Package 'Rfast’

February 16, 2022

Type Package

Title A Collection of Efficient and Extremely Fast R Functions
Version 2.0.6
Date 2022-02-15
Author Manos Papadakis, Michail Tsagris, Marios Dimitriadis, Stefanos Fafalios, Ioannis Tsamardinos, Matteo Fasiolo, Giorgos Borboudakis, John Burkardt, Changliang Zou, Kleanthi Lakiotaki and Christina Chatzipantsiou.
Maintainer Manos Papadakis rfastofficial@gmail.com
Depends R (>= 3.5.0), Rcpp ($>=0.12 .3$), RcppZiggurat
LinkingTo Rcpp (>=0.12.3), RcppArmadillo
SystemRequirements C++17
BugReports https://github.com/RfastOfficial/Rfast/issues
URL https://github.com/RfastOfficial/Rfast
Description A collection of fast (utility) functions for data analysis. Column- and rowwise means, medians, variances, minimums, maximums, many t , F and G-square tests, many regressions (normal, logistic, Poisson), are some of the many fast functions. References: a) Tsagris M., Papadakis M. (2018). Taking R to its limits: 70+ tips. PeerJ Preprints 6:e26605v1 doi:10.7287/peerj.preprints.26605v1. b) Tsagris M. and Papadakis M. (2018). Forward regression in R: from the extreme slow to the extreme fast. Journal of Data Science, 16(4): 771--780. doi:10.6339/JDS.201810_16(4).00006.

License GPL (>= 2.0)
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-02-16 17:40:02 UTC

R topics documented:

Rfast-package 6
All k possible combinations from n elements 10
Analysis of covariance 11
Analysis of variance with a count variable 12
Angular central Gaussian random values simulation 13
ANOVA for two quasi Poisson regression models 14
Apply method to Positive and Negative number 15
Apply to each column a method under condition 17
Backward selection regression 18
BIC (using partial correlation) forward regression 19
BIC forward regression with generalised linear models 20
Binary search algorithm 21
Binomial coefficient and its logarithm 22
Bootstrap t-test for 2 independent samples 23
Check if any column or row is fill with values 24
Check if values are integers and convert to integer 25
Check Namespace and Rd files 26
Check whether a square matrix is symmetric 29
Chi-square and G-square tests of (unconditional) indepdence 30
Cholesky decomposition of a square matrix 31
Circular or angular regression 32
Circular-linear correlation 33
Colum-wise cumulative operations (sum, prod, min, max) 34
Column and row wise coefficients of variation 35
Column and row-wise Any/All 36
Column and row-wise means of a matrix 37
Column and row-wise medians 38
Column and row-wise nth smallest value of a matrix/vector 39
Column and row-wise Order - Sort Indices 41
Column and row-wise products 42
Column and row-wise range of values of a matrix 43
Column and row-wise ranks 44
Column and row-wise Shuffle 45
Column and row-wise sums of a matrix 46
Column and row-wise tabulate 47
Column and row-wise variances and standard deviations 48
Column and rows-wise mean absolute deviations 49
Column-row wise minima and maxima of two matrices 50
Column-wise differences 51
Column-wise kurtosis and skewness coefficients 52
Column-wise matching coefficients 53
Column-wise minimum and maximum 54
Column-wise MLE of some univariate distributions 55
Column-wise true/false value 57
Column-wise uniformity Watson test for circular data 58
Column-wise Yule's Y (coefficient of colligation) 59
Convert a dataframe to matrix 60
Convert R function to the Rfast's coresponding 61
Correlation based forward regression 62
Correlation between pairs of variables 63
Correlations 65
Covariance and correlation matrix 66
Cox confidence interval for the ratio of two Poisson variables 67
Cross-Validation for the k-NN algorithm 68
Cross-Validation for the k-NN algorithm using the arc cosinus distance 70
Deep copy 72
Density of the multivariate normal and t distributions 73
Design Matrix 74
Diagonal Matrix 75
Distance between vectors and a matrix 76
Distance correlation 77
Distance matrix 78
Distance variance and covariance 80
Eigenvalues and eigenvectors in high dimensional principal component analysis 81
Empirical and exponential empirical likelihood tests for one sample 82
Empirical and exponential empirical likelihood tests for two samples 83
Energy distance between matrices 85
Equality of objects 86
Estimation of an AR(1) model 87
Estimation of the Box-Cox transformation 88
Exact t -test for 2 independent samples 89
Exponential empirical likelihood for a one sample mean vector hypothesis testing 90
Exponential empirical likelihood hypothesis testing for two mean vectors 91
Fast and general - untyped represantation of a factor variable 93
FBED variable selection method using the correlation 94
Find element 95
Find the given value in a hash table 96
Fitted probabilities of the Terry-Bradley model 97
Fitting a Dirichlet distribution via Newton-Rapshon 98
Floyd-Warshall algorithm 99
Forward selection with generalised linear regression models 101
G-square and Chi-square test of conditional indepdence 102
Gamma regression with a log-link 104
Gaussian regression with a log-link 105
Generates random values from a normal and puts them in a matrix 106
Get specific columns/rows fo a matrix 107
Hash - Pair function 108
Hash object 109
Hash object to a list object 110
High dimensional MCD based detection of outliers 111
Hypothesis test for the distance correlation 112
Hypothesis test for two means of percentages 114
Hypothesis test for von Mises-Fisher distribution over Kent distribution 115
Hypothesis testing between two skewness or kurtosis coefficients 116
Index of the columns of a data.frame which are a specific type 117
Insert/remove function names in/from the NAMESPACE file 118
Inverse Gaussian regression with a log-link 119
Inverse of a symmetric positive definite matrix 120
Iterator 121
James multivariate version of the t-test 123
k nearest neighbours algorithm (k-NN) 124
$\mathrm{k}-\mathrm{NN}$ algorithm using the arc cosinus distance 126
Limited number of eigenvalues and eigenvectors of a symmetric matrix 127
Linear models for large scale data 128
Logistic and Poisson regression models 130
Logistic or Poisson regression with a single categorical predictor 131
Lower and Upper triangular of a matrix 133
Mahalanobis distance 134
Many (and one) area aunder the curve values 135
Many 2 sample proportions tests 136
Many 2 sample tests 137
Many analysis of variance tests with a discrete variable 139
Many ANCOVAs 140
Many ANOVAS for count data with Poisson or quasi Poisson models 141
Many exponential regressions 142
Many F-tests with really huge matrices 143
Many G-square and Chi-square tests of indepedence 144
Many Gini coefficients 146
Many hypothesis tests for two means of percentages 147
Many moment and maximum likelihood estimations of variance components 148
Many multi-sample tests 150
Many multivariate simple linear regressions coefficients 151
Many non parametric multi-sample tests 152
Many odds ratio tests 154
Many one sample goodness of fit tests for categorical data 155
Many one sample tests 156
Many random intercepts LMMs for balanced data with a single identical covariate. 157
Many regression based tests for single sample repeated measures 159
Many score based regressions 161
Many Shapiro-Francia normality tests 163
Many simple circular or angular regressions 164
Many simple geometric regressions 165
Many simple linear mixed model regressions 166
Many simple linear regressions coefficients 167
Many simple multinomial regressions 168
Many simple regressions for positive valued data 169
Many tests for the dispersion parameter in Poisson distribution 171
Many two-way ANOVAs 172
Many univariate generalised linear models 173
Many univariate simple linear regressions 175
Many univariate simple logistic and Poisson regressions 176
Many univariate simple quasi poisson regressions 178
Many Welch's F-tests 179
Match 180
Matrix multiplication 181
Matrix with all pairs of t-tests 182
Matrix with G-square tests of indepedence 183
Mean - Median absolute deviation of a vector 185
Median of a vector 186
Minima and maxima of two vectors/matrices 187
Minimum and maximum 188
Minimum and maximum frequencies 189
MLE for multivariate discrete data 190
MLE of (hyper-)spherical distributions 191
MLE of continuous univariate distributions defined on the positive line 193
MLE of continuous univariate distributions defined on the real line 195
MLE of count data (univariate discrete distributions) 196
MLE of distributions defined in the $(0,1)$ interval 198
MLE of some circular distributions 200
MLE of the inverted Dirichlet distribution 201
MLE of the multivariate (log-) normal distribution 202
MLE of the multivariate t distribution 204
MLE of the ordinal model without covariates 205
MLE of the tobit model 206
Moment and maximum likelihood estimation of variance components 207
Multi-sample tests for vectors 209
Multinomial regression 211
Multivariate kurtosis 212
Multivariate Laplace random values simulation 213
Multivariate normal and t random values simulation 214
Naive Bayes classifiers 215
Natural Logarithm each element of a matrix 217
Natural logarithm of the beta function 218
Natural logarithm of the gamma function and its derivatives 219
Norm of a matrix 220
Number of equal columns between two matrices 221
Odds ratio and relative risk 222
One sample t-test for a vector 223
Operations between two matrices or matrix and vector 224
Orthogonal matching pursuit variable selection 226
Outer function 227
Permutation 228
Permutation based p-value for the Pearson correlation coefficient 229
Polyserial correlation 230
Pooled covariance matrix 232
Prediction with some naive Bayes classifiers 233
Quasi binomial regression for proportions 234
Quasi Poisson regression for count data 236
Random intercepts linear mixed models 237
Random values simulation from a von Mises distribution 239
Ranks of the values of a vector 240
Reading the files of a directory 241
Repeated measures anova 242
Replicate columns/rows 243
Represantation of Stack 244
Round each element of a matrix/vector 245
Row - Wise matrix/vector count the frequency of a value 246
Row-wise minimum and maximum 247
Row-wise true value 248
Search for variables with zero range in a matrix 249
Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression 250
Simulation of random values from a Bingham distribution 252
Simulation of random values from a Bingham distribution with any symmetric matrix 253
Simulation of random values from a normal distribution 254
Simulation of random values from a von Mises-Fisher distribution 255
Skeleton of the PC algorithm 256
Skewness and kurtosis coefficients 258
Some summary statistics of a vector for each level of a grouping variable 259
Sort - Integer Sort - Sort a vector coresponding to another 260
Sort and unique numbers 262
Sorting of the columns-rows of a matrix 263
Source many R files 264
Spatial median for Euclidean data 265
Spatial median regression 266
Spatial sign covariance matrix 267
Spherical and hyperspherical median 268
Standardisation 269
Sub-matrix 270
Sum of all pairwise distances in a distance matrix 271
Table Creation - Frequency of each value 272
Tests for the dispersion parameter in Poisson distribution 274
Topological sort of a DAG 275
Transpose of a matrix 276
Uniformity test for circular data 277
Variance of a vector 278
Vector allocation in a symmetric matrix 279
Weibull regression model 280
Yule's Y (coefficient of colligation) 281
Index 283
Rfast-package Really fast R functions

Description

A collection of Rfast functions for data analysis. Note 1: The vast majority of the functions accept matrices only, not data.frames. Note 2: Do not have matrices or vectors with have missing data (i.e NAs). We do no check about them and C++ internally transforms them into zeros (0), so you may get wrong results. Note 3: In general, make sure you give the correct input, in order to get the correct output. We do no checks and this is one of the many reasons we are fast.

Rfast-package

Details

Package:	Rfast
Type:	Package
Version:	2.0 .6
Date:	$2022-02-15$
License:	GPL-2

Maintainers

Manos Papadakis papadakm95@gmail.com

Note

Acknowledgments: We would like to acknowledge:

- Professor Kurt Hornik, Doctor Uwe Ligges (and the rest of R core team) for their invaluable help with this R package.
- Erich Studerus for his invaluable comments.
- Neal Fultz for his suggestions.
- Vassilis Vasdekis for his invaluable help with the random effects models.
- Marios Dimitriadis' work was funded by the Special Account for Research Funds of the University of Crete, Department of Computer Science.
- Phillip Si is greatly acknowledged for his help with the Floyd-Warshal algorithm.
- Keefe Murphy for his invaluable help with NEWS file and for his suggestions.
- Zacharias Papadovassilakis gave us the inspiration for the memory efficient version of the k-NN algorithm.
- Yannis Pantazis explained us how the orhtogonal matching pursuit works.
- Achim Zeileis for his help with the quasi Poisson regression models.
- Pedro J. Aphalo for finding a bug.
- Dimitris Kyriakis for finding a bug.
- Cyrille Conord for finding a bug.
- Aaron Robotham for finding a bug.
- Calvin Pan from the Department of Human Genetics at UCLA found a bug in the function glm_logistic and he is greatly acknowledged for that.
- Adam Muschielok from Rodenstock GmbH found a bug in the function vmf.mle and he is greatly acknowledged for that.
- Bret Presnell for detecting and correcting a bug in the function rvmf.
- Gabriel Hoffman for spotting a mistake in the fuction dirimultinom.mle.

From now on the Rfast can be used in C++ via LinkingTo mechanism.

- The main namespace is "Rfast". Inside "Rfast" you will find two more namespaces, "vector" and "matrix".
- Namespace "vector" for calling functions using an Rcpp's or RcppArmadillo's vector.
- Namespace "matrix" for calling functions using an Rcpp's or RcppArmadillo's matrices.
- The signatures of the functions and the arguments are the same that are exported in R.

For namespace "vector" the functions that are available are:

1. median(x)
2. $\operatorname{var}(x$, std $=$ false, na_rm $=$ false $)$
3. $\operatorname{mad}(x$, method $=$ "median", na_rm = false)
4. shuffle (x,engine $=$ Engine $(\operatorname{time}(0)) / /$ Engine by default is default_random_engine. You can use anyone from $\mathrm{C}++$.

For namespace "matrix" the functions that are available are:

1. transpose (x)
2. matrix_multiplication(x,y)
3. $\operatorname{colSort}(x$, descend $=$ false, stable $=$ false, parallel $=$ false $)$
4. $\operatorname{rowSort}(x$, descend $=$ false, stable $=$ false, parallel $=$ false $)$
5. is_symmetric(x)
6. colMedian (x, na_rm = false, parallel = false)
7. $\operatorname{rowMedian}(x$, na_rm $=$ false, parallel $=$ false $)$
8. colVars $(x$, std $=$ false, na_rm $=$ false, parallel $=$ false $)$
9. $\operatorname{row} \operatorname{Vars}\left(x, s t d=\right.$ false, $n a _r m=$ false, parallel $=$ false $)$
10. colMads(x, method = "median", na_rm = false, parallel = false)
11. rowMads(x, method $=$ "median", na_rm = false, parallel $=$ false $)$
12. colShuffle(x,engine = Engine(time(0)) // Engine by default is default_random_engine. You can use anyone from C++.
13. rowShuffle(x,engine $=$ Engine(time(0)) // Engine by default is default_random_engine. You can use anyone from $\mathrm{C}++$.

How to use it:

1. Just add in "LinkingTo" in your NAMESPACE file the "Rfast" or in Rstudio "//[[Rcpp::depends(Rfast)]]".
2. Include in your cpp files the header "Rfast.h" and enjoy!

Author(s)

- Manos Papadakis papadakm95@gmail.com
- Michail Tsagris mtsagris@uoc.gr
- Marios Dimitriadis kmdimitriadis@gmail.com
- Stefanos Fafalios stefanosfafalios@gmail.com
- Ioannis Tsamardinos tsamard@csd.uoc.gr
- Matteo Fasiolo matteo.fasiolo@gmail.com
- Giorgos Borboudakis borbudak@gmail.com
- John Burkardt jburkardt@fsu.edu
- Kleanthi Lakiotaki kliolak@gmail.com
- Changliang Zou nk.chlzou@gmail.com
- Christina Chatzipantsiou <chatzipantsiou@ gmail.com>

All k possible combinations from n elements All k possible combinations from n elements

Description

All k possible combinations from n elements.

Usage

comb_n(n, k,simplify=TRUE)

Arguments

$\mathrm{n} \quad$ A positive INTEGER number or a vector with numbers.
$\mathrm{k} \quad$ A positive integer number at most equal to n or at most equal to the length of n , if n is a vector.
simplify A logical value for return List instead of matrix.

Value

A matrix with k columns and rows equal to the number of possible unique combinations of n with k elements. If simplify is set to TRUE then a list with k values where each value has length equal to the number of possible unique combinations of n with k elements.

Author(s)

Manos Papadakis and Marios Dimitriadis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Marios Dimitriadis kmdimitriadis@gmail.com.

References

Nijenhuis A. and Wilf H.S. (1978). Combinatorial Algorithms for Computers and Calculators. Academic Press, NY.

See Also

```
nth,colMaxs,colMins,colrange
```


Examples

```
system.time( comb_n(20, 4) )
system.time( combn(20, 4) )
x <- rnorm(5)
res<-comb_n(x, 3)
```

```
Analysis of covariance
```


Analysis of covariance

Description

Analysis of covariance

Usage

ancova1(y, ina, x, logged = FALSE)

Arguments

y A numerical vector with the data, the response variable.
ina A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero.
$x \quad$ A numerical vector whose length is equal to the number of rows of y. This is the covariate.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Analysis of covariance is performed. No interaction between the factor and the covariate is tested. Only the main effects. The design need not be balanced. The values of ina need not have the same frequency. The sums of squares have been adjusted to accept balanced and unbalanced designs.

Value

A matrix with the test statistic and the p-value for the factor variable and the covariate.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley $\backslash \&$ Sons

See Also

```
ancovas,ftests,ttests,anova1
```


Examples

```
y <- rnorm(90)
ina <- rbinom(90, 2, 0.5) + 1
x <- rnorm(90)
system.time( a <- ancova1(y, ina, x) )
```

Analysis of variance with a count variable
Analysis of variance with a count variable

Description

Analysis of variance with a count variable.

Usage

poisson.anova(y, ina, logged = FALSE)
geom. anova(y, ina, type $=1$, logged = FALSE)
quasipoisson.anova(y, ina, logged = FALSE)

Arguments

$y \quad$ A numerical vector with discrete valued data, i.e. counts.
ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4, ... or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results.
type \quad This argument is for the geometric distribution. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1 .
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the analysis of variance with Poisson or geometric distributed data. What we do is a loglikelihood ratio test. However, this is exactly the same as Poisson regression with a single predictor variable who happens to be categorical. Needless to say that this is faster function than the glm command in R. For the same purpose with a Bernoulli variable use g2Test. The quasinpoisson.anova is when in the glm function you specify family = quasipoisson. This is suitable for the case of over or under-dispersed data.

Value

A vector with two values, the difference in the deviances (or the scale difference in the case of quasi poisson) and the relevant p -value. The quasipoisson.anova also returns the estimate of the ϕ parameter.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

logistic.cat1,g2Test,poisson.anovas,anova, poisson_only, poisson.mle

Examples

```
y <- rpois(300, 10)
ina <- rbinom(300, 3, 0.5) + 1
a1 <- poisson.anova(y, ina)
a2 <- glm(y ~ ina, poisson)
## Not run:
res<-anova(a2, test = "Chisq")
## End(Not run)
y <- rgeom(300, 0.7)
res<-geom.anova(y, ina)
```

Angular central Gaussian random values simulation
Angular central Gaussian random values simulation

Description

Angular central Gaussian random values simulation.

Usage

$\operatorname{racg}(n$, sigma, seed $=N U L L)$

Arguments

n
sigma
seed

The sample size, a numerical value.
The covariance matrix in R^{d}.
If you want the same to be generated again use a seed for the generator, an integer number.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition. The vectors are then scaled to have unit length.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3): 579-589.

See Also

acg.mle, rmvnorm, rmvlaplace, rmvt

Examples

$s<-\operatorname{cov}(\operatorname{iris[,~1:4]~)}$
$x<-\operatorname{racg}(100, s)$
res<-acg.mle(x)
res<-vmf.mle(x) \#\# the concentration parameter, kappa, is very low, close to zero, as expected.

ANOVA for two quasi Poisson regression models
ANOVA for two quasi Poisson regression models

Description

ANOVA for two quasi Poisson regression models.

Usage

anova_quasipois.reg(mod0, mod1, n)

Arguments

mod0 An object as returned by the "qpois.reg" function. This is the null model.
$\bmod 1 \quad$ An object as returned by the "qpois.reg" function. This is the alternative model.
n
The sample size. This is necessary to calculate the degrees of freedom.

Details

This is an ANOVA type significance testing for two quasi Poisson models.

Value

A vector with 4 elements, the test statistic value, its associated p -value and the relevant degrees of freedom of the numerator and the denominator.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
anova_qpois.reg, qpois.reg,univglms,quasipoisson. anova
```


Examples

```
## Not run:
y <- rnbinom(200, 10, 0.5)
x <- matrix(rnorm(200 * 3), ncol = 3)
a1 <- qpois.reg(x, y)
a0 <- qpois.reg(x[, 1], y)
res<-anova_quasipois.reg(a0, a1, 200)
b1 <- glm(y ~ x, family = quasipoisson)
b0 <- glm(y ~ x[, 1], family = quasipoisson)
res<-anova(b0, b1, test = "F")
c1 <- glm(y ~ x, family = poisson)
c0 <- glm(y ~ x[, 1], family = poisson)
res<-anova(c0, c1, test = "Chisq")
## End(Not run)
```

Apply method to Positive and Negative number Apply method to Positive and Negative number

Description

Apply method to Positive and Negative number.

Usage

negative $(x$, method $=" m i n ")$
positive(x,method = "min")
positive.negative(x,method = "min")

Arguments

x
A numerical vector with data.
method Accept 3 values. "min", "max", "min.max".

Details

These functions apply the chosen method to the chosen subset (negative, positive, or both) from the vector and return the result.

Value

negative: apply the chosen method to every negative number of the input vector. positive: apply the chosen method to every positive number of the input vector. positive.negative: apply the chosen method to every negative and positive number of the input vector.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
nth,colnth,rownth, sort_unique,Round
```


Examples

x <- rnorm(1000)

```
identical(negative(x,"min"), min(x<0))
identical(positive(x,"min"), min(x>0))
identical(positive.negative(x,"min"), c(min(x<0),min(x>0)))
x<-NULL
```


Description

Apply to each column a method under condition.

Usage

apply.condition(x,method = "+",oper = ">", cond.val = 0)

Arguments

x	An integer matrix.
method	One of: "+", "-", "*", "min", "max".
oper	One of: ">, "<", ">=", "<=".
cond.val	An integer value for the condition.

Details

Apply to each col the specified method using the condition.

Value

An integer vector with the coresponding values.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Michail Tsagris mtsagris@uoc.gr.

See Also

```
colsums,colMedians,colVars
```


Examples

```
x <- matrix(rpois(100,6),10, 10)
identical(apply(x,2,function(x){ sum(x[x>0]) }), apply.condition(x,"+",">",0))
x<-NULL
```


Description

Backward selection regression.

Usage

bs.reg(y, x, alpha = 0.05, type = "logistic")

Arguments

y A numerical vector with the response variable values. It can either be of 0 and 1 values (Logistic regression) or of integer values $0,1,2, \ldots$ (Poisson regression).
$x \quad$ A numerical matrix with the candidate variables.
alpha Threshold (suitable values are in [0,1]) for assessing the significance of p-values. The default value is at 0.05 .
type For the Logistic regression put "logistic" (default value) and for Poisson type "poisson".

Details

This function currently implements only the binary Logistic and Poisson regressions. If the sample size is less than the number of variables a notification message will appear and no backward regression will be performed.

Value

The output of the algorithm is an S3 object including:
info A matrix with the non selected variables and their latest test statistics and pvalues.
Vars A vector with the selected variables.

Author(s)

Marios Dimitriadis
R implementation and documentation: Marios Dimitriadis mtsagris@csd.uoc.gr

See Also

fs.reg, univglms, cor.fsreg

Examples

```
\(y<-r b i n o m(50,1,0.5)\)
\(x<-\) matrnorm(50, 10)
res<-bs.reg \((y, x)\)
```

BIC (using partial correlation) forward regression
BIC (using partial correlation) forward regression

Description

BIC (using partial correlation) forward regression.

Usage

bic.corfsreg(y, x, tol = 2)

Arguments

$\mathrm{y} \quad$ A numerical vector.
$x \quad$ A matrix with data, the predictor variables.
tol If the BIC difference between two successive models is less than the tolerance value, the variable will not enter the model.

Details

The forward regression tries one by one the variables using the F-test, basically partial F-test every time for the latest variable. This is the same as testing the significance of the coefficient of this latest enetered variable. Alternatively the correlation can be used and this case the partial correlation coefficient. There is a direct relationship between the t-test statistic and the partial correlation coefficient. Now, instead of having to calculate the test statistic, we calculate the partial correlation coefficient. The largest partial correlation indicates the candidate variable to enter the model. If the BIC of the regression model with that variable included, reduces, less than "tol" from the previous model without this variable, the variable enters.

Value

A matrix with two columns, the index of the selected variable(s) and the BIC of each model. The first line is always 0 and the BIC of the model with no predictor variables.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
cor.fsreg,score.glms,univglms,logistic_only, poisson_only,regression
```


Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted
x <- matrix( rnorm(200 * 200), ncol = 200 )
y <- rnorm(200)
system.time( a1 <- bic.corfsreg(y, x) )
system.time( a2 <- cor.fsreg(y, x) )
x <- NULL
```

```
BIC forward regression with generalised linear models
    BIC forward regression with generalised linear models
```


Description

BIC forward regression with generalised linear models.

Usage

bic.fs.reg(y, x, tol = 2, type = "logistic")

Arguments

$y \quad$ A numerical vector.
$x \quad$ A matrix with data, the predictor variables.
tol If the BIC difference between two successive models is less than the tolerance value, the variable will not enter the model.
type If you have a binary dependent variable, put "logistic". If you have count data, put "poisson".

Details

The forward regression tries one by one the variables using the BIC at each step for the latest variable. If the BIC of the regression model with that variable included, is less than "tol" from the previous model without this variable, the variable enters.

Value

A matrix with two columns, the index of the selected variable(s) and the BIC of each model.

Author(s)

Marios Dimitriadis
R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
fs.reg,bic.corfsreg,cor.fsreg,score.glms,univglms,logistic_only,poisson_only,regression
```


Examples

```
## Not run:
x <- matrix(rnorm(200 * 50), ncol = 50)
## 200 variables, hence 200 univariate regressions are to be fitted
y <- rbinom(200, 1, 0.5)
a <- bic.fs.reg(y, x)
x <- NULL
## End(Not run)
```

Binary search algorithm Binary search algorithm

Description

Search a value in an ordered vector.

Usage

binary_search(x, v, index=FALSE)

Arguments

$x \quad$ A vector with the data.
$\checkmark \quad$ A value to check if exists in the vector x.
index A boolean value for choose to return the position inside the vector.

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

Search if the v exists in x. Then returns TRUE/FALSE if the value is been found.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

is_element

Examples

x <- sort(rnorm(1000))
$v<-x[50]$
b <- binary_search(x, v)
b1 <- binary_search(x, v, TRUE $)$

Binomial coefficient and its logarithm
Binomial coefficient and its logarithm

Description

Binomial coefficient and its logarithm.

Usage

Lchoose(x, k)
Choose (x, k)

Arguments

x
A vector with integer values numbers.
k
A positive non zero at most equal to x.

Details

The binomial coefficient or its logarithm are evaluated.

Value

A vector with the answers.

Author(s)

Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

See Also

```
comb_n,Lbeta,Lgamma
```


Examples

```
x <- sample(20:30, 100, replace = TRUE)
res<-Choose(x, 4)
res<-Lchoose(x, 4)
x<-NULL
```

```
Bootstrap t-test for 2 independent samples
                                    Bootstrap t-test for 2 independent samples
```


Description

Bootstrap t-test for 2 independent samples.

Usage

boot.ttest2 (x, y, $B=999)$

Arguments

$x \quad$ A numerical vector with the data.
y A numerical vector with the data.
B The number of bootstrap samples to use.

Details

Instead of sampling B times from each sample, we sample \sqrt{B} from each of them and then take all pairs. Each bootstrap sample is independent of each other, hence there is no violation of the theory.

Value

A vector with the test statistic and the bootstrap p-value.

Author(s)

Michail Tsagris and Christina Chatzipantsiou
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christina Chatzipantsiou chatzipantsiou@gmail.com.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.
Efron Bradley and Robert J. Tibshirani (1993). An introduction to the bootstrap. New York: Chapman
\& Hall/CRC.

Chatzipantsiou C., Dimitriadis M., Papadakis M. and Tsagris M. (2019). Extremely efficient permutation and bootstrap hypothesis tests using R. To appear in the Journal of Modern Applied Statistical Methods.
https://arxiv.org/ftp/arxiv/papers/1806/1806.10947.pdf

See Also

ttest2,exact.ttest2,ftest

Examples

```
tic <- proc.time()
x <- rexp(40, 4)
y <- rbeta(50, 2.5, 7.5)
system.time( a <- boot.ttest2(x, y, 9999) )
a
```

```
Check if any column or row is fill with values
```

Check if any column or row is fill with values

Description

Check if any column or row is fill with values.

Usage

colrow. value (x, value $=0$)

Arguments

x
A vector with data.
value A value to check.

Details

Check all the column if any has all its elements equal to argument value. If found, return "TRUE". Otherwise continues with rows. If columns and rows hasn't any value vector then return "FALSE". Even if it returns "FALSE" that doesn't mean the determinant can't be value. It might be but if check before and found any value vector then for sure the determinant it'll be value.

Value

A boolean value, "TRUE" if any column OR row is all filled with value. "FALSE" otherwise.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, rowFalse, nth, colrange, colMedians, colVars, colSort, rowSort, rowTrue

Examples

x <- matrix(runif(10*10), 10,10)
res<-colrow.value(x)
x<-NULL

Check if values are integers and convert to integer
Check if values are integers and convert to integer

Description

Check if values are integers and convert to integer.

Usage

is_integer(x)
as_integer (x, result.sort = TRUE, init = 1)

Arguments

$x \quad$ is_integer: A vector with numeric data. as_integer: A vector with data.
result.sort A logical value for sorting the result.
init An integer value to start.

Details

The behavior of these functions are different than R's built in.
is_integer: check if all the values are integers in memory. If typeof is double, and the values are integers in range $-2^{\wedge} 31: 2^{\wedge} 31$ then it is better to convert to integer vector for using less memory. Also you can decrease the time complexity.
as_integer: converts the discrete values to integers.

Value

is_integer: A logical value, TRUE if all values are integers and in range $-2^{\wedge} 31: 2^{\wedge} 31$. Otherwise FALSE.
as_integer: By default the function will return the same result with "as.numeric" but the user can change the "init" value not start from 1 like R's. Also the result can be unsorted using "result.sort".

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
as_integer,colVars,colmeans,read.directory
```


Examples

```
x<-runif(10)
y1<-is_integer(x) # y1 is FALSE
x<-as.numeric(rpois(10,10)) # integers but typeof is double
y1<-is_integer(x) # y1 is TRUE so you can convert to integer vector.
as_integer(letters) ## as.numeric(letters) produce errors
x<-y1<-NULL
```

Check Namespace and Rd files

Description

Check Namespace/Rd and examples files.

Usage

checkNamespace(path. namespace, path.rfolder)
checkAliases(path.man, path.rfolder)
checkTF (path.man)
checkExamples(path.man,each = 1,print.errors = stderr(),
print.names = FALSE)
checkUsage(path.man, path.rfolder)

Arguments

path. namespace An full path to the "NAMESPACE" file.
path.rfolder An full path to the directory that contains the "R" files.
path.man An full path to the directory that contains the "Rd" files.

each	An integer value for running each example.
print.errors	Print the errors to a file. By default it's "stderr()".
print. names	A boolean value (TRUE/FALSE) for printing the names of the files before run- ning the examples.

Details

For function "checkNamespace": reads from the NAMESPACE folder all the export R functions, reads from folder R all the R functions and check if all the functions are export.

For function "checkAliases": reads from the man directory all the Rd files, then reads from each file the aliases and check if: 1) All the R files has man file or an alias. 2) All aliases belongs to functions. 3) If there are dublicated aliases.

