 bits of rD are filled with a copy of bit [0] of the loaded word.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

58 D A  ds 1 0
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lwarx lwarx
Load Word and Reserve Indexed (x’7C00 0028’)

lwarx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
RESERVE ← 1
RESERVE_ADDR ← physical_addr(EA)
rD ← (32)0 || MEM(EA,4)

EA is the sum (rA|0) + (rB). 

The word in memory addressed by EA is loaded into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are cleared.

This instruction creates a reservation for use by a store word conditional indexed (stwcx.) instruction. The 
physical address computed from EA is associated with the reservation, and replaces any address previously 
associated with the reservation. 

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the 
results are boundedly undefined. For additional information about alignment and DSI exceptions, see 
Section 6.4.3 DSI Exception (0x00300).

When the RESERVE bit is set, the processor enables hardware snooping for the block of memory addressed 
by the RESERVE address. If the processor detects that another processor writes to the block of memory it 
has reserved, it clears the RESERVE bit. The stwcx. instruction will only do a store if the RESERVE bit is set. 
The stwcx. instruction sets the CR0[EQ] bit if the store was successful and clears it if it failed. The lwarx and 
stwcx. combination can be used for atomic read-modify-write sequences. 

Note:  The atomic sequence is not guaranteed, but its failure can be detected if CR0[EQ] = ’0’ after the 
stwcx. instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 20 031 D A
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lwaux lwaux
Load Word Algebraic with Update Indexed (x’7C00 02EA’)

lwaux rD,rA,rB

EA ← (rA) + (rB)
rD ← EXTS(MEM(EA, 4))
rA ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD. 
The high-order 32 bits of rD are filled with a copy of bit 0 of the loaded word.

EA is placed into rA.

If rA = ’0’ or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 373 0
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lwax lwax
Load Word Algebraic Indexed (x’7C00 02AA’)

lwax rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← EXTS(MEM(EA, 4))

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD. 
The high-order 32 bits of rD are filled with a copy of bit 0 of the loaded word.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 341 0
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lwbrx lwbrx
Load Word Byte-Reverse Indexed (x’7C00 042C’)

lwbrx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (32)0 || MEM(EA + 3, 1) || MEM(EA + 2, 1) || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + rB. Bits 0–7 of the word in memory addressed by EA are loaded into the low-order 
8 bits of rD. Bits [8–15] of the word in memory addressed by EA are loaded into the subsequent low-order 
8 bits of rD. Bits [16–23] of the word in memory addressed by EA are loaded into the subsequent low-order 
8 bits of rD. Bits [24–31] of the word in memory addressed by EA are loaded into the subsequent low-order 
8 bits of rD. The high-order 32 bits of rD are cleared.

The PowerPC Architecture cautions programmers that some implementations of the architecture may run the 
lwbrx instructions with greater latency than other types of load instructions. 

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 534 031 D A
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lwz lwz
Load Word and Zero (x’8000 0000’)

lwz rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← (32)0 || MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into the low-order 32 bits of rD. The 
high-order 32 bits of rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d32 D A
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lwzu lwzu
Load Word and Zero with Update (x’8400 0000’)

lwzu rD,d(rA)

EA ← rA + EXTS(d)
rD ← (32)0 || MEM(EA, 4)
rA ← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded into the low-order 32 bits of rD. The 
high-order 32 bits of rD are cleared.

EA is placed into rA.

If rA = ’0’, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

d33 D A
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lwzux lwzux
Load Word and Zero with Update Indexed (x’7C00 006E’)

lwzux rD,rA,rB 

EA ← (rA) + (rB)
rD ← (32)0 || MEM(EA, 4)
rA ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD. 
The high-order 32 bits of rD are cleared.

EA is placed into rA.

If rA = ’0’, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 55 031 D A
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lwzx lwzx
Load Word and Zero Indexed (x’7C00 002E’)

lwzx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + rB
rD ← (32)0 || MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into the low-order 32 bits of rD. 
The high-order 32 bits of rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 23 031 D A
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mcrf mcrf
Move Condition Register Field (x’4C00 0000’)

mcrf crfD,crfS

CR[(4 × crfD) to (4 × crfD + 3)] ← CR[(4 × crfS) to (4 × crfS + 3)]

The contents of condition register field crfS are copied into condition register field crfD. All other condition 
register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, SO

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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mcrfs mcrfs
Move to Condition Register from FPSCR (x’FC00 0080’)

mcrfs crfD,crfS

The contents of FPSCR field crfS are copied to CR field crfD. All exception bits copied (except FEX and VX) 
are cleared in the FPSCR.

Other registers altered:

• Condition Register (CR field specified by operand crfD):
Affected: FX, FEX, VX, OX

• Floating-Point Status and Control Register:
Affected: FX, OX (if crfS = ’0’)
Affected: UX, ZX, XX, VXSNAN (if crfS = ‘1’)
Affected: VXISI, VXIDI, VXZDZ, VXIMZ (if crfS = ‘2’)
Affected: VXVC (if crfS = ‘3’)
Affected: VXSOFT, VXSQRT, VXCVI (if crfS = ‘5’)

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0
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mfcr mfcr 
Move from Condition Register (x’7C00 0026’)

mfcr  rD

rD ←  (32)0 || CR

The contents of the condition register (CR) are placed into the low-order 32 bits of rD. The high-order 32 bits 
of rD are cleared.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0  0 0 0 0 0 19 031 D
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mfocrf mfocrf 
Move from One Condition Register Field (x’7C20 0026’) 

mfocrf rD,CRM

rD ← undefined
count ← 0
do i = 0 to 7
if CRMi = 1 then
n ← i
count ← count + 1

if count = 1 then rD[(32+4×n) - (32+4×n+3)] ← CR[(4×n) - (4×n+3)]

If exactly one bit of the CRM field is set to 1, let n be the position of that bit in the field (0 ≤ n ≤ 7). The 
contents of CR field n (CR bits [(4×n) to (4×n+3)]) are placed into bits [(32+4×n) to (32+4×n + 3)] of register rD 
and the contents of the remaining bits of register rD are undefined. Otherwise, the contents of register rD are 
undefined.

Note:  This form of the mfocrf instruction is intended to replace the old form of the instruction which will even-
tually be phased out of the architecture. The new form is backward compatible with most processors that 
comply with versions of the architecture that precede Version 2.01. On those processors, the new form is 
treated as the old form. However, on some processors that comply with versions of the architecture that pre-
cede Version 2.01 the new form of mfocrf may copy the contents of an SPR, possibly a privileged SPR, into 
register rD.

Other registers altered:

• None

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM31 D 1 0 019
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mffsx mffsx 
Move from FPSCR (x’FC00 048E’)

mffs frD (Rc = ’0’)
mffs. frD (Rc = ’1’)

frD[32-63]← FPSCR

The contents of the floating-point status and control register (FPSCR) are placed into the low-order bits of 
register frD. The high-order bits of register frD are undefined.

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0  0 0 0 0 0 583 Rc63 D
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mfmsr mfmsr 
Move from Machine State Register (x’7C00 00A6’)

mfmsr rD

rD ←  MSR

The contents of the MSR are placed into rD.

This is a supervisor-level instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 83 031 D 0 0 0 0 0
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mfspr  mfspr 
Move from Special-Purpose Register (x’7C00 02A6’)

mfspr rD,SPR

n ←  spr[5–9] || spr[0–4]
if length (SPR(n)) = 64 then
rD ←  SPR(n)

else
rD ←  (32)0 || SPR(n)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-11. 
The contents of the designated special-purpose register are placed into rD. 

For special-purpose registers that are 32 bits long, the low-order 32 bits of rD receive the contents of the 
special-purpose register and the high-order 32 bits of rD are cleared. 

If the SPR field contains any value other than one of the values shown in Table 8-11 (and the processor is in 
user mode), one of the following occurs: 

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The results are boundedly undefined.

Other registers altered:

• None

Simplified mnemonics:

mfxer rD equivalent to mfspr rD,1
mflr rD equivalent to mfspr rD,8
mfctr rD equivalent to mfspr rD,9

Table 8-11. PowerPC UISA SPR Encodings for mfspr   

SPR1

Register Name
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

Note:  

1. The order of the two 5-bit halves of the SPR number is reversed compared with the actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 339 031 D

*Note: This is a split field.
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In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-12. 
The contents of the designated SPR are placed into rD. For SPRs that are 32 bits long, the low-order 32 bits 
of rD receive the contents of the SPR and the high-order 32 bits of rD are cleared.

SPR[0] = ’1’ if and only if reading the register is supervisor-level. Execution of this instruction specifying a 
defined and supervisor-level register when MSR[PR] = ’1’ will result in a privileged instruction type program 
exception.

If MSR[PR] = ’1’, the only effect of executing an instruction with an SPR number that is not shown in 
Table 8-12 and has SPR[0] = ’1’ is to cause a supervisor-level instruction type program exception or an illegal 
instruction type program exception. For all other cases, MSR[PR] = ‘0’ or SPR[0] = ‘0’. If the SPR field 
contains any value that is not shown in Table 8-12, either an illegal instruction type program exception occurs 
or the results are boundedly undefined.

Other registers altered:

• None 

Table 8-12. PowerPC OEA SPR Encodings for mfspr   

SPR
1

Register Name Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

280 01000 11000 ASR2 Supervisor

282 01000 11010 EAR Supervisor

287 01000 11111 PVR Supervisor

1013 11111 10101 DABR Supervisor

Note:  

1. For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary num-
ber in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five 
bits appearing in bits [16–20] of the instruction and the low-order five bits in bits [11–15; compared with actual instruction coding]. 

2. 64-bit implementations only.
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mfsr mfsr 
Move from Segment Register (x’7C00 04A6’)

mfsr rD,SR

The contents of the low-order 27 bits of the VSID field, and the contents of the KS, KP, N, and L fields, of the 
SLB entry specified by SR are placed into register rD, as follows:

rD[32] is set to ‘0’. The contents of rD[0-31] are undefined. 

This is a supervisor-level instruction.

This instruction must be used only to read an SLB entry that was, or could have been, created by mtsr or 
mtsrin and has not subsequently been invalidated (i.e., an SLB entry in which ESID< 16, V= ’1’, VSID< 227, 
L= ’0’, and C= ’0’). Otherwise the contents of register rD are undefined.

Note:  MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

Other registers altered:

• None

SLBE Bit(s) Copied to SLB Field

62 - 88 rD[37-63] VSID[25-51]

89 - 91 rD[33-35] KS KP N

92 rD[36] L (SBE[L] must be ‘0’)

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 595 031 D 0 SR
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mfsrin mfsrin 
Move from Segment Register Indirect (x’7C00 0526’)

mfsrin  rD,rB

The contents of the low-order 27 bits of the VSID field, and the contents of the KS, KP, N, and L fields, of the 
SLB entry specified by rB[32:35] are placed into register rD, as follows:

rD[32] is set to ‘0’. The contents of rD[0-31] are undefined. 

This is a supervisor-level instruction.

Note:  MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

This instruction must be used only to read an SLB entry that was, or could have been, created by mtsr or 
mtsrin and has not subsequently been invalidated (i.e., an SLB entry in which ESID< 16, V= ’1’, VSID< 227, 
L= ’0’, and C= ’0’). Otherwise the contents of register rD are undefined.

Other registers altered:

• None 

SLBE Bit(s) Copied to SLB Field

62 - 88 rD[37-63] VSID[25-51]

89 - 91 rD[33-35] KS KP N

92 rD[36] L (SBE[L] must be ‘0’)

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 659 031 D 0 0 0 0 0
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mftb mftb 
Move from Time Base (x’7C00 02E6’)

mftb rD,TBR

n ←  tbr[5-9] || tbr[0-4]
if n = 268 then
rD ←  TB

else if n = 269 then
rD ←  (32)0 || TB[0-31]

The TBR field denotes either the Time Base or Time Base Upper, encoded as shown in Table 8-13. The 
contents of the designated register are placed into register rD. When reading Time Base Upper, the high-
order 32 bits of register RT are set to zero.

If the TBR field contains any value other than one of the values shown in Table 8-13, then one of the following 
occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor-level instruction error handler is invoked.

• The results are boundedly undefined.

It is important to note that some implementations may implement mftb and mfspr identically, therefore, a 
TBR number must not match an SPR number.

For more information on the time base refer to Section 2.2 PowerPC VEA Register Set—Time Base. 

Other registers altered:

• None

Simplified mnemonics:

mftb rD equivalent to mftb rD,268
mftbu rD equivalent to mftb rD,269

Table 8-13. TBR Encodings for mftb  

TBR1

Register Name Access
Decimal tbr[5–9] tbr[0–4]

268 01000 01100 TBL User

269 01000 01101 TBU User

1. The order of the two 5-bit halves of the TBR number is reversed.

0 5 6 10 11 20 21 30 31

Reserved

31 D tbr* 371 0

*Note: This is a split field.
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mtcrf mtcrf 
Move to Condition Register Fields (x’7C00 0120’)

mtcrf CRM,rS

mask ←  (4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])
CR ←  (rS[32-63] & mask) | (CR & ¬ mask)

The contents of the low-order 32 bits of rS are placed into the condition register under control of the field 
mask specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in the range 0-7. 
If CRM(i) = ’1’, CR field i (CR bits [(4 × i) through (4 × i + 3)]) is set to the contents of the corresponding field 
of the low-order 32 bits of rS.

Note:  Updating a subset of the eight fields of the condition register may have a substantially poorer perfor-
mance on some implementations than updating all of the fields.

Other registers altered:

• CR fields selected by mask

Simplified mnemonics:

mtcr rS equivalent to mtcrf  0xFF,rS

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 0
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mtfsb0x mtfsb0x
Move to FPSCR Bit 0 (x’FC00 008C’)

mtfsb0  crbD  (Rc = ’0’)
mtfsb0.  crbD  (Rc = ’1’)

Bit crbD of the FPSCR is cleared. 

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR bit crbD

Note:  Bits [1] and [2] (FEX and VX) cannot be explicitly cleared.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 70 Rc63 crbD 0 0 0 0 0
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mtfsb1x mtfsb1x 
Move to FPSCR Bit 1 (x’FC00 004C’)

mtfsb1  crbD  (Rc = ’0’)
mtfsb1. crbD  (Rc = ’1’)

Bit crbD of the FPSCR is set. 

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR bit crbD and FX

Note:  Bits [1] and [2] (FEX and VX) cannot be explicitly set.

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 38 Rc63 crbD 0 0 0 0 0
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mtfsfx mtfsfx
Move to FPSCR Fields (x’FC00 058E’)

mtfsf  FM,frB (Rc = ’0’)
mtfsf.  FM,frB  (Rc = ’1’)

The low-order 32 bits of frB are placed into the FPSCR under control of the field mask specified by FM. The 
field mask identifies the 4-bit fields affected. Let i be an integer in the range 0–7. If FM[i] = ’1’, FPSCR field i 
(FPSCR bits [(4 × i) through (4 × i + 3)]) is set to the contents of the corresponding field of the low-order 32 
bits of register frB.

FPSCR[FX] is altered only if FM[0] = ’1’.

Note:  Updating fewer than all eight fields of the FPSCR may have a substantially poorer performance on 
some implementations than updating all the fields.

When FPSCR[0–3] is specified, bits [0] (FX) and [3] (OX) are set to the values of frB[32] and frB[35] (that is, 
even if this instruction causes OX to change from ‘0’ to ‘1’, FX is set from frB[32] and not by the usual rule that 
FX is set when an exception bit changes from ‘0’ to ‘1’). Bits [1] and [2] (FEX and VX) are set according to the 
usual rule and not from frB[33–34].

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR fields selected by mask

0 5 6 7 14 15 16 20 21 30 31

Reserved

63 0 FM 0 B 711 Rc
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mtfsfix mtfsfix 

Move to FPSCR Field Immediate (x’FC00 010C’)

mtfsfi crfD,IMM (Rc = ’0’)
mtfsfi. crfD,IMM (Rc = ’1’)

FPSCR[crfD] ←  IMM

The value of the IMM field is placed into FPSCR field crfD. 

FPSCR[FX] is altered only if crfD = ’0’.

When FPSCR[0–3] is specified, bits [0] (FX) and [3] (OX) are set to the values of IMM[0] and IMM[3] (that is, 
even if this instruction causes OX to change from ‘0’ to ‘1’, FX is set from IMM[0] and not by the usual rule that 
FX is set when an exception bit changes from ‘0’ to ‘1’). Bits [1] and [2] (FEX and VX) are set according to the 
usual rule and not from IMM[1–2].

Other registers altered:

• Condition Register (CR1 field):
Affected: FX, FEX, VX, OX (if Rc = ’1’)

• Floating-Point Status and Control Register:
Affected: FPSCR field crfD

0 5 6 8 9 10 11 12 15 16 19 20 21 30 31

Reserved

63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc
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mtmsr mtmsr
Move to Machine State Register (x’7C00 0124’)

mtmsr  rS,L 

MSR ← (rS)
if L = 0 then
MSR[58] ← (rS[58] | rS[49])
MSR[59] ← (rS[59] | rS[49])
MSR[32-47,49,50,52-57,60-63] ← rS[32-47,49,50,52-57,60-63]

else
MSR[48,62] ← rS[48,62]

The MSR is set based on the contents of register rS and the L field. 

This instruction is a supervisor-level instruction. If L= ’0’ this instruction is context synchronizing except with 
respect to alterations to the [LE] bit. If L= ’1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction completes. 

Note:  A reference to an mtmsr instruction that modifies an MSR bit other than the EE or RI bit implies L= ’0’.

Other registers altered:

• MSR

Note:  mtmsr serves as both a basic and an extended mnemonic. The assembler will recognize an mtmsr 
mnemonic with two operands as the basic form, and an mtmsr mnemonic with one operand as the extended 
form. In the extended form the L operand is omitted and assumed to be ‘0’.

L= ‘0’ The result of ORing bits [58] and [49] of register rS is placed into MSR[58]. The result of ORing 
bits [59] and [49] of register rS is placed into MSR[59]. Bits [32-47, 49, 50, 52-57, 60-63] of register 
rS are placed into the corresponding bits of the MSR. The remaining bits of the MSR are 
unchanged. 

L= ’1’ Bits [48, 62] of rS are placed into the corresponding bits of the MSR. The remaining bits of the MSR 
are unchanged.

0 5 6 10 11 14 15 16 20 21 30 31

Reserved

L 0 0 0 0 0 146 031 S 0 0 0 0 
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mtmsrd mtmsrd
 Move to Machine State Register Doubleword (x’7C00 0164’)

mtmsrd  rS,L

The MSR is set based on the contents of register rS and the L field. 

This instruction is a supervisor-level instruction. If L= ‘0’ this instruction is context synchronizing except with 
respect to alterations to the [LE] bit. If L= ’1’ this instruction is execution synchronizing; in addition, the alter-
ations of the [EE] and [RI] bits take effect as soon as the instruction completes.

Note:  Processors designed prior to Version 2.01 of the architecture ignore the L field. These processors set 
the MSR as if L were ‘0’, and perform synchronization as if L were ‘1’. Therefore software that uses mtmsrd 
and runs on such processors must obey the following rules. 

1. If L= ’1’, the contents of bits of register rS other than bits [48] and [62] must be such that if L were ‘0’ the 
instruction would not alter the contents of the corresponding MSR bits. 

2. If L = ‘0’ and the instruction alters the contents of any of the MSR bits listed below, the instruction must be 
followed by a context synchronizing instruction or event in order to ensure that the context alteration 
caused by the mtmsrd instruction has taken effect on such processors. 

To obtain the best performance on processors, if the context synchronizing instruction is isync the isync 
should immediately follow the mtmsrd. (Some such processors treat an isync instruction that immediately 
follows an mtmsrd instruction having L = ’0’ as a no-op, thereby avoiding the performance penalty of a 
second context synchronization.) 

Note:  mtmsrd serves as both a basic and an extended mnemonic. The Assembler will recognize an mtm-
srd mnemonic with two operands as the basic form, and an mtmsrd mnemonic with one operand as the 
extended form. In the extended form the L operand is omitted and assumed to be ‘0’.

Other registers altered: 

• MSR

L= ‘0’ The result of ORing bits [0] and [1] of register rS is placed into MSR[0]. The result of ORing bits [59] 
and [49] of register rS is placed into MSR[59]. Bits [1-2, 4-47, 49, 50, 52-57, 60-63] of register rS 
are placed into the corresponding bits of the MSR. The remaining bits of the MSR are unchanged. 

L= ’1’ Bits [48, 62] of rS are placed into the corresponding bits of the MSR. The remaining bits of the MSR 
are unchanged.

0 5 6 10 11 14 15 16 20 21 30 31

Reserved

L 0 0 0 0 0 178 031 S 0 0 0 0 
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mtocrf mtocrf 
Move to One Condition Register Field (x’7C20 0120’)

mtocrf CRM,rS

count ← 0
do i = 0 to 7 
if CRMi = 1 then
n ← i
count ← count + 1

if count = 1 then CR[4×n to 4×n+3] ← rS[32+4×n to 32+4×n+3]
else CR ← undefined

If exactly one bit of the CRM field is set to 1, let n be the position of that bit in the field (0 ≤ n ≤ 7). The 
contents of bits [32+4×n to 32+4×n + 3] of register rS are placed into CR field n (CR bits [4×n to 4×n+3]). 
Otherwise, the contents of the Condition Register are undefined.

Note:  This form of the mtocrf instruction is intended to replace the old form of the instruction (mtcrf) which 
will eventually be phased out of the architecture. The new form is backward compatible with most processors 
that comply with versions of the architecture prior to Version 2.01. On those processors, the new form is 
treated as the old form. However, on some processors that comply with versions of the architecture that pre-
cede Version 2.01 the new form of mtocrf may cause the system illegal instruction error handler to be 
invoked.

Other registers altered:

• CR fields selected by CRM

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 1
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mtspr mtspr
Move to Special-Purpose Register (x’7C00 03A6’)

mtspr SPR,rS

n  ←   spr[5-9] || spr[0-4]
if length (SPR(n)) = 64 then
SPR(n) ←  (rS)

else
SPR(n) ←  rS[32-63]

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-14. 
The contents of rS are placed into the designated special-purpose register. For special-purpose registers that 
are 32 bits long, the low-order 32 bits of rS are placed into the SPR. 

If the SPR field contains any value other than one of the values shown in Table 8-14, and the processor is 
operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system supervisor instruction error handler is invoked.

• The results are boundedly undefined.

Other registers altered: See Table 8-14.

Simplified mnemonics:

mtxer rD equivalent to mtspr 1,rD
mtlr rD equivalent to mtspr 8,rD
mtctr rD equivalent to mtspr 9,rD

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as shown in Table 8-15. 
The contents of rS are placed into the designated special-purpose register. For special-purpose registers that 
are 32 bits long, the low-order 32 bits of rS are placed into the SPR.

Table 8-14. PowerPC UISA SPR Encodings for mtspr   

 SPR1

Register Name
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

Note:  

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

*Note: This is a split field.
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For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers; setting one leaves the other 
unaltered.

The value of SPR[0] = ’1’ if and only if writing the register is a supervisor-level operation. Execution of this 
instruction specifying a defined and supervisor-level register when MSR[PR] = ’1’ results in a privileged 
instruction type program exception.

If MSR[PR] = ’1’ then the only effect of executing an instruction with an SPR number that is not shown in 
Table 8-15 and has SPR[0] = ’1’ is to cause a privileged instruction type program exception or an illegal 
instruction type program exception. For all other cases, MSR[PR] = ‘0’ or SPR[0] = ‘0’, if the SPR field 
contains any value that is not shown in Table 8-15, either an illegal instruction type program exception occurs 
or the results are boundedly undefined.

Other registers altered: See Table 8-15.

Table 8-15. PowerPC OEA SPR Encodings for mtspr   

SPR
(1)

Register Name Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

280 01000 11000 ASR2 Supervisor

282 01000 11010 EAR Supervisor

284 01000 11100 TBL Supervisor

285 01000 11101 TBU Supervisor

1013 11111 10101 DABR Supervisor

Notes:  

1. The order of the two 5-bit halves of the SPR number is reversed. For mtspr and mfspr instructions, the SPR number coded in 
assembly language does not appear directly as a 10-bit binary number in the instruction. The number coded is split into two 5-bit 
halves that are reversed in the instruction, with the high-order five bits appearing in bits [16–20] of the instruction and the low-order 
five bits in bits [11–15].

2. 64-bit implementations only.
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mtsr mtsr
Move to Segment Register (x’7C00 01A4’)

mtsr SR,rS

This is a supervisor-level instruction. 

Note:  MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

The SLB entry specified by SR is loaded from register rS, as follows.

Other registers altered:

• None

SLBE Bit(s) Set to SLB Field(s)

0-31 0x0000 0000 ESID[0-31]

32-35 SR ESID[32-35]

3 ‘1’ V

37-61 0x00_0000 || 0b0 VSID[0-24]

62-88 rS[37-63] VSID[25-51]

89-91 rS[33-35] KS KP N

92 rS[36] L (rS[36] must be ‘0’)

93 ‘0’ C

0 5 6 10 11 12 15 16 20 21 30 31

Reserved

0 0 0 0 0 210 031 S 0 SR
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mtsrin mtsrin
 Move to Segment Register Indirect (x’7C00 01E4’)

mtsrin rS,rB

This is a supervisor-level instruction. 

Note:  MSR[SF] must be '0' when this instruction is executed. Otherwise, the results are boundedly unde-
fined.

The SLB entry specified by rB[32-35] is loaded from register rS, as follows.

Other registers altered:

• None

SLBE Bit(s) Set to SLB Field(s)

0-31 0x0000 0000 ESID[0-31]

32-35 SR ESID[32-35]

3 ‘1’ V

37-61 0x00_0000 || 0b0 VSID[0-24]

62-88 rS[37-63] VSID[25-51]

89-91 rS[33-35] KS KP N

92 rS[36] L (rS[36] must be ‘0’)

93 ‘0’ C

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 242 031 S 0 0 0 0 0
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mulhdx mulhdx
Multiply High Doubleword (x’7C00 0092’)

mulhd rD,rA,rB (Rc = ’0’)
mulhd. rD,rA,rB (Rc = ’1’)

prod[0-127] ←  (rA) × (rB)
rD ←  prod[0-63]

The 64-bit operands are (rA) and (rB). The high-order 64 bits of the 128-bit product of the operands are 
placed into rD.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if rB contains the operand having the smaller 
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note:  The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 64-bit 
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 73 Rc
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mulhdux mulhdux
Multiply High Doubleword Unsigned (x’7C00 0012’)

mulhdu rD,rA,rB (Rc = ’0’)
mulhdu. rD,rA,rB (Rc = ’1’)

prod[0-127] ←  (rA) × (rB)
rD ←  prod[0-63]

The 64-bit operands are (rA) and (rB). The high-order 64 bits of the 128-bit product of the operands are 
placed into rD.

Both the operands and the product are interpreted as unsigned integers, except that if Rc = ’1’ the first three 
bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations if rB contains the operand having the smaller 
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note:  The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 64-bit 
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 9 Rc
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mulhwx mulhwx 
Multiply High Word (x’7C00 0096’)

mulhw rD,rA,rB (Rc = ’0’)
mulhw. rD,rA,rB (Rc = ’1’)

prod[0-63] ←  rA[32-63] × rB[32-63]
rD[32-63] ←  prod[0-31]
rD[0-31] ←  undefined

The 64-bit product is formed from the contents of the low-order 32 bits of rA and rB. The high-order 32 bits of 
the 64-bit product of the operands are placed into the low-order 32 bits of rD. The high-order 32 bits of rD are 
undefined.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if rB contains the operand having the smaller 
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ’1’ and 64-bit mode)

Note:  The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 32-bit 
result.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 75 Rc
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mulhwux mulhwux 
Multiply High Word Unsigned (x’7C00 0016’)

mulhwu rD,rA,rB (Rc = ’0’)
mulhwu. rD,rA,rB (Rc = ’1’)

prod[0-63] ←  rA[32-63] × rB[32-63]
rD[32-63] ←  prod[0-31]
rD[0-31] ←  undefined

The 32-bit operands are the contents of the low-order 32 bits of rA and rB. The high-order 32 bits of the 64-bit 
product of the operands are placed into the low-order 32 bits of rD. The high-order 32 bits of rD are unde-
fined.

Both the operands and the product are interpreted as unsigned integers, except that if Rc = ’1’ the first three 
bits of CR0 field are set by signed comparison of the result to zero.

This instruction may execute faster on some implementations if rB contains the operand having the smaller 
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
LT, GT, EQ undefined (if Rc = ‘1’ and 64-bit mode)

Note:  The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 32-bit 
result.

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 11 Rc
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mulldx mulldx
Multiply Low Doubleword (x’7C00 01D2’)

mulld rD,rA,rB (OE = ’0’ Rc = ’0’)
mulld. rD,rA,rB (OE = ’0’ Rc = ’1’)
mulldo rD,rA,rB (OE = ’1’ Rc = ’0’)
mulldo. rD,rA,rB (OE = ’1’ Rc = ’1’)

prod[0-127] ←  (rA) × (rB)
rD ←  prod[64-127]

The 64-bit operands are the contents of rA and rB. The low-order 64 bits of the 128-bit product of the oper-
ands are placed into rD.

Both the operands and the product are interpreted as signed integers. The low-order 64 bits of the product 
are independent of whether the operands are regarded as signed or unsigned 64-bit integers. If OE = ’1’, then 
OV is set if the product cannot be represented in 64 bits.

This instruction may execute faster on some implementations if rB contains the operand having the smaller 
absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note:  CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER:
Affected: SO, OV (if OE = ’1’)

Note:  The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit 
result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 233 Rc
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mulli mulli
Multiply Low Immediate (x’1C00 0000’)

mulli rD,rA,SIMM

prod[0-127] ← (rA) × EXTS(SIMM)
rD ← prod[64-127]

The 64-bit first operand is (rA). The 64-bit second operand is the sign-extended value of the SIMM field. The 
low-order 64-bits of the 128-bit product of the operands are placed into rD.

Both the operands and the product are interpreted as signed integers. The low-order 64 bits of the product 
are calculated independently of whether the operands are treated as signed or unsigned 64-bit integers.

This instruction can be used with mulhdx or mulhwx to calculate a full 128-bit product.

Other registers altered:

• None

0 5 6 10 11 15 16 31

SIMM07 D A
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mullwx mullwx 
Multiply Low Word (x’7C00 01D6’)

mullw rD,rA,rB (OE = ’0’ Rc = ’0’)
mullw. rD,rA,rB (OE = ’0’ Rc = ’1’)
mullwo rD,rA,rB (OE = ’1’ Rc = ’0’) 
mullwo. rD,rA,rB (OE = ’1’ Rc = ’1’) 

rD ←  rA[32-63] × rB[32-63]

The 32-bit operands are the contents of the low-order 32 bits of rA and rB. The low-order 32 bits of the 64-bit 
product (rA) × (rB) are placed into rD.

