
Package ‘DiscreteFDR’
September 3, 2021

Type Package

Title Multiple Testing Procedures with Adaptation for Discrete Tests

Version 1.3.6

Date 2021-09-01

Description Multiple testing procedures described in the paper Döhler, Du-
rand and Roquain (2018) ``New FDR bounds for discrete and heteroge-
neous tests'' <doi:10.1214/18-EJS1441>. The main procedures of the pa-
per (HSU and HSD), their adaptive counterparts (AHSU and AHSD), and the HBR vari-
ant are available and are coded to take as input a set of observed p-values and their discrete sup-
port under the null. A function to compute such p-values and supports for Fisher's ex-
act tests is also provided, along with a wrapper allowing to apply discrete procedures di-
rectly from contingency tables.

License GPL-3

Encoding UTF-8

Depends R (>= 3.00)

LazyData true

RoxygenNote 7.1.1

Suggests R.rsp, knitr, rmarkdown, discreteMTP

VignetteBuilder R.rsp, knitr

Imports Rcpp (>= 1.0.1), methods

LinkingTo Rcpp

URL https://github.com/DISOhda/DiscreteFDR

BugReports https://github.com/DISOhda/DiscreteFDR/issues

NeedsCompilation yes

Author Sebastian Döhler [ctb],
Guillermo Durand [aut, ctb],
Florian Junge [aut, cre],
Etienne Roquain [ctb]

Maintainer Florian Junge <florian.junge@h-da.de>

Repository CRAN

Date/Publication 2021-09-03 10:30:06 UTC

1

https://doi.org/10.1214/18-EJS1441
https://github.com/DISOhda/DiscreteFDR
https://github.com/DISOhda/DiscreteFDR/issues

2 amnesia

R topics documented:
amnesia . 2
DBR . 3
discrete.BH . 5
DiscreteFDR . 7
fast.Discrete . 8
fisher.pvalues.support . 10
hist.DiscreteFDR . 12
kernel . 13
match.pvals . 15
plot.DiscreteFDR . 16
print.DiscreteFDR . 18
summary.DiscreteFDR . 19

Index 21

amnesia Amnesia and other drug reactions in the MHRA pharmacovigilance
spontaneous reporting system

Description

For each of 2446 drugs in the MHRA database (column 1), the number of cases with amnesia as an
adverse event (column 2), and the number of cases with other adverse event for this drug (column
3). In total, 682648 adverse drug reactions were reported, among them 2044 cases of amnesia.

Usage

data(amnesia)

Format

A data frame with 2446 rows representing drugs with the following 3 columns:

DrugName The name of the drug.

AmnesiaCases Number of the amnesia cases reported for the drug.

OtherAdverseCases Number of other adverse drug reactions reported for the drug.

Details

The data was collected from the Drug Analysis Prints published by the Medicines and Healthcare
products Regulatory Agency (MHRA), by Heller & Gur. See references for more details.

References

R. Heller and H. Gur (2011). False discovery rate controlling procedures for discrete tests. arXiv
preprint arXiv:1112.4627v2 link.

https://arxiv.org/abs/1112.4627v2

DBR 3

Source

Drug Analysis Prints on MHRA site

DBR [HBR-λ] procedure

Description

Apply the [HBR-λ] procedure, with or without computing the critical constants, to a set of p-values
and their discrete support.

Usage

DBR(
raw.pvalues,
pCDFlist,
alpha = 0.05,
lambda = NULL,
ret.crit.consts = FALSE

)

Arguments

raw.pvalues vector of the raw observed p-values, as provided by the end user and before
matching with their nearest neighbor in the CDFs supports.

pCDFlist a list of the supports of the CDFs of the p-values. Each support is represented
by a vector that must be in increasing order.

alpha the target FDR level, a number strictly between 0 and 1. For *.fast kernels, it
is only necessary, if stepUp = TRUE.

lambda a number strictly between 0 and 1. If lambda=NULL (by default), then lambda is
chosen equal to alpha.

ret.crit.consts

a boolean. If TRUE, critical constants are computed and returned (this is compu-
tationally intensive).