For function "checkExamples": reads from the man directory all the Rd files, then read from each file the examples and then run each of them. If you want to print the errors in any file then set "print.errors=file_name" or in the standard error "print.errors=stderr()" and then you will see all the errors for every file. For succeed run of your code you should first run "library(PACKAGE_NAME)". The argument "print.names" it is very helpful because if any of you function crashes R during running you will never know which one was. So setting it "TRUE", it will print the name of each file before runnign it's example.It might crash, but you will know which file. Remember that there is always an error timeout so it might didn't crash the current file but one from the previous.
For function checkTF: reads from the man directory all the Rd files, then read from each file the examples and checks if any examples has the values "T" and "F" instead "TRUE" and "FALSE". The " T "," F " is wrong.
For function checkUsage: reads from the man directory all the Rd files and for each man check if the usage section has the right signature for the functions from the R directory.

For functions "checkTF", "checkUsage", "checkAliases" you can choose which files not to read for both R and Rd . You must add in the first line of the file in comment the "attribute" "[dont read]". Then each function will now which file to read or not. For Rd you add "\%[dont read]" and for R "\#[dont read]". Finally, these functions will return in the result a list of which files had this attribute.

Value

For function "checkNamespace": a vector with the names of missing R files. (Don't use it for now) For function "checkAliases": a list with 4 fields.

```
Missing Man files
```

A vector with the names of the missing Rd files or nothing.
Missing R files A vector with the names of the missing R files or nothing.
Duplicate alias
A vector with the names of the dublicate aliases or nothing.
dont read A list with 2 fields R: A character vector whith the names of the files that had attribute "\#[dont read]" or nothing. Rd: A character vector whith the names of the files that had attribute "\%[dont read]" or nothing.

For function "checkExamples": a list with 3 fields
Errors A character vector with the names of the Rd files that produced an error.

Big Examples A character vector with the names of the Rd files that has big examples per line.
dont read A list with 2 fields R: A character vector whith the names of the files that had attribute "\#[dont read]" or nothing. Rd: A character vector whith the names of the files that had attribute "\%[dont read]" or nothing.

For function "checkTF": a list with 3 fields
TRUE A character vector with the names of the Rd files that has "T" or nothing.
FALSE A character vector with the names of the Rd files that has " F " or nothing.
dont read A list with 2 fields R: A character vector whith the names of the files that had attribute "\#[dont read]" or nothing. Rd: A character vector whith the names of the files that had attribute "\%[dont read]" or nothing.

For function "checkUsage": a list with 3 fields
missing functions
A character vector with the name of the file that is missing and the Rd file that is found or nothing.
missmatch functions
A character vector with the name of the file that has missmatch function and the Rd file that is found or nothing.
dont read A list with 2 fields R: A character vector whith the names of the files that had attribute "\#[dont read]" or nothing. Rd: A character vector whith the names of the files that had attribute "\%[dont read]" or nothing.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

read.directory,AddToNamespace, sourceR, sourceRd, read.examples

Examples

```
## Not run:
    for example: path.namespace="C:\some_file\NAMESPACE"
    for example: path.rfolder="C:\some_file\R\"
    for example: path.man="C:\some_file\man\"
    system.time( a<-checkNamespace(path.namespace,path.rfolder) )
    system.time( b<-checkAliases(path.man,path.rfolder) )
    system.time( b<-checkExamples(path.man) )
    system.time( b<-checkExamples(path.man,2) )
    system.time( b<-checkTF(path.man) )
    system.time( b<-checkTF(path.man,path.rfolder) )
## End(Not run)
```

Check whether a square matrix is symmetric
Check whether a square matrix is symmetric

Description

Check whether a square matrix is symmetric.

Usage

is.symmetric(x)

Arguments

x
A square matrix with data.

Details

Instead of going through the whole matrix, the function will stop if the first disagreement is met.

Value

A boolean value, TRUE of FALSE.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

cholesky, cora, cova

Examples

```
x <-matrix( rnorm( 100 * 400), ncol = 400 )
s1 <- cor(x)
is.symmetric(s1)
x <- x[1:100, ]
is.symmetric(x)
x<-s1<-NULL
```

```
Chi-square and G-square tests of (unconditional) indepdence
    Chi-square and G-square tests of (unconditional) indepdence
```


Description

Chi-square and G-square tests of (unconditional) indepdence.

Usage

gchi2Test(x, y, logged = FALSE)

Arguments

x
y
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The function calculates the test statistic of the χ^{2} and the G^{2} tests of unconditional independence between x and y . x and y need not be numerical vectors like in g2Test. This function is more close to the spirit of MASS' loglm function which calculates both statistics using Poisson log-linear models (Tsagris, 2017).

Value

A matrix with two rows. In each row the X 2 or G 2 test statistic, its p-value and the degrees of freedom are returned.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

See Also

g2Test_univariate,g2Test_univariate_perm,g2Test

Examples

```
nvalues <- 3
nvars <- 2
nsamples <- 5000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
res<-gchi2Test(data[, 1], data[, 2])
res<-g2Test_univariate( data, rep(3, 2) ) ## G^2 test
res<-chisq.test(data[, 1], data[, 2]) ## X^2 test from R
data<-NULL
```

Cholesky decomposition of a square matrix
Cholesky decomposition of a square matrix

Description

Cholesky decomposition of a square matrix.

Usage

cholesky (x, parallel = FALSE)

Arguments

$x \quad$ A square positive definite matrix.
parallel A boolean value for parallel version.

Details

The Cholesky decomposition of a square positive definite matrix is computed. The use of parallel is suggested for matrices with dimensions of 1000 or more.

Value

An upper triangular matrix.

Author(s)

Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

See Also

Examples

```
x = matrix(rnorm(1000 * 50), ncol = 50)
s = cov(x)
system.time(a1 <- cholesky(s))
system.time(a2 <- chol(s))
all.equal(a1[upper.tri(a1)], a2[upper.tri(a2)])
x <- NULL
s <- NULL
a1 <- NULL
a2 <- NULL
```

Circular or angular regression
Circular or angular regression

Description

Regression with circular dependent variable and Euclidean or categorical independent variables.

Usage

spml. $\mathrm{reg}(\mathrm{y}, \mathrm{x}, \mathrm{tol}=1 \mathrm{e}-07$, seb $=$ FALSE, maxiters $=100$)

Arguments

y
x
tol The tolerance value to terminatate the Newton-Raphson algorithm.
seb Do you want the standard error of the estimates to be returned? TRUE or FALSE.
maxiters The maximum number of iterations to implement.

Details

The Newton-Raphson algorithm is fitted in this regression as described in Presnell et al. (1998).

Value

A list including:

$$
\begin{array}{ll}
\text { iters } & \text { The number of iterations required until convergence of the EM algorithm. } \\
\text { be } & \text { The regression coefficients. }
\end{array}
$$

seb	The standard errors of the coefficients.
loglik	The value of the maximised log-likelihood.
seb	The covariance matrix of the beta values.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

spml.mle,iag.mle, acg.mle

Examples

```
## Not run:
x <- rnorm(100)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[ ,1], 1), rnorm(100, z[ ,2], 1) )
y <- y / sqrt( rowsums(y^2) )
a1 <- spml.reg(y, x)
y <- atan( y[, 2] / y[, 1] ) + pi * I(y[, 1] < 0)
a2 <- spml.reg(y, x)
## End(Not run)
```

Circular-linear correlation
Circular-linear correlation

Description

It calculates the squared correlation between a circular and one or more linear variables.

Usage

circlin.cor(theta, x)

Arguments

theta A circular variable expressed in radians.
x
The linear variable or a matrix containing many linear variables.

Details

The squared correlation between a circular and one or more linear variables is calculated.

Value

A matrix with as many rows as linear variables including:
R-squared The value of the squared correlation.
p-value The p-value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.

See Also

spml.reg

Examples

```
phi <- rvonmises(50, 2, 20, rads = TRUE)
x <- 2 * phi + rnorm(50)
y <- matrix(rnorm(50 * 5), ncol = 5)
res<-circlin.cor(phi, x)
res<-circlin.cor(phi, y)
y <- NULL
```

```
Colum-wise cumulative operations (sum, prod, min, max)
                            Colum-wise cumulative operations (sum, prod, min, max)
```


Description

Colum-wise cumulative operations (sum, prod, min, max).

Usage

colCumSums(x)
colCumProds(x)
colCumMins(x)
colCumMaxs(x)

Arguments

$x \quad$ A numerical matrix.

Details

Cumulative mins, maxs, sums and prods are returned.

Value

A matrix with the results. It has one row less than the initial matrix.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Michail Tsagris mtsagris@uoc.gr.

See Also

```
colsums,colMedians,colVars
```


Examples

```
x <- matrnorm(10, 10)
res<-colCumSums(x)
res<-colCumMins(x)
res<-colCumMaxs(x)
res<-colCumProds(x)
```

```
Column and row wise coefficients of variation
    Column and row wise coefficients of variation
```


Description

Column and row wise coefficients of variation.

Usage

$\operatorname{colcvs}(x, \ln =$ FALSE, unbiased = FALSE)
rowcvs(x, ln = FALSE, unbiased = FALSE)

Arguments

$x \quad$ A numerical matrix with the data.
ln If you have log-normally distributed data (or assume you do), then set this to TRUE.
unbiased A boolean variable indicating whether the unbiased for shpould be returned. This is applicable in case of small samples.

Details

The colum-wise coefficients of variation are calculated.

Value

A vector with the coefficient of variation for each column or row.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colsums, colVars

Examples

```
m <- rnorm(100, 10)
x <- matrix(rnorm(100 * 100, m, 1), ncol = 100)
a1 <- colcvs(x)
a2 <- colcvs(x[1:25, ], unbiased = TRUE)
a3 <- colcvs( exp(x), ln = TRUE)
x <- NULL
```


Description

Column and row-wise Any/All of a matrix.

Usage

colAny (x)
rowAny (x)
colAll(x, parallel = FALSE)
rowAll(x, parallel = FALSE)

Arguments

x
parallel Do you want the computations to take place in parallel? The default value is FALSE.

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

A vector where item " i " is true if found Any/All true in column/row " i ". Otherwise false.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Median, colMedians, colMeans (buit-in R function)

Examples

```
    x <- matrix(as.logical(rbinom(100*100,1,0.5)),100,100)
    system.time( a<-colAny(x) )
    system.time( b<-apply(x,2,any) )
    all.equal(a,b)
    system.time( a<-rowAny(x) )
    system.time( b<-apply(x,1,any) )
    all.equal(a,b)
    system.time( a<-colAll(x) )
    system.time( b<-apply(x,2,all) )
    all.equal(a,b)
    a<-b<-x<-NULL
```

Column and row-wise means of a matrix
Column and row-wise means of a matrix

Description

Column and row-wise means of a matrix.

Usage

colmeans(x, parallel = FALSE)
rowmeans (x)
colhameans(x , parallel $=$ FALSE)
rowhameans(x)

Arguments

x
parallel Do you want to do it in parallel in C++? TRUE or FALSE.

Value

A vector with the column or row arithmetic or harmonic means.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colsums, rowsums, colMins, colMedians, colMads

Examples

```
x <- matrix(rpois(100 * 100, 10),ncol = 100)
x1 <- colmeans(x)
x2 <- colMeans(x)
all.equal(x1,x2)
x1 <- rowmeans(x)
x2 <- rowMeans(x)
all.equal(x1,x2)
system.time( colhameans(x) )
system.time( rowhameans(x) )
x<-x1<-x2<-NULL
```

Column and row-wise medians
Column and row-wise medians

Description

Column and row-wise medians of a matrix.

Usage

colMedians(x, na.rm = FALSE, parallel = FALSE)
rowMedians(x, na.rm = FALSE, parallel = FALSE)

Arguments

X
parallel Do you want to do it in parallel in C++? TRUE or FALSE.
na.rm
A matrix with the data.

TRUE or FAISE for remove NAs if exists.

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

A vector with the column medians.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
Median,colVars,colMeans (buit-in R function)
```


Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
a <- apply(x, 2, median)
b1 <- colMedians(x)
all.equal(as.vector(a), b1)
x<-a<-b1<-NULL
```

Column and row-wise nth smallest value of a matrix/vector
Column and row-wise nth smallest value of a matrix/vector

Description

Column and row-wise nth smallest value of a matrix/vector.

Usage

colnth(x,elems, num.of.nths = 1, descending = FALSE, na.rm = FALSE, index.return = FALSE, parallel = FALSE)
rownth(x,elems, num.of.nths = 1,descending = FALSE, na.rm = FALSE, index.return = FALSE, parallel = FALSE)
nth(x, k, num.of.nths = 1,descending = FALSE,index.return = FALSE, na.rm = FALSE)

Arguments

x
elems
k
num. of.nths The number of the returned nths. By default is 1. Not use with argument parallel, for now.
descending A boolean value (TRUE/FALSE) for descending order (biggest number). By default is ascending (smallest number).
index.return Return the index of the kth smallest/biggest number.
parallel Do you want to do it in parallel in C++? TRUE or FALSE only for col-row wise.
na.rm TRUE or FAlSE for remove NAs if exists. Only for function "nth".

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

For "colnth", "rownth": A vector with the column/row nth
For "nth": The nth value.

Author(s)

Manos Papadakis papadakm95@gmail.com
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

Median, colMedians, colMeans (buit-in R function)

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
elems <- sample(1:100,100,TRUE)
system.time( colnth(x,elems) )
system.time( rownth(x,elems) )
x <- rnorm(1000)
nth(x, 500)
sort(x)[500]
x<-elems<-NULL
```

Column and row-wise Order - Sort Indices
Column and row-wise Order - Sort Indices

Description

Column and row-wise Order - Sort Indices.

Usage

colOrder (x , stable=FALSE, descending=FALSE, parallel = FALSE)
rowOrder (x, stable=FALSE, descending=FALSE, parallel = FALSE)
$\operatorname{Order}(x$, stable=FALSE, descending=FALSE, partial = NULL)

Arguments

X
stable
descending
parallel A boolean value for parallel version.
partial A boolean value for partial sorting.

Details

The function applies "order" in a column or row-wise fashion or Order a vector. If you want the same results as R's, then set "stable=TRUE" because "stable=FALSE" uses a sorting algorithm that it is not stable like R's sort. But it is faster to use the default. This verion is faster for large data, more than 300 .

Value

For "colOrder" and "rowOrder" a matrix with integer numbers. The result is the same as apply(x, 2 , order) or $\operatorname{apply}(\mathrm{x}, 1$, order).
For "Order" sort the vector and returns the indices of each element that it has before the sorting. The result is the same as order(x) but for the same exactly results set argument "stable" to "TRUE".

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colsums, coldiffs, colMedians, colprods

Examples

```
x <- matrix( runif(10 * 10), ncol = 10 )
res<-colOrder(x)
res<-apply(x, 2, order)
res<-rowOrder(x)
t(apply(x, 1, order))
y <- rnorm(100)
b <- Order(y)
a <- order(y)
all.equal(a,b) ## false because it is not stable
b <- Order(y,stable=TRUE)
all.equal(a,b) ## true because it is stable
x<-y<-b<-a<-NULL
```

Column and row-wise products
Column and row-wise products

Description

Column and row-wise products.

Usage

colprods(x, method = "direct")
rowprods(x)

Arguments

X
method

A matrix with numbers.
The type of colCumProds to use. For direct multiplication use "direct" or "expsumlog" for a more numerically stable, but slower way.

Details

The product of the numbers in a matrix is returned either column-wise or row-wise.

Value

A vector with the column or the row products.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colsums, coldiffs, colMedians

Examples

```
x <- matrix( runif(100 * 10), ncol = 10 )
res<-colprods(x)
res<-rowprods(x)
x<-NULL
```

Column and row-wise range of values of a matrix Column and row-wise range of values of a matrix.

Description

Column and row-wise range of values of a matrix.

Usage

colrange $(x$, cont $=$ TRUE $)$
rowrange (x, cont $=$ TRUE)

Arguments

$x \quad$ A numerical matrix with data.
cont If the data are continuous, leave this TRUE and it will return the range of values for each variable (column). If the data are integers, categorical, or if you want to find out the number of unique numbers in each column set this to FALSE.

Value

A vector with the relevant values.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colMins, colMaxs, rowMins, rowMaxs, nth, colMedians, colVars, colSort, rowSort

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
a1 <- colrange(x)
a2 <- apply(x, 2, function(x) diff( range(x)) )
all.equal(a1, a2)
a1 <- rowrange(x)
a2 <- apply(x, 1, function(x) diff( range(x)) )
all.equal(a1, a2)
x<-a1<-a2<-NULL
```

Column and row-wise ranks

Column and row-wise ranks

Description

Column and row-wise ranks.

Usage

colRanks(x , method = "average", descending = FALSE, stable = FALSE, parallel = FALSE)
rowRanks (x , method = "average" , descending = FALSE, stable = FALSE, parallel $=$ FALSE)

Arguments

X
parallel A boolean value for parallel version.
method a character string for choosing method. Must be one of "average", "min", "max", "first".
descending A boolean value (TRUE/FALSE) for sorting the vector in descending order. By default sorts the vector in ascending.
stable A boolean value (TRUE/FALSE) for choosing a stable sort algorithm. Stable means that discriminates on the same elements. Only for the method "first".

Details

For each column or row of a matrix the ranks are calculated and they are returned. The initial matrix is gone.

Value

A matrix with the column or row-wise ranks.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Rank, correls

Examples

$x<-$ matrnorm(100, 10)
a1 <- colRanks(x)
a2 <- apply (x, 2, rank)
b1 <- rowRanks(x)
b2 <- apply(x, 1, rank)
$\mathrm{x}<-\mathrm{a} 1<-\mathrm{a} 2<-\mathrm{b} 1<-\mathrm{b} 2<-$ NULL

Column and row-wise Shuffle
Column and row-wise Shuffle

Description

Column and row-wise shuffle of a matrix.

Usage

colShuffle(x)
rowShuffle(x)

Arguments

x
A matrix with the data.

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

A vector with the column/row Shuffle.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Median, colVars, colMeans (buit-in R function)

Examples

```
\(x\) <- matrix( rnorm(100 * 100), ncol = 100 )
system.time( colShuffle(x) )
system.time( rowShuffle(x) )
x<-NULL
```

Column and row-wise sums of a matrix
Column and row-wise sums of a matrix

Description

Column and row-wise sums of a matrix.

Usage

colsums(x,indices $=$ NULL, parallel $=$ FALSE, na.rm $=$ FALSE)
rowsums(x,indices $=$ NULL, parallel $=$ FALSE, na.rm $=$ FALSE)

Arguments

x
A numerical matrix with data.
indices
parallel Do you want to do it in parallel in C++? TRUE or FALSE. Doens't work with argument "indices".
na.rm A logical value indicating to remove NAs. The algorithm run in parallel so do not use with option parallel.

Value

A vector with sums.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colMedians, colmeans, colVars

Examples

$x<-\operatorname{matrix}(r p o i s(500 * 100,10)$, ncol $=100)$
x1 <- colsums(x)
$x 2<-\operatorname{colSums}(x)$
all.equal ($\mathrm{x} 1, \mathrm{x} 2$)
x1 <- rowsums (x)
$x 2<-\operatorname{rowSums}(x)$
all.equal ($\mathrm{x} 1, \mathrm{x} 2$)
$x<-x 1<-x 2<-$ NULL

Column and row-wise tabulate
Column and row-wise tabulate

Description

Column and row-wise tabulate of a matrix.

Usage

colTabulate $(x$, max_number $=\max (x))$
rowTabulate $(x$, max_number $=\max (x))$

Arguments

x
max_number

An integer matrix with the data. The numbers must start from 1, i.e. $1,2,3,4, \ldots$ No zeros are allowed. Anything else may cause a crash.
The maximum value of vector x. If you know which is the max number use this argument for faster results or by default max(x).

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

A matrix where in each column the command "tabulate" has been performed. The number of rows of the returned matrix will be equal to the max_number if given. Otherwise, the functions will find this number.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@ gmail.com>.

See Also

colShuffle, colVars, colmeans

Examples

```
    x <- matrix( rbinom(100 * 100, 4, 0.5), ncol = 100 )
    system.time( colTabulate(x) )
    x <- t(x)
    system.time( rowTabulate(x) )
    x<-NULL
```

Column and row-wise variances and standard deviations
Column and row-wise variances and standard deviations of a matrix

Description

Column and row-wise variances and standard deviations of a matrix

Usage

colVars(x, suma $=$ NULL, std $=$ FALSE, na.rm = FALSE, parallel = FALSE)
rowVars(x, suma $=$ NULL, std $=$ FALSE, na.rm = FALSE, parallel = FALSE)

Arguments

x	A matrix with the data.
suma	If you already have the column sums vector supply it, otherwise leave it NULL. Depricated.
std	A boolean variable specyfying whether you want the variances (FALSE) or the standard deviations (TRUE) of each column.
na.rm	TRUE or FAlSE for remove NAs if exists.
parallel	Should parallel implentations take place in C++? The default value is FALSE.

Details

We found this on stackoverflow which was created by David Arenburg. We then modified the function to match the sums type formula of the variance, which is faster.

Value

A vector with the column variances or standard deviations.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colmeans, colMedians, colrange

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
a2 <- colVars(x)
x<-a2<-NULL
```

Column and rows-wise mean absolute deviations
Column and row-wise mean absolute deviations

Description

Column and row-wise mean absolute deviations.

Usage

colMads (x, method $=$ "median", na. rm=FALSE, parallel $=$ FALSE)
rowMads(x,method = "median", na.rm=FALSE, parallel = FALSE)

Arguments

$x \quad$ A matrix with the data.
method A character vector with values "median", for median absolute deviation or "mean", for mean absolute deviation.
na.rm A logical value TRUE/FALSE to remove NAs.
parallel A boolean value for parallel version.

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

A vector with the column-wise mean absolute deviations.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
colMedians,rowMedians,colVars,colmeans,colMeans (buit-in R function)
```


Examples

x <- matrix(rnorm(100 * 100), ncol = 100)
system.time(a <- colMads(x))
x<-NULL

Column-row wise minima and maxima of two matrices
Column-row wise minima and maxima of two matrices

Description

Column-row wise minima and maxima of two matrices.

Usage

$\operatorname{colPmax}(x, y)$
$\operatorname{colPmin}(x, y)$

Arguments

x
A numerical vector with numbers.
$y \quad$ A numerical vector with numbers.

Details

The parallel minima or maxima are returned. This are the same as the base functions pmax and pmin.

Value

A numerical vector/matrix with numbers, whose length is equal to the length of the initital matrices containing the maximum or minimum between each pair.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Sort, colMins, colMaxs, colMedians

Examples

$x<-\operatorname{matrix}(r n o r m(100), 10,10)$
$y<-\operatorname{matrix}(r \operatorname{norm}(100), 10,10)$
res<-colPmax (x, y)
res<-colPmin (x, y)
$x<-y<-$ NULL

```
Column-wise differences
```


Description

Column-wise differences.

Usage

coldiffs(x)

Arguments

x
A matrix with numbers.

Details

This function simply does this function $\mathrm{x}[,-1]-\mathrm{x}[,-\mathrm{k}]$, where k is the last column of the matrix x . But it does it a lot faster. That is, 2nd column - 1st column, 3rd column - 2 nd column, and so on.

Value

A matrix with one column less containing the differences between the successive columns.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Dist, dista, colmeans

Examples

```
x <- matrix( rnorm(50 * 10), ncol = 10)
res<-coldiffs(x)
x<-NULL
```

```
Column-wise kurtosis and skewness coefficients
```

Column-wise kurtosis and skewness coefficients

Description

Column-wise kurtosis and skewness coefficients.

Usage

colkurtosis(x, pvalue = FALSE)
colskewness(x, pvalue = FALSE)

Arguments

$x \quad$ A matrix with the data, where the rows denote the samples and the columns are the variables.
pvalue If you want a hypothesis test that the skewness or kurtosis are significant set this to TRUE. This checks whether the skewness is significantly different from 0 and whether the kurtosis is significantly different from 3.

Details

The skewness and kurtosis coefficients are calculated. For the skewness coefficient we use the sample unbiased version of the standard deviation. For the kurtosis, we do not subtract 3 .

Value

If "pvalue" is FALSE, a vector with the relevant coefficient. Otherwise a matrix with two columns. The kurtosis or skewness coefficient and the p-value from the hypothesis test that they are significantly different from 3 or 0 respectively.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
    skew,skew.test2,colMedians,colmeans,colVars,sftests
```


Examples

```
## 200 variables, hence 200 F-tests will be performed
x = matrix( rnorm(200 * 50), ncol = 50 )
## 200 observations in total
system.time( colkurtosis(x) )
system.time( colskewness(x) )
x <- NULL
```

Column-wise matching coefficients

Column-wise matching coefficients

Description

Column-wise matching coefficients.

Usage

match.coefs(x, y = NULL, ina, type = "jacc")

Arguments

$x \quad$ A matrix with the data, where the rows denote the samples and the columns are the variables.
y A second matrix with the data of the second group. If this is NULL (default value) then the argument ina must be supplied. Notice that when you supply the two matrices the procedure is two times faster.
ina A numerical vector with 1s and 2s indicating the two groups. Be careful, the function is designed to accept only these two numbers. In addition, if your "y" is NULL, you must specify "ina".
type \quad This denotes the type of matching coefficient to calculate. For the Jaccard index put "jacc". For the simple matching coefficient put "smc" or else both of them will be calculated.

Details

Two matrices are given as imput and for each column matching coefficients are calculated, either the Jaccard or the simple matching coefficient or both.

Value

A matrix with one or two columns, depending on the type you have specified. If you specify "both", there will be two columns, if you specify "jacc" or "smc" then just one column.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
odds,colTabulate
```


Examples

```
x <- matrix(rbinom(400 * 10, 1, 0.5), ncol = 10)
y <- matrix(rbinom(400 * 10, 1, 0.5), ncol = 10)
a <- match.coefs(x, y, type = "both")
x <- NULL
y <- NULL
```

Column-wise minimum and maximum
Column-wise minimum and maximum of a matrix

Description

Column-wise minimum and maximum of a matrix.

Usage

colMins(x, value $=$ FALSE, parallel $=$ FALSE)
colMaxs(x, value $=$ FALSE, parallel = FALSE)
colMinsMaxs(x)

Arguments

x
value If the value is FALSE it returns the indices of the minimum/maximum, otherwise it returns the minimum and maximum values.
parallel Do you want to do it in parallel in C++? TRUE or FALSE. The parallel will return the minimum/maximum value only. It will never return the indices.

Value

A vector with the relevant values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, rowMaxs, nth, colrange, colMedians, colVars, colSort, rowSort

Examples

```
x <- matrix( rnorm(100 * 200), ncol = 200 )
s1 <- colMins(x)
s2 <- apply(x, 2, min)
s1 <- colMaxs(x)
s2 <- apply(x, 2, max)
s1 <- colMinsMaxs(x)
s2 <- c(apply(x, 2, min), apply(x, 2, max))
x<-s1<-s2<-NULL
```

Column-wise MLE of some univariate distributions
Column-wise MLE of some univariate distributions

Description

Column-wise MLE of some univariate distributions.

Usage

colexpmle(x)
colexp2.mle(x)
colgammamle (x, tol $=1 \mathrm{e}-07$)
colinvgauss.mle(x)
collaplace.mle(x)
collindley.mle(x)
colmaxboltz.mle(x)
colnormal.mle(x)
colpareto.mle(x)
colrayleigh.mle(x)
colvm.mle(x, tol = 1e-07)
colweibull.mle(x, tol $=1 \mathrm{e}-09$, maxiters $=100$, parallel $=$ FALSE)
colnormlog.mle(x)

Arguments

x
tol The tolerance value to terminate the Newton-Fisher algorithm.
maxiters The maximum number of iterations to implement.
parallel Do you want to calculations to take place in parallel? The default value is FALSE

Details

For each column, the same distribution is fitted and its parameter and log-likelihood are computed.

Value

A matrix with two, three or five (for the colnormlog.mle) columns. The first one or the first two contain the parameter(s) of the distribution and the other columns contain the log-likelihood values.

Author(s)

Michail Tsagris and Stefanos Fafalios
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Stefanos Fafalios stefanosfafalios@gmail.com

References

Kalimuthu Krishnamoorthy, Meesook Lee and Wang Xiao (2015). Likelihood ratio tests for comparing several gamma distributions. Environmetrics, 26(8):571-583.
N.L. Johnson, S. Kotz
\& N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).
N.L. Johnson, S. Kotz
\& N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2
Sharma V. K., Singh S. K., Singh U.
\& Agiwal V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3): 162-173.

See Also

vm.mle,poisson.mle,normal.mle,gammamle

Examples

$x<-\operatorname{matrix}(r n o r m(1000 * 50)$, ncol = 50)
a <- colnormal.mle(x)
b <- collaplace.mle(x)
x <- NULL

```
Column-wise true/false value
```

Column-wise truelfalse value of a matrix

Description

Column-wise true/false value of a matrix.

Usage

colTrue(x)
colFalse(x)
colTrueFalse(x)

Arguments

x
A logical matrix with data.

Value

An integer vector where item " i " is the number of the true/false values of " i " column.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, rowFalse, nth, colrange, colMedians, colVars, colSort, rowSort, rowTrue

Examples

```
x <- matrix(as.logical(rbinom(100*100,1,0.5)),100,100)
s1 <- colTrue(x)
s1 <- colFalse(x)
s1 <- colTrueFalse(x)
x<-s1<-NULL
```


Description

Column-wise uniformity tests for circular data.

Usage

colwatsons(u)

Arguments

$u \quad$ A numeric matrix containing the circular data which are expressed in radians. Each column is a different sample.

Details

These tests are used to test the hypothesis that the data come from a circular uniform distribution. The Kuiper test is much more time consuming and this is why it not implemented yet. Once we figure out a way to make it fast, we will incldue it.

Value

A matrix with two columns, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153-55 (Kuiper's test) \& 156-157 (Watson's test).

See Also

watson, vmf.mle, rvonmises

Examples

```
x <- matrix( rvonmises(n = 50 * 10, m = 2, k = 0), ncol = 10 )
res<-colwatsons(x)
x <- NULL
```

```
Column-wise Yule's Y (coefficient of colligation)
                                    Column-wise Yule's Y (coefficient of colligation)
```


Description

Column-wise Yule's Y (coefficient of colligation).

Usage

col.yule(x, y = NULL, ina)

Arguments

$x \quad$ A matrix with 0 and 1. Every column refers to a different sample or variable.
$y \quad$ A second matrix, of the same dimensions as x, with 0 and 1. Every column refers to a different sample or variable.
ina If y is NULL, ina must be specified. This is a numeric vector with 1 s and 2 s , indicating the group of each row.

Details

Yule's coefficient of colligation is calculated for every column.

Value

A vector with Yule's Y , one for every column of x is returned.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Yule G. Udny (1912). On the Methods of Measuring Association Between Two Attributes. Journal of the Royal Statistical Society, 75(6):579-652.

See Also

yule,odds

Examples

```
x <- matrix(rbinom(300 * 10, 1, 0.5), ncol = 10)
ina <- rep(1:2, each = 150)
res<-col.yule( x, ina = ina )
```

Convert a dataframe to matrix
Convert a dataframe to matrix

Description

Convert a dataframe to matrix.

Usage

data.frame.to_matrix(x,col.names $=$ NULL, row.names $=$ NULL)

Arguments

x
col.names A boolean value for keeping the colnames for argument x or a character vector for the new colnames.
row. names A boolean value for keeping the rownames for argument x or a character vector for the new rownames.

Details

This functions converts a dataframe to matrix. Even if there are factors, the function converts them into numerical values. Attributes are not allowed for now.

Value

A matrix wich has the numrical values from the dataframe.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

Match,is.symmetric, permutation

Examples

```
res<-data.frame.to_matrix(iris)
```

```
Convert R function to the Rfast's coresponding
    Convert R function to the Rfast's coresponding
```


Description

Convert R function to the Rfast's coresponding.

Usage

as.Rfast.function(Rfunction. name, margin=NULL)

Arguments

Rfunction. name An character value with the name of the function.
margin A logical function for return the column-row wise function.

Details

Given the name of R function, it returns the coresponding function's name from Rfast.

Value

The coresponding Rfast function.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Michail Tsagris mtsagris@uoc.gr.

See Also

```
    colsums,colMedians,colVars
```


Examples

```
res<-as.Rfast.function("var")
```


Correlation based forward regression

Correlation based forward regression.

Description

Correlation based forward regression.

