Package 'Rfast'

February 16, 2022

Type Package
Title A Collection of Efficient and Extremely Fast R Functions
Version 2.0.6
Date 2022-02-15
Author Manos Papadakis, Michail Tsagris, Marios Dimitriadis, Stefanos Fafalios, Ioannis Tsamardinos, Matteo Fasiolo, Giorgos Borboudakis, John Burkardt, Changliang Zou, Kleanthi Lakiotaki and Christina Chatzipantsiou.
Maintainer Manos Papadakis <rfastofficial@gmail.com></rfastofficial@gmail.com>
Depends R (>= 3.5.0), Rcpp (>= 0.12.3), RcppZiggurat
LinkingTo Rcpp (>= 0.12.3), RcppArmadillo
SystemRequirements C++17
BugReports https://github.com/RfastOfficial/Rfast/issues
<pre>URL https://github.com/RfastOfficial/Rfast</pre>
Description A collection of fast (utility) functions for data analysis. Column- and rowwise means, medians, variances, minimums, maximums, many t, F and G-square tests, many regressions (normal, logistic, Poisson), are some of the many fast functions. References: a) Tsagris M., Papadakis M. (2018). Taking R to its limits: 70+ tips. PeerJ Preprints 6:e26605v1 <doi:10.7287 peerj.preprints.26605v1="">. b) Tsagris M. and Papadakis M. (2018). Forward regression in R: from the extreme slow to the extreme fast. Journal of Data Science, 16(4): 771780. <doi:10.6339 jds.201810_16(4).00006="">.</doi:10.6339></doi:10.7287>
License GPL (>= 2.0)
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-02-16 17:40:02 UTC
R topics documented:
Rfast-package6All k possible combinations from n elements10Analysis of covariance11

Analysis of variance with a count variable	
Angular central Gaussian random values simulation	13
ANOVA for two quasi Poisson regression models	14
Apply method to Positive and Negative number	
Apply to each column a method under condition	
Backward selection regression	
BIC (using partial correlation) forward regression	19
BIC forward regression with generalised linear models	
Binary search algorithm	
Binomial coefficient and its logarithm	
Bootstrap t-test for 2 independent samples	
Check if any column or row is fill with values	
Check if values are integers and convert to integer	
Check Namespace and Rd files	
Check whether a square matrix is symmetric	
Chi-square and G-square tests of (unconditional) indepdence	
Cholesky decomposition of a square matrix	
Circular or angular regression	
Circular-linear correlation	
Colum-wise cumulative operations (sum, prod, min, max)	
Column and row wise coefficients of variation	
Column and row-wise Any/All	
Column and row-wise means of a matrix	
Column and row-wise medians	
Column and row-wise nth smallest value of a matrix/vector	
Column and row-wise Order - Sort Indices	
Column and row-wise products	
Column and row-wise range of values of a matrix	
Column and row-wise ranks	
Column and row-wise Shuffle	
Column and row-wise sums of a matrix	
Column and row-wise tabulate	
Column and row-wise variances and standard deviations	
Column and rows-wise mean absolute deviations	
Column-row wise minima and maxima of two matrices	
Column-wise differences	
Column-wise kurtosis and skewness coefficients	52
Column-wise matching coefficients	5 3
	54
Column-wise MLE of some univariate distributions	55
Column-wise true/false value	57
Column-wise uniformity Watson test for circular data	58
Column-wise Yule's Y (coefficient of colligation)	59
Convert a dataframe to matrix	60
Convert R function to the Rfast's coresponding	61
	62
	63
•	65

Covariance and correlation matrix		66
Cox confidence interval for the ratio of two Poisson variables		67
Cross-Validation for the k-NN algorithm		68
Cross-Validation for the k-NN algorithm using the arc cosinus distance		70
Deep copy		72
Density of the multivariate normal and t distributions		73
Design Matrix		74
Diagonal Matrix		75
Distance between vectors and a matrix		76
Distance correlation		77
Distance matrix		
Distance variance and covariance		
Eigenvalues and eigenvectors in high dimensional principal component analysis .		81
Empirical and exponential empirical likelihood tests for one sample		82
Empirical and exponential empirical likelihood tests for two samples		83
Energy distance between matrices		85
Equality of objects		86
Estimation of an AR(1) model		87
Estimation of the Box-Cox transformation		88
Exact t-test for 2 independent samples		89
Exponential empirical likelihood for a one sample mean vector hypothesis testing		90
Exponential empirical likelihood hypothesis testing for two mean vectors		90
1 1 0		
Fast and general - untyped representation of a factor variable		93
		94
Find element		
Find the given value in a hash table		
Fitted probabilities of the Terry-Bradley model		
Fitting a Dirichlet distribution via Newton-Rapshon		
Floyd-Warshall algorithm		
Forward selection with generalised linear regression models		
G-square and Chi-square test of conditional indepdence		
Gamma regression with a log-link		
Gaussian regression with a log-link		
Generates random values from a normal and puts them in a matrix		
Get specific columns/rows fo a matrix		
Hash - Pair function		
Hash object		109
Hash object to a list object		
High dimensional MCD based detection of outliers		111
Hypothesis test for the distance correlation		112
Hypothesis test for two means of percentages		114
Hypothesis test for von Mises-Fisher distribution over Kent distribution		
Hypothesis testing between two skewness or kurtosis coefficients		116
Index of the columns of a data.frame which are a specific type		
Insert/remove function names in/from the NAMESPACE file		
Inverse Gaussian regression with a log-link		
Inverse of a symmetric positive definite matrix		
Iterator	•	121

James multivariate version of the t-test	. 123
k nearest neighbours algorithm (k-NN)	. 124
k-NN algorithm using the arc cosinus distance	
Limited number of eigenvalues and eigenvectors of a symmetric matrix	
Linear models for large scale data	
Logistic and Poisson regression models	
Logistic or Poisson regression with a single categorical predictor	
Lower and Upper triangular of a matrix	
Mahalanobis distance	
Many (and one) area aunder the curve values	
Many 2 sample proportions tests	
Many 2 sample tests	
Many analysis of variance tests with a discrete variable	
Many ANCOVAs	
Many ANOVAS for count data with Poisson or quasi Poisson models	
Many exponential regressions	
Many F-tests with really huge matrices	
Many G-square and Chi-square tests of indepedence	
Many Gini coefficients	
Many hypothesis tests for two means of percentages	
Many moment and maximum likelihood estimations of variance components	. 148
Many multi-sample tests	
Many multivariate simple linear regressions coefficients	. 151
Many non parametric multi-sample tests	. 152
Many odds ratio tests	. 154
Many one sample goodness of fit tests for categorical data	. 155
Many one sample tests	
Many random intercepts LMMs for balanced data with a single identical covariate	
Many regression based tests for single sample repeated measures	
Many score based regressions	
Many Shapiro-Francia normality tests	
Many simple circular or angular regressions	
Many simple geometric regressions	
Many simple linear mixed model regressions	
Many simple linear regressions coefficients	
Many simple multinomial regressions	
Many simple regressions for positive valued data	
Many tests for the dispersion parameter in Poisson distribution	
Many two-way ANOVAs	
Many univariate generalised linear models	
Many univariate simple linear regressions	
Many univariate simple logistic and Poisson regressions	
Many univariate simple quasi poisson regressions	. 178
Many Welch's F-tests	. 179
Match	. 180
Matrix multiplication	. 181
Matrix with all pairs of t-tests	. 182
Matrix with G-square tests of indepedence	. 183

Mean - Median absolute deviation of a vector	185
Median of a vector	186
Minima and maxima of two vectors/matrices	187
Minimum and maximum	188
Minimum and maximum frequencies	189
MLE for multivariate discrete data	190
MLE of (hyper-)spherical distributions	191
MLE of continuous univariate distributions defined on the positive line	193
MLE of continuous univariate distributions defined on the real line	195
MLE of count data (univariate discrete distributions)	196
MLE of distributions defined in the $(0,1)$ interval $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	198
MLE of some circular distributions	200
MLE of the inverted Dirichlet distribution	201
MLE of the multivariate (log-) normal distribution	
MLE of the multivariate t distribution	204
MLE of the ordinal model without covariates	205
MLE of the tobit model	
Moment and maximum likelihood estimation of variance components	207
Multi-sample tests for vectors	209
Multinomial regression	211
Multivariate kurtosis	212
Multivariate Laplace random values simulation	213
Multivariate normal and t random values simulation	214
Naive Bayes classifiers	215
Natural Logarithm each element of a matrix	217
Natural logarithm of the beta function	218
Natural logarithm of the gamma function and its derivatives	219
Norm of a matrix	220
Number of equal columns between two matrices	
Odds ratio and relative risk	222
One sample t-test for a vector	223
Operations between two matrices or matrix and vector	
Orthogonal matching pursuit variable selection	226
Outer function	227
Permutation	
Permutation based p-value for the Pearson correlation coefficient	229
Polyserial correlation	230
Pooled covariance matrix	
Prediction with some naive Bayes classifiers	233
Quasi binomial regression for proportions	234
Quasi Poisson regression for count data	236
Random intercepts linear mixed models	237
Random values simulation from a von Mises distribution	239
Ranks of the values of a vector	240
Reading the files of a directory	241
Repeated measures anova	242
Replicate columns/rows	243
Representation of Stack	244

	Round each element of a matrix/vector	245
	Row - Wise matrix/vector count the frequency of a value	246
	Row-wise minimum and maximum	247
	Row-wise true value	248
	Search for variables with zero range in a matrix	249
	Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression	250
	Simulation of random values from a Bingham distribution	252
	Simulation of random values from a Bingham distribution with any symmetric matrix	253
	Simulation of random values from a normal distribution	254
	Simulation of random values from a von Mises-Fisher distribution	255
	Skeleton of the PC algorithm	256
	Skewness and kurtosis coefficients	258
	Some summary statistics of a vector for each level of a grouping variable	259
	Sort - Integer Sort - Sort a vector coresponding to another	
	Sort and unique numbers	262
	Sorting of the columns-rows of a matrix	263
	Source many R files	264
	Spatial median for Euclidean data	265
	Spatial median regression	266
	Spatial sign covariance matrix	267
	Spherical and hyperspherical median	268
	Standardisation	269
	Sub-matrix	270
	Sum of all pairwise distances in a distance matrix	271
	Table Creation - Frequency of each value	272
	Tests for the dispersion parameter in Poisson distribution	274
	Topological sort of a DAG	275
	Transpose of a matrix	276
	Uniformity test for circular data	277
	Variance of a vector	278
	Vector allocation in a symmetric matrix	279
	Weibull regression model	280
	Yule's Y (coefficient of colligation)	281
Index		283

Rfast-package

Really fast R functions

Description

A collection of Rfast functions for data analysis. Note 1: The vast majority of the functions accept matrices only, not data.frames. Note 2: Do not have matrices or vectors with have missing data (i.e NAs). We do no check about them and C++ internally transforms them into zeros (0), so you may get wrong results. Note 3: In general, make sure you give the correct input, in order to get the correct output. We do no checks and this is one of the many reasons we are fast.

Details

Package: Rfast
Type: Package
Version: 2.0.6
Date: 2022-02-15
License: GPL-2

Maintainers

Manos Papadakis <papadakm95@gmail.com>

Note

Acknowledgments: We would like to acknowledge:

- Professor Kurt Hornik, Doctor Uwe Ligges (and the rest of R core team) for their invaluable help with this R package.
- Erich Studerus for his invaluable comments.
- Neal Fultz for his suggestions.
- Vassilis Vasdekis for his invaluable help with the random effects models.
- Marios Dimitriadis' work was funded by the Special Account for Research Funds of the University of Crete, Department of Computer Science.
- Phillip Si is greatly acknowledged for his help with the Floyd-Warshal algorithm.
- Keefe Murphy for his invaluable help with NEWS file and for his suggestions.
- Zacharias Papadovassilakis gave us the inspiration for the memory efficient version of the k-NN algorithm.
- Yannis Pantazis explained us how the orhtogonal matching pursuit works.
- Achim Zeileis for his help with the quasi Poisson regression models.
- Pedro J. Aphalo for finding a bug.
- · Dimitris Kyriakis for finding a bug.
- · Cyrille Conord for finding a bug.
- Aaron Robotham for finding a bug.
- Calvin Pan from the Department of Human Genetics at UCLA found a bug in the function glm_logistic and he is greatly acknowledged for that.
- Adam Muschielok from Rodenstock GmbH found a bug in the function vmf.mle and he is greatly acknowledged for that.
- Bret Presnell for detecting and correcting a bug in the function rvmf.
- Gabriel Hoffman for spotting a mistake in the fuction dirimultinom.mle.

From now on the Rfast can be used in C++ via LinkingTo mechanism.

 The main namespace is "Rfast". Inside "Rfast" you will find two more namespaces, "vector" and "matrix".

- Namespace "vector" for calling functions using an Rcpp's or RcppArmadillo's vector.
- Namespace "matrix" for calling functions using an Rcpp's or RcppArmadillo's matrices.
- The signatures of the functions and the arguments are the same that are exported in R.

For namespace "vector" the functions that are available are:

- 1. median(x)
- 2. $var(x, std = false, na_rm = false)$
- 3. mad(x, method = "median", na_rm = false)
- 4. shuffle(x,engine = Engine(time(0)) // Engine by default is default_random_engine. You can use anyone from C++.

For namespace "matrix" the functions that are available are:

- 1. transpose(x)
- 2. matrix_multiplication(x,y)
- 3. colSort(x, descend = false, stable = false, parallel = false)
- 4. rowSort(x, descend = false, stable = false, parallel = false)
- 5. is_symmetric(x)
- 6. colMedian(x, na_rm = false, parallel = false)
- 7. rowMedian(x, na_rm = false, parallel = false)
- 8. colVars(x, std = false, na_rm = false, parallel = false)
- 9. rowVars(x, std = false, na_rm = false, parallel = false)
- 10. colMads(x, method = "median", na_rm = false, parallel = false)
- 11. rowMads(x, method = "median", na rm = false, parallel = false)
- 12. colShuffle(x,engine = Engine(time(0)) // Engine by default is default_random_engine. You can use anyone from C++.
- 13. rowShuffle(x,engine = Engine(time(0)) // Engine by default is default_random_engine. You can use anyone from C++.

How to use it:

- 1. Just add in "LinkingTo" in your NAMESPACE file the "Rfast" or in Rstudio "//[[Rcpp::depends(Rfast)]]".
- 2. Include in your cpp files the header "Rfast.h" and enjoy!

Author(s)

- Manos Papadakis <papadakm95@gmail.com>
- Michail Tsagris <mtsagris@uoc.gr>
- Marios Dimitriadis kmdimitriadis@gmail.com
- Stefanos Fafalios < stefanos fafalios @gmail.com>
- Ioannis Tsamardinos <tsamard@csd.uoc.gr>

- Matteo Fasiolo <matteo.fasiolo@gmail.com>
- Giorgos Borboudakis

borbudak@gmail.com>
- John Burkardt <jburkardt@fsu.edu>
- Kleanthi Lakiotaki <kliolak@gmail.com>
- Changliang Zou <nk.chlzou@gmail.com>
- Christina Chatzipantsiou <chatzipantsiou@gmail.com>

All k possible combinations from n elements $All \; k \; possible \; combinations \; from \; n \; elements$

Description

All k possible combinations from n elements.

Usage

```
comb_n(n, k,simplify=TRUE)
```

Arguments

n A positive **INTEGER** number or a vector with numbers.

k A positive integer number at most equal to n or at most equal to the length of n,

if n is a vector.

simplify A logical value for return List instead of matrix.

Value

A matrix with k columns and rows equal to the number of possible unique combinations of n with k elements. If simplify is set to TRUE then a list with k values where each value has length equal to the number of possible unique combinations of n with k elements.

Author(s)

Manos Papadakis and Marios Dimitriadis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Marios Dimitriadis <kmdimitriadis@gmail.com>.

References

Nijenhuis A. and Wilf H.S. (1978). Combinatorial Algorithms for Computers and Calculators. Academic Press, NY.

See Also

nth, colMaxs, colMins, colrange

Analysis of covariance 11

Examples

```
system.time( comb_n(20, 4) )
system.time( combn(20, 4) )
x <- rnorm(5)
res<-comb_n(x, 3)</pre>
```

Analysis of covariance

Analysis of covariance

Description

Analysis of covariance

Usage

```
ancova1(y, ina, x, logged = FALSE)
```

Arguments

У	A numerical vector with the data, the response variable.
ina	A numerical vector with $1s$, $2s$, $3s$ and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero.
X	A numerical vector whose length is equal to the number of rows of y. This is the covariate.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Analysis of covariance is performed. No interaction between the factor and the covariate is tested. Only the main effects. The design need not be balanced. The values of ina need not have the same frequency. The sums of squares have been adjusted to accept balanced and unbalanced designs.

Value

A matrix with the test statistic and the p-value for the factor variable and the covariate.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley \& Sons

See Also

```
ancovas, ftests, ttests, anoval
```

Examples

```
y <- rnorm(90)
ina <- rbinom(90, 2, 0.5) + 1
x <- rnorm(90)
system.time( a <- ancova1(y, ina, x) )</pre>
```

Analysis of variance with a count variable

Analysis of variance with a count variable

Description

Analysis of variance with a count variable.

Usage

```
poisson.anova(y, ina, logged = FALSE)
geom.anova(y, ina, type = 1, logged = FALSE)
quasipoisson.anova(y, ina, logged = FALSE)
```

Arguments

у	A numerical vector with discrete valued data, i.e. counts.
ina	A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4, or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results.
type	This argument is for the geometric distribution. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the analysis of variance with Poisson or geometric distributed data. What we do is a log-likelihood ratio test. However, this is exactly the same as Poisson regression with a single predictor variable who happens to be categorical. Needless to say that this is faster function than the glm command in R. For the same purpose with a Bernoulli variable use g2Test. The quasinpoisson.anova is when in the glm function you specify family = quasipoisson. This is suitable for the case of over or under-dispersed data.

Value

A vector with two values, the difference in the deviances (or the scale difference in the case of quasi poisson) and the relevant p-value. The quasipoisson anova also returns the estimate of the ϕ parameter.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
logistic.cat1,g2Test,poisson.anovas,anova,poisson_only,poisson.mle
```

Examples

```
y <- rpois(300, 10)
ina <- rbinom(300, 3, 0.5) + 1
a1 <- poisson.anova(y, ina)
a2 <- glm(y ~ ina, poisson)

## Not run:
res<-anova(a2, test = "Chisq")

## End(Not run)
y <- rgeom(300, 0.7)
res<-geom.anova(y, ina)</pre>
```

Angular central Gaussian random values simulation

Angular central Gaussian random values simulation

Description

Angular central Gaussian random values simulation.

Usage

```
racg(n, sigma, seed = NULL)
```

Arguments

n The sample size, a numerical value.

sigma The covariance matrix in \mathbb{R}^d .

seed If you want the same to be generated again use a seed for the generator, an

integer number.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition. The vectors are then scaled to have unit length.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3): 579-589.

See Also

```
acg.mle,rmvnorm,rmvlaplace,rmvt
```

Examples

```
s <- cov( iris[, 1:4] )
x <- racg(100, s)
res<-acg.mle(x)
res<-vmf.mle(x) ## the concentration parameter, kappa, is very low, close to zero, as expected.</pre>
```

```
ANOVA for two quasi Poisson regression models ANOVA\ for\ two\ quasi\ Poisson\ regression\ models
```

Description

ANOVA for two quasi Poisson regression models.

Usage

```
anova_quasipois.reg(mod0, mod1, n)
```

Arguments

mod0 An object as returned by the "qpois.reg" function. This is the null model.

mod1 An object as returned by the "qpois.reg" function. This is the alternative model.

n The sample size. This is necessary to calculate the degrees of freedom.

Details

This is an ANOVA type significance testing for two quasi Poisson models.

Value

A vector with 4 elements, the test statistic value, its associated p-value and the relevant degrees of freedom of the numerator and the denominator.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Papke L. E. & Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619–632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
anova_qpois.reg,qpois.reg,univglms,quasipoisson.anova
```

Examples

```
## Not run:
y <- rnbinom(200, 10, 0.5)
x <- matrix(rnorm(200 * 3), ncol = 3)
a1 <- qpois.reg(x, y)
a0 <- qpois.reg(x[, 1], y)
res<-anova_quasipois.reg(a0, a1, 200)
b1 <- glm(y ~ x, family = quasipoisson)
b0 <- glm(y ~ x[, 1], family = quasipoisson)
res<-anova(b0, b1, test = "F")
c1 <- glm(y ~ x, family = poisson)
c0 <- glm(y ~ x[, 1], family = poisson)
res<-anova(c0, c1, test = "Chisq")
## End(Not run)</pre>
```

Apply method to Positive and Negative number

Apply method to Positive and Negative number

Description

Apply method to Positive and Negative number.

Usage

```
negative(x,method = "min")
positive(x,method = "min")
positive.negative(x,method = "min")
```

Arguments

x A numerical vector with data.

method Accept 3 values. "min", "max", "min.max".

Details

These functions apply the chosen method to the chosen subset (negative, positive, or both) from the vector and return the result.

Value

negative: apply the chosen method to every negative number of the input vector. positive: apply the chosen method to every positive number of the input vector. positive.negative: apply the chosen method to every negative and positive number of the input vector.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
nth,colnth,rownth,sort_unique,Round
```

Examples

```
x <- rnorm(1000)
identical(negative(x,"min"), min(x<0))
identical(positive(x,"min"), min(x>0))
identical(positive.negative(x,"min"), c(min(x<0),min(x>0)))
x<-NULL</pre>
```

Apply to each column a method under condition $Apply \ to \ each \ column \ a \ method \ under \ condition$

Description

Apply to each column a method under condition.

Usage

```
apply.condition(x,method = "+",oper = ">",cond.val = 0)
```

Arguments

х	An integer matrix.
method	One of: "+", "-", "*", "min", "max".
oper	One of: ">, "<", ">=", "<=".
cond.val	An integer value for the condition.

Details

Apply to each col the specified method using the condition.

Value

An integer vector with the coresponding values.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
colsums,colMedians,colVars
```

Examples

```
 x \leftarrow \texttt{matrix}(\texttt{rpois}(100,6),10,\ 10) \\ identical(\texttt{apply}(\texttt{x},2,\texttt{function}(\texttt{x})\{\ \texttt{sum}(\texttt{x}[\texttt{x}>0])\ \}),\ \texttt{apply}.\texttt{condition}(\texttt{x},"+",">",0)) \\ x \leftarrow \texttt{NULL}
```

Backward selection regression

Backward selection regression

Description

Backward selection regression.

Usage

```
bs.reg(y, x, alpha = 0.05, type = "logistic")
```

Arguments

у	A numerical vector with the response variable values. It can either be of 0 and 1 values (Logistic regression) or of integer values 0, 1, 2, (Poisson regression).
Х	A numerical matrix with the candidate variables.
alpha	Threshold (suitable values are in $[0,1]$) for assessing the significance of p-values. The default value is at 0.05.
type	For the Logistic regression put "logistic" (default value) and for Poisson type "poisson".

Details

This function currently implements only the binary Logistic and Poisson regressions. If the sample size is less than the number of variables a notification message will appear and no backward regression will be performed.

Value

The output of the algorithm is an S3 object including:

info A matrix with the non selected variables and their latest test statistics and p-

values

Vars A vector with the selected variables.

Author(s)

Marios Dimitriadis

R implementation and documentation: Marios Dimitriadis <mtsagris@csd.uoc.gr>

See Also

```
fs.reg,univglms,cor.fsreg
```

Examples

```
y <- rbinom(50, 1, 0.5)
x <- matrnorm(50, 10)
res<-bs.reg(y, x)</pre>
```

```
BIC (using partial correlation) forward regression

BIC (using partial correlation) forward regression
```

Description

BIC (using partial correlation) forward regression.

Usage

```
bic.corfsreg(y, x, tol = 2)
```

Arguments

y A numerical vector.

x A matrix with data, the predictor variables.

tol If the BIC difference between two successive models is less than the tolerance value, the variable will not enter the model.

Details

The forward regression tries one by one the variables using the F-test, basically partial F-test every time for the latest variable. This is the same as testing the significance of the coefficient of this latest enetered variable. Alternatively the correlation can be used and this case the partial correlation coefficient. There is a direct relationship between the t-test statistic and the partial correlation coefficient. Now, instead of having to calculate the test statistic, we calculate the partial correlation coefficient. The largest partial correlation indicates the candidate variable to enter the model. If the BIC of the regression model with that variable included, reduces, less than "tol" from the previous model without this variable, the variable enters.

Value

A matrix with two columns, the index of the selected variable(s) and the BIC of each model. The first line is always 0 and the BIC of the model with no predictor variables.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
cor.fsreg,score.glms,univglms,logistic_only,poisson_only,regression
```

Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted x <- matrix( rnorm(200 * 200), ncol = 200 ) y <- rnorm(200) system.time( a1 <- bic.corfsreg(y, x) ) system.time( a2 <- cor.fsreg(y, x) ) x <- NULL
```

BIC forward regression with generalised linear models $BIC\ forward\ regression\ with\ generalised\ linear\ models$

Description

BIC forward regression with generalised linear models.

Usage

```
bic.fs.reg(y, x, tol = 2, type = "logistic")
```

Arguments

у	A numerical vector.
Х	A matrix with data, the predictor variables.
tol	If the BIC difference between two successive models is less than the tolerance value, the variable will not enter the model.
type	If you have a binary dependent variable, put "logistic". If you have count data, put "poisson".

Details

The forward regression tries one by one the variables using the BIC at each step for the latest variable. If the BIC of the regression model with that variable included, is less than "tol" from the previous model without this variable, the variable enters.

Value

A matrix with two columns, the index of the selected variable(s) and the BIC of each model.

Author(s)

Marios Dimitriadis

R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com>.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
fs.reg,bic.corfsreg,cor.fsreg,score.glms,univglms,logistic_only,poisson_only,regression
```

Examples

```
## Not run:
x <- matrix(rnorm(200 * 50), ncol = 50)
## 200 variables, hence 200 univariate regressions are to be fitted
y <- rbinom(200, 1, 0.5)
a <- bic.fs.reg(y, x)
x <- NULL
## End(Not run)</pre>
```

Binary search algorithm

Binary search algorithm

Description

Search a value in an ordered vector.

Usage

```
binary_search(x, v, index=FALSE)
```

Arguments

x A vector with the data.

v A value to check if exists in the vector x.

index A boolean value for choose to return the position inside the vector.

Details

The functions is written in C++ in order to be as fast as possible.

Value

Search if the v exists in x. Then returns TRUE/FALSE if the value is been found.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
is_element
```

Examples

```
x <- sort(rnorm(1000))
v <- x[50]
b <- binary_search(x,v)
b1 <- binary_search(x,v,TRUE)</pre>
```

Binomial coefficient and its logarithm

Binomial coefficient and its logarithm

Description

Binomial coefficient and its logarithm.

Usage

```
Lchoose(x, k)
Choose(x, k)
```

Arguments

x A vector with integer values numbers.

k A positive non zero at most equal to x.

Details

The binomial coefficient or its logarithm are evaluated.

Value

A vector with the answers.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

```
comb_n,Lbeta,Lgamma
```

Examples

```
x <- sample(20:30, 100, replace = TRUE)
res<-Choose(x, 4)
res<-Lchoose(x, 4)
x<-NULL</pre>
```

```
Bootstrap t-test for 2 independent samples

Bootstrap t-test for 2 independent samples
```

Description

Bootstrap t-test for 2 independent samples.

Usage

```
boot.ttest2(x, y, B = 999)
```

Arguments

x A numerical vector with the data.
 y A numerical vector with the data.
 B The number of bootstrap samples to use.

Details

Instead of sampling B times from each sample, we sample \sqrt{B} from each of them and then take all pairs. Each bootstrap sample is independent of each other, hence there is no violation of the theory.

Value

A vector with the test statistic and the bootstrap p-value.

Author(s)

Michail Tsagris and Christina Chatzipantsiou

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Christina Chatzipantsiou <chatzipantsiou@gmail.com>.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

Efron Bradley and Robert J. Tibshirani (1993). An introduction to the bootstrap. New York: Chapman & Hall/CRC.

Chatzipantsiou C., Dimitriadis M., Papadakis M. and Tsagris M. (2019). Extremely efficient permutation and bootstrap hypothesis tests using R. To appear in the Journal of Modern Applied Statistical Methods.

https://arxiv.org/ftp/arxiv/papers/1806/1806.10947.pdf

See Also

```
ttest2, exact. ttest2, ftest
```

Examples

```
tic <- proc.time()
x <- rexp(40, 4)
y <- rbeta(50, 2.5, 7.5)
system.time( a <- boot.ttest2(x, y, 9999) )
a</pre>
```

```
Check if any column or row is fill with values

Check if any column or row is fill with values
```

Description

Check if any column or row is fill with values.

Usage

```
colrow.value(x,value=0)
```

Arguments

x A vector with data.

value A value to check.

Details

Check all the column if any has all its elements equal to argument value. If found, return "TRUE". Otherwise continues with rows. If columns and rows hasn't any value vector then return "FALSE". Even if it returns "FALSE" that doesn't mean the determinant can't be value. It might be but if check before and found any value vector then for sure the determinant it'll be value.

Value

A boolean value, "TRUE" if any column OR row is all filled with value. "FALSE" otherwise.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,rowFalse,nth,colrange,colMedians,colVars,colSort,rowSort,rowTrue
```

Examples

```
x <- matrix(runif(10*10),10,10)
res<-colrow.value(x)
x<-NULL</pre>
```

Check if values are integers and convert to integer

Check if values are integers and convert to integer

Description

Check if values are integers and convert to integer.

Usage

```
is_integer(x)
as_integer(x,result.sort = TRUE,init = 1)
```

Arguments

x is_integer: A vector with numeric data. as_integer: A vector with data.

result.sort A logical value for sorting the result.

init An integer value to start.

Details

The behavior of these functions are different than R's built in.

is_integer: check if all the values are integers in memory. If typeof is double, and the values are integers in range -2^31: 2^31 then it is better to convert to integer vector for using less memory. Also you can decrease the time complexity.

as_integer: converts the discrete values to integers.

Value

is_integer: A logical value, TRUE if all values are integers and in range -2^31 : 2^31. Otherwise FALSE.

as_integer: By default the function will return the same result with "as.numeric" but the user can change the "init" value not start from 1 like R's. Also the result can be unsorted using "result.sort".

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
as_integer,colVars,colmeans,read.directory
```

Examples

```
x<-runif(10)
y1<-is_integer(x) # y1 is FALSE
x<-as.numeric(rpois(10,10)) # integers but typeof is double
y1<-is_integer(x) # y1 is TRUE so you can convert to integer vector.
as_integer(letters) ## as.numeric(letters) produce errors
x<-y1<-NULL</pre>
```

Check Namespace and Rd files

Check Namespace and Rd files

Description

Check Namespace/Rd and examples files.

Usage

```
checkNamespace(path.namespace,path.rfolder)
checkAliases(path.man,path.rfolder)
checkTF(path.man)
checkExamples(path.man,each = 1,print.errors = stderr(),
print.names = FALSE)
checkUsage(path.man,path.rfolder)
```

Arguments

```
path.namespace An full path to the "NAMESPACE" file.

path.rfolder An full path to the directory that contains the "R" files.

path.man An full path to the directory that contains the "Rd" files.
```

each An integer value for running **each** example.

print.errors Print the errors to a file. By default it's "stderr()".

print.names A boolean value (TRUE/FALSE) for printing the names of the files before run-

ning the examples.

Details

For function "checkNamespace": reads from the NAMESPACE folder all the export R functions, reads from folder R all the R functions and check if all the functions are export.

For function "checkAliases": reads from the man directory all the Rd files, then reads from each file the aliases and check if: 1) All the R files has man file or an alias. 2) All aliases belongs to functions. 3) If there are dublicated aliases.

For function "checkExamples": reads from the man directory all the Rd files, then read from each file the examples and then run each of them. If you want to print the errors in any file then set "print.errors=file_name" or in the standard error "print.errors=stderr()" and then you will see all the errors for every file. For succeed run of your code you should first run "library(PACKAGE_NAME)". The argument "print.names" it is very helpful because if any of you function crashes R during running you will never know which one was. So setting it "TRUE", it will print the name of each file before runnign it's example.It might crash, but you will know which file. Remember that there is always an error timeout so it might didn't crash the current file but one from the previous.

For function checkTF: reads from the man directory all the Rd files, then read from each file the examples and checks if any examples has the values "T" and "F" instead "TRUE" and "FALSE". The "T", "F" is wrong.

For function checkUsage: reads from the man directory all the Rd files and for each man check if the usage section has the right signature for the functions from the R directory.

For functions "checkTF", "checkUsage", "checkAliases" you can choose which files not to read for both R and Rd. You must add in the first line of the file in comment the "attribute" "[dont read]". Then each function will now which file to read or not. For Rd you add "%[dont read]" and for R "#[dont read]". Finally, these functions will return in the result a list of which files had this attribute.

Value

For function "checkNamespace": a vector with the names of missing R files. (Don't use it for now) For function "checkAliases": a list with 4 fields.

Missing Man files

A vector with the names of the missing Rd files or nothing.

Missing R files A vector with the names of the missing R files or nothing.

Duplicate alias

A vector with the names of the dublicate aliases or nothing.

don't read A list with 2 fields R: A character vector whith the names of the files that had

attribute "#[dont read]" or nothing. Rd: A character vector whith the names of

the files that had attribute "%[dont read]" or nothing.

For function "checkExamples": a list with 3 fields

Errors A character vector with the names of the Rd files that produced an error.

Big Examples A character vector with the names of the Rd files that has big examples per line.

dont read A list with 2 fields R: A character vector whith the names of the files that had

attribute "#[dont read]" or nothing. Rd: A character vector whith the names of the files that had attribute "%[dont read]" or nothing.

For function "checkTF": a list with 3 fields

TRUE A character vector with the names of the Rd files that has "T" or nothing.

FALSE A character vector with the names of the Rd files that has "F" or nothing.

dont read A list with 2 fields R: A character vector whith the names of the files that had

attribute "#[dont read]" or nothing. Rd: A character vector whith the names of

the files that had attribute "%[dont read]" or nothing.

For function "checkUsage": a list with 3 fields

missing functions

A character vector with the name of the file that is missing and the Rd file that is found or nothing.

missmatch functions

A character vector with the name of the file that has missmatch function and the

Rd file that is found or nothing.

dont read A list with 2 fields R: A character vector whith the names of the files that had

attribute "#[dont read]" or nothing. Rd: A character vector whith the names of

the files that had attribute "%[dont read]" or nothing.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

read.directory,AddToNamespace,sourceR,sourceRd,read.examples

Examples

```
## Not run:
    for example: path.namespace="C:\some_file\NAMESPACE"
    for example: path.rfolder="C:\some_file\R\"
    for example: path.man="C:\some_file\man\"
    system.time( a<-checkNamespace(path.namespace,path.rfolder) )
    system.time( b<-checkAliases(path.man,path.rfolder) )
    system.time( b<-checkExamples(path.man) )
    system.time( b<-checkExamples(path.man,2) )
    system.time( b<-checkTF(path.man) )
    system.time( b<-checkTF(path.man,path.rfolder) )

## End(Not run)</pre>
```

```
Check whether a square matrix is symmetric

Check whether a square matrix is symmetric
```

Description

Check whether a square matrix is symmetric.

Usage

```
is.symmetric(x)
```

Arguments

Χ

A square matrix with data.

Details

Instead of going through the whole matrix, the function will stop if the first disagreement is met.

Value

A boolean value, TRUE of FALSE.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
cholesky,cora,cova
```

Examples

```
x <-matrix( rnorm( 100 * 400), ncol = 400 )
s1 <- cor(x)
is.symmetric(s1)
x <- x[1:100, ]
is.symmetric(x)
x<-s1<-NULL</pre>
```

Chi-square and G-square tests of (unconditional) indepdence ${\it Chi-square\ and\ G-square\ tests\ of\ (unconditional)\ indepdence}$

Description

Chi-square and G-square tests of (unconditional) indepdence.

Usage

```
gchi2Test(x, y, logged = FALSE)
```

Arguments

X	A numerical vector or a factor variable with data. The data must be consecutive numbers.
У	A numerical vector or a factor variable with data. The data must be consecutive numbers.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The function calculates the test statistic of the χ^2 and the G^2 tests of unconditional independence between x and y. x and y need not be numerical vectors like in g2Test. This function is more close to the spirit of MASS' loglm function which calculates both statistics using Poisson log-linear models (Tsagris, 2017).

Value

A matrix with two rows. In each row the X2 or G2 test statistic, its p-value and the degrees of freedom are returned.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

See Also

```
g2Test_univariate,g2Test_univariate_perm,g2Test
```

Examples

```
nvalues <- 3
nvars <- 2
nsamples <- 5000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
res<-gchi2Test(data[, 1], data[, 2])
res<-g2Test_univariate( data, rep(3, 2) ) ## G^2 test
res<-chisq.test(data[, 1], data[, 2]) ## X^2 test from R
data<-NULL</pre>
```

Cholesky decomposition of a square matrix

Cholesky decomposition of a square matrix

Description

Cholesky decomposition of a square matrix.

Usage

```
cholesky(x,parallel = FALSE)
```

Arguments

x A square positive definite matrix.

parallel A boolean value for parallel version.

Details

The Cholesky decomposition of a square positive definite matrix is computed. The use of parallel is suggested for matrices with dimensions of 1000 or more.

Value

An upper triangular matrix.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

See Also

```
is.symmetric
```

Examples

```
x = matrix(rnorm(1000 * 50), ncol = 50)
s = cov(x)
system.time(a1 <- cholesky(s))
system.time(a2 <- chol(s))
all.equal(a1[upper.tri(a1)], a2[upper.tri(a2)])
x <- NULL
s <- NULL
a1 <- NULL
a2 <- NULL</pre>
```

Circular or angular regression

Circular or angular regression

Description

Regression with circular dependent variable and Euclidean or categorical independent variables.

Usage

```
spml.reg(y, x, tol = 1e-07, seb = FALSE, maxiters = 100)
```

Arguments

У	The dependent variable, it can be a numerical vector with data expressed in radians or it can be a matrix with two columns, the cosinus and the sinus of the circular data. The benefit of the matrix is that if the function is to be called multiple times with the same response, there is no need to transform the vector every time into a matrix.
x	The independent variable(s). Can be Euclidean or categorical (factor variables).
tol	The tolerance value to terminatate the Newton-Raphson algorithm.
seb	Do you want the standard error of the estimates to be returned? TRUE or FALSE.
maxiters	The maximum number of iterations to implement.

Details

The Newton-Raphson algorithm is fitted in this regression as described in Presnell et al. (1998).

Value

A list including:

iters The number of iterations required until convergence of the EM algorithm.

be The regression coefficients.

Circular-linear correlation 33

seb	The standard errors of the coefficients.
loglik	The value of the maximised log-likelihood.
seb	The covariance matrix of the beta values.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

```
spml.mle,iag.mle,acg.mle
```

Examples

```
## Not run:
x <- rnorm(100)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[ ,1], 1), rnorm(100, z[ ,2], 1) )
y <- y / sqrt( rowsums(y^2) )
a1 <- spml.reg(y, x)
y <- atan( y[, 2] / y[, 1] ) + pi * I(y[, 1] < 0)
a2 <- spml.reg(y, x)
## End(Not run)</pre>
```

```
Circular-linear correlation
```

Circular-linear correlation

Description

It calculates the squared correlation between a circular and one or more linear variables.

Usage

```
circlin.cor(theta, x)
```

Arguments

theta A circular variable expressed in radians.

x The linear variable or a matrix containing many linear variables.

Details

The squared correlation between a circular and one or more linear variables is calculated.

Value

A matrix with as many rows as linear variables including:

R-squared The value of the squared correlation.

p-value The p-value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

```
spml.reg
```

Examples

```
phi <- rvonmises(50, 2, 20, rads = TRUE)
x <- 2 * phi + rnorm(50)
y <- matrix(rnorm(50 * 5), ncol = 5)
res<-circlin.cor(phi, x)
res<-circlin.cor(phi, y)
y <- NULL</pre>
```

```
Colum-wise cumulative operations (sum, prod, min, max)

Colum-wise cumulative operations (sum, prod, min, max)
```

Description

Colum-wise cumulative operations (sum, prod, min, max).

Usage

```
colCumSums(x)
colCumProds(x)
colCumMins(x)
colCumMaxs(x)
```

Arguments

X

A numerical matrix.

Details

Cumulative mins, maxs, sums and prods are returned.

Value

A matrix with the results. It has one row less than the initial matrix.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
colsums,colMedians,colVars
```

Examples

```
x <- matrnorm(10, 10)
res<-colCumSums(x)
res<-colCumMins(x)
res<-colCumMaxs(x)
res<-colCumProds(x)</pre>
```

Column and row wise coefficients of variation

Column and row wise coefficients of variation

Description

Column and row wise coefficients of variation.

Usage

```
colcvs(x, ln = FALSE, unbiased = FALSE)
rowcvs(x, ln = FALSE, unbiased = FALSE)
```

Arguments

x A numerical matrix with the data.

In If you have log-normally distributed data (or assume you do), then set this to

TRUE.

unbiased A boolean variable indicating whether the unbiased for should be returned.

This is applicable in case of small samples.

Details

The colum-wise coefficients of variation are calculated.

Value

A vector with the coefficient of variation for each column or row.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colsums, colVars
```

Examples

```
m <- rnorm(100, 10)
x <- matrix(rnorm(100 * 100, m, 1), ncol = 100)
a1 <- colcvs(x)
a2 <- colcvs(x[1:25, ], unbiased = TRUE)
a3 <- colcvs( exp(x), ln = TRUE)
x <- NULL</pre>
```

Column and row-wise Any/All

Column and row-wise Any

Description

Column and row-wise Any/All of a matrix.

Usage

```
colAny(x)
rowAny(x)
colAll(x, parallel = FALSE)
rowAll(x, parallel = FALSE)
```

Arguments

x A logical matrix with the data.

parallel Do you want the computations to take place in parallel? The default value is FALSE.

Details

The functions is written in C++ in order to be as fast as possible.

Value

A vector where item "i" is true if found Any/All true in column/row "i". Otherwise false.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Median, colMedians, colMeans (buit-in R function)
```

Examples

```
x <- matrix(as.logical(rbinom(100*100,1,0.5)),100,100)
system.time( a<-colAny(x) )
system.time( b<-apply(x,2,any) )
all.equal(a,b)

system.time( a<-rowAny(x) )
system.time( b<-apply(x,1,any) )
all.equal(a,b)

system.time( a<-colAll(x) )
system.time( b<-apply(x,2,all) )
all.equal(a,b)

a<-b<-x<-NULL</pre>
```

Column and row-wise means of a matrix

Column and row-wise means of a matrix

Description

Column and row-wise means of a matrix.

```
colmeans(x, parallel = FALSE)
rowmeans(x)
colhameans(x, parallel = FALSE)
rowhameans(x)
```

x A numerical matrix with data.

parallel Do you want to do it in parallel in C++? TRUE or FALSE.

Value

A vector with the column or row arithmetic or harmonic means.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colsums,rowsums,colMins,colMedians,colMads
```

Examples

```
x <- matrix(rpois(100 * 100, 10),ncol = 100)
x1 <- colmeans(x)
x2 <- colMeans(x)
all.equal(x1,x2)

x1 <- rowmeans(x)
x2 <- rowMeans(x)
all.equal(x1,x2)
system.time( colhameans(x) )
system.time( rowhameans(x) )</pre>
```

Column and row-wise medians

Column and row-wise medians

Description

Column and row-wise medians of a matrix.

```
colMedians(x,na.rm = FALSE, parallel = FALSE)
rowMedians(x,na.rm = FALSE, parallel = FALSE)
```

Χ	A matrix with the data.
parallel	Do you want to do it in parallel in C++? TRUE or FALSE.
na.rm	TRUE or FAISE for remove NAs if exists.

Details

The functions is written in C++ in order to be as fast as possible.

Value

A vector with the column medians.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Median, colVars, colMeans (buit-in R function)
```

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
a <- apply(x, 2, median)
b1 <- colMedians(x)
all.equal(as.vector(a), b1)
x<-a<-b1<-NULL</pre>
```

Column and row-wise nth smallest value of a matrix/vector

Column and row-wise nth smallest value of a matrix/vector

Description

Column and row-wise nth smallest value of a matrix/vector.

```
colnth(x,elems, num.of.nths = 1,descending = FALSE,na.rm = FALSE,
index.return = FALSE, parallel = FALSE)
rownth(x,elems, num.of.nths = 1,descending = FALSE,na.rm = FALSE,
index.return = FALSE, parallel = FALSE)
nth(x, k, num.of.nths = 1,descending = FALSE,index.return = FALSE,na.rm = FALSE)
```

x	A matrix with the data.
elems	An integer vector with the kth smallest number to be returned for each col-umn/row.
k	The kth smallest/biggest number to be returned.
num.of.nths	The number of the returned nths. By default is 1. Not use with argument parallel, for now.
descending	A boolean value (TRUE/FALSE) for descending order (biggest number). By default is ascending (smallest number).
index.return	Return the index of the kth smallest/biggest number.
parallel	Do you want to do it in parallel in C++? TRUE or FALSE only for col-row wise.
na.rm	TRUE or FAISE for remove NAs if exists. Only for function "nth".

Details

The functions is written in C++ in order to be as fast as possible.

Value

```
For "colnth", "rownth": A vector with the column/row nth For "nth": The nth value.
```

Author(s)

Manos Papadakis <papadakm95@gmail.com>

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Median, colMedians, colMeans (buit-in R function)
```

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
elems <- sample(1:100,100,TRUE)
system.time( colnth(x,elems) )
system.time( rownth(x,elems) )
x <- rnorm(1000)
nth(x, 500)
sort(x)[500]
x<-elems<-NULL</pre>
```

```
Column and row-wise Order - Sort Indices

Column and row-wise Order - Sort Indices
```

Description

Column and row-wise Order - Sort Indices.

Usage

```
colOrder(x,stable=FALSE,descending=FALSE, parallel = FALSE)
rowOrder(x,stable=FALSE,descending=FALSE, parallel = FALSE)
Order(x,stable=FALSE,descending=FALSE,partial = NULL)
```

Arguments

x A matrix with numbers or a numeric/character vector.

Stable A boolean value for using a stable sorting algorithm.

descending A boolean value (TRUE/FALSE) for sorting the vector in descending order. By

default sorts the vector in ascending.

parallel A boolean value for parallel version.

A boolean value for partial sorting.

Details

The function applies "order" in a column or row-wise fashion or Order a vector. If you want the same results as R's, then set "stable=TRUE" because "stable=FALSE" uses a sorting algorithm that it is not stable like R's sort. But it is faster to use the default. This verion is faster for large data, more than 300.

Value

For "colOrder" and "rowOrder" a matrix with integer numbers. The result is the same as apply(x, 2, order) or apply(x, 1, order).

For "Order" sort the vector and returns the indices of each element that it has before the sorting. The result is the same as order(x) but for the same exactly results set argument "stable" to "TRUE".

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colsums, coldiffs, colMedians, colprods
```

```
x <- matrix( runif(10 * 10), ncol = 10 )
res<-colOrder(x)
res<-apply(x, 2, order)
res<-rowOrder(x)
t(apply(x, 1, order))

y <- rnorm(100)
b <- Order(y)
a <- order(y)
all.equal(a,b) ## false because it is not stable
b <- Order(y,stable=TRUE)
all.equal(a,b) ## true because it is stable

x<-y<-b<-a<-NULL</pre>
```

Column and row-wise products

Column and row-wise products

Description

Column and row-wise products.