Details

[DBR-lambda] is the discrete version of the [Blanchard-Roquain-lambda] procedure (see Refer-
ences), the authors of the latter suggest to take lambda = alpha (see their Proposition 17), which
explains the choice of the default value here.

This version: 2019-06-18.

https://yellowcard.mhra.gov.uk/idap

4 DBR

Value

A DiscreteFDR S3 class object whose elements are:

Rejected Rejected raw p-values

Indices Indices of rejected hypotheses

Num.rejected Number of rejections

Adjusted Adjusted p-values
Critical.constants

Critical constants (if requested)

Method Character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Signif.level Significance level alpha

Lambda Value of lambda.
Data$raw.pvalues

The values of raw.pvalues

Data$pCDFlist The values of pCDFlist

Data$data.name The respective variable names of raw.pvalues and pCDFlist

References

G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence and
dependence. Journal of Machine Learning Research, 10, 2837-2871.

See Also

discrete.BH, DiscreteFDR

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

DBR.fast <- DBR(raw.pvalues, pCDFlist)
summary(DBR.fast)
DBR.crit <- DBR(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBR.crit)

discrete.BH 5

discrete.BH [HSU], [HSD], [AHSU] and [AHSD] procedures

Description

Apply the [HSU], [HSD], [AHSU] and [AHSD] procedures, with or without computing the critical
constants, to a set of p-values and their discrete support.

Usage

discrete.BH(
raw.pvalues,
pCDFlist,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE

)

DBH(
raw.pvalues,
pCDFlist,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE

)

ADBH(
raw.pvalues,
pCDFlist,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE

)

Arguments

raw.pvalues vector of the raw observed p-values, as provided by the end user and before
matching with their nearest neighbor in the CDFs supports.

pCDFlist a list of the supports of the CDFs of the p-values. Each support is represented
by a vector that must be in increasing order.

alpha the target FDR level, a number strictly between 0 and 1. For *.fast kernels, it
is only necessary, if stepUp = TRUE.

direction a character string specifying whether to conduct a step-up (direction="su",
by default) or step-down procedure (direction="sd").

adaptive a boolean specifying whether to conduct an adaptive procedure or not.

6 discrete.BH

ret.crit.consts

a boolean. If TRUE, critical constants are computed and returned (this is compu-
tationally intensive).

Details

DBH and ADBH are wrapper functions for discrete.BH. DBH simply passes all its parameters to
discrete.BH with adaptive = FALSE. ADBH does the same with adaptive = TRUE.

This version: 2019-06-18.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected Rejected raw p-values

Indices Indices of rejected hypotheses

Num.rejected Number of rejections

Adjusted Adjusted p-values (only for step-down direction).
Critical.constants

Critical constants (if requested)

Method Character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Signif.level Significance level alpha
Data$raw.pvalues

The values of raw.pvalues

Data$pCDFlist The values of pCDFlist

Data$data.name The respective variable names of raw.pvalues and pCDFlist

See Also

kernel, DiscreteFDR, DBR

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

DiscreteFDR 7

DBH.su.fast <- DBH(raw.pvalues, pCDFlist)
summary(DBH.su.fast)
DBH.sd.fast <- DBH(raw.pvalues, pCDFlist, direction = "sd")
DBH.sd.fast$Adjusted
summary(DBH.sd.fast)

DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBH.su.crit)
DBH.sd.crit <- DBH(raw.pvalues, pCDFlist, direction = "sd", ret.crit.consts = TRUE)
DBH.sd.crit$Adjusted
summary(DBH.sd.crit)