Usage

cor.fsreg (y, x, ystand $=$ TRUE, x stand $=$ TRUE, threshold $=0.05$, tolb $=2$, tolr $=0.02$, stopping $=$ "BIC")

Arguments

$\left.\begin{array}{ll}\mathrm{y} & \text { A numerical vector. } \\ \mathrm{x} & \text { A matrix with data, the predictor variables. } \\ \text { ystand } & \begin{array}{l}\text { If this is TRUE the response variable is centered. The mean is subtracted from } \\ \text { every value. } \\ \text { threshold } \\ \text { If this is TRUE the independent variables are standardised. } \\ \text { The significance level, set to } 0.05 \text { by default. Bear in mind that the logarithm of } \\ \text { it is used, as the logarithm of the p-values is calculated at every point. This will } \\ \text { avoid numerical overflows and small p-values, less than the machine epsilon, } \\ \text { being returned as zero. }\end{array} \\ \text { If we see only the significane of the variables, many may enter the linear re- } \\ \text { gression model. For this reason, we also use the BIC as a way to validate the }\end{array}\right\}$

Details

The forward regression tries one by one the variables using the F-test, basically partial F-test every time for the latest variable. This is the same as testing the significance of the coefficient of this latest enetered variable. Alternatively the correlation can be used and this case the partial correlation coefficient. There is a direct relationship between the t-test statistic and the partial correlation coefficient. Now, instead of having to calculate the test statistic, we calculate the partial correlation coefficient. Using Fisher's z-transform we get the variance imediately. The partial correlation coefficient, using Fisher's z-transform, and the partial F-test (or the coefficient's t-test statistic) are not identical. They will be identical for large sample sizes though.

Value

A matrix with three columns, the index of the selected variables, the logged p-value and the the test statistic value and the BIC or adjusted R^{2} of each model. In the case of stopping="BICR2" both of these criteria will be returned.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
score.glms,univglms,logistic_only,poisson_only,regression
```


Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted
x <- matrnorm(200, 100)
y <- rnorm(200)
system.time( cor.fsreg(y, x) )
x <- NULL
```

Correlation between pairs of variables
Correlation between pairs of variables

Description

Correlations between pairs of variables.

Usage

corpairs(x, y, rho = NULL, logged = FALSE, parallel = FALSE)

Arguments

x
$y \quad$ A matrix with real valued data whose dimensions match those of x .
rho This can be a vector of assumed correlations (equal to the number of variables or the columns of x or y) to be tested. If this is not the case, leave it NULL and only the correlations will be returned.
logged Should the p-values be returned (FALSE) or their logarithm (TRUE)? This is taken into account only if "rho" is a vector.
parallel Should parallel implentations take place in $\mathrm{C}++$? The default value is FALSE.

Details

The paired correlations are calculated. For each column of the matrices x and y the correlation between them is calculated.

Value

A vector of correlations in the case of "rho" being NULL, or a matrix with two extra columns, the test statistic and the (logged) p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Lambert Diane (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics. 34(1):1-14.

Johnson Norman L., Kotz Samuel and Kemp Adrienne W. (1992). Univariate Discrete Distributions (2nd ed.). Wiley

Cohen, A. Clifford (1960). Estimating parameters in a conditional Poisson distribution. Biometrics. 16:203-211.

Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). Univariate Discrete Distributions (third edition). Hoboken, NJ: Wiley-Interscience.

See Also

correls, allbetas, mvbetas

Examples

```
x <- matrnorm(100, 100)
y <- matrnorm(100, 100)
system.time( corpairs(x, y) )
a <- corpairs(x, y)
x <- NULL
y <- NULL
```


Description

Correlation between a vector and a set of variables.

Usage

correls(y, x, type = "pearson", a = 0.05, rho = 0)
groupcorrels(y, x, type = "pearson", ina)

Arguments

y
x
type
a
rho
ina A factor variable or a numeric variable idicating the group of each observation.

Details

The functions uses the built-in function "cor" which is very fast and then includes confidence intervals and produces a p-value for the hypothesis test.

Value

For the "correls" a matrix with 5 column; the correlation, the p-value for the hypothesis test that each of them is eaqual to "rho", the test statistic and the $\$ \mathrm{a} / 2 \% \$$ lower and upper confidence limits.
For the "groupcorrels" a matrix with rows equal to the number of groups and columns equal to the number of columns of x. The matrix contains the correlations only, no statistical hypothesis test is performed.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also
allbetas, univglms

Examples

```
x <- matrnorm(60, 100 )
y <- rnorm(60)
r <- cor(y, x) ## correlation of y with each of the xs
a <- allbetas(y, x) ## the coefficients of each simple linear regression of y with x
b <- correls(y, x)
ina <- rep(1:2, each = 30)
b2 <- groupcorrels(y, x, ina = ina)
x <- NULL
```

Covariance and correlation matrix

Description

Fast covariance and correlation matrix calculation.

Usage

cova(x, center $=$ FALSE, large $=$ FALSE)
$\operatorname{cora}(x$, large $=$ FALSE $)$

Arguments

x
A matrix with data. It has to be matrix, if it is data.frame for example the function does not turn it into a matrix.
center If you want to center the data prior to applying the cross product of the mateix set this equal to TRUE, otherwise leave it NULL.
large If you have large matrices, with thousands of rows and or many tens or hundreds of columns set this equal to TRUE in order to use Rfast's Crossprod or Tcrossprod functions. These functions are twice or up to 3 times faster than the correpsonding built-in functions.

Details

The calculations take place faster than the built-in functions cor as the number of variables increases. This is true if the number of variables is high, say from 500 and above. The "cova" on the other hand is always faster. For the "cova" in specific, we have an option to center the data prior to the cross product. This can be more stable if you have many tens of thousands of rows due to numerical issues that can arise.

For the correlation matrix we took the code from here
https://stackoverflow.com/questions/18964837/fast-correlation-in-r-using-c-and-parallelization/18965892\#18965892

Value

The covariance or the correlation matrix.

Author(s)

Michail Tsagris and Manos Papadakis papadakm95@gmail.com.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colVars, cor, cov

Examples

```
x <- matrnorm(100, 40)
s1 <- cov(x)
s2 <- cova(x)
all.equal(s1, s2)
x <- NULL
```

```
Cox confidence interval for the ratio of two Poisson variables
    Cox confidence interval for the ratio of two Poisson variables
```


Description

Cox confidence interval for the ratio of two Poisson variables.

Usage

cox.poisrat(x, y, alpha $=0.05$)
col.coxpoisrat(x, y, alpha = 0.05)

Arguments

x
$y \quad$ A numeric vector or a matrix with count data.
alpha
A numeric vector or a matrix with count data.

The 1 - confidence level. The default value is 0.05 .

Details

Cox confidence interval for the ratio of two Poisson means is calculated.

Value

For the cox.poisrat a vector with three elements, the ratio and the lower and upper confidence interval limits. For the col.coxpoisrat a matrix with three columns, the ratio and the lower and upper confidence interval limits.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Krishnamoorthy K., Peng J. and Zhang D. (2016). Modified large sample confidence intervals for Poisson distributions: Ratio, weighted average, and product of means. Communications in Statistics-Theory and Methods, 45(1): 83-97.

See Also

correls, Table

Examples

```
x <- rpois(100, 10)
y <- rpois(100, 10)
res<-cox.poisrat(x, y)
```

Cross-Validation for the k-NN algorithm
Cross-Validation for the k-NN algorithm

Description

Cross-Validation for the $\mathrm{k}-\mathrm{NN}$ algorithm.

Usage

knn.cv(folds $=$ NULL, nfolds $=10$, stratified $=$ FALSE, seed $=$ FALSE, y, x, k, dist.type = "euclidean", type = "C", method = "average", freq.option = 0, pred.ret $=$ FALSE, mem.eff $=$ FALSE)

Arguments

folds
nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.

stratified	Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish, but only for the classification. If you have regression (type = "R"), do not put this to TRUE as it will cause problems or return wrong results.
seed	If you set this to TRUE, the same folds will be created every time.
y	A vector of data. The response variable, which can be either continuous or categorical (factor is acceptable).
x	A matrix with the available data, the predictor variables.
k	A vector with the possible numbers of nearest neighbours to be considered.
dist.type	The type of distance to be used, "euclidean" or "manhattan"
type	Do you want to do classification ("C") or regression ("R")?
method	If you do regression (type $=$ "R"), then how should the predicted values be calculated? Choose among the average ("average"), median ("median") or the harmonic mean ("harmonic") of the closest neighbours.
freq.option	If classification (type $=$ " $\mathrm{C} "$) and ties occur in the prediction, more than one class have the same number of k nearest neighbours, there are three strategies available. Option 0 selects the first most frequent encountered. Option 1 randomly selects the most frequent value, in the case that there are duplicates.
pred.ret	If you want the predicted values returned set this to TRUE.
mem.eff	Boolean value indicating a conservative or not use of memory. Lower usage of memory/Having this option on will lead to a slight decrease in execution speed and should ideally be on when the amount of memory in demand might be a concern.

Details

The concept behind $\mathrm{k}-\mathrm{NN}$ is simple. Suppose we have a matrix with predictor variables and a vector with the response variable (numerical or categorical). When a new vector with observations (predictor variables) is available, its corresponding response value, numerical or categorical, is to be predicted. Instead of using a model, parametric or not, one can use this ad hoc algorithm.
The k smallest distances between the new predictor variables and the existing ones are calculated. In the case of regression, the average, median, or harmonic mean of the corresponding response values of these closest predictor values are calculated. In the case of classification, i.e. categorical response value, a voting rule is applied. The most frequent group (response value) is where the new observation is to be allocated.
This function does the cross-validation procedure to select the optimal k, the optimal number of nearest neighbours. The optimal in terms of some accuracy metric. For the classification it is the percentage of correct classification and for the regression the mean squared error.

Value

A list including:
preds If pred.ret is TRUE the predicted values for each fold are returned as elements in a list.
crit A vector whose length is equal to the number of k and is the accuracy metric for each k .

Author(s)

Marios Dimitriadis
R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

Cover TM and Hart PE (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1):21-27.
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the α-transformation. Journal of classification 33(2): 243-261.

See Also

knn, Dist, dista,dirknn.cv

Examples

```
x <- as.matrix(iris[, 1:4])
y <- iris[, 5]
mod <- knn.cv(folds = NULL, nfolds = 10, stratified = TRUE, seed = FALSE, y = y, x = x,
k = c(3, 4), dist.type = "euclidean", type = "C", method = "average",
freq.option = 0, pred.ret = FALSE, mem.eff = FALSE)
```


Description

Cross-Validation for the k-NN algorithm using the arc cosinus distance.

Usage

dirknn.cv(y, x, k = 5:10, type = "C", folds = NULL, nfolds = 10,
stratified $=$ TRUE, seed $=$ FALSE, parallel $=$ FALSE, pred.ret $=$ FALSE)

Arguments

y
$x \quad$ A matrix with the available data, the predictor variables.
k
A vector of data. The response variable, which can be either continuous or categorical (factor is acceptable).

A vector with the possible numbers of nearest neighbours to be considered.

type	If your response variable y is numerical data, then this should be "R" (regres- sion) or "WR" for distance weighted based nearest neighbours. If y is in gen- eral categorical set this argument to "C" (classification) or to "WC" for distance weighted based nearest neighbours.
folds	A list with the indices of the folds. nfolds
The number of folds to be used. This is taken into consideration only if "folds"	
is NULL.	

Details

The concept behind k-NN is simple. Suppose we have a matrix with predictor variables and a vector with the response variable (numerical or categorical). When a new vector with observations (predictor variables) is available, its corresponding response value, numerical or categorical, is to be predicted. Instead of using a model, parametric or not, one can use this ad hoc algorithm.
The k smallest distances between the new predictor variables and the existing ones are calculated. In the case of regression, the average, median, or harmonic mean of the corresponding response values of these closest predictor values are calculated. In the case of classification, i.e. categorical response value, a voting rule is applied. The most frequent group (response value) is where the new observation is to be allocated.

This function does the cross-validation procedure to select the optimal k, the optimal number of nearest neighbours. The optimal in terms of some accuracy metric. For the classification it is the percentage of correct classification and for the regression the mean squared error.

Value

A list including:
preds If pred.ret is TRUE the predicted values for each fold are returned as elements in a list.
crit A vector whose length is equal to the number of k and is the accuracy metric for each k. For the classification case it is the percentage of correct classification. For the regression case the mean square of prediction error.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.
Cover TM and Hart PE (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1):21-27.

See Also

dirknn,knn.cv,knn

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / sqrt( Rfast::rowsums(x^2) )
y <- iris[, 5]
mod <- dirknn.cv(y = y, x = x, k = c(3, 4) )
```

Deep copy Deep copy

Description

Deep copy.

Usage

env.copy (x,all.names=FALSE)

Arguments

x
all.names

An environment object.
An logical value (TRUE or FALSE). Copy all the hidden variables or not.

Details

Deep copy of the environment object.

Value

A copy of the first argument.

Author(s)

R implementation and documentation: Manos Papadakis <papadakm95@ gmail.com>.

See Also

colShuffle, colVars, colmeans, read.directory

Examples

```
x <- new.env()
x$imaginary <- NULL
x$real <- NULL
# you can library the package and just press x and R will understand
# and search automatically for a function to print the environment
x
y <- env.copy(x)
x$real <- 10
x$real == y$real # FALSE
```

Density of the multivariate normal and t distributions
Density of the multivariate normal and t distributions

Description

Density of the multivariate normal and t distributions.

Usage

dmvnorm(x, mu, sigma, logged = FALSE)
dmvt(x, mu, sigma, nu, logged = FALSE)

Arguments

$x \quad$ A numerical matrix with the data. The rows correspond to observations and the columns to variables.
mu
The mean vector.
sigma
The covariance matrix.
nu
The degrees of freedom for the multivariate t distribution.
logged
Should the logarithm of the density be returned (TRUE) or not (FALSE)?

Details

The (log) density of the multivariate normal distribution is calculated for given mean vector and covariance matrix.

Value

A numerical vector with the density values calculated at each vector (row of the matrix x).

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Kanti V. Mardia, John T. Kent and John M. Bibby (1979). Multivariate analysis. Academic Press, London.

See Also

rmvnorm, rmvt,mvnorm.mle,iag.mle

Examples

```
x <- matrnorm(100, 20)
mu <- colmeans(x)
s <- cova(x)
a1 <- dmvnorm(x, mu, s)
a2 <- dmvt(x, mu, s, 1)
x <- NULL
```

Design Matrix Design Matrix

Description

Design Matrix.

Usage

design_matrix(x, ones = TRUE)

Arguments

$x \quad$ A character vector or a factor type vector or a dataframe. Do not supply a numerical vector.
ones A boolean variable specifying whether to include the ones in the design matrix or not. The default value is TRUE.

Details

This function implements the R's "model.matrix" function and is used only when the x is a factor/charactervector or Dataframe.

Value

Returns the same matrix with model.matrix.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

model.matrix

Examples

a <- design_matrix(iris[, 5])
b <- model.matrix(~ iris[,5]) \#\# R's built-in function
all.equal(as.vector(a), as.vector(b)) \#\# true
$a<-b<-N U L L$

Diagonal Matrix Diagonal Matrix

Description

Fill the diagonal of a matrix or create a diagonal and initialize it with a specific value.

Usage

Diag.fill(x, v=0)
Diag.matrix(len, v=0)

Arguments

x
A matrix with data.
len Number of columns or rows.
$v \quad$ Value or vector to initialize the diagonal of a matrix.By default "v=0".

Value

Diag.fill returns a diagonal matrix where all the elements in the diagonal are equal to " v ".
Diag.matrix returns a diagonal matrix where has dimension "len,len" and all the elements in the diagonal are equal to " v ". It is fast for huge matrices with dimensions more than [row,col] = $[500,500$]

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
rowMins,colFalse,nth,rowrange,rowMedians,rowVars,colSort,rowSort,colTrue
```


Examples

```
x <- matrix(rbinom(100*100,1,0.5),100,100)
f <- Diag.fill(x,1)
f <- Diag.fill(x,1:100) ##equals to diag(x)<-1:100
f <- Diag.matrix(100,1) ##equals to diag(1,100,100)
f <- Diag.matrix(100,1:100) ##equals to diag(1:100,100,100)
f<-x<-NULL
```

Distance between vectors and a matrix
Distance between vectors and a matrix

Description

Distance between vectors and a matrix.

Usage

dista(xnew, x, type $=$ "euclidean", $k=0$, index $=$ FALSE, trans $=$ TRUE, square $=$ FALSE)

Arguments

xnew A matrix with some data or a vector.
$x \quad$ A matrix with the data, where rows denotes observations (vectors) and the columns contain the variables.
type \quad This can be either "euclidean" or "manhattan".
$\mathrm{k} \quad$ Should the k smaller distances or their indices be returned? If $\mathrm{k}>0$ this will happen.
index In case k is greater than 0 , you have the option to get the indices of the k smallest distances.
trans Do you want the returned matrix to be transposed? TRUE or FALSE.
square If you choose "euclidean" as the method, then you can have the optino to return the squared Euclidean distances by setting this argument to TRUE.

Details

The target of this function is to calculate the distances between xnew and x without having to calculate the whole distance matrix of xnew and x. The latter does extra calculations, which can be avoided.

Value

A matrix with the distances of each xnew from each vector of x. The number of rows of the xnew and and the number of columns of xnew are the dimensions of this matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
mahala,Dist,total.dist,total.dista
```


Examples

```
xnew <- as.matrix( iris[1:10, 1:4] )
x <- as.matrix( iris[-c(1:10), 1:4] )
a <- dista(xnew, x)
b <- as.matrix( dist( rbind(xnew, x) ) )
b <- b[ 1:10, -c(1:10) ]
sum( abs(a - b) )
## see the time
x <- matrix( rnorm(1000 * 4), ncol = 4 )
system.time( dista(xnew, x) )
system.time( as.matrix( dist( rbind(xnew, x) ) ) )
x<-b<-a<-xnew<-NULL
```

Distance correlation Distance correlation

Description

Distance correlation.

Usage

dcor (x, y)
$\operatorname{bcdcor}(\mathrm{x}, \mathrm{y})$

Arguments

x
y

A numerical matrix.
A numerical matrix.

Details

The distance correlation or the bias corrected distance correlation of two matrices is calculated. The latter one is used for the hypothesis test that the distance correlation is zero (see dcor. ttest).

Value

The value of the distance correlation of the bias corrected distance correlation.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

dcov, dcor.ttest,edist

Examples

```
x <- as.matrix(iris[1:50, 1:4])
y <- as.matrix(iris[51:100, 1:4])
res<-dcor(x, y)
res<-bcdcor(x, y)
x<-y<-NULL
```

Distance matrix Distance matrix

Description

Distance matrix.

Usage

```
Dist(x, method \(=\) "euclidean", square \(=\) FALSE, \(p=0\), vector \(=\) FALSE)
```

vecdist(x)

Arguments

x
method
square
p
vector For return a vector instead a matrix.

Details

The distance matrix is computer with an extra argument for the Euclidean distances. The "kullback_leibler" refers to the symmetric Kullback-Leibler divergence.

Value

A square matrix with the pairwise distances.

Author(s)

Manos Papadakis.
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Mardia K. V., Kent J. T. and Bibby J. M. (1979). Multivariate Analysis. Academic Press.

See Also

```
dista,colMedians
```


Examples

```
x <- matrix(rnorm(50 * 10), ncol = 10)
a1 <- Dist(x)
a2 <- as.matrix( dist(x) )
x<-a1<-a2<-NULL
```

Distance variance and covariance
Distance variance and covariance

Description

Distance variance and covariances.

Usage

dvar(x)
$\operatorname{dcov}(x, y)$

Arguments

$x \quad$ A numerical matrix or a vector.
$y \quad$ A numerical matrix or a vector.

Details

The distance variance of a matrix/vector or the distance covariance of two matrices is calculated. For the distance variance of a vector we use the fast method of Huo and Szekely (2016).

Value

The distance covariance or distance variance.

Author(s)

Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Szekely G.J., Rizzo M.L. and Bakirov N.K.(2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

Huo X. and Szekely G. J. (2016). Fast computing for distance covariance. Technometrics, 58(4): 435-447.

See Also

dcor,edist

Examples

```
x <- as.matrix(iris[1:50, 1:4])
y <- as.matrix(iris[51:100, 1:4])
res <- dcov(x, y)
res <- dvar(x[, 1])
```

Eigenvalues and eigenvectors in high dimensional principal component analysis Eigenvalues in high dimensional principal component analysis

Description

Eigenvalues in high dimensional ($\mathrm{n}<\mathrm{p}$) principal component analysis.

Usage

hd.eigen(x, center = TRUE, scale = FALSE, $k=$ NULL, vectors = FALSE, large $=$ FALSE)

Arguments

$\mathrm{x} \quad$ A numerical $n \times p$ matrix with data where the rows are the observations and the columns are the variables.
center Do you want your data centered? TRUE or FALSE.
scale Do you want each of your variables scaled, i.e. to have unit variance? TRUE or FALSE.
$\mathrm{k} \quad$ If you want a specific number of eigenvalues and eigenvectors set it here, otherwise all eigenvalues (and eigenvectors if requested) will be returned.
vectors Do you want the eigenvectors be returned? By dafault this is FALSE.
large If you have large matrices, with thousands of rows and or many tens or hundreds of columns set this equal to TRUE in order to use Rfast's Crossprod or Tcrossprod functions. These functions are twice or up to 3 times faster than the correpsonding built-in functions.

Details

When $n \ll p$, at most the first n eigenvalues are non zero. Hence, there is no need to calculate the other p-n zero eigenvalues. When center is TRUE, the eigenvalues of the covariance matrix are calculated. When both the center and scale is TRUE the eigenvalues of the correlation matrix are calculated. One or more eigenvectors (towards the end) will be 0 . In general the signs might be the opposite than R's, but this makes no difference. We use the Crossprod instead of the relevant built-in function. The higher the dimensions of the matrix are the faster this function becomes.

Value

A list including:
values A vector with the n (or first k) eigenvalues. The divisor in the crossproduc matrix is $\mathrm{n}-1$ and not n .
vectors A matrix of $p \times n$ or $p \times k$ eigenvectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

rmdp

Examples

```
x <- matrnorm( 40, 100)
a <- hd.eigen(x, FALSE, FALSE)
b <- prcomp(x, center = FALSE, scale = FALSE)
a
b$sdev^2
x <- NULL
```


Description

Empirical and exponential empirical likelihood tests for one sample.

Usage

eel.test1 (x, mu, tol = 1e-09, logged = FALSE)
el.test1 (x, mu, tol = 1e-07, logged = FALSE)

Arguments

x
mu The hypothesised mean value.
tol The tolerance value to stop the iterations of the Newton-Raphson.
logged \quad Should the logarithm of the p-value be returned? TRUE or FALSE.
A numerical vector.

Details

Exponential empirical likelihood is a non parametric method. In this case we use it as the non parametric alternative to the t-test. Newton-Raphson is used to maximise the log-likelihood ratio test statistic. In the case of no solution, NULL is returned. Despite the function having beeen written in R, it is pretty fast. As for the empirical likelihood ratio test, there is a condition for the range of possible values of mu . If mu is outside this range it is rejected immediately.

Value

iters The number of iterations required by the Newton-Raphson algorithm. If no covnergence occured this is NULL. This is not returned for the empircial likelihood ratio test.
info A vector with three elements, the value of the λ, the likelihood ratio test statistic and the relevant p-value. If no convergence occured, the value of the λ before is becomes NA, the value of test statistic is 10^{5} and the p-value is 0 . No convergence can be interpreted as rejection of the hypothesis test.
p
The estimated probabilities, one for each observation. If no covnergence occured this is NULL.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

ftest, ttest1

Examples

```
x <- rnorm(500)
system.time(a1 <- eel.test1 (x, 0) )
system.time(a2 <- el.test1 (x, 0) )
```

Empirical and exponential empirical likelihood tests for two samples
Empirical and exponential empirical likelihood tests for two samples

Description

Empirical and exponential empirical likelihood tests for two samples.

Usage

eel.test2 $(x, y$, tol $=1 \mathrm{e}-09$, logged $=$ FALSE)
el.test2 (x, y, tol $=1 \mathrm{e}-07$, logged $=$ FALSE)

Arguments

x
y Another numerical vector.
A numerical vector.
logged

The tolerance value to stop the iterations of the Newton-Raphson.
Should the logarithm of the p-value be returned? TRUE or FALSE.

Details

Empirical and exponential empirical likelihood are two non parametric hypothesis testing methods. We can use them as non parametric alternatives to the t-test. Newton-Raphson is used to maximise the log-likelihood ratio test statistic. In the case of no solution, NULL is returned.

Value

iters The number of iterations required by the Newton-Raphson algorithm. If no covnergence occured this is NULL.
info A vector with three elements, the value of the λ, the likelihood ratio test statistic and the relevant p-value. If no convergence occured, the value of the λ before is becomes NA, the value of test statistic is 10^{5} and the p-value is 0 . No convergence can be interpreted as rejection of the hypothesis test.
p1 The estimated probabilities, one for each observation for the first sample. If no covnergence occured this is NULL.
p2 The estimated probabilities, one for each observation for the second sample. If no covnergence occured this is NULL.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

ftests,ttests, ,ttest

Examples

x <- rnorm(200)
y <- rnorm(300)
system.time(eel.test2(x, y))
system.time(el.test2(x, y))

Energy distance between matrices
Energy distance between matrices

Description

Energy distance between matrices.

Usage

edist($\mathrm{x}, \mathrm{y}=\mathrm{NULL}$)

Arguments

$x \quad$ A matrix with numbers or a list with matrices.
$y \quad$ A second matrix with data. The number of columns of x and y must match. The number of rows can be different.

Details

This calculates the energy distance between two matrices. It will work even for tens of thousands of rows, it will just take some time. See the references for more information. If you have many matrices and want to calculate the distance matrix, then put them in a list and use eDist.

Value

If " x " is matrix, a numerical value, the energy distance. If " x " is list, a matrix with all pairwsie distances of the matrices.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Szekely G. J. and Rizzo M. L. (2004) Testing for Equal Distributions in High Dimension, InterStat, November (5).
Szekely G. J. (2000) Technical Report 03-05, E-statistics: Energy of Statistical Samples, Department of Mathematics and Statistics, Bowling Green State University.

Sejdinovic D., Sriperumbudur B., Gretton A. and Fukumizu, K. (2013). Equivalence of distancebased and RKHS-based statistics in hypothesis testing. The Annals of Statistics, 41(5), 2263-2291.

See Also

```
dvar,total.dist,total.dista,Dist,dista
```


Examples

```
x <- as.matrix( iris[1:50, 1:4] )
y <- as.matrix( iris[51:100, 1:4] )
res<-edist(x, y)
z <- as.matrix(iris[101:150, 1:4])
a <- list()
a[[ 1 ]] <- x
a[[ 2 ] ] <- y
a[[ 3 ]] <- z
res<-edist(a)
x<-y<-z<-a<-NULL
```

Equality of objects Equality of objects

Description

Equality of objects.

Usage

all_equals(x, y,round_digits = FALSE, without_attr=FALSE,fast_result=FALSE)

Arguments

x
$y \quad$ A Matrix, List, Dataframe or Vector.
round_digits The digit for rounding numbers.
without_attr A boolean value (TRUE/FALSE) for deleting attributes. Be carefull although because some atributes are very important for you item.
fast_result A boolean value (TRUE/FALSE) for using just identical.But you can combine only with round_digits argument.

Value

A boolean (TRUE/FALSE) value which represents if the items x and y are equal.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
Match,mvbetas,correls,univglms,colsums,colVars
```


Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
y <- matrix( rnorm(100 * 100), ncol = 100 )
all_equals(x,y)
all_equals(x, x)
```

Estimation of an AR(1) model
Estimation of an AR(1) model

Description

Estimation of an AR(1) model.

Usage

ar1 (y, method = "cmle")
colar1(y, method = "cmle")

Arguments

y For the case of ar1 this is a vector of time series. For the case of colar1 this is a matrix where weach column represents a time series.
method This can be either "cmle" for conditional maximum likelihood or "yw" for the Yule-Walker equations.

Details

Instead of the classical MLE for the AR(1) model which requires numerical optimsation (NewtonRaphson for example) we estimate the parameters of the AR(1) model using conditional maximum likelihood. This procedure is described in Chapter 17 in Lee (2006). In some, it assumes that the first observation is deterministic and hence conditioning on that observation, there is a closed form solution for the parameters. The second alternative is to use the method of moments and hence the Yule-Walker equations.

Value

param For the case of ar1 this is a vector with three elements, the constant term, the ϕ term (lag coefficient) and the variance. For the case of colar1 this is a matrix with three columns, eahc of which carries the same aforementioned elements.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

http://econ.nsysu.edu.tw/ezfiles/124/1124/img/Chapter17_MaximumLikelihoodEstimation.pdf

See Also

```
rm.lines,varcomps.mle,rm.anovas
```


Examples

```
y <- as.vector(lh)
ar1(y)
ar(y, FALSE, 1, "ols")
ar1(y, method = "yw")
ar(y, FALSE, 1, "yw")
a1 <- colar1(cbind(y, y) )
b1 <- colar1(cbind(y, y), method = "yw")
```

```
Estimation of the Box-Cox transformation
    Estimation of the Box-Cox transformation
```


Description

Estimation of the Box-Cox transformation.

Usage

$b c(x$, low $=-1$, up $=1)$

Arguments

x
low
up

A numerical vector with strictly positive values.
The lowest value to search for the best λ parameter.
The highest value to search for the best λ parameter.

Details

The functions estimates the best λ in the Box-Cox power transformation.

Value

The optimal value of λ.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Box George E. P. and Cox D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26 (2):211-252.

See Also

correls, auc

Examples

```
x <- exp(rnorm(1000))
res<-bc(x)
```

Exact t-test for 2 independent samples
Exact t-test for 2 independent samples

Description

Exact t -test for 2 independent samples.

Usage

exact.ttest2(x, y)

Arguments

$x \quad$ A numerical vector with the data.
$\mathrm{y} \quad$ A numerical vector with the data.

Details

This function performs an exact t-test. With few observations, permutation or bootstrap calculation of the p-value is advisable. However, with even fewer observations, one can perform all possible permutations and calculate the exact p-value. This is what this function does. BUT, pay attention, as this works with few samples. If for example each sample contains 15 numbers, you will need a lot of memory (more than 17 GB) for this function to work. the reason is that we create the matrix with all possible permutations first and then perform the two-sample t-test.

Value
A vector with the number of permutations, test statistic and the permutation based p -value.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

See Also

boot.ttest2, ttest2,ftest

Examples

```
x <- rnorm(7)
y <- rnorm(7)
res<-exact.ttest2(x, y)
```

Exponential empirical likelihood for a one sample mean vector hypothesis testing Exponential empirical likelihood for a one sample mean vector hypothesis testing

Description

Exponential empirical likelihood for a one sample mean vector hypothesis testing.

Usage

mv.eeltest1(x, mu, tol = 1e-06)

Arguments

$x \quad$ A matrix containing Euclidean data.
mu The hypothesized mean vector.
tol The tolerance value used to stop the Newton-Raphson algorithm.

Details

Multivariate hypothesis test for a one sample mean vector. This is a non parametric test and it works for univariate and multivariate data. The p-value is currently computed only asymptotically (no bootstrap calibration at the moment).

Value

A list including:
$\mathrm{p} \quad$ The estimated probabiities.
lambda The value of the Lagrangian parameter λ.
iters The number of iterations required by the newton-Raphson algorithm.
info The value of the log-likelihood ratio test statistic along with its corresponding p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.

See Also

james,mv.eeltest2

Examples

```
x <- Rfast::rmvnorm(100, numeric(10), diag( rexp(10, 0.5) ) )
res<-mv.eeltest1(x, numeric(10) )
```