Usage

```
colprods(x, method = "direct")
rowprods(x)
```

Arguments

x A matrix with numbers.

method The type of colCumProds to use. For direct multiplication use "direct" or "exp-

sumlog" for a more numerically stable, but slower way.

Details

The product of the numbers in a matrix is returned either column-wise or row-wise.

Value

A vector with the column or the row products.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colsums, coldiffs, colMedians
```

Examples

```
x <- matrix( runif(100 * 10), ncol = 10 )
res<-colprods(x)
res<-rowprods(x)
x<-NULL</pre>
```

Column and row-wise range of values of a matrix

Column and row-wise range of values of a matrix.

Description

Column and row-wise range of values of a matrix.

Usage

```
colrange(x, cont = TRUE)
rowrange(x, cont = TRUE)
```

Arguments

x A numerical matrix with data.

cont If the data are continuous, leave this TRUE and it will return the range of values

for each variable (column). If the data are integers, categorical, or if you want to find out the number of unique numbers in each column set this to FALSE.

Value

A vector with the relevant values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colMins,colMaxs,rowMins,rowMaxs,nth,colMedians,colVars,colSort,rowSort
```

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
a1 <- colrange(x)
a2 <- apply(x, 2, function(x) diff( range(x)) )
all.equal(a1, a2)
a1 <- rowrange(x)
a2 <- apply(x, 1, function(x) diff( range(x)) )
all.equal(a1, a2)
x<-a1<-a2<-NULL</pre>
```

Column and row-wise ranks

Column and row-wise ranks

Description

Column and row-wise ranks.

Usage

```
colRanks(x,method = "average",descending = FALSE,stable = FALSE, parallel = FALSE)
rowRanks(x,method = "average",descending = FALSE,stable = FALSE, parallel = FALSE)
```

Arguments

X	A mumerical matrix with the data.
parallel	A boolean value for parallel version.
method	a character string for choosing method. Must be one of "average", "min", "max", "first".
descending	A boolean value (TRUE/FALSE) for sorting the vector in descending order. By default sorts the vector in ascending.
stable	A boolean value (TRUE/FALSE) for choosing a stable sort algorithm. Stable means that discriminates on the same elements. Only for the method "first".

Details

For each column or row of a matrix the ranks are calculated and they are returned. The initial matrix is gone.

Value

A matrix with the column or row-wise ranks.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Rank, correls
```

Examples

```
x <- matrnorm(100, 10)
a1 <- colRanks(x)
a2 <- apply(x, 2, rank)
b1 <- rowRanks(x)
b2 <- apply(x, 1, rank)
x<-a1<-a2<-b1<-b2<-NULL</pre>
```

Column and row-wise Shuffle

Column and row-wise Shuffle

Description

Column and row-wise shuffle of a matrix.

Usage

```
colShuffle(x)
rowShuffle(x)
```

Arguments

Х

A matrix with the data.

Details

The functions is written in C++ in order to be as fast as possible.

Value

A vector with the column/row Shuffle.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Median, colVars, colMeans (buit-in R function)
```

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
system.time( colShuffle(x) )
system.time( rowShuffle(x) )
x<-NULL</pre>
```

Column and row-wise sums of a matrix

Column and row-wise sums of a matrix

Description

Column and row-wise sums of a matrix.

Usage

```
colsums(x,indices = NULL, parallel = FALSE, na.rm = FALSE)
rowsums(x,indices = NULL, parallel = FALSE, na.rm = FALSE)
```

Arguments

x A numerical matrix with data.

indices An integer vector with the indices to sum the columns/rows.

parallel Do you want to do it in parallel in C++? TRUE or FALSE. Doens't work with

argument "indices".

na.rm A logical value indicating to remove NAs. The algorithm run in parallel so do

not use with option parallel.

Value

A vector with sums.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colMedians, colmeans, colVars
```

```
x <- matrix(rpois(500 * 100, 10),ncol = 100)
x1 <- colsums(x)
x2 <- colSums(x)
all.equal(x1,x2)

x1 <- rowsums(x)
x2 <- rowSums(x)
all.equal(x1,x2)

x<-x1<-x2<-NULL</pre>
```

Column and row-wise tabulate

Column and row-wise tabulate

Description

Column and row-wise tabulate of a matrix.

Usage

```
colTabulate(x, max_number = max(x))
rowTabulate(x, max_number = max(x))
```

Arguments

x An integer matrix with the data. The numbers must start from 1, i.e. 1, 2, 3, 4,...

No zeros are allowed. Anything else may cause a crash.

max_number The maximum value of vector x. If you know which is the max number use this

argument for faster results or by default max(x).

Details

The functions is written in C++ in order to be as fast as possible.

Value

A matrix where in each column the command "tabulate" has been performed. The number of rows of the returned matrix will be equal to the max_number if given. Otherwise, the functions will find this number.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colShuffle,colVars,colmeans
```

```
x <- matrix( rbinom(100 * 100, 4, 0.5), ncol = 100 )
system.time( colTabulate(x) )
x <- t(x)
system.time( rowTabulate(x) )
x<-NULL</pre>
```

Column and row-wise variances and standard deviations

Column and row-wise variances and standard deviations of a matrix

Description

Column and row-wise variances and standard deviations of a matrix

Usage

```
colVars(x, suma = NULL, std = FALSE, na.rm = FALSE, parallel = FALSE)
rowVars(x, suma = NULL, std = FALSE, na.rm = FALSE, parallel = FALSE)
```

Arguments

X	A matrix with the data.
suma	If you already have the column sums vector supply it, otherwise leave it NULL. Depricated.
std	A boolean variable specyfying whether you want the variances (FALSE) or the standard deviations (TRUE) of each column.
na.rm	TRUE or FAISE for remove NAs if exists.
parallel	Should parallel implentations take place in C++? The default value is FALSE.

Details

We found this on stackoverflow which was created by David Arenburg. We then modified the function to match the sums type formula of the variance, which is faster.

Value

A vector with the column variances or standard deviations.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colmeans, colMedians, colrange
```

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
a2 <- colVars(x)
x<-a2<-NULL</pre>
```

Column and rows-wise mean absolute deviations

Column and row-wise mean absolute deviations

Description

Column and row-wise mean absolute deviations.

Usage

```
colMads(x,method = "median",na.rm=FALSE,parallel = FALSE)
rowMads(x,method = "median",na.rm=FALSE,parallel = FALSE)
```

Arguments

x A matrix with the data.

method A character vector with values "median", for median absolute deviation or "mean",

for mean absolute deviation.

na.rm A logical value TRUE/FALSE to remove NAs.

parallel A boolean value for parallel version.

Details

The functions is written in C++ in order to be as fast as possible.

Value

A vector with the column-wise mean absolute deviations.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

```
colMedians, rowMedians, colVars, colmeans, colMeans (buit-in R function)
```

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
system.time( a <- colMads(x) )
x<-NULL</pre>
```

Column-row wise minima and maxima of two matrices

Column-row wise minima and maxima of two matrices

Description

Column-row wise minima and maxima of two matrices.

Usage

```
colPmax(x, y)
colPmin(x, y)
```

Arguments

- x A numerical vector with numbers.
- y A numerical vector with numbers.

Details

The parallel minima or maxima are returned. This are the same as the base functions pmax and pmin.

Value

A numerical vector/matrix with numbers, whose length is equal to the length of the initital matrices containing the maximum or minimum between each pair.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
Sort, colMins, colMaxs, colMedians
```

Column-wise differences 51

Examples

```
x <- matrix(rnorm(100),10,10)
y <- matrix(rnorm(100),10,10)
res<-colPmax(x, y)
res<-colPmin(x, y)
x<-y<-NULL</pre>
```

Column-wise differences

Column-wise differences

Description

Column-wise differences.

Usage

```
coldiffs(x)
```

Arguments

A matrix with numbers.

Details

This function simply does this function x[, -1] - x[, -k], where k is the last column of the matrix x. But it does it a lot faster. That is, 2nd column - 1st column, 3rd column - 2nd column, and so on.

Value

A matrix with one column less containing the differences between the successive columns.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Dist, dista, colmeans
```

```
x <- matrix( rnorm(50 * 10), ncol = 10 )
res<-coldiffs(x)
x<-NULL</pre>
```

Column-wise kurtosis and skewness coefficients

Column-wise kurtosis and skewness coefficients

Description

Column-wise kurtosis and skewness coefficients.

Usage

```
colkurtosis(x, pvalue = FALSE)
colskewness(x, pvalue = FALSE)
```

Arguments

x A matrix with the data, where the rows denote the samples and the columns are

the variables.

pvalue If you want a hypothesis test that the skewness or kurtosis are significant set this

to TRUE. This checks whether the skewness is significantly different from 0 and

whether the kurtosis is significantly different from 3.

Details

The skewness and kurtosis coefficients are calculated. For the skewness coefficient we use the sample unbiased version of the standard deviation. For the kurtosis, we do not subtract 3.

Value

If "pvalue" is FALSE, a vector with the relevant coefficient. Otherwise a matrix with two columns. The kurtosis or skewness coefficient and the p-value from the hypothesis test that they are significantly different from 3 or 0 respectively.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

```
skew, skew. test2, colMedians, colmeans, colVars, sftests
```

```
## 200 variables, hence 200 F-tests will be performed
x = matrix( rnorm(200 * 50), ncol = 50 )
## 200 observations in total
system.time( colkurtosis(x) )
system.time( colskewness(x) )
x <- NULL</pre>
```

Column-wise matching coefficients

Column-wise matching coefficients

Description

Column-wise matching coefficients.

Usage

```
match.coefs(x, y = NULL, ina, type = "jacc")
```

Arguments

Х	A matrix with the data, where the rows denote the samples and the columns are the variables.
У	A second matrix with the data of the second group. If this is NULL (default value) then the argument ina must be supplied. Notice that when you supply the two matrices the procedure is two times faster.
ina	A numerical vector with 1s and 2s indicating the two groups. Be careful, the function is designed to accept only these two numbers. In addition, if your "y" is NULL, you must specify "ina".
type	This denotes the type of matching coefficient to calculate. For the Jaccard index put "jacc". For the simple matching coefficient put "smc" or else both of them will be calculated.

Details

Two matrices are given as imput and for each column matching coefficients are calculated, either the Jaccard or the simple matching coefficient or both.

Value

A matrix with one or two columns, depending on the type you have specified. If you specify "both", there will be two columns, if you specify "jacc" or "smc" then just one column.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
odds, colTabulate
```

Examples

```
x <- matrix(rbinom(400 * 10, 1, 0.5), ncol = 10)
y <- matrix(rbinom(400 * 10, 1, 0.5), ncol = 10)
a <- match.coefs(x, y, type = "both")
x <- NULL
y <- NULL</pre>
```

Column-wise minimum and maximum

Column-wise minimum and maximum of a matrix

Description

Column-wise minimum and maximum of a matrix.

Usage

```
colMins(x, value = FALSE, parallel = FALSE)
colMaxs(x, value = FALSE, parallel = FALSE)
colMinsMaxs(x)
```

Arguments

parallel

x A numerical matrix with data.

value If the value is FALSE it returns the indices of the minimum/maximum, otherwise it returns the minimum and maximum values.

Do you want to do it in parallel in C++? TRUE or FALSE. The parallel will

return the minimum/maximum value only. It will never return the indices.

Value

A vector with the relevant values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,rowMaxs,nth,colrange,colMedians,colVars,colSort,rowSort
```

Examples

```
x <- matrix( rnorm(100 * 200), ncol = 200 )
s1 <- colMins(x)
s2 <- apply(x, 2, min)
s1 <- colMaxs(x)
s2 <- apply(x, 2, max)
s1 <- colMinsMaxs(x)
s2 <- c(apply(x, 2, min), apply(x, 2, max))
x<-s1<-s2<-NULL</pre>
```

Column-wise MLE of some univariate distributions ${\it Column-wise \ MLE \ of some \ univariate \ distributions}$

Description

Column-wise MLE of some univariate distributions.

```
colexpmle(x)
colexp2.mle(x)
colgammamle(x, tol = 1e-07)
colinvgauss.mle(x)
collaplace.mle(x)
collindley.mle(x)
colmaxboltz.mle(x)
colmaxboltz.mle(x)
colnormal.mle(x)
colpareto.mle(x)
colrayleigh.mle(x)
colvm.mle(x, tol = 1e-07)
colweibull.mle(x, tol = 1e-09, maxiters = 100, parallel = FALSE)
colnormlog.mle(x)
```

tol

A numerical matrix with data. Each column refers to a different vector of observations of the same distribution. For exponential, 2 parameter exponential, Weibull, gamma, inverse Gaussian, Maxwell-Boltzman, Lindley, Rayleigh and Pareto distributions, the numbers must be greater than zero. For the Poisson and geometric distributions, the numbers must be integers, 0, 1, 2,... For the Normal and Laplace distribution the numbers can take any value. The von Mises distribution takes values beween 0 and 2 * pi (radians).

The tolerance value to terminate the Newton-Fisher algorithm.

maxiters The maximum number of iterations to implement.

parallel Do you want to calculations to take place in parallel? The default value is

FALSE

Details

For each column, the same distribution is fitted and its parameter and log-likelihood are computed.

Value

A matrix with two, three or five (for the colnormlog.mle) columns. The first one or the first two contain the parameter(s) of the distribution and the other columns contain the log-likelihood values.

Author(s)

Michail Tsagris and Stefanos Fafalios

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Stefanos Fafalios <stefanosfafalios@gmail.com>

References

Kalimuthu Krishnamoorthy, Meesook Lee and Wang Xiao (2015). Likelihood ratio tests for comparing several gamma distributions. Environmetrics, 26(8):571-583.

N.L. Johnson, S. Kotz & N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).

N.L. Johnson, S. Kotz & N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2

Sharma V. K., Singh S. K., Singh U. \& Agiwal V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3): 162-173.

See Also

vm.mle,poisson.mle,normal.mle,gammamle

```
x <- matrix(rnorm(1000 * 50), ncol = 50)
a <- colnormal.mle(x)
b <- collaplace.mle(x)
x <- NULL</pre>
```

Column-wise true/false value

Column-wise true/false value of a matrix

Description

Column-wise true/false value of a matrix.

Usage

```
colTrue(x)
colFalse(x)
colTrueFalse(x)
```

Arguments

X

A logical matrix with data.

Value

An integer vector where item "i" is the number of the true/false values of "i" column.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,rowFalse,nth,colrange,colMedians,colVars,colSort,rowSort,rowTrue
```

```
x <- matrix(as.logical(rbinom(100*100,1,0.5)),100,100)
s1 <- colTrue(x)
s1 <- colFalse(x)
s1 <- colTrueFalse(x)
x<-s1<-NULL</pre>
```

Column-wise uniformity Watson test for circular data

Column-wise uniformity tests for circular data

Description

Column-wise uniformity tests for circular data.

Usage

```
colwatsons(u)
```

Arguments

u

A numeric matrix containing the circular data which are expressed in radians. Each column is a different sample.

Details

These tests are used to test the hypothesis that the data come from a circular uniform distribution. The Kuiper test is much more time consuming and this is why it not implemented yet. Once we figure out a way to make it fast, we will incldue it.

Value

A matrix with two columns, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153-55 (Kuiper's test) & 156-157 (Watson's test).

See Also

```
watson,vmf.mle,rvonmises
```

```
x \leftarrow matrix( rvonmises(n = 50 * 10, m = 2, k = 0), ncol = 10 ) res<-colwatsons(x) x <- NULL
```

```
Column-wise Yule's Y (coefficient of colligation)

Column-wise Yule's Y (coefficient of colligation)
```

Description

Column-wise Yule's Y (coefficient of colligation).

Usage

```
col.yule(x, y = NULL, ina)
```

Arguments

Х	A matrix with 0 and 1. Every column refers to a different sample or variable.
у	A second matrix, of the same dimensions as x , with 0 and 1. Every column refers to a different sample or variable.
ina	If y is NULL, ina must be specified. This is a numeric vector with 1s and 2s, indicating the group of each row.

Details

Yule's coefficient of colligation is calculated for every column.

Value

A vector with Yule's Y, one for every column of x is returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Yule G. Udny (1912). On the Methods of Measuring Association Between Two Attributes. Journal of the Royal Statistical Society, 75(6):579-652.

See Also

```
yule, odds
```

```
x <- matrix(rbinom(300 * 10, 1, 0.5), ncol = 10)
ina <- rep(1:2, each = 150)
res<-col.yule( x, ina = ina )</pre>
```

Convert a dataframe to matrix

Convert a dataframe to matrix

Description

Convert a dataframe to matrix.

Usage

```
data.frame.to_matrix(x,col.names = NULL,row.names = NULL)
```

Arguments

x A Numeric matrix with data and NAs.

col.names A boolean value for keeping the colnames for argument x or a character vector

for the new colnames.

row.names A boolean value for keeping the rownames for argument x or a character vector

for the new rownames.

Details

This functions converts a dataframe to matrix. Even if there are factors, the function converts them into numerical values. Attributes are not allowed for now.

Value

A matrix wich has the numrical values from the dataframe.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

See Also

```
Match, is. symmetric, permutation
```

```
res<-data.frame.to_matrix(iris)</pre>
```

Convert R function to the Rfast's coresponding

Convert R function to the Rfast's coresponding

Description

Convert R function to the Rfast's coresponding.

Usage

```
as.Rfast.function(Rfunction.name,margin=NULL)
```

Arguments

Rfunction.name An character value with the name of the function.

margin A logical function for return the column-row wise function.

Details

Given the name of R function, it returns the coresponding function's name from Rfast.

Value

The coresponding Rfast function.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
colsums,colMedians,colVars
```

```
res<-as.Rfast.function("var")</pre>
```

Correlation based forward regression

Correlation based forward regression.

Description

Correlation based forward regression.

Usage

```
cor.fsreg(y, x, ystand = TRUE, xstand = TRUE, threshold = 0.05,
tolb = 2, tolr = 0.02, stopping = "BIC")
```

Arguments

y A numerical vector.

x A matrix with data, the predictor variables.

ystand If this is TRUE the response variable is centered. The mean is subtracted from

every value.

xstand If this is TRUE the independent variables are standardised.

threshold The significance level, set to 0.05 by default. Bear in mind that the logarithm of

it is used, as the logarithm of the p-values is calculated at every point. This will avoid numerical overflows and small p-values, less than the machine epsilon,

being returned as zero.

tolb If we see only the significane of the variables, many may enter the linear re-

gression model. For this reason, we also use the BIC as a way to validate the inclusion of a candidate variable. If the BIC difference between two successive models is less than the tolerance value, the variable will not enter the model, even if it statistically significant. Set it to 0 if you do not want this extra check.

This is an alternative to the BIC change and it uses the adjusted coefficient of

determination. If the increase in the adjusted R^2 is more than the tolr continue.

stopping This refers to the type of extra checking to do. If you want the BIC check, set

it to "BIC". If you want the adjusted R^2 check set this to "ar2". Or, if you want both of them to take place, both of these criteria to be satisfied make this

"BICR2".

Details

tolr

The forward regression tries one by one the variables using the F-test, basically partial F-test every time for the latest variable. This is the same as testing the significance of the coefficient of this latest enetered variable. Alternatively the correlation can be used and this case the partial correlation coefficient. There is a direct relationship between the t-test statistic and the partial correlation coefficient. Now, instead of having to calculate the test statistic, we calculate the partial correlation coefficient. Using Fisher's z-transform we get the variance imediately. The partial correlation coefficient, using Fisher's z-transform, and the partial F-test (or the coefficient's t-test statistic) are not identical. They will be identical for large sample sizes though.

Value

A matrix with three columns, the index of the selected variables, the logged p-value and the the test statistic value and the BIC or adjusted \mathbb{R}^2 of each model. In the case of stopping="BICR2" both of these criteria will be returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
score.glms,univglms,logistic_only,poisson_only,regression
```

Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted x <- matrnorm(200, 100) y <- rnorm(200) system.time( cor.fsreg(y, x) ) x <- NULL
```

Correlation between pairs of variables

Correlation between pairs of variables

Description

Correlations between pairs of variables.

Usage

```
corpairs(x, y, rho = NULL, logged = FALSE, parallel = FALSE)
```

Arguments

X	A matrix with real valued data.
У	A matrix with real valued data whose dimensions match those of x.
rho	This can be a vector of assumed correlations (equal to the number of variables or the columns of x or y) to be tested. If this is not the case, leave it NULL and only the correlations will be returned.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)? This is taken into account only if "rho" is a vector.
parallel	Should parallel implentations take place in C++? The default value is FALSE.

Details

The paired correlations are calculated. For each column of the matrices x and y the correlation between them is calculated.

Value

A vector of correlations in the case of "rho" being NULL, or a matrix with two extra columns, the test statistic and the (logged) p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Lambert Diane (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics. 34(1):1-14.

Johnson Norman L., Kotz Samuel and Kemp Adrienne W. (1992). Univariate Discrete Distributions (2nd ed.). Wiley

Cohen, A. Clifford (1960). Estimating parameters in a conditional Poisson distribution. Biometrics. 16:203-211.

Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). Univariate Discrete Distributions (third edition). Hoboken, NJ: Wiley-Interscience.

See Also

```
correls, allbetas, mvbetas
```

```
x <- matrnorm(100, 100)
y <- matrnorm(100, 100)
system.time( corpairs(x, y) )
a <- corpairs(x, y)
x <- NULL
y <- NULL</pre>
```

Correlations 65

Correlations	Correlation between a vector and a set of variables

Description

Correlation between a vector and a set of variables.

Usage

```
correls(y, x, type = "pearson", a = 0.05, rho = 0)
groupcorrels(y, x, type = "pearson", ina)
```

Arguments

у	A numerical vector.
X	A matrix with the data.
type	The type of correlation you want. "pearson" and "spearman" are the two supported types for the "correls" because their standard error is easily calculated. For the "groupcorrels" you can also put "kendall" because no hypothesis test is performed in that function.
a	The significance level used for the confidence intervals.
rho	The value of the hypothesised correlation to be used in the hypothesis testing.
ina	A factor variable or a numeric variable idicating the group of each observation.

Details

The functions uses the built-in function "cor" which is very fast and then includes confidence intervals and produces a p-value for the hypothesis test.

Value

For the "correls" a matrix with 5 column; the correlation, the p-value for the hypothesis test that each of them is eaqual to "rho", the test statistic and the \$a/2%\$ lower and upper confidence limits.

For the "groupcorrels" a matrix with rows equal to the number of groups and columns equal to the number of columns of x. The matrix contains the correlations only, no statistical hypothesis test is performed.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

```
allbetas,univglms
```

```
x <- matrnorm(60, 100 )
y <- rnorm(60)
r <- cor(y, x) ## correlation of y with each of the xs
a <- allbetas(y, x) ## the coefficients of each simple linear regression of y with x
b <- correls(y, x)
ina <- rep(1:2, each = 30)
b2 <- groupcorrels(y, x, ina = ina)
x <- NULL</pre>
```

Covariance and correlation matrix

Fast covariance and correlation matrix calculation

Description

Fast covariance and correlation matrix calculation.

Usage

```
cova(x, center = FALSE, large = FALSE)
cora(x, large = FALSE)
```

Arguments

X	A matrix with data. It has to be matrix, if it is data.frame for example the function does not turn it into a matrix.
center	If you want to center the data prior to applying the cross product of the mateix set this equal to TRUE, otherwise leave it NULL.
large	If you have large matrices, with thousands of rows and or many tens or hundreds of columns set this equal to TRUE in order to use Rfast's Crossprod or Tcrossprod functions. These functions are twice or up to 3 times faster than the correpsonding built-in functions.

Details

The calculations take place faster than the built-in functions cor as the number of variables increases. This is true if the number of variables is high, say from 500 and above. The "cova" on the other hand is always faster. For the "cova" in specific, we have an option to center the data prior to the cross product. This can be more stable if you have many tens of thousands of rows due to numerical issues that can arise.

For the correlation matrix we took the code from here

https://stackoverflow.com/questions/18964837/fast-correlation-in-r-using-c-and-parallelization/18965892#18965892

Value

The covariance or the correlation matrix.

Author(s)

Michail Tsagris and Manos Papadakis <papadakm95@gmail.com>.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colVars, cor, cov
```

Examples

```
x <- matrnorm(100, 40)
s1 <- cov(x)
s2 <- cova(x)
all.equal(s1, s2)
x <- NULL</pre>
```

Cox confidence interval for the ratio of two Poisson variables

Cox confidence interval for the ratio of two Poisson variables

Description

Cox confidence interval for the ratio of two Poisson variables.

Usage

```
cox.poisrat(x, y, alpha = 0.05)
col.coxpoisrat(x, y, alpha = 0.05)
```

Arguments

x A numeric vector or a matrix with count data.
 y A numeric vector or a matrix with count data.
 alpha The 1 - confidence level. The default value is 0.05.

Details

Cox confidence interval for the ratio of two Poisson means is calculated.

Value

For the cox.poisrat a vector with three elements, the ratio and the lower and upper confidence interval limits. For the col.coxpoisrat a matrix with three columns, the ratio and the lower and upper confidence interval limits.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Krishnamoorthy K., Peng J. and Zhang D. (2016). Modified large sample confidence intervals for Poisson distributions: Ratio, weighted average, and product of means. Communications in Statistics-Theory and Methods, 45(1): 83-97.

See Also

```
correls, Table
```

Examples

```
x <- rpois(100, 10)
y <- rpois(100, 10)
res<-cox.poisrat(x, y)</pre>
```

```
Cross-Validation for the k-NN algorithm  {\it Cross-Validation\ for\ the\ k-NN\ algorithm}
```

Description

Cross-Validation for the k-NN algorithm.

Usage

```
knn.cv(folds = NULL, nfolds = 10, stratified = FALSE, seed = FALSE, y, x, k,
dist.type = "euclidean", type = "C", method = "average", freq.option = 0,
pred.ret = FALSE, mem.eff = FALSE)
```

Arguments

folds A list with the indices of the folds.

nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.

stratified Do you want the folds to be selected using stratified random sampling? This

preserves the analogy of the samples of each group. Make this TRUE if you wish, but only for the classification. If you have regression (type = "R"), do not

put this to TRUE as it will cause problems or return wrong results.

seed If you set this to TRUE, the same folds will be created every time.

y A vector of data. The response variable, which can be either continuous or

categorical (factor is acceptable).

x A matrix with the available data, the predictor variables.

k A vector with the possible numbers of nearest neighbours to be considered.

type The type of distance to be used, "euclidean" or "manhattan".

Do you want to do classification ("C") or regression ("R")?

method If you do regression (type = "R"), then how should the predicted values be cal-

culated? Choose among the average ("average"), median ("median") or the har-

monic mean ("harmonic") of the closest neighbours.

freq.option If classification (type = "C") and ties occur in the prediction, more than one class

have the same number of k nearest neighbours, there are three strategies available. Option 0 selects the first most frequent encountered. Option 1 randomly

selects the most frequent value, in the case that there are duplicates.

pred.ret If you want the predicted values returned set this to TRUE.

mem.eff Boolean value indicating a conservative or not use of memory. Lower usage of

memory/Having this option on will lead to a slight decrease in execution speed and should ideally be on when the amount of memory in demand might be a

concern.

Details

The concept behind k-NN is simple. Suppose we have a matrix with predictor variables and a vector with the response variable (numerical or categorical). When a new vector with observations (predictor variables) is available, its corresponding response value, numerical or categorical, is to be predicted. Instead of using a model, parametric or not, one can use this ad hoc algorithm.

The k smallest distances between the new predictor variables and the existing ones are calculated. In the case of regression, the average, median, or harmonic mean of the corresponding response values of these closest predictor values are calculated. In the case of classification, i.e. categorical response value, a voting rule is applied. The most frequent group (response value) is where the new observation is to be allocated.

This function does the cross-validation procedure to select the optimal k, the optimal number of nearest neighbours. The optimal in terms of some accuracy metric. For the classification it is the percentage of correct classification and for the regression the mean squared error.

Value

A list including:

preds If pred.ret is TRUE the predicted values for each fold are returned as elements

in a list

crit A vector whose length is equal to the number of k and is the accuracy metric for

each k.

Author(s)

Marios Dimitriadis

R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

Cover TM and Hart PE (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1):21-27.

Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the α -transformation. Journal of classification 33(2): 243-261.

See Also

```
knn,Dist,dista,dirknn.cv
```

Examples

```
x <- as.matrix(iris[, 1:4])
y <- iris[, 5]
mod <- knn.cv(folds = NULL, nfolds = 10, stratified = TRUE, seed = FALSE, y = y, x = x,
k = c(3, 4), dist.type = "euclidean", type = "C", method = "average",
freq.option = 0, pred.ret = FALSE, mem.eff = FALSE)</pre>
```

Cross-Validation for the k-NN algorithm using the arc cosinus distance ${\it Cross-Validation for the k-NN algorithm using the arc cosinus distance }$

Description

Cross-Validation for the k-NN algorithm using the arc cosinus distance.

Usage

```
dirknn.cv(y, x, k = 5:10, type = "C", folds = NULL, nfolds = 10, stratified = TRUE, seed = FALSE, parallel = FALSE, pred.ret = FALSE)
```

Arguments

- y A vector of data. The response variable, which can be either continuous or categorical (factor is acceptable).
- x A matrix with the available data, the predictor variables.
- k A vector with the possible numbers of nearest neighbours to be considered.

type If your response variable y is numerical data, then this should be "R" (regres-

sion) or "WR" for distance weighted based nearest neighbours. If y is in general categorical set this argument to "C" (classification) or to "WC" for distance

weighted based nearest neighbours.

folds A list with the indices of the folds.

nfolds The number of folds to be used. This is taken into consideration only if "folds"

is NULL.

stratified Do you want the folds to be selected using stratified random sampling? This

preserves the analogy of the samples of each group. Make this TRUE if you wish, but only for the classification. If you have regression (type = "R"), do not

put this to TRUE as it will cause problems or return wrong results.

seed If you set this to TRUE, the same folds will be created every time.

parallel Do you want th ecalculations to take place in parallel? The default value is

FALSE.

pred.ret If you want the predicted values returned set this to TRUE.

Details

The concept behind k-NN is simple. Suppose we have a matrix with predictor variables and a vector with the response variable (numerical or categorical). When a new vector with observations (predictor variables) is available, its corresponding response value, numerical or categorical, is to be predicted. Instead of using a model, parametric or not, one can use this ad hoc algorithm.

The k smallest distances between the new predictor variables and the existing ones are calculated. In the case of regression, the average, median, or harmonic mean of the corresponding response values of these closest predictor values are calculated. In the case of classification, i.e. categorical response value, a voting rule is applied. The most frequent group (response value) is where the new observation is to be allocated.

This function does the cross-validation procedure to select the optimal k, the optimal number of nearest neighbours. The optimal in terms of some accuracy metric. For the classification it is the percentage of correct classification and for the regression the mean squared error.

Value

A list including:

preds If pred.ret is TRUE the predicted values for each fold are returned as elements

in a list.

crit A vector whose length is equal to the number of k and is the accuracy metric for

each k. For the classification case it is the percentage of correct classification.

For the regression case the mean square of prediction error.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

72 Deep copy

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

Cover TM and Hart PE (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1):21-27.

See Also

```
dirknn, knn.cv, knn
```

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / sqrt( Rfast::rowsums(x^2) )
y <- iris[, 5]
mod <- dirknn.cv(y = y, x = x, k = c(3, 4) )</pre>
```

Deep copy

Deep copy

Description

Deep copy.

Usage

```
env.copy(x,all.names=FALSE)
```

Arguments

x An environment object.

all.names An logical value (TRUE or FALSE). Copy all the hidden variables or not.

Details

Deep copy of the environment object.

Value

A copy of the first argument.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colShuffle,colVars,colmeans,read.directory
```

Examples

```
x <- new.env()
x$imaginary <- NULL
x$real <- NULL

# you can library the package and just press x and R will understand
# and search automatically for a function to print the environment
x

y <- env.copy(x)

x$real <- 10

x$real == y$real # FALSE</pre>
```

Density of the multivariate normal and t distributions

Density of the multivariate normal and t distributions

Description

Density of the multivariate normal and t distributions.

Usage

```
dmvnorm(x, mu, sigma, logged = FALSE)
dmvt(x, mu, sigma, nu, logged = FALSE)
```

Arguments

X	A numerical matrix with the data. The rows correspond to observations and the	

columns to variables.

mu The mean vector.

sigma The covariance matrix.

nu The degrees of freedom for the multivariate t distribution.

logged Should the logarithm of the density be returned (TRUE) or not (FALSE)?

Details

The (log) density of the multivariate normal distribution is calculated for given mean vector and covariance matrix.

Value

A numerical vector with the density values calculated at each vector (row of the matrix x).

74 Design Matrix

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Kanti V. Mardia, John T. Kent and John M. Bibby (1979). Multivariate analysis. Academic Press, London.

See Also

```
rmvnorm, rmvt, mvnorm. mle, iag. mle
```

Examples

```
x <- matrnorm(100, 20)
mu <- colmeans(x)
s <- cova(x)
a1 <- dmvnorm(x, mu, s)
a2 <- dmvt(x, mu, s, 1)
x <- NULL</pre>
```

Design Matrix

Design Matrix

Description

Design Matrix.

Usage

```
design_matrix(x, ones = TRUE)
```

Arguments

x A character vector or a factor type vector or a dataframe. Do not supply a nu-

merical vector.

ones A boolean variable specifying whether to include the ones in the design matrix

or not. The default value is TRUE.

Details

This function implements the R's "model.matrix" function and is used only when the x is a factor/charactervector or Dataframe.

Diagonal Matrix 75

Value

Returns the same matrix with model.matrix.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

See Also

```
model.matrix
```

Examples

```
a <- design_matrix( iris[, 5] )
b <- model.matrix( ~ iris[,5] ) ## R's built-in function
all.equal(as.vector(a),as.vector(b)) ## true
a<-b<-NULL</pre>
```

Diagonal Matrix

Diagonal Matrix

Description

Fill the diagonal of a matrix or create a diagonal and initialize it with a specific value.

Usage

```
Diag.fill(x,v=0)
Diag.matrix(len,v=0)
```

Arguments

x A matrix with data.

len Number of columns or rows.

v Value or vector to initialize the diagonal of a matrix.By default "v=0".

Value

Diag.fill returns a diagonal matrix where all the elements in the diagonal are equal to "v".

Diag.matrix returns a diagonal matrix where has dimension "len,len" and all the elements in the diagonal are equal to "v". It is fast for huge matrices with dimensions more than [row,col] = [500,500]

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

rowMins,colFalse,nth,rowrange,rowMedians,rowVars,colSort,rowSort,colTrue

Examples

```
x <- matrix(rbinom(100*100,1,0.5),100,100)

f <- Diag.fill(x,1)
f <- Diag.fill(x,1:100) ##equals to diag(x)<-1:100
f <- Diag.matrix(100,1) ##equals to diag(1,100,100)
f <- Diag.matrix(100,1:100) ##equals to diag(1:100,100,100)</pre>
```

Distance between vectors and a matrix

Distance between vectors and a matrix

Description

Distance between vectors and a matrix.

Usage

```
dista(xnew, x, type = "euclidean", k = 0, index = FALSE, trans = TRUE, square = FALSE)
```

Arguments

xnew	A matrix with some data or a vector.
х	A matrix with the data, where rows denotes observations (vectors) and the columns contain the variables.
type	This can be either "euclidean" or "manhattan".
k	Should the k smaller distances or their indices be returned? If $k > 0$ this will happen.
index	In case k is greater than 0, you have the option to get the indices of the k smallest distances.
trans	Do you want the returned matrix to be transposed? TRUE or FALSE.
square	If you choose "euclidean" as the method, then you can have the optino to return the squared Euclidean distances by setting this argument to TRUE.

Details

The target of this function is to calculate the distances between xnew and x without having to calculate the whole distance matrix of xnew and x. The latter does extra calculations, which can be avoided.

Distance correlation 77

Value

A matrix with the distances of each xnew from each vector of x. The number of rows of the xnew and and the number of columns of xnew are the dimensions of this matrix.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
mahala, Dist, total. dist, total. dista
```

Examples

```
xnew <- as.matrix( iris[1:10, 1:4] )
x <- as.matrix( iris[-c(1:10), 1:4] )
a <- dista(xnew, x)
b <- as.matrix( dist( rbind(xnew, x) ) )
b <- b[ 1:10, -c(1:10) ]
sum( abs(a - b) )

## see the time
x <- matrix( rnorm(1000 * 4), ncol = 4 )
system.time( dista(xnew, x) )
system.time( as.matrix( dist( rbind(xnew, x) ) ) )
x<-b<-a<-xnew<-NULL</pre>
```

Distance correlation Distance correlation

Description

Distance correlation.

Usage

```
dcor(x, y)
bcdcor(x, y)
```

Arguments

```
x A numerical matrix.y A numerical matrix.
```

78 Distance matrix

Details

The distance correlation or the bias corrected distance correlation of two matrices is calculated. The latter one is used for the hypothesis test that the distance correlation is zero (see dcor.ttest).

Value

The value of the distance correlation of the bias corrected distance correlation.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

```
dcov,dcor.ttest,edist
```

Examples

```
x <- as.matrix(iris[1:50, 1:4])
y <- as.matrix(iris[51:100, 1:4])
res<-dcor(x, y)
res<-bcdcor(x, y)
x<-y<-NULL</pre>
```

Distance matrix

Distance matrix

Description

Distance matrix.

Usage

```
Dist(x, method = "euclidean", square = FALSE, p = 0,vector = FALSE)
vecdist(x)
```

Distance matrix 79

Arguments

Х	A matrix with data. The distances will be calculated between pairs of rows. In the case of vecdist this is a vector. For the haversine distance it must be a matrix with two columns, the first column is the latitude and the second the longitude.
method	This is either "euclidean", "manhattan", "canberra1", "canberra2", "minimum", "maximum", "minkowski", "bhattacharyya", "hellinger", "kullback_leibler", "jensen_shannon" or "haversine". The last two options are basically the same.
square	If you choose "euclidean" or "hellinger" as the method, then you can have the option to return the squared Euclidean distances by setting this argument to TRUE.
р	This is for the Minkowski, the power of the metric.
vector	For return a vector instead a matrix.

Details

The distance matrix is computer with an extra argument for the Euclidean distances. The "kull-back_leibler" refers to the symmetric Kullback-Leibler divergence.

Value

A square matrix with the pairwise distances.

Author(s)

Manos Papadakis.

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Mardia K. V., Kent J. T. and Bibby J. M. (1979). Multivariate Analysis. Academic Press.

See Also

```
dista, colMedians
```

Examples

```
x <- matrix(rnorm(50 * 10), ncol = 10)
a1 <- Dist(x)
a2 <- as.matrix( dist(x) )
x<-a1<-a2<-NULL</pre>
```

Distance variance and covariance

Distance variance and covariance

Description

Distance variance and covariances.

Usage

```
dvar(x)
dcov(x, y)
```

Arguments

x A numerical matrix or a vector.

y A numerical matrix or a vector.

Details

The distance variance of a matrix/vector or the distance covariance of two matrices is calculated. For the distance variance of a vector we use the fast method of Huo and Szekely (2016).

Value

The distance covariance or distance variance.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Szekely G.J., Rizzo M.L. and Bakirov N.K.(2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

Huo X. and Szekely G. J. (2016). Fast computing for distance covariance. Technometrics, 58(4): 435-447.

See Also

```
dcor,edist
```

Examples

```
x <- as.matrix(iris[1:50, 1:4])
y <- as.matrix(iris[51:100, 1:4])
res <- dcov(x, y)
res <- dvar(x[, 1])</pre>
```

Eigenvalues and eigenvectors in high dimensional principal component analysis $Eigenvalues \ in \ high \ dimensional \ principal \ component \ analysis$

Description

Eigenvalues in high dimensional (n«p) principal component analysis.

Usage

```
hd.eigen(x, center = TRUE, scale = FALSE, k = NULL, vectors = FALSE, large = FALSE)
```

Arguments

X	A numerical $n \times p$ matrix with data where the rows are the observations and the columns are the variables.
center	Do you want your data centered? TRUE or FALSE.
scale	Do you want each of your variables scaled, i.e. to have unit variance? TRUE or FALSE.
k	If you want a specific number of eigenvalues and eigenvectors set it here, otherwise all eigenvalues (and eigenvectors if requested) will be returned.
vectors	Do you want the eigenvectors be returned? By dafault this is FALSE.
large	If you have large matrices, with thousands of rows and or many tens or hundreds of columns set this equal to TRUE in order to use Rfast's Crossprod or Tcrossprod functions. These functions are twice or up to 3 times faster than the correpsonding built-in functions.

Details

When n << p, at most the first n eigenvalues are non zero. Hence, there is no need to calculate the other p-n zero eigenvalues. When center is TRUE, the eigenvalues of the covariance matrix are calculated. When both the center and scale is TRUE the eigenvalues of the correlation matrix are calculated. One or more eigenvectors (towards the end) will be 0. In general the signs might be the opposite than R's, but this makes no difference. We use the Crossprod instead of the relevant built-in function. The higher the dimensions of the matrix are the faster this function becomes.

A list including:

values A vector with the n (or first k) eigenvalues. The divisor in the crossproduc matrix

is n-1 and not n.

vectors A matrix of $p \times n$ or $p \times k$ eigenvectors.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

rmdp

Examples

```
x <- matrnorm( 40, 100)
a <- hd.eigen(x, FALSE, FALSE)
b <- prcomp(x, center = FALSE, scale = FALSE)
a
b$sdev^2
x <- NULL</pre>
```

Empirical and exponential empirical likelihood tests for one sample

Empirical and exponential empirical likelihood tests for one sample

Description

Empirical and exponential empirical likelihood tests for one sample.

Usage

```
eel.test1(x, mu, tol = 1e-09, logged = FALSE)
el.test1(x, mu, tol = 1e-07, logged = FALSE)
```

Arguments

x A numerical vector.

mu The hypothesised mean value.

tol The tolerance value to stop the iterations of the Newton-Raphson.

logged Should the logarithm of the p-value be returned? TRUE or FALSE.

Details

Exponential empirical likelihood is a non parametric method. In this case we use it as the non parametric alternative to the t-test. Newton-Raphson is used to maximise the log-likelihood ratio test statistic. In the case of no solution, NULL is returned. Despite the function having been written in R, it is pretty fast. As for the empirical likelihood ratio test, there is a condition for the range of possible values of mu. If mu is outside this range it is rejected immediately.

Value

iters	The number of iterations required by the Newton-Raphson algorithm. If no covnergence occured this is NULL. This is not returned for the empircial likelihood ratio test.
info	A vector with three elements, the value of the λ , the likelihood ratio test statistic and the relevant p-value. If no convergence occured, the value of the λ before is becomes NA, the value of test statistic is 10^5 and the p-value is 0. No convergence can be interpreted as rejection of the hypothesis test.
p	The estimated probabilities, one for each observation. If no covnergence occured this is NULL.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

```
ftest, ttest1
```

Examples

```
x \leftarrow rnorm(500)

system.time(a1 <- eel.test1(x, 0) )

system.time(a2 <- el.test1(x, 0) )
```

Empirical and exponential empirical likelihood tests for two samples

Empirical and exponential empirical likelihood tests for two samples

Description

Empirical and exponential empirical likelihood tests for two samples.

Usage

```
eel.test2(x, y, tol = 1e-09, logged = FALSE)
el.test2(x, y, tol = 1e-07, logged = FALSE)
```

Arguments

X	A numerical vector.
У	Another numerical vector.
tol	The tolerance value to stop the iterations of the Newton-Raphson.
logged	Should the logarithm of the p-value be returned? TRUE or FALSE.

Details

Empirical and exponential empirical likelihood are two non parametric hypothesis testing methods. We can use them as non parametric alternatives to the t-test. Newton-Raphson is used to maximise the log-likelihood ratio test statistic. In the case of no solution, NULL is returned.

Value

iters	The number of iterations required by the Newton-Raphson algorithm. If no covnergence occured this is NULL.
info	A vector with three elements, the value of the λ , the likelihood ratio test statistic and the relevant p-value. If no convergence occured, the value of the λ before is becomes NA, the value of test statistic is 10^5 and the p-value is 0. No convergence can be interpreted as rejection of the hypothesis test.
p1	The estimated probabilities, one for each observation for the first sample. If no covnergence occured this is NULL.
p2	The estimated probabilities, one for each observation for the second sample. If no covnergence occured this is NULL.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

```
ftests, ttests, , ttest
```

Examples

```
x <- rnorm(200)
y <- rnorm(300)
system.time( eel.test2(x, y) )
system.time( el.test2(x, y) )</pre>
```

Energy distance between matrices

Energy distance between matrices

Description

Energy distance between matrices.

Usage

```
edist(x, y=NULL)
```

Arguments

x A matrix with numbers or a list with matrices.

y A second matrix with data. The number of columns of x and y must match. The number of rows can be different.

Details

This calculates the energy distance between two matrices. It will work even for tens of thousands of rows, it will just take some time. See the references for more information. If you have many matrices and want to calculate the distance matrix, then put them in a list and use eDist.

Value

If "x" is matrix, a numerical value, the energy distance. If "x" is list, a matrix with all pairwsie distances of the matrices.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Szekely G. J. and Rizzo M. L. (2004) Testing for Equal Distributions in High Dimension, InterStat, November (5).

Szekely G. J. (2000) Technical Report 03-05, E-statistics: Energy of Statistical Samples, Department of Mathematics and Statistics, Bowling Green State University.

Sejdinovic D., Sriperumbudur B., Gretton A. and Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. The Annals of Statistics, 41(5), 2263-2291.

86 Equality of objects

See Also

```
dvar,total.dist,total.dista,Dist,dista
```

Examples

```
x <- as.matrix( iris[1:50, 1:4] )
y <- as.matrix( iris[51:100, 1:4] )
res<-edist(x, y)
z <- as.matrix(iris[101:150, 1:4])
a <- list()
a[[ 1 ]] <- x
a[[ 2 ]] <- y
a[[ 3 ]] <- z
res<-edist(a)
x<-y<-z<-a<-NULL</pre>
```

Equality of objects Equality of objects

Description

Equality of objects.

Usage

```
all_equals(x,y,round_digits = FALSE,without_attr=FALSE,fast_result=FALSE)
```

Arguments

x	A Matrix, List, Dataframe or Vector.
у	A Matrix, List, Dataframe or Vector.
round_digits	The digit for rounding numbers.
without_attr	A boolean value (TRUE/FALSE) for deleting attributes. Be carefull although because some atributes are very important for you item.
fast_result	A boolean value (TRUE/FALSE) for using just identical.But you can combine only with round_digits argument.

Value

A boolean (TRUE/FALSE) value which represents if the items x and y are equal.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

Match,mvbetas,correls,univglms,colsums,colVars

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
y <- matrix( rnorm(100 * 100), ncol = 100 )
all_equals(x,y)
all_equals(x, x)</pre>
```

```
Estimation of an AR(1) model 
 Estimation \ of \ an \ AR(1) \ model
```

Description

Estimation of an AR(1) model.