If [OE] = ’1’, then [OV] is set if the product cannot be represented in 32 bits. Both the operands and the 
product are interpreted as signed integers.

This instruction can be used with mulhwx to calculate a full 64-bit product.

Note:  This instruction may execute faster on some implementations if rB contains the operand having the 
smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Note:  CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

• XER:
Affected: SO, OV (if OE = ’1’)

Note:  The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 235 Rc
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nandx nandx 
NAND (x’7C00 03B8’)

nand rA,rS,rB (Rc = ’0’)
nand. rA,rS,rB (Rc = ’1’)

rA ←  ¬ ((rS) & (rB))

The contents of rS are ANDed with the contents of rB and the complemented result is placed into rA.

A nand with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 476 Rc
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negx negx 
Negate (x’7C00 00D0’)

neg rD,rA (OE = ‘0’ Rc = ‘0’)
neg. rD,rA (OE = ‘0’ Rc = ’1’)
nego rD,rA (OE = ’1’ Rc = ‘0’)
nego.  rD,rA (OE = ’1’ Rc = ’1’)

rD ←  ¬ (rA) + 1

The value ’1’ is added to the complement of the value in rA, and the resulting two’s complement is placed into 
rD.

If executing in the default 64-bit mode and rA contains the most negative 64-bit number 
(0x8000_0000_0000_0000), the result is the most negative number and, if OE = ’1’, OV is set. Similarly, if 
executing in 32-bit mode of a 64-bit implementation and the low-order 32 bits of rA contains the most nega-
tive 32-bit number (0x8000_0000), then the low-order 32 bits of the result contain the most negative 32-bit 
number and, if OE = ’1’, OV is set.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO OV (if OE = ’1’)

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A 0 0 0 0 0 OE 104 Rc
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norx norx
NOR (x’7C00 00F8’)

nor rA,rS,rB (Rc = ’0’)
nor. rA,rS,rB (Rc = ’1’)

rA ←  ¬ ((rS) | (rB))

The contents of rS are ORed with the contents of rB and the complemented result is placed into rA.

A nor with rS = rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

not rD,rS equivalent to nor rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

31 S A B 124 Rc
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orx orx 
OR (x’7C00 0378’)

or rA,rS,rB (Rc = ’0’)
or. rA,rS,rB (Rc = ’1’)

rA ←  (rS) | (rB)

The contents of rS are ORed with the contents of rB and the result is placed into rA.

The simplified mnemonic mr (shown below) demonstrates the use of the or instruction to move register 
contents.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

mr rA,rS equivalent to or rA,rS,rS

0 5 6 10 11 15 16 20 21 30 31

31 S A B 444 Rc
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orcx orcx 
OR with Complement (x’7C00 0338’)

orc rA,rS,rB (Rc = ‘0’) 
orc. rA,rS,rB (Rc = ’1’)

rA ←  (rS) | ¬ (rB)

The contents of rS are ORed with the complement of the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 412 Rc
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ori ori 
OR Immediate (x’6000 0000’)

ori rA,rS,UIMM

rA ←  (rS) | ((48)0 || UIMM)

The contents of rS are ORed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

The preferred no-op (an instruction that does nothing) is ori 0,0,0.

Other registers altered:

• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

0 5 6 10 11 15 16 31

24 S A UIMM
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oris oris
OR Immediate Shifted (x’6400 0000’)

oris rA,rS,UIMM

rA ←  (rS) | ((32)0 || UIMM || (16)0)

The contents of rS are ORed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

25 S A UIMM
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rfid rfid
Return from Interrupt Doubleword (x’4C00 0024’)

MSR[0] ← SRR1[0] | SRR1[1]
MSR[58] ← SRR1[58] | SRR1[49] 
MSR59] ← SRR1[59] | SRR1[49]
MSR[1-2,4-32,37-41,49-50,52-57,60-63] ← SRR1[1-2,4-32,37-41,49-50,52-57,60-63] 
NIA ← iea SRR0[0-61] || ’00’

Bit [0] of SRR1 is placed into MSR[0]. If MSR[3] = ’1’ then bits [3,51] of SRR1 are placed into the corre-
sponding bits of the MSR. The result of ORing bits [58] and [49] of SRR1 is placed into MSR[58]. The result of 
ORing bits [59] and [49] of SRR1 is placed into MSR[59]. Bits [1-2, 4-32, 37-41, 48-50, 52-57, and 60-63] of 
SRR1 are placed into the corresponding bits of the MSR.

If the new MSR value does not enable any pending exceptions, then the next instruction is fetched, under 
control of the new MSR value, from the address SRR0[0–61] || ’00’ (when MSR[SF] = ’1’) or 0x0000_0000 || 
SRR0[32–61] || ’00’ (when MSR[SF] = ’0’). If the new MSR value enables one or more pending exceptions, 
the exception associated with the highest priority pending exception is generated; in this case the value 
placed into SRR0 by the exception processing mechanism is the address of the instruction that would have 
been executed next had the exception not occurred. 

Note:  An implementation may define additional MSR bits, and in this case, may also cause them to be saved 
to SRR1 from MSR on an exception and restored to MSR from SRR1 on an rfid. 

This is a supervisor-level, context synchronizing instruction.

Other registers altered:

• MSR

Reserved

0 5 6 10 11 15 16 20 21 30 31

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0
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rldclx rldclx
Rotate Left Doubleword then Clear Left (x’7800 0010’)

rldcl rA,rS,rB,MB (Rc = ’0’)
rldcl. rA,rS,rB,MB (Rc = ’1’)

n ←  rB[58-63]
r ←  ROTL[64](rS, n)
b ←  mb[5] || mb[0-4]
m ←  MASK(b, 63)
rA ←  r & m

The contents of rS are rotated left the number of bits specified by operand in the low-order six bits of rB. A 
mask is generated having ’1’ bits from bit [MB] through bit [63] and ‘0’ bits elsewhere. The rotated data is 
ANDed with the generated mask and the result is placed into rA.

Note that the rldcl instruction can be used to extract and rotate bit fields using the methods shown below: 

• To extract an n-bit field, that starts at variable bit position b in register rS, right-justified into rA (clearing 
the remaining 64 – n bits of rA), set the low-order six bits of rB to b + n and MB = 64 – n. 

• To rotate the contents of a register left by variable n bits, set the low-order six bits of rB to n and MB = ’0’, 
and to shift the contents of a register right, set the low-order six bits of rB to(64 – n), and MB = ’0’.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

rotld rA,rS,rB equivalent to rldcl rA,rS,rB,0

0 5 6 10 11 15 16 20 21 26 27 30 31

30 S A B mb* 8 Rc

*Note: This is a split field.
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rldcrx rldcrx
Rotate Left Doubleword then Clear Right (x’7800 0012’)

rldcr rA,rS,rB,ME (Rc = ’0’)
rldcr. rA,rS,rB,ME (Rc = ’1’)

n ←  rB[58-63]
r ←  ROTL[64](rS, n)
e ←  me[5] || me[0-4]
m ←  MASK(0, e)
rA ←  r & m

The contents of rS are rotated left the number of bits specified by the low-order six bits of rB. A mask is 
generated having ’1’ bits from bit [0] through bit [ME] and 0 bits elsewhere. The rotated data is ANDed with 
the generated mask and the result is placed into rA.

Note that rldcr can be used to extract and rotate bit fields using the methods shown below:

• To extract an n-bit field, that starts at variable bit position b in register rS, left-justified into rA (clearing the 
remaining 64 – n bits of rA), set the low-order six bits of rB to b and ME = n – 1. 

• To rotate the contents of a register left by variable n bits, set the low-order six bits of rB to n and ME = 63, 
and to shift the contents of a register right, set the low-order six bits of rB to(64 – n), and ME = 63.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

For a detailed list of simplified mnemonics for the rldcr instruction, refer to Appendix E Simplified Mnemonics.

0 5 6 10 11 15 16 20 21 26 27 30 31

30 S A B me* 9 Rc

*Note: This is a split field.
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rldicx rldicx
Rotate Left Doubleword Immediate then Clear (x’7800 0008’)

rldic rA,rS,SH,MB (Rc = ’0’)
rldic. rA,rS,SH,MB (Rc = ’1’)

n ←  sh[5] || sh[0-4]
r ←  ROTL[64](rS, n)
b ←  mb[5] || mb[0-4]
m ←  MASK(b, ¬ n)
rA ←  r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’ 
bits from bit [MB] through bit [63 – SH] and 0 bits elsewhere. The rotated data is ANDed with the generated 
mask and the result is placed into rA.

The rldic can be used to clear and shift bit fields using the methods shown below: 

• To clear the high-order b bits of the contents of a register and then shift the result left by n bits, set SH = n 
and MB = b – n. 

• To clear the high-order n bits of a register, set SH = ’0’ and MB = n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

clrlsldi rA,rS,b,n equivalent to rldic rA,rS,n,b – n

For a more detailed list of simplified mnemonics for the rldic instruction, refer to Appendix E Simplified 
Mnemonics.

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* mb* 2 sh* Rc

*Note: This is a split field.
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rldiclx rldiclx
Rotate Left Doubleword Immediate then Clear Left (x’7800 0000’)

rldicl rA,rS,SH,MB (Rc = ’0’)
rldicl. rA,rS,SH,MB (Rc = ’1’)

n ←  sh[5] || sh[0-4]
r ←  ROTL[64](rS, n)
b ←  mb[5] || mb[0-4]
m ←  MASK(b, 63)
rA ←  r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’ 
bits from bit MB through bit 63 and 0 bits elsewhere. The rotated data is ANDed with the generated mask and 
the result is placed into rA.

The rldicl can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

• To extract an n-bit field, that starts at bit position b in rS, right-justified into rA (clearing the remaining 64-n 
bits of rA), set SH = b + n and MB = 64 – n. 

• To rotate the contents of a register left by n bits, set SH = n and MB = ’0’; to rotate the contents of a regis-
ter right by n bits, set SH = (64 - n), and MB = ’0’. 

• To shift the contents of a register right by n bits, set SH = 64 - n and MB = n. 

• To clear the high-order n bits of a register, set SH = ’0’ and MB = n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

extrdi rA,rS,n,b (n > 0) equivalent to rldicl rA,rS,b + n,64 – n
rotldi rA,rS,n equivalent to rldicl rA,rS,n,0
rotrdi rA,rS,n equivalent to rldicl rA,rS,64 – n,0
srdi rA,rS,n (n < 64) equivalent to rldicl rA,rS,64 – n,n 
clrldi rA,rS,n (n < 64) equivalent to rldicl rA,rS,0,n

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* mb* 0 sh* Rc

*Note: This is a split field.
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rldicrx rldicrx
Rotate Left Doubleword Immediate then Clear Right (x’7800 0004’)

rldicr rA,rS,SH,ME (Rc = ’0’)
rldicr. rA,rS,SH,ME (Rc = ’1’)

n ←  sh[5] || sh[0-4]
r ←  ROTL[64](rS, n)
e ←  me[5] || me[0-4]
m ←  MASK(0, e)
rA ←  r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’ 
bits from bit [0] through bit [ME] and ‘0’ bits elsewhere. The rotated data is ANDed with the generated mask 
and the result is placed into rA.

The rldicr can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

• To extract an n-bit field, that starts at bit position b in rS, left-justified into rA (clearing the remaining 64-n 
bits of rA), set SH = b and ME = n – 1. 

• To rotate the contents of a register left (right) by n bits, set SH = n (64 – n) and ME = 63. 

• To shift the contents of a register left by n bits, by setting SH = n and ME = 63 – n. 

• To clear the low-order n bits of a register, by setting SH = ’0’ and ME = 63 – n.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

extldi rA,rS,n,b equivalent to rldicr rA,rS,b,n – 1
sldi rA,rS,n equivalent to rldicr rA,rS,n,63 – n
clrrdi rA,rS,n equivalent to rldicr rA,rS,0,63 – n

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* me* 1 sh* Rc

*Note: This is a split field.
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rldimix rldimix
Rotate Left Doubleword Immediate then Mask Insert (x’7800 000C’)

rldimi rA,rS,SH,MB (Rc = ’0’)
rldimi. rA,rS,SH,MB (Rc = ’1’)

n ←  sh[5] || sh[0-4]
r ←  ROTL[64](rS, n)
b ←  mb[5] || mb[0-4]
m ←  MASK(b, ¬ n)
rA ←  (r & m) | (rA & ¬ m)

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ’1’ 
bits from bit MB through bit 63 – SH and 0 bits elsewhere. The rotated data is inserted into rA under control of 
the generated mask.

Note:  rldimi can be used to insert an n-bit field, that is right-justified in rS, into rA starting at bit position b, by 
setting SH = 64 – (b + n) and MB = b.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

insrdi rA,rS,n,b equivalent to rldimi rA,rS,64 – (b + n),b

For a more detailed list of simplified mnemonics for the rldimi instruction, refer to Appendix E Simplified 
Mnemonics.

0 5 6 10 11 15 16 20 21 26 27 29 30 31

30 S A sh* mb* 3 sh* Rc

*Note: This is a split field.
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rlwimix rlwimix 
Rotate Left Word Immediate then Mask Insert (x’5000 0000’)

rlwimi  rA,rS,SH,MB,ME (Rc = ’0’)
rlwimi.  rA,rS,SH,MB,ME (Rc = ’1’)

n ←  SH
r ←  ROTL[32](rS[32-63], n)
m ←  MASK(MB + 32, ME + 32)
rA ←  (r & m) | (rA & ¬ m)

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated having ‘1’ 
bits from bit [MB + 32] through bit [ME + 32] and ‘0’ bits elsewhere. The rotated data is inserted into rA under 
control of the generated mask.

rlwimi can be used to insert a bit field into the contents of rA using the methods shown below:

• To insert an n-bit field, that is left-justified in the low-order 32 bits of rS, into the high-order 32 bits of rA 
starting at bit position b, set SH = 32 – b, MB = b, and ME = (b + n) – 1. 

• To insert an n-bit field, that is right-justified in the low-order 32 bits of rS, into the high-order 32 bits of rA 
starting at bit position b, set SH = 32 – (b + n), MB = b, and ME = (b + n) – 1.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

inslwi rA,rS,n,b equivalent to rlwimi rA,rS,32 – b,b,b + n – 1
insrwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

0 5 6 10 11 15 16 20 21 25 26 30 31

20 S A SH MB ME Rc
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rlwinmx rlwinmx 
Rotate Left Word Immediate then AND with Mask (x’5400 0000’)

rlwinm  rA,rS,SH,MB,ME (Rc = ’0’)
rlwinm.  rA,rS,SH,MB,ME (Rc = ’1’)

n ←  SH
r ←  ROTL[32](rS[32-63], n)
m ←  MASK(MB + 32, ME + 32)
rA ←  r & m

The contents of rS[32-63] are rotated left the number of bits specified by operand SH. A mask is generated 
having ‘1’ bits from bit [MB + 32] through bit [ME + 32] and ‘0’ bits elsewhere. The rotated data is ANDed with 
the generated mask and the result is placed into rA. The upper 32 bits of rA are cleared.

rlwinm can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

• To extract an n-bit field, that starts at bit position b in the high-order 32 bits of rS, right-justified into rA 
(clearing the remaining 32 – n bits of rA), set SH = b + n, MB = 32 – n, and ME = 31. 

• To extract an n-bit field, that starts at bit position b in the high-order 32 bits of rS, left-justified into rA 
(clearing the remaining 32 – n bits of rA), set SH = b, MB = ’0’, and ME = n – 1. 

• To rotate the contents of a register left (or right) by n bits, set SH = n (32 – n), MB = ’0’, and ME = 31. 

• To shift the contents of a register right by n bits, by setting SH = 32 – n, MB = n, and ME = 31. It can be 
used to clear the high-order b bits of a register and then shift the result left by n bits by setting SH = n, 
MB = b – n and ME = 31 – n. 

• To clear the low-order n bits of a register, by setting SH = ’0’, MB = ’0’, and ME = 31 – n. 

For all uses mentioned, the high-order 32 bits of rA are cleared.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics:

extlwi rA,rS,n,b (n > 0)  equivalent to rlwinm rA,rS,b,0,n – 1
extrwi rA,rS,n,b (n > 0)  equivalent to rlwinm rA,rS,b + n,32 – n,31
rotlwi rA,rS,n  equivalent to rlwinm rA,rS,n,0,31
rotrwi rA,rS,n  equivalent to rlwinm rA,rS,32 – n,0,31
slwi rA,rS,n (n < 32)  equivalent to rlwinm rA,rS,n,0,31–n
srwi rA,rS,n (n < 32)  equivalent to rlwinm rA,rS,32 – n,n,31 
clrlwi rA,rS,n (n < 32)  equivalent to rlwinm rA,rS,0,n,31
clrrwi rA,rS,n (n < 32)  equivalent to rlwinm rA,rS,0,0,31 – n
clrlslwi rA,rS,b,n (n ≤ b < 32)  equivalent to rlwinm rA,rS,n,b – n,31 – n

0 5 6 10 11 15 16 20 21 25 26 30 31

21 S A SH MB ME Rc
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rlwnmx rlwnmx 
Rotate Left Word then AND with Mask (x’5C00 0000’)

rlwnm  rA,rS,rB,MB,ME  (Rc = ’0’)
rlwnm. rA,rS,rB,MB,ME (Rc = ’1’)

n ←  rB[59-63]
r ←  ROTL[32](rS[32-63], n)
m ←  MASK(MB + 32, ME + 32)
rA ←  r & m

The contents of rS are rotated left the number of bits specified by the low-order five bits of rB. A mask is 
generated having ‘1’ bits from bit [MB + 32] through bit [ME + 32] and ‘0’ bits elsewhere. The rotated data is 
ANDed with the generated mask and the result is placed into rA.

rlwnm can be used to extract and rotate bit fields using the methods shown as follows:

• To extract an n-bit field, that starts at variable bit position b in the high-order 32 bits of rS, right-justified 
into rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of rB to b + n, 
MB = 32 – n, and ME = 31. 

• To extract an n-bit field, that starts at variable bit position b in the high-order 32 bits of rS, left-justified into 
rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of rB to b, MB = ’0’, and 
ME = n – 1. 

• To rotate the contents of a register left (or right) by n bits, by setting the low-order five bits of rB to n 
(32-n), MB = ’0’, and ME = 31. 

For all uses mentioned, the high-order 32 bits of rA are cleared.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

Simplified mnemonics: 

rotlw rA,rS,rB equivalent to rlwnm rA,rS,rB,0,31

0 5 6 10 11 15 16 20 21 25 26 30 31

23 S A B MB ME Rc
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sc sc
System Call (x’4400 0002’)

In the PowerPC UISA, the sc instruction calls the operating system to perform a service. When control is 
returned to the program that executed the system call, the content of the registers depends on the register 
conventions used by the program providing the system service.

This instruction is context synchronizing, as described in Section 4.1.5.1 Context Synchronizing Instructions. 

Other registers altered:

• Dependent on the system service

In PowerPC OEA, the sc instruction does the following:
SRR0 ← iea CIA + 4
SRR1[33-36,42-47] ← 0
SRR1[0] ← MSR[0]
MSR ←  new_value (see below)
NIA ← 0x0000 _0000_0000_0C00

The EA of the instruction following the sc instruction is placed into SRR0. Bits [0-32, 37-41, 48-63] of the 
MSR are placed into the corresponding bits of SRR1, and bits [33–36 and 42–47]of SRR1 are set to zero. 

Note:  An implementation may define additional MSR bits, and in this case, may also cause them to be saved 
to SRR1 from MSR on an exception and restored to MSR from SRR1 on an rfid.

Then a system call exception is generated. The exception causes the MSR to be altered as described in 
Section 6.4 Exception Definitions. 

The exception causes the next instruction to be fetched from interrupt vector 0x00C00. 

Note:  sc serves as both a basic and an extended mnemonic. The Assembler recognizes an sc mnemonic 
with one operand as the basic form, and an sc mnemonic with no operand as the extended form.

Other registers altered:

• SRR0
• SRR1
• MSR

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Reserved

0 5 6 10 11 15 16 29 30 31

17 0 0 0 0 0 0 0 0 0 0



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005  
 

Page 479 of 657

slbia slbia
SLB Invalidate All (x’7C00 03E4’)

for each SLB entry except SLB entry 0 SLBE[V] ← 0
all other fields of SLBE ← undefined

For all SLB entries except SLB entry 0, the [V] bit in the entry is set to 0, making the entry invalid, and the 
remaining fields of the entry are set to undefined values. SLB entry 0 is not altered.

Note:  If slbia is executed when instruction address translation is enabled (MSR[IR]= ’1’), software can 
ensure that attempting to fetch the instruction following the slbia does not cause an Instruction Segment 
interrupt by placing the slbia and the subsequent instruction in the effective segment mapped by SLB entry 0. 
(This assumes that no other interrupts occur between executing the slbia and executing the subsequent 
instruction.)

This instruction is supervisor-level.

It is not necessary that the ASR point to a valid segment table when issuing slbia. 

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0
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slbie slbie
SLB Invalidate Entry (x’7C00 0364’)

slbie  rB

esid ← (rB)0:35
class ← (rB)36
if class = SLBE[C] for SLB entry that translates
 or most recently translated esid

then for SLB entry (if any) that translates esid
 SLBE[V] ← 0
 all other fields of SLBE ← undefined

else translation of esid ← undefined

Let the Effective Segment ID (ESID) be rB[0-35]. Let the class be rB[36]. The class value must be the same 
as the class value in the SLB entry that translates the ESID, or the class value that was in the SLB entry that 
most recently translated the ESID if the translation is no longer in the SLB. If the class value is not the same, 
the results of translating effective addresses for which EA[0-35] = ESID are undefined, and the next para-
graph need not apply.

If the SLB contains an entry that translates the specified ESID, the [V] bit in that entry is set to ‘0’, making the 
entry invalid, and the remaining fields of the entry are set to undefined values.

rB[37-63] must be zeroes.

If this instruction is executed in 32-bit mode, rB[0-31] must be zeros (i.e., the ESID must be in the range 
[0-15]).

This instruction is supervisor-level. 

Note:  If the optional “Bridge” facility is implemented, the Move To Segment Register instructions create SLB 
entries in which the class value is ‘0’. 

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 434 0
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slbmfee slbmfee
SLB Move From Entry ESID (x’7C00 0726’) 

slbmfee  rD, rB

If the SLB entry specified by bits [52-63] of register rB is valid (V= ’1’), the contents of the ESID and V fields of 
the entry are placed into register rD.

rD[0-35] ESID

rD[36] V

rD[37-63] must be 0b000|| 0x00_0000

rB[0-51] must be 0x0_0000_0000_0000

rB[52-6]3 index, which selects the SLB entry

If the SLB entry specified by bits [52-63] of register rB is invalid (V= ’0’), rD[36] is set to 0 and the contents of 
rD[0-35] and rD[37-63] are undefined. The high-order bits of rB[52-63] that correspond to SLB entries beyond 
the size of the SLB provided by the implementation must be zeros. 

This instruction is supervisor-level. 

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D 0 0 0 0 0 B 915 0

rD Reserved

ESID V 0s

0 35 36 37 63

rB

0s Index

0 52 6351
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slbmfev slbmfev
SLB Move From Entry VSID (x’7C00 06A6’) 

slbmfev  rD, rB

If the SLB entry specified by bits [52-63] of register rB is valid (V= ’1’), the contents of the VSID, KS, KP, N, L, 
and C fields of the entry are placed into register rD.

rD[0-51] VSID
rD[52] Ks
rD[53] KP
rD[54] N
rD[55] L
rD[56] C
rD[57-63] must be 0b000_0000
rB[0-51] must be 0x0_0000_0000_0000
rB[52-63] index, which selects the SLB entry

On implementations that support a virtual address size of only n bits, n< 80, rD[0 to 79- n] are set to zeros. If 
the SLB entry specified by bits [52-63] of register rB is invalid (V= ’0’), the contents of register rD are unde-
fined. The high-order bits of rB[52-63] that correspond to SLB entries beyond the size of the SLB provided by 
the implementation must be zeros. 

This is a supervisor-level instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D 0 0 0 0 0 B 851 0

0 52 56 57 63

rD Reserved

VSID K5 Kp N L C 0s

0 51 52 63

rB

0s Index
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slbmte slbmte
SLB Move To Entry (x’7C00 0324’)

slbmte  rS, rB

The SLB entry specified by bits [52-63] of register rB is loaded from register rS and from the remainder of 
register rB. 

rS[0-51] VSID
rS[52]Ks
rS[53] Kp
rS[54] N
rS[55]L
rS[56] C
rS[57-63] must be 0b000_0000
rB[0-35] ESID
rB[36] V
rB[37-5]1 must be 0b000 || 0x000
rB[52-63] index, which selects the SLB entry

On implementations that support a virtual address size of only n bits, n< 80, rS[0 to 79- n] must be zeros. The 
high-order bits of rB[52-63] that correspond to SLB entries beyond the size of the SLB provided by the imple-
mentation must be zeros. If this instruction is executed in 32-bit mode, rB[0-31] must be zeros (i.e., the ESID 
must be in the range 0-15). This instruction cannot be used to invalidate an SLB. This is a supervisor-level 
instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S 0 0 0 0 0 B 402 0

0 51 52 56 63

rS Reserved

VSID K5KpNLC 0s

0 35 36  37 51 52 63

rB

ESID V 0s Index

Reserved
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sldx sldx
Shift Left Doubleword (x’7C00 0036’)

sld rA,rS,rB (Rc = ’0’)
sld. rA,rS,rB (Rc = ’1’)

n ←  rB[58-63]
r ←  ROTL[64](rS, n)
if rB[57] = 0 then
m ←  MASK(0, 63 - n)

else m ←  (64)0
rA ←  r & m

The contents of rS are shifted left the number of bits specified by the low-order seven bits of rB. Bits shifted 
out of position 0 are lost. Zeros are supplied to the vacated positions on the right. The result is placed into rA. 
Shift amounts from 64 to 127 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 27 Rc
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slwx slwx 
Shift Left Word (x’7C00 0030’)

slw rA,rS,rB (Rc = ’0’)
slw. rA,rS,rB (Rc = ’1’) 

n ←  rB[59-63]
r ←  ROTL[32](rS[32–63], n)
if rB[58] = 0 then
m ←  MASK(32, 63 – n)
else m ←  (64)0
rA ←  r & m

The contents of the low-order 32 bits of rS are shifted left the number of bits specified by the low-order six bits 
of rB. Bits shifted out of position 32 are lost. Zeros are supplied to the vacated positions on the right. The 
32-bit result is placed into the low-order 32 bits of rA. The high-order 32 bits of rA are cleared. Shift amounts 
from 32 to 63 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 24 Rc
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sradx sradx
Shift Right Algebraic Doubleword (x’7C00 0634’)

srad rA,rS,rB (Rc = ’0’)
srad. rA,rS,rB (Rc = ’1’)

n ←  rB[58-63]
r ←  ROTL[64](rS, 64 - n)
if rB[57] = 0 then
m ←  MASK(n, 63)

else m ←  (64)0
S ←  rS[0]
rA ←  (r & m) | (((64)S) & ¬ m)
XER[CA] ←  S & ((r & ¬ m) ¦ 0)

The contents of rS are shifted right the number of bits specified by the low-order seven bits of rB. Bits shifted 
out of position 63 are lost. Bit [0] of rS is replicated to fill the vacated positions on the left. The result is placed 
into rA. XER[CA] is set if rS is negative and any ‘1’ bits are shifted out of position 63; otherwise XER[CA] is 
cleared. A shift amount of zero causes rA to be set equal to rS, and XER[CA] to be cleared. Shift amounts 
from 64 to 127 give a result of 64 sign bits in rA, and cause XER[CA] to receive the sign bit of rS.

Note:  The srad instruction, followed by addze, can by used to divide quickly by 2n. The setting of the CA bit, 
by srad, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A B 794 Rc
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sradix  sradix
Shift Right Algebraic Doubleword Immediate (x’7C00 0674’)

sradi rA,rS,SH (Rc = ’0’)
sradi. rA,rS,SH (Rc = ’1’)

n  ←  sh[5] || sh[0-4]
r ←  ROTL[64](rS, 64 - n)
m ←  MASK(n, 63)
S ←  rS[0]
rA ←  (r & m) | (((64)S) & ¬ m)
XER[CA] ←  S & ((r & ¬ m) ≠ 0)

The contents of rS are shifted right SH bits. Bits shifted out of position 63 are lost. Bit 0 of rS is replicated to 
fill the vacated positions on the left. The result is placed into rA. XER[CA] is set if rS is negative and any ‘1’ 
bits are shifted out of position 63; otherwise XER[CA] is cleared. A shift amount of zero causes rA to be set 
equal to rS, and XER[CA] to be cleared. 

Note:  The sradi instruction, followed by addze, can by used to divide quickly by 2n. The setting of the 
XER[CA] bit, by sradi, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A sh* 413 sh* Rc

*Note: This is a split field.
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srawx srawx 
Shift Right Algebraic Word (x’7C00 0630’)

sraw rA,rS,rB (Rc = ’0’)
sraw. rA,rS,rB (Rc = ’1’) 

n ←  rB[59-63]
r ←  ROTL[32](rS[32–63], 64 – n)
if rB[58] = 0 then
m ←  MASK(n + 32, 63)
else m ←  (64)0
S ←  rS[32]
rA ←  r & m | (64)S & ¬ m
XER[CA] ←  S & (r & ¬ m[32-63] ≠ 0

The contents of the low-order 32 bits of rS are shifted right the number of bits specified by the low-order six 
bits of rB. Bits shifted out of position 63 are lost. Bit [32] of rS is replicated to fill the vacated positions on the 
left. The 32-bit result is placed into the low-order 32 bits of rA. Bit [32] of rS is replicated to fill the high-order 
32 bits of rA. XER[CA] is set if the low-order 32 bits of rS contain a negative number and any ‘1’ bits are 
shifted out of position 63; otherwise XER[CA] is cleared. A shift amount of zero causes rA to receive the sign-
extended value of the low-order 32 bits of rS, and XER[CA] to be cleared. Shift amounts from 32 to 63 give a 
result of 64 sign bits, and cause XER[CA] to receive the sign bit of the low-order 32 bits of rS. 

Note:  The sraw instruction, followed by addze, can by used to divide quickly by 2n. The setting of the 
XER[CA] bit, by sraw, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A B 792 Rc
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srawix srawix 
Shift Right Algebraic Word Immediate (x’7C00 0670’)

srawi rA,rS,SH (Rc = ’0’) 
srawi. rA,rS,SH (Rc = ’1’) 

n ←  SH
r ←  ROTL[32](rS[32-63], 64 - n)
m←  MASK(n + 32, 63)
S ←  rS[32]
rA ←  r & m | (64)S & ¬ m
XER[CA] ←  S & ((r & ¬ m)[32-63] ≠ 0)

The contents of the low-order 32 bits of rS are shifted right SH bits. Bits shifted out of position 63 are lost. 
Bit [32] of rS is replicated to fill the vacated positions on the left. The 32-bit result is placed into the low-order 
32 bits of rA. Bit [32] of rS is replicated to fill the high-order 32 bits of rA. XER[CA] is set if the low-order 32 
bits of rS contain a negative number and any ‘1’ bits are shifted out of position 63; otherwise XER[CA] is 
cleared. A shift amount of zero causes rA to receive the sign-extended value of the low-order 32 bits of rS, 
and XER[CA] to be cleared.