```
Exponential empirical likelihood hypothesis testing for two mean vectors
    Exponential empirical likelihood hypothesis testing for two mean vec-
    tors
```


Description

Exponential empirical likelihood hypothesis testing for two mean vectors.

Usage

mv.eeltest2 (y1, y2, tol $=1 \mathrm{e}-07, \mathrm{R}=0$)

Arguments

y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
tol The tolerance level used to terminate the Newton-Raphson algorithm.
$R \quad$ If R is 0 , the classical chi-sqaure distribution is used, if $R=1$, the corrected chisquare distribution (James, 1954) is used and if $\mathrm{R}=2$, the modified F distribution (Krishnamoorthy and Yanping, 2006) is used.

Details

Exponential empirical likelihood is a non parametric hypothesis testing procedure for one sample. The generalisation to two (or more samples) is via searching for the mean vector that minimises the sum of the two test statistics.

Value

A list including:

test	The empirical likelihood test statistic value.
modif. test	The modified test statistic, either via the chi-square or the F distribution.
pvalue	The p-value.
iters	The number of iterations required by the newton-Raphson algorithm.
mu	The estimated common mean vector.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43.
Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.
Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.
Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.
Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.

See Also

james,mv.eeltest1

Examples

```
res<-mv.eeltest2( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 0 )
res<-mv.eeltest2( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1 )
```

```
Fast and general - untyped represantation of a factor variable
                        Fast and general represantation of a factor variable
```


Description

Fast and general represantation of a factor variable.

Usage

ufactor (x)
\#\# S3 method for class 'ufactor'
x[i]
\#\# S3 method for class 'ufactor'
print(x,...)

Arguments

$x \quad$ A vector with data.
i An integer value/vector which is the index/indices to the element you want to access.
... Anything the user want.

Details

This is a general implementation of factor structure. For access the fields of a "ufactor" use the "\$" operator.

Value

An object of class "ufactor". This object holds 2 fields:
levels: the levels of the variable in his initial type values: the values of the variable in his initial type

Author(s)

Manos Papadakis
R implementation and documentation: and Manos Papadakis papadakm95@gmail.com.

See Also

colVars, factor

Examples

```
x <- rnorm(10)
R.factor<- as.factor(x)
Rfast.factor <- ufactor(x)
identical(levels(R.factor),Rfast.factor$levels) # TRUE
identical(as.numeric(R.factor),Rfast.factor$values) # TRUE
x<-R.factor<-Rfast.factor<-NULL
```

FBED variable selection method using the correlation
FBED variable selection method using the correlation

Description

FBED variable selection method using the correlation.

Usage

cor.fbed(y, x, ystand $=$ TRUE, $x s t a n d=$ TRUE, alpha $=0.05, \mathrm{~K}=0$)

Arguments

$y \quad$ The response variable, a numeric vector.
$x \quad$ A matrix with the data, where the rows denote the samples and the columns are the variables.
ystand If this is TRUE the response variable is centered. The mean is subtracted from every value.
xstand If this is TRUE the independent variables are standardised.
alpha The significance level, set to 0.05 by default.
K The number of times to repeat the process. The default value is 0 .

Details

FBED stands for Forward Backward with Earcly Dropping. It is a variation of the classical forward selection, where at each step, only the statistically significant variables carry on. The rest are dropped. The process stops when no other variables can be selected. If $K=1$, the process is repeated testing sequentially again all those that have not been selected. If $K>1$, then this is repeated.

In the end, the backward selection is performed to remove any falsely included variables. This backward phase has not been implemented yet.

Value

A list including:
runtime The duration of the process.
res A matrix with the index of the selected variable, their test statistic value and the associated p-value.
info A matrix with two columns. The cumulative number of variables selected and the number of tests for each value of K.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Journal of Machine Learning Research, 20(8): 1-39.

See Also

```
cor.fsreg,ompr,correls,fs.reg
```


Examples

```
\(\mathrm{x}<-\) matrnorm(100, 100)
y <- rnorm(100)
a <- cor.fbed \((\mathrm{y}, \mathrm{x})\)
a
x <- NULL
```

Find element

Find element

Description

Search a value in an unordered vector.

Usage

is_element(x, key)

Arguments

x
key

A vector or matrix with the data.
A value to check if exists in the vector x.

Details

Find if the key exists in the vector and return returns TRUE/FALSE if the value is been found. If the vector is unordered it is fast but if the vector is ordered then use binary_search. The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

TRUE/FALSE if the value is been found.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

binary_search (buit-in R function)

Examples

$x<-r n o r m(500)$
key <- x[50]
b <- is_element(x, key)

Find the given value in a hash table
Find the given value in a hash table

Description

Find the given value in a hash table or list.

Usage

hash.find(x,key)

Arguments

x
A hash table or list.
key
The key for searching the table.

Details

This function search the given key.

Value

If the given key exists return its value else returns 0 .

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

hash.list

Examples

$x<-$ hash.list(letters, c(1:26))
value <- hash.find(x,"a")
$x[[" a "]]==v a l u e$

Fitted probabilities of the Terry-Bradley model
Fitted probabilities of the Terry-Bradley model

Description

Fitted probabilities of the Terry-Bradley model.

Usage

btmprobs(x, tol $=1 e-09)$

Arguments

x
A numerical square, usually not symmetric, matrix with discrete valued data. Each entry is a frequency, to give an example, the number of wins. $x[i, j]$ is the number of wins of home team i against guest team j. $x[j, i]$ is the number of wins of home team j against guest team i .
tol The tolerance level to terminate the iterative algorithm.

Details

It fits a Bradley-Terry model to the given matrix and returns the fitted probabilities only.

Value

A list including:

iters	The numbetr of iterations required.
probs	A vector with probabilities which sum to 1. This is the probability of win for each item (or team in our hypothetical example).

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Bradley R.A. and Terry M.E. (1952). Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons. Biometrika, 39(3/4):324-345.

Huang Tzu-Kuo, Ruby C. Weng and Chih-Jen Lin (2006). Generalized Bradley-Terry models and multi-class probability estimates. Journal of Machine Learning Research, 7:85-115.
Agresti A. (2002). Categorical Data Analysis (2nd ed). New York: Wiley.

See Also

```
g2tests, poisson.anova, anova, poisson_only, poisson.mle
```


Examples

```
x <- matrix( rpois(10 * 10, 10), ncol = 10) ## not the best example though
res<-btmprobs(x)
```

Fitting a Dirichlet distribution via Newton-Rapshon
Fitting a Dirichlet distribution via Newton-Rapshon

Description

Fitting a Dirichlet distribution via Newton-Rapshon.

Usage

diri.nr2(x, type $=1$, tol $=1 \mathrm{e}-07$)

Arguments

$x \quad$ A matrix containing the compositional data. Zeros are not allowed.
type Type 1 uses a vectorised version of the Newton-Raphson (Minka, 2012). In high dimensions this is to be preferred. If the data are too concentrated, regardless of the dimensions, this is also to be preferrred. Type 2 uses the regular Newton-Raphson, with matrix multiplications. In small dimensions this can be considerably faster.
tol The tolerance level idicating no further increase in the log-likelihood.

Details

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed via Newton-Raphson. Initial values suggested by Minka (2012) are used.

Value

A list including:
loglik The value of the log-likelihood.
param The estimated parameters.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Minka Thomas (2012). Estimating a Dirichlet distribution. Technical report.
Ng Kai Wang, Guo-Liang Tian, and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also

beta.mle

Examples

```
x <- matrix( rgamma(100 * 4, c(5, 6, 7, 8), 1), ncol = 4)
x <- x / rowsums(x)
res<-diri.nr2(x)
```

```
Floyd-Warshall algorithm
    Floyd-Warshall algorithm for shortest paths in a directed graph
```


Description

Floyd-Warshall algorithm for shortest paths in a directed graph.

Usage

floyd(x)

Arguments

x
The adjacency matrix of a directed graph. A positive number (including) in $x[i$, $j]$ indicates that there is an arrow from i to j and it also shows the cost of going from i to j . Hence, the algorithm will find not only the shortest path but also the with the smallest cost. A value of NA means that there is no path. Put positive number only, as negative will cause problems.

Details

The Floyd-Warshall algorithm is designed to find the shortest path (if it exists) between two nodes in a graph.

Value

A matrix, say z, with 0 and positive numbers. The elements denote the length of the shortest path between each pair of points. If $z[i, j]$ is zero it means that there is no cost from i to j. If $z[i, j]$ has a positive value it means that the length of going from i to j is equal to that value.

Author(s)

John Burkardt (C++ code)
Ported into R and documentation: Manos Papadakis <papadakm95@ gmail.com>.

References

Floyd, Robert W. (1962). Algorithm 97: Shortest Path. Communications of the ACM. 5(6): 345.
Warshall, Stephen (1962). A theorem on Boolean matrices. Journal of the ACM. 9 (1): 11-12.
https://en.wikipedia.org/wiki/Floyd

See Also

colSort, rowSort

Examples

```
x <- matrix(NA, 10, 10)
x[sample(1:100, 10)] <- rpois(10, 3)
res<-floyd(x)
```

```
Forward selection with generalised linear regression models
    Variable selection in generalised linear regression models with for-
    ward selection
```


Description

Variable selection in generalised linear regression models with forward selection

Usage

fs.reg(y, ds, sig = 0.05, tol = 2, type = "logistic")

Arguments

y The dependent variable. This can either be a binary numeric $(0,1)$ or a vector with integers (numeric or integer class), count data. The first case is for the binary logistic regression and the second for the Poisson regression.
ds The dataset; provide a matrix where columns denote the variables and the rows the observations. The variables must be continuous, no categorical variables are accepted.
sig \quad Significance level for assessing the p-values significance. Default value is 0.05 .
tol The difference bewtween two successive values of the stopping rule. By default this is is set to 2. If for example, the BIC difference between two succesive models is less than 2, the process stops and the last variable, even though significant does not enter the model.
type If you have a binary dependent variable, put "logistic" or "quasibinomial". If you have percentages, values between 0 and 1 , including 0 and or 1 , use "quasibinomial" as well. If you have count data put "poisson".

Details

The classical forward regression is implemented. The difference is that we have an extra step of check. Even if a variable is significant, the BIC of the model (with that variable) is calculated. If the decrease from the previous BIC (of the model without this variable) is less thatn a prespecified by the user value (default is 2) the variable wil enter. This way, we guard somehow against over-fitting.

Value

A matrix with for columns, the selected variables, the logarithm of their p-value, their test statistic and the BIC of the model with these variables included. If no variable is selected, the matrix is empty.

Author(s)

Marios Dimitriadis
Documentation: Marios Dimitriadis kmdimitriadis@gmail.com.

See Also

```
cor.fsreg,logistic_only,poisson_only,glm_logistic,glm_poisson
```


Examples

```
## Not run:
set.seed(123)
#simulate a dataset with continuous data
x <- matrnorm(100, 50)
y <- rpois(100, 10)
a <- fs.reg(y, x, sig = 0.05, tol = 2, type = "poisson")
x <- NULL
## End(Not run)
```

G-square and Chi-square test of conditional indepdence
G-square test of conditional indepdence

Description

G-square test of conditional indepdence with and without permutations.

Usage

g2Test(data, $\mathrm{x}, \mathrm{y}, \mathrm{cs}, \mathrm{dc})$
g2Test_perm(data, $x, y, ~ c s, ~ d c, ~ n p e r m) ~$
chi2Test(data, $\mathrm{x}, \mathrm{y}, \mathrm{cs}, \mathrm{dc})$

Arguments

data A numerical matrix with the data. The minimum must be 0 , otherwise the function can crash or will produce wrong results. The data must be consecutive numbers.
x
A number between 1 and the number of columns of data. This indicates which variable to take.
y
A number between 1 and the number of columns of data (other than x). This indicates the other variable whose independence with x is to be tested.
cs A vector with the indices of the variables to condition upon. It must be non zero and between 1 and the number of variables. If you want unconditional independence test see g2Test_univariate and g2Test_univariate_perm. If there is an overlap between x, y and cs you will get 0 as the value of the test statistic.
dc A numerical value equal to the number of variables (or columns of the data matrix) indicating the number of distinct, unique values (or levels) of each variable. Make sure you give the correct numbers here, otherwise the degrees of freedom will be wrong.
nperm The number of permutations. The permutations test is slower than without permutations and should be used with small sample sizes or when the contigency tables have zeros. When there are few variables, R's "chisq.test" function is faster, but as the number of variables increase the time difference with R's procedure becomes larger and larger.

Details

The functions calculates the test statistic of the G^{2} test of conditional independence between x and y conditional on a set of variable(s) cs.

Value

A list including:

statistic	The G^{2} or $c h i^{2}$ test statistic.
df	The degrees of freedom of the test statistic.
x	The row or variable of the data.
y	The column or variable of the data.

Author(s)

Giorgos Borboudakis. The permutation version used a C++ code by John Burkardt.
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Tsamardinos, I., \& Borboudakis, G. (2010). Permutation testing improves Bayesian network learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 322-337). Springer Berlin Heidelberg

See Also

g2Test_univariate,g2Test_univariate_perm, correls,univglms

Examples

```
nvalues <- 3
nvars <- 10
nsamples <- 5000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
dc <- rep(nvalues, nvars)
res<-g2Test( data, 1, 2, 3, c(3, 3, 3) )
res<-g2Test_perm( data, 1, 2, 3, c(3, 3, 3), 1000 )
```

```
    dc<-data<-NULL
```

Gamma regression with a log-link
Gamma regression with a log-link

Description

Gamma regression with a log-link.

Usage

gammareg (y, x, tol $=1 \mathrm{e}-07$, maxiters $=100$)
gammacon(y, tol $=1 \mathrm{e}-08$, maxiters $=50$)

Arguments

$y \quad$ The dependent variable, a numerical variable with non negative numbers.
$x \quad$ A matrix or data.frame with the indendent variables.
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The maximum number of iterations that can take place in the regression.

Details

The gamma.reg fits a Gamma regression with a log-link. The gamma.con fits a Gamma regression with a $\log \operatorname{link}$ with the intercept only $(\operatorname{glm}(y \sim 1, G a m m a(\log)))$.

Value

A list including:

deviance	The deviance value.
phi	The dispersion parameter (ϕ) of the regression. This is necessary if you want to perform an F hypothesis test for the significance of one or more independent variables.
be	The regression coefficient(s). info
	The number of iterations, the deviance and the dispersion parameter.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
gammaregs,normlog.reg,invgauss.reg
```


Examples

```
y <- abs( rnorm(100) )
x <- matrix( rnorm(100 * 2), ncol = 2)
mod <- glm(y ~ x, family = Gamma(log) )
res<-summary(mod)
## Not run:
res<-gammareg(y, x)
## End(Not run)
mod <- glm(y ~ 1, family = Gamma(log) )
res<-summary(mod)
res<-gammacon(y)
```

Gaussian regression with a log-link Gaussian regression with a log-link

Description

Gaussian regression with a log-link.

Usage

normlog.reg(y, x, tol $=1 \mathrm{e}-07$, maxiters $=100)$

Arguments

y The dependent variable, a numerical variable with non negative numbers.
$x \quad$ A matrix or data.frame with the indendent variables.
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The maximum number of iterations that can take place in the regression.

Details

A Gaussian regression with a log-link is fitted.

Value

A list including:
i
loglik
deviance
be

The number of iterations required by the Newton-Raphson
The log-likelihood value.
The deviance value.
The regression coefficients

Author(s)

Stefanos Fafalios
R implementation and documentation: Stefanos Fafalios <stefanosfafalios@ gmail.com>

See Also

normlog.regs, score.glms, prop.regs, allbetas

Examples

```
## Not run:
y <- abs( rnorm(100))
x <- matrix( rnorm(100 * 2), ncol = 2)
a <- normlog.reg(y, x)
b <- glm(y ~ x, family = gaussian(log) )
summary(b)
a
## End(Not run)
```

Generates random values from a normal and puts them in a matrix
Generates random values from a normal and puts them in a matrix

Description

Generates random values from a normal and puts them in a matrix.

Usage

matrnorm $(\mathrm{n}, \mathrm{p}$, seed $=\mathrm{NULL})$

Arguments

n
p
seed

The sample size, the number of rows the matrix will have.
The dimensionality of the data, the nubmer of columns of the matrix.
If you want the same to be generated again use a seed for the generator, an integer number.

Details

How many times did you have to simulated data from a (standard) normal distribution in order to test something? For example, in order to see the speed of logistic_only, one needs to generate a matrix with predictor variables. The same is true for other similar functions. In sftests, one would like to examine the typer I error of this test under the null hypothesis.
By using the Ziggurat method of generating standard normal variates, this function is really fast when you want to generate big matrices.

Value

An nx p matrix with data simulated from a standard normal distribution.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

See Also

rvmf,Rnorm,rmvnorm,rvonmises

Examples

```
x <- matrnorm(100, 100)
```

Get specific columns/rows fo a matrix

Description

Get specific columns/rows of a matrix.

Usage

columns(x,indices)
rows(x,indices)

Arguments

x
A matrix with data.
indices
An integer vector with the indices.

Value

A matrix with the specific columns/rows of argumment indices.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, rowFalse, nth, colrange, colMedians, colVars, colSort, rowSort, rowTrue

Examples

x <- matrix(runif(100*100),100,100)
indices $=\operatorname{sample}(1: 100,50)$
all.equal($x[$, indices $]$, columns (x, indices))
all.equal(x[indices,], rows(x,indices))
x<-indices<-NULL

Hash - Pair function Hash-Pairfunction

Description

Hash - Pair function.

Usage

hash.list(key, x)

Arguments

key The keys of the given values.
x
The values.

Details

This function pairs each item of of key and value make a unique hash table.

Value

Returns the hash-list table.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

```
    hash.find
```


Examples

```
x <- hash.list(letters,c(1:26))
x[["a"]]==1
```

Hash object Hash object

Description

Hash object.

Usage

Hash(keys=NULL, values=NULL)
Hash.key.multi (x,..., sep = " ")
\#\# S3 replacement method for class 'Hash'
x[...,sep $="$ "] <- value
\#\# S3 method for class 'Hash'
x[...,sep = " "]
\#\# S3 method for class 'Hash'
print(x,...)
\#\# S3 method for class 'Hash'
length (x)

Arguments

x
values A vector with the values you want to store.
value The values you want to store.
keys A vector with keys for each values.
sep A character value using to separate the multiple keys for each value.
... One or more values for access or find elements.

Details

If you want to delete a key just insert the global variable "Rfast:::delete".
Hash: Create Hash object where every key has a value. Specify the type from the beggining (for speed). Use the argument "type" with one of the values "new.env, logical, character, integer, numeric". Hash.key.multi: search if key exists. If the keys are multiple, then use the argument "substr" to search inside each multiple for the specific key.

Value

A Hash object.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

hash.list, hash.find

Examples

```
x <- Hash(rnorm(10), sample(1:10))
x[1,2,13] <- 0.1234 # insert value using multi key. the same as x["1 2 13"] <- 0. 1234
x[1,2,3] <- 15 # insert value using multi key. the same as x["1 2 3"] <- 15
Hash.key.multi(x,"1")
x # print Hash object using S3 generic
#x[1,2,3] <- Rfast:::delete # delete multi key. the same as x["1 2 3"] <- NULL
length(x)
```

```
Hash object to a list object
        Hash object to a list object
```


Description

Hash object to a list object.

Usage

hash2list(x, sorting = FALSE)

Arguments

x
sorting This is if you you want the numbers in the keys sorted. The default value is FALSE.

Details

For every key, there is a key value. This function creates a list and puts every pair of keys and value in a component of a list.

Value

A list whose length is equal to the size of the hash table.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
hash.list,hash.find
```


Examples

```
x=list("1 2 4 3"=2.56,"2.34 1.05"=2)
res<-hash2list(x)
res<-hash2list(x,TRUE)
```

```
High dimensional MCD based detection of outliers
    High dimensional MCD based detection of outliers
```


Description

High dimensional MCD based detection of outliers.

Usage

rmdp $(y$, alpha $=0.05$, itertime $=100)$

Arguments

$y \quad$ A matrix with numerical data with more columns (p) than rows (n), i.e. $n<p$.
alpha The significance level, i.e. used to decide whether an observation is said to be considered a possible outlier. The default value is 0.05 .
itertime The number of iterations the algorithm will be ran. The higher the sample size, the larger this number must be. With 50 observations in $R^{1} 000$ maybe this has to be 1000 in order to produce stable results.

Details

High dimensional outliers ($\mathrm{n}<\mathrm{p}$) are detected using a properly constructed MCD. The variances of the variables are used and the determinant is simply their product.

Value

A list including: runtime $=$ runtime, dis $=$ dis, wei $=$ wei
runtime The duration of the process.
dis The final estimated Mahalanobis type normalised distances.
wei A bollean variable vector specifying whether an observation is "clean" (TRUE) or a possible outlier (FALSE).
cova The estimated covatriance matrix.

Author(s)

Initial R code: Changliang Zou nk.chlzou@gmail.com R code modifications: Michail Tsagris mtsagris@uoc.gr C++ implementation: Manos Papadakis papadakm95@gmail.com Documentation: Michail Tsagris mtsagris@uoc.gr and Changliang Zhou nk.chlzou@gmail.com

References

Ro K., Zou C., Wang Z. and Yin G. (2015). Outlier detection for high-dimensional data. Biometrika, 102(3):589-599.

See Also

colmeans, colVars, colMedians

Examples

```
x <- matrix(rnorm(50 * 400), ncol = 400)
a <- rmdp(x, itertime = 500)
x<-a<-NULL
```

```
Hypothesis test for the distance correlation
    Hypothesis test for the distance correlation
```


Description

Hypothesis test for the distance correlation.

Usage

dcor.ttest (x, y, logged = FALSE)

Arguments

X
y
logged

A numerical matrix.
A numerical matrix.
Do you want the logarithm of the p-value to be returned? If yes, set this to TRUE.

Details

The bias corrected distance correlation is used. The hypothesis test is whether the two matrices are independent or not. Note, that this test is size correct as both the sample size and the dimensionality goes to infinity. It will not have the correct type I error for univariate data or for matrices with just a couple of variables.

Value

A vector with 4 elements, the bias corrected distance correlation, the degrees of freedom, the test statistic and its associated p-value.

Author(s)

Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

```
bcdcor,dcov,edist
```


Examples

```
x <- as.matrix(iris[1:50, 1:4])
y <- as.matrix(iris[51:100, 1:4])
res<-dcor.ttest(x, y)
```

```
Hypothesis test for two means of percentages
    Hypothesis test for two means of percentages
```


Description

Hypothesis test for two means of percentages.

Usage

percent.ttest(x, y, logged = FALSE)

Arguments

$x \quad$ A numerical vector with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
y A numerical vector with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the prop. reg but with a single categorical predictor which has two levels only. It is like a t -test for the means of two samples haivng percentages.

Value

A vector with three elements, the phi parameter, the test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to $401(\mathrm{~K})$ plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

link\{percent.ttests\}, prop.reg,ttest2,ftest

Examples

$x<-\operatorname{rbeta}(100,3,1)$
$y<-\operatorname{rbeta}(100,7.5,2.5)$
res<-percent.ttest(x, y)

Hypothesis test for von Mises-Fisher distribution over Kent distribution Hypothesis test for von Mises-Fisher distribution over Kent distribution

Description

The null hypothesis is whether a von Mises-Fisher distribution fits the data well, and the altenrative is that the Kent distribution is more suitable.

Usage

fish.kent(x, logged = FALSE)

Arguments

$x \quad$ A numeric matrix containing the data as unit vectors in Euclidean coordinates.
logged If you want the logarithm of the p-value ot be returned set this to TRUE.

Details

Essentially it is a test of rotational symmetry, whether Kent's ovalness parameter (beta) is equal to zero. This works for spherical data only.

Value

A vector with two elements, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Rivest, L. P. (1986). Modified Kent's statistics for testing goodness of fit for the Fisher distribution in small concentrated samples. Statistics \& probability letters, 4(1): 1-4.

See Also

```
vmf.mle,iag.mle
```


Examples

$x<-\operatorname{rvmf}(100, \operatorname{rnorm}(3), 15)$
res<-fish.kent(x)
$x<-$ NULL

Hypothesis testing between two skewness or kurtosis coefficients Hypothesis testing between two skewness or kurtosis coefficients

Description

Hypothesis testing between two skewness or kurtosis coefficients.

Usage

skew.test2 (x, y)
kurt.test2 (x, y)

Arguments

$x \quad$ A numerical vector with data.
y
A numerical vector with data, not necessarily of the same size.

Details

The skewness of kurtosis coefficients between two samples are being compared.

Value

A vector with the test statistic and its associated p-value.

Author(s)

Klio Lakiotaki
R implementation and documentation: Klio Lakiotaki kliolak@gmail.com.

References

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

See Also

skew, colskewness, colmeans, colVars, colMedians

Examples

```
x <- rgamma(150,1, 4)
y <- rgamma(100, 1, 4)
res<-skew.test2(x, y)
res<-kurt.test2(x, y)
```

Index of the columns of a data.frame which are a specific type Index of the columns of a data.frame which are a specific type

Description

Index of the columns of a data.frame which are a specific type.

Usage

which.is(x, method="factor")

Arguments

$$
\begin{array}{ll}
x & \text { A data.frame where some columns are expected to be factor variables. } \\
\text { method } & \text { A character value about the type. One of, "numeric","factor","integer","logical". }
\end{array}
$$

Details

The function is written in $\mathrm{C}++$ and this is why it is very fast.

Value

A vector with the column indices which are factor variables. If there are no factor variables it will return an empty vector.

Author(s)

Manos Papadakis papadakm95@gmail.com
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

nth, Match

Examples

```
res<-which.is(iris)
```

Insert/remove function names in/from the NAMESPACE file
Insert/remove function names in/from the NAMESPACE file

Description

Insert/remove function names in/from the NAMESPACE file.

Usage

AddToNamespace(path.namespace, path.rfolder)
RemoveFromNamespace(path.namespace,files.to.remove)

Arguments

path. namespace An full path to the NAMESPACE file.
path.rfolder An full path to the directory the new files to be added are stored.
files.to.remove
An character with the names of the functions to be removed from file NAMESPACE.

Details

AddToNameSpace: Reads the files that are exported in NAMESPACE and the functions that are inside rfolder (where R files are) and insert every function that is not exported. For that you must add the attribute "\#[export]" above every function you wish to export. Also you can use the attribute "\#[export s3]" for exporting S3methods. Finally, if you don't want the program to read a file just add at the top of the file the attribute "\#[dont read]".
RemoveFromNamespace: Remove every function, from argument "files.to.remove", from NAMESPACE.

Value

AddToNameSpace: Return the files that didn't have the attribute "\#[export]" or empty character vector if all the files was inserted.

RemoveFromNamespace: Return the files that could not be removed.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
    colShuffle,colVars,colmeans,read.directory
```


Examples

```
## Not run:
for example: path.namespace="C:\some_file\NAMESPACE" where is NAMESPACE file
path.rfolder="C:\some_file\R\" where is R files are
system.time( a<-AddToNamespace(path.namespace,path.rfolder) )
if(length(a)==0){
print("all the files are inserted")
}else{
print("The new files that inserted are: \n")
a
}
system.time( a<-RemoveFromNamespace(path.namespace,c("a","b")) )
if(length(a)==0){
print("all the files are inserted")
}else{
print("The files thatcould not be deleted are: \n")
a
}
## End(Not run)
```

Inverse Gaussian regression with a log-link

Inverese Gaussian regression with a log-link

Description

Inverse Gaussian regression with a log-link.

Usage

invgauss.reg(y, x, tol $=1 \mathrm{e}-07$, maxiters $=100)$

Arguments

y
$x \quad$ A matrix or data.frame with the indendent variables.
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The maximum number of iterations that can take place in the regression.

Details

An inverse Gaussian regression with a log-link is fitted.

Value
A list including:
i
loglik
deviance
phi
The dispersion parameter (ϕ) of the regression. This is necessary if you want to perform an F hypothesis test for the significance of one or more independent variables.
be The regression coefficients

Author(s)

Michail Tsagris
R implementation and documentation: Stefanos Fafalios mtsagris@uoc.gr

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

Zakariya Yahya Algamal and Intisar Ibrahim Allyas (2017). Prediction of blood lead level in maternal and fetal using generalized linear model. International Journal of Advanced Statistics and Probability, 5(2): 65-69.

See Also

invgauss.regs, normlog.reg, score.glms

Examples

```
## Not run:
y <- abs( rnorm(100) )
x <- matrix( rnorm(100 * 2), ncol = 2)
a <- invgauss.reg(y, x)
a
## End(Not run)
```

Inverse of a symmetric positive definite matrix
Inverse of a symmetric positive definite matrix

Description

Inverse of a symmetric positive definite matrix.

Usage

spdinv(A)

Arguments

A A square positive definite matrix.

Details

After calculating the Cholesky decomposition of the matrix we use this upper triangular matrix to invert the original matrix.

Value

The inverse of the input matrix.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

http://econ.nsysu.edu.tw/ezfiles/124/1124/img/Chapter17_MaximumLikelihoodEstimation.pdf

See Also

cholesky, cova

Examples

```
s <- cova( as.matrix(iris[, 1:4]) )
res<-spdinv(s)
res<-solve(s)
```

| Iterator \quad Iterator |
| :--- | :--- |

Description

A way to traverse a list, data.frame, matrix or vector.

Usage

```
iterator(x,method="ceil",type="vector",by=1)
## S3 method for class 'iterator'
print(x,...)
## S3 replacement method for class 'iterator'
Elem(x) <- value
Elem(x)
Elem(x) <- value
## S3 method for class 'iterator'
Elem(x)
## S3 method for class 'iterator'
x == y
## S3 method for class 'iterator'
x != y
```


Arguments

x
value
y
method
type
by

A variable with any type, or iterator object.
An value depending the method of the iterator.
An iterator.
Method of the iterator class. One of "ceil","col","row".
One of "vector","matrix","data.frame","list".
An integer value to iterate through element.
Anything the user want.

Details

iterator: is an object that helps a programmer to traverse the given object.
print.iterator: print an object of class iterator.
"Elem<-": access to element and change the value.
Elem: access to element.

Value

An object of class "iterator". This object holds 4 fields:
copy: deep copy of iterator. end: get iterator tha have access to points to the last element. equals: equality of iterators nextElem: move iterator to point to the next element using argument "by". prevElem: move iterator to point to the previous element using argument "by".

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also
colShuffle, colVars, colmeans, read.directory

Examples

```
y<-rnorm(100)
x<-iterator (y,method="ceil", type="vector", by=1)
s<-0
while(x != x$end()){
s <- s + Elem(x)
x$nextElem()
}
all.equal(s,sum(y))
```

James multivariate version of the t-test
James multivariate version of the t-test

Description

James test for testing the equality of two population mean vectors without assuming equality of the covariance matrices.

Usage

james(y1, y2, a = 0.05, R = 1)

Arguments

y1 A matrix containing the Euclidean data of the first group.
y2 A matrix containing the Euclidean data of the second group.
a The significance level, set to 0.05 by default.
$R \quad$ If R is 1 the classical James test is returned. If R is 2 the MNV modficiation is implemented.

Details

Multivariate analysis of variance without assuming equality of the covariance matrices. The p-value can be calculated either asymptotically or via bootstrap. The James test (1954) or a modification proposed by Krishnamoorthy and Yanping (2006) is implemented. The James test uses a corected chi-square distribution, whereas the modified version uses an F distribution.

Value

A list including:

note	A message informing the user about the test used.
mesoi	The two mean vectors.

info The test statistic, the p-value, the correction factor and the corrected critical value of the chi-square distribution if the James test has been used or, the test statistic, the p-value, the critical value and the degrees of freedom (numerator and denominator) of the F distribution if the modified James test has been used.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43
Krishnamoorthy K. and Yanping Xia. On Selecting Tests for Equality of Two Normal Mean Vectors (2006). Multivariate Behavioral Research 41(4): 533-548

See Also

mv.eeltest2

Examples

```
james( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 1 )
james( as.matrix(iris[1:25, 1:4]), as.matrix(iris[26:50, 1:4]), R = 2 )
```

```
k nearest neighbours algorithm (k-NN)
```

 \(k\) nearest neighbours algorithm (\(k-N N\))

Description

k nearest neighbours algorithm ($\mathrm{k}-\mathrm{NN}$).