Usage

```
ar1(y, method = "cmle")
colar1(y, method = "cmle")
```

Arguments

y For the case of **ar1** this is a vector of time series. For the case of **colar1** this is a

matrix where weach column represents a time series.

method This can be either "cmle" for conditional maximum likelihood or "yw" for the

Yule-Walker equations.

Details

Instead of the classical MLE for the AR(1) model which requires numerical optimisation (Newton-Raphson for example) we estimate the parameters of the AR(1) model using conditional maximum likelihood. This procedure is described in Chapter 17 in Lee (2006). In some, it assumes that the first observation is deterministic and hence conditioning on that observation, there is a closed form solution for the parameters. The second alternative is to use the method of moments and hence the Yule-Walker equations.

Value

param

For the case of **ar1** this is a vector with three elements, the constant term, the ϕ term (lag coefficient) and the variance. For the case of **colar1** this is a matrix with three columns, each of which carries the same aforementioned elements.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

http://econ.nsysu.edu.tw/ezfiles/124/1124/img/Chapter17_MaximumLikelihoodEstimation.pdf

See Also

```
rm.lines,varcomps.mle,rm.anovas
```

Examples

```
y <- as.vector(lh)
ar1(y)
ar(y, FALSE, 1, "ols")

ar1(y, method = "yw")
ar(y, FALSE, 1, "yw")

a1 <- colar1(cbind(y, y) )
b1 <- colar1(cbind(y, y), method = "yw")</pre>
```

Estimation of the Box-Cox transformation

Estimation of the Box-Cox transformation

Description

Estimation of the Box-Cox transformation.

Usage

```
bc(x, low = -1, up = 1)
```

Arguments

x A numerical vector with strictly positive values. low The lowest value to search for the best λ parameter. up The highest value to search for the best λ parameter.

Details

The functions estimates the best λ in the Box-Cox power transformation.

The optimal value of λ .

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Box George E. P. and Cox D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26 (2):211-252.

See Also

```
correls, auc
```

Examples

```
x <- exp(rnorm(1000))
res<-bc(x)</pre>
```

Exact t-test for 2 independent samples

Exact t-test for 2 independent samples

Description

Exact t-test for 2 independent samples.

Usage

```
exact.ttest2(x, y)
```

Arguments

x A numerical vector with the data.

y A numerical vector with the data.

Details

This function performs an exact t-test. With few observations, permutation or bootstrap calculation of the p-value is advisable. However, with even fewer observations, one can perform all possible permutations and calculate the exact p-value. This is what this function does. BUT, pay attention, as this works with few samples. If for example each sample contains 15 numbers, you will need a lot of memory (more than 17 GB) for this function to work. the reason is that we create the matrix with all possible permutations first and then perform the two-sample t-test.

A vector with the number of permutations, test statistic and the permutation based p-value.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

See Also

```
boot.ttest2,ttest2,ftest
```

Examples

```
x <- rnorm(7)
y <- rnorm(7)
res<-exact.ttest2(x, y)</pre>
```

Exponential empirical likelihood for a one sample mean vector hypothesis testing

Exponential empirical likelihood for a one sample mean vector hypothesis testing

Description

Exponential empirical likelihood for a one sample mean vector hypothesis testing.

Usage

```
mv.eeltest1(x, mu, tol = 1e-06)
```

Arguments

x A matrix containing Euclidean data.
 mu The hypothesized mean vector.
 tol The tolerance value used to stop the Newton-Raphson algorithm.

Details

Multivariate hypothesis test for a one sample mean vector. This is a non parametric test and it works for univariate and multivariate data. The p-value is currently computed only asymptotically (no bootstrap calibration at the moment).

A list including:

p The estimated probabilities.

lambda The value of the Lagrangian parameter λ .

iters The number of iterations required by the newton-Raphson algorithm.

info The value of the log-likelihood ratio test statistic along with its corresponding

p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

```
james,mv.eeltest2
```

Examples

```
x \leftarrow Rfast::rmvnorm(100, numeric(10), diag(rexp(10, 0.5))) res<-mv.eeltest1(x, numeric(10))
```

Exponential empirical likelihood hypothesis testing for two mean vectors $Exponential\ empirical\ likelihood\ hypothesis\ testing\ for\ two\ mean\ vectors$

Description

Exponential empirical likelihood hypothesis testing for two mean vectors.

Usage

```
mv.eeltest2(y1, y2, tol = 1e-07, R = 0)
```

Arguments

y1	A matrix containing the Euclidean data of the first group.
y2	A matrix containing the Euclidean data of the second group.
tol	The tolerance level used to terminate the Newton-Raphson algorithm.
R	If R is 0, the classical chi-square distribution is used, if $R = 1$, the corrected chi-square distribution (James, 1954) is used and if $R = 2$, the modified F distribution (Krishnamoorthy and Yanping, 2006) is used.

Details

Exponential empirical likelihood is a non parametric hypothesis testing procedure for one sample. The generalisation to two (or more samples) is via searching for the mean vector that minimises the sum of the two test statistics.

Value

A list including:

test The empirical likelihood test statistic value.

modif.test The modified test statistic, either via the chi-square or the F distribution.

pvalue The p-value.

iters The number of iterations required by the newton-Raphson algorithm.

mu The estimated common mean vector.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43.

Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.

Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.

Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.

See Also

```
james, mv.eeltest1
```

Examples

```
res<-mv.eeltest2( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 0 ) res<-mv.eeltest2( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1 )
```

Fast and general - untyped representation of a factor variable

Fast and general representation of a factor variable

Description

Fast and general representation of a factor variable.

Usage

```
ufactor(x)
## S3 method for class 'ufactor'
x[i]
## S3 method for class 'ufactor'
print(x,...)
```

Arguments

x A vector with data.

i An integer value/vector which is the index/indices to the element you want to

access.

... Anything the user want.

Details

This is a general implementation of factor structure. For access the fields of a "ufactor" use the "\$" operator.

Value

An object of class "ufactor". This object holds 2 fields:

levels: the levels of the variable in his initial type values: the values of the variable in his initial type

Author(s)

Manos Papadakis

R implementation and documentation: and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colVars, factor
```

Examples

```
x <- rnorm(10)
R.factor<- as.factor(x)
Rfast.factor <- ufactor(x)

identical(levels(R.factor),Rfast.factor$levels) # TRUE
identical(as.numeric(R.factor),Rfast.factor$values) # TRUE
x<-R.factor<-Rfast.factor<-NULL</pre>
```

FBED variable selection method using the correlation

FBED variable selection method using the correlation

Description

FBED variable selection method using the correlation.

Usage

```
cor.fbed(y, x, ystand = TRUE, xstand = TRUE, alpha = 0.05, K = 0)
```

Arguments

У	The response variable, a numeric vector.
х	A matrix with the data, where the rows denote the samples and the columns are the variables.
ystand	If this is TRUE the response variable is centered. The mean is subtracted from every value.
xstand	If this is TRUE the independent variables are standardised.
alpha	The significance level, set to 0.05 by default.
K	The number of times to repeat the process. The default value is 0.

Details

FBED stands for Forward Backward with Earcly Dropping. It is a variation of the classical forward selection, where at each step, only the statistically significant variables carry on. The rest are dropped. The process stops when no other variables can be selected. If K=1, the process is repeated testing sequentially again all those that have not been selected. If K>1, then this is repeated.

In the end, the backward selection is performed to remove any falsely included variables. This backward phase has not been implemented yet.

Find element 95

Value

A list including:

runtime The duration of the process.

res A matrix with the index of the selected variable, their test statistic value and the

associated p-value.

info A matrix with two columns. The cumulative number of variables selected and

the number of tests for each value of K.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Journal of Machine Learning Research, 20(8): 1-39.

See Also

```
cor.fsreg,ompr,correls,fs.reg
```

Examples

```
x <- matrnorm(100, 100)
y <- rnorm(100)
a <- cor.fbed(y, x)
a
x <- NULL</pre>
```

Find element

Find element

Description

Search a value in an unordered vector.

Usage

```
is_element(x, key)
```

Arguments

x A vector or matrix with the data.

key A value to check if exists in the vector x.

Details

Find if the key exists in the vector and return returns TRUE/FALSE if the value is been found. If the vector is unordered it is fast but if the vector is ordered then use binary_search. The functions is written in C++ in order to be as fast as possible.

Value

TRUE/FALSE if the value is been found.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
binary_search (buit-in R function)
```

Examples

```
x <- rnorm(500)
key <- x[50]
b <- is_element(x, key)</pre>
```

Find the given value in a hash table

Find the given value in a hash table

Description

Find the given value in a hash table or list.

Usage

```
hash.find(x,key)
```

Arguments

x A hash table or list.

key The key for searching the table.

Details

This function search the given key.

Value

If the given key exists return its value else returns 0.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

See Also

```
hash.list
```

Examples

```
x <- hash.list(letters,c(1:26))
value <- hash.find(x,"a")
x[["a"]]==value</pre>
```

Fitted probabilities of the Terry-Bradley model
Fitted probabilities of the Terry-Bradley model

Description

Fitted probabilities of the Terry-Bradley model.

Usage

```
btmprobs(x, tol = 1e-09)
```

Arguments

x A numerical square, usually not symmetric, matrix with discrete valued data.

Each entry is a frequency, to give an example, the number of wins. x[i, j] is the number of wins of home team i against guest team j. x[j, i] is the number of

wins of home team j against guest team i.

tol The tolerance level to terminate the iterative algorithm.

Details

It fits a Bradley-Terry model to the given matrix and returns the fitted probabilities only.

Value

A list including:

iters The numberr of iterations required.

probs A vector with probabilities which sum to 1. This is the probability of win for

each item (or team in our hypothetical example).

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Bradley R.A. and Terry M.E. (1952). Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons. Biometrika, 39(3/4):324-345.

Huang Tzu-Kuo, Ruby C. Weng and Chih-Jen Lin (2006). Generalized Bradley-Terry models and multi-class probability estimates. Journal of Machine Learning Research, 7:85-115.

Agresti A. (2002). Categorical Data Analysis (2nd ed). New York: Wiley.

See Also

```
g2tests,poisson.anova,anova,poisson_only,poisson.mle
```

Examples

```
x \leftarrow matrix( rpois(10 * 10, 10), ncol = 10) \# mot the best example though res<-btmprobs(x)
```

Fitting a Dirichlet distribution via Newton-Rapshon

Fitting a Dirichlet distribution via Newton-Rapshon

Description

Fitting a Dirichlet distribution via Newton-Rapshon.

Usage

```
diri.nr2(x, type = 1, tol = 1e-07)
```

Arguments

x A matrix containing the compositional data. Zeros are not allowed.

type Type 1 uses a vectorised version of the Newton-Raphson (Minka, 2012). In

high dimensions this is to be preferred. If the data are too concentrated, regardless of the dimensions, this is also to be preferred. Type 2 uses the regular Newton-Raphson, with matrix multiplications. In small dimensions this can be

considerably faster.

tol The tolerance level idicating no further increase in the log-likelihood.

Details

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed via Newton-Raphson. Initial values suggested by Minka (2012) are used.

Value

A list including:

loglik The value of the log-likelihood.
param The estimated parameters.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Minka Thomas (2012). Estimating a Dirichlet distribution. Technical report.

Ng Kai Wang, Guo-Liang Tian, and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley & Sons.

See Also

```
beta.mle
```

Examples

```
x <- matrix( rgamma(100 * 4, c(5, 6, 7, 8), 1), ncol = 4)
x <- x / rowsums(x)
res<-diri.nr2(x)</pre>
```

Floyd-Warshall algorithm

Floyd-Warshall algorithm for shortest paths in a directed graph

Description

Floyd-Warshall algorithm for shortest paths in a directed graph.

Usage

```
floyd(x)
```

Arguments

Х

The adjacency matrix of a directed graph. A positive number (including) in x[i, j] indicates that there is an arrow from i to j and it also shows the cost of going from i to j. Hence, the algorithm will find not only the shortest path but also the with the smallest cost. A value of NA means that there is no path. Put positive number only, as negative will cause problems.

Details

The Floyd-Warshall algorithm is designed to find the shortest path (if it exists) between two nodes in a graph.

Value

A matrix, say z, with 0 and positive numbers. The elements denote the length of the shortest path between each pair of points. If z[i, j] is zero it means that there is no cost from i to j. If z[i, j] has a positive value it means that the length of going from i to j is equal to that value.

Author(s)

```
John Burkardt (C++ code)
```

Ported into R and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Floyd, Robert W. (1962). Algorithm 97: Shortest Path. Communications of the ACM. 5(6): 345.

Warshall, Stephen (1962). A theorem on Boolean matrices. Journal of the ACM. 9 (1): 11-12.

https://en.wikipedia.org/wiki/Floyd

See Also

```
colSort, rowSort
```

Examples

```
x <- matrix(NA, 10, 10)
x[sample(1:100, 10)] <- rpois(10, 3)
res<-floyd(x)</pre>
```

Forward selection with generalised linear regression models

Variable selection in generalised linear regression models with forward selection

Description

Variable selection in generalised linear regression models with forward selection

Usage

```
fs.reg(y, ds, sig = 0.05, tol = 2, type = "logistic")
```

Arguments

У	The dependent variable. This can either be a binary numeric $(0, 1)$ or a vector with integers (numeric or integer class), count data. The first case is for the binary logistic regression and the second for the Poisson regression.
ds	The dataset; provide a matrix where columns denote the variables and the rows the observations. The variables must be continuous, no categorical variables are accepted.
sig	Significance level for assessing the p-values significance. Default value is 0.05.
tol	The difference bewtween two successive values of the stopping rule. By default this is is set to 2. If for example, the BIC difference between two succesive models is less than 2, the process stops and the last variable, even though significant does not enter the model.
type	If you have a binary dependent variable, put "logistic" or "quasibinomial". If you have percentages, values between 0 and 1, including 0 and or 1, use "quasibinomial" as well. If you have count data put "poisson".

Details

The classical forward regression is implemented. The difference is that we have an extra step of check. Even if a variable is significant, the BIC of the model (with that variable) is calculated. If the decrease from the previous BIC (of the model without this variable) is less that a prespecified by the user value (default is 2) the variable wil enter. This way, we guard somehow against over-fitting.

Value

A matrix with for columns, the selected variables, the logarithm of their p-value, their test statistic and the BIC of the model with these variables included. If no variable is selected, the matrix is empty.

Author(s)

Marios Dimitriadis

Documentation: Marios Dimitriadis kmdimitriadis@gmail.com>.

See Also

```
\verb|cor.fsreg|, logistic\_only|, poisson\_only|, \verb|glm\_logistic|, \verb|glm\_poisson||
```

Examples

```
## Not run:
set.seed(123)

#simulate a dataset with continuous data
x <- matrnorm(100, 50)
y <- rpois(100, 10)
a <- fs.reg(y, x, sig = 0.05, tol = 2, type = "poisson")
x <- NULL
## End(Not run)</pre>
```

G-square and Chi-square test of conditional indepdence G-square test of conditional indepdence

Description

G-square test of conditional indepdence with and without permutations.

Usage

```
g2Test(data, x, y, cs, dc)
g2Test_perm(data, x, y, cs, dc, nperm)
chi2Test(data, x, y, cs, dc)
```

Arguments

data	A numerical matrix with the data. The minimum must be 0, otherwise the function can crash or will produce wrong results . The data must be consecutive numbers.
x	A number between 1 and the number of columns of data. This indicates which variable to take.
У	A number between 1 and the number of columns of data (other than x). This indicates the other variable whose independence with x is to be tested.
CS	A vector with the indices of the variables to condition upon. It must be non zero and between 1 and the number of variables. If you want unconditional independence test see g2Test_univariate and g2Test_univariate_perm. If there is an overlap between x, y and cs you will get 0 as the value of the test statistic.

dc A numerical value equal to the number of variables (or columns of the data ma-

trix) indicating the number of distinct, unique values (or levels) of each variable. Make sure you give the correct numbers here, otherwise the degrees of freedom

will be wrong.

nperm The number of permutations. The permutations test is slower than without per-

mutations and should be used with small sample sizes or when the contigency tables have zeros. When there are few variables, R's "chisq.test" function is faster, but as the number of variables increase the time difference with R's pro-

cedure becomes larger and larger.

Details

The functions calculates the test statistic of the G^2 test of conditional independence between x and y conditional on a set of variable(s) cs.

Value

A list including:

statistic The G^2 or chi^2 test statistic.

df The degrees of freedom of the test statistic.

x The row or variable of the data.

y The column or variable of the data.

Author(s)

Giorgos Borboudakis. The permutation version used a C++ code by John Burkardt.

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Tsamardinos, I., & Borboudakis, G. (2010). Permutation testing improves Bayesian network learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 322-337). Springer Berlin Heidelberg

See Also

```
g2Test_univariate,g2Test_univariate_perm,correls,univglms
```

Examples

```
nvalues <- 3
nvars <- 10
nsamples <- 5000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
dc <- rep(nvalues, nvars)

res<-g2Test( data, 1, 2, 3, c(3, 3, 3) )
res<-g2Test_perm( data, 1, 2, 3, c(3, 3, 3), 1000 )</pre>
```

dc<-data<-NULL

Gamma regression with a log-link

Gamma regression with a log-link

Description

Gamma regression with a log-link.

Usage

```
gammareg(y, x, tol = 1e-07, maxiters = 100)
gammacon(y, tol = 1e-08, maxiters =50)
```

Arguments

y The dependent variable, a numerical variable with non negative numbers.

x A matrix or data.frame with the indendent variables.

tol The tolerance value to terminate the Newton-Raphson algorithm.

maxiters The maximum number of iterations that can take place in the regression.

Details

The gamma.reg fits a Gamma regression with a log-link. The gamma.con fits a Gamma regression with a log link with the intercept only ($glm(y \sim 1, Gamma(log))$).

Value

A list including:

deviance The deviance value.

phi The dispersion parameter (ϕ) of the regression. This is necessary if you want

to perform an F hypothesis test for the significance of one or more independent

variables.

be The regression coefficient(s).

info The number of iterations, the deviance and the dispersion parameter.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
gammaregs,normlog.reg,invgauss.reg
```

Examples

```
y <- abs( rnorm(100) )
x <- matrix( rnorm(100 * 2), ncol = 2)
mod <- glm(y ~ x, family = Gamma(log) )
res<-summary(mod)
## Not run:
res<-gammareg(y, x)

## End(Not run)
mod <- glm(y ~ 1, family = Gamma(log) )
res<-summary(mod)
res<-gammacon(y)</pre>
```

Gaussian regression with a log-link

Gaussian regression with a log-link

Description

Gaussian regression with a log-link.

Usage

```
normlog.reg(y, x, tol = 1e-07, maxiters = 100)
```

Arguments

y The dependent variable, a numerical variable with non negative numbers.

x A matrix or data.frame with the indendent variables.

tol The tolerance value to terminate the Newton-Raphson algorithm.

maxiters The maximum number of iterations that can take place in the regression.

Details

A Gaussian regression with a log-link is fitted.

A list including:

The number of iterations required by the Newton-Raphson

loglik The log-likelihood value. deviance The deviance value.

be The regression coefficients

Author(s)

Stefanos Fafalios

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com>

See Also

```
normlog.regs,score.glms,prop.regs,allbetas
```

Examples

```
## Not run:
y <- abs( rnorm(100) )
x <- matrix( rnorm(100 * 2), ncol = 2)
a <- normlog.reg(y, x)
b <- glm(y ~ x, family = gaussian(log) )
summary(b)
a
## End(Not run)</pre>
```

Generates random values from a normal and puts them in a matrix

Generates random values from a normal and puts them in a matrix

Description

Generates random values from a normal and puts them in a matrix.

Usage

```
matrnorm(n, p, seed = NULL)
```

Arguments

n The sample size, the number of rows the matrix will have.

p The dimensionality of the data, the nubmer of columns of the matrix.

seed If you want the same to be generated again use a seed for the generator, an

integer number.

Details

How many times did you have to simulated data from a (standard) normal distribution in order to test something? For example, in order to see the speed of logistic_only, one needs to generate a matrix with predictor variables. The same is true for other similar functions. In sftests, one would like to examine the typer I error of this test under the null hypothesis.

By using the Ziggurat method of generating standard normal variates, this function is really fast when you want to generate big matrices.

Value

An n x p matrix with data simulated from a standard normal distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

```
rvmf, Rnorm, rmvnorm, rvonmises
```

Examples

```
x <- matrnorm(100, 100)
```

```
Get specific columns/rows fo a matrix

Get specific columns/rows fo a matrix
```

Description

Get specific columns/rows of a matrix.

Usage

```
columns(x,indices)
rows(x,indices)
```

Arguments

x A matrix with data.

indices An integer vector with the indices.

Value

A matrix with the specific columns/rows of argumment indices.

108 Hash - Pair function

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,rowFalse,nth,colrange,colMedians,colVars,colSort,rowSort,rowTrue
```

Examples

```
x <- matrix(runif(100*100),100,100)
indices = sample(1:100,50)
all.equal(x[,indices],columns(x,indices))
all.equal(x[indices,],rows(x,indices))
x<-indices<-NULL</pre>
```

```
Hash - Pair function Hash - Pair function
```

Description

Hash - Pair function.

Usage

```
hash.list(key,x)
```

Arguments

key The keys of the given values.

x The values.

Details

This function pairs each item of of key and value make a unique hash table.

Value

Returns the hash-list table.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

Hash object 109

See Also

```
hash.find
```

Examples

```
x <- hash.list(letters,c(1:26))
x[["a"]]==1</pre>
```

Hash object

Hash object

Description

Hash object.

Usage

```
Hash(keys=NULL, values=NULL)
Hash.key.multi(x,...,sep = " ")
## S3 replacement method for class 'Hash'
x[...,sep = " "] <- value
## S3 method for class 'Hash'
x[...,sep = " "]
## S3 method for class 'Hash'
print(x,...)
## S3 method for class 'Hash'
length(x)</pre>
```

Arguments

X	A Hash object, using Hash function.
values	A vector with the values you want to store.
value	The values you want to store.
keys	A vector with keys for each values.
sep	A character value using to separate the multiple keys for each value.
	One or more values for access or find elements.

Details

If you want to delete a key just insert the global variable "Rfast:::delete".

Hash: Create Hash object where every key has a value. Specify the type from the beggining (for speed). Use the argument "type" with one of the values "new.env, logical, character, integer, numeric". Hash.key.multi: search if key exists. If the keys are multiple, then use the argument "substr" to search inside each multiple for the specific key.

A Hash object.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
hash.list, hash.find
```

Examples

```
x <- Hash(rnorm(10), sample(1:10))  x[1,2,13] <- 0.1234 \ \# \ insert \ value \ using \ multi \ key. \ the \ same \ as \ x["1 \ 2 \ 13"] <- 0.1234 \\ x[1,2,3] <- 15 \ \# \ insert \ value \ using \ multi \ key. \ the \ same \ as \ x["1 \ 2 \ 3"] <- 15  Hash.key.multi(x,"1")  x \ \# \ print \ Hash \ object \ using \ S3 \ generic \\ \#x[1,2,3] <- \ Rfast:::delete \ \# \ delete \ multi \ key. \ the \ same \ as \ x["1 \ 2 \ 3"] <- \ NULL \\ length(x)
```

Hash object to a list object

Hash object to a list object

Description

Hash object to a list object.

Usage

```
hash2list(x, sorting = FALSE)
```

Arguments

x A hash table with two parts, the keys (number(s) as string) and the key values (a

single number).

sorting This is if you you want the numbers in the keys sorted. The default value is

FALSE.

Details

For every key, there is a key value. This function creates a list and puts every pair of keys and value in a component of a list.

A list whose length is equal to the size of the hash table.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
hash.list, hash.find
```

Examples

```
x=list("1 2 4 3"=2.56,"2.34 1.05"=2)
res<-hash2list(x)
res<-hash2list(x,TRUE)</pre>
```

```
\label{eq:main_model} \begin{array}{c} \textit{High dimensional MCD based detection of outliers} \\ & \textit{High dimensional MCD based detection of outliers} \end{array}
```

Description

High dimensional MCD based detection of outliers.

Usage

```
rmdp(y, alpha = 0.05, itertime = 100)
```

Arguments

У	A matrix with numerical data with more columns (p) than rows (n), i.e. n <p.< th=""></p.<>
alpha	The significance level, i.e. used to decide whether an observation is said to be considered a possible outlier. The default value is 0.05.
itertime	The number of iterations the algorithm will be ran. The higher the sample size,

the larger this number must be. With 50 observations in R^1000 maybe this has to be 1000 in order to produce stable results.

Details

High dimensional outliers (n«p) are detected using a properly constructed MCD. The variances of the variables are used and the determinant is simply their product.

A list including: runtime = runtime, dis = dis, wei = wei

runtime The duration of the process.

dis The final estimated Mahalanobis type normalised distances.

wei A bollean variable vector specifying whether an observation is "clean" (TRUE)

or a possible outlier (FALSE).

cova The estimated covatriance matrix.

Author(s)

Initial R code: Changliang Zou <nk.chlzou@gmail.com> R code modifications: Michail Tsagris <mtsagris@uoc.gr> C++ implementation: Manos Papadakis <papadakm95@gmail.com> Documentation: Michail Tsagris <mtsagris@uoc.gr> and Changliang Zhou <nk.chlzou@gmail.com>

References

Ro K., Zou C., Wang Z. and Yin G. (2015). Outlier detection for high-dimensional data. Biometrika, 102(3):589-599.

See Also

```
colmeans, colVars, colMedians
```

Examples

```
x <- matrix(rnorm(50 * 400), ncol = 400)
a <- rmdp(x, itertime = 500)
x<-a<-NULL</pre>
```

Hypothesis test for the distance correlation

Hypothesis test for the distance correlation

Description

Hypothesis test for the distance correlation.

Usage

```
dcor.ttest(x, y, logged = FALSE)
```

Arguments

Х	A numerical matrix.
У	A numerical matrix.
logged	Do you want the logarithm of the p-value to be returned? If yes, set this to TRUE.

Details

The bias corrected distance correlation is used. The hypothesis test is whether the two matrices are independent or not. Note, that this test is size correct as both the sample size and the dimensionality goes to infinity. It will not have the correct type I error for univariate data or for matrices with just a couple of variables.

Value

A vector with 4 elements, the bias corrected distance correlation, the degrees of freedom, the test statistic and its associated p-value.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

```
bcdcor, dcov, edist
```

Examples

```
x <- as.matrix(iris[1:50, 1:4])
y <- as.matrix(iris[51:100, 1:4])
res<-dcor.ttest(x, y)</pre>
```

Hypothesis test for two means of percentages

Hypothesis test for two means of percentages

Description

Hypothesis test for two means of percentages.

Usage

```
percent.ttest(x, y, logged = FALSE)
```

Arguments

X	A numerical vector with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
у	A numerical vector with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the prop. reg but with a single categorical predictor which has two levels only. It is like a t-test for the means of two samples haiving percentages.

Value

A vector with three elements, the phi parameter, the test statistic and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Papke L. E. & Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632. McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

```
link{percent.ttests},prop.reg,ttest2,ftest
```

```
x <- rbeta(100, 3, 1)
y <- rbeta(100, 7.5, 2.5)
res<-percent.ttest(x, y)</pre>
```

Hypothesis test for von Mises-Fisher distribution over Kent distribution Hypothesis test for von Mises-Fisher distribution over Kent distribution

Description

The null hypothesis is whether a von Mises-Fisher distribution fits the data well, and the alternative is that the Kent distribution is more suitable.

Usage

```
fish.kent(x, logged = FALSE)
```

Arguments

x A numeric matrix containing the data as unit vectors in Euclidean coordinates.

logged If you want the logarithm of the p-value ot be returned set this to TRUE.

Details

Essentially it is a test of rotational symmetry, whether Kent's ovalness parameter (beta) is equal to zero. This works for spherical data only.

Value

A vector with two elements, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Rivest, L. P. (1986). Modified Kent's statistics for testing goodness of fit for the Fisher distribution in small concentrated samples. Statistics & probability letters, 4(1): 1-4.

```
vmf.mle,iag.mle
```

```
x <- rvmf(100, rnorm(3), 15)
res<-fish.kent(x)
x <- NULL</pre>
```

Hypothesis testing between two skewness or kurtosis coefficients

Hypothesis testing between two skewness or kurtosis coefficients

Description

Hypothesis testing between two skewness or kurtosis coefficients.

Usage

```
skew.test2(x, y)
kurt.test2(x, y)
```

Arguments

x A numerical vector with data.

y A numerical vector with data, not necessarily of the same size.

Details

The skewness of kurtosis coefficients between two samples are being compared.

Value

A vector with the test statistic and its associated p-value.

Author(s)

Klio Lakiotaki

R implementation and documentation: Klio Lakiotaki <kliolak@gmail.com>.

References

https://en.wikipedia.org/wiki/Skewness https://en.wikipedia.org/wiki/Kurtosis

```
skew,colskewness,colmeans,colVars,colMedians
```

```
x <- rgamma(150,1, 4)
y <- rgamma(100, 1, 4)
res<-skew.test2(x, y)
res<-kurt.test2(x, y)</pre>
```

Index of the columns of a data.frame which are a specific type

*Index of the columns of a data.frame which are a specific type

Description

Index of the columns of a data.frame which are a specific type.

Usage

```
which.is(x,method="factor")
```

Arguments

x A data.frame where some columns are expected to be factor variables.

method A character value about the type. One of, "numeric", "factor", "integer", "logical".

Details

The function is written in C++ and this is why it is very fast.

Value

A vector with the column indices which are factor variables. If there are no factor variables it will return an empty vector.

Author(s)

Manos Papadakis <papadakm95@gmail.com>

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
nth, Match
```

Examples

```
res<-which.is(iris)</pre>
```

Insert/remove function names in/from the NAMESPACE file

Insert/remove function names in/from the NAMESPACE file

Description

Insert/remove function names in/from the NAMESPACE file.

Usage

```
AddToNamespace(path.namespace,path.rfolder)
RemoveFromNamespace(path.namespace,files.to.remove)
```

Arguments

```
path.namespace An full path to the NAMESPACE file.

path.rfolder An full path to the directory the new files to be added are stored.

files.to.remove
```

An character with the names of the functions to be removed from file NAMES-PACE.

Details

AddToNameSpace: Reads the files that are exported in NAMESPACE and the functions that are inside rfolder (where R files are) and insert every function that is not exported. For that you must add the attribute "#[export]" above every function you wish to export. Also you can use the attribute "#[export s3]" for exporting S3methods. Finally, if you don't want the program to read a file just add at the top of the file the attribute "#[dont read]".

RemoveFromNamespace: Remove every function, from argument "files.to.remove", from NAMES-PACE.

Value

AddToNameSpace: Return the files that didn't have the attribute "#[export]" or empty character vector if all the files was inserted.

RemoveFromNamespace: Return the files that could not be removed.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colShuffle,colVars,colmeans,read.directory
```

```
## Not run:
for example: path.namespace="C:\some_file\NAMESPACE" where is NAMESPACE file
path.rfolder="C:\some_file\R\" where is R files are
system.time( a<-AddToNamespace(path.namespace,path.rfolder) )</pre>
if(length(a)==0){
print("all the files are inserted")
}else{
print("The new files that inserted are: \n")
а
}
system.time( a<-RemoveFromNamespace(path.namespace,c("a","b")) )</pre>
if(length(a)==0){
print("all the files are inserted")
}else{
print("The files that could not be deleted are: \n")
}
## End(Not run)
```

Inverse Gaussian regression with a log-link

Inverse Gaussian regression with a log-link

Description

Inverse Gaussian regression with a log-link.

Usage

```
invgauss.reg(y, x, tol = 1e-07, maxiters = 100)
```

Arguments

У	The dependent variable, a numerical variable with non negative numbers.
x	A matrix or data frame with the indendent variables.
tol	The tolerance value to terminate the Newton-Raphson algorithm.
maxiters	The maximum number of iterations that can take place in the regression.

Details

An inverse Gaussian regression with a log-link is fitted.

A list including:

i The number of iterations required by the Newton-Raphson

loglik The log-likelihood value.

deviance The deviance value.

phi The dispersion parameter (ϕ) of the regression. This is necessary if you want

to perform an F hypothesis test for the significance of one or more independent

variables.

be The regression coefficients

Author(s)

Michail Tsagris

R implementation and documentation: Stefanos Fafalios <mtsagris@uoc.gr>

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

Zakariya Yahya Algamal and Intisar Ibrahim Allyas (2017). Prediction of blood lead level in maternal and fetal using generalized linear model. International Journal of Advanced Statistics and Probability, 5(2): 65-69.

See Also

```
invgauss.regs,normlog.reg,score.glms
```

Examples

```
## Not run:
y <- abs( rnorm(100) )
x <- matrix( rnorm(100 * 2), ncol = 2)
a <- invgauss.reg(y, x)
a
## End(Not run)</pre>
```

Inverse of a symmetric positive definite matrix

Inverse of a symmetric positive definite matrix

Description

Inverse of a symmetric positive definite matrix.

Iterator 121

Usage

```
spdinv(A)
```

Arguments

Α

A square positive definite matrix.

Details

After calculating the Cholesky decomposition of the matrix we use this upper triangular matrix to invert the original matrix.

Value

The inverse of the input matrix.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

http://econ.nsysu.edu.tw/ezfiles/124/1124/img/Chapter17_MaximumLikelihoodEstimation.pdf

See Also

```
cholesky, cova
```

Examples

```
s <- cova( as.matrix(iris[, 1:4]) )
res<-spdinv(s)
res<-solve(s)</pre>
```

Iterator

Iterator

Description

A way to traverse a list, data.frame, matrix or vector.

122 Iterator

Usage

```
iterator(x,method="ceil",type="vector",by=1)
## S3 method for class 'iterator'
print(x,...)
## S3 replacement method for class 'iterator'
Elem(x) <- value
Elem(x)
Elem(x) <- value
## S3 method for class 'iterator'
Elem(x)
## S3 method for class 'iterator'
x == y
## S3 method for class 'iterator'
x != y</pre>
```

Arguments

x A variable with any type, or iterator object.value An value depending the method of the iterator.

y An iterator.

method Method of the iterator class. One of "ceil", "col", "row".

type One of "vector", "matrix", "data.frame", "list".

by An integer value to iterate through element.

... Anything the user want.

Details

iterator: is an object that helps a programmer to traverse the given object.

print.iterator: print an object of class iterator.

"Elem<-": access to element and change the value.

Elem: access to element.

Value

An object of class "iterator". This object holds 4 fields:

copy: deep copy of iterator. end: get iterator tha have access to points to the last element. equals: equality of iterators nextElem: move iterator to point to the next element using argument "by". prevElem: move iterator to point to the previous element using argument "by".

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

```
colShuffle,colVars,colmeans,read.directory
```

```
y<-rnorm(100)
x<-iterator(y,method="ceil",type="vector",by=1)
s<-0
while(x != x$end()){
s <- s + Elem(x)
x$nextElem()
}
all.equal(s,sum(y))</pre>
```

James multivariate version of the t-test

James multivariate version of the t-test

Description

James test for testing the equality of two population mean vectors without assuming equality of the covariance matrices.

Usage

```
james(y1, y2, a = 0.05, R = 1)
```

Arguments

y1 A matrix containing the Euclidean data of the first group.

y2 A matrix containing the Euclidean data of the second group.

a The significance level, set to 0.05 by default.

R If R is 1 the classical James test is returned. If R is 2 the MNV modification is implemented.

Details

Multivariate analysis of variance without assuming equality of the covariance matrices. The p-value can be calculated either asymptotically or via bootstrap. The James test (1954) or a modification proposed by Krishnamoorthy and Yanping (2006) is implemented. The James test uses a corected chi-square distribution, whereas the modified version uses an F distribution.

Value

A list including:

note A message informing the user about the test used.

mesoi The two mean vectors.

info

The test statistic, the p-value, the correction factor and the corrected critical value of the chi-square distribution if the James test has been used or, the test statistic, the p-value, the critical value and the degrees of freedom (numerator and denominator) of the F distribution if the modified James test has been used.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43

Krishnamoorthy K. and Yanping Xia. On Selecting Tests for Equality of Two Normal Mean Vectors (2006). Multivariate Behavioral Research 41(4): 533-548

See Also

```
mv.eeltest2
```

Examples

```
james( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1 )
james( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 2 )
```

```
k nearest neighbours algorithm (k-NN)

k nearest neighbours algorithm (k-NN)
```

Description

k nearest neighbours algorithm (k-NN).

Usage

```
knn(xnew, y, x, k, dist.type = "euclidean", type = "C", method = "average", freq.option = 0, mem.eff = FALSE)
```

Arguments

xnew	The new data, new predictor variable values. A matrix with numerical data.
У	A vector with the response variable, whose values for the new data we wish to predict. This can be numerical data, factor or discrete, 0, 1, The latter two cases are for classification.
Χ	The dataset. A matrix with numerical data.

k The number of nearest neighbours to use. The number can either be a single

value or a vector with multiple values.

dist.type The type of distance to be used. Either \"euclidean\" or \"manhattan\".

type If your response variable \"y\" is numerical data, then this should be \"R\" (re-

gression). If \"y\" is in general categorical, factor or discrete set this argument

to \"C\" (classification).

method In case you have regression (type = "R") you want a way to summarise the

prediction. If you want to take the average of the reponses of the k closest observations, type \"average\". For the median, type \"median\" and for the

harmonic mean, type \"harmonic\".

freq.option If classification (type = \"C\") and ties occur in the prediction, more than one

class has the same number of k nearest neighbours, in which case there are two strategies available: Option 0 selects the first most frequent encountered. Option 1 randomly selects the most frequent value, in the case that there are duplicates.

mem.eff Boolean value indicating a conservative or not use of memory. Lower usage of

memory/Having this option on will lead to a slight decrease in execution speed and should ideally be on when the amount of memory in demand might be a

concern.

Details

The concept behind k-NN is simple. Suppose we have a matrix with predictor variables and a vector with the response variable (numerical or categorical). When a new vector with observations (predictor variables) is available, its corresponding response value, numerical or category is to be predicted. Instead of using a model, parametric or not, one can use this ad hoc algorithm.

The k smallest distances between the new predictor variables and the existing ones are calculated. In the case of regression, the average, median or harmonic mean of the corresponding respone values of these closest predictor values are calculated. In the case of classification, i.e. categorical response value, a voting rule is applied. The most frequent group (response value) is where the new observation is to be allocated.

Value

A matrix whose number of columns is equal to the size of k. If in the input you provided there is just one value of k, then a matrix with one column is returned containing the predicted values. If more than one value was supplied, the matrix will contain the predicted values for every value of k.

Author(s)

Marios Dimitriadis

R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com

References

Cover TM and Hart PE (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1):21-27.

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

http://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf http://statlink.tripod.com/id3.html

See Also

```
knn.cv,dirknn,logistic_only,fs.reg,cor.fsreg
```

Examples

```
# Simulate a dataset with continuous data x \leftarrow as.matrix(iris[, 1:4]) y \leftarrow as.numeric(iris[, 5]) id \leftarrow sample(1:150, 120) mod \leftarrow knn(x[-id, ], y[id], x[id, ], k = c(4, 5, 6), type = "C", mem.eff = FALSE) mod # Predicted values of y for 3 values of k. mod = ada =
```

k-NN algorithm using the arc cosinus distance

k-NN algorithm using the arc cosinus distance

Description

It classifies new observations to some known groups via the k-NN algorithm.

Usage

```
dirknn(xnew, x, y, k, type = "C", parallel = FALSE)
```

Arguments

xnew	The new data whose membership is to be predicted, a numeric matrix with unit vectors. In case you have one vector only make it a row vector (i.e. matrix with one row).
Х	The data, a numeric matrix with unit vectors.
k	The number of nearest neighbours. It can also be a vector with many values.
у	A numerical vector representing the class or label of each vector of x. 1, 2, 3, and so on. It can also be a numerical vector with data in order to perform regression.
type	If your response variable y is numerical data, then this should be "R" (regression) or "WR" for distance weighted based nearest neighbours. If y is in general categorical set this argument to "C" (classification) or to "WC" for distance weighted based nearest neighbours.

parallel Do you want th ecalculations to take place in parallel? The default value is FALSE.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observations. The new observation is allocated to the most frequent seen group. The non standard algorithm is to calculate the classical mean or the harmonic mean of the k nearest observations for each group. The new observation is allocated to the group with the smallest mean distance.

If you want regression, the predicted value is calculated as the average of the responses of the k nearest observations.

Value

A matrix with the predicted group(s). It has as many columns as the values of k.

Author(s)

Stefanos Fafalios

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com>

See Also

```
dirknn.cv,knn,vmf.mle,spml.mle
```

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/sqrt( rowSums(x^2) )
y<- as.numeric( iris[, 5] )
a <- dirknn(x, x, y, k = 2:10)</pre>
```

Limited number of eigenvalues and eigenvectors of a symmetric matrix

Limited number of eigenvalues and eigenvectors of a symmetric matrix

Description

Limited number of eigenvalues and eigenvectors of a symmetric matrix.

Usage

```
eigen.sym(A, k, vectors = TRUE)
```

Arguments

A A symmetric matrix.

k The number of eigenvalues and eigenvectors to extract.

vectors A flag that indicates if the eigenvectors will be returned (default: vectors = True)

The function calls the same function from the Armadillo library in C++. It is quite faster than R's built in function "eigen" if the number of eigenvalues and eigenvectors (argument k) is small.

The k largest, in magnitude, eigenvalues are returned. Hence, if the matrix is not positive definite you may get negative eigenvalues as well. So, it is advised to use it with positive definite matrices.

Value

A list including:

values The eigenvalues.
vectors The eigenvectors.

Author(s)

Armadillo library in C++ and Stefanos Fafalios and Manos Papadakis.

R implementation and documentation: Stefanos Fafalios <stefanos fafalios @gmail.com> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
hd.eigen
```

Examples

```
## Not run:
x <- matrnorm(500, 100 )
s <- Rfast::cova(x)
res<-eigen.sym(s, 5)
x <- s <- NULL
## End(Not run)</pre>
```

Linear models for large scale data

Linear models for large scale data

Description

Linear models for large scale data.

Usage

```
lmfit(x, y, w = NULL)
```

Arguments

X	The design matrix with the data, where each column refers to a different sample			
	of subjects. You must supply the design matrix, with the column of 1s. This			
	function is the analogue of lm.fit and .lm.fit.			
У	A numerical vector or a numerical matrix.			

An optional numerical vector with weights. Note that if you supply this, the function does not make them sum to 1. So, you should do it.

Details

W

We have simply exploitted R's powerful function and managed to do better than .lm.fit which is a really powerful function as well. This is a bare bones function as it returns only two things, the coefficients and the residuals. .lm.fit returns more and lm.fit even more and finally lm returns too much. The motivatrion came form this site https://m-clark.github.io/docs/fastr.html . We changed the function a bit.

Value

A list including:

be The beta coefficients.

residuals The residuals of the linear model(s).

