Package 'OneArm2stage'

September 7, 2022

Title Optimal One-Arm Two-Stage Phase II Design with Survival Endpoint **Version** 1.1.4

Description The proposed two-stage design can be used for single-arm phase II trial designs with time-to-event endpoints, which is desirable for clinical trials on immunotherapies among cancer patients. There're two advantages of the proposed approach: 1) It provides flexible choices of four underlying survival distributions and 2) the power of the design is more accurately calculated using exact variance in one-sample log-rank test. The package can be used for 1) planning the sample size; 2) conducting the interim and final analyses for the Go/No-go decisions. More details about the design method can be found in the paper: Wu, J, Chen L, Wei J, Weiss H, Chauhan A. (2020). <doi:10.1002/pst.1983>.

NeedsCompilation no
Encoding UTF-8
Repository CRAN
RoxygenNote 7.2.1
Imports survival, utils, flexsurv, IPDfromKM
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
License GPL (>= 3)
Depends R (>= 3.5.0)
Author Xiaomeng Yuan [aut, cre], Haitao Pan [aut], Jianrong Wu [aut]
Maintainer Xiaomeng Yuan <xiaomeng.yuan@stjude.org></xiaomeng.yuan@stjude.org>
Date/Publication 2022-09-07 08:40:02 UTC

FitDat																				- 2
LRT													 							3
Optimal.KJ													 							4

2 FitDat

	Optimal.	rKJ									 										6
	Sim_KJ										 										7
	Sim_rKJ										 										9
Index																					11

FitDat

Fit Historical Survival Data Assuming the Failure Time Follows the Weibull Distribution

Description

The function fits parametric models with the underlying distributions assumed to be Weibull.

Usage

FitDat(data)

Arguments

data

a historical survival data sample, has to contain two variables 'Time' and 'Cens':

Time, time under observation during trial for each patient. *Cens*, the status indicator of patients (event = 1, censored = 0).

Value

fit. Weibull Fitted models assuming Weibull distributions.

AIC AIC values from the fitted model.

parameter. estimates the estimated parameters from the fitted model.

References

Wang, M., Rule, S., Zinzani, P. L., Goy, A., Casasnovas, O., Smith, S. D.,..., Robak, T. (2018). Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. The Lancet, 391(10121), 659–667. https://doi.org/10.1016/s0140-6736(17)33108-2

```
library(IPDfromKM)
# a sample dataset that we already extracted from Wang et al, 2018.
df<- read.csv(system.file("extdata", "df.csv", package = "OneArm2stage"))
# risk time points
trisk <- c(0,2,4,6,8,10,12,14,16,18,20,22,24)
# number of patients at risk at each risk time point
nrisk.radio <- c(124,120,115,110,107,104,103,95,46,18,11,8,0)
# Preprocess the raw coordinates into an proper format for reconstruct IPD
pre_radio <- preprocess(dat=df, trisk=trisk,</pre>
```

LRT

3

```
nrisk=nrisk.radio,totalpts=NULL,maxy=100)
```

```
#Reconstruct IPD
est_radio <- getIPD(prep=pre_radio,armID=0,tot.events=NULL)</pre>
# shift the IPD data into the proper format for 'FitDat()'
ipd <- est_radio$IPD</pre>
dat3 <- as.data.frame(cbind(rep(0, nrow(ipd)),ipd$time, ipd$status))</pre>
colnames(dat3) <- c("Entry", "Time", "Cens")</pre>
# use FitDat function to fit the historical dat
modelSelect <- FitDat(dat3)</pre>
modelSelect$AIC
# Weibull
# 301.7776
# check the estimated parameters from the modeling results
modelSelect$parameter.estimates
# $Weibull
# shape
            scale
# 0.1133671 3.9939753
```

LRT

Conduct Interim or Final Analyses Using One-Sample Log-Rank Test for the Optimal Two-Stage Trials

Description

Performs the one-sample log-rank test (OSLR) for the time-to-event data from two-stage Phase II clinical trials, assuming the failure time follows one of the four distributions: Weibull, Gamma, log-normal or log-logistic.

This can be used for both unrestricted and restricted follow-up designs.