Note:  The srawi instruction, followed by addze, can be used to divide quickly by 2n. The setting of the CA 
bit, by srawi, is independent of mode.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO  (if Rc = ’1’)

• XER:
Affected: CA

0 5 6 10 11 15 16 20 21 30 31
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srdx srdx
Shift Right Doubleword (x’7C00 0436’)

srd rA,rS,rB (Rc = ’0’)
srd. rA,rS,rB (Rc = ’1’)

n ←  rB[58-63]
r ←  ROTL[64](rS, 64 - n)
if rB[57] = 0 then
m ←  MASK(n, 63)

else m ←  (64)0
rA ←  r & m

The contents of rS are shifted right the number of bits specified by the low-order seven bits of rB. Bits shifted 
out of position 63 are lost. Zeros are supplied to the vacated positions on the left. The result is placed into rA. 
Shift amounts from 64 to 127 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 539 Rc
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srwx srwx 
Shift Right Word (x’7C00 0430’)

srw rA,rS,rB (Rc = ’0’)
srw. rA,rS,rB (Rc = ’1’) 

n ← rB[58-63]
r ← ROTL[32](rS[32-63], 64 - n)
if rB[58] = 0 then
m ← MASK(n + 32, 63)

else m ← (64)0
rA ← r & m

The contents of the low-order 32 bits of rS are shifted right the number of bits specified by the low-order six 
bits of rB. Bits shifted out of position 63 are lost. Zeros are supplied to the vacated positions on the left. The 
32-bit result is placed into the low-order 32 bits of rA. The high-order 32 bits of rA are cleared. Shift amounts 
from 32 to 63 give a zero result.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 536 Rc
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stb stb
Store Byte (x’9800 0000’)

stb rS,d(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(d)
MEM(EA, 1) ←  rS[56-63]

The effective address is the sum (rA|0) + d. The contents of the low-order eight bits of rS are stored into the 
byte in memory addressed by EA. 

Other registers altered:

• None

0 5 6 10 11 15 16 31
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stbu stbu
Store Byte with Update (x’9C00 0000’)

stbu rS,d(rA)

EA ← (rA) + EXTS(d)
MEM(EA, 1) ← rS[56–63]
rA ← EA

The effective address is the sum (rA) + d. The contents of the low-order eight bits of rS are stored into the 
byte in memory addressed by EA.

EA is placed into rA. 

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31
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stbux stbux
Store Byte with Update Indexed (x’7C00 01EE’)

stbux rS,rA,rB

EA ←  (rA) + (rB)
MEM(EA, 1) ←  rS[56-63]
rA ←  EA

EA is the sum (rA) + (rB). The contents of the low-order eight bits of rS are stored into the byte in memory 
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 21 22 30 31
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stbx stbx
Store Byte Indexed (x’7C00 01AE’)

stbx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
MEM(EA, 1) ←  rS[56-63]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into the byte in memory 
addressed by EA. 

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 215 0



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Page 496 of 657
pem8b.fm.3.0
July 15, 2005

std std
Store Doubleword (x’F800 0000’)

std rS,ds(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(ds || ’00’)
(MEM(EA, 8)) ←  (rS)

EA is the sum (rA|0) + (ds || ’00’). The contents of rS are stored into the doubleword in memory addressed by 
EA.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31

62 S A  ds 0 0
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stdcx. stdcx.
Store Doubleword Conditional Indexed (x’7C00 01AD’)

stdcx. rS,rA,rB

if rA = 0 then b ←  0
else b ←  (rA)
EA ←  b + (rB)
if RESERVE then
if RESERVE_ADDR = physical_addr(EA)
MEM(EA, 8) ←  (rS)
CR0 ←  ‘00’ || ‘1’ || XER[SO]
else
u ←  undefined 1-bit value
if u then MEM(EA, 8) ←  (rS)
CR0 ←  ’00’ || u || XER[SO]
RESERVE ←  0

else
CR0 ←  ’00’ || ’0’ || XER[SO]

EA is the sum (rA|0) + (rB).

If a reservation exists, and the memory address specified by the stdcx. instruction is the same as that speci-
fied by the load and reserve instruction that established the reservation, the contents of rS are stored into the 
doubleword in memory addressed by EA and the reservation is cleared. 

If a reservation exists, but the memory address specified by the stdcx. instruction is not the same as that 
specified by the load and reserve instruction that established the reservation, the reservation is cleared, and it 
is undefined whether the contents of rS are stored into the doubleword in memory addressed by EA. 

If no reservation exists, the instruction completes without altering memory.

CR0 field is set to reflect whether the store operation was performed as follows.

CR0[LT GT EQ S0] = 0b00 || store_performed || XER[SO]

EA must be a multiple of eight. If it is not, either the system alignment exception handler is invoked or the 
results are boundedly undefined. For additional information about alignment and DSI exceptions, see 
Section 6.4.3 DSI Exception (0x00300).

Note:  When used correctly, the load and reserve and store conditional instructions can provide an atomic 
update function for a single aligned word (load word and reserve and store word conditional) or doubleword 
(load doubleword and reserve and store doubleword conditional) of memory.

In general, correct use requires that load word and reserve be paired with store word conditional, and load 
doubleword and reserve with store doubleword conditional, with the same memory address specified by both 
instructions of the pair. The only exception is that an unpaired store word conditional or store doubleword 

0 5 6 10 11 15 16 20 21 30 31

31 S A B 214 1
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conditional instruction to any (scratch) EA can be used to clear any reservation held by the processor. Exam-
ples of correct uses of these instructions, to emulate primitives such as fetch and add, test and set, and 
compare and swap can be found in Appendix D Synchronization Programming Examples.

A reservation is cleared if any of the following events occurs:

• The processor holding the reservation executes another load and reserve instruction; this clears the first 
reservation and establishes a new one.

• The processor holding the reservation executes a store conditional instruction to any address.

• Another processor executes any store instruction to the address associated with the reservation.

• Any mechanism, other than the processor holding the reservation, stores to the address associated with 
the reservation.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO
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stdu stdu
Store Doubleword with Update (x’F800 0001’)

stdu rS,ds(rA)

EA ←  (rA) + EXTS(ds || ’00’)
(MEM(EA, 8)) ←  (rS)
rA ←  EA

EA is the sum (rA) + (ds || ’00’). The contents of rS are stored into the doubleword in memory addressed by 
EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 29 30 31
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stdux stdux
Store Doubleword with Update Indexed (x’7C00 016A’)

stdux rS,rA,rB

EA ←  (rA) + (rB)
MEM(EA, 8) ←  (rS)
rA ←  EA

EA is the sum (rA) + (rB). The contents of rS are stored into the doubleword in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 181 0
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stdx stdx
Store Doubleword Indexed (x’7C00 012A’)

stdx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
(MEM(EA, 8)) ←  (rS)

EA is the sum (rA|0) + (rB). The contents of rS are stored into the doubleword in memory addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 149 0
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stfd stfd
Store Floating-Point Double (x’D800 0000’)

stfd  frS,d(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(d)
MEM(EA, 8) ←  (frS)

EA is the sum (rA|0) + d.

The contents of register frS are stored into the doubleword in memory addressed by EA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

54 S A d
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stfdu stfdu
Store Floating-Point Double with Update (x’DC00 0000’)

stfdu  frS,d(rA)

EA ←  (rA) + EXTS(d)
MEM(EA, 8) ←  (frS)
rA ←  EA

EA is the sum (rA) + d.

The contents of register frS are stored into the doubleword in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31
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stfdux stfdux
Store Floating-Point Double with Update Indexed (x’7C00 05EE’)

stfdux frS,rA,rB

EA ←  (rA) + (rB)
MEM(EA, 8) ←  (frS)
rA ←  EA

EA is the sum (rA) + (rB).

The contents of register frS are stored into the doubleword in memory addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 759 0
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stfdx stfdx
Store Floating-Point Double Indexed (x’7C00 05AE’)

stfdx  frS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
MEM(EA, 8) ←  (frS)

EA is the sum (rA|0) + (rB).

The contents of register frS are stored into the doubleword in memory addressed by EA.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 727 0
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stfiwx stfiwx
Store Floating-Point as Integer Word Indexed (x’7C00 07AE’)

stfiwx frS,rA,rB

if rA = 0 then b ←  0
else b ←  (rA)
EA ←  b + (rB)
MEM(EA, 4) ←  frS[32-63]

EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of register frS are stored, without conversion, into the word in memory 
addressed by EA.

If the contents of register frS were produced, either directly or indirectly, by an lfs instruction, a single-preci-
sion arithmetic instruction, or frsp, then the value stored is undefined. The contents of frS are produced 
directly by such an instruction if frS is the target register for the instruction. The contents of frS are produced 
indirectly by such an instruction if frS is the final target register of a sequence of one or more floating-point 
move instructions, with the input to the sequence having been produced directly by such an instruction.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 983 0
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stfs stfs 
Store Floating-Point Single (x’D000 0000’)

stfs frS,d(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(d)
MEM(EA, 4) ←  SINGLE(frS)

EA is the sum (rA|0) + d.

The contents of register frS are converted to single-precision and stored into the word in memory addressed 
by EA. Note that the value to be stored should be in single-precision format prior to the execution of the stfs 
instruction. For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store 
Instructions.

Other registers altered:

• None

0 5 6 10 11 15 16 31

52 S A d
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stfsu stfsu 
Store Floating-Point Single with Update (x’D400 0000’)

stfsu frS,d(rA)

EA ←  (rA) + EXTS(d)
MEM(EA, 4) ←  SINGLE(frS)
rA ←  EA

EA is the sum (rA) + d.

The contents of frS are converted to single-precision and stored into the word in memory addressed by EA. 
Note that the value to be stored should be in single-precision format prior to the execution of the stfsu 
instruction. For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store 
Instructions.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

53 S A d



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005  
 

Page 509 of 657

stfsux stfsux 
Store Floating-Point Single with Update Indexed (x’7C00 056E’)

stfsux frS,rA,rB

EA ←  (rA) + (rB)
MEM(EA, 4) ←  SINGLE(frS)
rA ←  EA

EA is the sum (rA) + (rB).

The contents of frS are converted to single-precision and stored into the word in memory addressed by EA. 
For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store Instructions.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 695 0
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stfsx stfsx 
Store Floating-Point Single Indexed (x’7C00 052E’)  

stfsx frS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
MEM(EA, 4) ←  SINGLE(frS)

EA is the sum (rA|0) + (rB).

The contents of register frS are converted to single-precision and stored into the word in memory addressed 
by EA. For a discussion on floating-point store conversions, see Appendix C.7 Floating-Point Store Instruc-
tions.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 663 0
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sth sth
Store Halfword (x’B000 0000’)

sth rS,d(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(d)
MEM(EA, 2) ←  rS[48-63]

EA is the sum (rA|0) + d. The contents of the low-order 16 bits of rS are stored into the halfword in memory 
addressed by EA. 

Other registers altered:

• None

0 5 6 10 11 15 16 31

44 S A d
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sthbrx sthbrx
Store Halfword Byte-Reverse Indexed (x’7C00 072C’)

sthbrx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
MEM(EA, 2) ←  rS[56-63] || rS[48-55]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into bits [0–7] of the half-
word in memory addressed by EA. The contents of the subsequent low-order eight bits of rS are stored into 
bits [8–15] of the halfword in memory addressed by EA. 

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31
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sthu sthu
Store Halfword with Update (x’B400 0000’)

sthu rS,d(rA)

EA ←  (rA) + EXTS(d)
MEM(EA, 2) ←  rS[48-63]
rA ←  EA

EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are stored into the halfword in memory 
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

45 S A d



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Page 514 of 657
pem8b.fm.3.0
July 15, 2005

sthux sthux
Store Halfword with Update Indexed (x’7C00 036E’)

sthux rS,rA,rB

EA ←  (rA) + (rB)
MEM(EA, 2) ←  rS[48-63]
rA ←  EA

EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS are stored into the halfword in memory 
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 439 0
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sthx sthx
Store Halfword Indexed (x’7C00 032E’)

sthx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
MEM(EA, 2) ←  rS[48-63]

EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits of rS are stored into the halfword in memory 
addressed by EA. 

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 407 0
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stmw stmw
Store Multiple Word (x’BC00 0000’)

stmw rS,d(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(d)
r ←  rS
do while r ≤ 31
MEM(EA, 4) ←  GPR(r)[32-63]
r ←  r + 1
EA ←  EA + 4

EA is the sum (rA|0) + d.

n = (32 – rS).

n consecutive words starting at EA are stored from the low-order 32 bits of GPRs rS through r31. For 
example, if rS = 30, 2 words are stored.

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the 
results are boundedly undefined. For additional information about alignment and DSI exceptions, see 
Section 6.4.3 DSI Exception (0x00300).

Note:  In some implementations, this instruction is likely to have a greater latency and take longer to execute, 
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

0 5 6 10 11 15 16 31

47 S A d



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem8b.fm.3.0
July 15, 2005  
 

Page 517 of 657

stswi stswi
Store String Word Immediate (x’7C00 05AA’)

stswi rS,rA,NB

if rA = 0 then EA ←  0
elseEA ←  (rA)
if NB = 0 then n ←  32
elsen ←  NB
r ←  rS - 1
i ←  32
do while n > 0
if i = 32 then r ←  r + 1 (mod 32)
MEM(EA, 1) ←  GPR(r)[i-i + 7]
i ←  i + 8
if i = 64 then i ←  32
EA ←  EA + 1
n ←  n - 1

EA is (rA|0). Let n = NB if NB ≠ 0, n = 32 if NB = ’0’; n is the number of bytes to store. Let nr = CEIL(n ÷ 4); 
nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS + nr – 1. Data is stored from the low-
order four bytes of each GPR. Bytes are stored left to right from each register. The sequence of registers 
wraps around through r0 if required.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler 
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note:  In some implementations, this instruction is likely to have a greater latency and take longer to execute, 
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A NB 725 0
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stswx stswx
Store String Word Indexed (x’7C00 052A’)

stswx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
n ←  XER[25-31]
r ←  rS - 1
i ←  32
do while n > 0
if i = 32 then r ←  r + 1 (mod 32)
MEM(EA, 1) ←  GPR(r)[i-i + 7]
i ←  i + 8
if i = 64 then i ←  32
EA ←  EA + 1
n ←  n - 1

EA is the sum (rA|0) + (rB). Let n = XER[25–31]; n is the number of bytes to store. Let nr = CEIL(n ÷ 4); nr is 
the number of registers to supply data.

n consecutive bytes starting at EA are stored from GPRs rS through rS + nr – 1. Data is stored from the low-
order four bytes of each GPR. Bytes are stored left to right from each register. The sequence of registers 
wraps around through r0 if required. If n = ’0’, no bytes are stored.

Under certain conditions (for example, segment boundary crossing) the data alignment exception handler 
may be invoked. For additional information about data alignment exceptions, see Section 6.4.3 DSI Excep-
tion (0x00300).

Note:  In some implementations, this instruction is likely to have a greater latency and take longer to execute, 
perhaps much longer, than a sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 661 0
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stw stw
Store Word (x’9000 0000’)

stw rS,d(rA)

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + EXTS(d)
MEM(EA, 4) ←  rS[32-63]

EA is the sum (rA|0) + d. The contents of the low-order 32 bits of rS are stored into the word in memory 
addressed by EA. 

Other registers altered:

• None

0 5 6 10 11 15 16 31

36 S A d
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stwbrx stwbrx
Store Word Byte-Reverse Indexed (x’7C00 052C’)

stwbrx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB) 
MEM(EA, 4) ←  rS[56-63] || rS[48-55] || rS[40-47] || rS[32-39]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into bits [0–7] of the word 
in memory addressed by EA. The contents of the subsequent eight low-order bits of rS are stored into bits 
[8-15] of the word in memory addressed by EA. The contents of the subsequent eight low-order bits of rS are 
stored into bits [16–23] of the word in memory addressed by EA. The contents of the subsequent eight low-
order bits of rS are stored into bits [24–31] of the word in memory addressed by EA. 

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 662 0
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stwcx. stwcx.
Store Word Conditional Indexed (x’7C00 012D’)

stwcx. rS,rA,rB

if rA = 0 then b ←  0
else b ←  (rA)
EA ←  b + (rB)
if RESERVE then
if RESERVE_ADDR = physical_addr(EA)
MEM(EA, 4) ←  rS[32-63]
CR0 ←  ’00’ || ’1’ || XER[SO]
else
u ←  undefined 1-bit value
if u then MEM(EA, 4) ←  rS[32-63]
CR0 ←  ’00’ || u || XER[SO]
RESERVE ←  0

else
CR0 ←  ’00’ || ‘0’ || XER[SO]

EA is the sum (rA|0) + (rB). If the reserved bit is set, the stwcx. instruction stores rS to effective address 
(rA + rB), clears the reserved bit, and sets CR0[EQ]. If the reserved bit is not set, the stwcx. instruction does 
not do a store; it leaves the reserved bit cleared and clears CR0[EQ]. Software must look at CR0[EQ] to see 
if the stwcx. was successful.

The reserved bit is set by the lwarx instruction. The reserved bit is cleared by any stwcx. instruction to any 
address, and also by snooping logic if it detects that another processor does any kind of store to the block 
indicated in the reservation buffer when reserved is set.

If a reservation exists, and the memory address specified by the stwcx. instruction is the same as that speci-
fied by the load and reserve instruction that established the reservation, the contents of the low-order 32 bits 
of rS are stored into the word in memory addressed by EA and the reservation is cleared. 

If a reservation exists, but the memory address specified by the stwcx. instruction is not the same as that 
specified by the load and reserve instruction that established the reservation, the reservation is cleared, and it 
is undefined whether the contents of the low-order 32 bits of rS are stored into the word in memory addressed 
by EA. 

If no reservation exists, the instruction completes without altering memory.

CR0 field is set to reflect whether the store operation was performed as follows:

CR0[LT GT EQ S0] = 0b00 || store_performed || XER[SO]

EA must be a multiple of four. If it is not, either the system alignment exception handler is invoked or the 
results are boundedly undefined. For additional information about alignment and DSI exceptions, see 
Section 6.4.3 DSI Exception (0x00300).

0 5 6 10 11 15 16 20 21 30 31

31 S A B 150 1
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The granularity with which reservations are managed is implementation-dependent. Therefore, the memory 
to be accessed by the load and reserve and store conditional instructions should be allocated by a system 
library program.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO
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stwu stwu
Store Word with Update (x’9400 0000’)

stwu rS,d(rA)

EA ←  (rA) + EXTS(d)
MEM(EA, 4) ←  rS[32-63]
rA ←  EA

EA is the sum (rA) + d. The contents of the low-order 32 bits of rS are stored into the word in memory 
addressed by EA.

EA is placed into rA. 

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

0 5 6 10 11 15 16 31

37 S A d
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stwux stwux
Store Word with Update Indexed (x’7C00 016E’)

stwux rS,rA,rB

EA ←  (rA) + (rB)
MEM(EA, 4) ←  rS[32-63]
rA ←  EA

EA is the sum (rA) + (rB). The contents of the low-order 32 bits of rS are stored into the word in memory 
addressed by EA.

EA is placed into rA.

If rA = ’0’, the instruction form is invalid.

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 183 0
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stwx stwx
Store Word Indexed (x’7C00 012E’)

stwx rS,rA,rB

if rA = 0 then b ←  0
elseb ←  (rA)
EA ←  b + (rB)
MEM(EA, 4) ←  rS[32-63]

EA is the sum (rA|0) + (rB). The contents of the low-order 32 bits of rS are is stored into the word in memory 
addressed by EA. 

Other registers altered:

• None

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 151 0
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subfx subfx
Subtract From (x’7C00 0050’)

subf rD,rA,rB (OE = ’0’ Rc = ’0’)
subf. rD,rA,rB (OE = ’0’ Rc = ’1’) 
subfo rD,rA,rB (OE = ’1’ Rc = ’0’) 
subfo.  rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ←  ¬ (rA) + (rB) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD.

The subf instruction is preferred for subtraction because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

• XER:
Affected: SO, OV (if OE = ’1’)

Simplified mnemonics:

sub rD,rA,rB equivalent to subf rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 40 Rc
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subfcx subfcx 
Subtract from Carrying (x’7C00 0010’)

subfc  rD,rA,rB  (OE = ‘0’ Rc = ‘0’)
subfc. rD,rA,rB (OE = ‘0’ Rc = ’1’)
subfco rD,rA,rB (OE = ’1’ Rc = ‘0’)
subfco.  rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ←  ¬ (rA) + (rB) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO  (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV  (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

Simplified mnemonics:

subc rD,rA,rB equivalent to subfc rD,rB,rA

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 8 Rc



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Page 528 of 657
pem8b.fm.3.0
July 15, 2005

subfex subfex 
Subtract from Extended (x’7C00 0110’)

subfe  rD,rA,rB (OE = ‘0’ Rc = ‘0’)
subfe. rD,rA,rB (OE = ‘0’ Rc = ’1’)
subfeo  rD,rA,rB (OE = ’1’ Rc = ‘0’)
subfeo.  rD,rA,rB (OE = ’1’ Rc = ’1’)

rD ←  ¬ (rA) + (rB) + XER[CA]

The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 136 Rc
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subfic subfic 
Subtract from Immediate Carrying (x’2000 0000’)

subfic rD,rA,SIMM

rD ←  ¬ (rA) + EXTS(SIMM) + 1

The sum ¬ (rA) + EXTS(SIMM) + 1 is placed into rD.

Other registers altered:

• XER:
Affected: CA
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 31

08 D A SIMM
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subfmex subfmex 
Subtract from Minus One Extended (x’7C00 01D0’)

subfme rD,rA (OE = ’0’ Rc = ’0’)
subfme.  rD,rA (OE = ’0’ Rc = ’1’)
subfmeo  rD,rA (OE = ’1’ Rc = ’0’)
subfmeo. rD,rA (OE = ’1’ Rc = ’1’)

rD ←  ¬ (rA) + XER[CA] - 1

The sum ¬ (rA) + XER[CA] + (64)1 is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions. 

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 232 Rc
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subfzex subfzex 
Subtract from Zero Extended (x’7C00 0190’)

subfze  rD,rA (OE = ’0’ Rc = ’0’)
subfze. rD,rA (OE = ’0’ Rc = ’1’)
subfzeo rD,rA (OE = ’1’ Rc = ’0’)
subfzeo. rD,rA (OE = ’1’ Rc = ’1’)

rD ←  ¬ (rA) + XER[CA]

The sum ¬ (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)
Note: CR0 field may not reflect the infinitely precise result if overflow occurs.

• XER:
Affected: CA
Affected: SO, OV (if OE = ’1’)
Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit 
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information 
about 64-bit mode and 32-bit mode in 64-bit implementations, see Chapter 3, Operand Conventions.

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 200 Rc
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sync sync
Synchronize (x’7C00 04AC’)

sync  L

The sync instruction creates a memory barrier. The set of memory accesses that is ordered by the memory 
barrier depends on the value of the L field.

The ordering done by the memory barrier is cumulative. The sync instruction may complete before memory 
accesses associated with instructions preceding the sync instruction have been performed.

If L= ’0’, the sync instruction has the following additional properties:

• Executing the sync instruction ensures that all instructions preceding the sync instruction have com-
pleted before the sync instruction completes, and that no subsequent instructions are initiated until after 
the sync instruction completes.

• The sync instruction is execution synchronizing. However, address translation and reference and change 
recording associated with subsequent instructions may be performed before the sync instruction com-
pletes.

• The memory barrier provides the additional ordering function such that if a given instruction that is the 
result of a Store in set B is executed, all applicable memory accesses in set A have been performed with 
respect to the processor executing the instruction to the extent required by the associated memory coher-

L = ‘0’ (“heavyweight sync”) The memory barrier provides an ordering function for the memory accesses 
associated with all instructions that are executed by the processor executing the 
sync instruction. The applicable pairs are all pairs ai,bj in which bj is a data 
access, except that if ai is the memory access caused by an icbi instruction 
then bj may be performed with respect to the processor executing the sync 
instruction before ai is performed with respect to that processor.

L= ‘1’ (“lightweight sync”) The memory barrier provides an ordering function for the memory accesses 
caused by Load, Store, and dcbz instructions that are executed by the 
processor executing the sync instruction and for which the specified memory 
location is in memory that is Memory Coherence Required and is neither Write 
Through Required nor Caching Inhibited. The applicable pairs are all pairs ai,bj 
of such accesses except those in which ai is an access caused by a store or 
dcbz instruction and bj is an access caused by a load instruction.

L= ‘2’ (ptesync) This variant of the synchronize instruction is designated the page table entry 
sync and is specified by the extended mnemonic ptesync. This variant has all 
of the properties of sync with L = ‘0’ and with some additional properties.

L= ‘3’ Reserved. The results of executing a sync instruction with L= ‘3’ are boundedly 
undefined. 

Reserved

598 00 0 0 0 0 0 0 0 0 031 0 0 0

0 5 6 8 9 10 11 15 16 20 21 30 31

L
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ence properties. The single exception is that any memory access in set A that is caused by an icbi 
instruction executed by the processor executing the sync instruction (P1) may not have been performed 
with respect to P1.

The cumulative properties of the barrier apply to the execution of the given instruction as they would to a 
Load that returned a value that was the result of a Store in set B.

If L=’2’, the sync instruction (ptesync) has the following additional properties: 

• The memory barrier created by the ptesync instruction provides an ordering function for the memory 
accesses associated with all instructions that are executed by the processor executing the ptesync 
instruction and, as elements of set A, for all reference and change bit updates associated with additional 
address translations that were performed, by the processor executing the ptesync instruction, before the 
ptesync instruction is executed. The applicable pairs are all pairs ai,bj in which bj is a data access and ai 
is not an instruction fetch.

• The ptesync instruction causes all reference and change bit updates associated with address transla-
tions that were performed, by the processor executing the ptesync instruction, before the ptesync 
instruction is executed, to be performed with respect to that processor before the ptesync instruction's 
memory barrier is created.

• The ptesync instruction provides an ordering function for all stores to the page table caused by store 
instructions preceding the ptesync instruction with respect to searches of the page table that are per-
formed, by the processor executing the ptesync instruction, after the ptesync instruction completes. 
Executing a ptesync instruction ensures that all such stores will be performed, with respect to the pro-
cessor executing the ptesync instruction, before any implicit accesses to the affected page table entries, 
by such page table searches, are performed with respect to that processor.

• In conjunction with the tlbie and tlbsync instructions, the ptesync instruction provides an ordering func-
tion for TLB invalidations and related memory accesses on other processors as described in the tlbsync 
instruction description.

Note:  The functions performed by the ptesync instruction may take a significant amount of time to complete, 
so this form of the instruction should be used only if the functions listed above are needed. Otherwise sync 
with L = ‘0’ should be used (or sync with L = ‘1’ or eieio, if appropriate).

This instruction is execution synchronizing. For more information on execution synchronization, see 
Section 4.1.5 Synchronizing Instructions. 

Other registers altered:

• None
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td td 
Trap Doubleword (x’7C00 0088’)

td TO,rA,rB

a ←  (rA)
b ←  (rB)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of rA are compared with the contents of rB. If any bit in the TO field is set and its corresponding 
condition is met by the result of the comparison, then the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tdge rA,rB equivalent to td 12,rA,rB
tdlnl rA,rB equivalent to td 5,rA,rB

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 68 0
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tdi tdi 
Trap Doubleword Immediate (x’0800 0000’)

tdi TO,rA,SIMM

a ←  (rA)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of rA are compared with the sign-extended value of the SIMM field. If any bit in the TO field is 
set and its corresponding condition is met by the result of the comparison, then the system trap handler is 
invoked.

Other registers altered:

• None

Simplified mnemonics:

tdlti rA,value equivalent to tdi 16,rA,value
tdnei rA,value equivalent to tdi 24,rA,value

0 5 6 10 11 15 16 31

02 TO A SIMM
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tlbia tlbia 
Translation Lookaside Buffer Invalidate All (x’7C00 02E4’)

All TLB entries ←  invalid

The entire translation lookaside buffer (TLB) is invalidated (that is, all entries are removed).

The TLB is invalidated regardless of the settings of MSR[IR] and MSR[DR]. The invalidation is done without 
reference to the SLB, segment table, or segment registers.

This instruction does not cause the entries to be invalidated in other processors.

This is a supervisor-level instruction and optional in the PowerPC Architecture.

Other registers altered:

• None

0 0 0 0 0 370 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0
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tlbie tlbie 
Translation Lookaside Buffer Invalidate Entry (x’7C00 0264’)

tlbie rB, L

if L = 0
then pg_size ← 4 KB
else pg_size ← large page size

p ← log_base_2(pg_size)
for each processor in the partition
for each TLB entry
if (entry_VPN[32 to 79-p] = (RB[16 to63-p]) & (entry_pg_size = pg_size)
then TLB entry ← invalid

The contents of rB[0-15] must be 0x0000. If the L field of the instruction is ‘1’ let the page size be large; other-
wise let the page size be 4 KB.

All TLB entries that have all of the following properties are made invalid on all processors that are in the same 
partition as the processor executing the tlbie instruction.

• The entry translates a virtual address for which VPN[32 to 79- p] is equal to rB[16 to 63- p].

• The page size of the entry matches the page size specified by the L field of the instruction.

Additional TLB entries may also be made invalid on any processor that is in the same partition as the 
processor executing the tlbie instruction.

MSR[SF] must be ‘1’ when this instruction is executed; otherwise the results are undefined. 

The operation performed by this instruction is ordered by the eieio (or sync or ptesync) instruction with 
respect to a subsequent tlbsync instruction executed by the processor executing the tlbie instruction. The 
operations caused by tlbie and tlbsync are ordered by eieio as a third set of operations, which is indepen-
dent of the other two sets that eieio orders.

This is a supervisor-level instruction and optional in the PowerPC Architecture.

Other registers altered: 

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

L31 B0 0 0 0 0 0 0 0 0 306 0
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tlbiel tlbiel
Translation Lookaside Buffer Invalidate Entry Local (x’7C00 0224’) 

tlbiel rB,L

if L = 0
then pg_size ← 4 KB
else pg_size ← large page size

p ← log_base_2(pg_size)
for each TLB entry

if (entry_VPN[32 to (79-p)] = rB[16 to (63-p)] &
(entry_pg_size = pg_size)

then TLB entry ← invalid

The contents of rB[0-15] must be 0x0000. If the L field of the instruction is ‘1’ let the page size be large; other-
wise let the page size be 4KB. 

All TLB entries that have all of the following properties are made invalid on the processor which executes this 
instruction.