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
regression, allbetas, correls, mvbetas, cor.fsreg
```

Examples

```
n <- 200 ; p <- 5
X <- matrnorm(n, p)
y <- rnorm(n)
a1 <- .lm.fit(X, y)
a2 <- lmfit(X, y)
x <- NULL</pre>
```

 $Logistic \ and \ Poisson \ regression \ models$ $Logistic \ and \ Poisson \ regression \ models$

Description

Logistic and Poisson regression models.

Usage

```
glm_logistic(x, y, full = FALSE,tol = 1e-09, maxiters = 100)
glm_poisson(x, y, full = FALSE,tol = 1e-09)
```

Arguments

X	A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This can be a matrix or a data.frame (with factors).
У	The dependent variable; a numerical vector with two values (0 and 1) for the logistic regression or integer values, 0, 1, 2, for the Poisson regression.
full	If this is FALSE, the coefficients and the deviance will be returned only. If this is TRUE, more information is returned.
tol	The tolerance value to terminate the Newton-Raphson algorithm.
maxiters	The max number of iterations that can take place in each regression.

Details

The function is written in C++ and this is why it is very fast.

Value

When full is FALSE a list including:

be The regression coefficients. devi The deviance of the model.

When full is TRUE a list including:

info The regression coefficients, their standard error, their Wald test statistic and their

p-value.

devi The deviance.

Author(s)

Manos Papadakis <papadakm95@gmail.com>

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989

See Also

```
poisson_only,logistic_only,univglms,regression
```

Examples

```
## Not run:
x <- matrix(rnorm(100 * 3), ncol = 3)
y <- rbinom(100, 1, 0.6)  ## binary logistic regression
a1 <- glm_logistic(x, y, full = TRUE)
a2 <- glm(y ~ x, binomial)

x <- matrix(rnorm(100 * 3), ncol = 3)
y <- rpois(100, 10)  ## binary logistic regression
b1 <- glm_poisson(x, y, full = TRUE)
b2 <- glm(y ~ x, poisson)

x<-y<-a1<-a2<-b1<-b2<-NULL

## End(Not run)</pre>
```

Logistic or Poisson regression with a single categorical predictor

Logistic or Poisson regression with a single categorical predictor

Description

Logistic or Poisson regression with a single categorical predictor.

Usage

```
logistic.cat1(y, x, logged = FALSE)
poisson.cat1(y, x, logged = FALSE)
```

Arguments

Х

1	y	A numerical	vector	with	vaiues	u or	1.

A numerical vector with discrete numbers or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results. **Note:** For the "binomial.anova" if this is a numerical vector it must contain strictly positive numbers, i.e. 1, 2, 3, 4, ..., no zeros are allowed.

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

There is a closed form solution for the logistic regression in the case of a single predictor variable. See the references for more information.

Value

info	A matrix similar to the one produced by the glm command. The estimates, their standard error, the Wald value and the relevant p-value.
devs	For the logistic regression case a vector with the null and the residual deviances, their difference and the significance of this difference.
res	For the Poisson regression case a vector with the log likelihood ratio test statistic value and its significance.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Stan Lipovetsky (2015). Analytical closed-form solution for binary logit regression by categorical predictors. Journal of Applied Statistics, 42(1): 37–49.

See Also

```
poisson.anova, poisson.anovas, anova, logistic_only, poisson_only
```

Examples

```
y <- rbinom(20000, 1, 0.6)
x <- as.factor( rbinom(20000, 3, 0.5) )
system.time( a1 <- logistic.cat1(y, x) )
system.time( a2 <- glm(y ~ x, binomial) )
a1 ; a2

y <- rpois(20000, 10)
x <- as.factor( rbinom(20000, 3, 0.5) )
system.time( a1 <- poisson.cat1(y, x) )
system.time( a2 <- glm(y ~ x, poisson) )
a1 ; a2

x<-y<-a1<-a2<-NULL</pre>
```

```
Lower and Upper triangular of a matrix Lower\ and\ Upper\ triangular\ of\ a\ matrix
```

Description

Lower/upper triangular matrix.

Usage

```
lower_tri(x, suma = FALSE, diag = FALSE)
upper_tri(x, suma = FALSE, diag = FALSE)
lower_tri.assign(x, v, diag = FALSE)
upper_tri.assign(x, v, diag = FALSE)
```

Arguments

X	A matrix with data or a vector with 2 values which is the dimension of the logical matrix to be returned with the upper or lower triangular filled with "TRUE".
V	A numeric vector for assign to the lower/upper triangular.
suma	A logical value for returning the sum of the upper or lower triangular. By default is "FALSE". Works only if argument "x" is matrix.
diag	A logical value include the diagonal to the result.

Value

Get a lower/upper triangular logical matrix with values **TRUE/FALSE**, a vector with the values of a lower/upper triangular, the sum of the upper/lower triangular if suma is set **TRUE** or assign to the lower/upper (only for large matrices) triangular. You can also include diagonal with any operation if argument diag is set to "TRUE".

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,colFalse,nth,rowrange,rowMedians,rowVars,colTrue
```

Examples

```
x <- matrix(runif(10*10),10,10)
all.equal(lower_tri(c(10,10)),lower.tri(x))</pre>
```

134 Mahalanobis distance

```
all.equal(lower_tri(x),x[lower.tri(x)])
#all.equal(upper_tri(c(10,10)),upper.tri(x))
#all.equal(upper_tri(x),x[upper.tri(x)])

#all.equal(lower_tri(c(10,10),diag = TRUE),lower.tri(x,diag = TRUE))
#all.equal(lower_tri(x,diag = TRUE),x[lower.tri(x,diag = TRUE)])
#all.equal(upper_tri(c(10,10),diag = TRUE),upper.tri(x,diag = TRUE))
#all.equal(upper_tri(x,diag = TRUE),x[upper.tri(x,diag = TRUE)])

#all.equal(lower_tri.assign(x,diag = TRUE,v=rep(1,1000)),x[lower.tri(x,diag = TRUE)]<-1)
all.equal(upper_tri.assign(x,diag = TRUE,v=rep(1,1000)),x[upper.tri(x,diag = TRUE)]<-1)
x<-NULL</pre>
```

Mahalanobis distance Mahalanobis distance

Description

Mahalanobis distance.

Usage

```
mahala(x, mu, sigma, ischol = FALSE)
```

Arguments

X	A matrix with the data, where rows denotes observations (vectors) and the columns
	contain the variables.

mu The mean vector.

sigma The covariance or any square symmetric matrix.

ischol A boolean variable set to true if the Cholesky decomposition of the covariance

matrix is supplied in the argument \"sigma\".

Value

A vector with the Mahalanobis distances.

Author(s)

Matteo Fasiolo <matteo.fasiolo@gmail.com>,

C++ and R implementation and documentation: Matteo Fasiolo <matteo.fasiolo@gmail.com>.

See Also

```
dista, colmeans
```

Examples

```
x <- matrix( rnorm(100 * 50), ncol = 50 )
m <- colmeans(x)
s <- cov(x)
a1 <- mahala(x, m, s)</pre>
```

Many (and one) area aunder the curve values

Many are aunder the curve values

Description

Many are aunder the curve values.

Usage

```
colaucs(group, preds)
auc(group, preds)
```

Arguments

group A numerical vector with two values, one of which must be strictly 1.

preds A numerical matrix with scores, probabilities or any other measure. In the case

of auc this is a vector.

Details

The AUCs are calculated column-wise or just an AUC if the vector function is used.

Value

A vector with length equal to the number of columns of the "preds" argument. The AUC vlaues for each column. If the "auc" function is used then a signle number is returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
ttests, ttest, ftests
```

Examples

```
## 200 variables, hence 200 AUCs will be calculated
x <- matrix( rnorm(100 * 200), ncol = 200 )
ina <- rbinom(100, 1, 0.6)
system.time( colaucs(ina, x) )
a <- colaucs(ina, x)
b <- auc(ina, x[, 1])
x <- NULL</pre>
```

Many 2 sample proportions tests

Many 2 sample proportions tests

Description

It performs very many 2 sample proportions tests.

Usage

```
proptests(x1, x2, n1, n2)
```

Arguments

x1	A vector with the successes of the one group.
x2	A vector with the successes of the one group.
n1	A vector with the number of trials of the one group.
n2	A vector with the number of trials of the one group.

Details

The 2-sample proportions test is performed for each pair of proportions of teh two groups.

Value

A matrix with the proportions of each group (two columns), the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

Many 2 sample tests 137

References

B. L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

See Also

```
ttests, ftests, colVars
```

Examples

```
## 10000 variables, hence 10000 t-tests will be performed
set.seed(12345)
x1 <- rpois(500, 5)
x2 <- rpois(500, 5)
n1 <- rpois(1000, 40)
n2 <- rpois(1000, 40)
a <- proptests(x1, x2, n1, n2)
mean(a[, 4]<0.05)

x1 <- rbinom(500, 500, 0.6)
x2 <- rbinom(500, 500, 0.6)
b <- proptests(x1, x2, 500, 500)
mean(b[, 4]<0.05)</pre>
```

Many 2 sample tests

Many 2 sample tests tests

Description

It performs very many 2 sample tests.

Usage

```
ttests(x, y = NULL, ina, paired = FALSE, logged = FALSE, parallel = FALSE) mcnemars(x, y = NULL, ina, logged = FALSE) var2tests(x, y = NULL, ina, alternative = "unequal", logged = FALSE)
```

Arguments

X	A matrix with the data, where the rows denote the samples and the columns are the variables.
у	A second matrix with the data of the second group. If this is NULL (default value) then the argument ina must be supplied. Notice that when you supply the two matrices the procedure is two times faster.
ina	A numerical vector with 1s and 2s indicating the two groups. Be careful, the function is designed to accept only these two numbers. In addition, if your "y" is NULL, you must specify "ina".

138 Many 2 sample tests

alternative The type of hypothesis to be checked, "equal", "greater", "less".

paired If the groups are not independent paired t-tests should be performed and this

must be TRUE, otherwise, leave it FALSE. In this case, the two groups must

have equal smaple sizes, otherwise no test will be performed.

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

parallel Should parallel implentations take place in C++? The default value is FALSE.

Details

For the ttests, if the groups are independent, the Welch's t-test (without assuming equal variances) is performed. Otherwise many paired t-tests are performed. The McNemar's test requires a number of observations, at least 30 would be good in order for the test to have some power and be size corect.

Value

A matrix with the test statistic, the degrees of freedom (if the groups are independent) and the p-value (or their logarithm) of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

B. L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336. McNemar Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 12(2):153-157.

See Also

```
ftests, anovas, ttest
```

Examples

```
## 1000 variables, hence 1000 t-tests will be performed
x = matrnorm(100, 100)
## 100 observations in total
ina = rbinom(100, 1, 0.6) + 1  ## independent samples t-test
system.time( ttests(x, ina = ina) )
x1 = x[ina == 1, ]
x2 = x[ina == 2, ]
system.time( ttests(x1, x2) )
x <- NULL</pre>
```

Many analysis of variance tests with a discrete variable

Many analysis of variance tests with a discrete variable

Description

Many analysis of variance tests with a discrete variable.

Usage

```
poisson.anovas(y, ina, logged = FALSE)
quasipoisson.anovas(y, ina, logged = FALSE)
geom.anovas(y, ina, type = 1, logged = FALSE)
```

Arguments

У	A numerical matrix with discrete valued data, i.e. counts for the case of the Poisson, or with 0s and 1s for the case of the Bernoulli distribution. Each column represents a variable.
ina	A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4, or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results.
type	This rgument is for the geometric distribution. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the analysis of variance with count data. What we do is many log-likelihood ratio tests. For the quasi Poisson case we scale the difference in the deviances.

Value

A matrix with two values, the difference in the deviances (test statistic) and the relevant p-value. For the case of quasi Poisson the estimated ϕ parameter is also returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

```
g2tests,poisson.anova,anova,poisson_only,poisson.mle
```

140 Many ANCOVAs

Examples

```
ina <- rbinom(500, 3, 0.5) + 1
## Poisson example
y <- matrix( rpois(500 * 100, 10), ncol= 100 )
system.time(a1 <- poisson.anovas(y, ina) )
y <- NULL</pre>
```

Many ANCOVAs

Many ANCOVAs

Description

Many ANCOVAs.

Usage

```
ancovas(y, ina, x, logged = FALSE)
```

Arguments

У	A matrix with the data, where the rows denote the observations and the columns are the variables.
ina	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero.
X	A numerical vector whose length is equal to the number of rows of y. This is the covariate.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Many Analysis of covariance tests are performed. No interaction between the factor and the covariate is tested. Only the main effects. The design need not be balanced. The values of ina need not have the same frequency. The sums of squares have been adjusted to accept balanced and unbalanced designs.

Value

A matrix with the test statistic and the p-value for the factor variable and the covariate.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley \& Sons

See Also

```
ftests, ttests, anovas
```

Examples

```
## 100 variables, hence 100 F-tests will be performed
y <- matrix( rnorm(90 * 100), ncol = 100 )
ina <- rbinom(90, 2, 0.5) + 1
x <- rnorm(90)
system.time( a <- ancovas(y, ina, x) )
## Not run:
m1 <- lm(y[, 15] ~ factor(ina) + x)
m2 <- lm(y[, 15] ~ x + factor(ina))
res<-anova(m1)
res<-anova(m2)
y <- NULL
a[15, ] ## the same with the m2 model, but not the m1
## End(Not run)</pre>
```

Many ANOVAS for count data with Poisson or quasi Poisson models

Many ANOVAS for count data with Poisson or quasi Poisson models

Description

Many ANOVAS for count data with Poisson or quasi Poisson models.

Usage

```
colpoisson.anovas(y, x, logged = FALSE)
colquasipoisson.anovas(y, x, logged = FALSE)
```

Arguments

У	A numerical vector with the data.
Х	A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This must be a matrix with the categorical variables as numbers, starting from 1. Poisson or quassi Poisson ANOVA takes place for each column.
logged	A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Poisson or quassi Poisson ANOVA takes place at each column.

Value

A matrix with the test statistic and the (logged) p-value for each predictor variable. In the case of the quasi Poisson, the ϕ is returned as well.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

See Also

```
poisson.anova boot.ttest2,ttest2,ftest
```

Examples

```
y \leftarrow rpois(200, 10)

x \leftarrow matrix(rbinom(200 * 10, 3, 0.5), ncol = 10)
```

Many exponential regressions

Many exponential regressions

Description

Many exponential regressions.

Usage

```
expregs(y, x, di, tol = 1e-09, logged = FALSE)
```

Arguments

У	A vector with positive data (including zeros).
X	A numerical matrix with the predictor variables.
di	A vector of size equal to that of y with 0s and 1s indicating censoring or not respectively.
tol	The tolerance value to stop the newton-Raphson iterations. It is set to 1e-09 by default.
logged	A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

We have implemented the newton-Raphson in order to avoid unnecessary calculations.

Value

A matrix with three columns, the test statistic, its associated (logged) p-value and the BIC of each model

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
univglms, score.glms, logistic_only, poisson_only, regression
```

Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted x <- matrnorm(100, 100) y <- rexp(100, 4) system.time( expregs(y, x, di = rep(1, length(y))) ) x <- NULL
```

```
Many F-tests with really huge matrices

Many F-tests with really huge matrices
```

Description

Many F-tests with really huge matrices.

Usage

```
list.ftests(x, logged = FALSE)
```

Arguments

A list with many big size matrices. Each element of the list contains a matrix. This is the ftests function but with really huge matrices, which cannot be loaded into R as a single matrix.

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

The Welch's F-test (without assuming equal variances) is performed just like in the "ftests" function. The difference is that you have a really huge matrix which you cannot load into R. In the "ftests" function, the argument "ina" denotes the different groups. Here, you "cut" the matrix into smaller ones, each of which denotes a different group and put them in a list.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

See Also

```
ftests, ttests
```

Examples

```
x <- matrnorm(300, 500)
ina <- rbinom(300, 2, 0.6) + 1
a <- list()
a[[ 1 ]] <- x[ina == 1, ]
a[[ 2 ]] <- x[ina == 2, ]
a[[ 3 ]] <- x[ina == 3, ]
mod <- list.ftests(a)
z <- NULL
a <- NULL</pre>
```

Many G-square and Chi-square tests of indepedence $Many\ G$ -square tests of indepedence

Description

Many G-square tests of indepdence with and without permutations.

Usage

```
g2tests(data, x, y, dc)
g2tests_perm(data, x, y, dc, nperm)
chi2tests(data, x, y, dc)
```

data	A numerical matrix with the data. The minimum must be 0, otherwise the function can crash or will produce wrong results . The data must be consecutive numbers.
X	An integer number or a vector of integer numbers showing the other variable(s) to be used for the G^2 test of independence.
У	An integer number showing which column of data to be used.
dc	A numerical value equal to the number of variables (or columns of the data matrix) indicating the number of distinct, unique values (or levels) of each variable. Make sure you give the correct numbers here, otherwise the degrees of freedom will be wrong.
nperm	The number of permutations. The permutations test is slower than without permutations and should be used with small sample sizes or when the contigency tables have zeros. When there are few variables, R's "chisq.test" function is faster, but as the number of variables increase the time difference with R's procedure becomes larger and larger.

Details

The function does all the pairwise G^2 test of independence and gives the position inside the matrix. The user must build the associations matrix now, similarly to the correlation matrix. See the examples of how to do that. The p-value is not returned, we leave this to the user. See the examples of how to obtain it.

Value

A list including:

statistic	The G^2 or χ^2 test statistic for each pair of variables.
pvalue	This is returned when you have selected the permutation based \mathbb{G}^2 test.
X	The row or variable of the data.
У	The column or variable of the data.
df	The degrees of freedom of each test.

Author(s)

Giorgos Borboudakis. The permutation version used a C++ code by John Burkardt.

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

Tsamardinos, I., & Borboudakis, G. (2010). Permutation testing improves Bayesian network learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 322-337). Springer Berlin Heidelberg.

See Also

```
g2Test,g2Test_perm,correls,univglms
```

Examples

```
nvalues <- 3 

nvars <- 10 

nsamples <- 2000 

data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars ) 

dc <- rep(nvalues, nvars) 

a <- g2tests(data = data, x = 2:9, y = 1, dc = dc) 

pval <- pchisq(a\$statistic, a\$df, lower.tail = FALSE) ## p-value 

b <- g2tests_perm(data = data, x = 2:9, y = 1, dc = dc, nperm = 1000) 

a<-b<-data<-NULL
```

Many Gini coefficients

Many Gini coefficients

Description

Many Gini coefficients.

Usage

ginis(x)

Arguments

Х

A matrix with non negative data. The rows are observations and the columns denote the variables.

Details

We have implemented the fast version of the Gini coefficient. See wikipedia for more details.

Value

A vector with the Gini coefficient, one for each variable.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colskewness, colmeans, corpairs
```

Examples

```
x <- matrix( rpois(500 * 1000, 1000), ncol = 1000 )
a <- ginis(x)</pre>
```

Many hypothesis tests for two means of percentages

Many hypothesis tests for two means of percentages

Description

Many hypothesis tests for two means of percentages.

Usage

```
percent.ttests(x, y, logged = FALSE)
```

Arguments

X	A numerical matrix with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
У	A numerical matrix with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the prop. reg but with a single categorical predictor which has two levels only. It is like a t-test for the means of two samples haiving percentages.

Value

A matrix with three columns, the phi parameter, the test statistic and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Papke L. E. & Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
link{percent.ttest},prop.reg,ttest2,ftest
```

Examples

```
x <- matrix( rbeta(100 * 10, 3, 1), ncol = 10)
y <- matrix( rbeta(50 * 10, 7.5, 2.5), ncol = 10)
res<-percent.ttests(x, y)</pre>
```

Many moment and maximum likelihood estimations of variance components

Many moment and maximum likelihood estimations of variance components

Description

Many moment and maximum likelihood estimations of variance components.

Usage

```
colvarcomps.mom(x, id, parallel = FALSE)
colvarcomps.mle(x, id, ranef = FALSE, tol= 1e-08, maxiters = 100,
parallel = FALSE)
```

Arguments

х	A matrix with the data, where each column refers to a different sample of subjects.				
id	A numerical vector indicating the subject. You must put consecutive numbers and no zero values. Alternatively this can be a factor variable.				
ranef	Do you also want the random effects to be returned? TRUE or FALSE.				
tol	The tolerance level to terminate the golden ratio search.				
maxiters	The maximum number of iterations to perform.				
parallel	Should the computations run in parallel? TRUE or FALSE.				

Details

Note that the "colvarcomp.mom" works for **balanced designs only**, i.e. for each subject the same number of measurements have been taken. The "colvarcomps.mle" works for unbalanced as well.

The variance components, the variance of the between measurements and the variance of the within are estimated using moment estimators. The "colvarcomps.mom" is the moment analogue of a random effects model which uses likelihood estimation ("colvarcomps.mle"). It is much faster, but can give negative variance of the random effects, in which case it becomes zero.

The maximum likelihood version is a bit slower (try youselves to see the difference), but statistically speaking is to be preferred when small samples are available. The reason why it is only a little

bit slower and not a lot slower as one would imagine is because we are using a closed formula to calculate the two variance components (Demidenko, 2013, pg. 67-69). Yes, there are closed formulas for linear mixed models.

Value

For the "colvarcomps.mom": A matrix with 5 columns, The MSE, the estimate of the between variance, the variance components ratio and a 95% confidence for the ratio.

For the "colvarcomps.mle": **If ranef = FALSE** a list with a single component called "info". That is a matrix with 3 columns, The MSE, the estimate of the between variance and the log-likelihood value. **If ranef = TRUE** a list including "info" and an extra component called "ranef" containing the random effects. It is a matrix with the same number of columns as the data. Each column contains the randome effects of each variable.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley & Sons.

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. New York: Springer-Verlag.

Demidenko E. (2013). Mixed Models: Thoery and Applications with R 2nd Edition). New Jersey: John Wiley & Sons (Excellent book).

See Also

```
varcomps.mle,colrint.regbx
```

Examples

```
## example taken from Montgomery, page 514-517.
y <- c(98, 97, 99, 96, 91, 90, 93, 92,
96, 95, 97, 95, 95, 96, 99, 98)
y <- matrix(y)
id <- rep(1:4, each = 4)

x <- rmvnorm(100, numeric(100), diag(rexp(100)))
id <- rep(1:25, each = 4)
n <- 25 ; d <- 4
a <- colvarcomps.mom(x, id)
mean(a[, 4]<0 & a[, 5]>0)
b <- colvarcomps.mle(x, id)
x <- NULL</pre>
```

Many multi-sample tests

Many multi-sample tests

Description

Many multi-sample tests.

Usage

```
ftests(x, ina, logged = FALSE)
anovas(x, ina, logged = FALSE)
vartests(x, ina, type = "levene", logged = FALSE)
block.anovas(x, treat, block, logged = FALSE)
```

Arguments

X	A matrix with the data, where the rows denote the observations (and the two groups) and the columns are the variables.
ina	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero. Alternatively it can be a factor variable.
type	This is for the variances test and can be either "levene" or "bf" corresponding to Levene's or Brown-Forsythe's testing procedure.
treat	In the case of the blocking ANOVA this argument plays the role of the "ina" argument.
block	This item, in the blocking ANOVA denotes the subjects which are the same. Similarly to "ina" a numeric vector with 1s, 2s, 3s and so on.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The Welch's F-test (without assuming equal variances) is performed with the "ftests" function. The "anovas" function perform the classical (Fisher's) one-way analysis of variance (ANOVA) which assumes equal variance across the groups.

The "vartests" perform hypothesis test for the equality of the variances in two ways, either via the Levene or via the Brown-Forshythe procedure. Levene's test employs the means, whereas the Brown-Forsythe procedure employs the medians and is therefore more robust to outliers. The "var2tests" implement the classical F test.

The "block.anova" is the ANOVA with blocking, randomised complete block design (RCBD). In this case, for every combination of the block and treatment values, there is only one observation. The mathematics are the same as in the case of two way ANOVA, but the assumptions different and the testing procedure also different. In addition, no interaction is present.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley \& Sons

See Also

ttests

Examples

```
x <- matrix( rnorm(300 * 50), ncol = 50 )
## 300 observations in total
ina <- rbinom(300, 3, 0.6) + 1
a1 <- ftests(x, ina)
a2 <- anovas(x, ina)
a3 <- vartests(x, ina)
x <- NULL</pre>
```

Many multivariate simple linear regressions coefficients

Many multivariate simple linear regressions coefficients

Description

Many multivariate simple linear regressions coefficients.

Usage

```
mvbetas(y, x, pvalue = FALSE)
```

Arguments

у	A matrix with the data, where rows denotes the observations and the columns contain the dependent variables.
x	A numerical vector with one continuous independent variable only.
pvalue	If you want a hypothesis test that each slope (beta coefficient) is equal to zero
	set this equal to TRUE. It will also produce all the correlations between y and x.

Details

It is a function somehow opposite to the allbetas. Instead of having one y and many xs we have many ys and one x.

Value

A matrix with the constant (alpha) and the slope (beta) for each simple linear regression. If the p-value is set to TRUE, the correlation of each y with the x is calculated along with the relevant p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
allbetas, correls, univglms
```

Examples

```
y <- matrnorm(100, 100)
x <- rnorm(100)
a <- mvbetas(y, x, pvalue = FALSE)
b <- matrix(nrow = 100, ncol = 2)
z <- cbind(1, x)

system.time( a <- mvbetas(y, x) )
b[2, ] <- coef( lm.fit( z, y[, 1] ) )
b[2, ] <- coef( lm.fit( z, y[, 2] ) )
x <- NULL</pre>
```

```
Many non parametric multi-sample tests

Many multi-sample tests
```

Description

Many multi-sample tests.

```
kruskaltests(x, ina, logged = FALSE)
cqtests(x, treat, block, logged = FALSE)
```

Х	A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables.
ina	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero.
treat	In the case of the Cochran's \boldsymbol{Q} test, this argument plays the role of the "ina" argument.
block	This item denotes the subjects which are the same. Similarly to "ina" a numeric vector with $1s,2s,3s$ and so on.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The "kruskaltests" performs the Kruskal-Wallis non parametric alternative to analysis of variance test. The "cqtests" performs the Cocrhan's Q test for the equality of more than two groups whose values are strictly binary (0 or 1). This is a generalisation of the McNemar's test in the multi-sample case.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
block.anovas,ftests
```

Examples

```
x <- matrix( rexp(300 * 200), ncol = 200 )
ina <- rbinom(300, 3, 0.6) + 1
system.time( kruskaltests(x, ina) )
x <- matrix( rbinom(300 * 200, 1, 0.6), ncol = 200 )
treat <- rep(1:3, each = 100)
block <- rep(1:3, 100)
system.time( cqtests(x, treat, block) )
x <- NULL</pre>
```

Many odds ratio tests

Many odds ratio tests Many odds ratio tests

Description

It performs very many odds ratio tests.

Usage

```
odds(x, y = NULL, ina, logged = FALSE)
```

Arguments

X	A matrix with the data, where the rows denote the observations and the columns are the variables. They must be 0s and 1s only.
У	A second matrix with the data of the second group. If this is NULL (default value) then the argument ina must be supplied. Notice that when you supply the two matrices the procedure is two times faster. They must be 0s and 1s only.
ina	A numerical vector with 1s and 2s indicating the two groups. Be careful, the function is designed to accept only these two numbers. In addition, if your "y" is NULL, you must specify "ina".
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Many odds ratio tests are performed.

Value

A matrix with the test statistic and the p-value (or their logarithm) of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Mosteller Frederick (1968). Association and Estimation in Contingency Tables. Journal of the American Statistical Association. 63(321):1-28.

Edwards A.W.F. (1963). The measure of association in a 2x2 table. Journal of the Royal Statistical Society, Series A. 126(1):109-114.

See Also

```
odds.ratio,g2Test_univariate
```

Examples

```
x <- matrix( rbinom(100 * 100, 1, 0.5), ncol = 100 )
ina <- rep(1:2, each = 50)
a <- odds(x, ina = ina)</pre>
```

Many one sample goodness of fit tests for categorical data

Many one sample goodness of fit tests for categorical data

Description

Many one sample goodness of fit tests for categorical data.

Usage

```
cat.goftests(x, props, type = "gsquare", logged = FALSE)
```

Arguments

X	A matrix with the data, where the rows denote the samples and the columns are the variables. The data must be integers and be of the form 1, 2, 3, and so on. The minimum must be 1, and not zero.
props	The assumed distribution of the data. A vector or percentages summing to 1.
type	Either Pearson's χ^2 test ("chisquare") is used or the G^2 test ("qsquare", default value).
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Given a matrix of integers, where each column refers to a sample, the values of a categorical variable the function tests wether these values can be assumed to fit a specific distribution.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
ttests, ttest, ftests
```

Examples

```
x <- matrix( rbinom(300 \star 100, 4, 0.6), ncol = 100 ) + 1 props <- dbinom(0:4, 4, 0.6) ## can we assume that each column comes from a distribution whose mass is given by props? system.time( cat.goftests(x, props) ) a1 <- cat.goftests(x, props) ## G-square test a2 <- cat.goftests(x, props, type = "chisq") ## Chi-square test cor(a1, a2) mean( abs(a1 - a2) ) x <- NULL
```

Many one sample tests Many one sample tests

Description

Many one sample tests.

Usage

```
proptest(x, n, p, alternative = "unequal", logged = FALSE)
ttest(x, m, alternative = "unequal", logged = FALSE, conf = NULL)
vartest(x, sigma, alternative = "unequal", logged = FALSE, conf = NULL)
```

Arguments

X	A matrix with numerical data. Each column of the matrix corresponds to a sample, or a group. In the case of the "proptest" this is a vector integers ranging from 0 up to n. It is the number of "successes".
n	This is for the "proptest" only and is a vector with integer numbers specifying the number of tries for the proptest. Its size is equal to the size of x .
p	A vector with the assumed probabilities of success in the "proptest". Its size is equal to the number of colums of the matrix x.
m	A vector with the assumed means. Its size is equal to the number of colums of the matrix x.
sigma	A vector with assumed variances. Its size is equal to the number of colums of the matrix x.
alternative	The type of hypothesis to be checked. Equal to ("unequal"), grater than("greater") or less than ("less") the assumed parameter.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?
conf	If you want confidence intervals to be returned specify the confidence level, otherwise leave it NULL.

Details

Despite the functions having been written in R, they are very fast.

Value

For all tests except for the "sftests" a matrix with two colums, the test statistic and the p-value respectively.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
ftests, ttests
```

Examples

```
R <- 100
## protest
x <- rbinom(R, 50, 0.6)
n <- rep(50, R)
p <- rep(0.6, R)
a1 <- proptest(x, n, p, "unequal", logged = FALSE)
res<-sum( a1[, 2] < 0.05 ) / R

## vartest
x <- matrnorm(100, 100)
a2 <- vartest(x, rep(1, R) )
res<-sum( a2[, 2] < 0.05 )

## ttest
a4 <- ttest(x, numeric(R) )
res<-sum(a4[, 2] < 0.05) / R
x <- NULL</pre>
```

Many random intercepts LMMs for balanced data with a single identical covariate. Many random intercepts LMMs for balanced data with a single identical covariate

Description

Many random intercepts LMMs for balanced data with a single identical covariate.

```
colrint.regbx(y, x, id)
```

у	A numerical matrix with the data. The subject values.
x	A numerical vector with the same length as the number of rows of y indicating

the fixed predictor variable. Its values are the same for all levels of y. An

example of this x is time which is the same for all subjects.

id A numerical variable with 1, 2, ... indicating the subject.

Details

This is a special case of a balanced random intercepts model with a compound symmetric covariance matrix and one single covariate which is constant for all replicates. An example, is time, which is the same for all subjects. Maximum likelihood estimation has been performed. In this case the mathematics exist in a closed formula (Demidenko, 2013, pg. 67-69).

This is the generalistion of rint.regbx to matrices. Assume you have many observations, gene expressions over time for example, and you want to calculate the random effects or something else for each expression. Instead of using a "for" loop with rint.regbx function we have used amtrix operations to make it even faster.

Value

A list including:

info	A matrix with	the random	intercepts variance	(between) the	variance of the
11110	A maura with	uic random	intercepts variance	TOCTWCCIII. HIC	variance of the

errors (within), the log-likelihood, the deviance (twice the log-likelihood) and the BIC. In the case of "rint.reg" it also includes the number of iterations required

by the generalised least squares.

be The estimated regression coefficients, which in the case of "rint.regbx" are sim-

ply two: the constant and the slope (time effect).

ranef A matrix with random intercepts effects. Each row corresponds to a column in

y. Instead of having a matrix with the same number of columns as y we return a

transposed matrix.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Eugene Demidenko (2013). Mixed Models: Theory and Applications with R, 2nd Edition. New Jersey: Wiley \& Sons (excellent book).

See Also

```
colvarcomps.mle,rint.regbx,rm.lines,varcomps.mom,rint.reg
```

Examples

```
y <- matrix( rnorm(100 * 50), ncol = 50)
id <- rep(1:20, each = 5)
x <- rep(1:10, 10)
system.time( a<- colrint.regbx(y, x, id) )</pre>
```

Many regression based tests for single sample repeated measures

Many regression based tests for single sample repeated measures

Description

Many regression based tests for single sample repeated measures.

Usage

```
rm.lines(y, x, logged = FALSE)
rm.anovas(y, x, logged = FALSE)
```

Arguments

У

A matrix with the data, where each column refers to a different sample of subjects. For example, the first column is the repeated measurements of a sample of subjects, the second column contains repeated measurements of a second sample of subjects and so on. Within each column, the measurements of each subjects are stacked one upon the other. Say for examples there are n subjects and each of them has been measured d times (in time or at different experimental conditions). We put these in a matrix with just one column. The first d rows are the measurements of subject 1, the next d rows are the measurements of subject 2 and so on.

Х

A numerical vector with time (usually) or the the predictor variable. For example the temperature, or the pressure. See the details for more information. Its length is equal to the time points for example, i.e. it must not have the same length as the number of rows of y. For the "rm.lines" this is a continuous variable.

For the "rm.anovas" this is treated as a categorical variable, indicating say the type of experimental condition, but no difference between the points is important. Hence, for this function only, x can also be a facto variable.

logged

Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

In order to see whether the repeated measurements are associated with a single covariate, e.g. time we perform many regressions and each time calculate the slope. For each subject, its regression slope with the covariate is calculated. In the end a t-test for the hypothesis that the average slopes is zero is performed. The regression slopes ignore that the measurements are not independent, but

note that the slopes are independent, because they come from different subjects. This is a simple, summary statistics based approach found in Davis (2002), yet it can provide satisfactory results.

The second approach ("rm.anovas") found in Davis (2002) is the usual repeated measures ANOVA. In this case, suppose you have taken measurements on one or more variables from the same group of people. See the example below on how to put such data.

Value

A matrix with the test statistic (t-test) and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. Springer-Verlag, New York.

See Also

```
rint.regbx,rint.reg,varcomps.mle
```

Examples

```
y \leftarrow c(74.5, 81.5, 83.6, 68.6, 73.1, 79.4,
75.5,84.6,70.6,87.3,73.0,75.0,
68.9,71.6,55.9,61.9,60.5,61.8,
57.0,61.3,54.1,59.2,56.6,58.8,
78.3,84.9,64.0,62.2,60.1,78.7,
54.0,62.8,63.0,58.0,56.0,51.5,
72.5,68.3,67.8,71.5,65.0,67.7,
80.8,89.9,83.2,83.0,85.7,79.6)
y <- as.matrix(y)</pre>
### the first 6 measurements are from subject 1, measurments 7-12 are from subject 2,
## measurements 13-18 are from subject 3 and so on.
x < -c(-10, 25, 37, 50, 65, 80) ## all subjects were measured at the same time points
res<-rm.lines(y, x) ## Is linear trend between the measurements and the temperature?
res < -rm.anovas(y, x) ## Tests whether the means of the individuals are the same
## the temperature is treated as categorical variable here.
## fake example
y \leftarrow matrnorm(10, 4)
## the y matrix contains 4 repeated measurements for each of the 10 persons.
x < -1:4
## we stack the measurements of each subject, one under the other in a matrix form.
y1 <- matrix( t(y) )</pre>
res<-rm.anovas(y1, x) ## perform the test
z \leftarrow matrix(rnorm(20 * 8), ncol = 2) ## same example, but with 2 sets of measurements.
```

```
res < -rm.anovas(z, x)
```

Many score based regressions

Many score based regressions

Description

Many score based GLM regressions.

Usage

```
score.glms(y, x, oiko = NULL, logged = FALSE)
score.multinomregs(y, x, logged = FALSE)
score.negbinregs(y, x, type = 1, logged = FALSE)
score.weibregs(y, x, logged = FALSE)
score.betaregs(y, x, logged = FALSE)
score.gammaregs(y, x, logged = FALSE)
score.expregs(y, x, logged = FALSE)
score.invgaussregs(y, x, logged = FALSE)
score.ztpregs(y, x, logged = FALSE)
score.geomregs(y, x, logged = FALSE)
```

Arguments

v	
y	

A vector with either discrete or binary data for the Poisson, geometric, or negative binomial and binary logistic regressions, respectively. A vector with discrete values or factor values for the multinomial regression. If the vector is binary and choose multinomial regression the function checks and transfers to the binary logistic regression.

For the Weibull, gamma, inverse Gaussian and exponential regressions they must be strictly positive data, lifetimes or durations for example. For the beta regression they must be numbers between 0 and 1. For the zero truncated Poisson regression (score.ztpregs) they must be integer valued data strictly greater than 0.

x A matrix with data, the predictor variables.

oiko This can be either "poisson" or "binomial". If you are not sure leave it NULL

and the function will check internally.

type This argument is for the negative binomial distribution. In the negative binomial

you can choose which way your prefer. Type 1 is for smal sample sizes, whereas

type 2 is for larger ones as is faster.

A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

Instead of maximising the log-likelihood via the Newton-Raphson algorithm in order to perform the hypothesis testing that $\beta_i=0$ we use the score test. This is dramatcially faster as no model needs to be fitted. The first derivative (score) of the log-likelihood is known and in closed form and under the null hypothesis the fitted values are all equal to the mean of the response variable y. The variance of the score is also known in closed form. The test is not the same as the likelihood ratio test. It is size correct nonetheless but it is a bit less efficient and less powerful. For big sample sizes though (5000 or more) the results are the same. We have seen via simulation studies is that it is size correct to large sample sizes, at elast a few thousands. You can try for yourselves and see that even with 500 the results are pretty close. The score test is pretty faster than the classical log-likelihood ratio test.

Value

A matrix with two columns, the test statistic and its associated p-value. For the Poisson and logistic regression the p-value is derived via the t distribution, whereas for the multinomial regressions via the χ^2 distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Tsagris M., Alenazi A. and Fafalios S. (2020). Computationally efficient univariate filtering for massive data. Electronic Journal of Applied Statistical Analysis, 13(2):390-412.

Hosmer DW. JR, Lemeshow S. and Sturdivant R.X. (2013). Applied Logistic Regression. New Jersey ,Wiley, 3rd Edition.

Campbell M.J. (2001). Statistics at Square Two: Understand Modern Statistical Applications in Medicine, pg. 112. London, BMJ Books.

Draper N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

McCullagh Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

Agresti Alan (1996). An introduction to categorical data analysis. New York: Wiley.

Joseph M.H. (2011). Negative Binomial Regression. Cambridge University Press, 2nd edition.

See Also

```
univglms,logistic_only,poisson_only,regression
```

Examples

```
x \leftarrow matrnorm(500, 500)
y <- rbinom(500, 1, 0.6) ## binary logistic regression
a2 <- score.glms(y, x)
```

```
y <- rweibul1(500, 2, 3)
a <- score.weibregs(y, x)
mean(a[, 2] < 0.05)
x <- NULL</pre>
```

Many Shapiro-Francia normality tests

Many Shapiro-Francia normality tests

Description

Many Shapiro-Francia normality tests.

Usage

```
sftests(x, logged = FALSE)
sftest(x, logged = FALSE)
```

Arguments

x A matrix with the data, where the rows denote the observations and the columns

are the variables. In the case of a single sample, then this must be a vector and

"sftest" is to be used.

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The Shapiro-Francia univariate normality test is performed for each column (variable) of the matrix x.

Value

A matrix with the squared correlation between the ordered values and the standard normal ordered statistics, the test statistic and the p-value of each test. If the "sftest" has been used, the output is a vector with these three elements.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Royston J. P. (1983). A simple method for evaluating the Shapiro-Francia W' test of non-normality. The Statistician, 32(3): 297-300.

Mbah A. K. & Paothong A. (2015). Shapiro-Francia test compared to other normality test using expected p-value. Journal of Statistical Computation and Simulation, 85(15): 3002-3016.

See Also

```
ttests, ttest, ftests
```

Examples

```
x <- matrnorm(200, 100)
system.time( sftests(x) )
a <- sftests(x)
mean(a[, 3]<0.05)
x <- rnorm(100)
res<-sftest(x)</pre>
```

Many simple circular or angular regressions $Many \ simple \ circular \ or \ angular \ regressions$

Description

Many regressions with one circular dependent variable and one Euclidean independent variable.

Usage

```
spml.regs(y, x, tol = 1e-07, logged = FALSE, maxiters = 100, parallel = FALSE)
```

Arguments

У	The dependent variable, it can be a numerical vector with data expressed in radians or it can be a matrix with two columns, the cosinus and the sinus of the circular data. The benefit of the matrix is that if the function is to be called multiple times with the same response, there is no need to transform the vector every time into a matrix.
X	A matrix with independent variable.
tol	The tolerance value to terminatate the Newton-Raphson algorithm.
logged	Do you want the logarithm of the p-value be returned? TRUE or FALSE.
maxiters	The maximum number of iterations to implement.
parallel	Do you want the calculations to take plac ein parallel? The default value if FALSE.

Details

The Newton-Raphson algorithm is fitted in these regression as described in Presnell et al. (1998). For each colum of x a circual regression model is fitted and the hypothesis testing of no association between y and this variable is performed.

Value

A matrix with two columns, the test statistics and their associated (log) p-values.

Author(s)

Michail Tsagris and Stefanos Fafalios

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Stefanos Fafalios <stefanosfafalios@gmail.com>

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

```
spml.mle,iag.mle,acg.mle
```

Examples

```
x <- rnorm(100)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[ ,1], 1), rnorm(100, z[ ,2], 1) )
y <- y / sqrt( rowsums(y^2) )
x <- matrnorm(100, 100)
a <- spml.regs(y, x)
x <- NULL</pre>
```

Many simple geometric regressions

Many simple geometric regressions.

Description

Many simple geometric regressions.

Usage

```
geom.regs(y, x, tol = 1e-07, type = 1, logged = FALSE, parallel = FALSE, maxiters = 100)
```

Arguments

У	The dependent variable, count data.
X	A matrix with the indendent variables.
tol	The tolerance value to terminate the Newton-Raphson algorithm.
type	Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1.
logged	A boolean variable; it will return the logarithm of the pvalue if set to TRUE.
parallel	Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's available cores.
maxiters	The max number of iterations that can take place in each regression.

Details

Many simple geometric regressions are fitted.

Value

A matrix with the test statistic values, their relevant (logged) p-values and the BIC values.

Author(s)

Stefanos Fafalios

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com>

See Also

```
poisson_only,prop.regs,score.geomregs
```

Examples

```
y <- rgeom(100, 0.6)
x <- matrix( rnorm(100 * 50), ncol = 50)
a <- geom.regs(y, x)
x <- NULL</pre>
```

Many simple linear mixed model regressions

Many simple linear mixed model regressions

Description

Many simple linear mixed model regressions with random intercepts only.

Usage

```
rint.regs(y, x, id, tol = 1e-08, logged = FALSE, parallel = FALSE, maxiters = 100)
```

Arguments

У	A numerical vector with the data. The subject values, the clustered data.
Х	A numerical matrix with data ,the independent variables.
id	A numerical variable with 1, 2, indicating the subject. Unbalanced design is of course welcome.
tol	The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?
parallel	Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's available cores.
maxiters	The max number of iterations that can take place in each regression.

Details

Many linear mixed models with a single covariate are fitted. We use Newton-Raphson as described in Demidenko (2013). The test statistic is the usual F-test. This model allows for random intercepts only.

Value

A two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Stefanos Fafalios

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com>

References

Eugene Demidenko (2013). Mixed Models: Theory and Applications with R, 2nd Edition. New Jersey: Wiley & Sons (excellent book).

See Also

```
rint.reg,allbetas univglms,score.glms,logistic_only
```

Examples

```
## not a so good example
y <- rnorm(100)
id <- sample(1:10, 100, replace = TRUE)
x <- matrix( rnorm(100 * 100), ncol = 100)
a <- rint.regs(y, x, id)
x <- NULL</pre>
```

Many simple linear regressions coefficients

Simple linear regressions coefficients

Description

Simple linear regressions coefficients.

```
allbetas(y, x, pvalue = FALSE, logged = FALSE)
```

У	A numerical vector with the response variable.
X	A matrix with the data, where rows denotes the observations and the columns contain the independent variables.
pvalue	If you want a hypothesis test that each slope (beta coefficient) is equal to zero set this equal to TRUE. It will also produce all the correlations between y and x.
logged	A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Value

A matrix with the constant (alpha) and the slope (beta) for each simple linear regression. If the p-value is set to TRUE, the correlation of each y with the x is calculated along with the relevant test statistic and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
mvbetas,correls,univglms,colsums,colVars
```

Examples

```
x <- matrix( rnorm(100 * 50), ncol = 50 ) 
y <- rnorm(100) 
r <- cor(y, x) ## correlation of y with each of the xs 
a <- allbetas(y, x) ## the coefficients of each simple linear regression of y with x 
x <- NULL
```

Many simple multinomial regressions

Many simple multinomial regressions.

Description

Many simple multinomial regressions.

```
multinom.regs(y, x, tol = 1e-08, logged = FALSE, parallel = FALSE, maxiters = 100)
```

У	The dependent variable, either a numerical variable or a factor variable.
Х	A matrix with the indendent variables.
tol	The tolerance value to terminate the Newton-Raphson algorithm.
logged	A boolean variable; it will return the logarithm of the pvalue if set to TRUE.
parallel	Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's available cores.
maxiters	The maximum number of iterations that can take place in each regression.

Details

Many simple multinomial regressions are fitted.

Value

A matrix with the test statistic values, their relevant (logged) p-values and the BIC values.

Author(s)

Stefanos Fafalios

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com>

See Also

```
poisson_only,prop.regs,score.geomregs
```

Examples

```
y <- rbinom(100, 2, 0.5)
x <- matrnorm(100, 100)
a <- multinom.regs(y, x)
x <- NULL</pre>
```

Many simple regressions for positive valued data

Many simple regressions for positive valued data

Description

Many simple regressions for positive valued data.

```
normlog.regs(y, x, tol = 1e-08, logged = FALSE, parallel = FALSE, maxiters = 100)
gammaregs(y, x, tol = 1e-07, logged = FALSE, maxiters = 100)
invgauss.regs(y, x, tol = 1e-08, logged = FALSE, maxiters = 100)
```

У	The dependent variable, a numerical variable with non negative numbers for the Gamma and inverse Gaussian regressions. For the Gaussian with a log-link zero values are allowed.
x	A matrix with the indendent variables.
tol	The tolerance value to terminate the Newton-Raphson algorithm.
logged	A boolean variable; it will return the logarithm of the pvalue if set to TRUE.
parallel	Do you want this to be executed in parallel or not. The parallel takes place in C++, therefore you do not have the option to set the number of cores.
maxiters	The maximum number of iterations that can take place in each regression.

Details

Many simple Gamma, inverse Gaussian or Gaussian regressions with a log-link are fitted.

Value

A matrix with the test statistic values and their relevant (logged) p-values.

Author(s)

Stefanos Fafalios and and Michail Tsagris

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989

Zakariya Yahya Algamal and Intisar Ibrahim Allyas (2017). Prediction of blood lead level in maternal and fetal using generalized linear model. International Journal of Advanced Statistics and Probability, 5(2): 65-69.

See Also

```
normlog.reg,score.glms,prop.regs,allbetas
```

Examples

```
## Not run:
y <- abs( rnorm(100) )
x <- matrnorm(100, 100)
a <- normlog.regs(y, x)
b <- glm(y ~ x[, 1], family = gaussian(log) )
anova(b, test= "F")
a[1, ]
a2 <- gammaregs(y, x)
a3 <- invgauss.regs(y, x)</pre>
```

```
x <- NULL
## End(Not run)</pre>
```

Many tests for the dispersion parameter in Poisson distribution

Many tests for the dispersion parameter in Poisson distribution

Description

Many tests for the dispersion parameter in Poisson distribution.

Usage

```
colpoisdisp.tests(y, alternative = "either", logged = FALSE)
colpois.tests(y, logged = FALSE)
```

Arguments

y A numerical matrix with count data, 0, 1,...

alternative Do you want to test specifically for either over or underspirsion ("either"), overdis-

persion ("over") or undersispersion ("under")?

logged Set to TRUE if you want the logarithm of the p-value.