Usage

```
LRT(dist, shape, S0, x0, data)
```

Arguments

dist	distribution options with 'WB' as Weibull, 'GM' as Gamma, 'LN' as log-normal, 'LG' as log-logistic.
shape	shape parameter for one of the four parametric distributions ('WB', 'GM', 'LN' and 'LG').
SØ	the survival probability at a fixed time point x0 under the null hypothesis.
x0	a fixed time point when the survival probability is S0 under null.

4 Optimal.KJ

data the time-to-event data for either the interim or final analysis from a two-stage

survival trial, contains 2 variables:

time time period under observation before the time of interim analysis (for interim analysis) or during entire trial (for final analysis) for each patient.

status status indicator of patients (event = 1, censored = 0).

Value

z the OSLR test statistic for the interim or final analysis, depending on data used.

O the observed number of events.

E the expected number of events.

References

Wu, J, Chen L, Wei J, Weiss H, Chauhan A. (2020). Two-stage phase II survival trial design. Pharmaceutical Statistics. 2020;19:214-229. https://doi.org/10.1002/pst.1983

Examples

Optimal.KJ

Optimal Two-Stage Design Using One-Sample Log-Rank Test with Unrestricted Follow-Up

Description

Optima.KJ() calculates the design parameters (e.g., t1, n1, n, c1, c) in the optimal two-stage design with unrestricted follow-up based on the one-sample log-rank (OSLR) test.

Usage

```
Optimal.KJ(dist, shape, S0, x0, hr, tf, rate, alpha, beta)
```

Arguments

dist	distribution options with 'WB' as Weibull, 'GM' as Gamma, 'LN' as log-normal, 'LG' as log-logistic.
shape	shape parameter for the baseline hazard function assuming one of the four parametric distributions ('WB', 'GM', 'LN' and 'LG').
S0	survival probability at the fixed time point x0 under the null hypothesis.
x0	a fixed time point where the survival probability is S0 under null.
hr	hazard ratio, s1=s0^hr where s1 is the survival probability under HA and s0 is that under H0.

Optimal.KJ 5

tf	unrestricted follow-up time, the time period from the entry of the last patient to the end of the trial. If tf is too long, the function might throw an error.
rate	a constant accrual rate. Please consider use a reasonable rate value. If the rate is too small, the function might throw an error.
alpha	type I error.
beta	type II error.

Value

nsignle the required sample size for the single-stage design.

tasingle the estimated accrual time for the single-stage design.

csingle the critical value for the single-stage design.

n1 and n required sample sizes in the two-stage design for the interim and final stage, respectively. c1 and c critical values in two-stage designs for interim and final analysis, respectively.

t1 the interim analysis time in the two-stage design.

MTSL the maximum total study length (the sum of accrual time and unrestricted follow-up time).

ES the expected sample size under null in the two-stage design.

PS the probability of early stopping under null in the two-stage design.

References

Wu, J, Chen L, Wei J, Weiss H, Chauhan A. (2020). Two-stage phase II survival trial design. Pharmaceutical Statistics. 2020;19:214-229. https://doi.org/10.1002/pst.1983

```
# 1. An example when solution can be found.
Optimal.KJ(dist="WB", shape=1, S0=0.62, x0=2, hr=0.467, tf=2, rate=5,
                    alpha=0.05, beta=0.2)
# $param
          S0
                 hr alpha beta rate x0 tf
       1 0.62 0.467 0.05 0.2
# $Single_stage
   nsingle tasingle csingle
# 1
        25
              5 1.644854
# $Two_stage
          c1 n
                     С
                           t1 MTSL
                                        ES
# 1 16 -0.302 26 1.6135 3.0593 7.2 21.9187 0.3813
# 2. An example when rate is too small and solution can not be found.
# Optimal.KJ(dist="GM", shape=1, S0=0.62, x0=2, hr=0.467, tf=2, rate=0.1,
                alpha=0.05, beta=0.2)
# Error: solution for ta in single stage cannot be found,
        please try to use a faster rate or a shorter tf.
#
# The above message occurs because the accrual rate is too slow, try to use
# a more reasonable value for rate.
```

6 Optimal.rKJ

```
# 3. An example when tf is too long and solution can not be found.
# Optimal.KJ(dist="GM", shape=1, S0=0.62, x0=2, hr=0.467, tf=100, rate=5,
# alpha=0.05, beta=0.2)
#
# Error: solution for ta in single stage cannot be found,
# please try to use a faster rate or a shorter tf.
#
# The above error message occurs because tf is too long, try to use
# a more reasonable value for follow-up time.
```

Optimal.rKJ

Optimal Two-Stage Design Using One-Sample Log-Rank Test with Restricted Follow-Up

Description

Optimal.rKJ() calculates the design parameters (e.g., t1, n1, n, c1, c) in the optimal two-stage design with restricted follow-up based on the one-sample log-rank (OSLR) test.