Usage

knn(xnew, y, x, k, dist.type = "euclidean", type = "C", method = "average", freq.option $=0$, mem.eff $=$ FALSE)

Arguments

xnew
y
x

The new data, new predictor variable values. A matrix with numerical data.
A vector with the response variable, whose values for the new data we wish to predict. This can be numerical data, factor or discrete, $0,1, \ldots$ The latter two cases are for classification.
The dataset. A matrix with numerical data.
$k \quad$ The number of nearest neighbours to use. The number can either be a single value or a vector with multiple values.
dist.type The type of distance to be used. Either \"euclidean\" or \"manhattan\".
type If your response variable $\backslash " y \backslash$ " is numerical data, then this should be $\backslash " R \backslash "$ (regression). If $\backslash " y \backslash "$ is in general categorical, factor or discrete set this argument to $\backslash " \mathrm{C} \backslash "$ (classification).
method In case you have regression (type $=\backslash " \mathrm{R} \backslash "$) you want a way to summarise the prediction. If you want to take the average of the reponses of the k closest observations, type \"averagel". For the median, type \"median\" and for the harmonic mean, type \"harmonic\".
freq.option If classification (type $=\backslash " \mathrm{C} \backslash "$) and ties occur in the prediction, more than one class has the same number of k nearest neighbours, in which case there are two strategies available: Option 0 selects the first most frequent encountered. Option 1 randomly selects the most frequent value, in the case that there are duplicates.
mem.eff Boolean value indicating a conservative or not use of memory. Lower usage of memory/Having this option on will lead to a slight decrease in execution speed and should ideally be on when the amount of memory in demand might be a concern.

Details

The concept behind k-NN is simple. Suppose we have a matrix with predictor variables and a vector with the response variable (numerical or categorical). When a new vector with observations (predictor variables) is available, its corresponding response value, numerical or category is to be predicted. Instead of using a model, parametric or not, one can use this ad hoc algorithm.
The k smallest distances between the new predictor variables and the existing ones are calculated. In the case of regression, the average, median or harmonic mean of the corresponding respone values of these closest predictor values are calculated. In the case of classification, i.e. categorical response value, a voting rule is applied. The most frequent group (response value) is where the new observation is to be allocated.

Value

A matrix whose number of columns is equal to the size of k . If in the input you provided there is just one value of k, then a matrix with one column is returned containing the predicted values. If more than one value was supplied, the matrix will contain the predicted values for every value of k.

Author(s)

Marios Dimitriadis
R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com

References

Cover TM and Hart PE (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory. 13(1):21-27.

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.
http://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
http://statlink.tripod.com/id3.html

See Also

knn.cv,dirknn,logistic_only,fs.reg, cor.fsreg

Examples

```
# Simulate a dataset with continuous data
x <- as.matrix(iris[, 1:4])
y <- as.numeric(iris[, 5])
id <- sample(1:150, 120)
mod <- knn(x[-id, ], y[id], x[id, ], k = c(4, 5, 6), type = "C", mem.eff = FALSE)
mod # Predicted values of y for 3 values of k.
res<-table(mod[, 1], y[-id] ) # Confusion matrix for k = 4
res<-table(mod[, 2], y[-id] ) # Confusion matrix for k = 5
res<-table(mod[, 3], y[-id] ) # Confusion matrix for k = 6
```

$\mathrm{k}-\mathrm{NN}$ algorithm using the arc cosinus distance
$k-N N$ algorithm using the arc cosinus distance

Description

It classifies new observations to some known groups via the k-NN algorithm.

Usage

dirknn(xnew, x, y, k, type = "C", parallel = FALSE)

Arguments

xnew The new data whose membership is to be predicted, a numeric matrix with unit vectors. In case you have one vector only make it a row vector (i.e. matrix with one row).
x
The data, a numeric matrix with unit vectors.
$k \quad$ The number of nearest neighbours. It can also be a vector with many values.
$\mathrm{y} \quad$ A numerical vector representing the class or label of each vector of $\mathrm{x} .1,2$, 3 , and so on. It can also be a numerical vector with data in order to perform regression.
type If your response variable y is numerical data, then this should be "R" (regression) or "WR" for distance weighted based nearest neighbours. If y is in general categorical set this argument to "C" (classification) or to "WC" for distance weighted based nearest neighbours.
parallel Do you want th ecalculations to take place in parallel? The default value is FALSE.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observations. The new observation is allocated to the most frequent seen group. The non standard algorithm is to calculate the classical mean or the harmonic mean of the k nearest observations for each group. The new observation is allocated to the group with the smallest mean distance.
If you want regression, the predicted value is calculated as the average of the responses of the k nearest observations.

Value

A matrix with the predicted group(s). It has as many columns as the values of k.

Author(s)

Stefanos Fafalios
R implementation and documentation: Stefanos Fafalios stefanosfafalios@gmail.com

See Also

dirknn.cv,knn,vmf.mle,spml.mle

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/sqrt( rowSums(x^2) )
y<- as.numeric( iris[, 5] )
a <- dirknn(x, x, y, k = 2:10)
```

Limited number of eigenvalues and eigenvectors of a symmetric matrix
Limited number of eigenvalues and eigenvectors of a symmetric matrix

Description

Limited number of eigenvalues and eigenvectors of a symmetric matrix.

Usage

eigen. sym(A, k, vectors = TRUE)

Arguments

A
k
vectors

A symmetric matrix.
The number of eigenvalues and eigenvectors to extract.
A flag that indicates if the eigenvectors will be returned (default: vectors $=$ True)

Details

The function calls the same function from the Armadillo library in C++. It is quite faster than R's built in function "eigen" if the number of eigenvalues and eigenvectors (argument k) is small.

The k largest, in magnitude, eigenvalues are returned. Hence, if the matrix is not positive definite you may get negative eigenvalues as well. So, it is advised to use it with positive definite matrices.

Value

A list including:

values	The eigenvalues.
vectors	The eigenvectors.

Author(s)

Armadillo library in C++ and Stefanos Fafalios and Manos Papadakis.
R implementation and documentation: Stefanos Fafalios <stefanosfafalios@ gmail.com> and Manos Papadakis papadakm95@gmail.com.

See Also

hd.eigen

Examples

```
## Not run:
x <- matrnorm(500, 100 )
s <- Rfast::cova(x)
res<-eigen.sym(s, 5)
x <- s <- NULL
## End(Not run)
```

Linear models for large scale data
Linear models for large scale data

Description

Linear models for large scale data.

Usage

$\operatorname{lmfit}(x, y, w=N U L L)$

Arguments

x
y
w An optional numerical vector with weights. Note that if you supply this, the function does not make them sum to 1 . So, you should do it.

Details

We have simply exploitted R's powerful function and managed to do better than .lm.fit which is a really powerful function as well. This is a bare bones function as it returns only two things, the coefficients and the residuals. .lm.fit returns more and lm.fit even more and finally 1 lm returns too much. The motivatrion came form this site https://m-clark.github.io/docs/fastr.html . We changed the function a bit.

Value

A list including:
be The beta coefficients.
residuals \quad The residuals of the linear model(s).

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.

See Also

```
regression,allbetas,correls,mvbetas,cor.fsreg
```


Examples

```
n <- 200 ; p <- 5
X<- matrnorm(n, p)
y <- rnorm(n)
a1 <- .lm.fit(X, y)
a2 <- lmfit(X, y)
x <- NULL
```

Logistic and Poisson regression models
Logistic and Poisson regression models

Description

Logistic and Poisson regression models.

Usage

glm_logistic (x, y, full = FALSE, tol = 1e-09, maxiters = 100)
glm_poisson(x, y, full = FALSE, tol = 1e-09)

Arguments

$x \quad$ A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This can be a matrix or a data.frame (with factors).
y The dependent variable; a numerical vector with two values (0 and 1) for the logistic regression or integer values, $0,1,2, \ldots$ for the Poisson regression.
full If this is FALSE, the coefficients and the deviance will be returned only. If this is TRUE, more information is returned.
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The max number of iterations that can take place in each regression.

Details

The function is written in $\mathrm{C}++$ and this is why it is very fast.

Value

When full is FALSE a list including:
be The regression coefficients.
devi The deviance of the model.
When full is TRUE a list including:
info The regression coefficients, their standard error, their Wald test statistic and their p-value.
devi The deviance.

Author(s)

Manos Papadakis papadakm95@gmail.com
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

poisson_only,logistic_only,univglms, regression

Examples

```
## Not run:
x <- matrix(rnorm(100 * 3), ncol = 3)
y <- rbinom(100, 1, 0.6) ## binary logistic regression
a1 <- glm_logistic(x, y, full = TRUE)
a2 <- glm(y ~ x, binomial)
x <- matrix(rnorm(100 * 3), ncol = 3)
y <- rpois(100, 10) ## binary logistic regression
b1 <- glm_poisson(x, y, full = TRUE)
b2 <- glm(y ~ x, poisson)
x<-y<-a1<-a2<-b1<-b2<-NULL
## End(Not run)
```

Logistic or Poisson regression with a single categorical predictor
Logistic or Poisson regression with a single categorical predictor

Description

Logistic or Poisson regression with a single categorical predictor.

Usage

logistic.cat1 (y, x, logged = FALSE)
poisson.cat1 (y, x, logged $=$ FALSE)

Arguments

$\mathrm{y} \quad$ A numerical vector with values 0 or 1.
$x \quad$ A numerical vector with discrete numbers or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results. Note: For the "binomial.anova" if this is a numerical vector it must contain strictly positive numbers, i.e. $1,2,3,4, \ldots$, no zeros are allowed.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

There is a closed form solution for the logistic regression in the case of a single predictor variable. See the references for more information.

Value

info A matrix similar to the one produced by the glm command. The estimates, their standard error, the Wald value and the relevant p -value.
devs For the logistic regression case a vector with the null and the residual deviances, their difference and the significance of this difference.
res For the Poisson regression case a vector with the log likelihood ratio test statistic value and its significance.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Stan Lipovetsky (2015). Analytical closed-form solution for binary logit regression by categorical predictors. Journal of Applied Statistics, 42(1): 37-49.

See Also

```
poisson.anova,poisson.anovas, anova,logistic_only,poisson_only
```


Examples

```
y <- rbinom(20000, 1, 0.6)
x <- as.factor( rbinom(20000, 3, 0.5) )
system.time( a1 <- logistic.cat1(y, x) )
system.time( a2 <- glm(y ~ x, binomial) )
a1 ; a2
y <- rpois(20000, 10)
x <- as.factor( rbinom(20000, 3, 0.5) )
system.time( a1 <- poisson.cat1(y, x) )
system.time( a2 <- glm(y ~ x, poisson) )
a1 ; a2
x<-y<-a1<-a2<-NULL
```

Lower and Upper triangular of a matrix
Lower and Upper triangular of a matrix

Description

Lower/upper triangular matrix.

Usage

lower_tri(x, suma = FALSE, diag = FALSE)
upper_tri(x, suma = FALSE, diag = FALSE)
lower_tri.assign(x, v, diag = FALSE)
upper_tri.assign(x, v, diag = FALSE)

Arguments

x
A matrix with data or a vector with 2 values which is the dimension of the logical matrix to be returned with the upper or lower triangular filled with "TRUE".
v
A numeric vector for assign to the lower/upper triangular.
suma A logical value for returning the sum of the upper or lower triangular. By default is "FALSE". Works only if argument " x " is matrix.
diag A logical value include the diagonal to the result.

Value

Get a lower/upper triangular logical matrix with values TRUE/FALSE, a vector with the values of a lower/upper triangular, the sum of the upper/lower triangular if suma is set TRUE or assign to the lower/upper (only for large matrices) triangular. You can also include diagonal with any operation if argument diag is set to "TRUE".

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, colFalse, nth, rowrange, rowMedians, rowVars, colTrue

Examples

$x<-\operatorname{matrix}(\operatorname{runif}(10 * 10), 10,10)$
all.equal(lower_tri(c(10,10)),lower.tri(x))

```
all.equal(lower_tri(x),x[lower.tri(x)])
#all.equal(upper_tri(c(10,10)),upper.tri(x))
#all.equal(upper_tri(x),x[upper.tri(x)])
#all.equal(lower_tri(c(10,10),diag = TRUE),lower.tri(x,diag = TRUE))
#all.equal(lower_tri(x,diag = TRUE),x[lower.tri(x,diag = TRUE)])
#all.equal(upper_tri(c(10,10),diag = TRUE),upper.tri(x,diag = TRUE))
#all.equal(upper_tri(x,diag = TRUE),x[upper.tri(x,diag = TRUE)])
all.equal(lower_tri.assign(x,diag = TRUE,v=rep(1,1000)),x[lower.tri(x,diag = TRUE)]<-1)
all.equal(upper_tri.assign(x,diag = TRUE,v=rep(1,1000)),x[upper.tri(x,diag = TRUE)]<-1)
x<-NULL
```

Mahalanobis distance Mahalanobis distance

Description

Mahalanobis distance.

Usage

mahala(x, mu, sigma, ischol $=$ FALSE)

Arguments

x
mu
sigma
ischol

A matrix with the data, where rows denotes observations (vectors) and the columns contain the variables.

The mean vector.
The covariance or any square symmetric matrix.
A boolean variable set to true if the Cholesky decomposition of the covariance matrix is supplied in the argument \backslash "sigma\".

Value

A vector with the Mahalanobis distances.

Author(s)

Matteo Fasiolo <matteo.fasiolo@ gmail.com>,
C++ and R implementation and documentation: Matteo Fasiolo <matteo.fasiolo@ gmail.com>.

See Also

dista, colmeans

Examples

$x<-\operatorname{matrix}(\operatorname{rnorm}(100 * 50)$, ncol $=50)$
m <- colmeans(x)
s <- $\operatorname{cov}(x)$
a1 <- mahala(x, m, s)

Many (and one) area aunder the curve values
Many are aunder the curve values

Description

Many are aunder the curve values.

Usage

colaucs(group, preds)
auc(group, preds)

Arguments

group A numerical vector with two values, one of which must be strictly 1.
preds A numerical matrix with scores, probabilities or any other measure. In the case of auc this is a vector.

Details

The AUCs are calculated column-wise or just an AUC if the vector function is used.

Value

A vector with length equal to the number of columns of the "preds" argument. The AUC vlaues for each column. If the "auc" function is used then a signle number is returned.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
ttests,ttest,ftests
```


Examples

```
## 200 variables, hence 200 AUCs will be calculated
x <- matrix( rnorm(100 * 200), ncol = 200 )
ina <- rbinom(100, 1, 0.6)
system.time( colaucs(ina, x) )
a <- colaucs(ina, x)
b <- auc(ina, x[, 1])
x <- NULL
```

Many 2 sample proportions tests
Many 2 sample proportions tests

Description

It performs very many 2 sample proportions tests.

Usage

proptests(x1, x2, n1, n2)

Arguments

$x 1 \quad$ A vector with the successes of the one group.
$x 2 \quad$ A vector with the successes of the one group.
n1 A vector with the number of trials of the one group.
n2 A vector with the number of trials of the one group.

Details

The 2-sample proportions test is performed for each pair of proportions of teh two groups.

Value

A matrix with the proportions of each group (two columns), the test statistic and the p-value of each test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

B. L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

See Also

```
ttests,ftests,colVars
```


Examples

```
## 10000 variables, hence 10000 t-tests will be performed
set.seed(12345)
x1 <- rpois(500, 5)
x2 <- rpois(500, 5)
n1 <- rpois(1000, 40)
n2 <- rpois(1000, 40)
a <- proptests(x1, x2, n1, n2)
mean(a[, 4]<0.05)
x1 <- rbinom(500, 500, 0.6)
x2 <- rbinom(500, 500, 0.6)
b <- proptests(x1, x2, 500, 500)
mean(b[, 4]<0.05)
```

Many 2 sample tests Many 2 sample tests tests

Description

It performs very many 2 sample tests.

Usage

```
ttests(x, y = NULL, ina, paired = FALSE, logged = FALSE, parallel = FALSE)
mcnemars(x, y = NULL, ina, logged = FALSE)
var2tests(x, y = NULL, ina, alternative = "unequal", logged = FALSE)
```


Arguments

X
y
ina

A matrix with the data, where the rows denote the samples and the columns are the variables.
A second matrix with the data of the second group. If this is NULL (default value) then the argument ina must be supplied. Notice that when you supply the two matrices the procedure is two times faster.
A numerical vector with 1 s and 2 s indicating the two groups. Be careful, the function is designed to accept only these two numbers. In addition, if your "y" is NULL, you must specify "ina".

alternative	The type of hypothesis to be checked, "equal", "greater", "less". paired
If the groups are not independent paired t-tests should be performed and this must be TRUE, otherwise, leave it FALSE. In this case, the two groups must have equal smaple sizes, otherwise no test will be performed.	
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)?
parallel	Should parallel implentations take place in C++? The default value is FALSE.

Details

For the ttests, if the groups are independent, the Welch's t-test (without assuming equal variances) is performed. Otherwise many paired t-tests are performed. The McNemar's test requires a number of observations, at least 30 would be good in order for the test to have some power and be size corect.

Value

A matrix with the test statistic, the degrees of freedom (if the groups are independent) and the p-value (or their logarithm) of each test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

B. L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336. McNemar Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 12(2):153-157.

See Also

ftests, anovas, ttest

Examples

```
## 1000 variables, hence 1000 t-tests will be performed
x = matrnorm(100, 100)
## 100 observations in total
ina = rbinom(100, 1, 0.6) + 1 ## independent samples t-test
system.time( ttests(x, ina = ina) )
x1 = x[ina == 1, ]
x2 = x[ina == 2, ]
system.time( ttests(x1, x2) )
x <- NULL
```

```
Many analysis of variance tests with a discrete variable
    Many analysis of variance tests with a discrete variable
```


Description

Many analysis of variance tests with a discrete variable.

Usage

poisson.anovas(y, ina, logged = FALSE)
quasipoisson.anovas(y, ina, logged = FALSE)
geom.anovas(y, ina, type $=1$, logged = FALSE)

Arguments

y A numerical matrix with discrete valued data, i.e. counts for the case of the Poisson, or with 0s and 1 s for the case of the Bernoulli distribution. Each column represents a variable.
ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4, .. or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results.
type \quad This rgument is for the geometric distribution. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1 .
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the analysis of variance with count data. What we do is many log-likelihood ratio tests. For the quasi Poisson case we scale the difference in the deviances.

Value

A matrix with two values, the difference in the deviances (test statistic) and the relevant p-value. For the case of quasi Poisson the estimated ϕ parameter is also returned.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
g2tests,poisson.anova, anova, poisson_only,poisson.mle
```


Examples

```
ina <- rbinom(500, 3, 0.5) + 1
## Poisson example
y <- matrix( rpois(500 * 100, 10), ncol= 100 )
system.time(a1 <- poisson.anovas(y, ina) )
y <- NULL
```

Many ANCOVAs Many ANCOVAs

Description

Many ANCOVAs.

Usage

ancovas(y, ina, x, logged $=$ FALSE)

Arguments

y A matrix with the data, where the rows denote the observations and the columns are the variables.
ina A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero.
x A numerical vector whose length is equal to the number of rows of y. This is the covariate.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Many Analysis of covariance tests are performed. No interaction between the factor and the covariate is tested. Only the main effects. The design need not be balanced. The values of ina need not have the same frequency. The sums of squares have been adjusted to accept balanced and unbalanced designs.

Value

A matrix with the test statistic and the p -value for the factor variable and the covariate.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley $\backslash \&$ Sons

See Also

ftests, ttests, anovas

Examples

```
## 100 variables, hence 100 F-tests will be performed
y <- matrix( rnorm(90 * 100), ncol = 100 )
ina <- rbinom(90, 2, 0.5) + 1
x <- rnorm(90)
system.time( a <- ancovas(y, ina, x) )
## Not run:
m1 <- lm(y[, 15] ~ factor(ina) + x)
m2 <- lm(y[, 15] ~ x + factor(ina))
res<-anova(m1)
res<-anova(m2)
y <- NULL
a[15, ] ## the same with the m2 model, but not the m1
## End(Not run)
```

Many ANOVAS for count data with Poisson or quasi Poisson models
Many ANOVAS for count data with Poisson or quasi Poisson models

Description

Many ANOVAS for count data with Poisson or quasi Poisson models.

Usage

colpoisson.anovas(y, x, logged = FALSE)
colquasipoisson.anovas(y, x, logged = FALSE)

Arguments

$y \quad$ A numerical vector with the data.
$x \quad$ A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This must be a matrix with the categorical variables as numbers, starting from 1. Poisson or quassi Poisson ANOVA takes place for each column.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

Poisson or quassi Poisson ANOVA takes place at each column.

Value

A matrix with the test statistic and the (logged) p -value for each predictor variable. In the case of the quasi Poisson, the ϕ is returned as well.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

See Also

```
poisson.anova boot.ttest2,ttest2,ftest
```


Examples

y <- rpois(200, 10)
x <- matrix(rbinom(200 * 10, 3, 0.5), ncol = 10)

Many exponential regressions
Many exponential regressions

Description

Many exponential regressions.

Usage

expregs(y, x, di, tol $=1 \mathrm{e}-09$, logged $=$ FALSE)

Arguments

$y \quad$ A vector with positive data (including zeros).
$x \quad$ A numerical matrix with the predictor variables.
di A vector of size equal to that of y with 0 s and 1 s indicating censoring or not respectively.
tol The tolerance value to stop the newton-Raphson iterations. It is set to 1e-09 by default.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

We have implemented the newton-Raphson in order to avoid unnecessary calculations.

Value

A matrix with three columns, the test statistic, its associated (logged) p-value and the BIC of each model.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
univglms,score.glms,logistic_only, poisson_only,regression
```


Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted
x <- matrnorm(100, 100)
y <- rexp(100, 4)
system.time( expregs(y, x, di = rep(1, length(y))) )
x <- NULL
```

Many F -tests with really huge matrices
Many F-tests with really huge matrices

Description

Many F-tests with really huge matrices.

Usage

list.ftests(x, logged = FALSE)

Arguments

$\begin{array}{ll}\mathrm{x} & \text { A list with many big size matrices. Each element of the list contains a ma- } \\ \text { trix. This is the ftests function but with really huge matrices, which cannot be } \\ \text { loaded into R as a single matrix. }\end{array}$

Details

The Welch's F-test (without assuming equal variances) is performed just like in the "ftests" function. The difference is that you have a really huge matrix which you cannot load into R. In the "ftests" function, the argument "ina" denotes the different groups. Here, you "cut" the matrix into smaller ones, each of which denotes a different group and put them in a list.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.

See Also

```
ftests,ttests
```


Examples

x <- matrnorm(300, 500)
ina <- rbinom(300, 2, 0.6) + 1
a <- list()
a[[1]] <- x[ina == 1,]
$a\left[\left[\begin{array}{ll}2 &]\end{array}\right]<-x[i n a==2]\right.$,
a[[3]] <- x[ina == 3,]
mod <- list.ftests(a)
z <- NULL
a <- NULL

Many G-square and Chi-square tests of indepedence
Many G-square tests of indepedence

Description

Many G-square tests of indepdence with and without permutations.

Usage

```
g2tests(data, x, y, dc)
g2tests_perm(data, x, y, dc, nperm)
chi2tests(data, x, y, dc)
```


Arguments

data A numerical matrix with the data. The minimum must be $\mathbf{0}$, otherwise the function can crash or will produce wrong results. The data must be consecutive numbers.
x
An integer number or a vector of integer numbers showing the other variable(s) to be used for the G^{2} test of independence.
$y \quad$ An integer number showing which column of data to be used.
dc A numerical value equal to the number of variables (or columns of the data matrix) indicating the number of distinct, unique values (or levels) of each variable. Make sure you give the correct numbers here, otherwise the degrees of freedom will be wrong.
nperm The number of permutations. The permutations test is slower than without permutations and should be used with small sample sizes or when the contigency tables have zeros. When there are few variables, R's "chisq.test" function is faster, but as the number of variables increase the time difference with R's procedure becomes larger and larger.

Details

The function does all the pairwise G^{2} test of independence and gives the position inside the matrix. The user must build the associations matrix now, similarly to the correlation matrix. See the examples of how to do that. The p-value is not returned, we leave this to the user. See the examples of how to obtain it.

Value

A list including:

statistic	The G^{2} or χ^{2} test statistic for each pair of variables.
pvalue	This is returned when you have selected the permutation based G^{2} test.
x	The row or variable of the data.
y	The column or variable of the data.
$d f$	The degrees of freedom of each test.

Author(s)

Giorgos Borboudakis. The permutation version used a C++ code by John Burkardt.
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

Tsamardinos, I., \& Borboudakis, G. (2010). Permutation testing improves Bayesian network learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 322-337). Springer Berlin Heidelberg.

See Also

g2Test,g2Test_perm, correls,univglms

Examples

```
nvalues <- 3
nvars <- 10
nsamples <- 2000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
dc <- rep(nvalues, nvars)
a <- g2tests(data = data, x = 2:9, y = 1, dc = dc)
pval <- pchisq(a$statistic, a$df, lower.tail = FALSE) ## p-value
b <- g2tests_perm(data = data, x = 2:9, y = 1, dc = dc, nperm = 1000)
a<-b<-data<-NULL
```

Many Gini coefficients Many Gini coefficients

Description

Many Gini coefficients.

Usage

ginis(x)

Arguments

x
A matrix with non negative data. The rows are observations and the columns denote the variables.

Details

We have implemented the fast version of the Gini coefficient. See wikipedia for more details.

Value

A vector with the Gini coefficient, one for each variable.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colskewness, colmeans, corpairs

Examples

```
x <- matrix( rpois(500 * 1000, 1000), ncol = 1000 )
a <- ginis(x)
```

Many hypothesis tests for two means of percentages
Many hypothesis tests for two means of percentages

Description

Many hypothesis tests for two means of percentages.

Usage

percent.ttests(x, y, logged $=$ FALSE)

Arguments

$x \quad$ A numericalmatrix with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
y A numerical matrix with the percentages of the first sample. Any value between 0 and 1 (inclusive) is allowed.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

This is the prop. reg but with a single categorical predictor which has two levels only. It is like a t-test for the means of two samples haivng percentages.

Value

A matrix with three columns, the phi parameter, the test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

link\{percent.ttest\},prop.reg,ttest2,ftest

Examples

```
x <- matrix( rbeta(100 * 10, 3, 1), ncol = 10)
y <- matrix( rbeta(50 * 10, 7.5, 2.5), ncol = 10)
res<-percent.ttests(x, y)
```

```
Many moment and maximum likelihood estimations of variance components
    Many moment and maximum likelihood estimations of variance com-
    ponents
```


Description

Many moment and maximum likelihood estimations of variance components.

Usage

colvarcomps.mom(x, id, parallel = FALSE)
colvarcomps.mle(x, id, ranef = FALSE, tol= 1e-08, maxiters = 100, parallel = FALSE)

Arguments

$x \quad$ A matrix with the data, where each column refers to a different sample of subjects.
id A numerical vector indicating the subject. You must put consecutive numbers and no zero values. Alternatively this can be a factor variable.
ranef Do you also want the random effects to be returned? TRUE or FALSE.
tol The tolerance level to terminate the golden ratio search.
maxiters The maximum number of iterations to perform.
parallel Should the computations run in parallel? TRUE or FALSE.

Details

Note that the "colvarcomp.mom" works for balanced designs only, i.e. for each subject the same number of measurements have been taken. The "colvarcomps.mle" works for unbalanced as well.
The variance components, the variance of the between measurements and the variance of the within are estimated using moment estimators. The "colvarcomps.mom" is the moment analogue of a random effects model which uses likelihood estimation ("colvarcomps.mle"). It is much faster, but can give negative variance of the random effects, in which case it becomes zero.

The maximum likelihood version is a bit slower (try youselves to see the difference), but statistically speaking is to be preferred when small samples are available. The reason why it is only a little
bit slower and not a lot slower as one would imagine is because we are using a closed formula to calculate the two variance components (Demidenko, 2013, pg. 67-69). Yes, there are closed formulas for linear mixed models.

Value

For the "colvarcomps.mom": A matrix with 5 columns, The MSE, the estimate of the between variance, the variance components ratio and a 95% confidence for the ratio.
For the "colvarcomps.mle": If ranef = FALSE a list with a single component called "info". That is a matrix with 3 columns, The MSE, the estimate of the between variance and the log-likelihood value. If ranef = TRUE a list including "info" and an extra component called "ranef" containing the random effects. It is a matrix with the same number of columns as the data. Each column contains the randome effects of each variable.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley
\& Sons.
Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. New York: Springer-Verlag.
Demidenko E. (2013). Mixed Models: Thoery and Applications with R 2nd Edition). New Jersey: John Wiley
\& Sons (Excellent book).

See Also

```
varcomps.mle,colrint.regbx
```


Examples

```
## example taken from Montgomery, page 514-517.
y <- c(98, 97, 99, 96, 91, 90, 93, 92,
96, 95, 97, 95, 95, 96, 99, 98)
y <- matrix(y)
id <- rep(1:4, each = 4)
x <- rmvnorm(100, numeric(100), diag(rexp(100)) )
id <- rep(1:25, each = 4)
n <- 25 ; d <- 4
a <- colvarcomps.mom(x, id)
mean(a[, 4]<0 & a[, 5]>0)
b <- colvarcomps.mle(x, id)
x <- NULL
```

```
Many multi-sample tests
```


Description

Many multi-sample tests.

Usage

```
ftests(x, ina, logged = FALSE)
anovas(x, ina, logged = FALSE)
vartests(x, ina, type = "levene", logged = FALSE)
block.anovas(x, treat, block, logged = FALSE)
```


Arguments

$x \quad$ A matrix with the data, where the rows denote the observations (and the two groups) and the columns are the variables.
ina A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero. Alternatively it can be a factor variable.
type \quad This is for the variances test and can be either "levene" or "bf" corresponding to Levene's or Brown-Forsythe's testing procedure.
treat In the case of the blocking ANOVA this argument plays the role of the "ina" argument.
block This item, in the blocking ANOVA denotes the subjects which are the same. Similarly to "ina" a numeric vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so on.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The Welch's F-test (without assuming equal variances) is performed with the "ftests" function. The "anovas" function perform the classical (Fisher's) one-way analysis of variance (ANOVA) which assumes equal variance across the groups.
The "vartests" perform hypothesis test for the equality of the variances in two ways, either via the Levene or via the Brown-Forshythe procedure. Levene's test employs the means, whereas the Brown-Forsythe procedure employs the medians and is therefore more robust to outliers. The "var2tests" implement the classical F test.

The "block.anova" is the ANOVA with blocking, randomised complete block design (RCBD). In this case, for every combination of the block and treatment values, there is only one observation. The mathematics are the same as in the case of two way ANOVA, but the assumptions different and the testing procedure also different. In addition, no interaction is present.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.
D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley
\& Sons

See Also

ttests

Examples

```
x <- matrix( rnorm(300 * 50), ncol = 50 )
## 300 observations in total
ina <- rbinom(300, 3, 0.6) + 1
a1 <- ftests(x, ina)
a2 <- anovas(x, ina)
a3 <- vartests(x, ina)
x <- NULL
```

Many multivariate simple linear regressions coefficients Many multivariate simple linear regressions coefficients

Description

Many multivariate simple linear regressions coefficients.

Usage

mvbetas(y, x, pvalue = FALSE)

Arguments

y A matrix with the data, where rows denotes the observations and the columns contain the dependent variables.
x
A numerical vector with one continuous independent variable only.
pvalue
If you want a hypothesis test that each slope (beta coefficient) is equal to zero set this equal to TRUE. It will also produce all the correlations between y and x .

Details

It is a function somehow opposite to the allbetas. Instead of having one y and many xs we have many ys and one x .

Value

A matrix with the constant (alpha) and the slope (beta) for each simple linear regression. If the p-value is set to TRUE, the correlation of each y with the x is calculated along with the relevant p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

allbetas, correls, univglms

Examples