Value

A matrix with two columns, the test statistic and the (logged) p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Yang Zhao, James W. Hardin, and Cheryl L. Addy. (2009). A score test for overdispersion in Poisson regression based on the generalized Poisson-2 model. Journal of statistical planning and inference 139(4):1514-1521.

Dimitris Karlis and Evdokia Xekalaki (2000). A Simulation Comparison of Several Procedures for Testing the Poisson Assumption. Journal of the Royal Statistical Society. Series D (The Statistician), 49(3): 355-382.

Bohning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994) The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics, 46(): 373-388.

See Also

```
poisson.mle,negbin.mle,poisson.anova,poisson.anovas,poisson_only
```

Examples

```
y <- matrix(rnbinom(100* 50, 10, 0.6), ncol = 50)
a1 <- colpoisdisp.tests(y, "over")
b1 <- colpois.tests(y)

y <- matrix(rpois(100* 50, 10), ncol = 50)
a2 <- colpoisdisp.tests(y, "either")
b2 <- colpois.tests(y)
y <- NULL</pre>
```

Many two-way ANOVAs

Many two-way ANOVAs

Description

Many two-way ANOVAs.

Usage

```
twoway.anovas(y, x1, x2, interact = FALSE, logged = FALSE)
```

Arguments

У	A matrix with the data, where the rows denote the observations (and the two groups) and the columns are the variables.
x1	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Alternatively it can be a factor variable. This is the one factor.
x2	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Alternatively it can be a factor variable. This is the other factor.
interact	A boolean variable specifying whether you want to test for interaction.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The classical two-way ANOVA design is performed. Note that the design must be balanced. For every combination of values of the two factors, x1 and x2 the same number of observations must exist. If that's not the case, regression models must be used.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley & Sons

See Also

```
ancovas, ftests, ttests
```

Examples

```
## Not run:
y <- as.matrix( rnorm(125) )
x1 <- rep(1:5, 25)
x2 <- rep(1:5, each = 25)
x1 <- factor(x1)
x2 <- factor(x2)
res<-anova( lm(y ~ x1 + x2) )
res<-twoway.anovas(y, x1, x2)
res<-twoway.anovas(y, x1, x2)
res<-twoway.anovas(y, x1, x2, interact = TRUE)
y <- matrnorm(125, 100)
system.time( a1 <- twoway.anovas(y, x1, x2, interact = TRUE) )
y <- NULL
## End(Not run)</pre>
```

Many univariate generalised linear models

Many univariate generalised linear regressions

Description

It performs very many univariate generalised linear regressions.

```
univglms(y, x, oiko = NULL, logged = FALSE)
univglms2(y, x, oiko = NULL, logged = FALSE)
```

Х

oiko

y The dependent variable. It can be a factor or a numerical variable with two values only (binary logistic regression), a discrete valued vector (count data) corresponding to a poisson regression or a numerical vector with continuous values (normal regression).

A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. For the "univglms" only continuous variables are allowed. You are advised to standardise the data before hand to avoid numerical overflow or similar issues. If you see NaN in the outcome, this might be the case. For the "univglms2" categorical variables are allowed and hence this accepts data.frames. In this case, the categorical variables must be given as factor variables, otherwise you might get wrong results.

This can be either "normal", "poisson", "quasipoisson" or "binomial". If you are not sure leave it NULL and the function will check internally. However, you might have discrete data (e.g. years of age) and want to perform many simple linear regressions. In this case you should specify the family.

logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

If you specify no family of distributions the function internally checkes the type of your data and decides on the type of regression to perform. The function is written in C++ and this is why it is very fast. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q-values); this is up to the user.

Value

A matrix with the test statistic and the p-value for each predictor variable.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

logistic_only,poisson_only,allbetas,correls,regression

Examples

```
## Not run:
x <- matrnorm(100, 50)
y <- rbinom(100, 1, 0.6)  ## binary logistic regression
a1 <- univglms(y, x)
a2 <- glm(y ~ x[, 1], binomial)$deviance
a2 <- glm(y ~ 1, binomial)$null.dev - a2
x <- NULL
## End(Not run)</pre>
```

Many univariate simple linear regressions

Many univariate simple linear regressions

Description

It performs very many univariate simple linear regressions with or without categorical variables.

Usage

```
regression(x, y, poia = NULL, logged = FALSE)
```

Arguments

X	A data.frame or a matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. A data frame is expected if you have categorical predictor variables. If you only have continuous predictor variables you should the function allbetas instead as it is faster.
У	The dependent variable; a numerical vector.
poia	If the "x" is a data.frame and you know the indices of the columns which are categorical variables supply it here.
logged	Do you want the logarithm of the p-values be returned? The default value is FALSE.

Details

Some parts of the function will be transferred in C++. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q-values); this is up to the user.

Value

A matrix with two columns, the test statistic value and its corresponding (logged) p-value.

Author(s)

Manos Papadakis <papadakm95@gmail.com>

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition. McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition,

1989.

See Also

```
univglms, allbetas, correls, univglms, mvbetas
```

Examples

```
y <- rnorm(150)
a <- regression(iris, y)
a
summary(lm(y ~ iris[, 5]) ) ## check the F-test</pre>
```

Many univariate simple logistic and Poisson regressions

Many univariate simple binary logistic regressions

Description

It performs very many univariate simple binary logistic regressions.

Usage

```
logistic_only(x, y, tol = 1e-09, b_values = FALSE)
poisson_only(x, y, tol = 1e-09, b_values = FALSE)
```

Arguments

X	A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. Currently only continuous variables are allowed.
у	The dependent variable; a numerical vector with two values (0 and 1) for the logistic regressions and a vector with many discrete values (count data) for the Poisson regressions.
tol	The tolerance value to terminate the Newton-Raphson algorithm.
b_values	Do you want the values of the coefficients returned? If yes, set this to TRUE.

Details

The function is written in C++ and this is why it is very fast. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q-values); this is up to the user.

Value

A vector with the deviance of each simple binayr logistic regression model for each predictor variable.

Author(s)

Manos Papadakis <papadakm95@gmail.com>

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

univglms,score.glms,prop.regs,quasi.poisson_only,allbetas,correls,regression

Examples

```
## Not run:
## 300 variables, hence 300 univariate regressions are to be fitted
x <- matrix( rnorm(100 * 300), ncol = 300 )

## 100 observations in total
y <- rbinom(100, 1, 0.6)  ## binary logistic regression
a1 <- logistic_only(x, y)

a2 <- glm(y ~ x[, 1], binomial)$deviance
a2 <- as.vector(a2)

y <- rpois(100, 10)
a1 <- poisson_only(x, y)

a1 <- x <- NULL

## End(Not run)</pre>
```

Many univariate simple quasi poisson regressions

Many univariate simple poisson regressions

Description

It performs very many univariate simple poisson regressions.

Usage

```
quasi.poisson_only(x, y, tol = 1e-09, maxiters = 100)
```

Arguments

X	A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. Currently only continuous variables are allowed.
У	The dependent variable; a numerical vector with many discrete values (count data).
maxiters	The maximum number of iterations after which the Newton-Raphson algorithm is terminated.
tol	The tolerance value to terminate the Newton-Raphson algorithm.

Details

The function is written in C++ and this is why it is very fast. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q-values); this is up to the user.

Value

A matrix with the deviance and the estimated phi parameter (dispersion parameter) of each simple poisson regression model for each predictor variable.

Author(s)

Manos Papadakis <papadakm95@gmail.com> and Stefanos Fafalios <stefanosfafalios@gmail.com> R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>, Manos Papadakis <papadakm95@gmail.com> and Stefanos Fafalios <stefanosfafalios@gmail.com>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

Many Welch's F-tests 179

See Also

```
poisson_only univglms,logistic_only,allbetas,regression
```

Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted x <- matrix( rnorm(100 * 200), ncol = 200 ) y <- rpois(100, 10) system.time( poisson_only(x, y) ) b1 <- poisson_only(x, y) b2 <- quasi.poisson_only(x, y) b1 <-b2 <-x <-y <-NULL
```

Many Welch's F-tests Many Welch's F-tests

Description

Many Welch's F-tests.

Usage

```
colanovas(y, x, logged = FALSE)
```

Arguments

Х

y A numerical vector with the dependent variable.

A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This must be a matrix with the categorical

variables as numbers, starting from 1. Welch's F-test is performed for each

variable.

logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

For each categorical variable in the x matrix Welch's F test is performed. This is the opposie of ftests, where there are many dependent variables and one categorical variable.

Value

A matrix with the test statistic and the p-value for each predictor variable.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

Match

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition. McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
regression, ftests, allbetas, correls
```

Examples

```
y <- rnorm(100)
x <- matrix( rbinom(100 * 50, 2, 0.5) + 1 , ncol = 50)
a <- colanovas(y, x)
x <- NULL</pre>
```

Match

Match

Description

Return the positions of its first argument that matches in its second.

Usage

```
Match(x,key=NULL)
```

Arguments

x A numeric vector.

key The value/vector for searching in vector x. For now let it NULL. **dont't use it!**.

Details

This function implements the R's $\mbox{"match}\mbox{"match}\mbox{"function}$. This version basicaly calculates the match(x,sort(unique(x))) for now. Do not use the argument key!

Value

Returns the position/positions of the given key/keys in the x vector.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

Matrix multiplication 181

See Also

```
match
```

Examples

```
y <- rnorm(100)
a <- Match(y)
b <-50
all.equal(as.vector(a),as.vector(b))</pre>
```

Matrix multiplication Matrix multiplication, Cross and Tcross product.

Description

Matrix multiplication, Cross and Tcross product.

Usage

```
mat.mult(x, y)
Crossprod(x,y)
Tcrossprod(x,y)
```

Arguments

x A numerical matrix.y A numerical matrix.

Details

The functions performs matrix multiplication, croos product and transpose cross product. There are faster(!) than R's function for large matrices. Depending on the computer, maybe higher dimensions are required for the function to make a difference. The function runs in parallel in C++.

Value

A matrix, the result of the matrix multiplication.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

See Also

```
transpose, colsums
```

Examples

```
## Not run:
x <- matrnorm(100, 100)
y <- matrnorm(100, 100)
a <- x
b <- mat.mult(x, y)
b <- Crossprod(x, y)
b <- Tcrossprod(x, y)
x <- NULL
y <- NULL
b <- NULL
## End(Not run)</pre>
```

```
Matrix with all pairs of t-tests

Matrix with all pairs of t-tests
```

Description

Matrix with all pairs of t-tests.

Usage

```
allttests(x, y = NULL, ina, logged = FALSE)
ttests.pairs(x, logged = FALSE)
```

Arguments

X	A numerical matrix with the data.
у	For the case of "all.tests", if you have the second group or sample provide it here, otherwise leave it NULL. For the case of "ttests.pairs" this is not required.
ina	If you have the data in one matric then provide this indicator variable separating the samples. This numerical vector must contain 1s and 2s only as values. For the case of "ttests.pairs" this is not required.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The function does all the pairwise t-tests assuming unequal variances (Welch's t-test). The "all.ttests" does all the pairs formed by "cutting" the matrices x and y in two and everything between them. The "ttests.pairs" accepts a matrix x and does all the pairs of t-tests. This is similar to the correlation matrix style.

Value

A list including:

stat A matrix with t-test statistic for each pair of variables.

pvalue A matrix with the corresponding p-values.

dof A matrix with the relevant degrees of freedom.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
ttests,ftests,ttest,g2Test_univariate
```

Examples

```
x <- as.matrix( iris[1:100, 1:4] )
ina <- as.numeric(iris[1:100, 5])
a <- allttests(x, ina = ina)
b <- ttests.pairs(x) ## less tests</pre>
```

Matrix with G-square tests of indepedence

Matrix with G-square tests of indepedence

Description

Matrix with G-square tests of indepdence with and without permutations.

Usage

```
g2Test_univariate(data, dc)
g2Test_univariate_perm(data, dc, nperm)
chi2Test_univariate(data, dc)
```

Arguments

data A numerical matrix with the data. The minimum must be 0, otherwise the

function can crash or will produce wrong results. The data must be consecu-

tive numbers.

dc A numerical value equal to the number of variables (or columns of the data ma-

trix) indicating the number of distinct, unique values (or levels) of each variable. Make sure you give the correct numbers here, otherwise the degrees of freedom

will be wrong.

nperm

The number of permutations. The permutations test is slower than without permutations and should be used with small sample sizes or when the contigency tables have zeros. When there are few variables, R's "chisq.test" function is faster, but as the number of variables increase the time difference with R's procedure becomes larger and larger.

Details

The function does all the pairwise G^2 test of independence and gives the position inside the matrix. The user must build the associations matrix now, similarly to the correlation matrix. See the examples of how to do that. The p-value is not returned, we live this to the user. See the examples of how to obtain it.

Value

A list including:

statistic The G^2 or chi^2 test statistic for each pair of variables. pvalue This is returned when you have selected the permutation based G^2 test.

x The row or variable of the data.
 y The column or variable of the data.
 df The degrees of freedom of each test.

Author(s)

Giorgos Borboudakis. The permutation version used a C++ code by John Burkardt.

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

Tsamardinos, I., & Borboudakis, G. (2010). Permutation testing improves Bayesian network learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 322-337). Springer Berlin Heidelberg

See Also

```
g2Test,g2Test_perm,correls,univglms
```

```
nvalues <- 3
nvars <- 10
nsamples <- 2000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
dc <- rep(nvalues, nvars)
system.time( g2Test_univariate(data = data, dc = dc) )
a <- g2Test_univariate(data = data, dc = dc)</pre>
```

```
pval <- pchisq(a$statistic, a$df, lower.tail = FALSE)

g <- matrix(0, nvars, nvars)
g[ cbind(a$x, a$y) ] <- a$statistic
g <- g + t(g)
diag(g) <- 0
## g ## matrix of G^2 test statistics

g<-a<-dc<-data<-NULL</pre>
```

Mean - Median absolute deviation of a vector Mean - Median absolute deviation of a vector

Description

Mean - Median absolute deviation of a vector.

Usage

```
mad2(x,method = "median",na.rm=FALSE)
Mad(x,method = "median",na.rm=FALSE)
```

Arguments

x A numerical vector.
 method A character vector with values "median", for median absolute deviation or "mean", for mean absolute deviation.
 na.rm A logical value TRUE/FALSE to remove NAs.

Value

The mean absolute deviation.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

```
colMads, Median, colMedians
```

```
x <- Rnorm(1000)
Mad(x)
mad(x)</pre>
```

186 Median of a vector

Median of a vector

Median of a vector

Description

Median of a vector.

Usage

```
med(x,na.rm=FALSE)
Median(x,na.rm=FALSE)
```

Arguments

x A numerical vector.

na.rm TRUE or FAISE for remove NAs if exists.

Details

The function is written in C++ and this is why it is very fast.

Value

The median of the vector of a numbers.

Author(s)

Manos Papadakis <papadakm95@gmail.com>

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
nth, colMedians
```

```
x <- rnorm(1000)
a1 <- Median(x)
a2 <- median(x)</pre>
```

Minima and maxima of two vectors/matrices

Minima and maxima of two vectors/matrices

Description

Minima and maxima of two vectors/matrices.

Usage

```
Pmax(x, y,na.rm = FALSE)
Pmin(x, y,na.rm = FALSE)
Pmin_Pmax(x, y,na.rm = FALSE)
```

Arguments

x A numerical vector with numbers.y A numerical vector with numbers.na.rm TRUE or FAISE for remove NAs if exists.

Details

The parallel minima or maxima are returned. This are the same as the base functions pmax and pmin.

Value

A numerical vector/matrix with numbers, whose length is equal to the length of the initial vectors/matrices containing the maximum or minimum between each pair.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colSort,rowSort,Sort,colMins
```

```
x <- rnorm(10)
y <- rnorm(10)
res<-Pmax(x, y)
a<-pmax(x, y)
res<-Pmin(x, y)
b<-pmin(x, y)
res<-Pmin_Pmax(x,y) == c(a,b)
a<-b<-x<-y<-NULL</pre>
```

188 Minimum and maximum

Minimum and maximum

Minimum and maximum of a vector

Description

Minimum and maximum of a vector.

Usage

```
min_max(x,index=FALSE, percent = FALSE)
```

Arguments

x A numerical vector with data. NAs are handled naturally.

index A boolean value for the indices of the minimum and the maximum value.

percent A boolean value for the percent of the positive and negative numbers.

Value

A vector with the relevant values, min and max.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,rowMaxs,nth,colrange,colMedians,colSort,rowSort
```

```
x <- rnorm(100 * 500)
s1 <- min_max(x)
s2 <- c(min(x), max(x))</pre>
```

Minimum and maximum frequencies

Minimum and maximum frequencies of a vector

Description

Minimum and maximum frequencies of a vector.

Usage

```
freq.min(x,na.rm = FALSE)
freq.max(x,na.rm = FALSE)
```

Arguments

x A numerical/integer vector with data but without NAs.

na.rm TRUE or FAISE for remove NAs if exists.

Details

Those functions are the same with max(table(x) or min(table(x))) but with one exception. freq.min and freq.max will return also which value has the minimum/maximum frequency. More Efficient than max(table(x)) or min(table(x)).

Value

A vector with 2 values, the value with minimum/maximum frequency and the frequency.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Marios Dimitriadis <kmdimitriadis@gmail.com>.

See Also

```
rowMins,rowMaxs,nth,colrange,colMedians,colSort,rowSort
```

```
x <- rnorm(100)
f1 <- freq.min(x)
f2 <- freq.max(x)
# f1r <- min(table(x))
# f2r <- max(table(x))
# f1[2]==f1r ## the frequencies are the same
# f2[2]==f2r ## the frequencies are the same</pre>
```

MLE for multivariate discrete data

MLE for multivariate discrete data

Description

MLE for multivariate discrete data.

Usage

```
multinom.mle(x)
dirimultinom.mle(x, tol = 1e-07)
colpoisson.mle(x)
colgeom.mle(x, type = 1)
```

Arguments

x A matrix with discrete valued non negative data.

tol the tolerance level to terminate the Newton-Raphson algorithm for the Dirichlet

multinomial distribution.

This is for the geometric distribution only. Type 1 refers to the case where the

minimum is zero and type 2 for the case of the minimum being 1.

Details

For the Poisson and geometric distributions we simply fit independent Poisson and geometric distributions respectively.

Value

A list including:

loglik A vector with the value of the maximised log-likelihood.

param A vector of the parameters.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Johnson Norman L., Kotz Samuel and Balakrishnan (1997). Discrete Multivariate Distributions. Wiley

Minka Thomas (2012). Estimating a Dirichlet distribution. Technical report.

See Also

```
poisson.mle,zip.mle,ztp.mle,negbin.mle,poisson.nb
```

Examples

```
x \leftarrow t \text{ (rmultinom(1000, 20, c(0.4, 0.5, 0.1)))}
res \leftarrow multinom.mle(x)
res \leftarrow colpoisson.mle(x)
x \leftarrow NULL
```

```
MLE of (hyper-)spherical distributions MLE \ of \ (hyper-)spherical \ distributions
```

Description

MLE of (hyper-)spherical distributions.

Usage

```
vmf.mle(x, tol = 1e-07)
multivmf.mle(x, ina, tol = 1e-07, ell = FALSE)
acg.mle(x, tol = 1e-07)
iag.mle(x, tol = 1e-07)
```

Arguments

Χ	A matrix with directional data, i.e. unit vectors.
ina	A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4, or a factor variable. Each number denotes a sample or group. If you supply a continuous valued vector the function will obviously provide wrong results.
ell	This is for the multivmf.mle only. Do you want the log-likelihood returned? The default value is TRUE.
tol	The tolerance value at which to terminate the iterations.

Details

For the von Mises-Fisher, the normalised mean is the mean direction. For the concentration parameter, a Newton-Raphson is implemented. For the angular central Gaussian distribution there is a constraint on the estimated covariance matrix; its trace is equal to the number of variables. An iterative algorithm takes place and convergence is guaranteed. Newton-Raphson for the projected normal distribution, on the sphere, is implemented as well. Finally, the von Mises-Fisher distribution for groups of data is also implemented.

Value

For the von Mises-Fisher a list including:

loglik The maximum log-likelihood value.

mu The mean direction.

kappa The concentration parameter.

For the multi von Mises-Fisher a list including:

loglik A vector with the maximum log-likelihood values if ell is set to TRUE. Other-

wise NULL is returned.

mi A matrix with the group mean directions.

ki A vector with the group concentration parameters.

For the angular central Gaussian a list including:

iter The number if iterations required by the algorithm to converge to the solution.

cova The estimated covariance matrix.

For the spherical projected normal a list including:

iters The number of iteration required by the Newton-Raphson.

mesi A matrix with two rows. The first row is the mean direction and the second is

the mean vector. The first comes from the second by normalising to have unit

length.

param A vector with the elements, the norm of mean vector, the log-likelihood and the

log-likelihood of the spherical uniform distribution. The third value helps in

case you want to do a log-likleihood ratio test for uniformity.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Sra, S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x). Computational Statistics, 27(1): 177–190.

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3): 579-589.

Paine P.J., Preston S.P., Tsagris M and Wood A.T.A. (2017). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing (To appear).

See Also

racg,vm.mle,rvmf

Examples

```
m <- c(0, 0, 0, 0)
s <- cov(iris[, 1:4])
x <- racg(100, s)
mod <- acg.mle(x)
mod
res<-cov2cor(mod$cova) ## estimated covariance matrix turned into a correlation matrix
res<-cov2cor(s) ## true covariance matrix turned into a correlation matrix
res<-vmf.mle(x)
x <- rbind( rvmf(100,rnorm(4), 10), rvmf(100,rnorm(4), 20) )
a <- multivmf.mle(x, rep(1:2, each = 100) )</pre>
```

MLE of continuous univariate distributions defined on the positive line $MLE\ of\ continuous\ univariate\ distributions\ defined\ on\ the\ positive\ line$

Description

MLE of continuous univariate distributions defined on the positive line.

Usage

```
gammamle(x, tol = 1e-09)
chisq.mle(x, tol = 1e-09)
weibull.mle(x, tol = 1e-09, maxiters = 100)
lomax.mle(x, tol = 1e-09)
foldnorm.mle(x, tol = 1e-09)
betaprime.mle(x, tol = 1e-09)
logcauchy.mle(x, tol = 1e-09)
loglogistic.mle(x, tol = 1e-09)
halfnorm.mle(x)
invgauss.mle(x)
lognorm.mle(x)
pareto.mle(x)
expmle(x)
exp2.mle(x)
maxboltz.mle(x)
rayleigh.mle(x)
normlog.mle(x)
lindley.mle(x)
```

Arguments

x A vector with positive valued data (zeros are not allowed).

tol The tolerance level up to which the maximisation stops; set to 1e-09 by default.

maxiters The maximum number of iterations the Newton-Raphson will perform.

Details

Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster. See wikipedia for the equations to be solved. For the t distribution we need the degrees of freedom and estimate the location and scatter parameters. If you want to to fit an inverse gamma distribution simply do "gamma.mle(1/x)". The log-likelihood and the parameters are for the inverse gamma.

The "normlog.mle" is simply the normal distribution where all values are positive. Note, this is not log-normal. It is the normal with a log link. Similarly to the inverse gaussian distribution where the mean is an exponentiated. This comes from the GLM theory.

Value

Usually a list with three elements, but this is not for all cases.

iters The number of iterations required for the Newton-Raphson to converge.

loglik The value of the maximised log-likelihood.

param The vector of the parameters.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Kalimuthu Krishnamoorthy, Meesook Lee and Wang Xiao (2015). Likelihood ratio tests for comparing several gamma distributions. Environmetrics, 26(8):571-583.

N.L. Johnson, S. Kotz & N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).

N.L. Johnson, S. Kotz & N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2

Tsagris M., Beneki C. and Hassani H. (2014). On the folded normal distribution. Mathematics, 2(1):12-28.

Sharma V. K., Singh S. K., Singh U. \& Agiwal V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3): 162-173.

You can also check the relevant wikipedia pages for these distributions.

See Also

```
zip.mle,normal.mle,beta.mle
```

Examples

```
x <- rgamma(100, 3, 4)
system.time( for (i in 1:20) gammamle(x) )
## system.time( for (i in 1:20) fitdistr(x,"gamma") )
a <- glm(x ~ 1, gaussian(log) )
res<-normlog.mle(x)</pre>
```

MLE of continuous univariate distributions defined on the real line $MLE\ of\ continuous\ univariate\ distributions\ defined\ on\ the\ real\ line$

Description

MLE of continuous univariate distributions defined on the real line.

Usage

```
normal.mle(x)
gumbel.mle(x, tol = 1e-09)
cauchy.mle(x, tol = 1e-09)
logistic.mle(x, tol = 1e-07)
ct.mle(x, tol = 1e-09)
tmle(x, v = 5, tol = 1e-08)
wigner.mle(x, tol = 1e-09)
laplace.mle(x)
```

Arguments

x A numerical vector with data.

v The degrees of freedom of the t distribution.

tol The tolerance level up to which the maximisation stops set to 1e-09 by default.

Details

Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster. See wikipedia for the equation to be solved. For the t distribution we need the degrees of freedom and estimate the location and scatter parameters.

The Cauchy is the t distribution with 1 degree of freedom. If you want to fit such a distribution used the cauchy.mle and not the t.mle with 1 degree of freedom as it's faster. The Laplace distribution is also called double exponential distribution.

The wigner.mle refers to the wigner semicircle distribution.

Value

Usually a list with three elements, but this is not for all cases.

iters The number of iterations required for the Newton-Raphson to converge.

loglik The value of the maximised log-likelihood.

param The vector of the parameters.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). Univariate Discrete Distributions (third edition). Hoboken, NJ: Wiley-Interscience.

https://en.wikipedia.org/wiki/Wigner_semicircle_distribution

See Also

```
zip.mle,gammamle,vm.mle
```

Examples

```
x <- rt(1000,10)
a <- ct.mle(x)
res<-tmle(x, v = a$nu)
res<-cauchy.mle(x)
res<-normal.mle(x)
res<-logistic.mle(x)
res<-gumbel.mle(x)</pre>
```

MLE of count data (univariate discrete distributions) $MLE \ of \ count \ data$

Description

MLE of count data.

Usage

```
zip.mle(x, tol = 1e-09)
ztp.mle(x, tol = 1e-09)
negbin.mle(x, type = 1, tol = 1e-09)
binom.mle(x, N = NULL, tol = 1e-07)
borel.mle(x)
geom.mle(x, type = 1)
logseries.mle(x, tol = 1e-09)
poisson.mle(x)
betageom.mle(x, tol = 1e-07)
betabinom.mle(x, N, tol = 1e-07)
```

Arguments

x	A vector with discrete valued data.
type	This argument is for the negative binomial and the geometric distribution. In the negative binomial you can choose which way your prefer. Type 1 is for smal sample sizes, whereas type 2 is for larger ones as is faster. For the geometric it is related to its two forms. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1.
N	This is for the binomial distribution only, specifying the total number of successes. If NULL, it is sestimated by the data. It can also be a vector of successes.
tol	The tolerance level up to which the maximisation stops set to 1e-09 by default.

Details

Instead of maximising the log-likelihood via a numerical optimiser we used a Newton-Raphson algorithm which is faster.

See wikipedia for the equation to be solved in the case of the zero inflated distribution. https://en.wikipedia.org/wiki/Zero-inflated_model. In order to avoid negative values we have used link functions, log for the lambda and logit for the π as suggested by Lambert (1992). As for the zero truncated Poisson see https://en.wikipedia.org/wiki/Zero-truncated_Poisson_distribution.

zip.mle is for the zero inflated Poisson, whereas ztp.mle is for the zero truncated Poisson distribution.

Value

The following list is not inclusive of all cases. Different functions have different names. In general a list including:

mess	This is for the negbin.mle only. If there is no reason to use the negative binomial distribution a message will appear, otherwise this is NULL.
iters	The number of iterations required for the Newton-Raphson to converge.
loglik	The value of the maximised log-likelihood.
prob	The probability parameter of the distribution. In some distributions this argument might have a different name. For example, param in the zero inflated Poisson.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Lambert Diane (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics. 34 (1): 1-14

Johnson Norman L., Kotz Samuel and Kemp Adrienne W. (1992). Univariate Discrete Distributions (2nd ed.). Wiley

See Also

```
poisson_only,colrange
```

Examples

```
x <- rpois(100, 2)
res<-zip.mle(x)
res<-poisson.mle(x)
## small difference in the two log-likelihoods as expected.

x <- rpois(100, 10)
x[x == 0 ] <- 1
res<-ztp.mle(x)
res<-poisson.mle(x)
## significant difference in the two log-likelihoods.

x <- rnbinom(100, 10, 0.6)
res<-poisson.mle(x)
res<-negbin.mle(x)</pre>
```

```
MLE of distributions defined in the (0, 1) interval 
 MLE \ of \ distributions \ defined \ in \ the \ (0, 1) \ interval
```

Description

MLE of distributions defined in the (0, 1) interval.

Usage

```
beta.mle(x, tol = 1e-09)
ibeta.mle(x, tol = 1e-09)
logitnorm.mle(x)
hsecant01.mle(x, tol = 1e-09)
```

Arguments

x A nu	umerical vector with pr	roportions, i.e. numbers	in $(0, 1)$ (zeros and ones are
--------	-------------------------	--------------------------	---------------	--------------------

not allowed).

tol The tolerance level up to which the maximisation stops.

Details

Maximum likelihood estimation of the parameters of the beta distribution is performed via Newton-Raphson. The distributions and hence the functions does not accept zeros. "logitnorm.mle" fits the logistic normal, hence no nwewton-Raphson is required and the "hypersecant01.mle" uses the golden ratio search as is it faster than the Newton-Raphson (less calculations)

Value

A list including:

iters The number of iterations required by the Newton-Raphson.

loglik The value of the log-likelihood.

param The estimated parameters. In the case of "hypersecant01.mle" this is called

"theta" as there is only one parameter.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

See Also

```
diri.nr2,
```

```
x <- rbeta(1000, 1, 4)
system.time( for(i in 1:1000) beta.mle(x) )
res<-beta.mle(x)

x <- runif(1000)
res<-hsecant01.mle(x)
res<-logitnorm.mle(x)
res<-ibeta.mle(x)

x <- rbeta(1000, 2, 5)
x[sample(1:1000, 50)] <- 0
res<-ibeta.mle(x)</pre>
```

MLE of some circular distributions $MLE\ of\ some\ circular\ distributions$

Description

MLE of some circular distributions.

Usage

```
vm.mle(x, tol = 1e-09)
spml.mle(x, tol = 1e-09, maxiters = 100)
wrapcauchy.mle(x, tol = 1e-09)
```

Arguments

x A numerical vector with the circular data. They must be expressed in radians.

For the "spml.mle" this can also be a matrix with two columns, the cosinus and

the sinus of the circular data.

tol The tolerance level to stop the iterative process of finding the MLEs.

maxiters The maximum number of iterations to implement.

Details

The parameters of the von Mises, the bivariate angular Gaussian and wrapped Cauchy distributions are estimated. For the Wrapped Cauchy, the iterative procedure described by Kent and Tyler (1988) is used. As for the von Mises distribution, we use a Newton-Raphson to estimate the concentration parameter. The angular Gaussian is described, in the regression setting in Presnell et al. (1998).

Value

A list including:

iters The iterations required until convergence. This is returned in the wrapped Cauchy

distribution only.

loglik The value of the maximised log-likelihood.

param A vector consisting of the estimates of the two parameters, the mean direction

for both distributions and the concentration parameter kappa and the rho for the

von Mises and wrapped Cauchy respectively.

gamma The norm of the mean vector of the angualr Gaussian distribution.

mu The mean vector of the angular Gaussian distribution.

Author(s)

Michail Tsagris and Stefanos Fafalios

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Stefanos Fafalios <stefanosfafalios@gmail.com>

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x). Computational Statistics, 27(1): 177-190.

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Kent J. and Tyler D. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution. Journal of Applied Statistics, 15(2): 247–254.

See Also

```
vmf.mle,rvonmises,rvmf
```

Examples

```
y <- rcauchy(100, 3, 1)
x <- y
res<-vm.mle(x)
res<-spml.mle(x)
res<-wrapcauchy.mle(x)
x <- NULL</pre>
```

MLE of the inverted Dirichlet distribution $MLE \ of \ the \ inverted \ Dirichlet \ distribution$

Description

MLE of the inverted Dirichlet distribution.

Usage

```
invdir.mle(x, tol = 1e-09)
```

Arguments

x A matrix with strictly positive data (no zeros are allowed).

tol The tolerance level up to which the maximisation stops.

Details

Maximum likelihood estimation of the parameters of the inverted is performed via Newton-Raphson. We took the initial values suggested by Bdiri T. and Bouguila N. (2012) and modified them a bit.

Value

A list including:

iters The number of iterations required by the Newton Raphson.

loglik The value of the log-likelihood.

param The estimated parameters.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Bdiri T. and Bouguila N. (2012). Positive vectors clustering using inverted Dirichlet finite mixture models. Expert Systems with Applications, 39(2): 1869-1882.

See Also

```
diri.nr2, multinom.mle
```

Examples

```
x <- as.matrix(iris[, 1:4])
system.time( for(i in 1:100) invdir.mle(x) )
res<-invdir.mle(x)</pre>
```

```
MLE of the multivariate (log-) normal distribution  \textit{MLE of the multivariate (log-) normal distribution }
```

Description

MLE of the multivariate (log-) normal distribution.

Usage

```
mvnorm.mle(x)
mvlnorm.mle(x)
```

Arguments

x A matrix with numerical data.

Details

The mean vector, covariance matrix and the value of the log-likelihood of the multivariate normal or log-normal distribution is calculated. For the log-normal distribution we also provide the expected value and the covariance matrix.

Value

A list including:

loglik The log-likelihood multivariate distribution.

mu The mean vector.

sigma The covariance matrix.

m The expected mean vector of the multivariate log-normal distribution.

s The expected covariance matrix of the multivariate log-normal distribution.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Kotz, S., Balakrishnan, N., & Johnson, N. L. (2004). Continuous multivariate distributions, Volume 1: Models and applications (Vol. 1). John wiley & sons.

http://isi.cbs.nl/iamamember/CD2/pdf/329.PDF

https://en.wikipedia.org/wiki/Log-normal_distribution#Multivariate_log-normal

See Also

```
multinom.mle,dmvnorm,gaussian.nb
```

```
x <- matrnorm(100, 4)
res<-mvnorm.mle(x)
x <- NULL</pre>
```

MLE of the multivariate t distribution $MLE \ of \ the \ multivariate \ t \ distribution$

Description

MLE of the multivariate t distribution.

Usage

```
mvt.mle(x, v = 5, tol = 1e-07)
```

Arguments

x A matrix with numerical data.

v The degrees of freedom. Must be a positive number, greater than zero.

tol The tolerance value to terminate the EM algorithm.

Details

The location vector, scatter matrix and the value of the log-likelihood is calculated.

Value

A list including:

iters The number of iterations required for the EM algorihm to converge.

loglik The value of the maximised log-likelihood.

location The location vector. scatter The scatter matrix.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Nadarajah S. and Kotz S. (2008). Estimation methods for the multivariate t distribution. Acta Applicandae Mathematicae, 102(1):99-118.

See Also

mvnorm.mle,dmvnorm,gaussian.nb

Examples

```
x <- matrnorm(100, 4)
res<-mvnorm.mle(x)
res<-mvt.mle(x, v = 5)
res<-mvt.mle(x, v = 100)</pre>
```

MLE of the ordinal model without covariates $MLE \ of \ the \ ordinal \ model \ without \ covariates$

Description

MLE of the ordinal model without covariates.

Usage

```
ordinal.mle(y, link = "logit")
```

Arguments

y A numerical vector with values 1, 2, 3,..., not zeros, or an ordered factor.

link This can either be "logit" or "probit". It is the link function to be used.

Details

Maximum likelihood of the ordinal model (proportional odds) is implemented. See for example the "polr" command in R or the examples.

Value

A list including:

loglik The log-likelihood of the model.

a The intercepts (threshold coefficients) of the model.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Agresti, A. (2002) Categorical Data. Second edition. Wiley.

See Also

```
beta.mle,diri.nr2
```

206 MLE of the tobit model

Examples

```
y <- factor( rbinom(100,3,0.5), ordered = TRUE )
res<-ordinal.mle(y)
res<-ordinal.mle(y, link = "probit")</pre>
```

MLE of the tobit model

MLE of the tobit model

Description

MLE of the tobit model.

Usage

```
tobit.mle(y, tol = 1e-09)
```

Arguments

y A vector with positive valued data and zero values. If there are no zero values, a

simple normal model is fitted in the end.

tol The tolerance level up to which the maximisation stops; set to 1e-09 by default.

Details

The tobin model is useful for (univariate) positive data with left censoring at zero. There is the assumption of a latent variable. The values of that variable which are positive concide with the observed values. If some values are negative, they are left censored and the observed values are zero. Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster.

Value

A list with three elements including

iters The number of iterations required for the Newton-Raphson to converge.

loglik The value of the maximised log-likelihood.

param The vector of the parameters.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Tobin James (1958). Estimation of relationships for limited dependent variables. Econometrica. 26(1):24-36.

https://en.wikipedia.org/wiki/Tobit_model

See Also

```
gammamle,normal.mle
```

Examples

```
x <- rnorm(300, 3, 5) 
 x[ x < 0 ] <- 0     ## left censoring. Values below zero become zero system.time( for (i in 1:100) tobit.mle(x) )
```

Moment and maximum likelihood estimation of variance components $Moment\ and\ maximum\ likelihood\ estimation\ of\ variance\ components$

Description

Moment and maximum likelihood estimation of variance components.

Usage

```
rint.mle(x, ina, ranef = FALSE, tol = 1e-09, maxiters = 100)
varcomps.mom(x, ina)
varcomps.mle(x, ina, tol = 1e-09)
```

Arguments

x	A numerical vector with the data.
ranef	Should the random effects be returned as well? The default value is FALSE.
ina	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero. Alternatively it can be a factor variable.
tol	The tolerance level to terminate the golden ratio search. the default value is 10^{-9} .
maxiters	The maximum number of iterations Newton-Raphson will implement.

Details

Note that the "varcomps.mle" and "varcomp.mom" work for **balanced designs only**, i.e. for each subject the same number of measurements have been taken. The "rint.mle" works for both the balanced and unbalanced designs.

The variance components, the variance of the between measurements and the variance of the within are estimated using moment estimators. The "colvarcomsp.mom" is the moment analogue of a random effects model which uses likelihood estimation ("colvarcomps.mle"). It is much faster, but can give negative variance of the random effects, in which case it becomes zero.

The maximum likelihood version is a bit slower (try youselves to see the difference), but statistically speaking is to be preferred when small samples are available. The reason why it is only a little bit slower and not a lot slower as one would imagine is because we are using a closed formula to calculate the two variance components (Demidenko, 2013, pg. 67-69). Yes, there are closed formulas for linear mixed models.

Value

For the "varcomps.mom": A vector with 5 elemets, The MSE, the estimate of the between variance, the variance components ratio and a 95% confidence for the ratio.

For the "varcomps.mle": a list with a single component called "info". That is a matrix with 3 columns, The MSE, the estimate of the between variance and the log-likelihood value. **If ranef = TRUE** a list including "info" and an extra component called "ranef" containing the random effects. It is a matrix with the same number of columns as the data. Each column contains the randome effects of each variable.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley & Sons.

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. New York: Springer-Verlag.

Demidenko E. (2013). Mixed Models: Theory and Applications with R 2nd Edition). New Jersey: John Wiley & Sons (Excellent book).

See Also

colvarcomps.mle,rint.reg,rint.regbx

Examples

```
## example from Montgomery, pages 514-517
x <- c(98,97,99,96,91,90,93,92,96,95,97,95,95,96,99,98)
ina <- rep(1:4, each = 4)
res<-varcomps.mom(x, ina)
res<-varcomps.mle(x, ina)</pre>
```

Multi-sample tests for vectors

Multi-sample tests for vectors

Description

Multi-sample tests for vectors.

Usage

```
ftest(x, ina, logged = FALSE)
anova1(x, ina, logged = FALSE)
kruskaltest(x, ina, logged = FALSE)
var2test(x, y, alternative = "unequal", logged = FALSE)
mcnemar(x, y, logged = FALSE)
ttest2(x, y, paired = FALSE, logged = FALSE)
cqtest(x, treat, block, logged = FALSE)
block.anova(x, treat, block, logged = FALSE)
twoway.anova(y, x1, x2, interact = FALSE, logged = FALSE)
```

Arguments

logged

X	A numerical vector with the data.
У	A numerical vector with the data.
ina	A numerical vector with 1s, 2s, 3s and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero. Alternatively it can be a factor variable.
paired	This is for the two sample t-test only and is TRUE or FALSE specifying whether the two samples are paired or not.
alternative	This can either be "unequal", "greater" or "less".
treat	In the case of the blocking ANOVA and Cochran's Q test, this argument plays the role of the "ina" argument.
block	This item (in the blocking ANOVA and Cochran's Q test) denotes the subjects which are the same. Similarly to "ina" a numeric vector with 1s, 2s, 3s and so on.
x1	The first factor in the two way ANOVA.
x2	The second factor in the two way ANOVA. The orderis not important.
interact	Should interaction in the two way ANOVA be included? The default value is FALSE (no interaction).

Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The Welch's F-test (without assuming equal variances) is performed with the "ftest" function. The "anova" function perform the classical (Fisher's) one-way analysis of variance (ANOVA) which assumes equal variance across the groups. The "kruskaltest" performs the Kruskal-Wallis non parametric alternative to analysis of variance test. The "var2tests" implement the classical F test for the equality of two sample variances. The "cqtest" performs the Cocrhan's Q test for the equality of more than two groups whose values are strictly binary (0 or 1). This is a generalisation of the McNemar's test in the multi-sample case. The "block.anova" is the ANOVA with blocking, randomised complete block design (RCBD). In this case, for every combination of the block and treatment values, there is only one observation. The mathematics are the same as in the case of "twoway.anova", but the assumptions different and the testing procedure also different. In addition, no interaction is present.

Value

A vector with the test statistic and the p-value of each test. For the case of t-test, an extra column with the degrees of freedom is given. For the two way ANOVA there can can be either 2 or three F test statistics and hence the same number of p-values.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley & Sons.

McNemar Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 12(2):153-157.

See Also

```
ttests, ftests
```

```
x <- rnorm(200)
ina <- rbinom(200, 3, 0.5) + 1
res<-anoval(x, ina)
res<-ftest(x, ina)
ina <- rbinom(200, 1, 0.5) + 1
x1 <- x[ ina == 1 ] ; x2 <- x[ ina == 2 ]
res<-ttest2(x1, x2)
res<-var2test(x1, x2)</pre>
```

Multinomial regression 211

```
## RCBD example 4.1 from Montgomery (2001), page 131-132 x <- c(9.3, 9.4, 9.2, 9.7, 9.4, 9.3, 9.4, 9.6, 9.6, 9.8, 9.5, 10, 10, 9.9, 9.7, 10.2) tr <- rep(1:4, 4) bl <- rep(1:4, each = 4) res<-block.anova(x, tr, bl)
```

Multinomial regression

Multinomial regression

Description

Multinomial regression.

Usage

```
multinom.reg(y, x, tol = 1e-07, maxiters = 50)
```

Arguments

y The response variable. A numerical or a factor type vector.

x A matrix or a data frame with the predictor variables.

This tolerance value to terminate the Newton-Raphson algorithm.

The maximum number of iterations Newton-Raphson will perform.

Value

A list including:

iters The number of iterations required by the Newton-Raphson.

loglik The value of the maximised log-likelihood.

be A matrix with the estimated regression coefficients.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Bohning, D. (1992). Multinomial logistic regression algorithm. Annals of the Institute of Statistical Mathematics, 44(1): 197-200.

See Also

```
glm_logistic,score.multinomregs logistic_only
```

212 Multivariate kurtosis

Examples

```
## Not run:
y <- iris[, 5]
x <- matrnorm(150, 3)
res <- multinom.reg(y, x)
## End(Not run)</pre>
```

Multivariate kurtosis *Multivariate kurtosis*

Description

Multivariate kurtosis.

Usage

```
mvkurtosis(x)
```

Arguments

Χ

A numerical matrix.

Details

The multivariate kurtosis is calcualted.

Value

A number, the multivariate kurtosis.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

K. V. Mardia (1970). Measures of Multivariate Skewness and Kurtosis with Applications Biometrika, 57(3):519-530.

See Also

```
colskewness,skew.test2,colmeans,colVars,colMedians
```

```
x <- as.matrix(iris[, 1:4])
res<-mvkurtosis(x)</pre>
```

Multivariate Laplace random values simulation

Multivariate Laplace random values simulation

Description

Multivariate Laplace random values simulation.

Usage

```
rmvlaplace(n, lam, mu, G, seed = NULL)
```

Arguments

n The sample size, a numerical value.

1am The the parameter of the exponential distribution, a positive number.

mu The mean vector.

G A $d \times d$ covariance matrix with determinant 1.

seed If you want the same to be generated again use a seed for the generator, an

integer number.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Eltoft T., Kim T., and Lee T.W. (2006). On the multivariate laplace distribution. Signal Processing Letters, IEEE, 13(5):300-303.

See Also

```
rmvnorm, racg, rmvt
```

Examples

```
m <- colmeans( as.matrix( iris[, 1:4] ) )
s <- cov(iris[,1:4])
s <- s / det(s)^0.25
lam <- 3
x <- rmvlaplace(100, lam, m, s)</pre>
```

Multivariate normal and t random values simulation

Multivariate normal and t random values simulation

Description

Multivariate normal and t random values simulation.

Usage

```
rmvnorm(n, mu, sigma, seed = NULL)
rmvt(n, mu, sigma, v, seed = NULL)
```

Arguments

n The sample size, a numerical value.

mu The mean vector in \mathbb{R}^d . sigma The covariance matrix in \mathbb{R}^d . v The degrees of freedom.

seed If you want the same to be generated again use a seed for the generator, an

integer number.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition. It is faster than the command "mvrnorm" available from MASS, and it allows for singular covariance matrices.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman & Hall.

Naive Bayes classifiers 215

See Also

```
racg,rmvlaplace,rmvt
```

Examples

```
x <- as.matrix(iris[, 1:4])
m <- colmeans(x)
s <- cov(x)
y <- rmvnorm(1000, m, s)
res<-colmeans(y)
res<-cov(y)
y <- NULL</pre>
```

Naive Bayes classifiers

Naive Bayes classifiers

Description

Gaussian, Poisson, geometric and multinomial naive Bayes classifiers.