ADBH.su.fast <- ADBH(raw.pvalues, pCDFlist)
summary(ADBH.su.fast)
ADBH.sd.fast <- ADBH(raw.pvalues, pCDFlist, direction = "sd")
ADBH.sd.fast$Adjusted
summary(ADBH.sd.fast)

ADBH.su.crit <- ADBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(ADBH.su.crit)
ADBH.sd.crit <- ADBH(raw.pvalues, pCDFlist, direction = "sd", ret.crit.consts = TRUE)
ADBH.sd.crit$Adjusted
summary(ADBH.sd.crit)

DiscreteFDR DiscreteFDR

Description

This package implements the [HSU], [HSD], [AHSU], [AHSD] and [HBR-lambda] procedures for
discrete tests (see References).

Details

The functions are reorganized from the reference paper in the following way. discrete.BH (for
Discrete Benjamini-Hochberg) implements [HSU], [HSD], [AHSU] and [AHSD] and DBR (for Dis-
crete Blanchard-Roquain) implements [HBR-lambda]. DBH and ADBH are wrappers for discrete.BH
to access [HSU] and [HSD], as well as [AHSU] and [AHSD] directly. Their main arguments are
a vector of raw observed p-values, and a list of the same length, which elements are the discrete
supports of the CDFs of the p-values.

The function fisher.pvalues.support allows to compute such p-values and support in the frame-
work of a Fisher’s exact test of association. It has been inspired by an help page of the package
discreteMTP.

The function fast.Discrete is a wrapper for fisher.pvalues.support and discrete.BH which
allows to apply discrete procedures directly to a data set of contingency tables.

We also provide the amnesia data set, used in our examples and in our paper. It is basically the
amnesia data set of package discreteMTP, but slightly reformatted (the difference lies in column
3).

8 fast.Discrete

No other function of the package should be used, they are only internal functions called by the main
ones.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), 1867-1900. doi: 10.1214/18EJS1441

Author(s)

Maintainer: Florian Junge <florian.junge@h-da.de>

Authors:

• Guillermo Durand [contributor]

Other contributors:

• Sebastian Döhler [contributor]

• Etienne Roquain [contributor]

See Also

Useful links:

• https://github.com/DISOhda/DiscreteFDR

• Report bugs at https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete Fast application of discrete procedures

Description

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, without computing the critical constants,
to a data set of 2 x 2 contingency tables using Fisher’s exact tests.

Usage

fast.Discrete(
counts,
alternative = "greater",
input = "noassoc",
alpha = 0.05,
direction = "su",
adaptive = FALSE

)

https://doi.org/10.1214/18-EJS1441
https://github.com/DISOhda/DiscreteFDR
https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete 9

Arguments

counts a data frame of 2 or 4 columns and any number of lines, each line representing a
2 x 2 contingency table to test. The number of columns and what they must con-
tain depend on the value of the input argument, see Details of fisher.pvalues.support.

alternative same argument as in fisher.test. The three possible values are "greater"
(default), "two.sided" or "less" and you can specify just the initial letter.

input the format of the input data frame, see Details of fisher.pvalues.support.
The three possible values are "noassoc" (default), "marginal" or "HG2011"
and you can specify just the initial letter.

alpha the target FDR level, a number strictly between 0 and 1. For *.fast kernels, it
is only necessary, if stepUp = TRUE.

direction a character string specifying whether to conduct a step-up (direction="su",
by default) or step-down procedure (direction="sd").

adaptive a boolean specifying whether to conduct an adaptive procedure or not.

Details

This version: 2019-06-18.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected Rejected raw p-values

Indices Indices of rejected hypotheses

Num.rejected Number of rejections

Adjusted Adjusted p-values (only for step-down direction).