```
y <- matrnorm(100, 100)
\(x\) <- rnorm(100)
a <- mvbetas \((y, x, p v a l u e=F A L S E)\)
b <- matrix (nrow \(=100\), ncol \(=2\) )
z <- cbind(1, x)
system.time( \(a<-\operatorname{mvbetas}(y, x))\)
\(b[2]<,-\operatorname{coef}(\operatorname{lm} . f i t(z, y[, 1]))\)
\(\mathrm{b}[2]<,-\operatorname{coef}(\operatorname{lm} . f i t(\mathrm{z}, \mathrm{y}[, 2])\) )
\(x<-\) NULL
```

Many non parametric multi-sample tests
Many multi-sample tests

Description

Many multi-sample tests.

Usage

kruskaltests(x, ina, logged = FALSE)
cqtests(x, treat, block, logged = FALSE)

Arguments

X
ina A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero.
treat In the case of the Cochran's Q test, this argument plays the role of the "ina" argument.
block This item denotes the subjects which are the same. Similarly to "ina" a numeric vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so on.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The "kruskaltests" performs the Kruskal-Wallis non parametric alternative to analysis of variance test. The "cqtests" performs the Cocrhan's Q test for the equality of more than two groups whose values are strictly binary (0 or 1). This is a generalisation of the McNemar's test in the multi-sample case.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

block. anovas,ftests

Examples

```
x <- matrix( rexp(300 * 200), ncol = 200 )
ina <- rbinom(300, 3, 0.6) + 1
system.time( kruskaltests(x, ina) )
x <- matrix( rbinom(300 * 200, 1, 0.6), ncol = 200 )
treat <- rep(1:3, each = 100)
block <- rep(1:3, 100)
system.time( cqtests(x, treat, block) )
x <- NULL
```

Many odds ratio tests Manyodds ratio tests

Description

It performs very many odds ratio tests.

Usage

odds $(x, y=$ NULL, ina, logged $=$ FALSE $)$

Arguments

$x \quad$ A matrix with the data, where the rows denote the observations and the columns are the variables. They must be 0 s and 1 s only.
y A second matrix with the data of the second group. If this is NULL (default value) then the argument ina must be supplied. Notice that when you supply the two matrices the procedure is two times faster. They must be 0 s and 1 s only.
ina A numerical vector with 1 s and 2 s indicating the two groups. Be careful, the function is designed to accept only these two numbers. In addition, if your "y" is NULL, you must specify "ina".
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Many odds ratio tests are performed.

Value

A matrix with the test statistic and the p-value (or their logarithm) of each test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Mosteller Frederick (1968). Association and Estimation in Contingency Tables. Journal of the American Statistical Association. 63(321):1-28.
Edwards A.W.F. (1963). The measure of association in a 2×2 table. Journal of the Royal Statistical Society, Series A. 126(1):109-114.

See Also

odds.ratio,g2Test_univariate

Examples

```
x <- matrix( rbinom(100 * 100, 1, 0.5), ncol = 100 )
ina <- rep(1:2, each = 50)
a <- odds(x, ina = ina)
```

Many one sample goodness of fit tests for categorical data
Many one sample goodness of fit tests for categorical data

Description

Many one sample goodness of fit tests for categorical data.

Usage

cat.goftests(x, props, type = "gsquare", logged = FALSE)

Arguments

$x \quad$ A matrix with the data, where the rows denote the samples and the columns are the variables. The data must be integers and be of the form $1,2,3$, and so on. The minimum must be 1 , and not zero.
props The assumed distribution of the data. A vector or percentages summing to 1 .
type Either Pearson's χ^{2} test ("chisquare") is used or the G^{2} test ("qsquare", default value).
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Given a matrix of integers, where each column refers to a sample, the values of a categorical variable the function tests wether these values can be assumed to fit a specific distribution.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

ttests, ttest,ftests

Examples

```
x <- matrix( rbinom(300 * 100, 4, 0.6), ncol = 100 ) + 1
props <- dbinom(0:4, 4, 0.6)
## can we assume that each column comes from a distribution whose mass is given by props?
system.time( cat.goftests(x, props) )
a1 <- cat.goftests(x, props) ## G-square test
a2 <- cat.goftests(x, props, type = "chisq") ## Chi-square test
cor(a1, a2)
mean( abs(a1 - a2) )
x <- NULL
```

Many one sample tests Many one sample tests

Description

Many one sample tests.

Usage

proptest(x, n, p, alternative = "unequal", logged = FALSE)
ttest(x, m, alternative = "unequal", logged = FALSE, conf = NULL)
vartest(x, sigma, alternative = "unequal", logged = FALSE, conf = NULL)

Arguments

x
$\mathrm{n} \quad$ This is for the "proptest" only and is a vector with integer numbers specifying the number of tries for the proptest. Its size is equal to the size of x .
p A vector with the assumed probabilities of success in the "proptest". Its size is equal to the number of colums of the matrix x.
$m \quad$ A vector with the assumed means. Its size is equal to the number of colums of the matrix x.
sigma A vector with assumed variances. Its size is equal to the number of colums of the matrix x.
alternative The type of hypothesis to be checked. Equal to ("unequal"), grater than("greater") or less than ("less") the assumed parameter.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?
conf If you want confidence intervals to be returned specify the confidence level, otherwise leave it NULL.

Details

Despite the functions having been written in R, they are very fast.

Value

For all tests except for the "sftests" a matrix with two colums, the test statistic and the p-value respectively.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
ftests,ttests
```


Examples

```
R <- 100
## protest
x <- rbinom(R, 50, 0.6)
n <- rep(50, R)
p <- rep(0.6, R)
a1 <- proptest(x, n, p, "unequal", logged = FALSE)
res<-sum( a1[, 2] < 0.05 ) / R
## vartest
x <- matrnorm(100, 100)
a2 <- vartest(x, rep(1, R) )
res<-sum( a2[, 2] < 0.05 )
## ttest
a4 <- ttest(x, numeric(R) )
res<-sum(a4[, 2] < 0.05) / R
x <- NULL
```

```
Many random intercepts LMMs for balanced data with a single identical covariate.
    Many random intercepts LMMs for balanced data with a single iden-
    tical covariate
```


Description

Many random intercepts LMMs for balanced data with a single identical covariate.

Usage

colrint.regbx (y, x, id)

Arguments

$y \quad$ A numerical matrix with the data. The subject values.
$x \quad$ A numerical vector with the same length as the number of rows of y indicating the fixed predictor variable. Its values are the same for all levels of y. An example of this x is time which is the same for all subjects.
id A numerical variable with 1, 2, \ldots indicating the subject.

Details

This is a special case of a balanced random intercepts model with a compound symmetric covariance matrix and one single covariate which is constant for all replicates. An example, is time, which is the same for all subjects. Maximum likelihood estimation has been performed. In this case the mathematics exist in a closed formula (Demidenko, 2013, pg. 67-69).
This is the generalistion of rint. regbx to matrices. Assume you have many observations, gene expressions over time for example, and you want to calculate the random effects or something else for each expression. Instead of using a "for" loop with rint. regbx function we have used amtrix operations to make it even faster.

Value

A list including:

$$
\begin{aligned}
& \text { info A matrix with the random intercepts variance (between), the variance of the } \\
& \text { errors (within), the log-likelihood, the deviance (twice the log-likelihood) and } \\
& \text { the BIC. In the case of "rint.reg" it also includes the number of iterations required } \\
& \text { by the generalised least squares. } \\
& \text { be The estimated regression coefficients, which in the case of "rint.regbx" are sim- } \\
& \text { ply two: the constant and the slope (time effect). } \\
& \text { ranef A matrix with random intercepts effects. Each row corresponds to a column in } \\
& \text { y. Instead of having a matrix with the same number of columns as y we return a } \\
& \text { transposed matrix. }
\end{aligned}
$$

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Eugene Demidenko (2013). Mixed Models: Theory and Applications with R, 2nd Edition. New Jersey: Wiley $\backslash \&$ Sons (excellent book).

See Also

```
colvarcomps.mle,rint.regbx,rm.lines,varcomps.mom,rint.reg
```


Examples

```
y <- matrix( rnorm(100 * 50), ncol = 50)
id <- rep(1:20, each = 5)
\(x<-\operatorname{rep}(1: 10,10)\)
system.time( \(a<-\) colrint. \(\operatorname{regbx}(y, x, i d)\) )
```

Many regression based tests for single sample repeated measures
Many regression based tests for single sample repeated measures

Description

Many regression based tests for single sample repeated measures.

Usage

rm.lines(y, x, logged = FALSE)
rm.anovas (y, x, logged $=$ FALSE)

Arguments

y
x
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

In order to see whether the repeated measurements are associated with a single covariate, e.g. time we perform many regressions and each time calculate the slope. For each subject, its regression slope with the covariate is calculated. In the end a t-test for the hypothesis that the average slopes is zero is performed. The regression slopes ignore that the measurements are not independent, but
note that the slopes are independent, because they come from different subjects. This is a simple, summary statistics based approach found in Davis (2002), yet it can provide satisfactory results.
The second approach ("rm.anovas") found in Davis (2002) is the usual repeated measures ANOVA. In this case, suppose you have taken measurements on one or more variables from the same group of people. See the example below on how to put such data.

Value

A matrix with the test statistic (t-test) and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. Springer-Verlag, New York.

See Also

```
rint.regbx,rint.reg,varcomps.mle
```


Examples

```
y <- c(74.5,81.5,83.6,68.6,73.1,79.4,
75.5,84.6,70.6,87.3,73.0,75.0,
68.9,71.6,55.9,61.9,60.5,61.8,
57.0,61.3,54.1,59.2,56.6,58.8,
78.3,84.9,64.0,62.2,60.1,78.7,
54.0,62.8,63.0,58.0,56.0,51.5,
72.5,68.3,67.8,71.5,65.0,67.7,
80.8,89.9,83.2,83.0,85.7,79.6)
y <- as.matrix(y)
### the first 6 measurements are from subject 1, measurments 7-12 are from subject 2,
## measurements 13-18 are from subject 3 and so on.
x <- c(-10, 25, 37, 50, 65, 80) ## all subjects were measured at the same time points
res<-rm.lines (y, x) ## Is linear trend between the measurements and the temperature?
res<-rm.anovas(y, x) ## Tests whether the means of the individuals are the same
## the temperature is treated as categorical variable here.
## fake example
y <- matrnorm(10, 4)
## the y matrix contains 4 repeated measurements for each of the 10 persons.
x <- 1:4
## we stack the measurements of each subject, one under the other in a matrix form.
y1 <- matrix( t(y) )
res<-rm.anovas(y1, x) ## perform the test
z <- matrix( rnorm(20 * 8), ncol = 2) ## same example, but with 2 sets of measurements.
```

res<-rm.anovas (z, x)

Many score based regressions
Many score based regressions

Description

Many score based GLM regressions.

Usage

score.glms(y, x, oiko = NULL, logged = FALSE)
score.multinomregs(y, x, logged = FALSE)
score.negbinregs (y, x, type $=1$, logged $=$ FALSE)
score.weibregs(y, x, logged = FALSE)
score.betaregs(y, x, logged = FALSE)
score.gammaregs(y, x, logged = FALSE)
score.expregs(y, x, logged = FALSE)
score.invgaussregs(y, x, logged = FALSE)
score.ztpregs(y, x, logged = FALSE)
score.geomregs(y, x, logged $=$ FALSE)

Arguments

y
A vector with either discrete or binary data for the Poisson, geometric, or negative binomial and binary logistic regressions, respectively. A vector with discrete values or factor values for the multinomial regression. If the vector is binary and choose multinomial regression the function checks and transfers to the binary logistic regression.
For the Weibull, gamma, inverse Gaussian and exponential regressions they must be strictly positive data, lifetimes or durations for example. For the beta regression they must be numbers between 0 and 1 . For the zero truncated Poisson regression (score.ztpregs) they must be integer valued data strictly greater than 0 .
$x \quad$ A matrix with data, the predictor variables.
oiko This can be either "poisson" or "binomial". If you are not sure leave it NULL and the function will check internally.
type This argument is for the negative binomial distribution. In the negative binomial you can choose which way your prefer. Type 1 is for smal sample sizes, whereas type 2 is for larger ones as is faster.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

Instead of maximising the log-likelihood via the Newton-Raphson algorithm in order to perform the hypothesis testing that $\beta_{i}=0$ we use the score test. This is dramatcially faster as no model needs to be fitted. The first derivative (score) of the log-likelihood is known and in closed form and under the null hypothesis the fitted values are all equal to the mean of the response variable y. The variance of the score is also known in closed form. The test is not the same as the likelihood ratio test. It is size correct nonetheless but it is a bit less efficient and less powerful. For big sample sizes though (5000 or more) the results are the same. We have seen via simulation studies is that it is size correct to large sample sizes, at elast a few thousands. You can try for yourselves and see that even with 500 the results are pretty close. The score test is pretty faster than the classical log-likelihood ratio test.

Value

A matrix with two columns, the test statistic and its associated p-value. For the Poisson and logistic regression the p-value is derived via the t distribution, whereas for the multinomial regressions via the χ^{2} distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Tsagris M., Alenazi A. and Fafalios S. (2020). Computationally efficient univariate filtering for massive data. Electronic Journal of Applied Statistical Analysis, 13(2):390-412.

Hosmer DW. JR, Lemeshow S. and Sturdivant R.X. (2013). Applied Logistic Regression. New Jersey, Wiley, 3rd Edition.
Campbell M.J. (2001). Statistics at Square Two: Understand Modern Statistical Applications in Medicine, pg. 112. London, BMJ Books.

Draper N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.
McCullagh Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

Agresti Alan (1996). An introduction to categorical data analysis. New York: Wiley.
Joseph M.H. (2011). Negative Binomial Regression. Cambridge University Press, 2nd edition.

See Also

univglms,logistic_only, poisson_only, regression

Examples

```
x <- matrnorm(500, 500)
y <- rbinom(500, 1, 0.6) ## binary logistic regression
a2 <- score.glms(y, x)
```

y <- rweibull(500, 2, 3)
a <- score.weibregs (y, x)
mean(a[, 2] < 0.05)
$x<-$ NULL

Many Shapiro-Francia normality tests
Many Shapiro-Francia normality tests

Description

Many Shapiro-Francia normality tests.

Usage

sftests(x, logged = FALSE)
sftest(x, logged = FALSE)

Arguments

$x \quad$ A matrix with the data, where the rows denote the observations and the columns are the variables. In the case of a single sample, then this must be a vector and "sftest" is to be used.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The Shapiro-Francia univariate normality test is performed for each column (variable) of the matrix x .

Value

A matrix with the squared correlation between the ordered values and the standard normal ordered statistics, the test statistic and the p-value of each test. If the "sftest" has been used, the output is a vector with these three elements.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Royston J. P. (1983). A simple method for evaluating the Shapiro-Francia W' test of non-normality. The Statistician, 32(3): 297-300.
Mbah A. K. \& Paothong A. (2015). Shapiro-Francia test compared to other normality test using expected p-value. Journal of Statistical Computation and Simulation, 85(15): 3002-3016.

See Also

ttests,ttest,ftests

Examples

```
x <- matrnorm(200, 100)
system.time( sftests(x) )
a <- sftests(x)
mean(a[, 3]<0.05)
x <- rnorm(100)
res<-sftest(x)
```

Many simple circular or angular regressions
Many simple circular or angular regressions

Description

Many regressions with one circular dependent variable and one Euclidean independent variable.

Usage

spml.regs(y, x, tol $=1 \mathrm{e}-07$, logged $=$ FALSE, maxiters $=100$, parallel $=$ FALSE $)$

Arguments

y
x
tol
logged
maxiters
parallel Do you want the calculations to take plac ein parallel? The default value if FALSE.

Details

The Newton-Raphson algorithm is fitted in these regression as described in Presnell et al. (1998). For each colum of x a circual regression model is fitted and the hypothesis testing of no association between y and this variable is performed.

Value

A matrix with two columns, the test statistics and their associated (log) p-values.

Author(s)

Michail Tsagris and Stefanos Fafalios
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Stefanos Fafalios stefanosfafalios@gmail.com

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

See Also

spml.mle,iag.mle, acg.mle

Examples

```
x <- rnorm(100)
\(z<-\operatorname{cbind}(3+2 * x, 1-3 * x)\)
\(y<-\operatorname{cbind}(\operatorname{rnorm}(100, z[, 1], 1), r n o r m(100, z[, 2], 1))\)
\(y<-y / \operatorname{sqrt}\left(\operatorname{rowsums}\left(y^{\wedge} 2\right)\right)\)
\(\mathrm{x}<-\) matrnorm(100, 100)
a <- spml. \(\operatorname{regs}(y, x)\)
x <- NULL
```

Many simple geometric regressions
Many simple geometric regressions.

Description

Many simple geometric regressions.

Usage

geom.regs $(y, x$, tol $=1 \mathrm{e}-07$, type $=1$, logged $=$ FALSE, parallel $=$ FALSE, maxiters $=100$)

Arguments

$y \quad$ The dependent variable, count data.
$x \quad$ A matrix with the indendent variables.
tol The tolerance value to terminate the Newton-Raphson algorithm.
type Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.
parallel Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's availiable cores.
maxiters The max number of iterations that can take place in each regression.

Details

Many simple geometric regressions are fitted.

Value

A matrix with the test statistic values, their relevant (logged) p-values and the BIC values.

Author(s)

Stefanos Fafalios
R implementation and documentation: Stefanos Fafalios stefanosfafalios@gmail.com

See Also

```
poisson_only,prop.regs,score.geomregs
```


Examples

```
y <- rgeom(100, 0.6)
x <- matrix( rnorm(100 * 50), ncol = 50)
a <- geom.regs(y, x)
x <- NULL
```

Many simple linear mixed model regressions
Many simple linear mixed model regressions

Description

Many simple linear mixed model regressions with random intercepts only.

Usage

rint.regs(y, x, id, tol = 1e-08, logged = FALSE, parallel = FALSE, maxiters = 100)

Arguments

y	A numerical vector with the data. The subject values, the clustered data.
x	A numerical matrix with data ,the independent variables.
id	A numerical variable with $1,2, \ldots$ indicating the subject. Unbalanced design is of course welcome.
tol	The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
logged	Should the p-values be returned (FALSE) or their logarithm (TRUE)? parallel
Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's availiable cores.	
maxiters	The max number of iterations that can take place in each regression.

Details

Many linear mixed models with a single covariate are fitted. We use Newton-Raphson as described in Demidenko (2013). The test statistic is the usual F-test. This model allows for random intercepts only.

Value

A two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Stefanos Fafalios
R implementation and documentation: Stefanos Fafalios <stefanosfafalios@ gmail.com>

References

Eugene Demidenko (2013). Mixed Models: Theory and Applications with R, 2nd Edition. New Jersey: Wiley $\backslash \&$ Sons (excellent book).

See Also

```
rint.reg,allbetas univglms,score.glms,logistic_only
```


Examples

```
## not a so good example
y <- rnorm(100)
id <- sample(1:10, 100, replace = TRUE)
x <- matrix( rnorm(100 * 100), ncol = 100)
a <- rint.regs(y, x, id)
x <- NULL
```

Many simple linear regressions coefficients
Simple linear regressions coefficients

Description

Simple linear regressions coefficients.

Usage

allbetas $(\mathrm{y}, \mathrm{x}, \mathrm{pvalue}=\mathrm{FALSE}$, logged $=$ FALSE $)$

Arguments

$y \quad$ A numerical vector with the response variable.
x
A matrix with the data, where rows denotes the observations and the columns contain the independent variables.
pvalue If you want a hypothesis test that each slope (beta coefficient) is equal to zero set this equal to TRUE. It will also produce all the correlations between y and x.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Value

A matrix with the constant (alpha) and the slope (beta) for each simple linear regression. If the p -value is set to TRUE, the correlation of each y with the x is calculated along with the relevant test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
mvbetas,correls,univglms,colsums,colVars
```


Examples

```
x <- matrix( rnorm(100 * 50), ncol = 50 )
y <- rnorm(100)
r <- cor(y, x) ## correlation of y with each of the xs
a <- allbetas(y, x) ## the coefficients of each simple linear regression of y with x
x <- NULL
```

Many simple multinomial regressions

Many simple multinomial regressions.

Description

Many simple multinomial regressions.

Usage

multinom.regs $(\mathrm{y}, \mathrm{x}$, tol $=1 \mathrm{e}-08$, logged $=$ FALSE, parallel $=$ FALSE, maxiters $=100$)

Arguments

y
x
tol
logged
parallel
maxiters

The dependent variable, either a numerical variable or a factor variable.
A matrix with the indendent variables.
The tolerance value to terminate the Newton-Raphson algorithm.
A boolean variable; it will return the logarithm of the pvalue if set to TRUE.
Do you want this to be executed in parallel or not. The parallel takes place in C++, and the number of threads is defined by each system's availiable cores.
The maximum number of iterations that can take place in each regression.

Details

Many simple multinomial regressions are fitted.

Value

A matrix with the test statistic values, their relevant (logged) p-values and the BIC values.

Author(s)

Stefanos Fafalios
R implementation and documentation: Stefanos Fafalios stefanosfafalios@gmail.com

See Also

poisson_only,prop.regs,score.geomregs

Examples

```
y <- rbinom(100, 2, 0.5)
x <- matrnorm(100, 100)
a <- multinom.regs(y, x)
x <- NULL
```

```
Many simple regressions for positive valued data
    Many simple regressions for positive valued data
```


Description

Many simple regressions for positive valued data.

Usage

normlog.regs (y, x, tol = 1e-08, logged = FALSE, parallel = FALSE, maxiters = 100)
gammaregs(y, x, tol $=1 \mathrm{e}-07$, logged $=$ FALSE, maxiters $=100$)
invgauss.regs (y, x, tol = 1e-08, logged = FALSE, maxiters = 100)

Arguments

y
x
tol The tolerance value to terminate the Newton-Raphson algorithm.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.
parallel Do you want this to be executed in parallel or not. The parallel takes place in C++, therefore you do not have the option to set the number of cores.
maxiters The maximum number of iterations that can take place in each regression.

Details

Many simple Gamma, inverse Gaussian or Gaussian regressions with a log-link are fitted.

Value

A matrix with the test statistic values and their relevant (logged) p-values.

Author(s)

Stefanos Fafalios and and Michail Tsagris
R implementation and documentation: Stefanos Fafalios stefanosfafalios@gmail.com and Michail Tsagris mtsagris@uoc.gr

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

Zakariya Yahya Algamal and Intisar Ibrahim Allyas (2017). Prediction of blood lead level in maternal and fetal using generalized linear model. International Journal of Advanced Statistics and Probability, 5(2): 65-69.

See Also

normlog.reg, score.glms, prop.regs, allbetas

Examples

```
## Not run:
y <- abs( rnorm(100) )
x <- matrnorm(100, 100)
a <- normlog.regs(y, x)
b <- glm(y ~ x[, 1], family = gaussian(log) )
anova(b, test= "F")
a[1, ]
a2 <- gammaregs(y, x)
a3 <- invgauss.regs(y, x)
```

$x<-$ NULL
\#\# End(Not run)

Many tests for the dispersion parameter in Poisson distribution Many tests for the dispersion parameter in Poisson distribution

Description

Many tests for the dispersion parameter in Poisson distribution.

Usage

colpoisdisp.tests(y, alternative = "either", logged = FALSE)
colpois.tests(y, logged = FALSE)

Arguments

$$
\begin{array}{ll}
\mathrm{y} & \text { A numerical matrix with count data, } 0,1, \ldots \\
\text { alternative } & \begin{array}{l}
\text { Do you want to test specifically for either over or underspirsion ("either"), overdis- } \\
\text { persion ("over") or undersispersion ("under")? }
\end{array} \\
\text { logged } & \text { Set to TRUE if you want the logarithm of the p-value. }
\end{array}
$$

Value

A matrix with two columns, the test statistic and the (logged) p -value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Yang Zhao, James W. Hardin, and Cheryl L. Addy. (2009). A score test for overdispersion in Poisson regression based on the generalized Poisson-2 model. Journal of statistical planning and inference 139(4):1514-1521.
Dimitris Karlis and Evdokia Xekalaki (2000). A Simulation Comparison of Several Procedures for Testing the Poisson Assumption. Journal of the Royal Statistical Society. Series D (The Statistician), 49(3): 355-382.
Bohning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994) The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics, 46(): 373-388.

See Also

```
poisson.mle,negbin.mle,poisson.anova,poisson.anovas,poisson_only
```


Examples

```
y <- matrix(rnbinom(100* 50, 10, 0.6), ncol = 50)
a1 <- colpoisdisp.tests(y, "over")
b1 <- colpois.tests(y)
y <- matrix(rpois(100* 50, 10), ncol = 50)
a2 <- colpoisdisp.tests(y, "either")
b2 <- colpois.tests(y)
y <- NULL
```

Many two-way ANOVAs Manytwo-way ANOVAs

Description

Many two-way ANOVAs.

Usage

twoway. anovas(y, x1, x2, interact = FALSE, logged = FALSE)

Arguments

y A matrix with the data, where the rows denote the observations (and the two groups) and the columns are the variables.
$x 1 \quad$ A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Alternatively it can be a factor variable. This is the one factor.
x2 A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Alternatively it can be a factor variable. This is the other factor.
interact A boolean variable specifying whether you want to test for interaction.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The classical two-way ANOVA design is performed. Note that the design must be balanced. For every combination of values of the two factors, $x 1$ and $x 2$ the same number of observations must exist. If that's not the case, regression models must be used.

Value

A matrix with the test statistic and the p-value of each test.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley
\& Sons

See Also

```
ancovas,ftests,ttests
```


Examples

```
## Not run:
y <- as.matrix( rnorm(125) )
x1 <- rep(1:5, 25)
x2 <- rep(1:5, each = 25)
x1 <- factor(x1)
x2 <- factor(x2)
res<-anova( lm(y ~ x1 + x2) )
res<-twoway.anovas(y, x1, x2)
res<-anova( lm(y ~ x1*x2) )
res<-twoway.anovas(y, x1, x2, interact = TRUE)
y <- matrnorm(125, 100)
system.time( a1 <- twoway.anovas(y, x1, x2) )
system.time( a2 <- twoway.anovas(y, x1, x2, interact = TRUE) )
y <- NULL
## End(Not run)
```

Many univariate generalised linear models Many univariate generalised linear regressions

Description

It performs very many univariate generalised linear regressions.

Usage

univglms(y, x, oiko = NULL, logged = FALSE)
univglms2(y, x, oiko $=$ NULL, logged $=$ FALSE)

Arguments

y
The dependent variable. It can be a factor or a numerical variable with two values only (binary logistic regression), a discrete valued vector (count data) corresponding to a poisson regression or a numerical vector with continuous values (normal regression).
x
A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. For the "univglms" only continuous variables are allowed. You are advised to standardise the data before hand to avoid numerical overflow or similar issues. If you see NaN in the outcome, this might be the case. For the "univglms2" categorical variables are allowed and hence this accepts data.frames. In this case, the categorical variables must be given as factor variables, otherwise you might get wrong results.
oiko This can be either "normal", "poisson", "quasipoisson" or "binomial". If you are not sure leave it NULL and the function will check internally. However, you might have discrete data (e.g. years of age) and want to perform many simple linear regressions. In this case you should specify the family.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

If you specify no family of distributions the function internally checkes the type of your data and decides on the type of regression to perform. The function is written in $\mathrm{C}++$ and this is why it is very fast. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p -value correction (such as fdr or q -values); this is up to the user.

Value

A matrix with the test statistic and the p -value for each predictor variable.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

logistic_only, poisson_only, allbetas, correls, regression

Examples

```
    ## Not run:
    x <- matrnorm(100, 50)
    y <- rbinom(100, 1, 0.6) ## binary logistic regression
    a1 <- univglms(y, x)
    a2 <- glm(y ~ x[, 1], binomial)$deviance
    a2 <- glm(y ~ 1, binomial)$null.dev - a2
    x <- NULL
    ## End(Not run)
```

Many univariate simple linear regressions
Many univariate simple linear regressions

Description

It performs very many univariate simple linear regressions with or without categorical variables.

Usage

regression(x, y, poia $=$ NULL, logged $=$ FALSE)

Arguments

poia If the " x " is a data.frame and you know the indices of the columns which are
x
logged

A data.frame or a matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. A data frame is expected if you have categorical predictor variables. If you only have continuous predictor variables you should the function allbetas instead as it is faster.
y The dependent variable; a numerical vector. categorical variables supply it here.

Do you want the logarithm of the p-values be returned? The default value is FALSE.

Details

Some parts of the function will be transferred in C++. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q -values); this is up to the user.

Value

A matrix with two columns, the test statistic value and its corresponding (logged) p-value.

Author(s)

Manos Papadakis papadakm95@gmail.com
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

univglms, allbetas, correls, univglms, mvbetas

Examples

```
y <- rnorm(150)
a <- regression(iris, y)
a
summary(lm(y ~ iris[, 5]) ) ## check the F-test
```

```
Many univariate simple logistic and Poisson regressions
    Many univariate simple binary logistic regressions
```


Description

It performs very many univariate simple binary logistic regressions.

Usage

logistic_only(x, y, tol = 1e-09, b_values = FALSE)
poisson_only(x, y, tol = 1e-09, b_values = FALSE)

Arguments

$x \quad$ A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. Currently only continuous variables are allowed.
y The dependent variable; a numerical vector with two values (0 and 1) for the logistic regressions and a vector with many discrete values (count data) for the Poisson regressions.
tol The tolerance value to terminate the Newton-Raphson algorithm.
b_values Do you want the values of the coefficients returned? If yes, set this to TRUE.

Details

The function is written in $\mathrm{C}++$ and this is why it is very fast. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q-values); this is up to the user.

Value

A vector with the deviance of each simple binayr logistic regression model for each predictor variable.

Author(s)

Manos Papadakis papadakm95@gmail.com
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
univglms,score.glms,prop.regs,quasi.poisson_only,allbetas,correls,regression
```


Examples

```
## Not run:
## 300 variables, hence 300 univariate regressions are to be fitted
x <- matrix( rnorm(100 * 300), ncol = 300 )
## 100 observations in total
y <- rbinom(100, 1, 0.6) ## binary logistic regression
a1 <- logistic_only(x, y)
a2 <- glm(y ~ x[, 1], binomial)$deviance
a2 <- as.vector(a2)
y <- rpois(100, 10)
a1 <- poisson_only(x, y)
a1 <- x <- NULL
## End(Not run)
```

```
Many univariate simple quasi poisson regressions
    Many univariate simple poisson regressions
```


Description

It performs very many univariate simple poisson regressions.

Usage

quasi.poisson_only(x, y, tol = 1e-09, maxiters = 100)

Arguments

x
y
maxiters The maximum number of iterations after which the Newton-Raphson algorithm is terminated.
tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

The function is written in $\mathrm{C}++$ and this is why it is very fast. It can accept thousands of predictor variables. It is usefull for univariate screening. We provide no p-value correction (such as fdr or q -values); this is up to the user.

Value

A matrix with the deviance and the estimated phi parameter (dispersion parameter) of each simple poisson regression model for each predictor variable.