Usage

```
gaussian.nb(xnew = NULL, x, ina, parallel = FALSE)
poisson.nb(xnew, x, ina)
multinom.nb(xnew, x, ina)
geom.nb(xnew, x, ina, type = 1)
gammanb(xnew = NULL, x, ina, tol = 1e-07)
```

Arguments

xnew	A numerical matrix with new predictor variables whose group is to be predicted. For the Gaussian naive Bayes, this is set to NUUL, as you might want just the model and not to predict the membership of new observations. For the Gaussian case this contains any numbers, but for the multinomial and Poisson cases, the matrix must contain integer valued numbers only.
X	A numerical matrix with the observed predictor variable values. For the Gaussian case this contains any numbers, but for the multinomial and Poisson cases, the matrix must contain integer valued numbers only.
ina	A numerical vector with strictly positive numbers, i.e. 1,2,3 indicating the groups of the dataset. Alternatively this can be a factor variable.
type	Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1. This is for the geometric distribution. This argument is for the geometric distribution. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1.
tol	The tolerance value to terminate the Newton-Raphson algorithm in the gamma distribution.
parallel	If you want parallel computations set this equal to TRUE.

Value

For the Poisson and Multinomial naive Bayes classifiers the estimated group, a numerical vector with 1, 2, 3 and so on. For the Gaussian naive Bayes classifier a list including:

mu A matrix with the mean vector of each group based on the dataset.

sigma A matrix with the variance of each group and variable based on the dataset.

ni The sample size of each group in the dataset.

est The estimated group of the xnew observations. It returns a numerical value back

regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do \"as.numeric(target)\" in order to see what is the predicted

class of the new data.

For the Gamma classifier a list including:

a A matrix with the shape parameters.

b A matrix with the scale parameters.

The estimated group of the xnew observations. It returns a numerical value back

regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do \"as.numeric(target)\" in order to see what is the predicted

class of the new data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
gaussiannb.pred,colmeans,colVars
```

```
x <- as.matrix(iris[, 1:4])
a <- gaussian.nb(x, x, iris[, 5])
x1 <- matrix( rpois(100 * 4, 5), ncol = 4)
x2 <- matrix( rpois(50 * 4, 10), ncol = 4)
x <- rbind(x1, x2)
ina <- c( rep(1, 100), rep(2, 50) )
res<-poisson.nb(x, x, ina)
res<-multinom.nb(x, x, ina)</pre>
```

Natural Logarithm each element of a matrix

Natural Logarithm each element of a matrix

Description

Natural Logarithm each element of a matrix.

Usage

```
Log(x, na.rm = FALSE)
```

Arguments

x A matrix with data.na.rm A boolean value (TRUE/FALSE) for removing NA.

Details

The argument must be a matrix. For vector the time was the same as R's "log" function so we did not add it.

Value

A matrix where each element is the natural logarithm of the given argument.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Lbeta, Lchoose, Choose
```

Examples

```
x <-matrix( runif( 100 * 100), ncol = 100 )
a <- log(x)
b <- Log(x)
all.equal(a, b) # true
x<-a<-b<-NULL</pre>
```

Natural logarithm of the beta function

Natural logarithm of the beta function

Description

Natural logarithm of the beta function.

Usage

Lbeta(x, y)

Arguments

x A numerical matrix, or a vector or just a number with positive numbers in either

y A numerical matrix, or a vector or just a number with positive numbers in either case. The dimensions of y must match those of x.

Details

The function is faster than R's lbeta when the dimensions of x any are large. If you have only two numbers, then lbeta is faster. But if you have for example two vectors of 1000 values each, Lbeta becomes two times faster than lbeta.

Value

The matrix, vector or number with the resulting values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain. Chapter 6: Gamma and Related Functions.

See Also

Lgamma, beta.mle, diri.nr2

Examples

```
x <- rexp(1000)
y <- rexp(1000)
a1 <- Lbeta(x, y)
x<-y<-a1<-NULL</pre>
```

Natural logarithm of the gamma function and its derivatives

Natural logarithm of the gamma function and its derivatives.

Description

Natural logarithm of the gamma function and its derivatives.

Usage

```
Lgamma(x)
Digamma(x)
Trigamma(x)
```

Arguments

Х

A numerical matrix or vector with positive numbers in either case.

Details

We have spotted that the time savings come when there are more than 50 elements, with vector or matrix.

Value

The matrix or the vector with the resulting values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain. Chapter 6: Gamma and Related Functions.

See Also

```
beta.mle,diri.nr2
```

Norm of a matrix

Examples

```
x <- matrix( rnorm(500 * 500), ncol = 500 )
a1 <- Lgamma(x)
a2 <- lgamma(x)
all.equal(as.vector(a1), as.vector(a2))
a1 <- Digamma(x)
a2 <- digamma(x)
all.equal(as.vector(a1), as.vector(a2))
x<-a1<-a2<-NULL</pre>
```

Norm of a matrix

Norm of a matrix

Description

Norm of a matrix.

Usage

```
Norm(x, type = "F")
```

Arguments

Х

A matrix with numbers.

type

The type of norm to be calculated. The default is "F" standing for Frobenius norm ("f" in R's norm). The other options are "C" standing for the one norm ("o" in R's norm), "R" for the identity norm ("I" in R's norm) and "M" for the maximum modulus among elements of a matrix ("M" in R's norm)

Value

A number, the norm of the matrix.

Author(s)

Manos Papadakis

 $R\ implementation\ and\ documentation:\ Manos\ Papadakis\ <papadakm95@gmail.com>.$

See Also

```
Dist, dista, colmeans
```

Examples

```
x <- matrix( rnorm(10 * 10), ncol = 10 )
res<-Norm(x, "F")
res<-norm(x, "F")
res<-Norm(x, "M")
res<-norm(x, "M")</pre>
```

Number of equal columns between two matrices $Number\ of\ equal\ columns\ between\ two\ matrices$

Description

Number of equal columns between two matrices.

Usage

```
mat.mat(x, y)
```

Arguments

X	A numerical matrix.	See details	for more	information.	It must have the	ne same
	number of rows as y.					

y A numerical matrix. See details for more information. It must have the same number of rows as x.

Details

The function takes each column of x and checks the number of times it matches a column of y. In the example below, we take the first 3 columns of iris as the x matrix. The y matrix is the whole of iris. We will see how many times, each column of x appears in the y matrix. The answer is 1 for each column.

Value

A numerical vector of size equal to the number of columns of x.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

Match, colmeans, colMedians

222 Odds ratio and relative risk

Examples

```
x <- as.matrix(iris[, 1:3])
y <- iris
y[, 5] <- as.numeric(y[, 5])
y <- as.matrix(y)
res<-mat.mat(x, y)

x<-y<-NULL</pre>
```

Odds ratio and relative risk

Odds ratio and relative risk

Description

Odds ratio and relative risk.

Usage

```
odds.ratio(x, a = 0.05, logged = FALSE)
rel.risk(x, a = 0.05, logged = FALSE)
```

Arguments

x A 2 x 2 matrix or a vector with 4 elements. In the case of the vector make sure

it corresponds to the correct table.

a The significance level, set to 0.05 by default.

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The odds ratio and the confidence interval are calculated.

Value

A list including:

res The estimated odds ratio and the p-value for the null hypothesis test that it is

equal to 1.

ci The (1-a)% confidence interval for the true value of the odds ratio.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mosteller Frederick (1968). Association and Estimation in Contingency Tables. Journal of the American Statistical Association. 63(321):1-28.

Edwards A.W.F. (1963). The measure of association in a 2x2 table. Journal of the Royal Statistical Society, Series A. 126(1):109-114.

See Also

```
odds,g2Test
```

Examples

```
x <- rpois(4, 30)+2
res<-odds.ratio(x)
res<-odds.ratio( matrix(x, ncol = 2) )</pre>
```

One sample t-test for a vector

One sample t-test for a vector

Description

One sample t-test for a vector.

Usage

```
ttest1(x, m, alternative = "unequal", logged = FALSE, conf = NULL)
```

Arguments

x A numerical vector with the data.

m The mean value under the null hypothesis.

alternative The alternative hypothesis, "unequal", "greater" or "less".

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

conf If you want a confidence interval supply the confidence level.

Details

The usual one sample t-test is implemented, only faster.

Value

A list including:

res A two valued vector with the test statistic and its (logged) p-value.

ci In the case you supplied a number in the input argument "conf" the relevant

confidence interval will be returned as well.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

```
ttest, anova1, ttests
```

Examples

```
x = rnorm(500)
res<-t.test(x, mu = 0)
res<-ttest1(x, 0, conf = 0.95)</pre>
```

Operations between two matrices or matrix and vector

Operations between two matrices or matrix and vector

Description

Operations between two matrices or matrix and vector.

Usage

```
XopY.sum(x, y = NULL, oper = "*")
eachrow(x,y,oper = "*",method = NULL)
eachcol.apply(x,y,indices = NULL,oper = "*",apply = "sum")
```

Arguments

Х	A numerical matrix.
у	A second numerical matrix for "XopY.sum" whose dimensions must match the ones of x , or vector for "eachrow", "eachcol.apply" whose length must match with the rows of x .
oper	The operation to be performed, either "*", "/", "+", "-" or "==".
method	A character value for choosing option to apply in the result. Options: 1) sum 2) max 3) min
	Does not work for oper="==".
indices	An integer vector with indices to specific columns. Only for "eachcol.apply".
apply	A character value with the function to be applied in the columns of the matrix. Only for "eachcol.apply". Options: 1) sum 2) median 3) max 4) min

Details

XopY.sum: sum(X op Y) where op can be on of "+,-,*,/".

eachrow: X op Y **by row** or **FUNCTION**(X op Y) where "x" is matrix, "y" is vector with length as much an the columns of x and "op" is one of "+,-,*,/,==", and "FUNCTION" is a specific method for applying in the result matrix (see argument method).

eachcol.apply: **FUNCTION**(X op Y) **by column** where "x" is matrix, "y" is vector with length as much an the rows of x, "op" is one of "+,-,*,/" and "FUNCTION" is a specific method (see argument apply).

NOTE: Arguments "method" does not work for oper="==" and this operation works only in "eachrow".

Value

XopY.sum: sum(X op Y) where "op" can be on of "+,-,*,/".

eachrow: operation by row between a matrix and a vector."op" can be on of "+,-,*,/". If "suma=TRUE" then returns the sum of this operation.

eachcol.apply: operation by column between a matrix and a vector and applied a specific function."op" can be on of "+,-,*,/".

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Dist, dista, colmeans, Diag. fill, colMads, rowMads
```

Examples

```
x <- matrix( rnorm(5 * 5), ncol = 5 )
y <- matrix( rnorm(5 * 5), ncol = 5 )
res<-XopY.sum(x, y, oper = "*")
y <- x[,1]
res<-eachrow(x,y)
all.equal(eachcol.apply(x,y),colsums(x*y))
x<-y<-NULL</pre>
```

Orthogonal matching pursuit variable selection

Orthogonal matching pursuit variable selection

Description

Orthogonal matching pursuit variable selection.

Usage

```
ompr(y, x, ystand = TRUE, xstand = TRUE, method = "BIC", tol = 2) omp(y, x, xstand = TRUE, tol = qchisq(0.95, 1) + log(length(y)), type = "logistic")
```

Arguments

У	The response variable, a numeric vector. For "ompr" this is a continuous variable. For "omp" this can be either a vector with discrete (count) data, 0 and 1, non negative values, strictly positive or proportions including 0 and 1.
X	A matrix with the data, where the rows denote the observations and the columns are the variables.
ystand	If this is TRUE the response variable is centered. The mean is subtracted from every value.
xstand	If this is TRUE the independent variables are standardised.
method	You can choose between the change in the BIC ("BIC"), the adjusted \mathbb{R}^2 ("ar2"), the SSE ("SSE") or the classical p-value based ("pvalue").
tol	The tolerance value to terminate the algorithm. This is the change in the criterion value between two successive steps. For "ompr" the default value is 2 because the default method is "BIC". For "omp" the default value is the 95% quantile of the χ^2 distribution with 1 degree of freedom plus the logarithm of the sample size.
type	This denotes the parametric model to be used each time. It depends upon the nature of y. The possible values are "logistic", "poisson", "quasibinomial", "normlog", "gamma", "weibull", "mv" (for multivariate response variable) or "multinomial".

Value

For "ompr" a list including:

runtime The runtime of the algorithm.

info A matrix with two columns. The selected variable(s) and the criterion value at

every step.

For "omp" a list including:

runtime The runtime of the algorithm.

Outer function 227

phi	The ϕ parameter. In the cases of "quasipoisson", "quasibinomial" and "normlog"
	this is useful. For all other cases this is NULL.
info	A matrix with two columns. The selected variable(s) and the criterion value at

every step.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Pati Y. C., Rezaiifar R. & Krishnaprasad P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Signals, Systems and Computers. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on. IEEE.

Mazin Abdulrasool Hameed (2012). Comparative analysis of orthogonal matching pursuit and least angle regression. MSc thesis, Michigan State University. https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&c

Lozano A., Swirszcz G., & Abe N. (2011). Group orthogonal matching pursuit for logistic regression. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.

The γ -OMP algorithm for feature selection with application to gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics (Accepted for publication) https://arxiv.org/pdf/2004.00281.pdf

See Also

```
cor.fbed,cor.fsreg,correls,fs.reg
```

Examples

```
x <- matrnorm(100, 400)
y <- rnorm(100)
a <- ompr(y, x)
a
x <- NULL</pre>
```

Outer function

Outer function

Description

The outer function.

```
Outer(x, y, oper = "*")
```

228 Permutation

Arguments

X	A numerical vector.
У	A numerical vector.
oper	The available options are "*" (multiplication), "/" (division), "+" (sum), "-" (substraction), "^" (power raise), and "

Details

The function is the same as R's "outer", but works with vectors only and probably has less capabilities, but faster.

Value

A matrix with all the combinations.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
mat.mult, vecdist
```

Examples

```
x <- rnorm(10)
y <- rnorm(10)
res<-Outer(x, y)</pre>
```

Permutation

Permutation

Description

Permute the given vector.

```
permutation(x, nperm = gamma(length(x)+1))
permutation.next(x, nperm = gamma(length(x)+1))
permutation.prev(x, nperm = gamma(length(x)+1))
bincomb(n)
```

Arguments

X	A numeric vector with data.
nperm	An integer value for returning specific number of combinations. By defualt is

set to all combinations. Must be between 0 <= nperm <= gamma(length(x)+1)

n An integer value for the length of the binary number.

Details

This function implements "Permutation", which means all the possible combinations. In the permutation.next and permutation.prev if there aren't possible combinations it returns the same vector. "Binary Combinations" for "bincomb", means all the possible combinations for the binary number with length "n".

Value

Returns a matrix with all possible combinations of the given vector or a matrix row with one possible combinations.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

See Also

```
combn,comb_n
```

Examples

```
y <- rnorm(3)
b <- permutation(y)
b <- permutation.next(y)
b <- permutation.prev(y)
g <- bincomb(3)</pre>
```

Permutation based p-value for the Pearson correlation coefficient

Permutation based p-value for the Pearson correlation coefficient

Description

Permutation based p-value for the Pearson correlation coefficient.

```
permcor(x, y, R = 999)
```

230 Polyserial correlation

Arguments

X	A numerical	vector with	the first variable.
^	1 1 manifement	VCCLOI WILLI	the mist variable.

- y A numerical vector with the second variable.
- R The number of permutations to be conducted; set to 999 by default.

Details

This is a very low computational calculation of the p-value. Try it yourselves.

Value

A vector consisting of two values, the Pearson correlation and the permutation based p-value.

Author(s)

Marios Dimitriadis and Michail Tsagris

R implementation and documentation: Marios Dimitriadis and Michail Tsagris <kmdimitriadis@gmail.com>and <mtsagris@csd.uoc.gr>

References

Chatzipantsiou C., Dimitriadis M., Papadakis M. and Tsagris M. (2019). Extremely efficient permutation and bootstrap hypothesis tests using R. To appear in the Journal of Modern Applied Statistical Methods.

https://arxiv.org/ftp/arxiv/papers/1806/1806.10947.pdf

See Also

```
pc.skel
```

Examples

```
x <- iris[, 1]
y <- iris[, 2]
res<-permcor(x, y)
res<-permcor(x, y, R = 9999)</pre>
```

Polyserial correlation

Polyserial correlation

Description

Polyserial correlation.

Polyserial correlation 231

Usage

```
poly.cor(x, y)
```

Arguments

x The continuous variable.

y The ordinal variable, a numeric vector with numbers starting from 1.

Details

The polyserial correlation between a continuous and an ordinal variable is calculated. The function is not super fast, yet is faster than other implementations we found.

Value

A list including:

est A vector with the polyserial correlation and its estimated variance.

test A vector with the test statistic and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Olsson U., Drasgow F. and Dorans N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47(3):337-347.

See Also

```
correls, Table
```

Examples

```
x <- rnorm(100)
y <- rpois(100, 10) + 1
res<-poly.cor(x, y)</pre>
```

232 Pooled covariance matrix

Pooled covariance matrix

Pooled covariance matrix

Description

Pooled covariance matrix.

Usage

```
pooled.cov(x, ina)
```

Arguments

x A matrix with continuous data.

ina A numerical vector indicating the groups. The nubmers must be consecutive

and start from 1.

Details

The spatial median is at first computed (if not supplied) and then the covariance matrix.

Value

The spatial sign covariance matrix.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Durre A, Vogel D. and D.E. Tyler D.E.(2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117. http://arxiv.org/pdf/1307.5706v2.pdf

See Also

```
spat.med,spatmed.reg
```

Examples

```
res<-sscov( as.matrix(iris[, 1:4]) )</pre>
```

Prediction with some naive Bayes classifiers $Prediction \ with \ some \ naive \ Bayes \ classifiers$

Description

Prediction with some naive Bayes classifiers.

Usage

```
gaussiannb.pred(xnew, m, s, ni)
poissonnb.pred(xnew, m)
multinomnb.pred(xnew, m)
gammanb.pred(xnew, a, b)
geomnb.pred(xnew, prob)
```

Arguments

xnew	A numerical matrix with new predictor variables whose group is to be predicted For the Gaussian case this contains any numbers, but for the multinomial and Poisson cases, the matrix must contain integer valued numbers only.	
m	A matrix with the group means. Each row corresponds to a group.	
S	A matrix with the group colum-wise variances. Each row corresponds to a group.	
ni	A vector with the frequencies of each group.	
a	A vector with the shape parameters of each group.	
b	A vector with the scale parameters of each group.	
prob	A vector with the sprobability parameters of each group.	

Value

A numerical vector with 1, 2, ... denoting the predicted group.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
gaussian.nb,colpoisson.mle colVars
```

Examples

```
ina <- sample(1:150, 100)
x <- as.matrix(iris[, 1:4])
id <- as.numeric(iris[, 5])
a <- gaussian.nb(xnew = NULL, x[ina, ], id[ina])
est <- gaussiannb.pred(x[-ina, ], a$mu, a$sigma, a$ni)
res<-table(id[-ina], est)</pre>
```

```
Quasi binomial regression for proportions {\it Quasi\ binomial\ regression\ for\ proportions}}
```

Description

Quasi binomial regression for proportions.

Usage

```
prop.reg(y, x, varb = "quasi", tol = 1e-09, maxiters = 100)
prop.regs(y, x, varb = "quasi", tol = 1e-09, logged = FALSE, maxiters = 100)
```

Arguments

у	A numerical vector proportions. 0s and 1s are allowed.
х	For the "prop.reg" a matrix with data, the predictor variables. This can be a matrix or a data frame. For the "prop.regs" this must be a numerical matrix, where each columns denotes a variable.
tol	The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
varb	The type of estimate to be used in order to estimate the covariance matrix of the regression coefficients. There are two options, either "quasi" (default value) or "glm". See the references for more information.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?
maxiters	The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The "prop.regs" is to be used for very many univariate regressions. The "x" is a matrix in this case and the significance of each variable (column of the matrix) is tested. The function accepts binary responses as well (0 or 1).

Value

For the "prop.reg" function a list including:

iters	The number of iterations required by the Newton-Raphson.
varb	The covariance matrix of the regression coefficients.
phi	The phi parameter is returned if the input argument "varb" was set to "glm", othwerise this is NULL.
info	A table similar to the one produced by "glm" with the estimated regression coefficients, their standard error, Wald test statistic and p-values.

For the "prop.regs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Papke L. E. & Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619–632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
anova_propreg univglms,score.glms,logistic_only
```

Examples

```
## Not run:
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 3), ncol = 3)
a <- prop.reg(y, x)
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(400 * 100), ncol = 400)
b <- prop.regs(y, x)
res<-mean(b[, 2] < 0.05)
## End(Not run)</pre>
```

Quasi Poisson regression for count data

Quasi Poisson regression

Description

Quasi Poisson regression.

Usage

```
qpois.reg(x, y, full = FALSE, tol = 1e-09,maxiters = 100)
qpois.regs(x, y, tol = 1e-09, logged = FALSE)
```

Arguments

x	For the "qpois.reg" a matrix with data, the predictor variables. This can be a matrix or a data frame. For the "qpois.regs" this must be a numerical matrix, where each columns denotes a variable.
У	A numerical vector with positive discrete data.
full	If this is FALSE, the coefficients, the deviance and the estimated phi parameter will be returned only. If this is TRUE, more information is returned.
tol	The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?
maxiters	The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model, unless the user requests for the Wald tests of the coefficients. The "qpois.regs" is to be used for very many univariate regressions. The "x" is a matrix in this case and the significance of each variable (column of the matrix) is tested.

Value

For the "prop.reg" a list including: When full is FALSE

be The regression coefficients. devi The deviance of the model.

varb The covariance matrix of the beta coefficients.

phi The phi parameter, the estimate of dispersion.

When full is TRUE, the additional item is:

info The regression coefficients, their standard error, their Wald test statistic and their p-value.

For the "prop.regs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Manos Papadakis and Marios Dimitriadis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Marios Dimitriadis <kmdimitriadis@gmail.com>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
prop.reg univglms,score.glms,poisson_only
```

Examples

```
## Not run:
y <- rnbinom(100, 10, 0.6)
x <- matrix(rnorm(100*3), ncol = 3)
mod1 <- glm(y ~ x, quasipoisson)
res<-summary(mod1)
res<-qpois.reg(x, y, full = TRUE)
res<-qpois.regs(x, y)
## End(Not run)</pre>
```

 ${\tt Random\ intercepts\ linear\ mixed\ models}$

Random intercepts linear mixed models

Description

Random intercepts linear mixed models (for balanced data with a single identical covariate).

```
rint.reg(y, x, id ,tol = 1e-08, ranef = FALSE, maxiters = 100)
rint.regbx(y, x, id)
```

Arguments

y A numerical vector with the data. The subject values.

x For the case of "rint.reg" this can be a vector or a numerical matrix with data.

In the case of "rint.regbx" this is a numerical vector with the same length as y indicating the fixed predictor variable. Its values are the same for all levels of y.

An example of this x is time which is the same for all subjects.

id A numerical variable with 1, 2, ... indicating the subject.

tol The tolerance level to terminate the generalised elast squares algorithm.

ranef If you want to obtain the random effects (random intercepts) set this equal to

TRUE.

maxiters The max number of iterations that can take place in a regression.

Details

Random intercepts linear mixed models with compound covariance structure is fitted in both functions. The "rint.reg" allows any numerical matrix, with balanced or unbalanced data. See Demidenko (2013, pg. 65-67) for more information.

The "rint.regbx" is a special case of a balanced random intercepts model with a compound symmetric covariance matrix and one single covariate which is constant for all replicates. An example, is time, which is the same for all subjects. Maximum likelihood estimation has been performed. In this case the mathematics exist in a closed formula (Demidenko, 2013, pg. 67-69).

Value

A list including:

info A vector with the random intercepts variance (between), the variance of the

errors (within), the log-likelihood, the deviance (twice the log-likelihood) and the BIC. In the case of "rint.reg" it also includes the number of iterations required

by the generalised least squares.

be The estimated regression coefficients, which in the case of "rint.regbx" are sim-

ply two: the constant and the slope (time effect).

ranef The random intercepts effects.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Eugene Demidenko (2013). Mixed Models: Theory and Applications with R, 2nd Edition. New Jersey: Wiley & Sons (excellent book).

See Also

```
rm.lines,varcomps.mom,colvarcomps.mom
```

Examples

```
## Not run:
y <- rnorm(100)
x <- rnorm(10)
x <- rep(x, 10)
id <- rep(1:10, each = 10)
system.time( for (i in 1:40) a <- rint.reg(y, x, id) )
## End(Not run)</pre>
```

Random values simulation from a von Mises distribution

Random values simulation from a von Mises distribution

Description

It generates random vectors following the von Mises distribution. The data can be spherical or hyper-spherical.

Usage

```
rvonmises(n, m, k, rads = TRUE)
```

Arguments

n	The sample size.
m	The mean angle expressed in radians or degrees.
k	The concentration parameter. If k is zero the sample will be generated from the uniform distribution over $(0,2\pi)$.
rads	If the mean angle is expressed in radians, this should be TRUE and FALSE otherwise. The simulated data will be expressed in radians or degrees depending on what the mean angle is expressed.

Details

The mean direction is transformed to the Euclidean coordinates (i.e. unit vector) and then the fvmf function is employed. It uses a rejection smapling as suggested by Andrew Wood in 1994. I have mentioned the description of the algorithm as I found it in Dhillon and Sra in 2003. Finally, the data are transformed to radians or degrees.

Value

A vector with the simulated data.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm85@gmail.com>

References

Wood, A. T. (1994). Simulation of the von Mises Fisher distribution. Communications in statistics-simulation and computation, 23(1): 157-164.

Dhillon, I. S., & Sra, S. (2003). Modeling data using directional distributions. Technical Report TR-03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?

See Also

```
vm.mle,rvmf
```

Examples

```
x <- rvonmises(1000, 2, 25, rads = TRUE)
res<-vm.mle(x)</pre>
```

Ranks of the values of a vector

Ranks of the values of a vector

Description

Ranks of the values of a vector.

Usage

```
Rank(x,method = "average",descending = FALSE)
```

Arguments

x A numerical vector with data.

method a character string for choosing method. Must be one of "average", "min", "max".

descending A boolean value (TRUE/FALSE) for sorting the vector in descending order. By

default sorts the vector in ascending.

Details

The ranks of the values are returned, the same job as "rank". If you want you can choose descending/ascending order for all methods.

Value

A vector with the ranks of the values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colRanks, correls
```

Examples

```
x <- rnorm(100)
a1 <- Rank(x)
a2 <- rank(x)</pre>
```

```
Reading the files of a directory

Reading the files of a directory
```

Description

Reading the files of a directory.

Usage

```
read.directory(path.directory)
read.examples(path.man)
```

Arguments

```
path.directory The full path to the directory. For example: \"C:\Users\username\Documents\R\Rfast_1.8.0\R\" path.man The full path to the directory with the Rd files in it. For example: \"C:\Users\username\Documents\R\Rfast_1.8.0\R\"
```

Details

For function \"read.directory\": Takes as an argument a full path to a directory and returns the names of the files.

For function \"read.examples\": Takes as an argument a full path to the directory of the Rd files. If you don't want the program to read any file add at the top of the file the attribute "%[dont read]".

Value

For function \"read.directory\": The names of the files. For function \"read.examples\": a list with 2 fields

examples A character vector with the examples of each Rd file.

files A character vector with the name of the file that each examples belongs.

long_lines A character vector with the name of the file that has large examples.

You can choose which files not to read for both R and Rd. You must add in the first line of the file in comment the "attribute" "%[dont read]". Finally, that function wil return in the result a list of which files had this attribute.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

AddToNamespace, sourceR, sourceRd, checkRd, checkExamples

Examples

```
# for example: path="C:\some_file\"
# system.time( read.directory(path) )
# system.time( list.dirs(path) )

# for example: path.man="C:\some_file\man\"
# system.time( read.examples(path.man) )
# system.time( read.examples(path.man,dont.read=c("somef_1.Rd",...,"somef_n.Rd") ) )
```

Repeated measures anova

Repeated measures anova

Description

Repeated measures anova.

Usage

```
rm.anova(y, logged = FALSE)
```

Arguments

y A matrix with the data, where each column refers to a different measurement.

The rows denote the subjects.

logged Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Found in Davis (2002) is the usual repeated measures ANOVA. In this case, suppose you have taken measurements on one or more variables from the same group of people. See the example below on how to put such data.

Value

A vector with the test statistic (t-test) and its associated p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. Springer-Verlag, New York.

See Also

```
rm.anovas, rint.reg, varcomps.mle
```

Examples

```
y <- c(74.5,81.5,83.6,68.6,73.1,79.4,75.5,84.6,70.6,87.3,73.0,75.0,68.9,71.6,55.9,61.9,60.5,61.8,57.0,61.3,54.1,59.2,56.6,58.8,78.3,84.9,64.0,62.2,60.1,78.7,54.0,62.8,63.0,58.0,56.0,51.5,72.5,68.3,67.8,71.5,65.0,67.7,80.8,89.9,83.2,83.0,85.7,79.6)
y <- matrix(y, ncol = 6, byrow = TRUE) res<-rm.anova(y)
```

Replicate columns/rows

Replicate columns/rows

Description

Replicate columns/rows.

```
rep_col(x,n)
rep_row(x,n)
```

Arguments

x A vector with data.

n Number of new columns/rows.

Value

A matrix where each column/row is equal to "x".

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,rowFalse,nth,colrange,colMedians,colVars,colSort,rowSort,rowTrue
```

Examples

```
x <- runif(10)
all.equal(rep_col(x,10),matrix(x,nrow=length(x),ncol=10))
all.equal(rep_row(x,10),matrix(x,ncol=length(x),nrow=10,byrow=TRUE))</pre>
```

Represantation of Stack

Represantation of Stack

Description

Represantation of Stack.

Usage

```
Stack(x,type=NULL)
```

Arguments

x Any type that could be convert to vector or an integer value.

type A type for the Stack, "integer", "numeric" or any other that accepts one argu-

ment.

Details

Stack is an abstract data type - data structure based on the principle of last in first out. To access the 3 fields, use operator "\$".

Value

An object of class "Stack". This object holds 3 fields:

pop: remove the first element (from the top). top: access the first element (from the top). push: add an element to the top of the Stack.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colShuffle,colVars,colmeans,read.directory
```

Examples

```
x<-Stack(10, type=integer)

x$push(5)
x$push(10)
x$top() == 10
x$pop()
x$top() == 5

y<-rnorm(10)
x<-Stack(x)

x$push(5) # length increased to 11
x$top() # access the last element that pushed, 5
x$pop() # pop the last element that pushed</pre>
```

```
Round each element of a matrix/vector

Round each element of a matrix/vector
```

Description

Round each element of a matrix/vector.

Usage

```
Round(x,digit=0,na.rm = FALSE)
```

Arguments

X	A numeric matrix/vector with data or NA. NOT integer values.
digit	An integer value for $0N-1$ where N is the number of the digits. By default is 0 .
na.rm	TRUE or FAISE for remove NAs if exists.

Details

Round is a very fast C++ implementation. Especially for large data. It handles NA.

Value

A vector/matrix where each element is been rounded in the given digit.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Lchoose, Log, Choose
```

Examples

```
x <-matrix( rnorm( 500 * 100), ncol = 100 )
system.time( a <- Round(x,5) )
system.time( b <- round(x,5) )
all.equal(a,b) #true
x <-rnorm( 1000)
system.time( a <- Round(x,5) )
system.time( b <- round(x,5) )
all.equal(a,b) # true</pre>
```

```
Row - Wise matrix/vector count the frequency of a value Row - \textit{Wise matrix/vector count the frequency of a value}
```

Description

Row - Wise matrix/vector count the frequency of a value.

Usage

```
count_value(x, value)
colCountValues(x, values, parallel = FALSE)
rowCountValues(x, values, parallel = FALSE)
```

Arguments

X	A vector with the data (numeric or character) or a numeric matrix.
value	The value, numeric or character, to check its frequency in the vector "x".
values	a vector with the values to check its frequency in the matrix "x" by row or column.
parallel	Do you want to do it in parallel in C++? TRUE or FALSE. Works with every other argument.

Details

The functions is written in C++ in order to be as fast as possible. The "x" and "value" must have the same type. The type can be numeric or character.

Value

The frequency of a value/values in a vector in linear time or by row/column in a matrix.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Median, binary_search, Order, nth
```

Examples

```
x <- rnorm(100)
value <- x[50]
system.time( count_value(x,value) )
y <- sample(letters,replace=TRUE)
value <- "r"
system.time( count_value(y,value) )
values <- sample(x,100,replace=TRUE)
x <- matrix(x,100,100)
res<-colCountValues(x,values)
res<-rowCountValues(x,values)
x<-value<-values<-y<-NULL</pre>
```

Row-wise minimum and maximum

Row-wise minimum and maximum of a matrix.

Description

Row-wise minimum and maximum of a matrix.

```
rowMins(x, value = FALSE)
rowMaxs(x, value = FALSE)
rowMinsMaxs(x)
```

248 Row-wise true value

Arguments

x A numerical matrix with data.

value If the value is FALSE it returns the indices of the minimum/maximum, otherwise

it returns the minimum and maximum values.

Value

A vector with the relevant values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colMins,colMaxs,nth,rowrange colMedians,colVars,colSort,rowSort
```

Examples

```
x <- matrix( rnorm(500 * 500), ncol = 500 )
system.time( s1 <- rowMins(x) )
system.time( s2 <- apply(x, 1, min) )
system.time( s1 <- rowMaxs(x) )
system.time( s2 <- apply(x, 1, max) )
system.time( s1 <- c(apply(x, 1, min), apply(x, 1, max) ))
system.time( s2 <- rowMinsMaxs(x) )
x<-s1<-s2<-NULL</pre>
```

Row-wise true value

Row-wise true value of a matrix

Description

Row-wise true value of a matrix.

```
rowTrue(x)
rowFalse(x)
rowTrueFalse(x)
```

Arguments

Χ

A logical matrix with data.

Value

An integer vector where item "i" is the number of the true/false values of "i" row.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
rowMins,colFalse,nth,rowrange,rowMedians,rowVars,colTrue
```

Examples

```
x <- matrix(as.logical(rbinom(100*100,1,0.5)),100,100)
s1 <- rowTrue(x)
s1 <- rowFalse(x)
s1 <- rowTrueFalse(x)
x<-s1<-NULL</pre>
```

Search for variables with zero range in a matrix

Search for variables with zero range in a matrix

Description

Search for variables with zero range in a matrix.

Usage

```
check_data(x, ina = NULL)
```

Arguments

A matrix or a data.frame with the data, where rows denotes the observations and the columns contain the dependent variables.

If your data are grouped, for example there is a factor or numerical variable indicating the groups of the data supply it here, otherwise leave it NULL.

ina

Details

The function identifies the variabels with zero range, instead of a zero variance as this is faster. It will work with matrices and data.frames.

Value

A numerical vector of length zero if no zero ranged variable exists, or of length at least one with the index (or indices) of the variable(s) that need attention or need to be removed.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colrange, colVars
```

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
res<-check_data(x)

## some variables have a constant value
x[, c(1,10, 50, 70)] <- 1
res<-check_data(x)
id <- rep(1:4, each = 25 )
x[1:25, 2] <- 0
res<-check_data(x) ## did not use the id variable
res<-check_data(x, id) ## see now
x <- NULL</pre>
```

Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression

Significance testing for the coefficients of Quasi binomial or the quasi

Poisson regression

Description

Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression.

```
anova_propreg(mod, poia = NULL)
anova_qpois.reg(mod, poia = NULL)
```

Arguments

an object as returned by the "prop.reg" or the "qpois.reg" function.

poia If you want to test the significance of a single coefficient this must be a number.

In this case, the "prop.reg" or the "qpois.reg" function contains this information. If you want more coefficients to be testes simultaneously, e.g. for a categorical predictor, then this must contain the positions of the coefficients. If you want to see if all coefficients are zero, like an overall F-test, leave this NULL.

Details

Even though the name of this function starts with anova it is not an ANOVA type significance testing, but a Wald type.

Value

A vector with three elements, the test statistic value, its associated p-value and the relevant degrees of freedom.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Papke L. E. & Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632. McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
prop.reg,qpois.reg,univglms,score.glms,logistic_only
```

Examples

```
## Not run:
y <- rbeta(1000, 1, 4)
x <- matrix(rnorm(1000 * 3), ncol = 3)
a <- prop.reg(y, x)
## all coefficients are tested
res<-anova_propreg(a)
## the first predictor variable is tested
res<-anova_propreg(a, 2)
a ## this information is already included in the model output
## the first and the second predictor variables are tested
res<-anova_propreg(a, 2:3)
## End(Not run)</pre>
```

Simulation of random values from a Bingham distribution Simulating from a Bingham distribution

Description

Simulation from a Bingham distribution using the code suggested by Kent et al. (2013).

Usage

```
rbing(n, lam)
```

Arguments

n Sample size.

lam Eigenvalues of the diagonal symmetric matrix of the Bingham distribution. See

details for more information on this.

Details

The user must have calculated the eigenvalues of the diagonal symmetric matrix of the Bingham distribution. The function accepts the q-1 eigenvalues only. This means, that the user must have subtracted the lowest eigenvalue from the rest and give the non zero ones. The function uses rejection sampling.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

C.J. Fallaize and T. Kypraios (2014). Exact Bayesian Inference for the Bingham Distribution. Statistics and Computing (No volum assigned yet). http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rvmf

Examples

```
x <- rbing( 100, c(1, 0.6, 0.1) )
x
```

Simulation of random values from a Bingham distribution with any symmetric matrix

Simulation of random values from a Bingham distribution with any symmetric matrix

Description

Simulation of random values from a Bingham distribution with any symmetric matrix.

Usage

```
rbingham(n, A)
```

Arguments

n Sample size.

A A symmetric matrix.

Details

The eigenvalues of the q x q symmetric matrix A are calculated and the smallest of them is subtracted from the rest. The q - 1 non zero eigenvalues are then passed to rbing. The generated data are then right multiplied by V^T , where V is the matrix of eigenvectors of the matrix A.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf C.J. Fallaize and T. Kypraios (2014). Exact Bayesian Inference for the Bingham Distribution.

Statistics and Computing (No volum assigned yet). http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rvmf

Examples

```
A <- cov( iris[, 1:4] )
x <- rbingham(100, A)
x
```

Simulation of random values from a normal distribution

Simulation of random values from a normal distribution

Description

Simulation of random values from a normal distribution.

Usage

```
Rnorm(n, m = 0, s = 1, seed = NULL)
```

Arguments

n The sample size.

m The mean, set to 0 by default.

s The standard devation, set to 1 by default.

seed If you want the same to be generated again use a seed for the generator, an

integer number.

Details

By using the Ziggurat method of generating standard normal variates, this function is really fast when you want to generate large vectors. For less than 2,000 this might make no difference when compared with R's "rnorm", but for 10,000 this will be 6-7 times faster.

Value

A vector with n values.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

See Also

```
matrnorm,rvonmises,rvmf,rmvnorm
```

Examples

```
x \leftarrow Rnorm(500)
```

Simulation of random values from a von Mises-Fisher distribution $Random\ values\ simulation\ from\ a\ von\ Mises-Fisher\ distribution$

Description

It generates random vectors following the von Mises-Fisher distribution. The data can be spherical or hyper-spherical.

Usage

```
rvmf(n, mu, k)
```

Arguments

n The sample size.

mu The mean direction, a unit vector.

k The concentration parameter. If k = 0, random values from the spherical uni-

form will be drwan. Values from a multivariate normal distribution with zero mean vector and the identity matrix as the covariance matrix. Then each vector

becomes a unit vector.

Details

It uses a rejection smapling as suggested by Andrew Wood (1994).

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm85@gmail.com>

References

Wood A. T. A. (1994). Simulation of the von Mises Fisher distribution. Communications in statistics-simulation and computation, 23(1): 157–164.

Dhillon I. S. & Sra S. (2003). Modeling data using directional distributions. Technical Report TR-03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?

See Also

```
vmf.mle,rvonmises,iag.mle
```

Examples

```
m <- rnorm(4)
m <- m/sqrt(sum(m^2))
x <- rvmf(1000, m, 25)
m
res<-vmf.mle(x)</pre>
```

Skeleton of the PC algorithm

The skeleton of a Bayesian network produced by the PC algorithm

Description

The skeleton of a Bayesian network produced by the PC algorithm.

Usage

```
pc.skel(dataset, method = "pearson", alpha = 0.01, R = 1, stat = NULL, ini.pvalue = NULL)
```

dataset	A numerical matrix with the variables. If you have a data.frame (i.e. categorical data) turn them into a matrix using data.frame.to_matrix. Note, that for the categorical case data, the numbers must start from 0. No missing data are allowed.
method	If you have continuous data, you can choose either "pearson" or "spearman". If you have categorical data though, this must be "cat". In this case, make sure the minimum value of each variable is zero. The g2Test and the relevant functions work that way.
alpha	The significance level (suitable values in $(0, 1)$) for assessing the p-values. Default (preferred) value is 0.01 .
R	The number of permutations to be conducted. The p-values are assessed via permutations. Use the default value if you want no permutation based assessment.
stat	If the initial test statistics (univariate associations) are available, pass them through this parameter.
ini.pvalue	if the initial p-values of the univariate associations are available, pass them through this parameter.

Details

The PC algorithm as proposed by Spirtes et al. (2000) is implemented. The variables must be either continuous or categorical, only. The skeleton of the PC algorithm is order independent, since we are using the third heuristic (Spirte et al., 2000, pg. 90). At every stage of the algorithm use the pairs which are least statistically associated. The conditioning set consists of variables which are most statistically associated with each other of the pair of variables.

For example, for the pair (X, Y) there can be two conditioning sets for example (Z1, Z2) and (W1, W2). All p-values and test statistics and degrees of freedom have been computed at the first step of the algorithm. Take the p-values between (Z1, Z2) and (X, Y) and between (Z1, Z2) and (X, Y). The conditioning set with the minimum p-value is used first. If the minimum p-values are the same, use the second lowest p-value. If the unlikely, but not impossible, event of all p-values being the same, the test statistic divided by the degrees of freedom is used as a means of choosing which conditioning set is to be used first.

If two or more p-values are below the machine epsilon (.Machine\$double.eps which is equal to 2.220446e-16), all of them are set to 0. To make the comparison or the ordering feasible we use the logarithm of p-value. Hence, the logarithm of the p-values is always calculated and used.

In the case of the G^2 test of independence (for categorical data) with no permutations, we have incorporated a rule of thumb. If the number of samples is at least 5 times the number of the parameters to be estimated, the test is performed, otherwise, independence is not rejected according to Tsamardinos et al. (2006). We have modified it so that it calculates the p-value using permutations.

Value

A list including:

stat The test statistics of the univariate associations.
ini.pvalue The initial p-values univariate associations.

pvalue The logarithm of the p-values of the univariate associations.

runtime The amount of time it took to run the algorithm.

kappa The maximum value of k, the maximum cardinality of the conditioning set at

which the algorithm stopped.

n. tests The number of tests conducted during each k.

G The adjancency matrix. A value of 1 in G[i, j] appears in G[j, i] also, indicating

that i and j have an edge between them.

sepset A list with the separating sets for every value of k.

Author(s)

Marios Dimitriadis.

R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com>.

References

Spirtes P., Glymour C. and Scheines R. (2001). Causation, Prediction, and Search. The MIT Press, Cambridge, MA, USA, 3nd edition.

Tsamardinos I., Borboudakis G. (2010) Permutation Testing Improves Bayesian Network Learning. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. 322-337.

Tsamardinos I., Brown E.L. and Aliferis F.C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine learning 65(1):31-78.

See Also

```
g2Test,g2Test_univariate,cora,correls
```

Examples

```
# simulate a dataset with continuous data
dataset <- matrix(rnorm(100 * 50, 1, 100), nrow = 100)
a <- pc.skel(dataset, method = "pearson", alpha = 0.05)</pre>
```

Skewness and kurtosis coefficients

Skewness and kurtosis coefficients

Description

Skewness and kurtosis coefficients.

Usage

```
skew(x, pvalue = FALSE)
kurt(x, pvalue = FALSE)
```

Arguments

x A numerical vector with data.

pvalue If you want a hypothesis test that the skewness or kurtosis are significant set this

to TRUE. This checks whether the skewness is significantly different from $\boldsymbol{0}$ and

whether the kurtosis is significantly different from 3.

Details

The sample skewness and kurtosis coefficient are calculated. For the kurtosis we do not subtract 3.

Value

If "pvalue" is FALSE (default value) the skewness or kurtosis coefficients are returned. Otherwise, the p-value of the significance of the coefficient is returned.

Author(s)

Klio Lakiotaki

R implementation and documentation: Klio Lakiotaki <kliolak@gmail.com>.

References

```
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
```

See Also

```
colskewness, skew.test2, colmeans, colVars, colMedians
```

Examples

```
x <- rgamma(500,1, 4)
res<-skew(x)
res<-kurt(x, TRUE)</pre>
```

Some summary statistics of a vector for each level of a grouping variable

Some summary statistics of a vector for each level of a grouping variable.

Description

Some summary statistics of a vector for each level of a grouping variable.

Usage

```
group(x,ina,method="sum",ina.min=NULL,ina.max = NULL,
ina.length.unique=NULL,mad.method="median")
group.sum(x, ina,ina.max = NULL,ina.min = NULL)
group.mean(x, ina,ina.max = max(ina))
```

Arguments

Χ	Α	numerical	vector	with	data.
^	4 1	mamerical	V CC LOI	** 1 (11	autu.

ina A numerical vector with numbers. Note that zero and negative values are not

allowed as this can cause R to run forever or crash.

ina.length.unique

Length of the unique numerical values of ina argument.

method A character vector with values "sum", "var", "all", "any", "mad", "mean", "med",

"min", "max", "min.max".

ina.max Maximum number for vector ina. ina.min Minimum number for vector ina.

mad.method A character vector with values "median", for median absolute deviation or "mean",

for mean absolute deviation. This works only with method="mad".

Details

This command works only for vectors. Median absolute deviation, mean, median, minimum, maximum are some of the options offered.

Value

A vector with the variance, or standard deviation, or mean, or minimum, or maximum, or median, or minimum-maximum of x for each distinct value of ina.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com> and Michail Tsagris <mtsagris@uoc.gr>.

See Also

```
colmeans, colVars, colMedians
```

Examples

```
## Not run:
x <- rgamma(100,1, 4)
ina <- sample(1:5, 100, TRUE)
res<-group(x, ina,method="var")
## End(Not run)</pre>
```

```
Sort - Integer Sort - Sort a vector coresponding to another Sort-Integer\ Sort-Sort\ a\ vector\ coresponding\ to\ another
```

Description

Fast sorting a vector.

Usage

```
Sort(x,descending=FALSE,partial=NULL,stable=FALSE,na.last=NULL)
Sort.int(x)
sort_cor_vectors(x, base, stable = FALSE, descending = FALSE)
```

Arguments

Х

base A numerical/character vector to help sorting the x. A boolean value (TRUE/FALSE) for sorting the vector in descending order. By descending default sorts the vector in ascending. partial This argument has two usages. The first is an index number for sorting partial the vector. The second is a vector with 2 values, start and end c(start,end). Gives

A numerical/integer/character vector with data.

you a vector where the elements between start and end will be sorted only. Not character vector.

stable A boolean value (TRUE/FALSE) for choosing a stable sort algorithm. Stable

means that discriminates on the same elements. Not character vector.

na.last Accept 4 values. TRUE, FALSE, NA, NULL.

> TRUE/FALSE: for put NAs last or first. NA: for remove NAs completely from vector.

NULL: by default. Leave it like that if there is no NA values.

Details

This function uses the sorting algorithm from C++. The implementation is very fast and highly optimised. Especially for large data.

Value

```
Sort and Sort.int: The sorted vector.
sort_cor_vectors: The first argument but sorted acording to the second.
```

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
nth, colnth, rownth, sort_unique, Round
```

Examples

```
x <- rnorm(1000)
system.time(s1 <- Sort(x))
system.time( s2 <- sort(x) )</pre>
all.equal(s1,s2) #true but not if many duplicates.
system.time( s1 <- Sort(x,partial=100) )</pre>
system.time( s2 <- sort(x,partial=100) )</pre>
all.equal(s1,s2) #true
```

```
system.time( s1 <- Sort(x,stable=TRUE) )
system.time( s2 <- sort(x) )
all.equal(s1,s2) #true

x <- as.character(x)
system.time( s1 <- Sort(x) )
system.time( s2 <- sort(x) )
all.equal(s1,s2) #true

y <- runif(1000)
b <- sort_cor_vectors(x,y)

x<-rpois(100,100)
all.equal(Sort.int(x),sort.int(x))

x<-y<-y<-s1<-s2<-NULL</pre>
```

Sort and unique numbers

Sort and unique

Description

Sort and unique numbers.