Method Character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Signif.level Significance level alpha
Data$raw.pvalues

The values of raw.pvalues

Data$pCDFlist The values of pCDFlist

Data$data.name The variable name of the counts dataset

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

10 fisher.pvalues.support

DBH.su <- fast.Discrete(counts = df, input = "noassoc", direction = "su")
summary(DBH.su)

DBH.sd <- fast.Discrete(counts = df, input = "noassoc", direction = "sd")
DBH.sd$Adjusted
summary(DBH.sd)

ADBH.su <- fast.Discrete(counts = df, input = "noassoc", direction = "su", adaptive = TRUE)
summary(ADBH.su)

ADBH.sd <- fast.Discrete(counts = df, input = "noassoc", direction = "sd", adaptive = TRUE)
ADBH.sd$Adjusted
summary(ADBH.sd)

fisher.pvalues.support

Computing discrete p-values and their support for binomial and
Fisher’s exact tests

Description

Computes discrete raw p-values and their support for binomial test or Fisher’s exact test applied to
2 x 2 contingency tables summarizing counts coming from two categorical measurements.

Usage

fisher.pvalues.support(counts, alternative = "greater", input = "noassoc")

Arguments

counts a data frame of 2 or 4 columns and any number of lines, each line representing
a 2 x 2 contingency table to test. The number of columns and what they must
contain depend on the value of the input argument, see Details.

alternative same argument as in fisher.test. The three possible values are "greater"
(default), "two.sided" or "less" and you can specify just the initial letter.

input the format of the input data frame, see Details. The three possible values are
"noassoc" (default), "marginal" or "HG2011" and you can specify just the
initial letter.

Details

Assume that each contingency tables compares 2 variables and resumes the counts of association or
not with a condition. This can be resumed in the following table:

Association No association Total
Variable 1 X1 Y1 N1
Variable 2 X2 Y2 N2
Total X1 + X2 Y1 + Y2 N1 + N2

fisher.pvalues.support 11

If input="noassoc", counts has 4 columns which respectively contain X1, Y1, X2 and Y2. If
input="marginal", counts has 4 columns which respectively contain X1, N1, X2 and N2.

If input="HG2011", we are in the situation of the amnesia data set as in Heller & Gur (2011, see
References). Each contingency table is obtained from one variable which is compared to all other
variables of the study. That is, counts for "second variable" are replaced by the sum of the counts
of the other variables:

Association No association Total
Variable j Xj Yj Nj
Variables !=j SUM(Xi) - Xj SUM(Yi) - Yj SUM(Ni) - Nj
Total SUM(Xi) SUM(Yi) SUM(Ni)

Hence counts needs to have only 2 columns which respectively contain Xj and Yj.

binomial.pvalues.support and fisher.pvalues.support are wrapper functions for pvalues.support,
setting test.type = "binomial" and test.type = "fisher", respectively.

The code for the computation of the p-values of Fisher’s exact test is inspired by the example in the
help page of p.discrete.adjust.

See the Wikipedia article about Fisher’s exact test, paragraph Example, for a good depiction of what
the code does for each possible value of alternative.

The binomial test simply tests for p = 0.5 by using X1 as the test statistic and N1 as the number of
trials.

This version: 2021-05-23.

Value

A list of two elements:

raw raw discrete p-values.

support a list of the supports of the CDFs of the p-values. Each support is represented
by a vector in increasing order.

References

R. Heller and H. Gur (2011). False discovery rate controlling procedures for discrete tests. arXiv
preprint arXiv:1112.4627v2 link.

"Fisher’s exact test", Wikipedia, The Free Encyclopedia, accessed 2018-03-20, link.

See Also

p.discrete.adjust, fisher.test

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)

https://arxiv.org/abs/1112.4627v2
https://en.wikipedia.org/w/index.php?title=Fisher%27s_exact_test&oldid=823327889

12 hist.DiscreteFDR

Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

data(amnesia)
#We only keep the first 100 lines to keep the computations fast.
#We also drop the first column to keep only columns of counts, in the Heller & Gur (2011) setting.
amnesia <- amnesia[1:100,2:3]

#Construction of the p-values and their support
amnesia.formatted <- fisher.pvalues.support(counts = amnesia, input = "HG2011")
raw.pvalues <- amnesia.formatted$raw
pCDFlist <- amnesia.formatted$support

hist.DiscreteFDR Histogram of Raw p-Values

Description

Computes a histogram of the raw p-values of a DiscreteFDR object.