• The entry translates a virtual address for which VPN[32 to (79- p)] is equal to rB[16 to (63- p)].
• The page size of the entry matches the page size specified by the L field of the instruction.

Only TLB entries on the processor executing this instruction are affected. rB[52 - 63] must be zero. MSR[SF] 
must be ‘1’ when this instruction is executed; otherwise the results are undefined.

The operation performed by this instruction is ordered by the eieio (or sync or ptesync) instruction with 
respect to a subsequent tlbsync instruction executed by the processor executing the tlbiel instruction. The 
operations caused by tlbiel and tlbsync are ordered by eieio as a third set of operations, which is indepen-
dent of the other two sets that eieio orders. 

This is a supervisor-level instruction and optional in the PowerPC Architecture.

Support of large pages for tlbiel is optional. On implementations that do not support large pages for tlbiel, the 
following properties apply:

• The syntax of the instruction is “tlbiel rB”. 
• Bit [10] of the instruction is a reserved bit.
• In the RTL, the first three lines and the third from last line are ignored.
• The last list item in the paragraph that begins “All TLB entries ...”, namely “The page size of the entry 

matches the page size specified by the L field of the instruction”, is ignored.

Note:  To synchronize the completion of this processor local form of tlbie, only a ptesync is required 
(tlbsync should not be used).

Other registers altered: 
• None

0 5 6 9 10 11 15 16 20 21 30 31

Reserved

rB 274 031 0 0 0 0 0 L 0 0 0 0 0
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tlbsync tlbsync
TLB Synchronize (x’7C00 046C’)

If an implementation sends a broadcast for tlbie then it will also send a broadcast for tlbsync. Executing a 
tlbsync instruction ensures that all tlbie instructions previously executed by the processor executing the 
tlbsync instruction have completed on all other processors.

The operation performed by this instruction is treated as a caching-inhibited and guarded data access with 
respect to the ordering done by eieio.

Refer to Section 7.4.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates 
and Section 7.5.3 Page Table Updates for other requirements associated with the use of this instruction.

This instruction is supervisor-level and optional in the PowerPC Architecture.

Note:  tlbsync should not be used to synchronize the completion of tlbiel.

Other registers altered:

• None

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0
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tw tw 
Trap Word (x’7C00 0008’)

tw TO,rA,rB

a ←  EXTS(rA[32-63])
b ←  EXTS(rB[32-63])
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of the low-order 32 bits of rA are compared with the contents of the low-order 32 bits of rB. If 
any bit in the TO field is set and its corresponding condition is met by the result of the comparison, then the 
system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tweq rA,rB equivalent to tw 4,rA,rB
twlge rA,rB equivalent to tw 5,rA,rB
trap equivalent to tw 31,0,0

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 4 0
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twi twi 
Trap Word Immediate (x’0C00 0000’)

twi TO,rA,SIMM

a ←  EXTS(rA[32-63])
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of the low-order 32 bits of rA are compared with the sign-extended value of the SIMM field. If 
any bit in the TO field is set and its corresponding condition is met by the result of the comparison, then the 
system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

twgti rA,value equivalent to twi 8,rA,value
twllei rA,value equivalent to twi 6,rA,value

0 5 6 10 11 15 16 31

03 TO A SIMM
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xorx xorx
XOR (x’7C00 0278’)

xor rA,rS,rB (Rc = ’0’)
xor. rA,rS,rB (Rc = ’1’)

rA ←  (rS) ⊕ (rB)

The contents of rS is XORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):
Affected: LT, GT, EQ, SO (if Rc = ’1’)

0 5 6 10 11 15 16 20 21 30 31

31 S A B 316 Rc
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xori xori 
XOR Immediate (x’6800 0000’)

xori rA,rS,UIMM

rA ←  (rS) ⊕ ((48)0 || UIMM)

The contents of rS are XORed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

26 S A UIMM



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Page 544 of 657
pem8b.fm.3.0
July 15, 2005

xoris xoris 
XOR Immediate Shifted (x’6C00 0000’)

xoris rA,rS,UIMM

rA ←  (rS) ⊕ ((32)0 || UIMM || (16)0)

The contents of rS are XORed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

0 5 6 10 11 15 16 31

27 S A UIMM
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Appendix A. PowerPC Instruction Set Listings

This appendix lists the PowerPC Architecture’s instruction set. Instructions are sorted by mnemonic, opcode, 
function, and form. Also included in this appendix is a quick reference table that contains general information, 
such as the architecture level, privilege level, and form, and indicates if the instruction is 64-bit and/or 
optional.

Note:  Split fields, which represent the concatenation of sequences from left to right, are shown in lowercase. 
For more information refer to Chapter 8, Instruction Set.

A.1 Instructions Sorted by Mnemonic

Table A-1 lists the instructions implemented in the PowerPC Architecture in alphabetical order by mnemonic. 

 

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addx 31 D A B OE 266 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

andx 31 S A B 28 Rc

bcctrx 19 BO BI 0 0 0 BH 528 LK

bclrx 19 BO BI 0 0 0 BH 16 LK

bcx 16 BO BI BD AA LK

bx 18 LI AA LK

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Reserved bits

Key:
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cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divdux 1 31 D A B OE 457 Rc

divdx 1 31 D A B OE 489 Rc

divwux 31 D A B OE 459 Rc

divwx 31 D A B OE 491 Rc

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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faddx 63 D A B 0 0 0 0 0 21 Rc

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fmaddsx 59 D A B C 29 Rc

fmaddx 63 D A B C 29 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fmsubsx 59 D A B C 28 Rc

fmsubx 63 D A B C 28 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

fnmaddsx 59 D A B C 31 Rc

fnmaddx 63 D A B C 31 Rc

fnmsubsx 59 D A B C 30 Rc

fnmsubx 63 D A B C 30 Rc

fresx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

frsqrtex 2 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 2 63 D A B C 23 Rc

fsqrtsx 2 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtx 2 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1 58 D A ds 0

ldarx 1 31 D A B 84 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw 4 46 D A d

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwa 1 58 D A ds 2

lwarx 31 D A B 20 0

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 3 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfocrf 31 D 1 CRM  0 19 0

mfspr 5 31 D spr 339 0

mfsr 3, 6 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 3, 6 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtmsr 3, 6 31 S 0 0 0 0 L 0 0 0 0 0 146 0

mtmsrd 1, 3 31 S 0 0 0 0 L 0 0 0 0 0 178 0

mtocrf 31 S 1 CRM 0 144 0

mtspr 5 31 S spr 467 0

mtsr 3, 6 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 3, 6 31 S 0 0 0 0 0 B 242 0

mulhdux 1 31 D A B 0 9 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhwux 31 D A B 0 11 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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mulhwx 31 D A B 0 75 Rc

mulldx 1 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

orx 31 S A B 444 Rc

rfid 1, 3 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldicx 1 30 S A sh mb 2 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

slbia 1,2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

slbmfee 1 31 D 0 0 0 0 0 B 915 0

slbmfev 1 31 D 0 0 0 0 0 B 851 0

slbmte 1 31 D 0 0 0 0 0 B 402 0

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradix 1 31 S A sh 413 sh Rc

sradx 1 31 S A B 794 Rc

srawix 31 S A SH 824 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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srawx 31 S A B 792 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdcx. 1 31 S A B 214 1

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 2 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 4 47 S A d

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfx 31 D A B OE 40 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 L 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tdi 1 02 TO A SIMM

tlbia 2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2,3 31 0 0 0 0 0 L 0 0 0 0 0 B 306 0

tlbiel 2,3 31 0 0 0 0 0 L 0 0 0 0 0 B 274 0

tlbsync 2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

xorx 31 S A B 316 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pemA_app2.fm.3.0
July 15, 2005  
 

Page 553 of 657

A.2 Instructions Sorted by Opcode

Table A-2 lists the instructions defined in the PowerPC Architecture in numeric order by opcode. 

. 

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 1 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 BH 0 0 0 0 0 1 0 0 0 0

rfid 1, 3 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 BH 1 0 0 0 0 1 0 0 0 0 LK

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction

Reserved bits

Key:
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rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 1 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 1 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 1 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 1 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 1 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 1 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE  0 0 0 0 0 1 0 0 0 Rc

mulhdux 1 0 1 1 1 1 1 D A B 0  0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE  0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0  0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 1 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sldx 1 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE  0 0 0 1 0 1 0 0 0 Rc

ldux 1 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzdx 1 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 1 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 1 0 1 1 1 1 1 D A B 0  0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0  0 0 1 0 0 1 0 1 1 Rc

mfmsr 3 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 1 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE  0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE  0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE  0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 3, 6 31 S 0 0 0 0 L 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 1 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

mtmsrd 1, 3 0 1 1 1 1 1 S 0 0 0 0 L 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0

stdux 1 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE  0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE  0 1 1 0 0 1 0 1 0 Rc

mtsr 6 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 1 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE  0 1 1 1 0 1 0 0 0 Rc

mulldx 1 0 1 1 1 1 1 D A B OE  0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE  0 1 1 1 0 1 0 1 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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mullwx 0 1 1 1 1 1 D A B OE  0 1 1 1 0 1 0 1 1 Rc

mtsrin 6 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

mtocrf 0 1 1 1 1 1 S 1 CRM 0 0 0 1 0 0 1 0 0 0 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE  1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbiel 3 0 1 1 1 1 1 0 0 0 0 L 0 0 0 0 0 B 0 1 0 0 01 0 0 1 0 0

tlbie 3 0 1 1 1 1 1 0 0 0 0 L 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 5 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 1 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia  3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 1 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 1 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 sh Rc

slbie 1, 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 1 0 1 1 1 1 1 D A B OE  1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE  1 1 1 0 0 1 0 1 1 Rc

mtspr 5 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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divdx 1 0 1 1 1 1 1 D A B OE  1 1 1 1 0 1 0 0 1 Rc

divwx 0 1 1 1 1 1 D A B OE  1 1 1 1 0 1 0 1 1 Rc

slbia 1, 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

lswx 4 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 1 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync , 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 3, 6 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 4 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 L 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 3, 6 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

slbmfee 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 1 1 0 0 1 0 0 1 1 0

slbmfev 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 1 0 0 1 1 0

slbmte 1 0 1 1 1 1 1 D 0 0 0 0 0 B 0 1 1 0 0 1 0 0 1 0 0

mfocrf 0 1 1 1 1 1 D 1 CRM  0 0 0 0 0 0 1 0 0 1 1 0

stswx 4 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 4 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 1 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 2 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extswx 1 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 4 1 0 1 1 1 0 D A d

stmw 4 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 1 1 1 1 0 1 0 D A ds 0 0

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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ldu 1 1 1 1 0 1 0 D A ds 0 1

lwa 1 1 1 1 0 1 0 D A ds 1 0

fdivsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 2 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fresx 2 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 1 1 1 1 1 1 0 S A ds 0 0

stdu 1 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwzx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtx 2 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 2 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 2 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsfx 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. 64-bit instruction
2. Optional instruction
3. Supervisor level instruction
4. Load/store string/multiple instruction
5. Supervisor and user-level instruction
6. Optional 64-bit bridge instruction
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A.3 Instructions Grouped by Functional Categories

Table A-3 through Table A-30 list the PowerPC instructions grouped by function. 

Table A-3. Integer Arithmetic Instructions 

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 1 31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhdux1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulld 1 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Note:  

1. 64-bit instruction

Reserved bitsKey:
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Table A-4. Integer Compare Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Table A-5. Integer Logical Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Note:  

1. 64-bit instruction
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Table A-6. Integer Rotate Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

rldicx 1 30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

Note:  

1. 64-bit instruction

Table A-7. Integer Shift Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

sradix 1 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

Note:  

1. 64-bit instruction
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Table A-8. Floating-Point Arithmetic Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Note:  

1. Optional instruction

Table A-9. Floating-Point Multiply-Add Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc
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Table A-10. Floating-Point Rounding and Conversion Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Note:  

1. 64-bit instruction

Table A-11. Floating-Point Compare Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Table A-12. Floating-Point Status and Control Register Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc
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Table A-13. Integer Load Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1 58 D A ds 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 1 58 D A ds 2

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Note:  

1. 64-bit instruction
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Table A-14. Integer Store Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Note:  

1. 64-bit instruction

Table A-15. Integer Load and Store with Byte Reverse Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table A-16. Integer Load and Store Multiple Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 1 46 D A d

stmw 1 47 S A d

Note:  

1. Load/store string/multiple instruction



Programming Environments Manual for 64-Bit Microprocessors
 
PowerPC RISC Microprocessor Family  

Page 568 of 657
pemA_app3.fm.3.0

July 15, 2005

Table A-17. Integer Load and Store String Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 1 31 D A NB 597 0

lswx 1 31 D A B 533 0

stswi 1 31 S A NB 725 0

stswx 1 31 S A B 661 0

Note:  

1. Load/store string/multiple instruction

Table A-18. Memory Synchronization Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 1 31 D A B 84 0

lwarx 31 D A B 20 0

stdcx. 1 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 L 0 0 0 0 0 0 0 0 0 0 598 0

Note:  

1. 64-bit instruction

Table A-19. Floating-Point Load Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0
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Table A-20. Floating-Point Store Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Note:  

1. Optional instruction

Table A-21. Floating-Point Move Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Table A-22. Branch Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 BH 528 LK

bclrx 19 BO BI 0 0 0 BH 16 LK
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Table A-23. Condition Register Logical Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A-24. System Linkage Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfid 1, 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Note:  

1. Supervisor-level instruction
2. 64-bit instruction

Table A-25. Trap Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 1 31 TO A B 68 0

tdi 1 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Note:  

1. 64-bit instruction
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Table A-26. Processor Control Instructions 

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfocrf 31 D 1 CRM  0 19 0

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtocrf 31 S 1 CRM 0 144 0

mtmsr 1, 3 31 S 0 0 0 0 L 0 0 0 0 0 146 0

mtmsrd 1, 4 31 S 0 0 0 0 L 0 0 0 0 0 178 0

mtspr 2 31 D spr 467 0

Note:  

1. Supervisor-level instruction
2. Supervisor and user-level instruction
3. Optional 64-bit bridge instruction
4. 64-bit instruction

Table A-27. Cache Management Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0
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Table A-28. Segment Register Manipulation Instructions 

Name 05 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr  1, 2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1, 2 31 D 0 0 0 0 0 B 659 0

mtsr 1, 2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1, 2 31 S 0 0 0 0 0 B 242 0

Note:  

1. Supervisor-level instruction
2. Optional 64-bit bridge instruction

Table A-29. Lookaside Buffer Management Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,2,3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,2,3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

slbmfee 3 31 D 0 0 0 0 0 B 915 0

slbmfev 3 31 D 0 0 0 0 0 B 851 0

slbmte 3 31 D 0 0 0 0 0 B 402 0

tlbia 1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,2 31 0 0 0 0 L 0 0 0 0 0 B 306 0

tlbiel 1,2 31 0 0 0 0 L 0 0 0 0 0 B 274 0

tlbsync 1,2 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Note:  

1. Supervisor-level instruction
2. Optional instruction
3. 64-bit instruction

Table A-30. External Control Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0
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A.4 Instructions Sorted by Form

Table A-31 through Table A-45 list the PowerPC instructions grouped by form. 

.

Table A-31. I-Form 

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

Table A-32. B-Form 

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

Table A-33. SC-Form 

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Reserved bits

Key:
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Table A-34. D-Form 

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 1 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

Note:  

1. Load/store string/multiple instruction
2. 64-bit instruction
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stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 1 47 S A d

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 2 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

Table A-35. DS-Form 

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 1 58 D A ds 0

ldu 1 58 D A ds 1

lwa 1 58 D A ds 2

std 1 62 S A ds 0

stdu 1 62 S A ds 1

Note:  

1. 64-bit instruction

Table A-34. D-Form 

Note:  

1. Load/store string/multiple instruction
2. 64-bit instruction
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Table A-36. X-Form 

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0

Note:  

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction
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dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 1 31 D A B 84 0

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

Table A-36. X-Form 

Note:  

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction
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lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfocrf 31 D 1 CRM  0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 3 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 3 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 3 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 3 31 S 0 0 0 0 L 0 0 0 0 0 146 0

mtmsrd 1, 3 31 S 0 0 0 0 L 0 0 0 0 0 178 0

mtsr 3 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 3 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slbia 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

slbmfee 1 31 D 0 0 0 0 0 B 915 0

slbmfev 1 31 D 0 0 0 0 0 B 851 0

slbmte 1 31 D 0 0 0 0 0 B 402 0

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

Table A-36. X-Form 

Note:  

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction
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srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 1 31 S A B 214 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 2 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 L 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tlbia 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2, 3 31 0 0 0 0 L 0 0 0 0 0 B 306 0

tlbiel 2, 3 31 0 0 0 0 L 0 0 0 0 0 B 274 0

tlbsync 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

Table A-36. X-Form 

Note:  

1. 64-bit instruction
2. Optional instruction
3. Load/store string/multiple instruction
4. Optional 64-bit bridge instruction
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Table A-37. XL-Form 

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 BH 528 LK

bclrx 19 BO BI 0 0 0 BH 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfid 1, 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

Note:  

1. Supervisor-level instruction
2. 64-bit instruction
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Table A-38. XFX-Form 

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 1 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtocrf 31 S 1 CRM 0 144 0

mtspr 1 31 D spr 467 0

Note:  

1. Supervisor and user-level instruction

Table A-39. XFL-Form 

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 63 0 FM 0 B 711 Rc

Table A-40. XS-Form 

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradix 1 31 S A sh 413 sh Rc

Note:  

1. 64-bit instruction
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Table A-41. XO-Form 

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 1 31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhdux 1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 1 31 D A B OE 233 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Note:  

1. 64-bit instruction
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Table A-42. A-Form 

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

Note:  

1. Optional instruction
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Table A-43. M-Form 

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

Table A-44. MD-Form 

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldicx 1 30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

Note:  

1. 64-bit instruction

Table A-45. MDS-Form 

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

Note:  

1. 64-bit instruction
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A.5 Instruction Set Legend

Table A-46 provides general information on the PowerPC instruction set (such as the architectural level, priv-
ilege level, and form). 

Table A-46. PowerPC Instruction Set Legend  

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

addx Yes XO

addcx Yes XO

addex Yes XO

addi Yes D

addic Yes D

addic. Yes D

addis Yes D

addmex Yes XO

addzex Yes XO

andx Yes X

andcx Yes X

andi. Yes D

andis. Yes D

bx Yes I

bcx Yes B

bcctrx Yes XL

bclrx Yes XL

cmp Yes X

cmpi Yes D

cmpl Yes X

cmpli Yes D

cntlzdx Yes Yes X

cntlzwx Yes X

crand Yes XL

crandc Yes XL

creqv Yes XL

crnand Yes XL

crnor Yes XL

cror Yes XL

crorc Yes XL

crxor Yes XL

dcbf Yes X

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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dcbst Yes X

dcbt Yes X

dcbtst Yes X

dcbz Yes X

divdx Yes Yes XO

divdux Yes Yes XO

divwx Yes XO

divwux Yes XO

eciwx Yes Yes X

ecowx Yes Yes X

eieio Yes X

eqvx Yes X

extsbx Yes X

extshx Yes X

extswx Yes Yes X

fabsx Yes X

faddx Yes A

faddsx Yes A

fcfidx Yes Yes X

fcmpo Yes X

fcmpu Yes X

fctidx Yes Yes X

fctidzx Yes Yes X

fctiwx Yes X

fctiwzx Yes Yes X

fdivx Yes A

fdivsx Yes A

fmaddx Yes A

fmaddsx Yes A

fmrx Yes X

fmsubx Yes A

fmsubsx Yes A

fmulx Yes A

fmulsx Yes A

fnabsx Yes X

fnegx Yes X

Table A-46. PowerPC Instruction Set Legend  (Continued) 

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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fnmaddx Yes A

fnmaddsx Yes A

fnmsubx Yes A

fnmsubsx Yes A

fresx Yes Yes A

frspx Yes X

frsqrtex Yes Yes A

fselx Yes Yes A

fsqrtx Yes Yes A

fsqrtsx Yes Yes A

fsubx Yes A

fsubsx Yes A

icbi Yes X

isync Yes XL

lbz Yes D

lbzu Yes D

lbzux Yes X

lbzx Yes X

ld Yes Yes DS

ldarx Yes Yes X

ldu Yes Yes DS

ldux Yes Yes X

ldx Yes Yes X

lfd Yes D

lfdu Yes D

lfdux Yes X

lfdx Yes X

lfs Yes D

lfsu Yes D

lfsux Yes X

lfsx Yes X

lha   Yes D

lhau Yes D

lhaux Yes X

lhax Yes X

lhbrx Yes X

Table A-46. PowerPC Instruction Set Legend  (Continued) 

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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lhz Yes D

lhzu Yes D

lhzux Yes X

lhzx Yes X

lmw 1 Yes D

lswi 1 Yes X

lswx 1 Yes X

lwa Yes Yes DS

lwarx Yes X

lwaux Yes Yes X

lwax Yes Yes X

lwbrx Yes X

lwz Yes D

lwzu Yes D

lwzux Yes X

lwzx Yes X

mcrf Yes XL

mcrfs Yes X

mfcr Yes X

mfocrf 3

mffs Yes X

mfmsr Yes Yes X

mfspr 1 Yes Yes Yes XFX

mfsr Yes Yes Yes Yes X

mfsrin Yes Yes Yes Yes X

mftb Yes XFX

mtcrf Yes XFX

mtocrf 3

mtfsb0x Yes X

mtfsb1x Yes X

mtfsfx Yes XFL

mtfsfix Yes X

mtmsr Yes Yes Yes Yes X

mtmsrd Yes Yes Yes X

mtspr 1 Yes Yes Yes XFX

mtsr Yes Yes Yes Yes X

Table A-46. PowerPC Instruction Set Legend  (Continued) 

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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mtsrin Yes Yes Yes Yes X

mulhdx Yes Yes XO

mulhdux Yes Yes XO

mulhwx Yes XO

mulhwux Yes XO

mulldx Yes Yes XO

mulli Yes D

mullwx Yes XO

nandx Yes X

negx Yes XO

norx Yes X

orx Yes X

orcx Yes X

ori Yes D

oris Yes D

rfid Yes Yes Yes Yes XL

rldclx Yes Yes MDS

rldcrx Yes Yes MDS

rldicx Yes Yes MD

rldiclx Yes Yes MD

rldicrx Yes Yes MD

rldimix Yes Yes MD

rlwimix Yes M

rlwinmx Yes M

rlwnmx Yes M

sc Yes Yes SC

slbia Yes Yes Yes Yes X

slbie Yes Yes Yes Yes X

slbmfee 3 Yes Yes Yes

slbmfev 3 Yes Yes Yes

slbmte 3 Yes Yes Yes

sldx Yes Yes X

slwx Yes X

sradx Yes Yes X

sradix Yes Yes XS

srawx Yes X

Table A-46. PowerPC Instruction Set Legend  (Continued) 

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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srawix Yes X

srdx Yes Yes X

srwx Yes X

stb Yes D

stbu Yes D

stbux Yes X

stbx Yes X

std Yes Yes DS

stdcx. Yes Yes X

stdu Yes Yes DS

stdux Yes Yes X

stdx Yes Yes X

stfd Yes D

stfdu Yes D

stfdux Yes X

stfdx Yes X

stfiwx Yes X

stfs Yes D

stfsu Yes D

stfsux Yes X

stfsx Yes X

sth Yes D

sthbrx Yes X

sthu Yes D

sthux Yes X

sthx Yes X

stmw 2 Yes D

stswi 2 Yes X

stswx 2 Yes X

stw Yes D

stwbrx Yes X

stwcx. Yes X

stwu Yes D

stwux Yes X

stwx Yes X

subfx Yes XO

Table A-46. PowerPC Instruction Set Legend  (Continued) 

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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subfcx Yes XO

subfex Yes XO

subfic Yes D

subfmex Yes XO

subfzex Yes XO

sync Yes X

td Yes Yes X

tdi Yes Yes D

tlbiax Yes Yes Yes X

tlbiex Yes Yes Yes X

tlbiel 3 Yes Yes Yes X

tlbsync Yes Yes Yes X

tw Yes X

twi Yes D

xorx Yes X

xori Yes D

xoris Yes D

Table A-46. PowerPC Instruction Set Legend  (Continued) 

Instruction UISA VEA OEA Supervisor Level 64-Bit Only 64-Bit Bridge Optional Form

Note:  

1. Supervisor and user-level instruction
2. Load/store string or multiple instruction
3. New or newly optional in the PowerPC Architecture Specification 2.01.
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Appendix B. Multiple-Precision Shifts

This appendix gives examples of how multiple precision shifts can be programmed. A multiple-precision shift 
is initially defined to be a shift of an n-double word quantity (64-bit mode) or an n-word quantity (32-bit mode), 
where n > 1. The quantity to be shifted is contained in n registers (in the low-order 32 bits in 32-bit mode). The 
shift amount is specified either by an immediate value in the instruction or by bits [57–63] (64-bit mode) or 
[58-63] (32-bit mode) of a register. 

The examples shown below distinguish between the cases n = 2 and n > 2. If n = 2, the shift amount may be 
in the range 0–127 (64-bit mode), or 0–63 (32-bit mode), which are the maximum ranges supported by the 
shift instructions used. However if n > 2, the shift amount must be in the range 0–63 (64-bit mode), or 0–31 
(32-bit mode), for the examples to yield the desired result. The specific instance shown for n > 2 is n = 3: 
extending those instruction sequences to larger n is straightforward, as is reducing them to the case n = 2 
when the more stringent restriction on shift amount is met. For shifts with immediate shift amounts, only the 
case n = 3 is shown because the more stringent restriction on shift amount is always met. 

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be shifted, and that the result 
is to be placed into the same registers, except for the immediate left shifts in 64-bit mode for which the result 
is placed into GPRs 3, 4, and 5. In all cases, for both input and result, the lowest-numbered register contains 
the highest-order part of the data and highest-numbered register contains the lowest-order part. In 32-bit 
mode, the high-order 32 bits of these registers are assumed not to be part of the quantity to be shifted nor of 
the result. For non-immediate shifts, the shift amount is assumed to be in bits [57–63] (64-bit mode), or 
[58-63] (32-bit mode), of GPR6. For immediate shifts, the shift amount is assumed to be greater than zero. 
GPRs 0-31 are used as scratch registers. For n > 2, the number of instructions required is 2n – 1 (immediate 
shifts) or 3n – 1 (non-immediate shifts). 

The following section provide an example of multiple-precision shifts in 64-bit mode.
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B.1 Multiple-Precision Shifts 
 

Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit Mode) 

64-bit Mode 32-bit Mode

Shift Left Immediate, n = 3 (Shift Amount < 64)

rldicr r5,r4,sh,63 – sh
rldimi r4,r3,0,sh
rldicl r4,r4,sh,0
rldimi r3,r2,0,sh
rldicl r3,r3,sh,0

Shift Left Immediate, n = 3 (Shift Amount < 32)

rlwinm r2,r2,sh,0,31 – sh
rlwimi r2,r3,sh,32 – sh,31
rlwinm r3,r3,sh,0,31 – sh
rlwimi r3,r4,sh,32 – sh,31
rlwinm r4,r4,sh,0,31 – sh

Shift Left, n = 2 (Shift Amount < 128)

subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
addi r31,r6,–64
sld r0,r3,r31
or r2,r2,r0
sld r3,r3,r6

Shift Left, n = 2 (Shift Amount < 64)

subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
addi r31,r6,–32
slw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6

Shift Left, n = 3 (Shift Amount < 64) 

subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
sld r3,r3,r6
srd r0,r4,r31
or r3,r3,r0
sld r4,r4,r6

Shift Left, n = 3 (Shift Amount < 32) 

subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6
srw r0,r4,r31
or r3,r3,r0
slw r4,r4,r6

Shift Right Immediate, n = 3 (Shift Amount < 64)

rldimi r4,r3,0,64 – sh
rldicl r4,r4,64 – sh,0
rldimi r3,r2,0,64 – sh
rldicl r3,r3,64 – sh,0
rldicl r2,r2,64 – sh,sh

Shift Right Immediate, n = 3 (Shift Amount < 32)

rlwinm r4,r4,32 – sh,sh,31
rlwimi r4,r3,32 – sh,0,sh – 1
rlwinm r3,r3,32 – sh,sh,31
rlwimi r3,r2,32 – sh,0,sh – 1
rlwinm r2,r2,32 – sh,sh,31

Shift Right, n = 2 (Shift Amount < 128)

subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addi r31,r6,–64
srd r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, n = 2 (Shift Amount < 64)

subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addi r31,r6, –32
srw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6
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Shift Right, n = 3 (Shift Amount < 64)

subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, n = 3 (Shift Amount < 32)

subfic r31,r6,–32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Shift Right Algebraic Immediate, n = 3 
(Shift Amount < 64) 

rldimi r4,r4,0,64 – sh
rldicl r4,r4,64 – sh,0
rldimi r3,r2,0,64 – sh
rldicl r3,r3,64 – sh,0
sradi r2,r2,sh

Shift Right Algebraic Immediate, n = 3 
(Shift Amount < 32) 

rlwinm r4,r4,32 – sh,sh,31
rlwimi r4,r3,32 – sh,0,sh – 1
rlwinm r3,r3,32 – sh,sh,31
rlwimi r3,r2,32 – sh,0,sh – 1
srawi r2,r2,sh

Shift Right Algebraic, n = 2 (Shift Amount < 128)

subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addic. r31,r6,–64
srad r0,r2,r31
ble $+8
ori r3,r0,0
srad r2,r2,r6

Shift Right Algebraic, n = 2 (Shift Amount < 64)

subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic. r31,r6,–32
sraw r0,r2,r31
ble $+8
ori r3,r0,0
sraw r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 64)

subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srad r2,r2,r6

Shift Right Algebraic, n = 3 (Shift Amount < 32)

subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
sraw r2,r2,r6

Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit Mode) 

64-bit Mode 32-bit Mode
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Appendix C. Floating-Point Models

This appendix describes the execution model for IEEE operations and gives examples of how the floating-
point conversion instructions can be used to perform various conversions as well as providing models for 
floating-point instructions. 

C.1 Execution Model for IEEE Operations

The following description uses double-precision arithmetic as an example; single-precision arithmetic is 
similar except that the fraction field is a 23-bit field and the single-precision guard, round, and sticky bits 
(described in this section) are logically adjacent to the 23-bit FRACTION field.

IEEE-conforming significand arithmetic is performed with a floating-point accumulator where bits [0–55], 
shown in Figure C-1, comprise the significand of the intermediate result.

The bits and fields for the IEEE double-precision execution model are defined as follows:

• The S bit is the sign bit.

• The C bit is the carry bit that captures the carry out of the significand.

• The L bit is the leading unit bit of the significand that receives the implicit bit from the operands.

• The FRACTION is a 52-bit field that accepts the fraction of the operands.