Usage

```
sort_unique(x)
sort_unique.length(x)
```

Arguments

Х

A numeric vector.

Details

The "sort_unique" function implements R's "unique" function using C++'s function but also sort the result. The "sort_unique.length" returns the length of the unique numbers only for **itegers**.

Value

Returns the discrete values but sorted or their length (depending on the function you do).

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>

See Also

```
colSort,rowSort,sort_cor_vectors
```

Examples

```
y <- rnorm(100)
a <- sort_unique(y)
b <- sort.int(unique(y))
all.equal(as.vector(a),as.vector(b))
x <- rpois(1000,10)
sort_unique.length(x)
length(sort_unique(x))
x<-a<-b<-NULL</pre>
```

```
Sorting of the columns-rows of a matrix

Sorting of the columns-rows of a matrix
```

Description

Fast sorting of the columns-rows of a matrix.

Usage

```
colSort(x, descending = FALSE, stable = FALSE,parallel=FALSE)
rowSort(x, descending = FALSE, stable = FALSE,parallel=FALSE)
sort_mat(x,by.row=FALSE,descending=FALSE,stable=FALSE,parallel=FALSE)
```

Arguments

X	A numerical matrix with data.
descending	If you want the sorting in descending order, set this to TRUE.
stable	If you the stable version, so that the results are the same as R's (in the case of ties) set this to TRUE. If this is TRUE, the algorithm is a bit slower.
parallel	Do you want to do it in parallel in C++? TRUE or FALSE. Works with every other argument.
by.row	TRUE or FALSE for applying sort in rows or column.

Value

The matrix with its columns-rows (or rows) independently sorted.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

264 Source many R files

See Also

```
nth,colMaxs,colMins,colrange,sort_cor_vectors,sort_unique
```

Examples

```
x <- matrix( rnorm(100 * 500), ncol = 500 )
system.time( s1 <- colSort(x) )
system.time( s2 <- apply(x, 2, sort) )
all.equal(as.vector(s1), as.vector(s2))
x<-NULL</pre>
```

Source many R files S_{0}

Source many R files

Description

Source many R/Rd files.

Usage

```
sourceR(path,local=FALSE,encode = "UTF-8",print.errors=FALSE)
sourceRd(path,print.errors=FALSE)
```

Arguments

path An full path to the directory where R file are.

local TRUE, FALSE or an environment, determining where the parsed expressions

are evaluated. FALSE (the default) corresponds to the user's workspace (the global environment) and TRUE to the environment from which source is called.

encode Character vector. The encoding(s) to be assumed when file is a character string:

see file. A possible value is "unknown" when the encoding is guessed: see the

"Encodings" section.

print.errors A boolean value (TRUE/FALSE) for printing the errors, if exists, for every file.

Details

Reads many R files and source them.

Value

Returns the files that had produced errors during source.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
read.directory,AddToNamespace
```

Examples

```
# for example: path="C:\some_file\R\" where is R files are
# system.time( a<-sourceR(path) )
# for example: path="C:\some_file\man\" where is Rd files are
# system.time( a<-sourceRd(path) )</pre>
```

Spatial median for Euclidean data

Spatial median for Euclidean data

Description

Spatial median for Euclidean data.

Usage

```
spat.med(x, tol = 1e-09)
```

Arguments

x A matrix with Euclidean data, continuous variables.

tol A tolerance level to terminate the process. This is set to 1e-09 by default.

Details

The spatial median, using a fixed point iterative algorithm, for Euclidean data is calculated. It is a robust location estimate.

Value

A vector with the spatial median.

Author(s)

Manos Papadakis and Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Jyrki Mottonen, Klaus Nordhausen and Hannu Oja (2010). Asymptotic theory of the spatial median. In Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A Festschrift in honor of Professor Jana Jureckova.

T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems, EUROGEN 2005, R. Schilling, W.Haase, J. Periaux, H. Baier, G. Bugeda (Eds) FLM, Munich. http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf

See Also

colMedians

Examples

```
res<-spat.med( as.matrix( iris[, 1:4] ) )
res<-colMeans( as.matrix(iris[, 1:4]) )
res<-colMedians( as.matrix(iris[, 1:4]) )</pre>
```

Spatial median regression

Spatial median regression

Description

Spatial median regression with Euclidean data.

Usage

```
spatmed.reg(y, x, tol = 1e-07)
```

Arguments

y A matrix with the response variable.

x The predictor variable(s), they have to be continuous.

The threshold upon which to stop the iterations of the Newton-Rapshon algorithm.

Details

The objective function is the minimization of the sum of the absolute residuals. It is the multivariate generalisation of the median regression.

Value

A list including:

iters The number of iterations that were required.

be The beta coefficients.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Biman Chakraborty (2003) On multivariate quantile regression. Journal of Statistical Planning and Inference http://www.stat.nus.edu.sg/export/sites/dsap/research/documents/tr01_2000.pdf

See Also

```
spat.med,sscov,lmfit
```

Examples

```
## Not run:
x <- as.matrix(iris[, 3:4])
y <- as.matrix(iris[, 1:2])
mod1 <- spatmed.reg(y, x)
## End(Not run)</pre>
```

Spatial sign covariance matrix

Spatial sign covariance matrix

Description

Spatial sign covariance matrix.

Usage

```
sscov(x, me = NULL, tol = 1e-09)
```

Arguments

x A matrix with continuous data.

me If you have already computed the spatial median plug it in here.

tol A tolerance level to terminate the process of finding the spatial median. This is

set to 1e-09 by default.

Details

The spatial median is at first computed (if not supplied) and then the covariance matrix.

Value

The spatial sign covariance matrix.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Durre A, Vogel D. and D.E. Tyler D.E.(2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117. http://arxiv.org/pdf/1307.5706v2.pdf

See Also

```
spat.med, spatmed.reg
```

Examples

```
res<-sscov( as.matrix(iris[, 1:4]) )</pre>
```

Spherical and hyperspherical median

Fast calculation of the spherical and hyperspherical median

Description

It calculates, very fast, the (hyper-)spherical median of a sample.

Usage

```
mediandir(x)
```

Arguments

Χ

The data, a numeric matrix with unit vectors.

Details

The "mediandir" employes a fixed poit iterative algorithm stemming from the first derivative (Cabrera and Watson, 1990) to find the median direction as described in Fisher (1985) and Fisher, Lewis and Embleton (1987).

Standardisation 269

Value

The median direction.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Fisher N. I. (1985). Spherical medians. Journal of the Royal Statistical Society. Series B, 47(2): 342-348.

Fisher N. I., Lewis T. and Embleton B. J. (1987). Statistical analysis of spherical data. Cambridge university press.

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

```
vmf.mle
```

Examples

```
m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(100, m, 10)
res<-mediandir(x)
x <- NULL</pre>
```

Standardisation

Standardisation

Description

Standardisation.

Usage

```
standardise(x, center = TRUE, scale = TRUE)
```

Х	A matrix with data. It has to be matrix, if it is data.frame for example the function does not turn it into a matrix.
center	Should the data be centred as well? TRUE or FALSE.
scale	Should the columns have unit variance, yes (TRUE) or no (FALSE)?

270 Sub-matrix

Details

Similar to R's built in functions "scale" there is the option for centering or scaling only or both (default).

Value

A matrix with the standardised data.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colVars, colmeans, colMads
```

Examples

```
x <- matrnorm( 100, 100 )
a1 <- scale(x)[1:100, ]
a2 <- standardise(x)
all.equal(as.vector(a1), as.vector(a2))
x <- NULL</pre>
```

Sub-matrix

Sub-matrix

Description

Sub-matrix.

Usage

```
submatrix(x,rowStart=1,rowEnd=1,colStart=1,colEnd=1)
```

```
x A Matrix, List, Dataframe or Vector.
rowStart Start of the row.
rowEnd End of the row.
colStart Start of the col.
colEnd End of the col.
```

Value

sub matrix like R's, x[startrow:endrow,startcol:endcol]. Fast especially for big sub matrices.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Match, mvbetas, correls, univglms, colsums, colVars
```

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
res<-submatrix(x,1,50,1,25) # x[1:50,1:25]
x<-NULL</pre>
```

```
Sum of all pairwise distances in a distance matrix

Sum of all pairwise distances in a distance matrix
```

Description

Sum of all pairwise distances in a distance matrix.

Usage

```
total.dist(x, method = "euclidean", square = FALSE, p = 0)
total.dista(x, y, square = FALSE)
```

x	A matrix with numbers.
У	A second matrix with data. The number of comlumns of this matrix must be the same with the matrix x. The number of rows can be different.
method	This is either "euclidean", "manhattan", "canberra1", "canberra2", "minimum", "maximum", "minkowski", "bhattacharyya", "hellinger", "total_variation" or "kullback_leibler/jensen_shannon". The last two options are basically the same.
square	If you choose "euclidean" or "hellinger" as the method, then you can have the option to return the squared Euclidean distances by setting this argument to TRUE.
р	This is for the Minkowski, the power of the metric.

Details

In order to do the total dist one would have to calcualte the distance matrix and sum it. We do this internally in C++ without creating the matrix. For the total dista it is the same thing.

Value

A numerical value, the sum of the distances.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
Dist, dista
```

Examples

```
x <- matrix( rnorm(50 * 10), ncol = 10 )
res<-total.dist(x)
y <- matrix( rnorm(40 * 10), ncol = 10)
res<-total.dista(x, y)
res<-total.dista(y, x)

x<-y<-NULL</pre>
```

```
Table Creation - Frequency of each value

Table Creation - Frequency of each value
```

Description

Table Creation - Frequency of each value.

Usage

```
Table(x,y=NULL,names = TRUE,useNA = FALSE,rm.zeros = FALSE)
Table.sign(x,names = TRUE,useNA = FALSE)
```

Arguments

x A vector with numeric/character data.

names A logical value (TRUE/FALSE) for add names.

y A vector with numeric/character data. Doesn't work with "useNA".

rm. zeros A logical value for removing zero columns/rows. Only for integer vectors for

now.

useNA Table: Integer/logical value:

FALSE: not NA values in vector. TRUE: count NAs and add the value in the last position of the returned vector. any other integer except 0,1: for just removing

NAs.

Table.sign: Logical value, TRUE, for count NAs. Otherwise FALSE.

Doesn't work character data.

Details

Like R's "table":

for giving one argument,"x": If "names" is FALSE then, if "useNA" is TRUE then the NAs will be count, if is FALSE it means there are no NAs and for any other integer value the NAs will be ignored.

for giving two arguments,"x","y": If "names" is FALSE then, creates the contigency table, otherwise sets the col-row names with discrete values. If "rm.zeros" is FALSE then it won't remove the zero columns/rows from the result but it will work only for positive integers for now. For this if "names" is TRUE then the col-row names will be the seq(min(),max()) for "x","y". In future updates it will be changed.

for both algorithms: You can't use "useNA" with "names" for now. It is much faster to get the result without names (names = FALSE) but all the algorithms are more efficient than R's.

Like R's "table(sign())" but more efficient. Count the frequencies of positives, negatives, zeros and NAs values. If argument "names" is FALSE then the returned vector doesn't have names. Otherwise "-1,0,+1,NA". If "useNA" is TRUE then the NAs will be count, otherwise not. You can use "useNA" with "names".

Value

Table:

for giving one argument, "x": if "names" is TRUE then return a vector with names the discrete values of "x" and values there frequencies, otherwise only the frequencies

for giving two arguments,"x","y": if "names" is TRUE then return a contigency matrix with rownames the discrete values of "x", colnames the dicrete values of "y" and values the freuquencies of the pairs, otherwise only the freuquencies of the pairs.

Table.sign: A vector with 4 values/frequencies: index 1: negatives index 2: zeros index 3: postives if "names" is TRUE then the returned vector have names "-1,0,+1". if "useNA" is TRUE then 4th value has the frequencies of NAs and the returned vector will have one more name, "-1,0,+1,NA", if "names" is also TRUE.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

colShuffle,colVars,colmeans,read.directory,is_integer,as_integer

Examples

```
x<-runif(10)
y1<-Table(x)
y2<-as.vector(table(x)) # Neads a lot of time.
all.equal(y1,y2)
y1<-Table(x,names=FALSE)
all.equal(y1,y2) # the name attribute of y1 is null
y1<-Table.sign(x)
y2<-table(sign(x))
all.equal(y1,y2)
x<-y1<-y2<-NULL</pre>
```

Tests for the dispersion parameter in Poisson distribution

Tests for the dispersion parameter in Poisson distribution

Description

Tests for the dispersion parameter in Poisson distribution.

Usage

```
poisdisp.test(y, alternative = "either", logged = FALSE)
pois.test(y, logged = FALSE)
```

Arguments

y A numerical vector with count data, 0, 1,...

alternative Do you want to test specifically for either over or underspirsion ("either"), overdis-

persion ("over") or undersispersion ("under")?

logged Set to TRUE if you want the logarithm of the p-value.

Value

A vector with two elements, the test statistic and the (logged) p-value.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Yang Zhao, James W. Hardin, and Cheryl L. Addy. (2009). A score test for overdispersion in Poisson regression based on the generalized Poisson-2 model. Journal of statistical planning and inference 139(4): 1514-1521.

Dimitris Karlis and Evdokia Xekalaki (2000). A Simulation Comparison of Several Procedures for Testing the Poisson Assumption. Journal of the Royal Statistical Society. Series D (The Statistician), 49(3): 355-382.

Bohning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994) The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics, 46(): 373-388.

See Also

```
poisson.mle,negbin.mle,poisson.anova,poisson.anovas,poisson_only
```

Examples

```
y <- rnbinom(500, 10, 0.6)
res<-poisdisp.test(y, "either")
res<-pois.test(y)

y <- rpois(500, 10)
res<-poisdisp.test(y, "either")
res<-poisdisp.test(y, "over")
res<-poisdisp.test(y, "over")</pre>
```

```
Topological sort of a DAG
```

Topological sort of a DAG

Description

Topological sort of a DAG.

Usage

```
topological_sort(dag)
```

Arguments

dag

A square matrix representing a directed graph which contains 0s and 1s. If G[i, j] = 1 it means there is an arrow from node i to node j. When there is no edge between nodes i and j if G[i, j] = 0.

Details

The function is an R translation from an old matlab code.

276 Transpose of a matrix

Value

A vector with numbers indicating the sorting. If the dag is not a Directed acyclic Graph, NA will be returned.

Author(s)

Michail Tsagris and Manos Papadakis

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>

References

Chickering, D.M. (1995). A transformational characterization of equivalent Bayesian network structures. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 87-98.

See Also

```
floyd,pc.skel
```

Examples

```
G <- matrix(0, 5, 5)
G[2, 1] <- 1
G[3, 1] <- 1
G[4, 2] <- 1
G[5, 4] <- 1
res<-topological_sort(G)
G[2, 4] <- 1
res<-topological_sort(G)</pre>
```

Transpose of a matrix Transpose of a matrix

Description

Transpose of a matrix.

Usage

```
transpose(x)
```

Arguments

x A numerical **square** matrix with data.

Value

The transposed matrix.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

References

Gilbert Strang (2006). Linear Algebra and its Applications (4th edition).

See Also

```
nth, colMaxs, colMins, colrange
```

Examples

```
x <- matrix( rnorm(500 * 500), ncol = 500, nrow=500 )
system.time( transpose(x) )
system.time( t(x) )
x<-NULL</pre>
```

```
Uniformity test for circular data {\it Uniformity\ tests\ for\ circular\ data}
```

Description

Hypothesis tests of uniformity for circular data.

Usage

```
kuiper(u)
watson(u)
```

Arguments

u

A numeric vector containing the circular data which are expressed in radians.

Details

These tests are used to test the hypothesis that the data come from a circular uniform distribution.

Value

A vector with two elements, the value of the test statistic and its associated p-value.

278 Variance of a vector

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153-55 (Kuiper's test) & 156-157 (Watson's test).

See Also

```
vmf.mle,rvonmises
```

Examples

```
x <- rvonmises(n = 50, m = 2, k = 10)
res<-kuiper(x)
res<-watson(x)
x <- runif(50, 0, 2 * pi)
res<-kuiper(x)
res<-watson(x)</pre>
```

Variance of a vector Variance (and standard deviation) of a vector

Description

Variance (and standard deviation) of a vector.

Usage

```
Var(x, std = FALSE,na.rm = FALSE)
```

Arguments

x A vector with data.

std If you want the standard deviation set this to TRUE, otherwise leave it FALSE.

na.rm TRUE or FAISE for remove NAs if exists.

Details

This is a faster calculation of the usual variance of a matrix.

Value

The variance of the vector.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colVars, cova
```

Examples

```
x <- rnorm(100)
a1 <- Var(x)
a2 <- var(x)
x<-NULL</pre>
```

```
Vector allocation in a symmetric matrix

Vector allocation in a symmetric matrix
```

Description

Vector allocation in a symmetric matrix.

Usage

```
squareform(x)
```

Arguments

X

An numverical vector whose size must be the one that matches the dimensions of the final matrix. See examples.

Details

The functions is written in C++ in order to be as fast as possible.

Value

A symmetric matrix. The vector is allocated in the upper and in the lower part of the matrix. The diagonal is filled with zeros.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.

See Also

```
colShuffle,colVars,colmeans
```

Examples

```
x <- rnorm(1)
res<-squareform(x) ## OK
x <- rnorm(3)
res<-squareform(x) ## OK
x <- rnorm(4)
res<-squareform(x) ## not OK</pre>
```

Weibull regression model

Weibull regression model

Description

Weibull regression model.

Usage

```
weib.reg(y, x, tol = 1e-07, maxiters = 100)
```

Arguments

У	The dependent variable; a numerical vector with strictly positive data, i.e. greater than zero.
х	A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This can be a matrix or a data.frame (with factors).
tol	The tolerance value to terminate the Newton-Raphson algorithm.
maxiters	The max number of iterations that can take place in each regression.

Details

The function is written in C++ and this is why it is very fast. No standard errors are returned as they are not corectly estimated. We focused on speed.

Value

When full is FALSE a list including:

iters The iterations required by the Newton-Raphson.loglik The log-likelihood of the model.

shape The shape parameter of the Weibull regression.

be The regression coefficients.

Author(s)

Stefanos Fafalios

R implementation and documentation: Stefanos Fafalios <stefanosfafalios@gmail.com>.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989

See Also

```
poisson_only,logistic_only,univglms,regression
```

Examples

```
## Not run:
x <- matrix(rnorm(100 * 2), ncol = 2)
y <- rexp(100, 1)
res<-weib.reg(y, x)
## End(Not run)</pre>
```

```
Yule's Y (coefficient of colligation)

Yule's Y (coefficient of colligation)
```

Description

Yule's Y (coefficient of colligation).

Usage

```
yule(x)
```

Arguments

Х

A 2×2 matrix or a vector with 4 elements. In the case of the vector make sure it corresponds to the correct table.

Details

Yule's coefficient of colligation is calculated.

Value

Yule's Y is returned.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>

References

Yule G. Udny (1912). On the Methods of Measuring Association Between Two Attributes. Journal of the Royal Statistical Society, 75(6):579-652.

See Also

```
col.yule,odds.ratio
```

Examples

```
x <- rpois(4, 30) + 2
res<-yule(x)
res<-yule( matrix(x, ncol = 2) )</pre>
```

Index

!=.iterator (Iterator), 121	* Canberra distance
* 2 sample proportions tests	Distance matrix, 78
Many 2 sample proportions tests,	* Cauchy
136	MLE of continuous univariate
* 2 variances test	distributions defined on the
Many 2 sample tests, 137	real line, 195
* AR(1) model	* Checking Alias
Estimation of an AR(1) model, 87	Check Namespace and Rd files, 26
* All possibe combinations	* Checking Examples
All k possible combinations from n	Check Namespace and Rd files, 26
elements, 10	* Checking Rd
* Analysis of covariance	Check Namespace and Rd files, 26
Analysis of covariance, 11	* Checking R
Many ANCOVAs, 140	Check Namespace and Rd files, 26
* Analysis of variance	* Checking Usage section
Analysis of variance with a count	Check Namespace and Rd files, 26
variable, 12	* Checking for FALSE
* Angular central Gaussian distribution	Check Namespace and Rd files, 26
Angular central Gaussian random	* Checking for TRUE
values simulation, 13	Check Namespace and Rd files, 26
* Area aunder the curve	* Cholesky decomposition
Many (and one) area aunder the	Cholesky decomposition of a square
curve values, 135	matrix, 31
* BIC	* Circular data
BIC (using partial correlation)	Column-wise uniformity Watson test
forward regression, 19	for circular data,58
BIC forward regression with	Uniformity test for circular data,
generalised linear models, 20	277
* Beta distribution	* Circular regression
MLE of distributions defined in	Circular or angular regression, 32
the (0, 1) interval, 198	Many simple circular or angular
* Beta function	regressions, 164
Natural logarithm of the beta	* Circular-linear correlation
function, 218	Circular-linear correlation, 33
* Binary search Algorithm	* Cochran's Q test
Binary search algorithm, 21	Many non parametric multi-sample
* Bradley-Terry model	tests, 152
Fitted probabilities of the	* Column means
Terry-Bradley model, 97	Column and row-wise means of a

matrix, 37	* Covariance matrix
* Column sums	Covariance and correlation matrix,
Column and row-wise sums of a	66
matrix, 46	* Create - Fill
* Column-Row wise checking	Diagonal Matrix, 75
Check if any column or row is fill	* DAG
with values, 24	Topological sort of a DAG, 275
* Column-wise Any	* Data Frame
Column and row-wise Any/All, 36	Index of the columns of a
* Column-wise Shuffle	data.frame which are a
Column and row-wise Shuffle, 45	specific type, 117
* Column-wise median absolute deviations	* Dataframe to Matrix
Column and rows-wise mean absolute	Convert a dataframe to matrix, 60
deviations, 49	* Deep copy
* Column-wise medians	Deep copy, 72
Column and row-wise medians, 38	* Design Matrix
* Column-wise minimum	Design Matrix, 74
Column-wise minimum and maximum, 54	* Determinant
* Column-wise nth	Check if any column or row is fill
Column and row-wise nth smallest	with values, 24
value of a matrix/vector, 39	* Diagonal Matrix
* Column-wise ranges	Diagonal Matrix, 75
Column and row-wise range of	* Differences
values of a matrix, 43	Column-wise differences, 51
* Column-wise tabulate	* Directional k-NN algorithm
Column and row-wise tabulate, 47	k-NN algorithm using the arc
* Column-wise true	cosinus distance, 126
Column-wise true/false value, 57	* Dirichlet distribution
* Column-wise variances	Fitting a Dirichlet distribution
Column and row-wise variances and	via Newton-Rapshon, 98
standard deviations, 48	* Discrimination
* Column-wise	Prediction with some naive Bayes
Column-wise MLE of some univariate	classifiers, 233
distributions, 55	* Distance correlation
* Combinatorics	Distance correlation, 77
All k possible combinations from n	* Distance covariance
elements, 10	Distance variance and covariance,
* Continuous distributions	80
MLE of continuous univariate	* Distance matrix
distributions defined on the	Distance matrix, 78
positive line, 193	* Distance variance
MLE of continuous univariate	Distance variance and covariance,
distributions defined on the	80
real line, 195	* Distances
* Correlations	Distance between vectors and a
Correlation between pairs of	matrix,76
variables, 63	Sum of all pairwise distances in a
Correlations, 65	distance matrix, 271

* Divide and Qonquer	Find element, 95
Binary search algorithm, 21	* Floyd-Warshall algorithm
Find element, 95	Floyd-Warshall algorithm, 99
* Eigenvalues	* Forward regression
Eigenvalues and eigenvectors in	BIC (using partial correlation)
high dimensional principal	forward regression, 19
component analysis, 81	BIC forward regression with
* Energy distances	generalised linear models, 20
Energy distance between matrices,	Correlation based forward
85	regression, 62
* Environment	Forward selection with generalised
Deep copy, 72	linear regression models, 101
Iterator, 121	* GLMS
Represantation of Stack, 244	Many score based regressions, 161
* Equality check	* GLMs
Equality of objects, 86	Quasi binomial regression for
* Euclidean distance	proportions, 234
Distance matrix, 78	Quasi Poisson regression for count
* Exponential regressions	data, 236
Many exponential regressions, 142	Significance testing for the
* Export functions	coefficients of Quasi binomial
Insert/remove function names	or the quasi Poisson
in/from the NAMESPACE file, 118	regression, 250
Source many R files, 264	* G^2 test of conditional independence
* Extract columns/rows	Chi-square and G-square tests of
Get specific columns/rows fo a	(unconditional) indepdence, 30
matrix, 107	G-square and Chi-square test of
* F-tests	conditional indepdence, 102
Many F-tests with really huge	* G^2 test of independence
matrices, 143	Matrix with G-square tests of
Many multi-sample tests, 150	indepedence, 183
* F-test	* G^2 tests of independence
Multi-sample tests for vectors, 209	Many G-square and Chi-square tests
* Factor variables	of indepedence, 144
Index of the columns of a	* Gini coefficient
data.frame which are a	Many Gini coefficients, 146
specific type, 117	* Goodness of fit test
* Factorials	Hypothesis test for von
Binomial coefficient and its	Mises-Fisher distribution
logarithm, 22	over Kent distribution, 115 * Gumbel distribution
* Factor	* Gumber distribution MLE of continuous univariate
Fast and general - untyped	
representation of a factor	distributions defined on the
variable, 93 * Find Value	real line, 195 * Hash Function
Find the given value in a hash	Find the given value in a hash
•	
table, 96 * Find element	table,96 Hash - Pair function.108

* Hash tables	* Linear models
Hash object, 109	Linear models for large scale
Hash object to a list object, 110	data, 128
* Hellinger distance	* Linear time
Distance matrix, 78	Find element, 95
* High dimensional data	* Log matrix
High dimensional MCD based	Natural Logarithm each element of
detection of outliers, 111	a matrix, 217
* Hypothesis testing	* Logarithm of gamma function
Empirical and exponential	Natural logarithm of the gamma
empirical likelihood tests for	function and its derivatives,
one sample, 82	219
Empirical and exponential	* Logical variables
empirical likelihood tests for	Index of the columns of a
two samples, 83	data.frame which are a
Many one sample tests, 156	specific type, 117
* Hypothesis test	* Logistic distribution
Exponential empirical likelihood	MLE of continuous univariate
for a one sample mean vector	distributions defined on the
hypothesis testing, 90	real line, 195
* Integer variables	* Logistic regressions
Index of the columns of a	Many univariate simple logistic
data.frame which are a	and Poisson regressions, 176
specific type, 117	* Logistic regression
* Inverse matrix	Logistic and Poisson regression
Inverse of a symmetric positive	models, 130
definite matrix, 120	Logistic or Poisson regression
* Inverted Dirichlet distribution	with a single categorical
MLE of the inverted Dirichlet	predictor, 131
distribution, 201	* Lower and Upper triangular of a matrix
* James test	Lower and Upper triangular of a
Multi-sample tests for vectors, 209	matrix, 133
* Kent distribution	* MCD estimation
Hypothesis test for von	High dimensional MCD based
Mises-Fisher distribution	detection of outliers, 111
over Kent distribution, 115	* Mahalanobis distance
* Laplace distribution	Mahalanobis distance, 134
MLE of continuous univariate	* Manhattan distance
distributions defined on the	Distance matrix, 78
real line, 195	* Many betas in regression
* Linear mixed models	Many multivariate simple linear
Column and row wise coefficients	regressions coefficients, 151
of variation, 35	Many simple linear regressions
Many random intercepts LMMs for	coefficients, 167
balanced data with a single	* Match Function
identical covariate., 157	Match, 180
Random intercepts linear mixed	* Matrices
models, 237	Number of equal columns between

two matrices, 221	Indices, 41
* McNemar's test	* Ordinal model
Many 2 sample tests, 137	MLE of the ordinal model without
* Median direction	covariates, 205
Spherical and hyperspherical	* PC algorithm
median, 268	Skeleton of the PC algorithm, 256
* Multinomial distribution	* Pair Function
MLE for multivariate discrete	Hash - Pair function, 108
data, 190	* Pairs of vectors
Multinomial regression, 211	Column-row wise minima and maxima
* Multivariate analysis of variance	of two matrices, 50
James multivariate version of the	Minima and maxima of two
t-test, 123	vectors/matrices, 187
* Multivariate data	* Pareto
Multivariate kurtosis, 212	MLE of continuous univariate
* Multivariate hypothesis testing	distributions defined on the
Exponential empirical likelihood	positive line, 193
hypothesis testing for two	* Pearson correlation
mean vectors, 91	Correlation based forward
* Multivariate normal distribution	regression, 62
Density of the multivariate normal	* Permutation Function
and t distributions, 73	Permutation, 228
MLE of the multivariate (log-)	* Poisson distribution
normal distribution, 202	Analysis of variance with a count
* Namespace file	variable, 12
Check Namespace and Rd files, 26	Many analysis of variance tests
Insert/remove function names	with a discrete variable, 139
in/from the NAMESPACE file, 118	Many tests for the dispersion
Source many R files, 264	parameter in Poisson
* Newton-Raphson	distribution, 171
Fitting a Dirichlet distribution	MLE of count data (univariate
via Newton-Rapshon, 98 MLE of distributions defined in	discrete distributions), 196 Prediction with some naive Bayes
the (0, 1) interval, 198	classifiers, 233
* Norm of a matrix	Tests for the dispersion parameter
Norm of a matrix, 220	in Poisson distribution, 274
* Numeric variables	* Poisson regressions
Index of the columns of a	Many univariate simple quasi
data.frame which are a	poisson regressions, 178
specific type, 117	* Poisson regression
* Odds ratios	Logistic or Poisson regression
Many odds ratio tests, 154	with a single categorical
* Odds ratio	predictor, 131
Odds ratio and relative risk, 222	* Poisson
* One sample t-test	Forward selection with generalised
One sample t-test for a vector, 223	linear regression models, 101
* Orderings	* Products
Column and row-wise Order - Sort	Column and row-wise products, 42
	•

* Row-wise medians

* Quasi Poisson regression

Quasi Poisson regression for count	Column and row-wise medians, 38
data, 236	* Row-wise minimum
* Quasi regression	Row-wise minimum and maximum, 247
Quasi binomial regression for	* Row-wise nth
proportions, 234	Column and row-wise nth smallest
Significance testing for the	value of a matrix/vector, 39
coefficients of Quasi binomial	* Row-wise tabulate
or the quasi Poisson	Column and row-wise tabulate, 47
regression, 250	* Row-wise true-false
* Random values simulation	Row-wise true value, 248
Random values simulation from a	* Row-wise true
von Mises distribution, 239	Row-wise true value, 248
Simulation of random values from a	* Shapiro-Francia
von Mises-Fisher distribution,	Many Shapiro-Francia normality
255	tests, 163
* Read Examples	* Significance testing
Reading the files of a directory,	Significance testing for the
241	coefficients of Quasi binomial
* Read directory	or the quasi Poisson
Reading the files of a directory,	regression, 250
241	* Simple linear regressions
* Remove functions	Many univariate simple linear
<pre>Insert/remove function names</pre>	regressions, 175
in/from the NAMESPACE file, 118	* Skewness coefficient
* Repeated measures	Column-wise kurtosis and skewness
Many regression based tests for	coefficients, 52
single sample repeated	* Skewness
measures, 159	Hypothesis testing between two
Repeated measures anova, 242	skewness or kurtosis
* Replicate in columns/rows	coefficients, 116
Replicate columns/rows, 243	Skewness and kurtosis
* Round vector/matrix	coefficients, 258
Round each element of a	* Sort 2 vectors
matrix/vector, 245	Sort - Integer Sort - Sort a
* Row - Wise matrix/vector count the	vector coresponding to
frequency of a value	another, 260
Row - Wise matrix/vector count the	* Sort function
frequency of a value, 246	Sort and unique numbers, 262
* Row sums	* Sorting
Column and row-wise sums of a	Sorting of the columns-rows of a
matrix, 46	matrix, 263
* Row-wise Any	* Sort
Column and row-wise Any/All, 36	Sort - Integer Sort - Sort a
* Row-wise Shuffle	vector coresponding to
Column and row-wise Shuffle, 45	another, 260
* Row-wise false	* Stable Sort
Row-wise true value, 248	Sort - Integer Sort - Sort a

vector coresponding to	positive line, 193
another, 260	* Wigner semicircle distribution
* Stack	MLE of continuous univariate
Represantation of Stack, 244	distributions defined on the
* Standardisation	real line, 195
Standardisation, 269	* Zero range
* Sub-matrix	Search for variables with zero
Sub-matrix, 270	range in a matrix, 249
* Sum	* analysis of variance
Operations between two matrices or	Logistic or Poisson regression
matrix and vector, 224	with a single categorical
* Supervised classification	predictor, 131
k-NN algorithm using the arc	Many analysis of variance tests
cosinus distance, 126	with a discrete variable, 139
* Symmetric matrix	Many F-tests with really huge
Check whether a square matrix is	matrices, 143
symmetric, 29	Many multi-sample tests, 150
* Table Creation	Many non parametric multi-sample
Table Creation - Frequency of each	tests, 152
value, 272	Multi-sample tests for vectors, 209
* Time series	* balanced design
Estimation of an AR(1) model, 87	Column and row wise coefficients
* Tobit model	of variation, 35
MLE of the tobit model, 206	Many random intercepts LMMs for
* Topological sort	balanced data with a single
Topological sort of a DAG, 275	identical covariate., 157
* Transpose	Random intercepts linear mixed
Transpose of a matrix, 276	models, 237
* Two-way ANOVA	* beta prime
Many two-way ANOVAs, 172	MLE of continuous univariate
* Unequality of the covariance matrices	distributions defined on the
James multivariate version of the	positive line, 193
t-test, 123	* bias corrected
* Univariate normality test	Distance correlation, 77
Many Shapiro-Francia normality	* binary data
tests, 163	Forward selection with generalised
* Variance components	linear regression models, 101
Moment and maximum likelihood	* binomial distribution
estimation of variance	MLE of count data (univariate
components, 207	discrete distributions), 196
* Variance	* bivariate angular Gaussian
Some summary statistics of a	MLE of some circular
vector for each level of a	distributions, 200
grouping variable, 259	* blocking ANOVA
Variance of a vector, 278	Many multi-sample tests, 150
* Weibull	Multi-sample tests for vectors, 209
MLE of continuous univariate	* categorical variables
distributions defined on the	Many univariate simple linear

regressions, 175	Floyd-Warshall algorithm, 99
* censored observations	* directional data
MLE of the tobit model, 206	Angular central Gaussian random
* central angular Gaussian distribution	values simulation, 13
MLE of (hyper-)spherical	MLE of (hyper-)spherical
distributions, 191	distributions, 191
* circular data	* discrete distributions
MLE of some circular	Column-wise MLE of some univariate
distributions, 200	distributions, 55
* column-wise false	* dispersion parameter
Column-wise true/false value, 57	Many tests for the dispersion
* column-wise maximum	parameter in Poisson
Column-wise minimum and maximum, 54	distribution, 171
* column-wise minimum-maximum	Tests for the dispersion parameter
Column-wise minimum and maximum, 54	in Poisson distribution, 274
* column-wise true-false	* equality of variances
Column-wise true/false value, 57	Many multi-sample tests, 150
* combinatorics	Multi-sample tests for vectors, 209
Binomial coefficient and its	* excessive zeros
logarithm, 22	MLE of count data (univariate
* conditional MLE	discrete distributions), 196
Estimation of an AR(1) model, 87	* fitted probabilities
* continuous distributions	Fitted probabilities of the
Column-wise MLE of some univariate	Terry-Bradley model, 97
distributions, 55	* folded normal
* covariance matrix	MLE of continuous univariate
Pooled covariance matrix, 232	distributions defined on the
Spatial sign covariance matrix, 267	positive line, 193
* cross-validation	* fractional response
Cross-Validation for the k-NN	Quasi binomial regression for
algorithm, 68	proportions, 234
* data check	Significance testing for the
Search for variables with zero	coefficients of Quasi binomial
range in a matrix, 249	or the quasi Poisson
* density values	regression, 250
Density of the multivariate normal	* gamma distribution
and t distributions, 73	MLE of continuous univariate
* dependent binary data	distributions defined on the
Multi-sample tests for vectors, 209	positive line, 193
* derivatives	* generalised linear models
Natural logarithm of the gamma	Logistic and Poisson regression
function and its derivatives,	models, 130
219	Many univariate simple logistic
* digamma function	and Poisson regressions, 176
Natural logarithm of the gamma	Many univariate simple quasi
function and its derivatives,	poisson regressions, 178
219 * directed graph	* geometric distribution Analysis of variance with a count

variable, 12	(k-NN), 124
Many analysis of variance tests	* kurtosis coefficient
with a discrete variable, 139	Column-wise kurtosis and skewness
MLE of count data (univariate	coefficients, 52
discrete distributions), 196	* kurtosis
* grouppings	Hypothesis testing between two
Some summary statistics of a	skewness or kurtosis
vector for each level of a	coefficients, 116
grouping variable, 259	Multivariate kurtosis, 212
* half normal	Skewness and kurtosis
MLE of continuous univariate	coefficients, 258
distributions defined on the	* large scale data
positive line, 193	Linear models for large scale
* harmonic means	data, 128
Column and row-wise means of a	* left censoring
matrix, 37	MLE of the tobit model, 206
* high dimensional data	* list
Eigenvalues and eigenvectors in	Hash object, 109
high dimensional principal	Hash object to a list object, 110
component analysis, 81	* logarithm
* huge datasets	Natural logarithm of the beta
Many F-tests with really huge	function, 218
matrices, 143	* logistic normal distribution
* hypersecant distribution for proportions	MLE of distributions defined in
MLE of distributions defined in	the (0, 1) interval, 198
the (0, 1) interval, 198	* matrix
* hypothesis testing	Column and row-wise Order - Sort
Column-wise uniformity Watson test	Indices, 41
for circular data,58	Column and row-wise products, 42
Hypothesis testing between two	Column-wise differences, 51
skewness or kurtosis	Transpose of a matrix, 276
coefficients, 116	* maximum frequency
Uniformity test for circular data,	Minimum and maximum frequencies,
277	189
* inflated beta distribution	* maximum likelihood estimation
MLE of distributions defined in	Column and row wise coefficients
the (0, 1) interval, 198	of variation, 35
* interaction	Fitting a Dirichlet distribution
Many two-way ANOVAs, 172	via Newton-Rapshon, 98
* is_integer Creation	Many random intercepts LMMs for
Check if values are integers and	balanced data with a single
convert to integer, 25	identical covariate., 157
* iterator	MLE of (hyper-)spherical
Iterator, 121	distributions, 191
* k-NN algorithm	MLE of distributions defined in
Cross-Validation for the k-NN	the (0, 1) interval, 198
algorithm, 68	Moment and maximum likelihood
k nearest neighbours algorithm	estimation of variance

components, 207	and t distributions, 73
Random intercepts linear mixed	* naive Bayes
models, 237	Prediction with some naive Bayes
* maximum	classifiers, 233
Column-row wise minima and maxima	* negative binomial
of two matrices, 50	MLE of count data (univariate
Minima and maxima of two	discrete distributions), 196
vectors/matrices, 187	* negative numbers
Minimum and maximum, 188	Apply method to Positive and
* mean vector	Negative number, 15
Exponential empirical likelihood	* non parametric statistics
for a one sample mean vector	Many non parametric multi-sample
hypothesis testing, 90	tests, 152
* minimum frequency	* non parametric test
Minimum and maximum frequencies,	Empirical and exponential
189	empirical likelihood tests for
* minimum or maximum of negative	one sample, 82
Apply method to Positive and	Empirical and exponential
Negative number, 15	empirical likelihood tests for
* minimum or maximum of positive	two samples, 83
Apply method to Positive and	Exponential empirical likelihood
Negative number, 15	hypothesis testing for two
* minimum	mean vectors, 91
Column-row wise minima and maxima	* normal distribution
of two matrices, 50	Prediction with some naive Bayes
Minima and maxima of two	classifiers, 233
vectors/matrices, 187	* nth elements
Minimum and maximum, 188	Column and row-wise nth smallest
* moments estimation	value of a matrix/vector, 39
Moment and maximum likelihood	Median of a vector, 186
estimation of variance	* one sample
components, 207	Empirical and exponential
* multinomial distribution	empirical likelihood tests for
Prediction with some naive Bayes	one sample, 82
classifiers, 233	
* multinomial regressions	Many one sample tests, 156 * operations
	•
Many score based regressions, 161	Operations between two matrices or
* multivariate Laplace distribution	matrix and vector, 224
Multivariate Laplace random values	* outliers
simulation, 213	High dimensional MCD based
* multivariate discrete data	detection of outliers, 111
MLE for multivariate discrete	* partial correlation
data, 190	BIC (using partial correlation)
* multivariate normal distribution	forward regression, 19
Multivariate normal and t random	Correlation based forward
values simulation, 214	regression, 62
* multivariate t distribution	* percentages
Density of the multivariate normal	Hypothesis test for two means of

percentages, 114	265
Many hypothesis tests for two	Spatial sign covariance matrix, 267
means of percentages, 147	* row means
* poisson regression	Column and row-wise means of a
Logistic and Poisson regression	matrix, 37
models, 130	* row-wise maximum
* positive definite	Row-wise minimum and maximum, 247
Inverse of a symmetric positive	* row-wise variances
definite matrix, 120	Column and row-wise variances and
* positive multivariate data	standard deviations, 48
MLE of the inverted Dirichlet	* score based tests
distribution, 201	Many score based regressions, 161
* positive numbers	* shortest paths
Apply method to Positive and	Floyd-Warshall algorithm, 99
Negative number, 15	* single categorical predictor
* projected normal distribution	Logistic or Poisson regression
MLE of (hyper-)spherical	with a single categorical
distributions, 191	predictor, 131
* projected normal	* sorting
Circular or angular regression, 32	Median of a vector, 186
Many simple circular or angular	* spatial median
regressions, 164	Spatial median for Euclidean data,
* proportion test	265
Many one sample tests, 156	* spherical data
* proportional odds	MLE of (hyper-)spherical
MLE of the ordinal model without	distributions, 191
covariates, 205	* summary statistics
* proportions	Many regression based tests for
Forward selection with generalised	single sample repeated
linear regression models, 101	measures, 159
MLE of distributions defined in	Repeated measures anova, 242
the (0, 1) interval, 198	* symmetric matrix
* random values simulation	Inverse of a symmetric positive
Angular central Gaussian random	definite matrix, 120
values simulation, 13	Vector allocation in a symmetric
Multivariate Laplace random values	matrix, 279
simulation, 213	* t distribution
Multivariate normal and t random	MLE of continuous univariate
values simulation, 214	distributions defined on the
* regression	real line, 195
Many regression based tests for	* t-tests
single sample repeated	Many 2 sample tests, 137
measures, 159	Many hypothesis tests for two
Multinomial regression, 211	means of percentages, 147
Repeated measures anova, 242	Matrix with all pairs of t-tests,
* robust statistics	182
Pooled covariance matrix, 232	* t-test
Snatial median for Euclidean data	Hypothesis test for two means of