Usage

S3 method for class 'DiscreteFDR'
hist(x, breaks = "FD", plot = TRUE, ...)

Arguments

x an object of class "DiscreteFDR".

breaks as in hist; here, the Friedman-Diaconis algorithm("FD") is used as default.

plot a boolean If TRUE (the default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

... further arguments to hist or plot.histogram, respectively.

Details

This method simply calls hist and passes the raw p-values of the object.

Value

An object of class histogram.

kernel 13

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

DBH <- DBH(raw.pvalues, pCDFlist)
hist(DBH)

kernel Kernel functions

Description

Kernel functions that transform observed p-values or their support according to [HSU], [HSD],
[AHSU], [AHSD] and [HBR-λ]. The output is used by discrete.BH or DBR, respectively. Ad-
ditionally, kernel.DBH.crit, kernel.ADBH.crit and kernel.DBR.crit compute and return the
critical constants. The end user should not use these functions directly.

Usage

kernel_DBH_fast(pCDFlist, pvalues, stepUp = FALSE, alpha = 0.05, support = 0L)

kernel_DBH_crit(pCDFlist, pvalues, sorted_pv, stepUp = FALSE, alpha = 0.05)

kernel_ADBH_fast(pCDFlist, pvalues, stepUp = FALSE, alpha = 0.05, support = 0L)

kernel_ADBH_crit(pCDFlist, pvalues, sorted_pv, stepUp = FALSE, alpha = 0.05)

kernel_DBR_fast(pCDFlist, pvalues, lambda = 0.05)

kernel_DBR_crit(pCDFlist, pvalues, sorted_pv, lambda = 0.05, alpha = 0.05)

Arguments

pCDFlist a list of the supports of the CDFs of the p-values. Each support is represented
by a vector that must be in increasing order.

14 kernel

pvalues a numeric vector. Contains all values of the p-values supports if we search for
the critical constants. If not, contains only the observed p-values. Must be sorted
in increasing order!

stepUp a numeric vector. Identical to pvalues for a step-down procedure. Equals c.m
for a step-up procedure.

alpha the target FDR level, a number strictly between 0 and 1. For *.fast kernels, it
is only necessary, if stepUp = TRUE.

support a numeric vector. Contains all values of the p-values supports. Ignored, if
stepUp = FALSE. Must be sorted in increasing order!

sorted_pv a vector of observed p-values, in increasing order.

lambda a number strictly between 0 and 1. If lambda=NULL (by default), then lambda is
chosen equal to alpha.

Details

When computing critical constants under step-down, that is, when using kernel.DBH.crit, kernel.ADBH.crit
or kernel.DBR.crit with stepUp = FALSE (i.e. the step-down case), we still need to get trans-
formed p-values to compute the adjusted p-values.

This version: 2019-11-15.

Value

For kernel.DBH.fast, kernel.ADBH.fast and kernel.DBR.fast, a vector of transformed p-
values is returned. kernel.DBH.crit, kernel.ADBH.crit and kernel.DBR.crit return a list
object with critical constants ($crit.consts) and transformed p-values ($pval.transf), but if
stepUp = FALSE, there are critical values only.