Author(s)

Manos Papadakis papadakm95@gmail.com and Stefanos Fafalios stefanosfafalios@gmail.com R implementation and documentation: Michail Tsagris mtsagris@uoc.gr, Manos Papadakis papadakm95@gmail.com and Stefanos Fafalios stefanosfafalios@gmail.com.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
poisson_only univglms,logistic_only,allbetas,regression
```


Examples

```
## 200 variables, hence 200 univariate regressions are to be fitted
x <- matrix( rnorm(100 * 200), ncol = 200 )
y <- rpois(100, 10)
system.time( poisson_only(x, y) )
b1 <- poisson_only(x, y)
b2 <- quasi.poisson_only(x, y)
b1<-b2<-x<-y<-NULL
```

Many Welch's F-tests Many Welch's F-tests

Description

Many Welch's F-tests.

Usage

colanovas(y, x, logged = FALSE)

Arguments

$y \quad$ A numerical vector with the dependent variable.
$x \quad$ A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This must be a matrix with the categorical variables as numbers, starting from 1. Welch's F-test is performed for each variable.
logged A boolean variable; it will return the logarithm of the pvalue if set to TRUE.

Details

For each categorical variable in the x matrix Welch's F test is performed. This is the opposie of ftests, where there are many dependent variables and one categorical variable.

Value

A matrix with the test statistic and the p -value for each predictor variable.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Draper, N.R. and Smith H. (1988). Applied regression analysis. New York, Wiley, 3rd edition.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

regression,ftests, allbetas, correls

Examples

```
y <- rnorm(100)
x <- matrix( rbinom(100 * 50, 2, 0.5) + 1 , ncol = 50)
a <- colanovas(y, x)
x <- NULL
```


Description

Return the positions of its first argument that matches in its second.

Usage

Match ($\mathrm{x}, \mathrm{key}=\mathrm{NULL}$)

Arguments

x	A numeric vector.
key	The value/vector for searching in vector x. For now let it NULL. dont't use it!.

Details

This function implements the R's \backslash "match \backslash " function. This version basicaly calculates the match(x, sort(unique (x$)$)) for now. Do not use the argument key!

Value

Returns the position/positions of the given key/keys in the x vector.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

match

Examples

```
y <- rnorm(100)
a <- Match(y)
b}<-5
all.equal(as.vector(a), as.vector(b))
```

Matrix multiplication Matrix multiplication, Cross and Tcross product.

Description

Matrix multiplication, Cross and Tcross product.

Usage

mat.mult(x, y)
Crossprod (x, y)
Tcrossprod(x,y)

Arguments

$x \quad$ A numerical matrix.
$y \quad$ A numerical matrix.

Details

The functions performs matrix multiplication, croos product and transpose cross product. There are faster(!) than R's function for large matrices. Depending on the computer, maybe higher dimensions are required for the function to make a difference. The function runs in parallel in $\mathrm{C}++$.

Value

A matrix, the result of the matrix multiplication.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

transpose, colsums

Examples

```
## Not run:
x <- matrnorm(100, 100)
y <- matrnorm(100, 100)
a <- x
b <- mat.mult(x, y)
b <- Crossprod(x, y)
b <- Tcrossprod(x, y)
x <- NULL
y <- NULL
b <- NULL
## End(Not run)
```

Matrix with all pairs of t-tests
Matrix with all pairs of t-tests

Description

Matrix with all pairs of t -tests.

Usage

allttests(x, y = NULL, ina, logged = FALSE)
ttests.pairs(x, logged = FALSE)

Arguments

x
y For the case of "all.tests", if you have the second group or sample provide it here, otherwise leave it NULL. For the case of "ttests.pairs" this is not required.
ina If you have the data in one matric then provide this indicator variable separating the samples. This numerical vector must contain 1 s and 2 s only as values. For the case of "ttests.pairs" this is not required.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The function does all the pairwise t-tests assuming unequal variances (Welch's t-test). The "all.ttests" does all the pairs formed by "cutting" the matrices x and y in two and everything between them. The "ttests.pairs" accepts a matrix x and does all the pairs of t-tests. This is similar to the correlation matrix style.

Value

A list including:
stat A matrix with t-test statistic for each pair of variables.
pvalue A matrix with the corresponding p-values.
dof A matrix with the relevant degrees of freedom.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

ttests,ftests,ttest,g2Test_univariate

Examples

```
x <- as.matrix( iris[1:100, 1:4] )
ina <- as.numeric(iris[1:100, 5])
a <- allttests(x, ina = ina)
b <- ttests.pairs(x) ## less tests
```

Matrix with G-square tests of indepedence
Matrix with G-square tests of indepdence

Description

Matrix with G-square tests of indepdence with and without permutations.

Usage

g2Test_univariate(data, dc)
g2Test_univariate_perm(data, dc, nperm)
chi2Test_univariate(data, dc)

Arguments

data A numerical matrix with the data. The minimum must be $\mathbf{0}$, otherwise the function can crash or will produce wrong results. The data must be consecutive numbers.
dc
A numerical value equal to the number of variables (or columns of the data matrix) indicating the number of distinct, unique values (or levels) of each variable. Make sure you give the correct numbers here, otherwise the degrees of freedom will be wrong.
nperm The number of permutations. The permutations test is slower than without permutations and should be used with small sample sizes or when the contigency tables have zeros. When there are few variables, R's "chisq.test" function is faster, but as the number of variables increase the time difference with R's procedure becomes larger and larger.

Details

The function does all the pairwise G^{2} test of independence and gives the position inside the matrix. The user must build the associations matrix now, similarly to the correlation matrix. See the examples of how to do that. The p-value is not returned, we live this to the user. See the examples of how to obtain it.

Value

A list including:

statistic	The G^{2} or $c h i^{2}$ test statistic for each pair of variables.
pvalue	This is returned when you have selected the permutation based G^{2} test.
x	The row or variable of the data.
y	The column or variable of the data.
df	The degrees of freedom of each test.

Author(s)

Giorgos Borboudakis. The permutation version used a C++ code by John Burkardt.
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Tsagris M. (2017). Conditional independence test for categorical data using Poisson log-linear model. Journal of Data Science, 15(2):347-356.

Tsamardinos, I., \& Borboudakis, G. (2010). Permutation testing improves Bayesian network learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 322-337). Springer Berlin Heidelberg

See Also

g2Test,g2Test_perm, correls,univglms

Examples

```
nvalues <- 3
nvars <- 10
nsamples <- 2000
data <- matrix( sample( 0:(nvalues - 1), nvars * nsamples, replace = TRUE ), nsamples, nvars )
dc <- rep(nvalues, nvars)
system.time( g2Test_univariate(data = data, dc = dc) )
a <- g2Test_univariate(data = data, dc = dc)
```

```
pval <- pchisq(a$statistic, a$df, lower.tail = FALSE)
g <- matrix(0, nvars, nvars)
g[ cbind(a$x, a$y) ] <- a$statistic
g <- g + t(g)
diag(g) <- 0
## g ## matrix of G^2 test statistics
g<-a<-dc<-data<-NULL
```

```
Mean - Median absolute deviation of a vector
    Mean - Median absolute deviation of a vector
```


Description

Mean-Median absolute deviation of a vector.

Usage

mad2 (x, method $=$ "median", na.rm=FALSE)
$\operatorname{Mad}(x$, method $=$ "median", na.rm=FALSE)

Arguments

x
method
na.rm

A numerical vector.
A character vector with values "median", for median absolute deviation or "mean", for mean absolute deviation.

Value
The mean absolute deviation.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

See Also

colMads,Median, colMedians

Examples

x <- Rnorm(1000)
$\operatorname{Mad}(x)$
$\operatorname{mad}(x)$

```
Median of a vector Median of a vector
```


Description

Median of a vector.

Usage

```
med(x,na.rm=FALSE)
Median(x,na.rm=FALSE)
```


Arguments

x
na.rm

A numerical vector.
TRUE or FAISE for remove NAs if exists.

Details

The function is written in $\mathrm{C}++$ and this is why it is very fast.

Value

The median of the vector of a numbers.

Author(s)

Manos Papadakis papadakm95@gmail.com
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also
 nth, colMedians

Examples

```
x <- rnorm(1000)
a1 <- Median(x)
a2 <- median(x)
```

Minima and maxima of two vectors/matrices
Minima and maxima of two vectors/matrices

Description

Minima and maxima of two vectors/matrices.

Usage

$\operatorname{Pmax}(x, y, n a . r m=F A L S E)$
Pmin(x, y,na.rm = FALSE)
Pmin_Pmax (x, y,na.rm = FALSE)

Arguments

x	A numerical vector with numbers.
y	A numerical vector with numbers.
na.rm	TRUE or FAlSE for remove NAs if exists.

Details

The parallel minima or maxima are returned. This are the same as the base functions pmax and pmin.

Value

A numerical vector/matrix with numbers, whose length is equal to the length of the initial vectors/matrices containing the maximum or minimum between each pair.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
colSort,rowSort,Sort,colMins
```


Examples

```
x <- rnorm(10)
y <- rnorm(10)
res<-Pmax(x, y)
a<-pmax(x, y)
res<-Pmin(x, y)
b<-pmin(x, y)
res<-Pmin_Pmax(x,y) == c(a,b)
a<-b<-x<-y<-NULL
```


Description

Minimum and maximum of a vector.

Usage

min_max (x,index=FALSE, percent $=$ FALSE)

Arguments

x
index
percent

A numerical vector with data. NAs are handled naturally.
A boolean value for the indices of the minimum and the maximum value.
A boolean value for the percent of the positive and negative numbers.

Value

A vector with the relevant values, min and max.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, rowMaxs, nth, colrange, colMedians, colSort, rowSort

Examples

```
x <- rnorm(100 * 500)
s1 <- min_max(x)
s2 <- c(min(x), max(x))
```

Minimum and maximum frequencies
Minimum and maximum frequencies of a vector

Description

Minimum and maximum frequencies of a vector.

Usage

freq.min(x, na.rm $=$ FALSE $)$
freq. $\max (x$, na.rm $=$ FALSE $)$

Arguments

x
A numerical/integer vector with data but without NAs.
na.rm TRUE or FAlSE for remove NAs if exists.

Details

Those functions are the same with $\max (\operatorname{table}(x)$ or $\min (\operatorname{table}(x))$ but with one exception. freq.min and freq.max will return also which value has the minimum/maximum frequency. More Efficient than $\max (\operatorname{table}(x)$ or $\min (\operatorname{table}(x))$.

Value

A vector with 2 values, the value with minimum/maximum frequency and the frequency.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Marios Dimitriadis kmdimitriadis@gmail.com.

See Also

rowMins, rowMaxs,nth, colrange, colMedians,colSort, rowSort

Examples

```
x <- rnorm(100)
f1 <- freq.min(x)
f2 <- freq.max(x)
# f1r <- min(table(x))
# f2r <- max(table(x))
# f1[2]==f1r ## the frequencies are the same
# f2[2]==f2r ## the frequencies are the same
```

```
MLE for multivariate discrete data
    MLE for multivariate discrete data
```


Description

MLE for multivariate discrete data.

Usage

multinom.mle(x)
dirimultinom.mle(x, tol $=1 \mathrm{e}-07$)
colpoisson.mle(x)
colgeom.mle(x, type = 1)

Arguments

$x \quad$ A matrix with discrete valued non negative data.
tol the tolerance level to terminate the Newton-Raphson algorithm for the Dirichlet multinomial distribution.
type \quad This is for the geometric distribution only. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1 .

Details

For the Poisson and geometric distributions we simply fit independent Poisson and geometric distributions respectively.

Value

A list including:
loglik A vector with the value of the maximised log-likelihood.
param A vector of the parameters.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Johnson Norman L., Kotz Samuel and Balakrishnan (1997). Discrete Multivariate Distributions. Wiley
Minka Thomas (2012). Estimating a Dirichlet distribution. Technical report.

See Also

```
poisson.mle,zip.mle,ztp.mle,negbin.mle,poisson.nb
```


Examples

```
x <- t( rmultinom(1000, 20, c(0.4, 0.5, 0.1) ) )
res<-multinom.mle(x)
res<-colpoisson.mle(x)
x <- NULL
```

MLE of (hyper-)spherical distributions
MLE of (hyper-)spherical distributions

Description

MLE of (hyper-)spherical distributions.

Usage

vmf.mle(x, tol $=1 \mathrm{e}-07$)
multivmf.mle(x, ina, tol = 1e-07, ell = FALSE)
acg.mle(x, tol = 1e-07)
iag.mle(x, tol $=1 \mathrm{e}-07$)

Arguments

x
ina
ell
tol The tolerance value at which to terminate the iterations.

Details

For the von Mises-Fisher, the normalised mean is the mean direction. For the concentration parameter, a Newton-Raphson is implemented. For the angular central Gaussian distribution there is a constraint on the estimated covariance matrix; its trace is equal to the number of variables. An iterative algorithm takes place and convergence is guaranteed. Newton-Raphson for the projected normal distribution, on the sphere, is implemented as well. Finally, the von Mises-Fisher distribution for groups of data is also implemented.

Value
For the von Mises-Fisher a list including:
loglik The maximum log-likelihood value.
mu The mean direction.
kappa The concentration parameter.
For the multi von Mises-Fisher a list including:
loglik A vector with the maximum log-likelihood values if ell is set to TRUE. Otherwise NULL is returned.
mi A matrix with the group mean directions.
ki A vector with the group concentration parameters.
For the angular central Gaussian a list including:
iter The number if iterations required by the algorithm to converge to the solution.
cova The estimated covariance matrix.
For the spherical projected normal a list including:
iters The number of iteration required by the Newton-Raphson.
mesi A matrix with two rows. The first row is the mean direction and the second is the mean vector. The first comes from the second by normalising to have unit length.
param A vector with the elements, the norm of mean vector, the log-likelihood and the log-likelihood of the spherical uniform distribution. The third value helps in case you want to do a log-likleihood ratio test for uniformity.

Author(s)

Michail Tsagris R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley \& Sons.
Sra, S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x). Computational Statistics, 27(1): 177-190.
Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3): 579-589.

Paine P.J., Preston S.P., Tsagris M and Wood A.T.A. (2017). An Elliptically Symmetric Angular Gaussian Distribution. Statistics and Computing (To appear).

See Also

racg,vm.mle, rvmf

Examples

```
m <- c(0, 0, 0, 0)
s <- cov(iris[, 1:4])
x <- racg(100, s)
mod <- acg.mle(x)
mod
res<-cov2cor(mod$cova) ## estimated covariance matrix turned into a correlation matrix
res<-cov2cor(s) ## true covariance matrix turned into a correlation matrix
res<-vmf.mle(x)
x <- rbind( rvmf(100,rnorm(4), 10), rvmf(100,rnorm(4), 20) )
a <- multivmf.mle(x, rep(1:2, each = 100) )
```

```
MLE of continuous univariate distributions defined on the positive line
    MLE of continuous univariate distributions defined on the positive line
```


Description

MLE of continuous univariate distributions defined on the positive line.

Usage

```
gammamle(x, tol = 1e-09)
chisq.mle(x, tol = 1e-09)
weibull.mle(x, tol = 1e-09, maxiters = 100)
lomax.mle(x, tol = 1e-09)
foldnorm.mle(x, tol = 1e-09)
betaprime.mle(x, tol = 1e-09)
logcauchy.mle(x, tol = 1e-09)
loglogistic.mle(x, tol = 1e-09)
halfnorm.mle(x)
invgauss.mle(x)
lognorm.mle(x)
pareto.mle(x)
expmle(x)
exp2.mle(x)
maxboltz.mle(x)
rayleigh.mle(x)
normlog.mle(x)
lindley.mle(x)
```


Arguments

$x \quad$ A vector with positive valued data (zeros are not allowed).
tol The tolerance level up to which the maximisation stops; set to $1 \mathrm{e}-09$ by default.
maxiters The maximum number of iterations the Newton-Raphson will perform.

Details

Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster. See wikipedia for the equations to be solved. For the t distribution we need the degrees of freedom and estimate the location and scatter parameters. If you want to to fit an inverse gamma distribution simply do "gamma.mle(1/x)". The log-likelihood and the parameters are for the inverse gamma.

The "normlog.mle" is simply the normal distribution where all values are positive. Note, this is not log-normal. It is the normal with a log link. Similarly to the inverse gaussian distribution where the mean is an exponentiated. This comes from the GLM theory.

Value

Usually a list with three elements, but this is not for all cases.
iters The number of iterations required for the Newton-Raphson to converge.
loglik The value of the maximised log-likelihood.
param The vector of the parameters.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Kalimuthu Krishnamoorthy, Meesook Lee and Wang Xiao (2015). Likelihood ratio tests for comparing several gamma distributions. Environmetrics, 26(8):571-583.
N.L. Johnson, S. Kotz $\backslash \&$ N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).
N.L. Johnson, S. Kotz
\& N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2

Tsagris M., Beneki C. and Hassani H. (2014). On the folded normal distribution. Mathematics, 2(1):12-28.

Sharma V. K., Singh S. K., Singh U.
\& Agiwal V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3): 162-173.

You can also check the relevant wikipedia pages for these distributions.

See Also

zip.mle, normal.mle,beta.mle

Examples

```
x <- rgamma(100, 3, 4)
system.time( for (i in 1:20) gammamle(x) )
## system.time( for (i in 1:20) fitdistr(x,"gamma") )
a <- glm(x ~ 1, gaussian(log) )
res<-normlog.mle(x)
```

MLE of continuous univariate distributions defined on the real line
MLE of continuous univariate distributions defined on the real line

Description

MLE of continuous univariate distributions defined on the real line.

Usage

```
normal.mle(x)
gumbel.mle(x, tol = 1e-09)
cauchy.mle(x, tol = 1e-09)
logistic.mle(x, tol = 1e-07)
ct.mle(x, tol = 1e-09)
tmle(x, v = 5, tol = 1e-08)
wigner.mle(x, tol = 1e-09)
laplace.mle(x)
```


Arguments

x
v
tol The tolerance level up to which the maximisation stops set to $1 \mathrm{e}-09$ by default.

Details

Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster. See wikipedia for the equation to be solved. For the t distribution we need the degrees of freedom and estimate the location and scatter parameters.

The Cauchy is the t distribution with 1 degree of freedom. If you want to fit such a distribution used the cauchy.mle and not the t.mle with 1 degree of freedom as it's faster. The Laplace distribution is also called double exponential distribution.

The wigner.mle refers to the wigner semicircle distribution.

Value

Usually a list with three elements, but this is not for all cases.
iters The number of iterations required for the Newton-Raphson to converge.
loglik The value of the maximised log-likelihood.
param The vector of the parameters.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Johnson, Norman L. Kemp, Adrianne W. Kotz, Samuel (2005). Univariate Discrete Distributions (third edition). Hoboken, NJ: Wiley-Interscience.
https://en.wikipedia.org/wiki/Wigner_semicircle_distribution

See Also

zip.mle,gammamle,vm.mle

Examples

```
x <- rt(1000,10)
a <- ct.mle(x)
res<-tmle(x, v = a$nu)
res<-cauchy.mle(x)
res<-normal.mle(x)
res<-logistic.mle(x)
res<-gumbel.mle(x)
```

```
MLE of count data (univariate discrete distributions)
            MLE of count data
```


Description

MLE of count data.

Usage

```
zip.mle(x, tol = 1e-09)
ztp.mle(x, tol = 1e-09)
negbin.mle(x, type \(=1\), tol \(=1 \mathrm{e}-09\) )
binom.mle(x, \(N=N U L L, ~ t o l=1 e-07)\)
borel.mle(x)
geom.mle(x, type = 1)
logseries.mle(x, tol = 1e-09)
poisson.mle(x)
betageom.mle( \(x\), tol \(=1 \mathrm{e}-07\) )
betabinom.mle(x, \(N\), tol \(=1 \mathrm{e}-07\) )
```


Arguments

$\mathrm{N} \quad$ This is for the binomial distribution only, specifying the total number of suc-

X type
tol

A vector with discrete valued data.
This argument is for the negative binomial and the geometric distribution. In the negative binomial you can choose which way your prefer. Type 1 is for smal sample sizes, whereas type 2 is for larger ones as is faster. For the geometric it is related to its two forms. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1 . cesses. If NULL, it is sestimated by the data. It can also be a vector of successes.

Details

Instead of maximising the log-likelihood via a numerical optimiser we used a Newton-Raphson algorithm which is faster.
See wikipedia for the equation to be solved in the case of the zero inflated distribution. https://en.wikipedia.org/wiki/Zeroinflated_model. In order to avoid negative values we have used link functions, log for the lambda and logit for the π as suggested by Lambert (1992). As for the zero truncated Poisson see https://en.wikipedia.org/wiki/Zerotruncated_Poisson_distribution.
zip.mle is for the zero inflated Poisson, whereas ztp.mle is for the zero truncated Poisson distribution.

Value

The following list is not inclusive of all cases. Different functions have different names. In general a list including:
mess \quad This is for the negbin.mle only. If there is no reason to use the negative binomial distribution a message will appear, otherwise this is NULL.
iters The number of iterations required for the Newton-Raphson to converge.
loglik The value of the maximised log-likelihood.
prob The probability parameter of the distribution. In some distributions this argument might have a different name. For example, param in the zero inflated Poisson.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Lambert Diane (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics. 34 (1): 1-14
Johnson Norman L., Kotz Samuel and Kemp Adrienne W. (1992). Univariate Discrete Distributions (2nd ed.). Wiley

See Also

```
poisson_only,colrange
```


Examples

```
x <- rpois(100, 2)
res<-zip.mle(x)
res<-poisson.mle(x)
## small difference in the two log-likelihoods as expected.
x <- rpois(100, 10)
x[x == 0 ] <- 1
res<-ztp.mle(x)
res<-poisson.mle(x)
## significant difference in the two log-likelihoods.
x <- rnbinom(100, 10, 0.6)
res<-poisson.mle(x)
res<-negbin.mle(x)
```

MLE of distributions defined in the (0,1) interval
MLE of distributions defined in the $(0,1)$ interval

Description

MLE of distributions defined in the $(0,1)$ interval.

Usage

beta.mle(x, tol = 1e-09)
ibeta.mle(x, tol = 1e-09)
logitnorm.mle(x)
hsecant01.mle(x, tol = 1e-09)

Arguments

x
A numerical vector with proportions, i.e. numbers in $(0,1)$ (zeros and ones are not allowed).
tol The tolerance level up to which the maximisation stops.

Details

Maximum likelihood estimation of the parameters of the beta distribution is performed via NewtonRaphson. The distributions and hence the functions does not accept zeros. "logitnorm.mle" fits the logistic normal, hence no nwewton-Raphson is required and the "hypersecant01.mle" uses the golden ratio search as is it faster than the Newton-Raphson (less calculations)

Value

A list including:
iters The number of iterations required by the Newton-Raphson.
loglik The value of the log-likelihood.
param The estimated parameters. In the case of "hypersecant01.mle" this is called "theta" as there is only one parameter.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

See Also

diri.nr2,

Examples

```
x <- rbeta(1000, 1, 4)
system.time( for(i in 1:1000) beta.mle(x) )
res<-beta.mle(x)
res<-ibeta.mle(x)
x <- runif(1000)
res<-hsecant01.mle(x)
res<-logitnorm.mle(x)
res<-ibeta.mle(x)
x <- rbeta(1000, 2, 5)
x[sample(1:1000, 50)] <- 0
res<-ibeta.mle(x)
```

```
MLE of some circular distributions
    MLE of some circular distributions
```


Description

MLE of some circular distributions.

Usage

vm.mle(x, tol = 1e-09)
spml.mle(x, tol = 1e-09, maxiters = 100)
wrapcauchy.mle(x, tol = 1e-09)

Arguments

x
A numerical vector with the circular data. They must be expressed in radians. For the "spml.mle" this can also be a matrix with two columns, the cosinus and the sinus of the circular data.
tol The tolerance level to stop the iterative process of finding the MLEs.
maxiters The maximum number of iterations to implement.

Details

The parameters of the von Mises, the bivariate angular Gaussian and wrapped Cauchy distributions are estimated. For the Wrapped Cauchy, the iterative procedure described by Kent and Tyler (1988) is used. As for the von Mises distribution, we use a Newton-Raphson to estimate the concentration parameter. The angular Gaussian is described, in the regression setting in Presnell et al. (1998).

Value

A list including:

iters	The iterations required until convergence. This is returned in the wrapped Cauchy distribution only.
loglik	The value of the maximised log-likelihood. param
A vector consisting of the estimates of the two parameters, the mean direction for both distributions and the concentration parameter kappa and the rho for the von Mises and wrapped Cauchy respectively.	
gamma	The norm of the mean vector of the angualr Gaussian distribution.
mu	The mean vector of the angular Gaussian distribution.

Author(s)

Michail Tsagris and Stefanos Fafalios
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Stefanos Fafalios stefanosfafalios@gmail.com

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley
\& Sons.
Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x). Computational Statistics, 27(1): 177-190.
Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association, 93(443): 1068-1077.
Kent J. and Tyler D. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution. Journal of Applied Statistics, 15(2): 247-254.

See Also

vmf.mle,rvonmises,rvmf

Examples

```
y <- rcauchy(100, 3, 1)
x <- y
res<-vm.mle(x)
res<-spml.mle(x)
res<-wrapcauchy.mle(x)
x <- NULL
```

```
MLE of the inverted Dirichlet distribution
    MLE of the inverted Dirichlet distribution
```


Description

MLE of the inverted Dirichlet distribution.

Usage

invdir.mle(x, tol = 1e-09)

Arguments

$x \quad$ A matrix with strictly positive data (no zeros are allowed).
tol The tolerance level up to which the maximisation stops.

Details

Maximum likelihood estimation of the parameters of the inverted is performed via Newton-Raphson. We took the initial values suggested by Bdiri T. and Bouguila N. (2012) and modified them a bit.

Value

A list including:
iters The number of iterations required by the Newton Raphson.
loglik The value of the log-likelihood.
param The estimated parameters.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Bdiri T. and Bouguila N. (2012). Positive vectors clustering using inverted Dirichlet finite mixture models. Expert Systems with Applications, 39(2): 1869-1882.

See Also
diri.nr2,multinom.mle

Examples

```
x <- as.matrix(iris[, 1:4])
system.time( for(i in 1:100) invdir.mle(x) )
res<-invdir.mle(x)
```

```
MLE of the multivariate (log-) normal distribution
    MLE of the multivariate (log-) normal distribution
```


Description

MLE of the multivariate (log-) normal distribution.

Usage

mvnorm.mle(x)
mvlnorm.mle(x)

Arguments

x
A matrix with numerical data.

Details

The mean vector, covariance matrix and the value of the log-likelihood of the multivariate normal or log-normal distribution is calculated. For the log-normal distribution we also provide the expected value and the covariance matrix.

Value

A list including:
loglik The log-likelihood multivariate distribution.
mu The mean vector.
sigma The covariance matrix.
m
The expected mean vector of the multivariate log-normal distribution.
s
The expected covariance matrix of the multivariate log-normal distribution.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Kotz, S., Balakrishnan, N., \& Johnson, N. L. (2004). Continuous multivariate distributions, Volume 1: Models and applications (Vol. 1). John wiley \& sons.
http://isi.cbs.nl/iamamember/CD2/pdf/329.PDF
https://en.wikipedia.org/wiki/Log-normal_distribution\#Multivariate_log-normal

See Also

multinom.mle, dmvnorm, gaussian.nb

Examples

```
x <- matrnorm(100, 4)
res<-mvnorm.mle(x)
x <- NULL
```

```
MLE of the multivariate t distribution
```

 MLE of the multivariate \(t\) distribution

Description

MLE of the multivariate t distribution.

Usage

mvt.mle(x, v = 5, tol $=1 \mathrm{e}-07$)

Arguments

x
A matrix with numerical data.
v
The degrees of freedom. Must be a positive number, greater than zero.
tol
The tolerance value to terminate the EM algorithm.

Details

The location vector, scatter matrix and the value of the log-likelihood is calculated.

Value

A list including:
iters The number of iterations required for the EM algorihm to converge.
loglik The value of the maximised log-likelihood.
location The location vector.
scatter The scatter matrix.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Nadarajah S. and Kotz S. (2008). Estimation methods for the multivariate t distribution. Acta Applicandae Mathematicae, 102(1):99-118.

See Also

mvnorm.mle, dmvnorm, gaussian.nb

Examples

x <- matrnorm(100, 4)
res<-mvnorm.mle(x)
res<-mvt.mle(x, v = 5)
res<-mvt.mle(x, v = 100)

MLE of the ordinal model without covariates
MLE of the ordinal model without covariates

Description

MLE of the ordinal model without covariates.

Usage

ordinal.mle(y, link = "logit")

Arguments

y A numerical vector with values 1, 2, 3, ... not zeros, or an ordered factor.
link \quad This can either be "logit" or "probit". It is the link function to be used.

Details

Maximum likelihood of the ordinal model (proportional odds) is implemented. See for example the "polr" command in R or the examples.

Value

A list including:
loglik The log-likelihood of the model.
a The intercepts (threshold coefficients) of the model.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Agresti, A. (2002) Categorical Data. Second edition. Wiley.

See Also

```
    beta.mle,diri.nr2
```


Examples

```
y <- factor( rbinom(100,3,0.5), ordered = TRUE )
res<-ordinal.mle(y)
res<-ordinal.mle(y, link = "probit")
```

MLE of the tobit model
MLE of the tobit model

Description

MLE of the tobit model.

Usage

tobit.mle(y, tol = 1e-09)

Arguments

$y \quad$ A vector with positive valued data and zero values. If there are no zero values, a simple normal model is fitted in the end.
tol The tolerance level up to which the maximisation stops; set to $1 \mathrm{e}-09$ by default.

Details

The tobin model is useful for (univariate) positive data with left censoring at zero. There is the assumption of a latent variable. Tthe values of that variable which are positive concide with the observed values. If some values are negative, they are left censored and the observed values are zero. Instead of maximising the log-likelihood via a numerical optimiser we have used a NewtonRaphson algorithm which is faster.

Value

A list with three elements including
iters The number of iterations required for the Newton-Raphson to converge.
loglik The value of the maximised log-likelihood.
param The vector of the parameters.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Tobin James (1958). Estimation of relationships for limited dependent variables. Econometrica. 26(1):24-36.
https://en.wikipedia.org/wiki/Tobit_model

See Also

```
gammamle,normal.mle
```


Examples

```
x <- rnorm(300, 3, 5)
x[ x < 0 ] <- 0 ## left censoring. Values below zero become zero
system.time( for (i in 1:100) tobit.mle(x) )
```

Moment and maximum likelihood estimation of variance components
Moment and maximum likelihood estimation of variance components

Description

Moment and maximum likelihood estimation of variance components.

Usage

```
rint.mle(x, ina, ranef \(=\) FALSE, tol \(=1 \mathrm{e}-09\), maxiters \(=100\) )
varcomps.mom(x, ina)
varcomps.mle(x, ina, tol \(=1 \mathrm{e}-09)\)
```


Arguments

x
ranef
ina A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Be careful, the function is desinged to accept numbers greater than zero. Alternatively it can be a factor variable.
tol The tolerance level to terminate the golden ratio search. the default value is $10^{\wedge}(-9)$.
maxiters The maximum number of iterations Newton-Raphson will implement.

Details

Note that the "varcomps.mle" and "varcomp.mom" work for balanced designs only, i.e. for each subject the same number of measurements have been taken. The "rint.mle" works for both the balanced and unbalanced designs.

The variance components, the variance of the between measurements and the variance of the within are estimated using moment estimators. The "colvarcomsp.mom" is the moment analogue of a random effects model which uses likelihood estimation ("colvarcomps.mle"). It is much faster, but can give negative variance of the random effects, in which case it becomes zero.

The maximum likelihood version is a bit slower (try youselves to see the difference), but statistically speaking is to be preferred when small samples are available. The reason why it is only a little bit slower and not a lot slower as one would imagine is because we are using a closed formula to calculate the two variance components (Demidenko, 2013, pg. 67-69). Yes, there are closed formulas for linear mixed models.

Value

For the "varcomps.mom": A vector with 5 elemets, The MSE, the estimate of the between variance, the variance components ratio and a 95% confidence for the ratio.

For the "varcomps.mle": a list with a single component called "info". That is a matrix with 3 columns, The MSE, the estimate of the between variance and the log-likelihood value. If ranef $=$ TRUE a list including "info" and an extra component called "ranef" containing the random effects. It is a matrix with the same number of columns as the data. Each column contains the randome effects of each variable.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley $\backslash \&$ Sons.

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. New York: Springer-Verlag.

Demidenko E. (2013). Mixed Models: Theory and Applications with R 2nd Edition). New Jersey: John Wiley $\backslash \&$ Sons (Excellent book).

See Also

```
colvarcomps.mle,rint.reg,rint.regbx
```


Examples

```
## example from Montgomery, pages 514-517
x <- c(98, 97, 99, 96, 91, 90, 93, 92, 96, 95, 97, 95, 95, 96, 99, 98)
ina <- rep(1:4, each = 4)
res<-varcomps.mom(x, ina)
res<-varcomps.mle(x, ina)
```

Multi-sample tests for vectors
Multi-sample tests for vectors

Description

Multi-sample tests for vectors.