INDEX INDEX

percentages, 114	von Mises-Fisher distribution,
Many one sample tests, 156	255
* total sum	* wrapped Cauchy distribution
Energy distance between matrices,	MLE of some circular
85	distributions, 200
Sum of all pairwise distances in a	* zero inflated Poisson
distance matrix, 271	MLE of count data (univariate
* trigamma function	discrete distributions), 196
Natural logarithm of the gamma	* zero truncated Poisson
function and its derivatives,	MLE of count data (univariate
219	discrete distributions), 196
* two samples	.lm.fit, <i>129</i>
Empirical and exponential	==.iterator(Iterator), 121
empirical likelihood tests for	[.Hash (Hash object), 109
two samples, 83	[.ufactor(Fast and general - untyped
	represantation of a factor
* uniformity tests	variable), 93
Column-wise uniformity Watson test	[<hash (hash="" 109<="" object),="" td=""></hash>
for circular data, 58	[\ . Hash (hash object), 10)
* uniformity test	AddToNamespace (Insert/remove
Uniformity test for circular data,	function names in/from the
277	NAMESPACE file), 118
* unique numbers	env.copy (Deep copy), 72
Sort and unique numbers, 262	RemoveFromNamespace (Insert/remove
* univariate approach	function names in/from the
Many regression based tests for	NAMESPACE file), 118
single sample repeated	Stack (Representation of Stack), 244
measures, 159	Stack (Represantation of Stack), 211
Repeated measures anova, 242	acg.mle, 14, 33, 165
* variable selection	acg.mle(MLE of (hyper-)spherical
Forward selection with generalised	distributions), 191
linear regression models, 101	AddToNamespace, 28, 242, 265
* variance test	All k possible combinations from n
Many one sample tests, 156	elements, 10
* variances of many samples	all_equals (Equality of objects), 86
Column and row-wise variances and	allbetas, 64, 65, 106, 129, 152, 167, 170,
standard deviations,48	174–177, 179, 180
* von Mises distribution	allbetas (Many simple linear
MLE of some circular	regressions coefficients), 167
distributions, 200	allttests (Matrix with all pairs of
* von Mises-Fisher distribution	t-tests), 182
Hypothesis test for von	Analysis of covariance, 11
Mises-Fisher distribution	Analysis of variance with a count
over Kent distribution, 115	variable, 12
MLE of (hyper-)spherical	ancoval (Analysis of covariance), 11
distributions, 191	ancovas, 12 , 173
Random values simulation from a	ancovas (Many ANCOVAs), 140
von Mises distribution, 239	Angular central Gaussian random values
Simulation of random values from a	simulation 13

anova, 13, 98, 132, 139	distributions)), 196
ANOVA for two quasi Poisson regression	betageom.mle (MLE of count data
models, 14	(univariate discrete
anova1, 12, 224	distributions)), 196
anoval (Multi-sample tests for	betaprime.mle (MLE of continuous
vectors), 209	univariate distributions
anova_propreg, 235	defined on the positive line),
anova_propreg(Significance testing	193
for the coefficients of Quasi	BIC (using partial correlation)
binomial or the quasi Poisson	forward regression, 19
regression), 250	BIC forward regression with
anova_qpois.reg, 15	generalised linear models, 20
anova_qpois.reg(Significance testing	bic.corfsreg, 21
for the coefficients of Quasi	bic.corfsreg(BIC (using partial
binomial or the quasi Poisson	correlation) forward
regression), 250	regression), 19
anova_quasipois.reg(ANOVA for two	bic.fs.reg(BIC forward regression with
quasi Poisson regression	generalised linear models), 20
models), 14	Binary search algorithm, 21
anovas, 138, 141	binary_search, <i>96</i> , <i>247</i>
anovas (Many multi-sample tests), 150	binary_search (Binary_search
Apply method to Positive and Negative	algorithm), 21
number, 15	bincomb (Permutation), 228
Apply to each column a method under	binom.mle (MLE of count data
condition, 17	(univariate discrete
apply.condition(Apply to each column	distributions)), 196
a method under condition), 17	Binomial coefficient and its
ar1 (Estimation of an AR(1) model), 87	logarithm, 22
as.Rfast.function (Convert R function	block.anova (Multi-sample tests for
to the Rfast's coresponding),	vectors), 209
61	block.anovas, 153
as_integer, 26, 273	block.anovas (Many multi-sample tests),
as_integer (Check if values are	150
integers and convert to	boot.ttest2, 90, 142
integer), 25	boot.ttest2 (Bootstrap t-test for 2
auc, 89	independent samples), 23
auc (Many (and one) area aunder the	Bootstrap t-test for 2 independent
curve values), 135	samples, 23
car ve varaes), 155	borel.mle (MLE of count data
Backward selection regression, 18	(univariate discrete
bc (Estimation of the Box-Cox	distributions), 196
transformation), 88	bs.reg (Backward selection regression),
bcdcor, 113	18
bcdcor (Distance correlation), 77	btmprobs(Fitted probabilities of the
beta.mle, 99, 194, 205, 218, 219	Terry-Bradley model), 97
beta.mle (MLE of distributions defined	
in the (0, 1) interval), 198	cat.goftests(Many one sample goodness
betabinom.mle (MLE of count data	of fit tests for categorical
(univariate discrete	data), 155

cauchy.mle (MLE of continuous	col.coxpoisrat (Cox confidence
univariate distributions	interval for the ratio of two
defined on the real line), 195	Poisson variables),67
Check if any column or row is fill	col.yule, 282
with values, 24	col.yule(Column-wise Yule's Y
Check if values are integers and	(coefficient of colligation)),
convert to integer, 25	59
Check Namespace and Rd files, 26	colAll (Column and row-wise Any/All), 36
Check whether a square matrix is	colanovas (Many Welch's F-tests), 179
symmetric, 29	colAny (Column and row-wise Any/All), 36
check_data (Search for variables with	
,	colar1 (Estimation of an AR(1) model),
zero range in a matrix), 249	87
checkAliases (Check Namespace and Rd	colaucs(Many (and one) area aunder
files), 26	the curve values), 135
checkExamples, 242	colCountValues(Row - Wise
checkExamples (Check Namespace and Rd	matrix/vector count the
files), 26	frequency of a value), 246
checkNamespace (Check Namespace and Rd	colCumMaxs (Colum-wise cumulative
files), 26	operations (sum, prod, min,
checkRd, 242	max)), 34
checkTF (Check Namespace and Rd files),	<pre>colCumMins(Colum-wise cumulative</pre>
26	operations (sum, prod, min,
checkUsage (Check Namespace and Rd	\max), 34
files), 26	<pre>colCumProds (Colum-wise cumulative</pre>
Chi-square and G-square tests of	operations (sum, prod, min,
(unconditional) indepdence, 30	max)), 34
chi2Test (G-square and Chi-square test	colCumSums (Colum-wise cumulative
	•
of conditional indepdence), 102	operations (sum, prod, min,
chi2Test_univariate(Matrix with	max)), 34
G-square tests of	colcvs(Column and row wise
indepedence), 183	coefficients of variation), 35
chi2tests (Many G-square and Chi-square	coldiffs, <i>41</i> , <i>43</i>
tests of indepedence), 144	coldiffs (Column-wise differences), 51
<pre>chisq.mle(MLE of continuous univariate</pre>	colexp2.mle(Column-wise MLE of some
distributions defined on the	univariate distributions), 55
positive line), 193	colexpmle (Column-wise MLE of some
cholesky, 29, 121	univariate distributions), 55
cholesky (Cholesky decomposition of a	colFalse, 76, 133, 249
square matrix), 31	colFalse (Column-wise true/false
Cholesky decomposition of a square	value), 57
matrix, 31	colgammamle(Column-wise MLE of some
Choose, 217, 246	univariate distributions), 55
Choose (Binomial coefficient and its	<pre>colgeom.mle (MLE for multivariate</pre>
logarithm), 22	discrete data), 190
circlin.cor (Circular-linear	colhameans (Column and row-wise means
correlation), 33	of a matrix), 37
Circular or angular regression, 32	colinvgauss.mle (Column-wise MLE of
Circular-linear correlation, 33	some univariate
CII CUI II III COI I CIALIUII, 33	Some univaliate

distributions), 55	colPmin (Column-row wise minima and
colkurtosis (Column-wise kurtosis and	maxima of two matrices), 50
skewness coefficients), 52	colpois.tests(Many tests for the
collaplace.mle (Column-wise MLE of some	dispersion parameter in
univariate distributions), 55	Poisson distribution), 171
collindley.mle (Column-wise MLE of some	colpoisdisp.tests (Many tests for the
univariate distributions), 55	dispersion parameter in
colMads, 38, 185, 225, 270	Poisson distribution), 171
colMads (Column and rows-wise mean	colpoisson.anovas(Many ANOVAS for count data with Poisson or
absolute deviations), 49	quasi Poisson models), 141
colmaxboltz.mle(Column-wise MLE of some univariate	colpoisson.mle, 233
distributions), 55	colpoisson.mle (MLE for multivariate
colMaxs, 10, 43, 50, 248, 264, 277	discrete data), 190
colMaxs (Column-wise minimum and	colprods, 41
maximum), 54	colprods (Column and row-wise
colMeans, 37, 39, 40, 46, 49	products), 42
colmeans, 26, 46, 47, 49, 51, 52, 72, 112, 116,	colquasipoisson.anovas (Many ANOVAS
118, 122, 135, 146, 212, 216, 220,	for count data with Poisson o
221, 225, 245, 259, 260, 270, 273,	quasi Poisson models), 141
280	colrange, 10, 25, 49, 55, 57, 108, 188, 189,
colmeans (Column and row-wise means of	198, 244, 250, 264, 277
a matrix), 37	colrange (Column and row-wise range of
colMedians, 17, 25, 35, 37, 38, 40, 41, 43, 46,	values of a matrix), 43
49, 50, 52, 55, 57, 61, 79, 108, 112,	colRanks, 241
116, 185, 186, 188, 189, 212, 221,	colRanks(Column and row-wise ranks), 4
244, 248, 259, 260, 266	colrayleigh.mle(Column-wise MLE of
colMedians(Column and row-wise	some univariate
medians), 38	distributions), 55
colMins, 10, 38, 43, 50, 187, 248, 264, 277	colrint.regbx, <i>149</i>
colMins (Column-wise minimum and	<pre>colrint.regbx (Many random intercepts</pre>
maximum), 54	LMMs for balanced data with a
colMinsMaxs (Column-wise minimum and	single identical covariate.),
maximum), 54	157
colnormal.mle(Column-wise MLE of some	colrow.value (Check if any column or
univariate distributions), 55	row is fill with values), 24
colnormlog.mle (Column-wise MLE of some	colShuffle, 47, 72, 118, 122, 245, 273, 280
univariate distributions), 55	colShuffle (Column and row-wise
colnth, 16, 261	Shuffle), 45
colnth (Column and row-wise nth	colskewness, <i>116</i> , <i>146</i> , <i>212</i> , <i>259</i>
smallest value of a	colskewness (Column-wise kurtosis and skewness coefficients), 52
matrix/vector), 39	· · · · · · · · · · · · · · · · · · ·
colOrder (Column and row-wise Order - Sort Indices), 41	colSort, 25, 43, 55, 57, 76, 100, 108, 187–189, 244, 248, 263
colpareto.mle (Column-wise MLE of some	colSort (Sorting of the columns-rows
univariate distributions), 55	of a matrix), 263
colPmax (Column-row wise minima and	colsums, 17, 35, 36, 38, 41, 43, 61, 87, 168,
maxima of two matrices). 50	181.271

colsums (Column and row-wise sums of a	columns (Get specific columns/rows fo
matrix), 46	a matrix), 107
colTabulate, 54	colvarcomps.mle, <i>158</i> , <i>208</i>
colTabulate(Column and row-wise	colvarcomps.mle(Many moment and
tabulate), 47	maximum likelihood estimations
colTrue, 76, 133, 249	of variance components), 148
<pre>colTrue(Column-wise true/false value),</pre>	colvarcomps.mom, 239
57	colvarcomps.mom(Many moment and
<pre>colTrueFalse (Column-wise true/false</pre>	maximum likelihood estimations
value), 57	of variance components), 148
Colum-wise cumulative operations (sum,	colVars, 17, 25, 26, 35, 36, 39, 43, 46, 47, 49,
prod, min, max), 34	52, 55, 57, 61, 67, 72, 87, 94, 108,
Column and row wise coefficients of	112, 116, 118, 122, 137, 168, 212,
variation, 35	216, 233, 244, 245, 248, 250, 259,
Column and row-wise Any/All, 36	260, 270, 271, 273, 279, 280
Column and row-wise means of a matrix,	colVars(Column and row-wise variances
37	and standard deviations), 48
Column and row-wise medians, 38	colvm.mle(Column-wise MLE of some
Column and row-wise nth smallest value	univariate distributions), 55
of a matrix/vector, 39	colwatsons (Column-wise uniformity
Column and row-wise Order - Sort	Watson test for circular
Indices, 41	data), 58
Column and row-wise products, 42	colweibull.mle(Column-wise MLE of some
Column and row-wise range of values of	univariate distributions), 55
a matrix,43	comb_n, 23, 229
Column and row-wise ranks, 44	<pre>comb_n (All k possible combinations</pre>
Column and row-wise Shuffle, 45	from n elements), 10
Column and row-wise sums of a matrix,	combn, 229
46	Convert a dataframe to matrix, 60
Column and row-wise tabulate, 47	Convert R function to the Rfast's
Column and row-wise variances and	coresponding, 61
standard deviations, 48	cor, 66, 67
Column and rows-wise mean absolute	cor.fbed, 227
deviations, 49	cor.fbed(FBED variable selection
Column-row wise minima and maxima of	method using the correlation),
two matrices, 50	94
Column-wise differences, 51	cor.fsreg, 18, 20, 21, 95, 102, 126, 129, 227
Column-wise kurtosis and skewness	cor.fsreg(Correlation based forward
coefficients, 52	regression), 62
Column-wise matching coefficients, 53	cora, 29, 258
Column-wise minimum and maximum, 54	cora(Covariance and correlation
Column-wise MLE of some univariate	matrix), 66
distributions, 55	corpairs, 146
Column-wise true/false value, 57	corpairs (Correlation between pairs of
Column-wise uniformity Watson test for	variables), 63
circular data, 58	Correlation based forward regression,
Column-wise Yule's Y (coefficient of	62
colligation), 59	Correlation between pairs of

variables, 63	design_matrix(Design Matrix),74
Correlations, 65	Diag.fill, 225
correls, 45, 64, 68, 87, 89, 95, 103, 129, 146,	Diag.fill(Diagonal Matrix),75
152, 168, 174, 176, 177, 180, 184,	Diag.matrix(Diagonal Matrix), 75
227, 231, 241, 258, 271	Diagonal Matrix, 75
correls (Correlations), 65	Digamma(Natural logarithm of the
<pre>count_value(Row - Wise matrix/vector</pre>	gamma function and its
count the frequency of a	derivatives), 219
value), 246	diri.nr2, 199, 202, 205, 218, 219
cov, <i>67</i>	diri.nr2(Fitting a Dirichlet
cova, 29, 121, 279	distribution via
cova(Covariance and correlation	Newton-Rapshon), 98
matrix), 66	dirimultinom.mle (MLE for multivariate
Covariance and correlation matrix, 66	discrete data), 190
Cox confidence interval for the ratio	dirknn, <i>72</i> , <i>126</i>
of two Poisson variables, 67	dirknn(k-NN algorithm using the arc
<pre>cox.poisrat(Cox confidence interval</pre>	cosinus distance), 126
for the ratio of two Poisson	dirknn.cv, 70, 127
variables), 67	dirknn.cv(Cross-Validation for the
cqtest (Multi-sample tests for	k-NN algorithm using the arc
vectors), 209	cosinus distance), 70
cqtests (Many non parametric	Dist, 51, 70, 77, 86, 220, 225, 272
multi-sample tests), 152	Dist (Distance matrix), 78
Cross-Validation for the k-NN	dista, 51, 70, 79, 86, 135, 220, 225, 272
algorithm,68	dista(Distance between vectors and a
Cross-Validation for the k-NN	matrix), 76
algorithm using the arc	Distance between vectors and a matrix
cosinus distance, 70	76
Crossprod, 66, 81	Distance correlation, 77
Crossprod (Matrix multiplication), 181	Distance matrix, 78
ct.mle (MLE of continuous univariate	Distance variance and covariance, 80
distributions defined on the	dmvnorm, 203, 204
real line), 195	dmvnorm (Density of the multivariate
1 002 22110), 150	normal and t distributions), 73
data.frame.to_matrix, 256	dmvt(Density of the multivariate
data.frame.to_matrix(Convert a	normal and t distributions), 73
dataframe to matrix), 60	dvar, 86
dcor, 80	dvar(Distance variance and
dcor (Distance correlation), 77	covariance), 80
dcor.ttest, 78	covariance), oo
dcor.ttest (Hypothesis test for the	eachcol.apply(Operations between two
distance correlation), 112	matrices or matrix and
dcov, 78, 113	vector), 224
dcov (Distance variance and	eachrow (Operations between two
covariance), 80	matrices or matrix and
Deep copy, 72	vector), 224
Density of the multivariate normal and	edist, 78, 80, 113
t distributions, 73	edist (Energy distance between
Design Matrix, 74	matrices), 85
U ::=:=:=::, · :	

eel.test1 (Empirical and exponential	expregs (Many exponential regressions),
empirical likelihood tests for	142
one sample), 82	factor 04
eel.test2(Empirical and exponential	factor, 94
empirical likelihood tests for	Fast and general - untyped
two samples), 83	represantation of a factor
eigen.sym (Limited number of	variable, 93
eigenvalues and eigenvectors	FBED variable selection method using
of a symmetric matrix), 127	the correlation, 94
Eigenvalues and eigenvectors in high	Find element, 95
dimensional principal	Find the given value in a hash table,
component analysis, 81	96
el.test1(Empirical and exponential	fish.kent(Hypothesis test for von
empirical likelihood tests for	Mises-Fisher distribution
one sample), 82	over Kent distribution), 115
el.test2(Empirical and exponential	Fitted probabilities of the
empirical likelihood tests for	Terry-Bradley model, 97
two samples), 83	Fitting a Dirichlet distribution via
Elem (Iterator), 121	Newton-Rapshon, 98
Elem<- (Iterator), 121	floyd, <i>276</i>
Empirical and exponential empirical	floyd(Floyd-Warshall algorithm), 99
likelihood tests for one	Floyd-Warshall algorithm, 99
sample, 82	foldnorm.mle(MLE of continuous
Empirical and exponential empirical	univariate distributions
likelihood tests for two	defined on the positive line),
	193
samples, 83	Forward selection with generalised
Energy distance between matrices, 85	linear regression models, 101
Equality of objects, 86	freq.max(Minimum and maximum
Estimation of an AR(1) model, 87	frequencies), 189
Estimation of the Box-Cox	freq.min(Minimum and maximum
transformation, 88	frequencies), 189
Exact t-test for 2 independent	fs.reg, 18, 21, 95, 126, 227
samples, 89	fs.reg(Forward selection with
exact.ttest2, 24	generalised linear regression
exact.ttest2(Exact t-test for 2	models), 101
independent samples), 89	ftest, 24, 83, 90, 114, 142, 148
exp2.mle(MLE of continuous univariate	ftest (Multi-sample tests for vectors),
distributions defined on the	209
positive line), 193	ftests, 12, 84, 136–138, 141, 143, 144, 153,
expmle (MLE of continuous univariate	155, 157, 164, 173, 179, 180, 183,
distributions defined on the	210
positive line), 193	ftests (Many multi-sample tests), 150
Exponential empirical likelihood for a	rests (namy mater sample tests), 150
one sample mean vector	G-square and Chi-square test of
hypothesis testing, 90	conditional indepdence, 102
Exponential empirical likelihood	g2Test, 12, 13, 30, 146, 184, 223, 256, 258
hypothesis testing for two	g2Test (G-square and Chi-square test
mean vectors 91	of conditional indendence) 102

g2Test_perm, <i>146</i> , <i>184</i>	a count variable), 12
g2Test_perm(G-square and Chi-square	geom.anovas (Many analysis of variance
test of conditional	tests with a discrete
indepdence), 102	variable), 139
g2Test_univariate, 30, 102, 103, 154, 183,	geom.mle(MLE of count data (univariate
258	discrete distributions)), 196
g2Test_univariate(Matrix with	geom.nb (Naive Bayes classifiers), 215
G-square tests of	<pre>geom.regs(Many simple geometric</pre>
indepedence), 183	regressions), 165
g2Test_univariate_perm, 30, 102, 103	<pre>geomnb.pred(Prediction with some</pre>
g2Test_univariate_perm(Matrix with	naive Bayes classifiers), 233
G-square tests of	Get specific columns/rows fo a matrix,
indepedence), 183	107
g2tests, 98, 139	ginis (Many Gini coefficients), 146
g2tests(Many G-square and Chi-square	glm_logistic, 102, 211
tests of indepedence), 144	glm_logistic (Logistic and Poisson
g2tests_perm(Many G-square and	regression models), 130
Chi-square tests of	glm_poisson, 102
indepedence), 144	glm_poisson (Logistic and Poisson
Gamma regression with a log-link, 104	regression models), 130
gammacon (Gamma regression with a	group (Some summary statistics of a
log-link), 104	vector for each level of a
gammamle, 56, 196, 207	grouping variable), 259
gammamle (MLE of continuous univariate	groupcorrels (Correlations), 65
distributions defined on the	<pre>gumbel.mle (MLE of continuous univariate distributions</pre>
positive line), 193	defined on the real line), 195
gammanb (Naive Bayes classifiers), 215	defined on the real line), 193
<pre>gammanb.pred(Prediction with some</pre>	halfnorm.mle (MLE of continuous
naive Bayes classifiers), 233	univariate distributions
gammareg (Gamma regression with a	defined on the positive line),
log-link), 104	193
gammaregs, 105	Hash (Hash object), 109
gammaregs (Many simple regressions for	Hash - Pair function, 108
positive valued data), 169	Hash object, 109
Gaussian regression with a log-link,	Hash object to a list object, 110
105	hash.find, <i>109-111</i>
gaussian.nb, 203, 204, 233	hash.find(Find the given value in a
gaussian.nb(Naive Bayes classifiers),	hash table), 96
215	hash.list, <i>97</i> , <i>110</i> , <i>111</i>
gaussiannb.pred, 216	hash.list(Hash - Pair function), 108
gaussiannb.pred(Prediction with some	hash2list(Hash object to a list
naive Bayes classifiers), 233	object), 110
gchi2Test (Chi-square and G-square	hd.eigen, <i>128</i>
tests of (unconditional)	hd.eigen(Eigenvalues and eigenvectors
indepdence), 30	in high dimensional principal
Generates random values from a normal	component analysis), 81
and puts them in a matrix, 106	High dimensional MCD based detection
geom.anova(Analysis of variance with	of outliers, 111

hsecant01.mle (MLE of distributions	Iterator, 121
defined in the (0, 1)	iterator (Iterator), 121
interval), 198	
Hypothesis test for the distance	james, <i>91</i> , <i>93</i>
correlation, 112	james (James multivariate version of
Hypothesis test for two means of	the t-test), 123
percentages, 114	James multivariate version of the
Hypothesis test for von Mises-Fisher	t-test, 123
distribution over Kent	t tcst, 123
distribution, 115	L noonest neighbours algerithm (L NN)
Hypothesis testing between two	k nearest neighbours algorithm (k-NN) 124
skewness or kurtosis	
coefficients, 116	k-NN algorithm using the arc cosinus
,	distance, 126
iag.mle, 33, 74, 115, 165, 256	knn, 70, 72, 127
iag.mle(MLE of (hyper-)spherical	knn (k nearest neighbours algorithm
distributions), 191	(k-NN)), 124
ibeta.mle(MLE of distributions defined	knn.cv, 72, 126
in the (0, 1) interval), 198	knn.cv(Cross-Validation for the k-NN
Index of the columns of a data.frame	algorithm), 68
which are a specific type, 117	kruskaltest (Multi-sample tests for
<pre>Insert/remove function names in/from</pre>	vectors), 209
the NAMESPACE file, 118	kruskaltests (Many non parametric
invdir.mle(MLE of the inverted	multi-sample tests), 152
Dirichlet distribution), 201	kuiper(Uniformity test for circular
Inverse Gaussian regression with a	data), 277
log-link, 119	kurt (Skewness and kurtosis
Inverse of a symmetric positive	coefficients), 258
definite matrix, 120	kurt.test2(Hypothesis testing between
invgauss.mle(MLE of continuous	two skewness or kurtosis
univariate distributions	coefficients), 116
defined on the positive line),	
193	laplace.mle(MLE of continuous
invgauss.reg, 105	univariate distributions
invgauss.reg(Inverse Gaussian	defined on the real line), 195
regression with a log-link),	Lbeta, <i>23</i> , <i>217</i>
119	Lbeta(Natural logarithm of the beta
invgauss.regs, 120	function), 218
invgauss.regs(Many simple regressions	Lchoose, 217, 246
for positive valued data), 169	Lchoose (Binomial coefficient and its
is.symmetric, <i>31</i> , <i>60</i>	logarithm), 22
is.symmetric(Check whether a square	length.Hash (Hash object), 109
matrix is symmetric), 29	Lgamma, 23, 218
is_element, 22	Lgamma (Natural logarithm of the gamma
is_element (Find element), 95	function and its derivatives),
is_integer, 273	219
is_integer(Check if values are	Limited number of eigenvalues and
integers and convert to	eigenvectors of a symmetric
integer), 25	matrix, 127

1: 13	102
lindley.mle (MLE of continuous	193
univariate distributions	logseries.mle (MLE of count data
defined on the positive line),	(univariate discrete
193	distributions)), 196
Linear models for large scale data, 128	lomax.mle (MLE of continuous univariate
list.ftests(Many F-tests with really	distributions defined on the
huge matrices), 143	positive line), 193
lm, <i>129</i>	Lower and Upper triangular of a
lm.fit, <i>129</i>	matrix, 133
lmfit, 267	lower_tri(Lower and Upper triangular
<pre>lmfit(Linear models for large scale</pre>	of a matrix), 133
data), 128	Mad(Mean - Median absolute deviation
Log, 246	of a vector), 185
Log(Natural Logarithm each element of	mad2 (Mean - Median absolute deviation
a matrix), 217	
logcauchy.mle (MLE of continuous	of a vector), 185 mahala, 77
univariate distributions	mahala (Mahalanobis distance), 134
defined on the positive line),	Mahalanobis distance, 134
193	
Logistic and Poisson regression	Many (and one) area aunder the curve values, 135
models, 130	Many 2 sample proportions tests, 136
Logistic or Poisson regression with a	Many 2 sample tests, 137
single categorical predictor,	Many analysis of variance tests with a
131	discrete variable, 139
logistic.cat1, <i>13</i>	Many ANCOVAs, 140
logistic.cat1 (Logistic or Poisson	Many ANOVAS for count data with
regression with a single	•
categorical predictor), 131	Poisson or quasi Poisson models, 141
logistic.mle (MLE of continuous	Many exponential regressions, 142
univariate distributions	Many F-tests with really huge
defined on the real line), 195	matrices, 143
logistic_only, 20, 21, 63, 102, 107, 126,	
131, 132, 143, 162, 167, 174, 179,	Many G-square and Chi-square tests of
211, 235, 251, 281	indepedence, 144
logistic_only (Many univariate simple	Many hypothesis toots for two mans of
logistic and Poisson	Many hypothesis tests for two means of
regressions), 176	percentages, 147
logitnorm.mle (MLE of distributions	Many moment and maximum likelihood estimations of variance
defined in the (0, 1)	
interval), 198	components, 148
loglm, 30	Many multi-sample tests, 150
loglogistic.mle (MLE of continuous	Many multivariate simple linear
univariate distributions	regressions coefficients, 151
	Many non parametric multi-sample
defined on the positive line),	tests, 152
193	Many one comple goodness of fit tests
lognorm.mle (MLE of continuous	Many one sample goodness of fit tests
univariate distributions	for categorical data, 155
defined on the positive line),	Many one sample tests, 156

om intercepts LMMs for	maxboltz.mle(MLE of continuous
alanced data with a single	univariate distributions
dentical covariate., 157	defined on the positive line),
ession based tests for single	193
ample repeated measures, 159	mcnemar(Multi-sample tests for
e based regressions, 161	vectors), 209
ro-Francia normality tests,	mcnemars (Many 2 sample tests), 137
53	Mean - Median absolute deviation of a
le circular or angular	vector, 185
egressions, 164	med(Median of a vector), 186
le geometric regressions, 165	Median, 37, 39, 40, 46, 185, 247
le linear mixed model	Median (Median of a vector), 186
egressions, 166	Median of a vector, 186
le linear regressions	mediandir(Spherical and
pefficients, 167	hyperspherical median), 268
le multinomial regressions,	min_max(Minimum and maximum), 188
58	Minima and maxima of two
le regressions for positive	vectors/matrices, 187
alued data, 169	Minimum and maximum, 188
s for the dispersion	Minimum and maximum frequencies, 189
arameter in Poisson	MLE for multivariate discrete data, 190
istribution, 171	MLE of (hyper-)spherical
way ANOVAs, 172	distributions, 191
ariate generalised linear	MLE of continuous univariate
odels, 173	distributions defined on the
ariate simple linear	positive line, 193
egressions, 175	MLE of continuous univariate
ariate simple logistic and	distributions defined on the
oisson regressions, 176	real line, 195
ariate simple quasi poisson	MLE of count data (univariate discrete
egressions, 178	distributions), 196
n's F-tests, 179	MLE of distributions defined in the
umber of equal columns	(0, 1) interval, 198
etween two matrices), 221	MLE of some circular distributions, 200
228	MLE of the inverted Dirichlet
Matrix multiplication), 181	distribution, 201
<i>87, 117,</i> 180 <i>,</i> 22 <i>1,</i> 27 <i>1</i>	MLE of the multivariate (log-) normal
	distribution, 202
fs(Column-wise matching	MLE of the multivariate t
pefficients), 53	distribution, 204
tiplication, 181	MLE of the ordinal model without
th all pairs of t-tests, 182	covariates, 205
th G-square tests of	MLE of the tobit model, 206
ndepedence, 183	model.matrix, 75
254	Moment and maximum likelihood
Generates random values from	estimation of variance
normal and puts them in a	components, 207
etrix), 106	Multi-sample tests for vectors, 209
th all pairs of t-tests, 182 th G-square tests of indepedence, 183 254 Generates random values from normal and puts them in a	covariates, 205 MLE of the tobit model, 206 model.matrix, 75 Moment and maximum likelihood estimation of variance components, 207

multinom.mle, 202, 203	Natural logarithm of the gamma
multinom.mle (MLE for multivariate	function and its derivatives,
discrete data), 190	219
multinom.nb (Naive Bayes classifiers),	negative (Apply method to Positive and
215	Negative number), 15
multinom.reg (Multinomial regression),	negbin.mle, 172, 191, 275
211	negbin.mle (MLE of count data
multinom.regs (Many simple multinomial	(univariate discrete
regressions), 168	distributions), 196
Multinomial regression, 211	Norm (Norm of a matrix), 220
multinomnb.pred (Prediction with some	Norm of a matrix, 220
naive Bayes classifiers), 233	normal.mle, 56, 194, 207
Multivariate kurtosis, 212	normal.mle (MLE of continuous
	univariate distributions
Multivariate Laplace random values	
simulation, 213	defined on the real line), 195
Multivariate normal and t random	normlog.mle (MLE of continuous
values simulation, 214	univariate distributions
multivmf.mle(MLE of (hyper-)spherical	defined on the positive line),
distributions), 191	193
mv.eeltest1,93	normlog.reg, 105, 120, 170
<pre>mv.eeltest1(Exponential empirical</pre>	normlog.reg(Gaussian regression with
likelihood for a one sample	a log-link), 105
mean vector hypothesis	normlog.regs, 106
testing), 90	normlog.regs(Many simple regressions
mv.eeltest2, <i>91</i> , <i>124</i>	for positive valued data), 169
<pre>mv.eeltest2(Exponential empirical</pre>	nth, 10, 16, 25, 43, 55, 57, 76, 108, 117, 133,
likelihood hypothesis testing	186, 188, 189, 244, 247–249, 261,
for two mean vectors), 91	264, 277
mvbetas, 64, 87, 129, 168, 176, 271	nth(Column and row-wise nth smallest
mvbetas (Many multivariate simple	value of a matrix/vector), 39
linear regressions	Number of equal columns between two
coefficients), 151	matrices, 221
mvkurtosis (Multivariate kurtosis), 212	
mvlnorm.mle (MLE of the multivariate	odds, 54, 59, 223
(log-) normal distribution),	odds (Many odds ratio tests), 154
202	Odds ratio and relative risk, 222
mvnorm.mle, 74, 204	odds.ratio, 154, 282
mvnorm.mle (MLE of the multivariate	odds.ratio(Odds ratio and relative
(log-) normal distribution),	risk), 222
202	omp (Orthogonal matching pursuit
mvt.mle(MLE of the multivariate t	• • • • • • • • • • • • • • • • • • • •
distribution), 204	variable selection), 226
41361 13461011), 201	ompr, 95
Naive Davis aloraificas 015	ompr (Orthogonal matching pursuit
Naive Bayes classifiers, 215	variable selection), 226
Natural Logarithm each element of a	One sample t-test for a vector, 223
matrix, 217	Operations between two matrices or
Natural logarithm of the beta	matrix and vector, 224
function, 218	Order. 247

Order (Column and row-wise Order -	poisson.cat1(Logistic or Poisson
Sort Indices), 41	regression with a single
ordinal.mle(MLE of the ordinal model	categorical predictor), 131
without covariates), 205	poisson.mle, 13, 56, 98, 139, 172, 191, 275
Orthogonal matching pursuit variable	poisson.mle(MLE of count data
selection, 226	(univariate discrete
Outer (Outer function), 227	distributions)), 196
Outer function, 227	poisson.nb, 191
	poisson.nb (Naive Bayes classifiers),
pareto.mle(MLE of continuous	215
univariate distributions	poisson_only, 13, 20, 21, 63, 98, 102, 131,
defined on the positive line),	132, 139, 143, 162, 166, 169, 172,
193	174, 179, 198, 237, 275, 281
pc.skel, 230, 276	poisson_only (Many univariate simple
pc.skel(Skeleton of the PC algorithm),	logistic and Poisson
256	regressions), 176
percent.ttest(Hypothesis test for two	poissonnb.pred (Prediction with some
means of percentages), 114	naive Bayes classifiers), 233
percent.ttests (Many hypothesis tests	poly.cor(Polyserial correlation), 230
for two means of percentages),	Polyserial correlation, 230
147	Pooled covariance matrix, 232
permcor (Permutation based p-value for	pooled.cov (Pooled covariance matrix)
the Pearson correlation	232
coefficient), 229	positive (Apply method to Positive an
Permutation, 228	Negative number), 15
permutation, 60	Prediction with some naive Bayes
permutation (Permutation), 228	classifiers, 233
Permutation based p-value for the	print.Hash (Hash object), 109
Pearson correlation	print.iterator (Iterator), 121
coefficient, 229	print.ufactor(Fast and general -
Pmax (Minima and maxima of two	untyped representation of a
vectors/matrices), 187	factor variable), 93
Pmin (Minima and maxima of two	prop.reg, 114, 147, 148, 237, 251
vectors/matrices), 187	prop.reg(Quasi binomial regression
Pmin_Pmax (Minima and maxima of two	for proportions), 234
vectors/matrices), 187	prop. regs, 106, 166, 169, 170, 177
pois.test (Tests for the dispersion	prop.regs, 700, 700, 107, 777 prop.regs (Quasi binomial regression
parameter in Poisson	for proportions), 234
distribution), 274	proptest (Many one sample tests), 156
poisdisp.test (Tests for the	proptests (Many 2 sample proportions
dispersion parameter in	tests), 136
Poisson distribution), 274	tests), 130
poisson.anova, 98, 132, 139, 142, 172, 275	qpois.reg, <i>15</i> , <i>251</i>
poisson.anova (Analysis of variance	qpois.reg(Quasi Poisson regression
with a count variable), 12	for count data), 236
poisson.anovas, 13, 132, 172, 275	qpois.regs (Quasi Poisson regression
poisson.anovas (Many analysis of	for count data), 236
variance tests with a discrete	Quasi binomial regression for
variable). 139	proportions, 234

Quasi Poisson regression for count	<pre>rep_col (Replicate columns/rows), 243</pre>
data, 236	<pre>rep_row (Replicate columns/rows), 243</pre>
quasi.poisson_only, 177	Repeated measures anova, 242
quasi.poisson_only(Many univariate	Replicate columns/rows, 243
simple quasi poisson	Represantation of Stack, 244
regressions), 178	Rfast-package, 6
quasipoisson.anova, 15	rint.mle(Moment and maximum
quasipoisson.anova(Analysis of	likelihood estimation of
variance with a count	variance components), 207
variable), 12	rint.reg, 158, 160, 167, 208, 243
quasipoisson.anovas(Many analysis of	rint.reg(Random intercepts linear
variance tests with a discrete	mixed models), 237
variable), 139	rint.regbx, 158, 160, 208
	rint.regbx(Random intercepts linear
racg, 192, 213, 215	mixed models), 237
racg(Angular central Gaussian random	rint.regs (Many simple linear mixed
values simulation), 13	model regressions), 166
Random intercepts linear mixed models,	rm.anova (Repeated measures anova), 242
237	rm. anovas, 88, 243
Random values simulation from a von	rm.anovas (Many regression based tests
Mises distribution, 239	for single sample repeated
Rank, <i>45</i>	measures), 159
Rank (Ranks of the values of a vector),	rm.lines, 88, 158, 239
240	rm.lines (Many regression based tests
Ranks of the values of a vector, 240	for single sample repeated
rayleigh.mle(MLE of continuous	
univariate distributions	measures), 159
defined on the positive line),	rmdp, 82
193	rmdp (High dimensional MCD based
rbing, <i>253</i>	detection of outliers), 111
rbing(Simulation of random values from	rmvlaplace, 14, 215
a Bingham distribution), 252	rmvlaplace (Multivariate Laplace
rbingham (Simulation of random values	random values simulation), 213
from a Bingham distribution	rmvnorm, 14, 74, 107, 213, 254
with any symmetric matrix), 253	rmvnorm (Multivariate normal and t
read.directory, 26, 28, 72, 118, 122, 245,	random values simulation), 214
265, 273	rmvt, 14, 74, 213, 215
read.directory(Reading the files of a	rmvt (Multivariate normal and t random
directory), 241	values simulation), 214
read.examples, 28	Rnorm, 107
read.examples(Reading the files of a	Rnorm (Simulation of random values from
directory), 241	a normal distribution), 254
Reading the files of a directory, 241	Round, 16, 261
regression, 20, 21, 63, 129, 131, 143, 162,	Round (Round each element of a
174, 177, 179, 180, 281	matrix/vector), 245
regression (Many univariate simple	Round each element of a matrix/vector,
linear regressions), 175	245
rel.risk(Odds ratio and relative	Row - Wise matrix/vector count the
risk), 222	frequency of a value, 246

Row-wise minimum and maximum, 247	rowSort (Sorting of the columns-rows
Row-wise true value, 248	of a matrix), 263
rowAll(Column and row-wise Any/All), 36	rowsums, 38
rowAny (Column and row-wise Any/All), 36	rowsums (Column and row-wise sums of a
rowCountValues(Row - Wise	matrix),46
matrix/vector count the	<pre>rowTabulate(Column and row-wise</pre>
frequency of a value), 246	tabulate), 47
rowcvs (Column and row wise	rowTrue, 25, 57, 108, 244
coefficients of variation), 35	rowTrue (Row-wise true value), 248
rowFalse, 25, 57, 108, 244	rowTrueFalse (Row-wise true value), 248
rowFalse (Row-wise true value), 248	rowVars, 76, 133, 249
rowhameans (Column and row-wise means	<pre>rowVars (Column and row-wise variances</pre>
of a matrix), 37	and standard deviations), 48
rowMads, 225	rvmf, 107, 192, 201, 240, 252, 254
rowMads (Column and rows-wise mean	<pre>rvmf (Simulation of random values from</pre>
absolute deviations), 49	a von Mises-Fisher
rowMaxs, 43, 55, 188, 189	distribution), 255
rowMaxs (Row-wise minimum and maximum),	rvonmises, 58, 107, 201, 254, 256, 278
247	rvonmises (Random values simulation
rowmeans (Column and row-wise means of	from a von Mises
a matrix), 37	distribution), 239
rowMedians, 49, 76, 133, 249	
rowMedians (Column and row-wise	score.betaregs (Many score based
medians), 38	regressions), 161
rowMins, 25, 43, 55, 57, 76, 108, 133, 188,	score.expregs (Many score based
189, 244, 249	regressions), 161
rowMins (Row-wise minimum and maximum),	score.gammaregs (Many score based
247	regressions), 161
rowMinsMaxs(Row-wise minimum and	score.geomregs, 166, 169
maximum), 247	score.geomregs (Many score based
rownth, <i>16</i> , <i>261</i>	regressions), 161
rownth(Column and row-wise nth	score.glms, 20, 21, 63, 106, 120, 143, 167,
smallest value of a	170, 177, 235, 237, 251
matrix/vector), 39	score.glms (Many score based
rowOrder(Column and row-wise Order -	regressions), 161
Sort Indices), 41	score.invgaussregs(Many score based
rowprods (Column and row-wise	regressions), 161
products), 42	score.multinomregs, 211
rowrange, 76, 133, 248, 249	score.multinomregs(Many score based
rowrange (Column and row-wise range of	regressions), 161
values of a matrix), 43	score.negbinregs(Many score based
rowRanks (Column and row-wise ranks), 44	regressions), 161
rows(Get specific columns/rows fo a	score.weibregs(Many score based
matrix), 107	regressions), 161
rowShuffle (Column and row-wise	score.ztpregs(Many score based
Shuffle), 45	regressions), 161
rowSort, 25, 43, 55, 57, 76, 100, 108,	Search for variables with zero range
187–189, 244, 248, 263	in a matrix, 249

Sitest (Many Snapiro-Francia normality	Source many R 111es, 204
tests), 163	sourceR, 28, 242
sftests, <i>52</i> , <i>107</i>	sourceR(Source many R files), 264
sftests (Many Shapiro-Francia	sourceRd, 28, 242
normality tests), 163	sourceRd(Source many R files), 264
Significance testing for the	spat.med, <i>232</i> , <i>267</i> , <i>268</i>
coefficients of Quasi binomial	spat.med(Spatial median for Euclidear
or the quasi Poisson	data), 265
regression, 250	Spatial median for Euclidean data, 265
Simulation of random values from a	Spatial median regression, 266
Bingham distribution, 252	Spatial sign covariance matrix, 267
Simulation of random values from a	spatmed.reg, 232, 268
Bingham distribution with any	spatmed.reg(Spatial median
symmetric matrix, 253	regression), 266
Simulation of random values from a	<pre>spdinv(Inverse of a symmetric</pre>
normal distribution, 254	positive definite matrix), 120
Simulation of random values from a von	Spherical and hyperspherical median,
Mises-Fisher distribution, 255	268
Skeleton of the PC algorithm, 256	spml.mle, <i>33</i> , <i>127</i> , <i>165</i>
skew, <i>52</i> , <i>116</i>	spml.mle(MLE of some circular
skew (Skewness and kurtosis	distributions), 200
coefficients), 258	spml.reg, <i>34</i>
skew. test2, <i>52</i> , <i>212</i> , <i>259</i>	spml.reg(Circular or angular
skew.test2(Hypothesis testing between	regression), 32
two skewness or kurtosis	spml.regs(Many simple circular or
coefficients), 116	angular regressions), 164
Skewness and kurtosis coefficients, 258	squareform(Vector allocation in a
Some summary statistics of a vector	symmetric matrix), 279
for each level of a grouping	sscov, 267
variable, 259	sscov(Spatial sign covariance matrix)
Sort, <i>50</i> , <i>187</i>	267
Sort (Sort - Integer Sort - Sort a	Standardisation, 269
vector coresponding to	standardise (Standardisation), 269
another), 260	Sub-matrix, 270
Sort - Integer Sort - Sort a vector	submatrix (Sub-matrix), 270
coresponding to another, 260	Sum of all pairwise distances in a
Sort and unique numbers, 262	distance matrix, 271
sort_cor_vectors, 263, 264	T 1.1 (0.22)
	Table, 68, 231
sort_cor_vectors (Sort - Integer Sort	Table (Table Creation - Frequency of
 Sort a vector coresponding to another), 260 	each value), 272
sort_mat (Sorting of the columns-rows	Table Creation - Frequency of each
of a matrix), 263	value, 272
	Terrossprod, 66, 81
sort_unique, 16, 261, 264	Torossprod (Matrix multiplication), 181
sort_unique (Sort and unique numbers), 262	Tests for the dispersion parameter in Poisson distribution, 274
Sorting of the columns-rows of a	tmle(MLE of continuous univariate
matrix.263	distributions defined on the

real line), 195	upper_tri(Lower and Upper triangular
tobit.mle (MLE of the tobit model), 206	of a matrix), 133
Topological sort of a DAG, 275	
topological_sort(Topological sort of	Var (Variance of a vector), 278
a DAG), 275	var2test (Multi-sample tests for
total.dist, 77, 86	vectors), 209
total.dist(Sum of all pairwise	var2tests (Many 2 sample tests), 137
distances in a distance	varcomps.mle, 88, 149, 160, 243
matrix), 271	varcomps.mle (Moment and maximum
total.dista, 77, 86	likelihood estimation of
total.dista(Sum of all pairwise	variance components), 207
distances in a distance	varcomps.mom, 158, 239
matrix), 271	varcomps.mom (Moment and maximum
transpose, 181	likelihood estimation of
transpose (Transpose of a matrix), 276	variance components), 207
Transpose of a matrix, 276	Variance of a vector, 278
Trigamma (Natural logarithm of the	vartest (Many one sample tests), 156
gamma function and its	vartests (Many multi-sample tests), 150
derivatives), 219	vecdist, 228
ttest, 84, 136, 138, 155, 164, 183, 224	vecdist (Distance matrix), 78
ttest (Many one sample tests), 156	Vector allocation in a symmetric
ttest1, 83	matrix, 279
ttest1 (One sample t-test for a	vm.mle, 56, 192, 196, 240 vm.mle (MLE of some circular
vector), 223	distributions), 200
ttest2, 24, 90, 114, 142, 148	vmf.mle, 58, 115, 127, 201, 256, 269, 278
ttest2 (Multi-sample tests for	vmf.mle(MLE of (hyper-)spherical
vectors), 209	distributions), 191
ttests, 12, 84, 136, 137, 141, 144, 151, 155,	distributions), 191
157, 164, 173, 183, 210, 224	watson, 58
ttests (Many 2 sample tests), 137	watson(Uniformity test for circular
ttests.pairs (Matrix with all pairs of	data), 277
t-tests), 182	weib.reg(Weibull regression model), 280
twoway.anova(Multi-sample tests for	Weibull regression model, 280
vectors), 209	weibull.mle(MLE of continuous
twoway.anovas (Many two-way ANOVAs), 172	univariate distributions
3 (3)	defined on the positive line),
ufactor(Fast and general - untyped	193
representation of a factor	which.is(Index of the columns of a
variable), 93	data.frame which are a
Uniformity test for circular data, 277	specific type), 117
univglms, 15, 18, 20, 21, 63, 65, 87, 103, 131,	wigner.mle(MLE of continuous
143, 146, 152, 162, 167, 168, 176,	univariate distributions
177, 179, 184, 235, 237, 251, 271,	defined on the real line), 195
281	wrapcauchy.mle (MLE of some circular
univglms (Many univariate generalised	distributions), 200
linear models), 173	XopY.sum(Operations between two
univglms2 (Many univariate generalised	matrices or matrix and
linear models), 173	vector), 224

```
yule, 59
yule (Yule's Y (coefficient of colligation)), 281
Yule's Y (coefficient of colligation), 281
zip.mle, 191, 194, 196
zip.mle (MLE of count data (univariate discrete distributions)), 196
ztp.mle, 191
ztp.mle (MLE of count data (univariate discrete distributions)), 196
```