See Also

discrete.BH, DiscreteFDR, DBR

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

alpha <- 0.05

match.pvals 15

Compute the step functions from the supports

We stay in a step-down context, where pv.numer = pv.denom,
for the sake of simplicity

If not searching for critical constants, we use only the observed p-values
sorted.pvals <- sort(raw.pvalues)
y.DBH.fast <- kernel_DBH_fast(pCDFlist, sorted.pvals)
y.ADBH.fast <- kernel_ADBH_fast(pCDFlist, sorted.pvals)
transformed values
y.DBH.fast
y.ADBH.fast

compute transformed support
pv.list <- sort(unique(unlist(pCDFlist)))
y.DBH.crit <- kernel_DBH_crit(pCDFlist, pv.list, sorted.pvals)
y.ADBH.crit <- kernel_ADBH_crit(pCDFlist, pv.list, sorted.pvals)
y.DBR.crit <- kernel_DBR_crit(pCDFlist, pv.list, sorted.pvals)
critical constants
y.DBH.crit$crit.consts
y.ADBH.crit$crit.consts
y.DBR.crit$crit.consts
The following exist only for step-down direction or DBR
y.DBH.crit$pval.transf
y.ADBH.crit$pval.transf
y.DBR.crit$pval.transf

match.pvals Matching raw p-values with supports

Description

Constructs the observed p-values from the raw observed p-values, by rounding them to their nearest
neighbor matching with the supports of their respective CDFs (as in function p.discrete.adjust
of package discreteMTP). The end user should not use it.

Usage

match.pvals(pCDFlist, raw.pvalues)

Arguments

pCDFlist a list of the supports of the CDFs of the p-values. Each support is represented
by a vector that must be in increasing order.

raw.pvalues vector of the raw observed p-values, as provided by the end user and before
matching with their nearest neighbor in the CDFs supports.

16 plot.DiscreteFDR

Details

Well computed raw p-values should already belong to their respective CDF support. So this function
is called at the beginning of DBH, ADBH, and DBR, just in case raw p-values are biased.

For each raw p-value that needs to be rounded, a warning is issued.

This version: 2017-08-16.

Value

A vector where each raw p-value has been replaced by its nearest neighbor.

See Also

discrete.BH, DBR

Examples

toyList <- list(c(0.3,0.7,1),c(0.1,0.65,1))
toyRaw1 <- c(0.3,0.65)
match.pvals(toyList,toyRaw1)
toyRaw2 <- c(0.31,0.6)
match.pvals(toyList,toyRaw2)

plot.DiscreteFDR Plot Method for DiscreteFDR objects

Description

Plots raw p-values of a DiscreteFDR object and highlights rejected and accepted p-values. If
present, the critical values are plotted, too.

Usage

S3 method for class 'DiscreteFDR'
plot(
x,
col = c(2, 4, 1),
pch = c(1, 1, 1),
lwd = c(1, 1, 1),
type.crit = "b",
legend = NULL,
...

)

plot.DiscreteFDR 17

Arguments

x an object of class "DiscreteFDR".

col a numeric or character vector of length 3 indicating the colors of the

1. rejected p-values
2. accepted p-values
3. critical values (if present).

pch a numeric or character vector of length 3 indicating the point characters of the

1. rejected p-values
2. accepted p-values
3. critical values (if present and type.crit is a plot type like 'p', 'b' etc.).

lwd a numeric vector of length 3 indicating the thickness of the points and lines.

type.crit 1-character string giving the type of plot desired for the critical values (e.g.: 'p',
'l' etc; see plot).

legend if NULL, no legend is plotted; otherwise expecting a character string like "topleft"
etc. or a numeric vector of two elements indicating (x, y) coordinates.

... further arguments to plot.default.

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

DBH.su.fast <- DBH(raw.pvalues, pCDFlist)
DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
DBH.sd.fast <- DBH(raw.pvalues, pCDFlist, direction = "sd")
DBH.sd.crit <- DBH(raw.pvalues, pCDFlist, direction = "sd", ret.crit.consts = TRUE)

plot(DBH.sd.fast)
plot(DBH.sd.crit, xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.fast, col = c(2, 4), pch = c(2, 3), lwd = c(2, 2),

legend = "topleft", xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.crit, col = c(2, 4, 1), pch = c(1, 1, 4), lwd = c(1, 1, 2),

type.crit = 'o', legend = c(1, 0.4), lty = 1, xlim = c(1, 5),
ylim = c(0, 0.4))

18 print.DiscreteFDR

print.DiscreteFDR Printing DiscreteFDR results

Description

Prints the results of discrete FDR analysis, stored in a DiscreteFDR S3 class object.