• The guard (G), round (R), and sticky (X) bits are extensions to the low-order bits of the accumulator. The 
G and R bits are required for postnormalization of the result. The G, R, and X bits are required during 
rounding to determine if the intermediate result is equally near the two nearest representable values. The 
X bit serves as an extension to the G and R bits by representing the logical OR of all bits that may appear 
to the low-order side of the R bit, due to either shifting the accumulator right or to other generation of low-
order result bits. The G and R bits participate in the left shifts with zeros being shifted into the R bit. 

Table C-1 shows the significance of the G, R, and X bits with respect to the intermediate result (IR), the next 
lower in magnitude representable number (NL), and the next higher in magnitude representable number 
(NH). 

Figure C-1. IEEE 64-Bit Execution Model 

Table C-1. Interpretation of G, R, and X Bits  

G R X Interpretation

0 0 0 IR is exact

0 0 1

IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL & NH

S C L FRACTION XG R

0 1 52 53 54 55
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The significand of the intermediate result is made up of the L bit, the FRACTION, and the G, R, and X bits.

The infinitely precise intermediate result of an operation is the result normalized in bits L, FRACTION, G, R, 
and X of the floating-point accumulator.

After normalization, the intermediate result is rounded, using the rounding mode specified by FPSCR[RN]. If 
rounding causes a carry into C, the significand is shifted right one position and the exponent is incremented 
by one. This causes an inexact result and possibly exponent overflow. Fraction bits to the left of the bit posi-
tion used for rounding are stored into the FPR, and low-order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through FPSCR[RN] as described in Section 3.3.5 
Rounding. For rounding, the conceptual guard, round, and sticky bits are defined in terms of accumulator bits.

Table C-2 shows the positions of the guard, round, and sticky bits for double-precision and single-precision 
floating-point numbers in the IEEE execution model.

Rounding can be treated as though the significand were shifted right, if required, until the least-significant bit 
to be retained is in the low-order bit position of the FRACTION. If any of the guard, round, or sticky bits are 
nonzero, the result is inexact.

Z1 and Z2, defined in Section 3.3.5 Rounding, can be used to approximate the result in the target format 
when one of the following rules is used:

• Round to nearest

– Guard bit = ‘0’: The result is truncated. (Result exact (GRX = ‘000’) or closest to next lower value in 
magnitude (GRX = ‘001’, ‘010’, or ‘011’).

– Guard bit = ‘1’: Depends on round and sticky bits:

Case a: If the round or sticky bit is one (inclusive), the result is incremented (result closest to next 
higher value in magnitude (GRX = ‘101’, ‘110’, or ‘111’).

Case b: If the round and sticky bits are zero (result midway between closest representable values) 
then if the low-order bit of the result is one, the result is incremented. Otherwise (the low-order bit of 
the result is zero) the result is truncated (this is the case of a tie rounded to even).

If during the round-to-nearest process, truncation of the unrounded number produces the maximum mag-
nitude for the specified precision, the following action is taken:

– Guard bit = ‘1’: Store infinity with the sign of the unrounded result.
– Guard bit = ‘0’: Store the truncated (maximum magnitude) value. 

1 0 1

IR closer to NH1 1 0

1 1 1

Table C-2. Location of the Guard, Round, and Sticky Bits—IEEE Execution Model 

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of [26–52], G, R, X

Table C-1. Interpretation of G, R, and X Bits (Continued) 

G R X Interpretation
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• Round toward zero—Choose the smaller in magnitude of Z1 or Z2. If the guard, round, or sticky bit is non-
zero, the result is inexact.

• Round toward +infinity—Choose Z1. 

• Round toward –infinity—Choose Z2. 

Where the result is to have fewer than 53 bits of precision because the instruction is a floating round to single-
precision or single-precision arithmetic instruction, the intermediate result either is normalized or is placed in 
correct denormalized form before being rounded.

C.2 Execution Model for Multiply-Add Type Instructions

The PowerPC Architecture makes use of a special instruction form that performs up to three operations in 
one instruction (a multiply, an add, and a negate). With this added capability comes the special ability to 
produce a more exact intermediate result as an input to the rounder. Single-precision arithmetic is similar 
except that the fraction field is smaller. Note that the rounding occurs only after add; therefore, the computa-
tion of the sum and product together are infinitely precise before the final result is rounded to a representable 
format.

The multiply-add significand arithmetic is considered to be performed with a floating-point accumulator, 
where bits [1–106] comprise the significand of the intermediate result. The format is shown in Figure C-2.

The first part of the operation is a multiply. The multiply has two 53-bit significands as inputs, which are 
assumed to be prenormalized, and produces a result conforming to the above model. If there is a carry out of 
the significand (into the C bit), the significand is shifted right one position, placing the L bit into the most-
significant bit of the FRACTION and placing the C bit into the L bit. All 106 bits (L bit plus the fraction) of the 
product take part in the add operation. If the exponents of the two inputs to the adder are not equal, the signif-
icand of the operand with the smaller exponent is aligned (shifted) to the right by an amount added to that 
exponent to make it equal to the other input’s exponent. Zeros are shifted into the left of the significand as it is 
aligned and bits shifted out of bit 105 of the significand are ORed into the X' bit. The add operation also 
produces a result conforming to the above model with the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the X' bit, participating in the 
shift. The normalized result serves as the intermediate result that is input to the rounder.

For rounding, the conceptual guard, round, and sticky bits are defined in terms of accumulator bits. Table C-3 
shows the positions of the guard, round, and sticky bits for double-precision and single-precision floating-
point numbers in the multiply-add execution model. 

Figure C-2. Multiply-Add 64-Bit Execution Model 

Table C-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution Model 

Format Guard Round Sticky

Double 53 54 OR of [55–105], X'

Single 24 25 OR of [26–10]5, X'

S C L FRACTION X'

0 1 105 106
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The rules for rounding the intermediate result are the same as those given in Appendix C.1 Execution Model 
for IEEE Operations.

If the instruction is floating negative multiply-add or floating negative multiply-subtract, the final result is 
negated.

Floating-point multiply-add instructions combine a multiply and an add operation without an intermediate 
rounding operation. The fraction part of the intermediate product is 106 bits wide, and all 106 bits take part in 
the add/subtract portion of the instruction.

Status bits are set as follows:

• Overflow, underflow, and inexact exception bits, the FR and FI bits, and the FPRF field are set based on 
the final result of the operation, and not on the result of the multiplication.

• Invalid operation exception bits are set as if the multiplication and the addition were performed using two 
separate instructions (for example, an fmul instruction followed by an fadd instruction). That is, multipli-
cation of infinity by 0 or of anything by an SNaN, causes the corresponding exception bits to be set.

C.3 Floating-Point Conversions

This section provides examples of floating-point conversion instructions. Note that some of the examples use 
the optional Floating Select (fsel) instruction. Care must be taken in using fsel if IEEE compatibility is 
required, or if the values being tested can be NaNs or infinities.

C.3.1 Conversion from Floating-Point Number to Floating-Point Integer

The full convert to floating-point integer function can be implemented with the following sequence assuming 
the floating-point value to be converted is in FPR1, and the result is returned in FPR3.

mtfsb0 23 #clear VXCVI
fctid[z] f3,f1 #convert to fx int
fcfid f3,f3 #convert back again
mcrfs 7,5 #VXCVI to CR
bf 31,$+8 #skip if VXCVI was 0
fmr f3,f1 #input was fp int

C.3.2 Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word

The full convert to signed fixed-point integer double word function can be implemented with the following 
sequence, assuming the floating-point value to be converted is in FPR1, the result is returned in GPR3, and a 
double word at displacement (disp) from the address in GPR1 can be used as scratch space.

fctid[z] f2,f1 #convert to dword int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword
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C.3.3 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word

The full convert to unsigned fixed-point integer double word function can be implemented with the following 
sequence, assuming the floating-point value to be converted is in FPR1, the value zero is in FPR0, the value 
264 – 2048 is in FPR3, the value 263 is in FPR4 and GPR4, the result is returned in GPR3, and a double word 
at displacement (disp) from the address in GPR1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f5,f3,f1 #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4 #subtract 2**63
fcmpu cr2,f2,f4 #use diff if 2**63
fsel f2,f5,f5,f2
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword
blt cr2,$+8 #add 2**63 if input
add r3,r3,r4 #was 2**63

C.3.4 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word

The full convert to signed fixed-point integer word function can be implemented with the following sequence, 
assuming that the floating-point value to be converted is in FPR1, the result is returned in GPR3, and a 
double word at displacement (disp) from the address in GPR1 can be used as scratch space. 

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwa r3,disp + 4(r1) #load word algebraic

#(use lwz on a 32-bit implementation)
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C.3.5 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word

The full convert to unsigned fixed-point integer word function can be implemented with the following 
sequence, assuming the floating-point value to be converted is in FPR1, the value zero is in FPR0, the value 
232 – 1 is in FPR3, the result is returned in GPR3, and a double word at displacement (disp) from the address 
in GPR1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f4,f3,f1 #use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp + 4(r1) #load word and zero

C.3.6 Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number

The full convert from signed fixed-point integer double word function, using the rounding mode specified by 
FPSCR[RN], can be implemented with the following sequence, assuming the fixed-point value to be 
converted is in GPR3, the result is returned in FPR1, and a double word at displacement (disp) from the 
address in GPR1 can be used as scratch space.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int

C.3.7 Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number

The full convert from unsigned fixed point integer double word function, using the rounding mode specified by 
FPSCR[RN], can be implemented with the following sequence, assuming the fixed-point value to be 
converted is in GPR3, the value 232 is in FPR4, the result is returned in FPR1, and two double words at 
displacement (disp) from the address in GPR1 is used as scratch space.

rldicl r2,r3,32,32 #isolate high half
rldicl r0,r3,0,32 #isolate low half
std r2,disp(r1) #store dword both
std r0,disp + 8(r1)
lfd f2,disp(r1) #load float both
lfd f1,disp + 8(r1) #load float both
fcfid f2,f2 #convert each half to 
fcfid f1,f1 #fpu int (no rnd)
fmadd f1,f4,f2,f1 #(2**32)*high+low 

(only add can rnd)

An alternative, shorter, sequence can be used if rounding according to FPSCR[RN] is desired and 
FPSCR[RN] specifies round toward +infinity or round toward –infinity, or if it is acceptable for the rounded 
answer to be either of the two representable floating-point integers nearest to the given fixed-point integer. In 
this case the full convert from unsigned fixed-point integer double word function can be implemented with the 
following sequence, assuming the value 264 is in FPR2.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int
fadd f4,f1,f2 #add 2**64
fsel f1,f1,f1,f4 #if r3 < 0
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C.3.8 Conversion from Signed Fixed-Point Integer Word to Floating-Point Number

The full convert from signed fixed-point integer word function can be implemented with the following 
sequence, assuming the fixed-point value to be converted is in GPR3, the result is returned in FPR1, and a 
double word at displacement (disp) from the address in GPR1 can be used as scratch space. (The result is 
exact.)

extsw r3,r3 #extend sign
std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int

C.3.9 Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number

The full convert from unsigned fixed-point integer word function can be implemented with the following 
sequence, assuming the fixed-point value to be converted is in GPR3, the result is returned in FPR1, and a 
double word at displacement (disp) from the address in GPR1 can be used as scratch space. (The result is 
exact.)

rldicl r0,r3,0,32 #zero-extend
std r0,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fpu int

C.4 Floating-Point Models

This section describes models for floating-point instructions.

C.4.1 Floating-Point Round to Single-Precision Model

The following algorithm describes the operation of the Floating Round to Single-Precision (frsp) instruction.

If frB[1–11] < 897 and frB[1-63] > 0 then
Do

If FPSCR[UE] = 0 then goto Disabled Exponent Underflow
If FPSCR[UE] = 1 then goto Enabled Exponent Underflow 

End

If frB[1-11] > 1150 and frB[1-11] < 2047 then
Do
If FPSCR[OE] = 0 then goto Disabled Exponent Overflow 
If FPSCR[OE] = 1 then goto Enabled Exponent Overflow
End

If frB[1-11] > 896 and frB[1-11] < 1151 then goto Normal Operand

If frB[1-63] = 0 then goto Zero Operand

If frB[1-11] = 2047 then
Do
If frB[12-63] = 0 then goto Infinity Operand
If frB[12] = 1 then goto QNaN Operand
If frB[12] = 0 and frB[13-63] > 0 then goto SNaN Operand
End
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Disabled Exponent Underflow

sign ← frB[0]
If frB[1-11] = 0 then

Do
exp ← -1022
frac[0-52] ← 0b0 || frB[12-63]
End

If frB[1-11] > 0 then
Do
exp ← frB[1-11] - 1023
frac[0-52] ← 0b1 || frB[12-63]
End

Denormalize operand:
G || R || X ← 0b000 
Do while exp < -126
exp ← exp + 1
frac[0-52] || G || R || X ← 0b0 || frac || G || (R | X) 
End

FPSCR[UX] ← frac[24-52] || G || R || X > 0
Round single(sign,exp,frac[0-52],G,R,X)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If frac[0-52] = 0 then

Do
frD[0] ← sign
frD[1-63] ← 0
If sign = 0 then FPSCR[FPRF] ← +zero 
If sign = 1 then FPSCR[FPRF] ← -zero
End

If frac[0-52] > 0 then
Do
If frac[0] = 1 then

Do
If sign = 0 then FPSCR[FPRF] ← +normal number 
If sign = 1 then FPSCR[FPRF] ← -normal number 

End
If frac[0] = 0 then

Do
If sign = 0 then FPSCR[FPRF] ← +denormalized number 
If sign = 1 then FPSCR[FPRF] ← -denormalized number

End
Normalize operand:

Do while frac[0] = 0
exp ← exp - 1
frac[0-52] ← frac[1-52] || 0b0 

End
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52] 
End

Done
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Enabled Exponent Underflow

FPSCR[UX] ← 1
sign ← frB[0]
If frB[1-11] = 0 then

Do
exp ← -1022
frac[0-52] ← 0b0 || frB[12-63]

End
If frB[1-11] > 0 then

Do
exp ← frB[1-11] - 1023
frac[0-52] ← 0b1 || frB[12-63]

End
Normalize operand:

Do while frac[0] = 0
exp ← exp - 1
frac[0-52] ← frac[1-52] || 0b0 

End
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
exp ← exp + 192
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
If sign = 0 then FPSCR[FPRF] ← +normal number 
If sign = 1 then FPSCR[FPRF] ← -normal number 
Done
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Disabled Exponent Overflow

FPSCR[OX] ← 1
If FPSCR[RN] = 0b00 then /* Round to Nearest */

Do
If frB[0] = 0 then frD ← 0x7FF0_0000_0000_0000 
If frB[0] = 1 then frD ← 0xFFF0_0000_0000_0000 
If frB[0] = 0 then FPSCR[FPRF] ← +infinity
If frB[0] = 1 then FPSCR[FPRF] ← -infinity

End
If FPSCR[RN] = 0b01 then /* Round Truncate */

Do
If frB[0] = 0 then frD ← 0x47EF_FFFF_E000_0000 
If frB[0] = 1 then frD ← 0xC7EF_FFFF_E000_0000 
If frB[0] = 0 then FPSCR[FPRF] ← +normal number 
If frB[0] = 1 then FPSCR[FPRF] ← -normal number

End
If FPSCR[RN] = 0b10 then /* Round to +Infinity */

Do
If frB[0] = 0 then frD ← 0x7FF0_0000_0000_0000
If frB[0] = 1 then frD ← 0xC7EF_FFFF_E000_0000
If frB[0] = 0 then FPSCR[FPRF] ← +infinity
If frB[0] = 1 then FPSCR[FPRF] ← -normal number

End
If FPSCR[RN] = 0b11 then /* Round to -Infinity */

Do
If frB[0] = 0 then frD ← 0x47EF_FFFF_E000_0000
If frB[0] = 1 then frD ← 0xFFF0_0000_0000_0000
If frB[0] = 0 then FPSCR[FPRF] ← +normal number 
If frB[0] = 1 then FPSCR[FPRF] ← -infinity

End
FPSCR[FR] ← undefined
FPSCR[FI] ← 1
FPSCR[XX] ← 1
Done

Enabled Exponent Overflow

sign ← frB[0]
exp ← frB[1-11] - 1023

frac[0-52] ← 0b1 || frB[12-63]
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]

Enabled Overflow
FPSCR[OX] ← 1
exp ← exp - 192
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
If sign = 0 then FPSCR[FPRF] ← +normal number 
If sign = 1 then FPSCR[FPRF] ← -normal number 

Done

Zero Operand

frD ← frB
If frB[0] = 0 then FPSCR[FPRF] ← +zero
If frB[0] = 1 then FPSCR[FPRF] ← -zero
FPSCR[FR FI] ← 0b00
Done
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Infinity Operand

frD ← frB
If frB[0] = 0 then FPSCR[FPRF] ← +infinity 
If frB[0] = 1 then FPSCR[FPRF] ← -infinity 
Done

QNaN Operand
frD ← frB[0-34] || 0b0_0000_0000_0000_0000_0000_0000_0000
FPSCR[FPRF] ← QNaN 
FPSCR[FR FI] ← 0b00
Done

SNaN Operand
FPSCR[VXSNAN] ← 1
If FPSCR[VE] = 0 then

Do
frD[0-11] ← frB[0-11]
frD[12] ← 1
frD[13-63] ← frB[13-34] || 

0b0_0000_0000_0000_0000_0000_0000_0000
FPSCR[FPRF] ← QNaN 

End
FPSCR[FR FI] ← 0b00
Done

Normal Operand

sign ← frB[0]
exp ← frB[1-11] - 1023
frac[0-52] ← 0b1 || frB[12-63]
Round single(sign,exp,frac[0-52],0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If exp > +127 and FPSCR[OE] = 0 then go to Disabled Exponent Overflow
If exp > +127 and FPSCR[OE] = 1 then go to Enabled Overflow
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52]
If sign = 0 then FPSCR[FPRF] ← +normal number 
If sign = 1 then FPSCR[FPRF] ← -normal number 
Done
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Round Single (sign,exp,frac[0–52],G,R,X)

inc ← 0
lsb ← frac[23]
gbit ← frac[24]
rbit ← frac[25]
xbit ← (frac[26-52] || G || R || X) ¦ 0
If FPSCR[RN] = 0b00 then

Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If FPSCR[RN] = 0b10 then

Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If FPSCR[RN] = 0b11 then

Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac[0-23] ← frac[0-23] + inc
If carry_out =1 then

Do
frac[0-23] ← 0b1 || frac[0-22]
exp ← exp + 1

End
frac[24-52] ← (29)0
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return
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C.4.2 Floating-Point Convert to Integer Model

The following algorithm describes the operation of the floating-point convert to integer instructions. In this 
example, ‘u’ represents an undefined hexadecimal digit.

If Floating Convert to Integer Word
Then Do

Then round_mode ← FPSCR[RN]
tgt_precision ← 32-bit integer 

End
If Floating Convert to Integer Word with round toward Zero 

Then Do
round_mode ← 0b01 
tgt_precision ← 32-bit integer 

End
If Floating Convert to Integer Double Word

Then Do
round_mode ← FPSCR[RN]
tgt_precision ← 64-bit integer 

End
If Floating Convert to Integer Double Word with Round toward Zero 

Then Do
round_mode ← 0b01 
tgt_precision ← 64-bit integer 

End
sign ← frB[0]
If frB[1-11] = 2047 and frB[12-63] = 0 then goto Infinity Operand
If frB[1-11] = 2047 and frB[12] = 0 then goto SNaN Operand
If frB[1-11] = 2047 and frB[12] = 1 then goto QNaN Operand
If frB[1-11] > 1054 then goto Large Operand

If frB[1-11] > 0 then exp ← frB[1-11] - 1023 /* exp - bias */
If frB[1-11] = 0 then exp ← -1022
If frB[1-11] > 0 then frac[0-64]← 0b01 || frB[12-63] || (11)0 /*normal*/ 
If frB[1-11] = 0 then frac[0-64]← 0b00 || frB[12-63] || (11)0 /*denormal*/

gbit || rbit || xbit ← 0b000 
Do i = 1,63 - exp /*do the loop 0 times if exp = 63*/

frac[0-64] || gbit || rbit || xbit ← 0b0 || frac[0-64] || gbit || (rbit
| xbit)
End
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Round Integer (sign,frac[0–64],gbit,rbit,xbit,round_mode)

In this example, ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u bits.

If sign = 1 then frac[0-64] ← ¬frac[0-64] + 1 /* needed leading 0 for -264 < frB

< -263*/ 

If tgt_precision = 32-bit integer and frac[0-64] > +231 - 1 
then goto Large Operand 

If tgt_precision = 64-bit integer and frac[0-64] > +263 - 1 
then goto Large Operand 

If tgt_precision = 32-bit integer and frac[0-64] < -231 then goto Large Operand

FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]

If tgt_precision = 64-bit integer and frac[0-64] < -263 then goto Large Operand
If tgt_precision = 32-bit integer 

then frD ← 0xxuuu_uuuu || frac[33-64] 
If tgt_precision = 64-bit integer then frD ← frac[1-64]
FPSCR[FPRF] ← undefined
Done

Round Integer(sign,frac[0–64],gbit,rbit,xbit,round_mode)

In this example, ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u bits.

inc ← 0
If round_mode = 0b00 then

Do
If sign || frac[64] || gbit || rbit || xbit = 0bu11uu then inc ← 1 
If sign || frac[64] || gbit || rbit || xbit = 0bu011u then inc ← 1 
If sign || frac[64] || gbit || rbit || xbit = 0bu01u1 then inc ← 1
End

If round_mode = 0b10 then
Do
If sign || frac[64] || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b0uuu1 then inc ← 1
End

If round_mode = 0b11 then
Do
If sign || frac[64] || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || frac[64] || gbit || rbit || xbit = 0b1uuu1 then inc ← 1
End

frac[0-64] ← frac[0-64] + inc
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return
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Infinity Operand

FPSCR[FR FI VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do

If tgt_precision = 32-bit integer then
Do
If sign = 0 then frD ← 0xuuuu_uuuu_7FFF_FFFF 

 If sign = 1 then frD ← 0xuuuu_uuuu_8000_0000 
End

Else
Do
If sign = 0 then frD ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then frD ← 0x8000_0000_0000_0000 
End

FPSCR[FPRF] ← undefined
End

Done

SNaN Operand

FPSCR[FR FI VXCVI VXSNAN] ← 0b0011 
If FPSCR[VE] = 0 then

Do
If tgt_precision = 32-bit integer 

then frD ← 0xuuuu_uuuu_8000_0000
If tgt_precision = 64-bit integer 

then frD ← 0x8000_0000_0000_0000
FPSCR[FPRF] ← undefined

End
Done

QNaN Operand

FPSCR[FR FI VXCVI] ← 0b001 
If FPSCR[VE] = 0 then

Do
If tgt_precision = 32-bit integer then frD ← 0xuuuu_uuuu_8000_0000
If tgt_precision = 64-bit integer then frD ← 0x8000_0000_0000_0000

FPSCR[FPRF] ← undefined
End

Done

Large Operand

FPSCR[FR FI VXCVI] ← 0b001 
If FPSCR[VE] = 0 then Do

If tgt_precision = 32-bit integer then
Do
If sign = 0 then frD ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 then frD ← 0xuuuu_uuuu_8000_0000 
End

Else
Do
If sign = 0 then frD ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then frD ← 0x8000_0000_0000_0000
End

FPSCR[FPRF] ← undefined
End

Done
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C.4.3 Floating-Point Convert from Integer Model

The following describes, algorithmically, the operation of the floating-point convert from integer instructions.

sign ← frB[0]
exp ← 63
frac[0-63] ← frB

If frac[0-63] = 0 then go to Zero Operand

If sign = 1 then frac[0-63] ← ¬frac[0-63] + 1

Do while frac[0] = 0 
frac[0-63] ← frac[1-63] || '0'
exp ← exp - 1

End

Round Float(sign,exp,frac[0–63],FPSCR[RN])

If sign = 1 then FPSCR[FPRF] ← -normal number
If sign = 0 then FPSCR[FPRF] ← +normal number
frD[0] ← sign
frD[1-11] ← exp + 1023 
frD[12-63] ← frac[1-52]
Done

Zero Operand

FPSCR[FR FI] ← 0b00
FPSCR[FPRF] ← “+zero”
frD ← 0x0000_0000_0000_0000
Done
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Round Float(sign,exp,frac[0–63],round_mode)

In this example ‘u’ represents an undefined hexadecimal digit. Comparisons ignore the u bits.

inc ← 0
lsb ← frac[52]
gbit ← frac[53]
rbit ← frac[54]
xbit ← frac[55-63] > 0
If round_mode = 0b00 then

Do
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1
End

If round_mode = 0b10 then
Do
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1
End

If round_mode = 0b11 then
Do
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1
End

frac[0-52] ← frac[0-52] + inc
If carry_out = 1 then exp ← exp + 1
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
Return
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C.5 Floating-Point Selection

The following are examples of how the optional fsel instruction can be used to implement floating-point 
minimum and maximum functions, and certain simple forms of if-then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming language, and the 
corresponding program fragment using fsel and other PowerPC instructions. In the examples, a, b, x, y, and 
z are floating-point variables, which are assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be 
available for scratch space.

Additional examples can be found in Appendix C.3 Floating-Point Conversions.

Note:  Care must be taken in using fsel if IEEE compatibility is required, or if the values being tested can be 
NaNs or infinities.

C.5.1 Comparison to Zero

This section provides examples in a program fragment code sequence for the comparison to zero case.

C.5.2 Minimum and Maximum

This section provides examples in a program fragment code sequence for the minimum and maximum cases.

Table C-4. Comparison to Zero 

High Level Language PowerPC Note(s) from Appendix C.5.4 Notes

if a ≥ 0.0 then x ← y
else x ← z fsel fx, fa, fy, fz 1

if a > 0.0 then x ← y 
else x ← z

fneg fs, fa
fsel fx, fs, fz, fy

1, 2

if a = 0.0 then x ←y
else x ← z

fsel fx, fa, fy, fz
fneg fs, fa
fsel fx, fs, fx, fz

1

Table C-5. Minimum and Maximum 

High Level Language PowerPC Note(s) from Appendix C.5.4 Notes

x ← min(a, b) fsub fs, fa, fb 
fsel fx, fs, fb, fa 3, 4, 5

x ← max(a, b) fsub fs, fa, fb 
fsel fx, fs, fa, fb 3, 4, 5
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C.5.3 Simple If-Then-Else Constructions

This section provides examples in a program fragment code sequence for simple if-then-else statements.

C.5.4 Notes

The following notes apply to the examples found in Appendix C.5.1 Comparison to Zero, 
Appendix C.5.2 Minimum and Maximum, and Appendix C.5.3 Simple If-Then-Else Constructions, and to the 
corresponding cases using the other three arithmetic relations (<, ≥, and ≠). These notes should also be 
considered when any other use of fsel is contemplated.

In these notes the “optimized program” is the PowerPC program shown, and the “unoptimized program” (not 
shown) is the corresponding PowerPC program that uses fcmpu and branch conditional instructions instead 
of fsel.

1. The unoptimized program affects the VXSNAN bit of the FPSCR, and therefore may cause the system 
error handler to be invoked if the corresponding exception is enabled, while the optimized program does 
not affect this bit. This property of the optimized program is incompatible with the IEEE standard. (Note 
that the architecture specification also refers to exceptions as interrupts.)

2. The optimized program gives the incorrect result if ‘a’ is a NaN.

3. The optimized program gives the incorrect result if ‘a’ and/or ‘b’ is a NaN (except that it may give the cor-
rect result in some cases for the minimum and maximum functions, depending on how those functions 
are defined to operate on NaNs).

4. The optimized program gives the incorrect result if ‘a’ and ‘b’ are infinities of the same sign. (Here it is 
assumed that invalid operation exceptions are disabled, in which case the result of the subtraction is a 
NaN. The analysis is more complicated if invalid operation exceptions are enabled, because in that case 
the target register of the subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX, and VXISI bits of the FPSCR, and therefore may cause 
the system error handler to be invoked if the corresponding exceptions are enabled, while the unopti-
mized program does not affect these bits. This property of the optimized program is incompatible with the 
IEEE standard.

Table C-6. Simple If-Then-Else 

High Level Language PowerPC Note(s) from Appendix C.5.4 Notes

if a ≥ b then x ← y
else x ←z

fsub fs, fa, fb
fsel fx, fs, fy, fz 4, 5

if a >b then x ← y
else x ← z

fsub fs, fb, fa
fsel fx, fs, fz, fy 3, 4, 5

if a = b then x← y
else x ←z

fsub fs, fa, fb
fsel fx, fs, fy, fz 
fneg fs, fs
fsel fx, fs, fx, fz 

4, 5
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C.6 Floating-Point Load Instructions

There are two basic forms of load instruction—single-precision and double-precision. Because the FPRs 
support only floating-point double format, single-precision load floating-point instructions convert single-preci-
sion data to double-precision format prior to loading the operands into the target FPR. The conversion and 
loading steps follow:

Let WORD[0–31] be the floating point single-precision operand accessed from memory.

Normalized Operand

If WORD[1-8] > 0 and WORD[1-8] < 255
frD[0-1] ← WORD[0-1] 
frD[2] ← ¬ WORD[1] 
frD[3] ← ¬ WORD[1] 
frD[4] ← ¬ WORD[1] 
frD[5-63] ← WORD[2-31] || (29)0

Denormalized Operand

If WORD[1-8] = 0 and WORD[9-31] ¦ 0
sign ← WORD[0] 
exp ← -126
frac[0-52] ← 0b0 || WORD[9-31] || (29)0
normalize the operand
Do while frac[0] = 0

frac ← frac[1-52] || 0b0
exp ← exp - 1
End
frD[0] ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac[1-52] 

Infinity / QNaN / SNaN / Zero

If WORD[1-8] = 255 or WORD[1-31] = 0
frD[0-1] ← WORD[0-1] 
frD[2] ← WORD[1] 
frD[3] ← WORD[1] 
frD[4] ← WORD[1] 
frD[5-63] ← WORD[2-31] || (29)0

For double-precision floating-point load instructions, no conversion is required as the data from memory is 
copied directly into the FPRs. 

Many floating-point load instructions have an update form in which register rA is updated with the EA. For 
these forms, if operand rA ≠ 0, the effective address (EA) is placed into register rA and the memory element 
(word or double word) addressed by the EA is loaded into the floating-point register specified by operand frD; 
if operand rA = 0, the instruction form is invalid.

Recall that rA, rB, and rD denote GPRs, while frA, frB, frC, frS, and frD denote FPRs.
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C.7 Floating-Point Store Instructions

There are three basic forms of store instruction—single-precision, double-precision, and integer. The integer 
form is provided by the stfiwx instruction. Because the FPRs support only floating-point double format for 
floating-point data, single-precision store floating-point instructions convert double-precision data to single-
precision format prior to storing the operands into memory. The conversion steps follow:

Let WORD[0–31] be the word written to in memory.