Usage

```
Optimal.rKJ(dist, shape, S0, x0, hr, x, rate, alpha, beta)
```

Arguments

dist	distribution options with 'WB' as Weibull, 'GM' as Gamma, 'LN' as log-normal, 'LG' as log-logistic for the baseline hazard function.
shape	shape parameter for the baseline hazard function assuming one of the four parametric distributions ('WB', 'GM', 'LN' and 'LG').
SØ	survival probability at a fixed time point x0 under the null hypothesis.
x0	a fixed time point where the survival probability is S0 under null.
hr	the hazard ratio, s1=s0^hr where s1 is the survival probability under HA and s0 is that under H0.
x	the restricted follow-up time period.
rate	a constant accrual rate.
alpha	type I error.
beta	type II error.

Sim_KJ 7

Value

nsignle the required sample size for the single-stage design.
tasingle the estimated accrual time for the single-stage design.
csingle the critical value for the single-stage design.
n1 and n required sample sizes in the two-stage design for interim and final stage, respectively.
c1 and c critical values in two-stage designs for the interim and final analysis, respectively.
t1 the interim analysis time in the two-stage design.
MTSL the maximum total study length (the sum of accrual time and restricted follow-up time).
ES the expected sample size in the two-stage design.

PS the probability of early stopping under null in the two-stage design.

References

Wu, J, Chen L, Wei J, Weiss H, Chauhan A. (2020). Two-stage phase II survival trial design. Pharmaceutical Statistics. 2020;19:214-229. https://doi.org/10.1002/pst.1983

Examples

```
Optimal.rKJ(dist="WB", shape=1,S0=0.20,x0=2,hr=0.569,x=2,rate=5,alpha=0.05,
beta=0.2)
# $param
# shape S0
              hr alpha beta rate x0 x
       1 0.2 0.569 0.05 0.2
                               5 2 2
# $Single_stage
     nsingle tasingle csingle
#
# 1
                6.4 1.644854
        32
# $Two_stage
                          t1 MTSL
                                       ES
                                              PS
          c1 n
                    С
# 1 21 0.0355 33 1.633 4.1882 8.6 26.7993 0.5142
```

Sim_KJ

Calculate Empirical Power by Simulation for the Optimal Two-Stage Design Using One-Sample Log-Rank Test with Unrestricted Follow-Up

Description

Sim_KJ() can be used to calculate empirical power and type-I error by simulation given the design parameters (e.g., n1, n, c1, c) obtained from the optimal two-stage design with unrestricted follow-up.

Usage

```
Sim_KJ(dist, shape, S0, S1, x0, tf, rate, t1, c1, c, n1, n, N, seed = 123)
```

8 Sim_KJ

Arguments

dist distribution options with 'WB' as Weibull, 'GM' as Gamma, 'LN' as log- 'LG' as log-logistic for the baseline hazard function.	-1101111a1,
shape shape parameter of the baseline hazard function assuming one of the for ble parametric distributions ('WB', 'GM', 'LN' and 'LG').	ır possi-
survival probability at a fixed time point x0 under the null hypothesis.	
S1 survival probability at a fixed time point x0 under the alternative hypoth	nesis.
a fixed time point where the survival probabilities are known for both alternative hypotheses.	null and
tf unrestricted follow-up time, the time period from the entry of the last pathe end of the trial.	atient to
rate a constant accrual rate.	
the interim analysis time as given by the two-stage design.	
c1 the critical value given by the two-stage design for the interim analysis.	
c the critical value given by the two-stage design for the final analysis.	
n1 the required sample size given by the two-stage design for the interim a	nalysis.
n the required sample size given by the two-stage design for the final stag	e.
N number of trials in the simulation.	
seed seed for random number generation.	