Usage

S3 method for class 'DiscreteFDR'
print(x, ...)

Arguments

x an object of class "DiscreteFDR".

... further arguments to be passed to or from other methods. They are ignored in
this function.

Value

The respective input object is invisibly returned via invisible(x).

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

DBH.su.crit <- DBH(raw.pvalues, pCDFlist, direction = "su", ret.crit.consts = TRUE)
print(DBH.su.crit)

summary.DiscreteFDR 19

summary.DiscreteFDR Summarizing Discrete FDR Results

Description

summary method for class "DiscreteFDR"

Usage

S3 method for class 'DiscreteFDR'
summary(object, ...)

S3 method for class 'summary.DiscreteFDR'
print(x, max = NULL, ...)

Arguments

object an object of class "DiscreteFDR".

... further arguments passed to or from other methods.

x an object of class "summary.DiscreteFDR".

max numeric or NULL, specifying the maximal number of rows of the p-value table to
be printed. By default, when NULL, getOption("max.print") is used.

Details

summary.DiscreteFDR objects include all data of an DiscreteFDR object, but also include an addi-
tional table which includes the raw p-values, their indices, the respective critical values (if present),
the adjusted p-values (if present) and a logical column to indicate rejection. The table is sorted in
ascending order by the raw p-values.

print.summary.DiscreteFDR simply prints the same output as print.DiscreteFDR, but also
prints the p-value table.

Value

summary.DiscreteFDR computes and returns a list that includes all the data of an input DiscreteFDR,
plus

Table a data.frame, sorted by the raw p-values, that contains the indices, that raw
p-values themselves, their respective critical values (if present), their adjusted
p-values (if present) and a logical column to indicate rejection.

20 summary.DiscreteFDR

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

#Construction of the p-values and their support
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

DBH.sd.crit <- DBH(raw.pvalues, pCDFlist, direction = "sd", ret.crit.consts = TRUE)
summary(DBH.sd.crit)

Index

∗ datasets
amnesia, 2

ADBH, 7, 16
ADBH (discrete.BH), 5
amnesia, 2, 7, 11

DBH, 7, 16
DBH (discrete.BH), 5
DBR, 3, 6, 7, 13, 14, 16
discrete.BH, 4, 5, 7, 13, 14, 16
DiscreteFDR, 4, 6, 7, 14
DiscreteFDR-package (DiscreteFDR), 7
discreteMTP, 7, 15

fast.Discrete, 7, 8
fisher.pvalues.support, 7, 9, 10
fisher.test, 9–11

hist, 12
hist.DiscreteFDR, 12

kernel, 6, 13
kernel_ADBH_crit (kernel), 13
kernel_ADBH_fast (kernel), 13
kernel_DBH_crit (kernel), 13
kernel_DBH_fast (kernel), 13
kernel_DBR_crit (kernel), 13
kernel_DBR_fast (kernel), 13

match.pvals, 15

p.discrete.adjust, 11, 15
plot, 17
plot.default, 17
plot.DiscreteFDR, 16
plot.histogram, 12
print.DiscreteFDR, 18
print.summary.DiscreteFDR

(summary.DiscreteFDR), 19

summary.DiscreteFDR, 19

21

	amnesia
	DBR
	discrete.BH
	DiscreteFDR
	fast.Discrete
	fisher.pvalues.support
	hist.DiscreteFDR
	kernel
	match.pvals
	plot.DiscreteFDR
	print.DiscreteFDR
	summary.DiscreteFDR
	Index