No Denormalization Required (includes Zero/Infinity/NaN)

if frS[1-11] > 896 or frS[1-63] = 0 then
WORD[0-1] ← frS[0-1]
WORD[2-31] ← frS[5-34]

Denormalization Required

if 874 ≤ frS[1-11] ≤ 896 then
sign ← frS[0]
exp ← frS[1-11] - 1023
frac ← 0b1 || frS[12-63]
Denormalize operand

Do while exp < -126
frac ← 0b0 || frac[0-62]
exp ← exp + 1

End
WORD[0] ← sign
WORD[1-8] ← 0x00
WORD[9-31] ← frac[1-23]

else WORD ← undefined

Notice that if the value to be stored by a single-precision store floating-point instruction is larger in magnitude 
than the maximum number representable in single format, the first case mentioned, “No Denormalization 
Required,” applies. The result stored in WORD is then a well-defined value, but is not numerically equal to the 
value in the source register (that is, the result of a single-precision load floating-point from WORD will not 
compare equal to the contents of the original source register).

Note:  The description of conversion steps presented here is only a model. The actual implementation may 
vary from this description but must produce results equivalent to what this model would produce.

It is important to note that for double-precision store floating-point instructions and for the store floating-point 
as integer word instruction no conversion is required as the data from the FPR is copied directly into memory. 
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Appendix D. Synchronization Programming Examples

The examples in this appendix show how synchronization instructions can be used to emulate various 
synchronization primitives and how to provide more complex forms of synchronization. 

For each of these examples, it is assumed that a similar sequence of instructions is used by all processes 
requiring synchronization of the accessed data. 

D.1 General Information

The following points provide general information about the lwarx and stwcx. instructions:

• In general, lwarx and stwcx. instructions should be paired, with the same effective address (EA) used for 
both. The only exception is that an unpaired stwcx. instruction to any (scratch) effective address can be 
used to clear any reservation held by the processor. 

• It is acceptable to execute an lwarx instruction for which no stwcx. instruction is executed. Such a dan-
gling lwarx instruction occurs in the example shown in Appendix D.2.5 Test and Set if the value loaded is 
not zero. 

• To increase the likelihood that forward progress is made, it is important that looping on lwarx/stwcx. pairs 
be minimized. For example, in the sequence shown in Appendix D.2.5 Test and Set this is achieved by 
testing the old value before attempting the store—were the order reversed, more stwcx. instructions 
might be executed, and reservations might more often be lost between the lwarx and the stwcx. instruc-
tions. 

• The manner in which lwarx and stwcx. are communicated to other processors and mechanisms, and 
between levels of the memory subsystem within a given processor, is implementation-dependent. In 
some implementations, performance may be improved by minimizing looping on an lwarx instruction that 
fails to return a desired value. For example, in the example provided in Appendix D.2.5 Test and Set if the 
program stays in the loop until the word loaded is zero, the programmer can change the “bne- $+12” to 
“bne- loop.” 

In some implementations, better performance may be obtained by using an ordinary load instruction to do 
the initial checking of the value, as follows: 

loop: lwz r5,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne- loop #not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpwi r5,0 #(likely to succeed)
bne loop #try to store nonzero
stwcx. r4,0,r3 #
bne- loop #loop if lost reservation

• In a multiprocessor, livelock (a state in which processors interact in a way such that no processor makes 
progress) is possible if a loop containing an lwarx/stwcx. pair also contains an ordinary store instruction 
for which any byte of the affected memory area is in the reservation granule of the reservation. For exam-
ple, the first code sequence shown in Appendix D.5 List Insertion can cause livelock if two list elements 
have next element pointers in the same reservation granule. 

Note:  The examples in this appendix use the lwarx/stwcx. instructions, which address words in memory. 
For 64-bit implementations, these examples can be modified to address double words by changing all lwarx 
instructions to ldarx instructions, all stwcx. instructions to stdcx. instructions, all stw instructions to std 
instructions, and all cmpw and cmpwi extended mnemonics to cmpd and cmpdi, respectively. 
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D.2 Synchronization Primitives

The following examples show how the lwarx and stwcx. instructions can be used to emulate various 
synchronization primitives. The sequences used to emulate the various primitives consist primarily of a loop 
using the lwarx and stwcx. instructions. Additional synchronization is unnecessary, because the stwcx. will 
fail, clearing the EQ bit, if the word loaded by lwarx has changed before the stwcx. is executed. 

D.2.1 Fetch and No-Op

The fetch and no-op primitive atomically loads the current value in a word in memory. In this example, it is 
assumed that the address of the word to be loaded is in GPR3 and the data loaded are returned in GPR4. 

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bne- loop #loop if lost reservation

The stwcx., if it succeeds, stores to the destination location the same value that was loaded by the preceding 
lwarx. While the store is redundant with respect to the value in the location, its success ensures that the 
value loaded by the lwarx was the current value (that is, the source of the value loaded by the lwarx was the 
last store to the location that preceded the stwcx. in the coherence order for the location).

D.2.2 Fetch and Store

The fetch and store primitive atomically loads and replaces a word in memory. 

In this example, it is assumed that the address of the word to be loaded and replaced is in GPR3, the new 
value is in GPR4, and the old value is returned in GPR5. 

loop: lwarx r5,0,r3 #load and reserve 
stwcx. r4,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

D.2.3 Fetch and Add

The fetch and add primitive atomically increments a word in memory. 

In this example, it is assumed that the address of the word to be incremented is in GPR3, the increment is in 
GPR4, and the old value is returned in GPR5. 

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation
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D.2.4 Fetch and AND

The fetch and AND primitive atomically ANDs a value into a word in memory.

In this example, it is assumed that the address of the word to be ANDed is in GPR3, the value to AND into it 
is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically on a word in memory, 
simply by changing the AND instruction to the desired Boolean instruction (OR, XOR, etc.). 

D.2.5 Test and Set

This version of the test and set primitive atomically loads a word from memory, ensures that the word in 
memory is a nonzero value, and sets CR0[EQ] according to whether the value loaded is zero. 

In this example, it is assumed that the address of the word to be tested is in GPR3, the new value (nonzero) 
is in GPR4, and the old value is returned in GPR5. 

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5, 0 #done if word
bne $+12 #not equal to 0
stwcx. r4,0,r3 #try to store non-zero
bne- loop #loop if lost reservation

D.3 Compare and Swap

The compare and swap primitive atomically compares a value in a register with a word in memory. If they are 
equal, it stores the value from a second register into the word in memory. If they are unequal, it loads the 
word from memory into the first register, and sets the EQ bit of the CR0 field to indicate the result of the 
comparison. 

In this example, it is assumed that the address of the word to be tested is in GPR3, the word that is compared 
is in GPR4, the new value is in GPR5, and the old value is returned in GPR4. 

loop: lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #first 2 operands equal ?
bne- exit #skip if not
stwcx. r5,0,r3 #store new value if still reserved
bne- loop #loop if lost reservation

exit: mr r4,r6 #return value from memory

Notes:  

1. The semantics in this example are based on the IBM System/370™ compare and swap instruction. Other 
architectures may define this instruction differently. 

2. Compare and swap is shown primarily for pedagogical reasons. It is useful on machines that lack the bet-
ter synchronization facilities provided by the lwarx and stwcx. instructions. Although the instruction is 
atomic, it checks only for whether the current value matches the old value. An error can occur if the value 
had been changed and restored before being tested. 
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3. In some applications, the second bne- instruction and/or the mr instruction can be omitted. The first bne- 
is needed only if the application requires that if the EQ bit of CR0 field on exit indicates not equal, then the 
original compared value in r4 and r6 are in fact not equal. The mr is needed only if the application 
requires that if the compared values are not equal, then the word from memory is loaded into the register 
with which it was compared (rather than into a third register). If either, or both, of these instructions is 
omitted, the resulting compare and swap does not obey the IBM System/370 semantics.

D.4 Lock Acquisition and Release 

This section gives examples of how dependencies and the synchronization instructions can be used to imple-
ment locks, import and export barriers, and similar constructs.

D.4.1 Lock Acquisition and Import Barriers

An “import barrier” is an instruction or sequence of instructions that prevents memory accesses caused by 
instructions following the barrier from being performed before memory accesses that acquire a lock have 
been performed. An import barrier can be used to ensure that a shared data structure protected by a lock is 
not accessed until the lock has been acquired. A sync instruction can be used as an import barrier, but the 
approaches shown below will generally yield better performance because they order only the relevant 
memory accesses.

D.4.1.1 Acquire Lock and Import Shared Memory

If lwarx and stwcx. instructions are used to obtain the lock, an import barrier can be constructed by placing 
an isync instruction immediately following the loop containing the lwarx and stwcx.. The following example 
uses the “Compare and Swap” primitive to acquire the lock.

In this example it is assumed that the address of the lock is in GPR 3, the value indicating that the lock is free 
is in GPR 4, the value to which the lock should be set is in GPR 5, the old value of the lock is returned in GPR 
6, and the address of the shared data structure is in GPR 9.

loop: lwarx r6,0,r3 #load lock and reserve
cmpw r4,r6 #skip ahead if
bne- wait # lock not free
stwcx. r5,0,r3 #try to set lock
bne- loop #loop if lost reservation
isync #import barrier
lwz r7,data1(r9) #load shared data
..
wait: ... #wait for lock to free

The second bne- does not complete until CR0 has been set by the stwcx.. The stwcx. does not set CR0 until 
it has completed (successfully or unsuccessfully). The lock is acquired when the stwcx. completes success-
fully. Together, the second bne- and the subsequent isync create an import barrier that prevents the load 
from “data1” from being performed until the branch has been resolved not to be taken.

If the shared data structure is in memory that is neither Write Through Required nor Caching Inhibited, an 
lwsync instruction can be used instead of the isync instruction. If lwsync is used, the load from “data1” may 
be performed before the stwcx.. But if the stwcx. fails, the second branch is taken and the lwarx is reexe-
cuted. If the stwcx. succeeds, the value returned by the load from “data1” is valid even if the load is 
performed before the stwcx., because the lwsync ensures that the load is performed after the instance of the 
lwarx that created the reservation used by the successful stwcx..
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D.4.1.2 Obtain Pointer and Import Shared Memory

If lwarx and stwcx. instructions are used to obtain a pointer into a shared data structure, an import barrier is 
not needed if all the accesses to the shared data structure depend on the value obtained for the pointer. The 
following example uses the “Fetch and Add” primitive to obtain and increment the pointer.

In this example it is assumed that the address of the pointer is in GPR 3, the value to be added to the pointer 
is in GPR 4, and the old value of the pointer is returned in GPR 5.

loop: lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5 #increment the pointer
stwcx. r0,0,r3 #try to store new value
bne- loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the pointer value has been loaded into GPR 5 by the lwarx. 
The load from “data1” may be performed before the stwcx., but if the stwcx. fails, the branch is taken and the 
value returned by the load from “data1” is discarded. If the stwcx. succeeds, the value returned by the load 
from “data1” is valid even if the load is performed before the stwcx., because the load uses the pointer value 
returned by the instance of the lwarx that created the reservation used by the successful stwcx..

An isync instruction could be placed between the bne- and the subsequent lwz, but no isync is needed if all 
accesses to the shared data structure depend on the value returned by the lwarx.

D.4.2 Lock Release and Export Barriers

An “export barrier” is an instruction or sequence of instructions that prevents the store that releases a lock 
from being performed before stores caused by instructions preceding the barrier have been performed. An 
export barrier can be used to ensure that all stores to a shared data structure protected by a lock will be 
performed with respect to any other processor before the store that releases the lock is performed with 
respect to that processor.

D.4.2.1 Export Shared Memory and Release Lock

A sync instruction can be used as an export barrier independent of the memory control attributes (for 
example, presence or absence of the Caching Inhibited attribute) of the memory containing the shared data 
structure. Because the lock must be in memory that is neither Write Through Required nor Caching Inhibited, 
if the shared data structure is in memory that is Write Through Required or Caching Inhibited a sync instruc-
tion must be used as the export barrier.

In this example it is assumed that the shared data structure is in memory that is Caching Inhibited, the 
address of the lock is in GPR 3, the value indicating that the lock is free is in GPR 4, and the address of the 
shared data structure is in GPR 9. 

stw r7,data1(r9) #store shared data (last)
sync #export barrier
stw r4,lock(r3) #release lock

The sync ensures that the store that releases the lock will not be performed with respect to any other 
processor until all stores caused by instructions preceding the sync have been performed with respect to that 
processor.
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D.4.2.2 Export Shared Memory and Release Lock using EIEIO or LYSYNC

If the shared data structure is in memory that is neither Write Through Required nor Caching Inhibited, an 
eieio instruction can be used as the export barrier. Using eieio rather than sync will yield better performance 
in most systems.

In this example it is assumed that the shared data structure is in memory that is neither Write Through 
Required nor Caching Inhibited, the address of the lock is in GPR 3, the value indicating that the lock is free is 
in GPR 4, and the address of the shared data structure is in GPR 9.

stw r7,data1(r9) #store shared data (last)
eieio #export barrier
stw r4,lock(r3) #release lock

The eieio ensures that the store that releases the lock will not be performed with respect to any other 
processor until all stores caused by instructions preceding the eieio have been performed with respect to that 
processor.

However, for memory that is neither Write Through Required nor Caching Inhibited, eieio orders only stores 
and has no effect on loads. If the portion of the program preceding the eieio contains loads from the shared 
data structure and the stores to the shared data structure do not depend on the values returned by those 
loads, the store that releases the lock could be performed before those loads. If it is necessary to ensure that 
those loads are performed before the store that releases the lock, lwsync should be used instead of eieio. 
Alternatively, the technique described inAppendix D.4.3 Safe Fetch can be used.

D.4.3 Safe Fetch

If a load must be performed before a subsequent store (for example, the store that releases a lock protecting 
a shared data structure), a technique similar to the following can be used.

In this example it is assumed that the address of the memory operand to be loaded is in GPR 3, the contents 
of the memory operand are returned in GPR 4, and the address of the memory operand to be stored is in 
GPR 5.

lwz r4,0(r3)  #load shared data
cmpw r4,r4 #set CR0 to "equal"
bne- $-8 #branch never taken
stw r7,0(r5) #store other shared data

An alternative is to use a technique similar to that described in Appendix D.4.1.2 Obtain Pointer and Import 
Shared Memory, by causing the stw to depend on the value returned by the lwz and omitting the cmpw and 
bne-. The dependency could be created by ANDing the value returned by the lwz with zero and then adding 
the result to the value to be stored by the stw. If both memory operands are in memory that is neither Write 
Through Required nor Caching Inhibited, another alternative is to replace the cmpw and bne- with an lwsync 
instruction.
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D.5 List Insertion

The following example shows how the lwarx and stwcx. instructions can be used to implement simple LIFO 
(last-in-first-out) insertion into a singly-linked list. (Complicated list insertion, in which multiple values must be 
changed atomically, or in which the correct order of insertion depends on the contents of the elements, 
cannot be implemented in the manner shown below, and requires a more complicated strategy such as using 
locks.) 

The next element pointer from the list element after which the new element is to be inserted, here called the 
parent element, is stored into the new element, so that the new element points to the next element in the 
list—this store is performed unconditionally. Then the address of the new element is conditionally stored into 
the parent element, thereby adding the new element to the list. 

In this example, it is assumed that the address of the parent element is in GPR3, the address of the new 
element is in GPR4, and the next element pointer is at offset zero from the start of the element. It is also 
assumed that the next element pointer of each list element is in a reservation granule separate from that of 
the next element pointer of all other list elements. 

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
eieio #order stw before stwcx.
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, lwsync can be used instead of eieio.

In the preceding example, if two list elements have next element pointers in the same reservation granule in a 
multiprocessor system, livelock can occur. Livelock is a state in which processors interact in a way such that 
no processor makes forward progress. 

If it is not possible to allocate list elements such that each element’s next element pointer is in a different 
reservation granule, then livelock can be avoided by using the following sequence:

lwz r2,0(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #order stw before stwcx. 

# and before lwarx

loop2: lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne- loopl #else progressed)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if failed

In the preceding example, livelock is avoided by the fact that each processor reexecutes the stw only if some 
other processor has made forward progress.
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D.6 Notes
1. To increase the likelihood that forward progress is made, it is important that looping on lwarx/stwcx. pairs 

be minimized. For example, in the “Test and Set” sequence shown in Appendix D.2.5 , this is achieved by 
testing the old value before attempting the store; were the order reversed, more stwcx. instructions might 
be executed, and reservations might more often be lost between the lwarx and the stwcx..

2. The manner in which lwarx and stwcx. are communicated to other processors and mechanisms, and 
between levels of the memory hierarchy within a given processor, is implementation-dependent. In some 
implementations performance may be improved by minimizing looping on a lwarx instruction that fails to 
return a desired value. For example, in the “Test and Set” sequence shown in Appendix D.2.5 , if the pro-
grammer wishes to stay in the loop until the word loaded is zero, he could change the “bne- $+12” to 
“bne- loop”. However, in some implementations better performance may be obtained by using an ordinary 
Load instruction to do the initial checking of the value, as follows. 

loop: lwz r5,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne- loop # not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpwi r5,0 # (likely to succeed)
bne- loop
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reservation

3. In a multiprocessor, livelock is possible if there is a Store instruction (or any other instruction that can 
clear another processor's reservation) between the lwarx and the stwcx. of a lwarx/stwcx. loop and any 
byte of the memory location specified by the Store is in the reservation granule. For example, the first 
code sequence shown in Appendix D.5 List Insertion can cause livelock if two list elements have next ele-
ment pointers in the same reservation granule.
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Appendix E. Simplified Mnemonics

This appendix is provided in order to simplify the writing and comprehension of assembler language 
programs. Included are a set of simplified mnemonics and symbols that define the simple shorthand used for 
the most frequently-used forms of branch conditional, compare, trap, rotate and shift, and certain other 
instructions. 

Note:  The architecture specification refers to simplified mnemonics as extended mnemonics.

E.1 Symbols

The symbols in Table E-1 are defined for use in instructions (basic or simplified mnemonics) that specify a 
condition register (CR) field or a bit in the CR.

Note:  The simplified mnemonics in Appendix E.5.2 Basic Branch Mnemonics and Appendix E.6 Simplified 
Mnemonics for Condition Register Logical Instructions require identification of a CR bit—if one of the CR field 
symbols is used, it must be multiplied by 4 and added to a bit-number-within-CR-field (value in the range of 
[0–3], explicit or symbolic). The simplified mnemonics in Appendix E.5.3 Branch Mnemonics Incorporating 
Conditions and Appendix E.3 Simplified Mnemonics for Compare Instructions require identification of a CR 
field—if one of the CR field symbols is used, it must not be multiplied by 4. (For the simplified mnemonics in 
Appendix E.5.3 Branch Mnemonics Incorporating Conditions the bit number within the CR field is part of the 
simplified mnemonic. The CR field is identified, and the assembler does the multiplication and addition 
required to produce a CR bit number for the BI field of the underlying basic mnemonic.)

Table E-1. Condition Register Bit and Identification Symbol Descriptions  

Symbol Value Bit Field 
Range Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number in a CR field.

cr0 0 0–3 CR0 field

cr1 1 4–7 CR1 field

cr2 2 8–11 CR2 field

cr3 3 12–15 CR3 field

cr4 4 16–19 CR4 field

cr5 5 20–23 CR5 field

cr6 6 24–27 CR6 field

cr7 7 28–31 CR7 field

Note:  To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a bit-number-within-CR-field 
symbol can be used.
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E.2 Simplified Mnemonics for Subtract Instructions

This section discusses simplified mnemonics for the subtract instructions.

E.2.1 Subtract Immediate

Although there is no subtract immediate instruction, its effect can be achieved by using an add immediate 
instruction with the immediate operand negated. Simplified mnemonics are provided that include this nega-
tion, making the intent of the computation more clear.

subi rD,rA,value (equivalent to addi rD,rA,–value)
subis rD,rA,value (equivalent to addis rD,rA,–value)
subic rD,rA,value (equivalent to addic rD,rA,–value)
subic. rD,rA,value (equivalent to addic. rD,rA,–value)

E.2.2 Subtract

The subtract from instructions subtract the second operand (rA) from the third (rB). Simplified mnemonics are 
provided that use the more normal order in which the third operand is subtracted from the second. Both these 
mnemonics can be coded with an o suffix and/or dot (.) suffix to cause the OE and/or Rc bit to be set in the 
underlying instruction.

sub rD,rA,rB (equivalent to subf rD,rB,rA)
subc rD,rA,rB (equivalent to subfc rD,rB,rA)

E.3 Simplified Mnemonics for Compare Instructions

The L field in the integer compare instructions controls whether the operands are treated as 64-bit quantities 
(when L = ‘1’) or as 32-bit quantities (when L = ‘0’). Simplified mnemonics are provided that represent the 
L value in the mnemonic rather than requiring it to be coded as a numeric operand.

The crfD field can be omitted if the result of the comparison is to be placed into the CR0 field. Otherwise, the 
target CR field must be specified as the first operand. One of the CR field symbols defined in 
Appendix E.1 Symbols can be used for this operand.

Note:  The crfD field can normally be omitted when the CR0 field is the target, if L is specified the assembler 
requires that crfD be specified explicitly.
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E.3.1 Double-Word Comparisons

The instructions listed in Table E-2 are simplified mnemonics that should be supported by assemblers 
provided for 64-bit implementations. 

Following are examples using the double-word compare mnemonics.

1. Compare rA and immediate value 100 as unsigned 64-bit integers and place result in CR0.

cmpldi rA,100 (equivalent to cmpli 0,1,rA,100)

2. Same as (1), but place result in CR4.

cmpldi cr4,rA,100 (equivalent to cmpli 4,1,rA,100)

3. Compare rA and rB as signed 64-bit integers and place result in CR0.

cmpd rA,rB (equivalent to cmp 0,1,rA,rB)

E.3.2 Word Comparisons

The instructions listed in Table E-3 are simplified mnemonics that should be supported by assemblers for all 
PowerPC implementations.

Following are examples using the word compare mnemonics. 

1. Compare rA[32–63] with immediate value 100 as signed 32-bit integers and place result in CR0.

cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

2. Same as (1), but place results in CR4.

cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

3. Compare rA[32–63] and rB[32–63] as unsigned 32-bit integers and place result in CR0.

cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

Table E-2. Simplified Mnemonics for Double-Word Compare Instructions  

Operation Simplified Mnemonic Equivalent to:

Compare Double Word Immediate cmpdi crfD,rA,SIMM cmpi crfD,1,rA,SIMM

Compare Double Word cmpd crfD,rA,rB cmp crfD,1,rA,rB

Compare Logical Double Word Immediate cmpldi crfD,rA,UIMM cmpli crfD,1,rA,UIMM

Compare Logical Double Word cmpld crfD,rA,rB cmpl crfD,1,rA,rB

Table E-3. Simplified Mnemonics for Word Compare Instructions  

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM cmpi crfD,0,rA,SIMM

Compare Word cmpw crfD,rA,rB cmp crfD,0,rA,rB

Compare Logical Word Immediate cmplwi crfD,rA,UIMM cmpli crfD,0,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB cmpl crfD,0,rA,rB
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E.4 Simplified Mnemonics for Rotate and Shift Instructions

The rotate and shift instructions provide powerful and general ways to manipulate register contents, but can 
be difficult to understand. Simplified mnemonics that allow some of the simpler operations to be coded easily 
are provided for the following types of operations: 

E.4.1 Operations on Double Words

The operations shown in Table E-4 are available only in 64-bit implementations. All these mnemonics can be 
coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction. 

Extract Select a field of n bits starting at bit position b in the source register; left or right 
justify this field in the target register; clear all other bits of the target register.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this 
field starting at bit position b of the target register; leave other bits of the target 
register unchanged. (No simplified mnemonic is provided for insertion of a left-justi-
fied field, when operating on double words, because such an insertion requires 
more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift).

Clear Clear the leftmost or rightmost n bits of a register.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This oper-
ation can be used to scale a (known non-negative) array index by the width of an 
element. 

Table E-4. Double-Word Rotate and Shift Instructions  

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extldi rA,rS,n,b (n > 0) rldicr rA,rS,b,n – 1

Extract and right justify immediate extrdi rA,rS,n,b (n > 0) rldicl rA,rS,b + n, 64 – n

Insert from right immediate insrdi rA,rS,n,b (n > 0) rldimi rA,rS,64 – (b + n),b

Rotate left immediate rotldi rA,rS,n rldicl rA,rS,n,0

Rotate right immediate rotrdi rA,rS,n rldicl rA,rS,64 – n,0

Rotate left rotld rA,rS,rB rldcl rA,rS,rB,0

Shift left immediate sldi rA,rS,n (n < 64) rldicr rA,rS,n,63 – n

Shift right immediate srdi rA,rS,n (n < 64) rldicl rA,rS,64 – n,n

Clear left immediate clrldi rA,rS,n (n < 64) rldicl rA,rS,0,n

Clear right immediate clrrdi rA,rS,n (n < 64) rldicr rA,rS,0,63 – n

Clear left and shift left immediate clrlsldi rA,rS,b,n (n ≤ b ≤ 63) rldic rA,rS,n,b – n
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Examples using double-word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.

extrdi rA,rS,1,0 (equivalent to rldicl rA,rS,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit [0]) of rB.

insrdi rB,rA,1,0 (equivalent to rldimi rB,rA,63,0)

3. Shift the contents of rA left 8 bits.

sldi rA,rA,8 (equivalent to rldicr rA,rA,8,55)

4. Clear the high-order 32 bits of rS and place the result into rA.

clrldi rA,rS,32 (equivalent to rldicl rA,rS,0,32)

E.4.2 Operations on Words

The operations shown in Table E-5 are available in all implementations. All these mnemonics can be coded 
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction. The operations, as described in 
Appendix E.4.1 Operations on Double Words apply only to the low-order 32 bits of the registers. The insert 
operations either preserve the high-order 32 bits of the target register or place rotated data there; the other 
operations clear these bits.

Examples using word mnemonics follow:

1. Extract the sign bit (bit [32]) of rS and place the result right-justified into rA. 

extrwi rA,rS,1,0 (equivalent to rlwinm rA,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit [32]) of rB.

insrwi rB,rA,1,0 (equivalent to  rlwimi rB,rA,31,0,0)

Table E-5. Word Rotate and Shift Instructions 

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n
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3. Shift the contents of rA left 8 bits, clearing the high-order 32 bits.

slwi rA,rA,8 (equivalent to  rlwinm rA,rA,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of rS and place the result into rA, clearing the high-
order 32 bits of rA.

clrlwi rA,rS,16 (equivalent to  rlwinm rA,rS,0,16,31)

E.5 Simplified Mnemonics for Branch Instructions

Mnemonics are provided so that branch conditional instructions can be coded with the condition as part of the 
instruction mnemonic rather than as a numeric operand. Some of these are shown as examples with the 
branch instructions. 

The mnemonics discussed in this section are variations of the branch conditional instructions.

E.5.1 BO and BI Fields

The 5-bit BO field in branch conditional instructions encodes the following operations.

• Decrement count register (CTR)

• Test CTR equal to zero

• Test CTR not equal to zero

• Test condition true

• Test condition false

• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in the CR represents the 
condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI fields would require 
210 = 1024 mnemonics and most of these would be only marginally useful. The abbreviated set found in 
Appendix E.5.2 Basic Branch Mnemonics, is intended to cover the most useful cases. Unusual cases can be 
coded using a basic branch conditional mnemonic (bc, bclr, bcctr) with the condition to be tested specified 
as a numeric operand.

E.5.2 Basic Branch Mnemonics

The mnemonics in Table E-6 allow all the common BO operand encodings to be specified as part of the 
mnemonic, along with the absolute address (AA), and set link register (LR) bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional branches. For these, 
the basic mnemonics b, ba, bl, and bla are used. 

Table E-6 provides the abbreviated set of simplified mnemonics for the most commonly performed condi-
tional branches. 
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The simplified mnemonics shown in Table E-6 that test a condition require a corresponding CR bit as the first 
operand of the instruction. The symbols defined in Appendix E.1 Symbols can be used in the operand in 
place of a numeric value.

The simplified mnemonics found in Table E-6 are used in the following examples: 

Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into CTR).
bdnz target (equivalent to  bc 16,0,target)

Same as (1) but branch only if CTR is non-zero and condition in CR0 is “equal.”
bdnzt eq,target (equivalent to  bc 8,2,target)

Same as (2), but “equal” condition is in CR5.
bdnzt 4 * cr5 + eq,target (equivalent to  bc 8,22,target)

Branch if bit 27 of CR is false.
bf 27,target  (equivalent to  bc 4,27,target)

Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target (equivalent to  bcl 4,27,target)

Table E-7 provides the simplified mnemonics for the bc and bca instructions without link register updating, 
and the syntax associated with these instructions. 

Note:  The default condition register specified by the simplified mnemonics in the table is CR0.

Table E-6. Simplified Branch Mnemonics  

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc 
Relative

bca 
Absolute

bclr 
to LR

bcctr 
to CTR

bcl 
Relative

bcla 
Absolute

bclrl 
to LR

bcctrl 
to CTR

Branch unconditionally — — blr bctr — — blrl bctrl 

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if 
CTR non-zero bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR, branch if 
CTR non-zero AND condition 
true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR, branch if 
CTR non-zero AND condition 
false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR, branch if 
CTR zero bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR, branch if 
CTR zero AND condition true bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR, branch if 
CTR zero AND condition false bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —
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Table E-8 provides the simplified mnemonics for the bclr and bcclr instructions without link register updating, 
and the syntax associated with these instructions. Note that the default condition register specified by the 
simplified mnemonics in the table is CR0.

Table E-9 provides the simplified mnemonics for the bcl and bcla instructions with link register updating, and 
the syntax associated with these instructions. Note that the default condition register specified by the simpli-
fied mnemonics in the table is CR0.

Table E-7. Simplified Branch Mnemonics for bc and bca Instructions without Link Register Update  

Branch Semantics

LR Update Not Enabled

bc
 Relative Simplified Mnemonic bca

Absolute Simplified Mnemonic

Branch unconditionally — — — —

Branch if condition true bc 12,0,target bt 0,target bca 12,0,target bta 0,target

Branch if condition false bc  4,0,target bf 0,target bca  4,0,target bfa 0,target

Decrement CTR, branch if CTR nonzero bc 16,0,target bdnz target bca 16,0,target bdnza target

Decrement CTR, branch if CTR nonzero AND 
condition true bc 8,0,target bdnzt  0,target bca 8,0,target bdnzta  0,target

Decrement CTR, branch if CTR nonzero AND 
condition false bc 0,0,target bdnzf 0,target bca 0,0,target bdnzfa 0,target 

Decrement CTR, branch if CTR zero bc 18,0,target bdz target bca 18,0,target bdza  target

Decrement CTR, branch if CTR zero AND condi-
tion true bc 10,0,target bdzt 0,target bca 10,0,target bdzta 0,target 

Decrement CTR, branch if CTR zero AND condi-
tion false bc 2,0,target bdzf 0,target bca 2,0,target bdzfa 0,target

Table E-8. Simplified Branch Mnemonics for bclr and bcclr Instructions without Link Register Update  

Branch Semantics

LR Update Not Enabled

bclr 
to LR Simplified Mnemonic bcctr to CTR Simplified Mnemonic

Branch unconditionally bclr 20,0 blr bcctr 20,0 bctr

Branch if condition true bclr  12,0 btlr  0 bcctr  12,0 btctr  0

Branch if condition false bclr 4,0 bflr 0 bcctr  4,0 bfctr  0

Decrement CTR, branch if CTR nonzero bclr  16,0 bdnzlr — —

Decrement CTR, branch if CTR nonzero 
AND condition true bclr  10,0 bdztlr 0 — —

Decrement CTR, branch if CTR nonzero 
AND condition false bclr 0,0 bdnzflr 0 — —

Decrement CTR, branch if CTR zero bclr  18,0 bdzlr — —

Decrement CTR, branch if CTR zero AND 
condition true bclr  10,0 bdztlr 0 — —

Decrement CTR, branch if CTR zero AND 
condition false bcctr 0,0 bdzflr 0 — —
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Table E-10 provides the simplified mnemonics for the bclrl and bcctrl instructions with link register updating, 
and the syntax associated with these instructions. Note that the default condition register specified by the 
simplified mnemonics in the table is CR0.