Value

a numeric value that is either the empirical power (when $S1=S0^h$ r) or the type I-error (when S1=S0).

```
Design2 \leftarrow Optimal.KJ(dist="WB", shape=1, S0=0.62, x0=2, hr=0.467, tf=2, rate=5, localized for the state of 
alpha=0.05, beta=0.2)
# ##' # $Two_stage
                                                                               c1 n
                                                                                                                                                                                                                   t1 MTSL
                                                                                                                                                                                                                                                                                                                     ES
 # n1
                                                                                                                                                                     С
# 1 16 -0.302 26 1.6135 3.0593 7.2 21.9187 0.3813
 \mbox{\tt\#} calculate empirical power and type I error given the above design parameters
Sim\_KJ(dist="WB", shape=1, S0=0.62, S1=0.62^{(0.467)}, x0=2, tf=2, rate=5, t1=3.0593, shape=1, shape
                             c1=-0.302, c=1.6135, n1=16, n=26, N=10000, seed=5868)
 # empirical power
 # 0.813
Sim_KJ(dist="WB", shape=1, S0=0.62, S1=0.62, x0=2, tf=2, rate=5, t1=3.0593,
                             c1=-0.302, c=1.6135, n1=16, n=26, N=10000, seed=5868)
 # empirical type-I error
 # 0.037
```

Sim_rKJ 9

Sim_rKJ	Calculate Empirical Power by Simulation for the Optimal Two-Stage
	Design Using One-Sample Log-Rank Test with Restricted Follow-Up

Description

Sim_rKJ() can be used to calculate empirical power and type-I error by simulation given the design parameters (e.g., n1, n, c1, c) obtained from the optimal two-stage design with restricted follow-up.

Usage

```
Sim_rKJ(dist, shape, S0, S1, x0, x, rate, t1, c1, c, n1, n, N, seed = 123)
```

Arguments

dist	distribution options with 'WB' as Weibull, 'GM' as Gamma, 'LN' as log-normal, 'LG' as log-logistic for the baseline hazard function.
shape	shape parameter of the baseline hazard function assuming one of the four possible parametric distributions ('WB', 'GM', 'LN' and 'LG').
SØ	survival probability at a fixed time point x0 under the null hypothesis.
S1	survival probability at a fixed time point x0 under the alternative hypothesis.
x0	a fixed time point where the survival probabilities are known for both null and alternative hypotheses.
x	the restricted follow-up time period.
rate	a constant accrual rate.
t1	the interim analysis time in the two-stage design.
c1	the critical value in two-stage designs for the interim analysis.
С	the critical value in two-stage designs for the final analysis.
n1	the required sample size in the two-stage design for the interim analysis.
111	
n	the required sample size in the two-stage design for the final stage.
N	number of trials in the simulation.
seed	seed for random number generation.

Value

a numeric value that is either the empirical power (when $S1=S0^h$ r) or the type I-error (when S1=S0).

10 Sim_rKJ

```
Design3 <- Optimal.rKJ(dist="WB", shape=0.5, S0=0.3, x0=1, hr=0.65, x=1, rate=10,
alpha=0.05, beta=0.2)
# Design3$Two_stage
# n1
        c1 n
                           t1
                                    MTSL ES
                                                  PS
                     С
# 38
        0.1688 63 1.6306 3.7084 7.3
                                          48.3058 0.567
# calculate empirical power and type I error given the above design parameters
Sim_rKJ(dist="WB", shape=0.5, S0=0.3, S1=0.3^(0.65), x0=1, x=1, rate=10, t1=3.7084,
   c1=0.1688, c=1.6306, n1=38, n=63, N=10000, seed=5868)
# empirical power
# 0.796
Sim_rKJ(dist="WB", shape=0.5, S0=0.3, S1=0.3, x0=1, x=1, rate=10, t1=3.7084,
   c1=0.1688, c=1.6306, n1=38, n=63, N=10000, seed=5868)
# empirical type-I error
# 0.041
```

Index

```
FitDat, 2
LRT, 3
Optimal.KJ, 4
Optimal.rKJ, 6
Sim_KJ, 7
Sim_rKJ, 9
```