Table E-9. Simplified Branch Mnemonics for bcl and bcla Instructions with Link Register Update  

Branch Semantics
LR Update Enabled

bcl Relative Simplified Mnemonic bcla Absolute Simplified Mnemonic

Branch unconditionally — — — —

Branch if condition true bcl 1 2,0,target btl 0,target bcla  12,0,target btla 0,target

Branch if condition false bcl 4,0,target bfl 0,target bcla  4,0,target bfla 0,target

Decrement CTR, branch if CTR nonzero bcl  16,0,target bdnzl target bcla  16,0,target bdnzla target

Decrement CTR, branch if CTR nonzero AND 
condition true bcl  8,0,target bdnztl  0,target bcla 8,0,target bdnztla 0,target

Decrement CTR, branch if CTR nonzero AND 
condition false bcl 0,0,target bdnzfl  0,target bcla  0,0,target bdnzfla 0,target

Decrement CTR, branch if CTR zero bcl 18,0,target bdzl target bcla  18,0,target bdzla target

Decrement CTR, branch if CTR zero AND 
condition true bcl  10,0,target bdztl 0,target bcla  10,0,target bdztla 0,target

Decrement CTR, branch if CTR zero AND 
condition false bcl 2,0,target bdzfl 0,target bcla  2,0,target bdzfla 0,target

Table E-10. Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link Register Update  

Branch Semantics

LR Update Enabled

bclrl 
to LR Simplified Mnemonic bcctrl 

to CTR Simplified Mnemonic

Branch unconditionally bclrl 20,0 blrl bcctrl  20,0 bctrl

Branch if condition true bclrl 12,0 btlrl 0 bcctrl  12,0 btctrl 0

Branch if condition false bclrl  4,0 bflrl  0 bcctrl 4,0 bfctrl  0

Decrement CTR, branch if CTR nonzero bclrl 16,0 bdnzlrl — —

Decrement CTR, branch if CTR nonzero AND 
condition true bclrl  8,0 bdnztlrl 0 — —

Decrement CTR, branch if CTR nonzero AND 
condition false bclrl 0,0 bdnzflrl  0 — —

Decrement CTR, branch if CTR zero bclrl  18,0 bdzlrl — —

Decrement CTR, branch if CTR zero AND 
condition true bdztlrl 0 bdztlrl 0 — —

Decrement CTR, branch if CTR zero AND 
condition false bclrl  4,0 bflrl 0 — —
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E.5.3 Branch Mnemonics Incorporating Conditions

The mnemonics defined in Table E-6 are variations of the branch if condition true and branch if condition 
false BO encodings, with the most useful values of BI represented in the mnemonic rather than specified as a 
numeric operand.

A standard set of codes (shown in Table E-11) has been adopted for the most common combinations of 
branch conditions. 

Table E-12 shows the simplified branch mnemonics incorporating conditions. 

Table E-11. Standard Coding for Branch Conditions  

Code Description

lt Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

Table E-12. Simplified Branch Mnemonics with Comparison Conditions  

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc 
Relative

bca 
Absolute

bclr 
to LR

bcctr to 
CTR

bcl 
Relative

bcla 
Absolute

bclrl 
to LR

bcctrl to 
CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or 
equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl
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Instructions using the mnemonics in Table E-12 specify the condition register field in an optional first 
operand. If the CR field being tested is CR0, this operand need not be specified. One of the CR field symbols 
defined in Appendix E.1 Symbols can be used for this operand. 

The simplified mnemonics found in Table E-12 are used in the following examples:

1. Branch if CR0 reflects condition “not equal.”
bne target (equivalent to bc 4,2,target)

2. Same as (1) but condition is in CR3.
bne cr3,target (equivalent to bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the link register. This is a form of con-
ditional “call.”

bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 (equivalent to bcctrl 12,17)

Table E-13 shows the simplified branch mnemonics for the bc and bca instructions without link register 
updating, and the syntax associated with these instructions. Note that the default condition register specified 
by the simplified mnemonics in the table is CR0. 

Branch if not summary over-
flow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Table E-13. Simplified Branch Mnemonics for bc and bca Instructions without Comparison Conditions and 
Link Register Updating 

Branch Semantics

LR Update Not Enabled

bc 
Relative Simplified Mnemonic bca 

Absolute Simplified Mnemonic

Branch if less than bc 12,0,target blt target bca 12,0,target blta target

Branch if less than or equal bc  4,1,target ble target bca  4,1,target blea target

Branch if equal bc  12,2,target beq target bca  12,2,target beqa target

Branch if greater than or equal bc  4,0,target bge target bca  4,0,target bgea target

Branch if greater than bc  12,1,target bgt target bca  12,1,target bgta target

Branch if not less than bc  4,0,target bnl target bca 4,0,target bnla target

Branch if not equal bc  4,2,target bne target bca  4,2,target bnea target

Branch if not greater than bc  4,1,target bng target bca  4,1,target bnga target

Branch if summary overflow bc 12,3,target bso target bca  12,3,target bsoa target

Table E-12. Simplified Branch Mnemonics with Comparison Conditions  (Continued) 

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc 
Relative

bca 
Absolute

bclr 
to LR

bcctr to 
CTR

bcl 
Relative

bcla 
Absolute

bclrl 
to LR

bcctrl to 
CTR
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Table E-14 shows the simplified branch mnemonics for the bclr and bcctr instructions without link register 
updating, and the syntax associated with these instructions. 

Note:  The default condition register specified by the simplified mnemonics in the table is CR0. 

Table E-15 shows the simplified branch mnemonics for the bcl and bcla instructions with link register 
updating, and the syntax associated with these instructions. 

Note:  The default condition register specified by the simplified mnemonics in the table is CR0. 

Branch if not summary overflow bc  4,3,target bns target bca 4,3,target bnsa target

Branch if unordered bc 12,3,target bun target bca 12,3,target buna target

Branch if not unordered bc 4,3,target bnu target bca 4,3,target bnua target

Table E-14. Simplified Branch Mnemonics for bclr and bcctr Instructions without Comparison Conditions and 
Link Register Updating 

Branch Semantics
LR Update Not Enabled

bclr to LR Simplified Mnemonic bcctr to CTR Simplified Mnemonic

Branch if less than bclr 12,0 bltlr bcctr 12,0 bltctr

Branch if less than or equal bclr 4,1 blelr bcctr 4,1 blectr

Branch if equal bclr 12,2 beqlr bcctr 12,2 beqctr

Branch if greater than or equal bclr 4,0 bgelr bcctr 4,0 bgectr

Branch if greater than bclr 12,1 bgtlr bcctr 12,1 bgtctr

Branch if not less than bclr 4,0 bnllr bcctr 4,0 bnlctr

Branch if not equal bclr 4,2 bnelr bcctr 4,2 bnectr

Branch if not greater than bclr 4,1 bnglr bcctr 4,1 bngctr

Branch if summary overflow bclr 12,3 bsolr bcctr 12,3 bsoctr

Branch if not summary overflow bclr 4,3 bnslr bcctr 4,3 bnsctr

Branch if unordered bclr 12,3 bunlr bcctr 12,3 bunctr

Branch if not unordered bclr 4,3 bnulr bcctr 4,3 bnuctr

Table E-13. Simplified Branch Mnemonics for bc and bca Instructions without Comparison Conditions and 
Link Register Updating 

Branch Semantics

LR Update Not Enabled

bc 
Relative Simplified Mnemonic bca 

Absolute Simplified Mnemonic
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Table E-16 shows the simplified branch mnemonics for the bclrl and bcctl instructions with link register 
updating, and the syntax associated with these instructions. 

Note:  The default condition register specified by the simplified mnemonics in the table is CR0. 

Table E-15. Simplified Branch Mnemonics for bcl and bcla Instructions with Comparison Conditions and Link 
Register Update 

Branch Semantics

LR Update Enabled

bcl 
Relative Simplified Mnemonic bcla 

Absolute Simplified Mnemonic

Branch if less than bcl  12,0,target bltl target bcla 12,0,target bltla target

Branch if less than or equal bcl 4,1,target blel target bcla 4,1,target blela target

Branch if equal beql target beql target bcla 12,2,target beqla target

Branch if greater than or equal bcl  4,0,target bgel target bcla  4,0,target bgela target

Branch if greater than bcl 12,1,target bgtl target bcla 12,1,target bgtla target

Branch if not less than bcl 4,0,target bnll target bcla 4,0,target bnlla target

Branch if not equal bcl  4,2,target bnel target bcla  4,2,target bnela target

Branch if not greater than bcl  4,1,target bngl target bcla 4,1,target bngla target

Branch if summary overflow bcl  12,3,target bsol target bcla 12,3,target bsola target

Branch if not summary overflow bcl 4,3,target bnsl target bcla  4,3,target bnsla target

Branch if unordered bcl  12,3,target bunl target bcla 12,3,target bunla target

Branch if not unordered bcl  4,3,target bnul target bcla 4,3,target bnula target

Table E-16. Simplified Branch Mnemonics for bclrl and bcctl Instructions with Comparison Conditions and 
Link Register Update 

Branch Semantics
LR Update Enabled

bclrl to LR Simplified Mnemonic bcctrl to CTR Simplified Mnemonic

Branch if less than bclrl 12,0 bltlrl  0 bcctrl 12,0 bltctrl 0

Branch if less than or equal bclrl 4,1 blelrl 0 bcctrl 4,1 blectrl 0

Branch if equal bclrl 12,2 beqlrl 0 bcctrl 12,2 beqctrl 0

Branch if greater than or equal bclrl 4,0 bgelrl 0 bcctrl 4,0 bgectrl 0

Branch if greater than bclrl 12,1 bgtlrl 0 bcctrl 12,1 bgtctrl  0

Branch if not less than bclrl 4,0 bnllrl 0 bcctrl 4,0 bnlctrl 0

Branch if not equal bclrl 4,2 bnelrl 0 bcctrl 4,2 bnectrl 0

Branch if not greater than bclrl 4,1 bnglrl 0 bcctrl 4,1 bngctrl 0

Branch if summary overflow bclrl 12,3 bsolrl 0 bcctrl 12,3 bsoctrl  0

Branch if not summary overflow bclrl 4,3 bnslrl 0 bcctrl 4,3 bnsctrl 0

Branch if unordered bclrl 12,3 bunlrl 0 bcctrl 12,3 bunctrl 0

Branch if not unordered bclrl 4,3 bnulrl 0 bcctrl 4,3 bnuctrl 0
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E.5.4 Branch Prediction

Software can use the “at” bits of Branch Conditional instructions to provide a hint to the processor about the 
behavior of the branch. If, for a given such instruction, the branch is almost always taken or almost always not 
taken, a suffix can be added to the mnemonic indicating the value to be used for the “at” bits. 

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended, that tests either 
the Count Register or a CR bit (but not both). Assemblers should use 0b00 as the default value for the “at” 
bits, indicating that software has offered no prediction.

E.5.4.1 Examples of Branch Prediction

Examples of branch prediction are as follows:

1. Branch if CR0 reflects condition “less than”, specifying that the branch should be predicted to be taken.
blt+ target 

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be 
taken.

bltlr–

E.6 Simplified Mnemonics for Condition Register Logical Instructions

The condition register logical instructions, shown in Table E-17, can be used to set, clear, copy, or invert a 
given condition register bit. Simplified mnemonics are provided that allow these operations to be coded 
easily. Note that the symbols defined in Appendix E.1 Symbols can be used to identify the condition register 
bit. 

+ Predict branch to be taken (at=’11’)

- Predict branch not to be taken (at=’10’)

Table E-17. Condition Register Logical Mnemonics  

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by
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Examples using the condition register logical mnemonics follow:

1. Set CR bit 25.
crset 25 (equivalent to creqv 25,25,25)

2. Clear the SO bit of CR0.
crclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
crclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CR5.
crnot 4 * cr5 + eq, 4 * cr4 + eq (equivalent to crnor 22,18,18)

E.7 Simplified Mnemonics for Trap Instructions

A standard set of codes, shown in Table E-18, has been adopted for the most common combinations of trap 
conditions.

The mnemonics defined in Table E-19 are variations of trap instructions, with the most useful values of TO 
represented in the mnemonic rather than specified as a numeric operand. 

Table E-18. Standard Codes for Trap Instructions  

Code Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Note:  The symbol “<U” indicates an unsigned less than evaluation will be performed. The symbol “>U” indicates an unsigned greater 
than evaluation will be performed.
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Examples of the uses of trap mnemonics, shown in Table E-19, follow:

1. Trap if 64-bit register rA is not zero.
tdnei rA,0 (equivalent to tdi  24,rA,0)

2. Trap if 64-bit register rA is not equal to rB.
tdne rA, rB (equivalent to td 24,rA,rB)

3. Trap if rA, considered as a 32-bit quantity, is logically greater than 0x7FF.
twlgti rA, 0x7FF (equivalent to twi 1,rA, 0x7FF)

4. Trap unconditionally.
trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows:

• The contents of register rA are compared with either the sign-extended SIMM field or the contents of reg-
ister rB, depending on the trap instruction. 

• For tdi and td, the entire contents of rA (and rB) participate in the comparison; for twi and tw, only the 
contents of the low- order 32 bits of rA (and rB) participate in the comparison. 

The comparison results in five conditions which are ANDed with operand TO. If the result is not 0, the trap 
exception handler is invoked. (Note that exceptions are referred to as interrupts in the architecture specifica-
tion.) See Table E-20 for these conditions. 

Table E-19. Trap Mnemonics 

Trap Semantics
64-Bit Comparison 32-Bit Comparison 

tdi Immediate td Register twi Immediate tw Register

Trap unconditionally — — — trap

Trap if less than tdlti tdlt twlti twlt

Trap if less than or equal tdlei tdle twlei twle

Trap if equal tdeqi tdeq tweqi tweq

Trap if greater than or equal tdgei tdge twgei twge

Trap if greater than tdgti tdgt twgti twgt

Trap if not less than tdnli tdnl twnli twnl

Trap if not equal tdnei tdne twnei twne

Trap if not greater than tdngi tdng twngi twng

Trap if logically less than tdllti tdllt twllti twllt

Trap if logically less than or equal tdllei tdlle twllei twlle

Trap if logically greater than or equal tdlgei tdlge twlgei twlge

Trap if logically greater than tdlgti tdlgt twlgti twlgt

Trap if logically not less than tdlnli tdlnl twlnli twlnl

Trap if logically not greater than tdlngi tdlng twlngi twlng
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E.8 Simplified Mnemonics for Special-Purpose Registers

The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric operand. Simplified 
mnemonics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as a 
numeric operand. Table E-21 provides a list of the simplified mnemonics that should be provided by assem-
blers for SPR operations.

Table E-20. TO Operand Bit Encoding 

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table E-21. Simplified Mnemonics for SPRs  

Special-Purpose Register
Move to SPR Move from SPR

Simplified Mnemonic Equivalent to Simplified Mnemonic Equivalent to

XER mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DSISR mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

SDR1 mtsdr1 rS mtspr 25,rS mfsdr1 rD mfspr rD,25

Save and restore register 0 mtsrr0 rS mtspr 26,rS mfsrr0 rD mfspr rD,26

Save and restore register 1 mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27

SPRG0–SPRG3 mtspr n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

Address space register mtasr rS mtspr 280,rS mfasr rD mfspr rD,280

External access register mtear rS mtspr 282,rS mfear rD mfspr rD,282

Time base lower mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base upper mttbu rS mtspr 285,rS mftbu rD mftb rD,269

Processor version register — — mfpvr rD mfspr rD,287
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Following are examples using the SPR simplified mnemonics found in Table E-21:

1. Copy the contents of the low-order 32 bits of rS to the XER.
mtxer rS (equivalent to  mtspr 1,rS)

2. Copy the contents of the LR to rS.
mflr rS (equivalent to  mfspr rS,8)

3. Copy the contents of rS to the CTR.
mtctr rS (equivalent to  mtspr 9,rS)

E.9 Recommended Simplified Mnemonics

This section describes some of the most commonly-used operations (such as no-op, load immediate, load 
address, move register, and complement register). 

E.9.1 No-Op (nop)

Many PowerPC instructions can be coded in a way that, effectively, no operation is performed. An additional 
mnemonic is provided for the preferred form of no-op. If an implementation performs any type of run-time 
optimization related to no-ops, the preferred form is the no-op that triggers the following:

nop  (equivalent to ori 0,0,0)

E.9.2 Load Immediate (li)

The addi and addis instructions can be used to load an immediate value into a register. Additional 
mnemonics are provided to convey the idea that no addition is being performed but that data is being moved 
from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value (equivalent to addi rD,0,value)

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD. 
lis rD,value (equivalent to addis rD,0,value)

E.9.3 Load Address (la)

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction 
which normally requires a separate register and immediate operands.

la rD,d(rA) (equivalent to  addi rD,rA,d)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the assembler 
to supply the base register number and compute the displacement. If the variable v is located at offset dv 
bytes from the address in register rv, and the assembler has been told to use register rv as a base for refer-
ences to the data structure containing v, the following line causes the address of v to be loaded into register 
rD:

la rD,v (equivalent to  addi rD,rv,dv)
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E.9.4 Move Register (mr)

Several PowerPC instructions can be coded to copy the contents of one register to another. A simplified 
mnemonic is provided that signifies that no computation is being performed, but merely that data is being 
moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded with a dot (.) suffix to 
cause the Rc bit to be set in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rS)

E.9.5 Complement Register (not)

Several PowerPC instructions can be coded in a way that they complement the contents of one register and 
place the result into another register. A simplified mnemonic is provided that allows this operation to be coded 
easily.

The following instruction complements the contents of rS and places the result into rA. This mnemonic can be 
coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

not rA,rS (equivalent to  nor rA,rS,rS)

E.9.6 Move to/from Condition Register (mtcr/mfcr)

This mnemonic permits copying the contents of the low-order 32 bits of a GPR to the condition register, using 
the same syntax as the mfcr instruction.

mtcr rS (equivalent to mtcrf 0xFF,rS)

The following instructions may generate either the (old) mtcrf or mfcr instructions or the (new) mtocrf or 
mfocrf instruction, respectively, depending on the target machine type assembler parameter.

mtcrf CRM,rS
mfcr rS

All three extended mnemonics in this subsection are being phased out. In future assemblers the form 
"mtcr rS" may not exist, and the mtcrf and mfcr mnemonics may generate the old form instructions 
(with bit 11 = 0) regardless of the target machine type assembler parameter, or may cease to exist.
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Appendix F. Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. Some of the 
terms and definitions included in the glossary are reprinted from IEEE Std. 754-1985, IEEE Standard for 
Binary Floating-Point Arithmetic, copyright ©1985 by the Institute of Electrical and Electronics Engineers, Inc. 
with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book. 

Architecture. A detailed specification of requirements for a processor or computer system. It 
does not specify details of how the processor or computer system must be implemented; instead 
it provides a template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to the processor’s 
execution. In this manual, the term ‘asynchronous exception’ is used interchangeably with the 
word interrupt. 

Atomic access. A bus access that attempts to be part of a read-write operation to the same 
address uninterrupted by any other access to that address (the term refers to the fact that the 
transactions are indivisible). The PowerPC Architecture implements atomic accesses through the 
lwarx/stwcx. (ldarx/stdcx. in 64-bit implementations) instruction pair. 

Biased exponent. An exponent whose range of values is shifted by a constant (bias). Typically a 
bias is provided to allow a range of positive values to express a range that includes both positive 
and negative values.

Big-endian. A byte-ordering method in memory where the address n of a word corresponds to 
the most-significant byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 
2, 3, with 0 being the most-significant byte. See Little-endian.

Boundedly undefined. A characteristic of results of certain operations that are not rigidly 
prescribed by the PowerPC Architecture. Boundedly undefined results for a given operation may 
vary among implementations, and between execution attempts in the same implementation. 

Although the architecture does not prescribe the exact behavior for when results are allowed to 
be boundedly undefined, the results of executing instructions in contexts where results are 
allowed to be boundedly undefined are constrained to ones that could have been achieved by 
executing an arbitrary sequence of defined instructions, in valid form, starting in the state the 
machine was in before attempting to execute the given instruction.

Cache. High-speed memory component containing recently-accessed data and/or instructions 
(subset of main memory).

Cache block. A small region of contiguous memory that is copied from memory into a cache. 
The size of a cache block may vary among processors; the maximum block size is one page. In 
PowerPC processors, cache coherency is maintained on a cache-block basis. Note that the term 
‘cache block’ is often used interchangeably with ‘cache line’.

Cache coherency. An attribute wherein an accurate and common view of memory is provided to 
all devices that share the same memory system. Caches are coherent if a processor performing 
a read from its cache is supplied with data corresponding to the most recent value written to 
memory or to another processor’s cache.
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Cache flush. An operation that removes from a cache any data from a specified address range. 
This operation ensures that any modified data within the specified address range is written back 
to main memory. This operation is generated typically by a Data Cache Block Flush (dcbf) 
instruction. 

Caching-inhibited. A memory update policy in which the cache is bypassed and the load or 
store is performed to or from main memory. 

Cast-outs. Cache blocks that must be written to memory when a cache miss causes a cache 
block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The processor 
sets the changed bit if any store is performed into the page. See also Page access history bits 
and Referenced bit. 

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Context synchronization. An operation that ensures that all instructions in execution complete 
past the point where they can produce an exception, that all instructions in execution complete in 
the context in which they began execution, and that all subsequent instructions are fetched and 
executed in the new context. Context synchronization may result from executing specific instruc-
tions (such as isync or rfid) or when certain events occur (such as an exception). 

Copy-back. An operation in which modified data in a cache block is copied back to memory. 

Denormalized number. A nonzero floating-point number whose exponent has a reserved value, 
usually the format's minimum, and whose explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can appear in only one 
location within the cache, operates more quickly when the memory request is a cache hit.

Effective address (EA). The 32 or 64-bit address specified for a load, store, or an instruction 
fetch. This address is then submitted to the MMU for translation to either a physical memory 
address or an I/O address.

Exception. A condition encountered by the processor that requires special, supervisor-level 
processing.

Exception handler. A software routine that executes when an exception is taken. Normally, the 
exception handler corrects the condition that caused the exception, or performs some other 
meaningful task (that may include aborting the program that caused the exception). The address 
for each exception handler is identified by an exception vector offset defined by the architecture 
and a prefix selected via the MSR. 

Extended opcode. A secondary opcode field generally located in instruction bits [21–30], that 
further defines the instruction type. All PowerPC instructions are one word in length. The most 
significant 6 bits of the instruction are the primary opcode, identifying the type of instruction. See 
also Primary opcode. 

Execution synchronization. A mechanism by which all instructions in execution are architectur-
ally complete before beginning execution (appearing to begin execution) of the next instruction. 
Similar to context synchronization, but doesn't force the contents of the instruction buffers to be 
deleted and refetched.
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Exponent. In the binary representation of a floating-point number, the exponent is the compo-
nent that normally signifies the integer power to which the value two is raised in determining the 
value of the represented number. See also Biased exponent.

Fetch. Retrieving instructions from either the cache or main memory and placing them into the 
instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point register file. These 
registers provide the source operands and destination results for floating-point instructions. Load 
instructions move data from memory to FPRs and store instructions move data from FPRs to 
memory. The FPRs are 64 bits wide and store floating-point values in double-precision format. 

Fraction. In the binary representation of a floating-point number, the field of the significand that 
lies to the right of its implied binary point.

Fully-associative. Addressing scheme where every cache location (every byte) can have any 
possible address.

General-purpose register (GPR). Any of the 32 registers in the general-purpose register file. 
These registers provide the source operands and destination results for all integer data manipu-
lation instructions. Integer load instructions move data from memory to GPRs and store instruc-
tions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is designated 
as guarded, instructions and data cannot be accessed out-of-order.

Harvard architecture. An architectural model featuring separate caches for instruction and data.

Hashing. An algorithm used in the page table search process.

IEEE 754. A standard written by the Institute of Electrical and Electronics Engineers that defines 
operations and representations of binary floating-point arithmetic.

Illegal instructions. A class of instructions that are not implemented for a particular PowerPC 
processor. These include instructions not defined by the PowerPC Architecture. In addition, for 
32-bit implementations, instructions that are defined only for 64-bit implementations are consid-
ered to be illegal instructions. For 64-bit implementations instructions that are defined only for 
32-bit implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC Architecture, but may 
differ from other architecture-compliant implementations for example in design, feature set, and 
implementation of optional features. The PowerPC Architecture has many different implementa-
tions. 

Implementation-dependent. An aspect of a feature in a processor’s design that is defined by a 
processor’s design specifications rather than by the PowerPC Architecture. 

Implementation-specific. An aspect of a feature in a processor’s design that is not required by 
the PowerPC Architecture, but for which the PowerPC Architecture may provide concessions to 
ensure that processors that implement the feature do so consistently. 

Imprecise exception. A type of synchronous exception that is allowed not to adhere to the 
precise exception model (see Precise exception). The PowerPC Architecture allows only 
floating-point exceptions to be handled imprecisely.
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Inexact. Loss of accuracy in an arithmetic operation when the rounded result differs from the infi-
nitely precise value with unbounded range.

In-order. An aspect of an operation that adheres to a sequential model. An operation is said to 
be performed in-order if, at the time that it is performed, it is known to be required by the sequen-
tial execution model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute an instruction and 
make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows instructions to be 
processed in parallel. 

Interrupt. An asynchronous exception. On PowerPC processors, interrupts are a special case of 
exceptions. See also asynchronous exception.

Invalid state. State of a cache entry that does not currently contain a valid copy of a cache block 
from memory.

Key bits. A set of key bits referred to as Ks and Kp in each SLB entry. The key bits determine 
whether supervisor or user programs can access a page within that segment. 

Kill. An operation that causes a cache block to be invalidated.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, data element, or 
instruction encoding. 

Least-significant byte (LSB). The byte of least value in an address, register, data element, or 
instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a word corresponds to 
the least-significant byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 
1, 0, with 3 being the most-significant byte. See Big-endian.

Loop unrolling. Loop unrolling provides a way of increasing performance by allowing more 
instructions to be issued in a clock cycle. The compiler replicates the loop body to increase the 
number of instructions executed between a loop branch.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used to manage caches 
on different devices that share a memory system. Note that the PowerPC Architecture does not 
specify the implementation of a MESI protocol to ensure cache coherency. 

Memory access ordering. The specific order in which the processor performs load and store 
memory accesses and the order in which those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page address translation 
mechanisms provided by the MMU and that occur externally with the bus protocol defined for 
memory.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of 
memory is provided to all devices that share system memory.
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Memory consistency. Refers to agreement of levels of memory with respect to a single 
processor and system memory (for example, on-chip cache, secondary cache, and system 
memory).

Memory management unit (MMU). The functional unit that is capable of translating an effective 
(logical) address to a physical address, providing protection mechanisms, and defining caching 
methods.

Microarchitecture. The hardware details of a microprocessor’s design. Such details are not 
defined by the PowerPC Architecture. 

Mnemonic. The abbreviated name of an instruction used for coding. 

Modified state. When a cache block is in the modified state, it has been modified by the 
processor since it was copied from memory. See MESI.

Munging. A modification performed on an effective address that allows it to appear to the 
processor that individual aligned scalars are stored as little-endian values, when in fact it is 
stored in big-endian order, but at different byte addresses within doublewords. 

Note:  Munging affects only the effective address and not the byte order. This term is not used by 
the PowerPC Architecture. 

Multiprocessing. The capability of software, especially operating systems, to support execution 
on more than one processor at the same time.

Most-significant bit (msb). The highest-order bit in an address, registers, data element, or 
instruction encoding. 

Most-significant byte (MSB). The highest-order byte in an address, registers, data element, or 
instruction encoding.

NaN. An abbreviation for ‘Not a Number’; a symbolic entity encoded in floating-point format. 
There are two types of NaNs—signaling NaNs (SNaNs) and quiet NaNs (QNaNs).

No-op. No-operation. A single-cycle operation that does not affect registers or generate bus 
activity. 

Normalization. A process by which a floating-point value is manipulated such that it can be 
represented in the format for the appropriate precision (single or double-precision). For a 
floating-point value to be representable in the single or double-precision format, the leading 
implied bit must be a 1. 

OEA (Operating Environment Architecture). The level of the architecture that describes the 
PowerPC memory management model, supervisor-level registers, synchronization require-
ments, and the exception model. It also defines the time-base feature from a supervisor-level 
perspective. Implementations that conform to the PowerPC OEA also conform to the PowerPC 
UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is defined by the 
PowerPC Architecture but not required to be implemented. 
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Out-of-order. An aspect of an operation that allows it to be performed ahead of one that may 
have preceded it in the sequential model, for example, speculative operations. An operation is 
said to be performed out-of-order if, at the time that it is performed, it is not known to be required 
by the sequential execution model. See In-order.

Out-of-order execution. A technique that allows instructions to be issued and completed in an 
order that differs from their sequence in the instruction stream.

Overflow. An error condition that occurs during arithmetic operations when the result cannot be 
stored accurately in the destination register(s). For example, if two 32-bit numbers are multiplied, 
the result may not be representable in 32 bits. 

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of memory, aligned on a 
4-Kbyte boundary or a large page size which is implementation dependent. 

Page access history bits. The changed and referenced bits in the PTE keep track of the access 
history within the page. The referenced bit is set by the MMU whenever the page is accessed for 
a read or write operation. The processor sets the changed bit if any store is performed into the 
page. See Changed bit and Referenced bit. 

Page fault. A page fault is a condition that occurs when the processor attempts to access a 
memory location that does not reside within a page not currently resident in physical memory. On 
PowerPC processors, a page fault exception condition occurs when a matching, valid page table 
entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs. It is further organized 
into eight PTEs per PTEG (page table entry group). The number of PTEGs in the page table 
depends on the size of the page table (as specified in the SDR1 register). 

Page table entry (PTE). A 16-byte data structure containing information used to translate a 
virtual page address to a physical page address. A page is either 4 KB or an implementation-
specific sized large page.

Physical memory. The actual memory that can be accessed through the system’s memory bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus transac-
tions, into smaller distinct stages or tenures (respectively) so that a subsequent operation can 
begin before the previous one has completed. 

Precise exceptions. A category of exception for which the pipeline can be stopped so instruc-
tions that preceded the faulting instruction can complete, and subsequent instructions can be 
flushed and redispatched after exception handling has completed. See Imprecise exceptions.

Primary opcode. The most-significant 6 bits (bits [0–5]) of the instruction encoding that identifies 
the type of instruction. See Secondary opcode.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, or a range of unmapped 
effective addresses. It is defined only when the appropriate relocate bit in the MSR ([IR] or [DR]) 
is ‘1’. 

P



Programming Environments Manual for 64-Bit Microprocessors

 PowerPC RISC Microprocessor Family

pem_glossaryPEM.fm.3.0
July 15, 2005  
 

Page 653 of 657

Quad word. A group of 16 contiguous locations starting at an address divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic operations without 
signaling exceptions. A quiet NaN is used to represent the results of certain invalid operations, 
such as invalid arithmetic operations on infinities or on NaNs, when invalid. See Signaling NaN.

rA. The rA instruction field is used to specify a GPR to be used as a source or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is performed and the effective 
address specified is the same as the physical address. The processor’s MMU is operating in real 
address mode if its ability to perform address translation has been disabled through the MSR 
registers IR and/or DR bits. 

Record bit. Bit [31] (or the Rc bit) in the instruction encoding. When it is set, updates the condi-
tion register (CR) to reflect the result of the operation.

Referenced bit. One of two page history bits found in each page table entry (PTE). The 
processor sets the referenced bit whenever the page is accessed for a read or write. See also 
Page access history bits.

Register indirect addressing. A form of addressing that specifies one GPR that contains the 
address for the load or store.

Register indirect with immediate index addressing. A form of addressing that specifies an 
immediate value to be added to the contents of a specified GPR to form the target address for 
the load or store.

Register indirect with index addressing. A form of addressing that specifies that the contents 
of two GPRs be added together to yield the target address for the load or store.

Reservation. The processor establishes a reservation on a cache block of memory space when 
it executes an lwarx or ldarx instruction to read a memory semaphore into a GPR.

Reserved field. In a register, a reserved field is one that is not assigned a function. A reserved 
field may be a single bit. The handling of reserved bits is implementation-dependent. Software is 
permitted to write any value to such a bit. A subsequent reading of the bit returns 0 if the value 
last written to the bit was 0 and returns an undefined value (‘0’ or ‘1’) otherwise.

RISC (Reduced Instruction Set Computing). An architecture characterized by fixed-length 
instructions with nonoverlapping functionality and by a separate set of load and store instructions 
that perform memory accesses. 
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SLB (Segment Lookaside Buffer). An optional cache that holds recently-used segment table 
entries.

Scalability. The capability of an architecture to generate implementations specific for a wide 
range of purposes, and in particular implementations of significantly greater performance and/or 
functionality than at present, while maintaining compatibility with current implementations.

Secondary cache. A cache memory that is typically larger and has a longer access time than 
the primary cache. A secondary cache may be shared by multiple devices. Also referred to as L2, 
or level-2 cache. 

Segment. A 256-Mbyte area of virtual memory that is the most basic memory space defined by 
the PowerPC Architecture. Each segment is configured through a unique segment descriptor. 

Segment descriptors. Information used to generate the interim virtual address. The segment 
descriptors reside as segment table entries in a hashed segment table in memory. 

Segment table entry (STE). Data structures containing information used to translate effective 
address to physical address. STEs are implemented on 64-bit processors only. 

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ may also 
be used to generally describe the updating of a bit or bit field. 

Set (n). A subdivision of a cache. Cacheable data can be stored in a given location in any one of 
the sets, typically corresponding to its lower-order address bits. Because several memory loca-
tions can map to the same location, cached data is typically placed in the set whose cache block 
corresponding to that address was used least recently. See Set-associative. 

Set-associative. Aspect of cache organization in which the cache space is divided into sections, 
called sets. The cache controller associates a particular main memory address with the contents 
of a particular set, or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program exception when it is 
specified as arithmetic operands. See Quiet NaN. 

Significand. The component of a binary floating-point number that consists of an explicit or 
implicit leading bit to the left of its implied binary point and a fraction field to the right.

Simplified mnemonics. Assembler mnemonics that represent a more complex form of a 
common operation.

Static branch prediction. Mechanism by which software (for example, compilers) can give a 
hint to the machine hardware about the direction a branch is likely to take. 

Sticky bit. A bit that when set must be cleared explicitly.

Strong ordering. A memory access model that requires exclusive access to an address before 
making an update, to prevent another device from using stale data.

Superscalar machine. A machine that can issue multiple instructions concurrently from a 
conventional linear instruction stream.
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Supervisor mode. The privileged operation state of a processor. In supervisor mode, software, 
typically the operating system, can access all control registers and can access the supervisor 
memory space, among other privileged operations. 

Synchronization. A process to ensure that operations occur strictly in order. See Context 
synchronization and Execution synchronization. 

Synchronous exception. An exception that is generated by the execution of a particular instruc-
tion or instruction sequence. There are two types of synchronous exceptions, precise and impre-
cise.

System memory. The physical memory available to a processor. 

TLB (translation lookaside buffer) A cache that holds recently-used page table entries.

Throughput. The measure of the number of instructions that are processed per clock cycle.

Tiny. A floating-point value that is too small to be represented for a particular precision format, 
including denormalized numbers; they do not include ±0.

UISA (user instruction set architecture). The level of the architecture to which user-level soft-
ware should conform. The UISA defines the base user-level instruction set, user-level registers, 
data types, floating-point memory conventions and exception model as seen by user programs, 
and the memory and programming models.

Underflow. An error condition that occurs during arithmetic operations when the result cannot be 
represented accurately in the destination register. For example, underflow can happen if two 
floating-point fractions are multiplied and the result requires a smaller exponent and/or mantissa 
than the single-precision format can provide. In other words, the result is too small to be repre-
sented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor used typically by application soft-
ware. In user mode, software can only access certain control registers and can access only user 
memory space. No privileged operations can be performed. Also referred to as problem state.

VEA (virtual environment architecture). The level of the architecture that describes the 
memory model for an environment in which multiple devices can access memory, defines 
aspects of the cache model, defines cache control instructions, and defines the time-base facility 
from a user-level perspective. Implementations that conform to the PowerPC VEA also adhere to 
the UISA, but may not necessarily adhere to the OEA.

Virtual address. An intermediate address used in the translation of an effective address to a 
physical address.

Virtual memory. The address space created using the memory management facilities of the 
processor. Program access to virtual memory is possible only when it coincides with physical 
memory.

Weak ordering. A memory access model that allows bus operations to be reordered dynami-
cally, which improves overall performance and in particular reduces the effect of memory latency 
on instruction throughput.
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Word. A 32-bit data element. 

Write-back. A cache memory update policy in which processor write cycles are directly written 
only to the cache. External memory is updated only indirectly, for example, when a modified 
cache block is cast out to make room for newer data. 

Write-through. A cache memory update policy in which all processor write cycles are written to 
both the cache and memory.
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Revision Date Page Affected Contents of Modification

July 15, 2005
Version 3.0

• Removed 32-bit implementation information
• Removed obsolete instructions: dcbi, mcrxr, mtsrd, mtsrdin, rfi

March 31, 2005
486, 506, 544, 545, 546, 

601, 
386, , 512, 513, 529

Version 2.23
Updates to include changes to the PowerPC Architecture 2.01 (from PowerPC 
Architecture 1.10). 
This includes the addition of the following instructions:

• mfocrf, mtocrf, slbmfee, slbmfev, slbmte, tlbiel 
The following instructions are considered obsolete in the PowerPC Architecture 
(2.01), however they are presented in this version:

• dcbi, mcrxr, mtsrd, mtsrdin, rfi 
The following instruction is considered obsolete in the PowerPC Architecture (2.01) 
and has been deleted from this manual:

• dcba


	Copyright and Disclaimer
	Title Page
	Contents
	List of Tables
	List of Figures
	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	PowerPC Documentation

	Conventions
	Acronyms and Abbreviations
	Terminology Conventions

	1.� Overview
	1.1� PowerPC Architecture Overview
	1.1.1� 64-Bit PowerPC Architecture and the 32-Bit Subset
	1.1.1.1� Temporary 64-Bit Bridge

	1.1.2� Levels of the PowerPC Architecture
	1.1.3� Latitude Within the Levels of the PowerPC Architecture
	1.1.4� Features Not Defined by the PowerPC Architecture

	1.2� The PowerPC Architectural Models
	1.2.1� PowerPC Registers and Programming Model
	1.2.2� Operand Conventions
	1.2.2.1� Byte Ordering
	1.2.2.2� Data Organization in Memory and Data Transfers
	1.2.2.3� Floating-Point Conventions

	1.2.3� PowerPC Instruction Set and Addressing Modes
	1.2.3.1� PowerPC Instruction Set
	1.2.3.2� Calculating Effective Addresses

	1.2.4� PowerPC Cache Model
	1.2.5� PowerPC Exception Model
	1.2.6� PowerPC Memory Management Model

	1.3� Changes to this Manual

	2.� PowerPC Register Set
	2.1� Overview of the PowerPC UISA Registers
	2.1.1� General-Purpose Registers (GPRs)
	2.1.2� Floating-Point Registers (FPRs)
	2.1.3� Condition Register (CR)
	2.1.3.1� Condition Register CR0 Field Definition
	2.1.3.2� Condition Register CR1 Field Definition
	2.1.3.3� Condition Register CRn Field—Compare Instruction

	2.1.4� Floating-Point Status and Control Register (FPSCR)
	2.1.5� XER Register (XER)
	2.1.6� Link Register (LR)
	2.1.7� Count Register (CTR)

	2.2� PowerPC VEA Register Set—Time Base
	2.2.1� Reading the Time Base
	2.2.1.1� Reading the Time Base

	2.2.2� Computing Time of Day from the Time Base

	2.3� PowerPC OEA Register Set
	2.3.1� Machine State Register (MSR)
	2.3.2� Processor Version Register (PVR)
	2.3.3� SDR1
	2.3.4� Address Space Register (ASR)
	2.3.5� Data Address Register (DAR)
	2.3.6� Software Use SPRs (SPRG0–SPRG3)
	2.3.7� Data Storage Interrupt Status Register (DSISR)
	2.3.8� Machine Status Save/Restore Register 0 (SRR0)
	2.3.9� Machine Status Save/Restore Register 1 (SRR1)
	2.3.10� Floating-Point Exception Cause Register (FPECR)
	2.3.11� Time Base Facility (TB)—OEA
	2.3.11.1� Writing to the Time Base

	2.3.12� Decrementer Register (DEC)
	2.3.12.1� Decrementer Operation
	2.3.12.2� Writing and Reading the DEC
	2.3.12.3� Data Address Compare

	2.3.13� Data Address Breakpoint Register (DABR)
	2.3.14� External Access Register (EAR)
	2.3.15� Processor Identification Register (PIR)
	2.3.16� Synchronization Requirements for Special Registers and for Lookaside Buffers
	2.3.16.1� Notes for Table�2�16 and Table�2�17



	3.� Operand Conventions
	3.1� Data Organization in Memory and Data Transfers
	3.1.1� Aligned and Misaligned Accesses
	3.1.2� Byte Ordering
	3.1.2.1� Big-Endian Byte Ordering
	3.1.2.2� Little-Endian Byte Ordering

	3.1.3� Structure Mapping Examples
	3.1.3.1� Big-Endian Mapping
	3.1.3.2� Little-Endian Mapping

	3.1.4� PowerPC Byte Ordering
	3.1.4.1� Aligned Scalars in Little-Endian Mode
	3.1.4.2� Misaligned Scalars in Little-Endian Mode
	3.1.4.3� Nonscalars
	3.1.4.4� Page Tables
	3.1.4.5� PowerPC Instruction Addressing in Little-Endian Mode
	3.1.4.6� PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode


	3.2� Effect of Operand Placement on Performance—VEA
	3.2.1� Summary of Performance Effects
	3.2.2� Instruction Restart

	3.3� Floating-Point Execution Models—UISA
	3.3.1� Floating-Point Data Format
	3.3.1.1� Value Representation
	3.3.1.2� Binary Floating-Point Numbers
	3.3.1.3� Normalized Numbers (±NORM)
	3.3.1.4� Zero Values (±0)
	3.3.1.5� Denormalized Numbers (±DENORM)
	3.3.1.6� Infinities (±•)
	3.3.1.7� Not a Numbers (NaNs)

	3.3.2� Sign of Result
	3.3.3� Normalization and Denormalization
	3.3.4� Data Handling and Precision
	3.3.5� Rounding
	3.3.6� Floating-Point Program Exceptions
	3.3.6.1� Invalid Operation and Zero Divide Exception Conditions
	3.3.6.2� Overflow, Underflow, and Inexact Exception Conditions



	4.� Addressing Modes and Instruction Set Summary
	4.1� Conventions
	4.1.1� Sequential Execution Model
	4.1.2� Computation Modes
	4.1.3� Classes of Instructions
	4.1.3.1� Definition of Boundedly Undefined
	4.1.3.2� Defined Instruction Class
	4.1.3.3� Illegal Instruction Class
	4.1.3.4� Reserved Instructions

	4.1.4� Memory Addressing
	4.1.4.1� Memory Operands
	4.1.4.2� Effective Address Calculation

	4.1.5� Synchronizing Instructions
	4.1.5.1� Context Synchronizing Instructions
	4.1.5.2� Execution Synchronizing Instructions

	4.1.6� Exception Summary

	4.2� PowerPC UISA Instructions
	4.2.1� Integer Instructions
	4.2.1.1� Integer Arithmetic Instructions
	4.2.1.2� Integer Compare Instructions
	4.2.1.3� Integer Logical Instructions
	4.2.1.4� Integer Rotate and Shift Instructions

	4.2.2� Floating-Point Instructions
	4.2.2.1� Floating-Point Arithmetic Instructions
	4.2.2.2� Floating-Point Multiply-Add Instructions
	4.2.2.3� Floating-Point Rounding and Conversion Instructions
	4.2.2.4� Floating-Point Compare Instructions
	4.2.2.5� Floating-Point Status and Control Register Instructions
	4.2.2.6� Floating-Point Move Instructions

	4.2.3� Load and Store Instructions
	4.2.3.1� Integer Load and Store Address Generation
	4.2.3.2� Integer Load Instructions
	4.2.3.3� Integer Store Instructions
	4.2.3.4� Integer Load and Store with Byte-Reverse Instructions
	4.2.3.5� Integer Load and Store Multiple Instructions
	4.2.3.6� Integer Load and Store String Instructions
	4.2.3.7� Floating-Point Load and Store Address Generation
	4.2.3.8� Floating-Point Load Instructions
	4.2.3.9� Floating-Point Store Instructions

	4.2.4� Branch and Flow Control Instructions
	4.2.4.1� Branch Instruction Address Calculation
	4.2.4.2� Conditional Branch Control
	4.2.4.3� Branch Instructions
	4.2.4.4� Simplified Mnemonics for Branch Processor Instructions
	4.2.4.5� Condition Register Logical Instructions
	4.2.4.6� Trap Instructions
	4.2.4.7� System Linkage Instruction—UISA

	4.2.5� Processor Control Instructions—UISA
	4.2.5.1� Move to/from Condition Register Instructions
	4.2.5.2� Move to/from Special-Purpose Register Instructions (UISA)

	4.2.6� Memory Synchronization Instructions—UISA
	4.2.7� Recommended Simplified Mnemonics

	4.3� PowerPC VEA Instructions
	4.3.1� Processor Control Instructions—VEA
	4.3.2� Memory Synchronization Instructions—VEA
	4.3.3� Memory Control Instructions—VEA
	4.3.3.1� User-Level Cache Instructions—VEA

	4.3.4� External Control Instructions

	4.4� PowerPC OEA Instructions
	4.4.1� System Linkage Instructions—OEA
	4.4.2� Processor Control Instructions—OEA
	4.4.2.1� Move to/from Machine State Register Instructions
	4.4.2.2� Move to/from Special-Purpose Register Instructions (OEA)

	4.4.3� Memory Control Instructions—OEA
	4.4.3.1� Segment Register Manipulation Instructions
	4.4.3.2� Translation and Segment Lookaside Buffer Management Instructions



	5.� Cache Model and Memory Coherency
	5.1� The Virtual Environment
	5.1.1� Memory Access Ordering
	5.1.1.1� Enforce In-Order Execution of I/O Instruction
	5.1.1.2� Synchronize Instruction

	5.1.2� Atomicity
	5.1.3� Cache Model
	5.1.4� Memory Coherency
	5.1.4.1� Memory/Cache Access Modes
	5.1.4.2� Coherency Precautions

	5.1.5� VEA Cache Management Instructions
	5.1.5.1� Data Cache Instructions
	5.1.5.2� Instruction Cache Instructions


	5.2� The Operating Environment
	5.2.1� Memory/Cache Access Attributes
	5.2.1.1� Write-Through Attribute (W)
	5.2.1.2� Caching-Inhibited Attribute (I)
	5.2.1.3� Memory Coherency Attribute (M)
	5.2.1.4� W, I, and M Bit Combinations
	5.2.1.5� Guarded Attribute (G)

	5.2.2� I/O Interface Considerations


	6.� Exceptions
	6.1� Exception Classes
	6.1.1� Precise Exceptions
	6.1.2� Synchronization
	6.1.2.1� Context Synchronization
	6.1.2.2� Execution Synchronization
	6.1.2.3� Synchronous/Precise Exceptions
	6.1.2.4� Asynchronous Exceptions

	6.1.3� Imprecise Exceptions
	6.1.3.1� Imprecise Exception Status Description
	6.1.3.2� Recoverability of Imprecise Floating-Point Exceptions

	6.1.4� Partially Executed Instructions
	6.1.5� Exception Priorities

	6.2� Exception Processing
	6.2.1� Enabling and Disabling Exceptions
	6.2.2� Steps for Exception Processing
	6.2.3� Returning from an Exception Handler

	6.3� Process Switching
	6.4� Exception Definitions
	6.4.1� System Reset Exception (0x00100)
	6.4.2� Machine Check Exception (0x00200)
	6.4.3� DSI Exception (0x00300)
	6.4.4� Data Segment Exception (0x00380)
	6.4.5� ISI Exception (0x00400)
	6.4.6� Instruction Segment Exception (x0480)
	6.4.7� External Interrupt (0x00500)
	6.4.8� Alignment Exception (0x00600)
	6.4.8.1� Integer Alignment Exceptions
	6.4.8.2� Little-Endian Mode Alignment Exceptions
	6.4.8.3� Interpretation of the DSISR as Set by an Alignment Exception

	6.4.9� Program Exception (0x00700)
	6.4.10� Floating-Point Unavailable Exception (0x00800)
	6.4.11� Decrementer Exception (0x00900)
	6.4.12� System Call Exception (0x00C00)
	6.4.13� Trace Exception (0x00D00)
	6.4.14� Performance Monitor Exception (0x00F00)


	7.� Memory Management
	7.1� MMU Features
	7.2� MMU Overview
	7.2.1� Memory Addressing
	7.2.1.1� Effective Addresses in 32-Bit Mode
	7.2.1.2� Predefined Physical Memory Locations

	7.2.2� MMU Organization
	7.2.3� Address Translation Mechanisms
	7.2.4� Memory Protection Facilities
	7.2.5� Page History Information
	7.2.6� General Flow of MMU Address Translation
	7.2.6.1� Real Addressing Mode Selection
	7.2.6.2� Page Address Translation Selection

	7.2.7� MMU Exceptions Summary
	7.2.8� MMU Instructions and Register Summary
	7.2.9� TLB Entry Invalidation

	7.3� Real Addressing Mode
	7.4� Memory Segment Model
	7.4.1� Recognition of Addresses in Segments
	7.4.2� Page Address Translation Overview
	7.4.2.1� Segment Lookaside Buffer (SLB)
	7.4.2.2� Page Table Entry (PTE) Definition and Format

	7.4.3� Page History Recording
	7.4.3.1� Referenced Bit
	7.4.3.2� Changed Bit
	7.4.3.3� Scenarios for Referenced and Changed Bit Recording
	7.4.3.4� Synchronization of Memory Accesses and Referenced and Changed Bit Updates

	7.4.4� Page Memory Protection
	7.4.5� Page Address Translation Summary

	7.5� Hashed Page Tables
	7.5.1� Page Table Definition
	7.5.1.1� SDR1 Register Definition
	7.5.1.2� Page Table Size
	7.5.1.3� Page Table Hashing Functions
	7.5.1.4� Translation Lookaside Buffer (TLB)
	7.5.1.5� Page Table Address Generation
	7.5.1.6� Page Table Structure Summary
	7.5.1.7� Page Table Structure Example
	7.5.1.8� PTEG Address Mapping Example

	7.5.2� Page Table Search Process
	7.5.2.1� Flow for Page Table Search Operation

	7.5.3� Page Table Updates
	7.5.3.1� Adding a Page Table Entry
	7.5.3.2� Modifying a Page Table Entry
	7.5.3.3� Deleting a Page Table Entry

	7.5.4� ASR Updates

	7.6� Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementations
	7.6.1� Segment Register Manipulation Instructions in the 64-Bit Bridge
	7.6.2� 64-Bit Bridge Implementation of Segment Register Instruction
	7.6.2.1� Move from Segment Register—mfsr
	7.6.2.2� Move from Segment Register Indirect—mfsrin
	7.6.2.3� Move to Segment Register—mtsr
	7.6.2.4� Move to Segment Register Indirect—mtsrin



	8.� Instruction Set
	8.1� Instruction Formats
	8.1.1� Split-Field Notation
	8.1.2� Instruction Fields
	8.1.3� Notation and Conventions
	8.1.4� Computation Modes

	8.2� PowerPC Instruction Set
	addx addx
	addx addx
	addcx addcx
	addex addex
	addi addi
	addic addic
	addic. addic.
	addis addis
	addmex addmex
	addzex addzex
	andx andx
	andcx andcx
	andi. andi.
	andis. andis.
	bx bx
	bcx bcx
	bcctrx bcctrx
	bclrx bclrx
	cmp cmp
	cmpi cmpi
	cmpl cmpl
	cmpli cmpli
	cntlzdx cntlzdx
	cntlzwx cntlzwx
	crand crand
	crandc crandc
	creqv creqv
	crnand crnand
	crnor crnor
	cror cror
	crorc crorc
	crxor crxor
	dcbf dcbf
	dcbst dcbst
	dcbt dcbt
	dcbtst dcbtst
	dcbz dcbz
	divdx divdx
	divdux divdux
	divwx divwx
	divwux divwux
	eciwx eciwx
	ecowx ecowx
	eieio eieio
	eqvx eqvx
	extsbx extsbx
	extshx extshx
	extswx extswx
	fabsx fabsx
	faddx faddx
	faddsx faddsx
	fcfidx fcfidx
	fcmpo fcmpo
	fcmpu fcmpu
	fctidx fctidx
	fctidzx fctidzx
	fctiwx fctiwx
	fctiwzx fctiwzx
	fdivx fdivx
	fdivsx fdivsx
	fmaddx fmaddx
	fmaddsx fmaddsx
	fmrx fmrx
	fmsubx fmsubx
	fmsubsx fmsubsx
	fmulx fmulx
	fmulsx fmulsx
	fnabsx fnabsx
	fnegx fnegx
	fnmaddx fnmaddx
	fnmaddsx fnmaddsx
	fnmsubx fnmsubx
	fnmsubsx fnmsubsx
	fresx fresx
	frspx frspx
	frsqrtex frsqrtex
	fselx fselx
	fsqrtx fsqrtx
	fsqrtsx fsqrtsx
	fsubx fsubx
	fsubsx fsubsx
	icbi icbi
	isync isync
	lbz lbz
	lbzu lbzu
	lbzux lbzux
	lbzx lbzx
	ld ld
	ldarx ldarx
	ldu ldu
	ldux lduxx
	ldx ldx
	lfd lfd
	lfdu lfdu
	lfdux lfdux
	lfdx lfdx
	lfs lfs
	lfsu lfsu
	lfsux lfsux
	lfsx lfsx
	lha lha
	lhau lhau
	lhaux lhaux
	lhax lhax
	lhbrx lhbrx
	lhz lhz
	lhzu lhzu
	lhzux lhzux
	lhzx lhzx
	lmw lmw
	lswi lswi
	lswx lswx
	lwa lwa
	lwarx lwarx
	lwaux lwaux
	lwax lwax
	lwbrx lwbrx
	lwz lwz
	lwzu lwzu
	lwzux lwzux
	lwzx lwzx
	mcrf mcrf
	mcrfs mcrfs
	mfcr mfcr
	mfocrf mfocrf
	mffsx mffsx
	mfmsr mfmsr
	mfspr mfspr
	mfsr mfsr
	mfsrin mfsrin
	mftb mftb
	mtcrf mtcrf
	mtfsb0x mtfsb0x
	mtfsb1x mtfsb1x
	mtfsfx mtfsfx
	mtfsfix mtfsfix
	mtmsr mtmsr
	mtmsrd mtmsrd
	mtocrf mtocrf
	mtspr mtspr
	mtsr mtsr
	mtsrin mtsrin
	mulhdx mulhdx
	mulhdux mulhdux
	mulhwx mulhwx
	mulhwux mulhwux
	mulldx mulldx
	mulli mulli
	mullwx mullwx
	nandx nandx
	negx negx
	norx norx
	orx orx
	orcx orcx
	ori ori
	oris oris
	rfid rfid
	rldclx rldclx
	rldcrx rldcrx
	rldicx rldicx
	rldiclx rldiclx
	rldicrx rldicrx
	rldimix rldimix
	rlwimix rlwimix
	rlwinmx rlwinmx
	rlwnmx rlwnmx
	sc sc
	slbia slbia
	slbie slbie
	slbmfee slbmfee
	slbmfev slbmfev
	slbmte slbmte
	sldx sldx
	slwx slwx
	sradx sradx
	sradix sradix
	srawx srawx
	srawix srawix
	srdx srdx
	srwx srwx
	stb stb
	stbu stbu
	stbux stbux
	stbx stbx
	std std
	stdcx. stdcx.
	stdu stdu
	stdux stdux
	stdx stdx
	stfd stfd
	stfdu stfdu
	stfdux stfdux
	stfdx stfdx
	stfiwx stfiwx
	stfs stfs
	stfsu stfsu
	stfsux stfsux
	stfsx stfsx
	sth sth
	sthbrx sthbrx
	sthu sthu
	sthux sthux
	sthx sthx
	stmw stmw
	stswi stswi
	stswx stswx
	stw stw
	stwbrx stwbrx
	stwcx. stwcx.
	stwu stwu
	stwux stwux
	stwx stwx
	subfx subfx
	subfcx subfcx
	subfex subfex
	subfic subfic
	subfmex subfmex
	subfzex subfzex
	sync sync
	td td
	tdi tdi
	tlbia tlbia
	tlbie tlbie
	tlbiel tlbiel
	tlbsync tlbsync
	tw tw
	twi twi
	xorx xorx
	xori xori
	xoris xoris


	Appendix A.� PowerPC Instruction Set Listings
	A.1� Instructions Sorted by Mnemonic
	A.2� Instructions Sorted by Opcode
	A.3� Instructions Grouped by Functional Categories
	A.4� Instructions Sorted by Form
	A.5� Instruction Set Legend

	Appendix B.� Multiple-Precision Shifts
	B.1� Multiple-Precision Shifts

	Appendix C.� Floating-Point Models
	C.1� Execution Model for IEEE Operations
	C.2� Execution Model for Multiply-Add Type Instructions
	C.3� Floating-Point Conversions
	C.3.1� Conversion from Floating-Point Number to Floating-Point Integer
	C.3.2� Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word
	C.3.3� Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word
	C.3.4� Conversion from Floating-Point Number to Signed Fixed-Point Integer Word
	C.3.5� Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word
	C.3.6� Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number
	C.3.7� Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number
	C.3.8� Conversion from Signed Fixed-Point Integer Word to Floating-Point Number
	C.3.9� Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number

	C.4� Floating-Point Models
	C.4.1� Floating-Point Round to Single-Precision Model
	C.4.2� Floating-Point Convert to Integer Model
	C.4.3� Floating-Point Convert from Integer Model

	C.5� Floating-Point Selection
	C.5.1� Comparison to Zero
	C.5.2� Minimum and Maximum
	C.5.3� Simple If-Then-Else Constructions
	C.5.4� Notes

	C.6� Floating-Point Load Instructions
	C.7� Floating-Point Store Instructions

	Appendix D.� Synchronization Programming Examples
	D.1� General Information
	D.2� Synchronization Primitives
	D.2.1� Fetch and No-Op
	D.2.2� Fetch and Store
	D.2.3� Fetch and Add
	D.2.4� Fetch and AND
	D.2.5� Test and Set

	D.3� Compare and Swap
	D.4� Lock Acquisition and Release
	D.4.1� Lock Acquisition and Import Barriers
	D.4.1.1� Acquire Lock and Import Shared Memory
	D.4.1.2� Obtain Pointer and Import Shared Memory

	D.4.2� Lock Release and Export Barriers
	D.4.2.1� Export Shared Memory and Release Lock
	D.4.2.2� Export Shared Memory and Release Lock using EIEIO or LYSYNC

	D.4.3� Safe Fetch

	D.5� List Insertion
	D.6� Notes

	Appendix E.� Simplified Mnemonics
	E.1� Symbols
	E.2� Simplified Mnemonics for Subtract Instructions
	E.2.1� Subtract Immediate
	E.2.2� Subtract

	E.3� Simplified Mnemonics for Compare Instructions
	E.3.1� Double-Word Comparisons
	E.3.2� Word Comparisons

	E.4� Simplified Mnemonics for Rotate and Shift Instructions
	E.4.1� Operations on Double Words
	E.4.2� Operations on Words

	E.5� Simplified Mnemonics for Branch Instructions
	E.5.1� BO and BI Fields
	E.5.2� Basic Branch Mnemonics
	E.5.3� Branch Mnemonics Incorporating Conditions
	E.5.4� Branch Prediction
	E.5.4.1� Examples of Branch Prediction


	E.6� Simplified Mnemonics for Condition Register Logical Instructions
	E.7� Simplified Mnemonics for Trap Instructions
	E.8� Simplified Mnemonics for Special-Purpose Registers
	E.9� Recommended Simplified Mnemonics
	E.9.1� No-Op (nop)
	E.9.2� Load Immediate (li)
	E.9.3� Load Address (la)
	E.9.4� Move Register (mr)
	E.9.5� Complement Register (not)
	E.9.6� Move to/from Condition Register (mtcr/mfcr)


	Appendix F.� Glossary of Terms and Abbreviations
	Revision Log