Usage

```
ftest(x, ina, logged = FALSE)
anova1(x, ina, logged = FALSE)
kruskaltest(x, ina, logged = FALSE)
var2test(x, y, alternative = "unequal", logged = FALSE)
mcnemar(x, y, logged = FALSE)
ttest2(x, y, paired = FALSE, logged = FALSE)
cqtest(x, treat, block, logged = FALSE)
block.anova(x, treat, block, logged = FALSE)
twoway.anova(y, x1, x2, interact = FALSE, logged = FALSE)
```


Arguments

x	A numerical vector with the data.
y	
ina	A numerical vector with the data. A numerical vector with $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$ and so one indicating the two groups. Be care- ful, the function is desinged to accept numbers greater than zero. Alternatively it can be a factor variable.
paired	This is for the two sample t-test only and is TRUE or FALSE specifying whether the two samples are paired or not.
alternative	This can either be "unequal", "greater" or "less". In the case of the blocking ANOVA and Cochran's Q test, this argument plays
treat	Ine role of the "ina" argument. this item (in the blocking ANOVA and Cochran's Q test) denotes the subjects which are the same. Similarly to "ina" a numeric vector with 1s, 2s, 3s and so on.
x1	The first factor in the two way ANOVA. x2
interact	The second factor in the two way ANOVA. The orderis not important. Should interaction in the two way ANOVA be included? The default value is
logged	FALSE (no interaction). Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The Welch's F-test (without assuming equal variances) is performed with the "ftest" function. The "anova" function perform the classical (Fisher's) one-way analysis of variance (ANOVA) which assumes equal variance across the groups. The "kruskaltest" performs the Kruskal-Wallis non parametric alternative to analysis of variance test. The "var2tests" implement the classical F test for the equality of two sample variances. The "cqtest" performs the Cocrhan's Q test for the equality of more than two groups whose values are strictly binary (0 or 1). This is a generalisation of the McNemar's test in the multi-sample case. The "block.anova" is the ANOVA with blocking, randomised complete block design (RCBD). In this case, for every combination of the block and treatment values, there is only one observation. The mathematics are the same as in the case of "twoway.anova", but the assumptions different and the testing procedure also different. In addition, no interaction is present.

Value

A vector with the test statistic and the p-value of each test. For the case of t-test, an extra column with the degrees of freedom is given. For the two way ANOVA there can can be either 2 or three F test statistics and hence the same number of p -values.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.
D.C. Montgomery (2001). Design and analysis of experiments (5th Edition). New York: John Wiley
\& Sons.
McNemar Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 12(2):153-157.

See Also

ttests,ftests

Examples

```
x <- rnorm(200)
ina <- rbinom(200, 3, 0.5) + 1
res<-anova1(x, ina)
res<-ftest(x, ina)
ina <- rbinom(200, 1, 0.5) + 1
x1 <- x[ ina == 1 ] ; x2 <- x[ ina == 2 ]
res<-ttest2(x1, x2)
res<-var2test(x1, x2)
```

```
## RCBD example 4.1 from Montgomery (2001), page 131-132
x <- c(9.3, 9.4, 9.2, 9.7, 9.4, 9.3, 9.4, 9.6, 9.6, 9.8, 9.5, 10,
10, 9.9, 9.7, 10.2)
tr <- rep(1:4, 4)
bl <- rep(1:4, each = 4)
res<-block.anova(x, tr, bl)
```

```
Multinomial regression
```

```
Multinomial regression
```


Description

Multinomial regression.

Usage

multinom.reg(y, x, tol $=1 e-07$, maxiters $=50$)

Arguments

y	The response variable. A numerical or a factor type vector.
x	A matrix or a data.frame with the predictor variables.
tol	This tolerance value to terminate the Newton-Raphson algorithm.
maxiters	The maximum number of iterations Newton-Raphson will perform.

Value

A list including:
iters The number of iterations required by the Newton-Raphson.
loglik The value of the maximised log-likelihood.
be A matrix with the estimated regression coefficients.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Bohning, D. (1992). Multinomial logistic regression algorithm. Annals of the Institute of Statistical Mathematics, 44(1): 197-200.

See Also
glm_logistic,score.multinomregs logistic_only

Examples

```
## Not run:
    y <- iris[, 5]
    x <- matrnorm(150, 3)
    res <- multinom.reg(y, x)
    ## End(Not run)
```

Multivariate kurtosis Multivariate kurtosis

Description

Multivariate kurtosis.

Usage

mvkurtosis(x)

Arguments

$x \quad$ A numerical matrix.

Details

The multivariate kurtosis is calcualted.

Value

A number, the multivariate kurtosis.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

K. V. Mardia (1970). Measures of Multivariate Skewness and Kurtosis with Applications Biometrika, 57(3):519-530.

See Also

colskewness, skew.test2, colmeans, colVars, colMedians

Examples

```
x <- as.matrix(iris[, 1:4])
res<-mvkurtosis(x)
```

Multivariate Laplace random values simulation
Multivariate Laplace random values simulation

Description

Multivariate Laplace random values simulation.

Usage

rmvlaplace(n, lam, mu, G, seed = NULL)

Arguments

n
lam
mu
G
seed If you want the same to be generated again use a seed for the generator, an integer number.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Eltoft T., Kim T., and Lee T.W. (2006). On the multivariate laplace distribution. Signal Processing Letters, IEEE, 13(5):300-303.

See Also

rmvnorm, racg, rmvt

Examples

m <- colmeans(as.matrix(iris[, 1:4]))
s <- cov(iris[,1:4])
s <- s / det(s)^0. 25
lam <- 3
x <- rmvlaplace(100, lam, m, s)

```
Multivariate normal and t random values simulation
    Multivariate normal and t random values simulation
```


Description

Multivariate normal and t random values simulation.

Usage

rmvnorm(n, mu, sigma, seed $=$ NULL)
rmvt (n, mu, sigma, v, seed $=$ NULL)

Arguments

$\mathrm{n} \quad$ The sample size, a numerical value.
mu The mean vector in R^{d}.
sigma The covariance matrix in R^{d}.
$v \quad$ The degrees of freedom.
seed If you want the same to be generated again use a seed for the generator, an integer number.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition. It is faster than the command "mvrnorm" available from MASS, and it allows for singular covariance matrices.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

racg, rmvlaplace,rmvt

Examples

```
x <- as.matrix(iris[, 1:4])
m <- colmeans(x)
s <- cov(x)
y <- rmvnorm(1000, m, s)
res<-colmeans(y)
res<-cov(y)
y <- NULL
```

Naive Bayes classifiers

Naive Bayes classifiers

Description

Gaussian, Poisson, geometric and multinomial naive Bayes classifiers.

Usage

```
gaussian.nb(xnew = NULL, \(x\), ina, parallel = FALSE)
poisson.nb(xnew, \(x\), ina)
multinom.nb(xnew, x, ina)
geom.nb(xnew, x, ina, type = 1)
gammanb (xnew \(=\) NULL, \(x\), ina, tol \(=1 \mathrm{e}-07\) )
```


Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted. For the Gaussian naive Bayes, this is set to NUUL, as you might want just the model and not to predict the membership of new observations. For the Gaussian case this contains any numbers, but for the multinomial and Poisson cases, the matrix must contain integer valued numbers only.
x
A numerical matrix with the observed predictor variable values. For the Gaussian case this contains any numbers, but for the multinomial and Poisson cases, the matrix must contain integer valued numbers only.
ina A numerical vector with strictly positive numbers, i.e. 1,2,3 indicating the groups of the dataset. Alternatively this can be a factor variable.
type \quad Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1 . This is for the geometric distribution. This argument is for the geometric distribution. Type 1 refers to the case where the minimum is zero and type 2 for the case of the minimum being 1 .
tol The tolerance value to terminate the Newton-Raphson algorithm in the gamma distribution.
parallel If you want parallel computations set this equal to TRUE.

Value

For the Poisson and Multinomial naive Bayes classifiers the estimated group, a numerical vector with 1, 2, 3 and so on. For the Gaussian naive Bayes classifier a list including:
mu A matrix with the mean vector of each group based on the dataset.
sigma A matrix with the variance of each group and variable based on the dataset.
ni The sample size of each group in the dataset.
est The estimated group of the xnew observations. It returns a numerical value back regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do \backslash "as.numeric(target) $)$ " in order to see what is the predicted class of the new data.

For the Gamma classifier a list including:
a A matrix with the shape parameters.
b A matrix with the scale parameters.
est The estimated group of the xnew observations. It returns a numerical value back regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do $\backslash "$ as.numeric(target) $\backslash "$ in order to see what is the predicted class of the new data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
gaussiannb.pred,colmeans,colVars
```


Examples

```
x <- as.matrix(iris[, 1:4])
a <- gaussian.nb(x, x, iris[, 5])
x1 <- matrix( rpois(100 * 4, 5), ncol = 4)
x2 <- matrix( rpois(50 * 4, 10), ncol = 4)
x <- rbind(x1, x2)
ina <- c( rep(1, 100), rep(2, 50) )
res<-poisson.nb(x, x, ina)
res<-geom.nb(x, x, ina)
res<-multinom.nb(x, x, ina)
```

```
Natural Logarithm each element of a matrix
    Natural Logarithm each element of a matrix
```


Description

Natural Logarithm each element of a matrix.

Usage

$\log (x$, na.rm $=$ FALSE $)$

Arguments

x
A matrix with data.
na.rm
A boolean value (TRUE/FALSE) for removing NA.

Details

The argument must be a matrix. For vector the time was the same as R's "log" function so we did not add it.

Value

A matrix where each element is the natural logarithm of the given argument.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Lbeta, Lchoose, Choose

Examples

```
x <-matrix( runif( 100 * 100), ncol = 100 )
a <- log(x)
b <- Log(x)
all.equal(a, b) # true
x<-a<-b<-NULL
```


Natural logarithm of the beta function

Description

Natural logarithm of the beta function.

Usage

Lbeta (x, y)

Arguments

$x \quad$ A numerical matrix, or a vector or just a number with positive numbers in either case.
y
A numerical matrix, or a vector or just a number with positive numbers in either case. The dimensions of y must match those of x.

Details

The function is faster than R's lbeta when the dimensions of x any are large. If you have only two numbers, then lbeta is faster. But if you have for example two vectors of 1000 values each, Lbeta becomes two times faster than lbeta.

Value

The matrix, vector or number with the resulting values.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis <papadakm95@ gmail.com>.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain. Chapter 6: Gamma and Related Functions.

See Also

Lgamma, beta.mle,diri.nr2

Examples

$x<-r \exp (1000)$
$y<-r \exp (1000)$
a1 <- Lbeta(x, y)
$x<-y<-a 1<-$ NULL

Natural logarithm of the gamma function and its derivatives
Natural logarithm of the gamma function and its derivatives.

Description

Natural logarithm of the gamma function and its derivatives.

Usage

Lgamma (x)
Digamma(x)
Trigamma(x)

Arguments

x
A numerical matrix or vector with positive numbers in either case.

Details

We have spotted that the time savings come when there are more than 50 elements, with vector or matrix.

Value

The matrix or the vector with the resulting values.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain. Chapter 6: Gamma and Related Functions.

See Also

```
beta.mle,diri.nr2
```


Examples

```
x <- matrix( rnorm(500 * 500), ncol = 500 )
    a1 <- Lgamma(x)
a2 <- lgamma(x)
all.equal(as.vector(a1), as.vector(a2))
a1 <- Digamma(x)
a2 <- digamma(x)
all.equal(as.vector(a1), as.vector(a2))
x<-a1<-a2<-NULL
```

Norm of a matrix Norm of a matrix

Description

Norm of a matrix.

Usage

$\operatorname{Norm}(x$, type $=" F ")$

Arguments

$\begin{array}{ll}x & \text { A matrix with numbers. } \\ \text { type } & \begin{array}{l}\text { The type of norm to be calculated. The default is "F" standing for Frobenius } \\ \text { norm ("f" in R's norm). The other options are "C" standing for the one norm } \\ \text { ("o" in R's norm), "R" for the identiy norm ("I" in R's norm) and "M" for the } \\ \text { maximum modulus among elements of a matrix ("M" in R's norm) }\end{array}\end{array}$

Value

A number, the norm of the matrix.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Dist, dista, colmeans

Examples

```
x <- matrix( rnorm(10 * 10), ncol = 10 )
res<-Norm(x, "F")
res<-norm(x, "F")
res<-Norm(x, "M")
res<-norm(x, "M")
```

Number of equal columns between two matrices
Number of equal columns between two matrices

Description

Number of equal columns between two matrices.

Usage

mat.mat(x, y)

Arguments

x
A numerical matrix. See details for more information. It must have the same number of rows as y.
y
A numerical matrix. See details for more information. It must have the same number of rows as x.

Details

The function takes each column of x and checks the number of times it matches a column of y. In the example below, we take the first 3 columns of iris as the x matrix. The y matrix is the whole of iris. We will see how many times, each column of x appears in the y matrix. The answer is 1 for each column.

Value

A numerical vector of size equal to the number of columns of x.

Author(s)

Manos Papadakis

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
Match,colmeans,colMedians
```


Examples

```
x <- as.matrix(iris[, 1:3])
y <- iris
y[, 5] <- as.numeric(y[, 5])
y <- as.matrix(y)
res<-mat.mat(x, y)
x<-y<-NULL
```

Odds ratio and relative risk
Odds ratio and relative risk

Description

Odds ratio and relative risk.

Usage

odds.ratio(x, $a=0.05$, logged $=$ FALSE $)$
rel. $\mathrm{risk}(x, a=0.05$, logged $=$ FALSE $)$

Arguments

x
a
logged

A 2×2 matrix or a vector with 4 elements. In the case of the vector make sure it corresponds to the correct table.
The significance level, set to 0.05 by default.
Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

The odds ratio and the confidence interval are calculated.

Value

A list including:
res The estimated odds ratio and the p-value for the null hypothesis test that it is equal to 1 .
ci The (1-a) \% confidence interval for the true value of the odds ratio.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mosteller Frederick (1968). Association and Estimation in Contingency Tables. Journal of the American Statistical Association. 63(321):1-28.
Edwards A.W.F. (1963). The measure of association in a 2×2 table. Journal of the Royal Statistical Society, Series A. 126(1):109-114.

See Also

```
odds,g2Test
```


Examples

```
x <- rpois(4, 30)+2
res<-odds.ratio(x)
res<-odds.ratio( matrix(x, ncol = 2) )
```

One sample t-test for a vector

One sample t-test for a vector

Description

One sample t-test for a vector.

Usage

ttest1(x, m, alternative = "unequal", logged = FALSE, conf = NULL)

Arguments

$x \quad$ A numerical vector with the data.
$\mathrm{m} \quad$ The mean value under the null hypothesis.
alternative The alternative hypothesis, "unequal", "greater" or "less".
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?
conf If you want a confidence interval supply the confidence level.

Details

The usual one sample t -test is implemented, only faster.

Value

A list including:
res A two valued vector with the test statistic and its (logged) p-value.
ci In the case you supplied a number in the input argument "conf" the relevant confidence interval will be returned as well.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

See Also

ttest, anova1, ttests

Examples

```
x = rnorm(500)
res<-t.test(x, mu = 0)
res<-ttest1(x, 0, conf = 0.95)
```

Operations between two matrices or matrix and vector Operations between two matrices or matrix and vector

Description

Operations between two matrices or matrix and vector.

Usage

XopY.sum($x, y=N U L L$, oper = "*")
eachrow (x, y,oper $=" *$ ", method $=$ NULL)
eachcol.apply (x, y, indices $=$ NULL, oper $=" * "$,apply = "sum")

Arguments

$x \quad$ A numerical matrix.
$y \quad$ A second numerical matrix for "XopY.sum" whose dimensions must match the ones of x, or vector for "eachrow","eachcol.apply" whose length must match with the rows of x.
oper The operation to be performed, either "*", "/", "+", "-" or "==".
method A character value for choosing option to apply in the result. Options: 1) sum 2) $\max 3$) min
Does not work for oper="==".
indices An integer vector with indices to specific columns. Only for "eachcol.apply".
apply A character value with the function to be applied in the columns of the matrix. Only for "eachcol.apply". Options: 1) sum 2) median 3) max 4) min

Details

XopY.sum: $\operatorname{sum}(\mathrm{X}$ op Y) where op can be on of "+,-,*, $/$ ".
eachrow: X op Y by row or FUNCTION(X op Y) where " x " is matrix, " y " is vector with length as much an the columns of x and "op" is one of ",,+- ,, ,==", and "FUNCTION" is a specific method for applying in the result matrix (see argument method).
eachcol.apply: FUNCTION(X op Y) by column where " x " is matrix, " y " is vector with length as much an the rows of x, "op" is one of " $+,-, *, / "$ and "FUNCTION" is a specific method (see argument apply).

NOTE: Arguments "method" does not work for oper="==" and this operation works only in "eachrow".

Value

XopY.sum: sum(X op Y) where "op" can be on of "+,-,, ,,/".
eachrow: operation by row between a matrix and a vector."op" can be on of "+,-,*,/". If "suma=TRUE" then returns the sum of this operation.
eachcol.apply: operation by column between a matrix and a vector and applied a specific function."op" can be on of "+,-,*, $/$ ".

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Dist,dista, colmeans, Diag.fill,colMads, rowMads

Examples

```
x <- matrix( rnorm(5 * 5), ncol = 5 )
y <- matrix( rnorm(5 * 5), ncol = 5 )
res<-XopY.sum(x, y, oper = "*")
y <- x[,1]
res<-eachrow(x,y)
all.equal(eachcol.apply(x,y),colsums(x*y))
x<-y<-NULL
```

Orthogonal matching pursuit variable selection
Orthogonal matching pursuit variable selection

Description

Orthogonal matching pursuit variable selection.

Usage

$\operatorname{ompr}(y, x, y s t a n d=$ TRUE, xstand = TRUE, method = "BIC", tol = 2)
omp (y, x, xstand $=$ TRUE, tol $=$ qchisq(0.95, 1$)+\log (\operatorname{length}(y))$, type = "logistic" $)$

Arguments

y

X
ystand If this is TRUE the response variable is centered. The mean is subtracted from every value.
xstand If this is TRUE the independent variables are standardised.
method You can choose between the change in the BIC ("BIC"), the adjusted R^{2} ("ar2"), the SSE ("SSE") or the classical p-value based ("pvalue").
tol The tolerance value to terminate the algorithm. This is the change in the criterion value between two successive steps. For "ompr" the default value is 2 because the default method is "BIC". For "omp" the default value is the 95% quantile of the χ^{2} distribution with 1 degree of freedom plus the logarithm of the sample size.
type This denotes the parametric model to be used each time. It depends upon the nature of y. The possible values are "logistic", "poisson", "quasipoisson", "quasibinomial", "normlog", "gamma", "weibull", "mv" (for multivariate response variable) or "multinomial".

Value

For "ompr" a list including:
runtime The runtime of the algorithm.
info A matrix with two columns. The selected variable(s) and the criterion value at every step.

For "omp" a list including:
runtime The runtime of the algorithm.

$$
\begin{array}{ll}
\text { phi } & \text { The } \phi \text { parameter. In the cases of "quasipoisson", "quasibinomial" and "normlog" } \\
\text { this is useful. For all other cases this is NULL. } \\
\text { info } & \text { A matrix with two columns. The selected variable(s) and the criterion value at } \\
\text { every step. }
\end{array}
$$

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Pati Y. C., Rezaiifar R. \& Krishnaprasad P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Signals, Systems and Computers. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on. IEEE.
Mazin Abdulrasool Hameed (2012). Comparative analysis of orthogonal matching pursuit and least angle regression. MSc thesis, Michigan State University. https://www.google.gr/url?sa=t\&rct=j\&q=\&esrc=s\&source=web\&
Lozano A., Swirszcz G., \& Abe N. (2011). Group orthogonal matching pursuit for logistic regression. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.
The γ-OMP algorithm for feature selection with application to gene expression data. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (Accepted for publication) https://arxiv.org/pdf/2004.00281.pdf

See Also

cor.fbed, cor.fsreg, correls,fs.reg

Examples

```
x <- matrnorm(100, 400)
y <- rnorm(100)
a <- \(\operatorname{ompr}(\mathrm{y}, \mathrm{x})\)
a
x <- NULL
```

Outer function

Outer function

Description

The outer function.

Usage

Outer (x, y, oper = "*")

Arguments

x
$y \quad$ A numerical vector.
oper The available options are "*" (multiplication), "/" (division), "+" (sum), "-" (substraction), "^" (power raise), and "

Details

The function is the same as R's "outer", but works with vectors only and probably has less capabilities, but faster.

Value

A matrix with all the combinations.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Michail Tsagris mtsagris@uoc.gr.

See Also

```
mat.mult,vecdist
```


Examples

```
x <- rnorm(10)
y <- rnorm(10)
res<-Outer(x, y)
```


Description

Permute the given vector.

Usage

permutation(x, nperm = gamma(length(x)+1))
permutation.next(x, nperm = gamma(length(x)+1))
permutation.prev $(x$, nperm $=$ gamma(length $(x)+1)$)
bincomb(n)

Arguments

X
nperm
n

A numeric vector with data.
An integer value for returning specific number of combinations. By defualt is set to all combinations. Must be between $\mathbf{0}<=$ nperm<=gamma(length(\mathbf{x})+1)

Details

This function implements "Permutation", which means all the possible combinations. In the permutation.next and permutation.prev if there aren't possible combinations it returns the same vector. "Binary Combinations" for "bincomb", means all the possible combinations for the binary number with length " n ".

Value

Returns a matrix with all possible combinations of the given vector or a matrix row with one possible combinations.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis <papadakm95@ gmail.com>

See Also

```
combn, comb_n
```


Examples

```
y <- rnorm(3)
b <- permutation(y)
b <- permutation.next(y)
b <- permutation.prev(y)
g <- bincomb(3)
```

Permutation based p -value for the Pearson correlation coefficient Permutation based p-value for the Pearson correlation coefficient

Description

Permutation based p-value for the Pearson correlation coefficient.

Usage

permcor (x, y, $\mathrm{R}=999$)

Arguments

$x \quad$ A numerical vector with the first variable.
$y \quad$ A numerical vector with the second variable.
R The number of permutations to be conducted; set to 999 by default.

Details

This is a very low computational calculation of the p-value. Try it yourselves.

Value

A vector consisting of two values, the Pearson correlation and the permutation based p -value.

Author(s)

Marios Dimitriadis and Michail Tsagris
R implementation and documentation: Marios Dimitriadis and Michail Tsagris kmdimitriadis@gmail.com and mtsagris@csd.uoc.gr

References

Chatzipantsiou C., Dimitriadis M., Papadakis M. and Tsagris M. (2019). Extremely efficient permutation and bootstrap hypothesis tests using R. To appear in the Journal of Modern Applied Statistical Methods.
https://arxiv.org/ftp/arxiv/papers/1806/1806.10947.pdf

See Also

pc.skel

Examples

```
x <- iris[, 1]
\(\mathrm{y}<-\) iris[, 2]
res<-permcor (x, y)
res<-permcor (x, y, R = 9999)
```

```
Polyserial correlation
```


Description

Polyserial correlation.

Usage

poly.cor (x, y)

Arguments

x
The continuous variable.
y
The ordinal variable, a numeric vector with numbers starting from 1.

Details

The polyserial correlation between a continuous and an ordinal variable is calculated. The function is not super fast, yet is faster than other implementations we found.

Value

A list including:
est A vector with the polyserial correlation and its estimated variance.
test A vector with the test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Olsson U., Drasgow F. and Dorans N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47(3):337-347.

See Also

correls,Table

Examples

```
x <- rnorm(100)
y <- rpois(100, 10) + 1
res<-poly.cor(x, y)
```

Pooled covariance matrix

Description

Pooled covariance matrix.

Usage

pooled. $\operatorname{cov}(x$, ina)

Arguments

x	A matrix with continuous data.
ina	A numerical vector indicating the groups. The nubmers must be consecutive and start from 1.

Details

The spatial median is at first computed (if not supplied) and then the covariance matrix.

Value

The spatial sign covariance matrix.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Durre A, Vogel D. and D.E. Tyler D.E.(2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117. http://arxiv.org/pdf/1307.5706v2.pdf

See Also

spat.med, spatmed.reg

Examples

res<-sscov(as.matrix(iris[, 1:4]))

```
Prediction with some naive Bayes classifiers
```


Prediction with some naive Bayes classifiers

Description

Prediction with some naive Bayes classifiers.

Usage

```
gaussiannb.pred(xnew, m, s, ni)
poissonnb.pred(xnew, m)
multinomnb.pred(xnew, m)
gammanb.pred(xnew, a, b)
geomnb.pred(xnew, prob)
```


Arguments

xnew	A numerical matrix with new predictor variables whose group is to be predicted. For the Gaussian case this contains any numbers, but for the multinomial and Poisson cases, the matrix must contain integer valued numbers only.
m	A matrix with the group means. Each row corresponds to a group. s
ni	A matrix with the group colum-wise variances. Each row corresponds to a group. A vector with the frequencies of each group.
b	A vector with the shape parameters of each group.
prob	A vector with the scale parameters of each group.
	A vector with the sprobability parameters of each group.

Value

A numerical vector with $1,2, \ldots$ denoting the predicted group.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

```
gaussian.nb,colpoisson.mle colVars
```


Examples

```
ina <- sample(1:150, 100)
x <- as.matrix(iris[, 1:4])
id <- as.numeric(iris[, 5])
a <- gaussian.nb(xnew = NULL, x[ina, ], id[ina])
est <- gaussiannb.pred(x[-ina, ], a$mu, a$sigma, a$ni)
res<-table(id[-ina], est)
```

Quasi binomial regression for proportions
Quasi binomial regression for proportions

Description

Quasi binomial regression for proportions.

Usage

prop.reg(y, x, varb = "quasi", tol $=1 \mathrm{e}-09$, maxiters $=100$)
prop.regs (y, x, varb = "quasi", tol = 1e-09, logged = FALSE, maxiters = 100)

Arguments

y
x
tol The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
varb The type of estimate to be used in order to estimate the covariance matrix of the regression coefficients. There are two options, either "quasi" (default value) or "glm". See the references for more information.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?
maxiters The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The "prop.regs" is to be used for very many univariate regressions. The " x " is a matrix in this case and the significance of each variable (column of the matrix) is tested. The function accepts binary responses as well (0 or 1).

Value

For the "prop.reg" function a list including:
iters The number of iterations required by the Newton-Raphson.
varb The covariance matrix of the regression coefficients.
phi The phi parameter is returned if the input argument "varb" was set to "glm", othwerise this is NULL.
info A table similar to the one produced by "glm" with the estimated regression coefficients, their standard error, Wald test statistic and p-values.

For the "prop.regs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
anova_propreg univglms,score.glms,logistic_only
```


Examples

```
## Not run:
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 3), ncol = 3)
a <- prop.reg(y, x)
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(400 * 100), ncol = 400)
b <- prop.regs(y, x)
res<-mean(b[, 2] < 0.05)
## End(Not run)
```


Description

Quasi Poisson regression.

Usage

qpois.reg (x, y, full $=$ FALSE, tol $=1 \mathrm{e}-09$, maxiters $=100$)
qpois.regs(x, y, tol $=1 \mathrm{e}-09$, logged $=$ FALSE)

Arguments

x
For the "qpois.reg" a matrix with data, the predictor variables. This can be a matrix or a data frame. For the "qpois.regs" this must be a numerical matrix, where each columns denotes a variable.
$y \quad$ A numerical vector with positive discrete data.
full If this is FALSE, the coefficients, the deviance and the estimated phi parameter will be returned only. If this is TRUE, more information is returned.
tol The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?
maxiters The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model, unless the user requests for the Wald tests of the coefficients. The "qpois.regs" is to be used for very many univariate regressions. The "x" is a matrix in this case and the significance of each variable (column of the matrix) is tested.

Value

For the "prop.reg" a list including: When full is FALSE
be The regression coefficients.
devi The deviance of the model.
varb The covariance matrix of the beta coefficients.
phi The phi parameter, the estimate of dispersion.
When full is TRUE, the additional item is:
info The regression coefficients, their standard error, their Wald test statistic and their p-value.

For the "prop.regs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Manos Papadakis and Marios Dimitriadis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Marios Dimitriadis kmdimitriadis@gmail.com.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
prop.reg univglms,score.glms,poisson_only
```


Examples

```
## Not run:
y <- rnbinom(100, 10, 0.6)
x <- matrix(rnorm(100*3), ncol = 3)
mod1 <- glm(y ~ x, quasipoisson)
res<-summary(mod1)
res<-qpois.reg(x, y, full = TRUE)
res<-qpois.regs(x, y)
## End(Not run)
```

Random intercepts linear mixed models
Random intercepts linear mixed models

Description

Random intercepts linear mixed models (for balanced data with a single identical covariate).

Usage

```
rint.reg(y, x, id ,tol = 1e-08, ranef = FALSE, maxiters = 100)
rint. \(\operatorname{regbx}(y, x, i d)\)
```


Arguments

$y \quad$ A numerical vector with the data. The subject values.
$x \quad$ For the case of "rint.reg" this can be a vector or a numerical matrix with data. In the case of "rint.regbx" this is a numerical vector with the same length as y indicating the fixed predictor variable. Its values are the same for all levels of y. An example of this x is time which is the same for all subjects.
id A numerical variable with $1,2, \ldots$ indicating the subject.
tol The tolerance level to terminate the generalised elast squares algorithm.
ranef If you want to obtain the random effects (random intercepts) set this equal to TRUE.
maxiters \quad The max number of iterations that can take place in a regression.

Details

Random intercepts linear mixed models with compound covariance structure is fitted in both functions. The "rint.reg" allows any numerical matrix, with balanced or unbalanced data. See Demidenko (2013, pg. 65-67) for more information.

The "rint.regbx" is a special case of a balanced random intercepts model with a compound symmetric covariance matrix and one single covariate which is constant for all replicates. An example, is time, which is the same for all subjects. Maximum likelihood estimation has been performed. In this case the mathematics exist in a closed formula (Demidenko, 2013, pg. 67-69).

Value

A list including:
info A vector with the random intercepts variance (between), the variance of the errors (within), the log-likelihood, the deviance (twice the log-likelihood) and the BIC. In the case of "rint.reg" it also includes the number of iterations required by the generalised least squares.
be The estimated regression coefficients, which in the case of "rint.regbx" are simply two: the constant and the slope (time effect).
ranef The random intercepts effects.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Eugene Demidenko (2013). Mixed Models: Theory and Applications with R, 2nd Edition. New Jersey: Wiley
\& Sons (excellent book).

See Also

rm.lines, varcomps.mom, colvarcomps.mom

Examples

```
## Not run:
y <- rnorm(100)
x <- rnorm(10)
x<- rep(x, 10)
id <- rep(1:10, each = 10)
system.time( for (i in 1:40) a <- rint.reg(y, x, id) )
## End(Not run)
```

Random values simulation from a von Mises distribution
Random values simulation from a von Mises distribution

Description

It generates random vectors following the von Mises distribution. The data can be spherical or hyper-spherical.

Usage

rvonmises(n, m, k, rads = TRUE)

Arguments

$\mathrm{n} \quad$ The sample size.
$\mathrm{m} \quad$ The mean angle expressed in radians or degrees.
$\mathrm{k} \quad$ The concentration parameter. If k is zero the sample will be generated from the uniform distribution over $(0,2 \pi)$.
rads If the mean angle is expressed in radians, this should be TRUE and FALSE otherwise. The simulated data will be expressed in radians or degrees depending on what the mean angle is expressed.

Details

The mean direction is transformed to the Euclidean coordinates (i.e. unit vector) and then the fvmf function is employed. It uses a rejection smapling as suggested by Andrew Wood in 1994. I have mentioned the description of the algorithm as I found it in Dhillon and Sra in 2003. Finally, the data are transformed to radians or degrees.

Value

A vector with the simulated data.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm85@gmail.com

References

Wood, A. T. (1994). Simulation of the von Mises Fisher distribution. Communications in statisticssimulation and computation, 23(1): 157-164.
Dhillon, I. S., \& Sra, S. (2003). Modeling data using directional distributions. Technical Report TR-
03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?

See Also

vm.mle, rvmf

Examples

```
x <- rvonmises(1000, 2, 25, rads = TRUE)
res<-vm.mle(x)
```

Ranks of the values of a vector
Ranks of the values of a vector

Description

Ranks of the values of a vector.

Usage

Rank(x,method = "average", descending = FALSE)

Arguments

x
method a character string for choosing method. Must be one of "average", "min", "max".
descending A boolean value (TRUE/FALSE) for sorting the vector in descending order. By default sorts the vector in ascending.

Details

The ranks of the values are returned, the same job as "rank". If you want you can choose descending/ascending order for all methods.

Value

A vector with the ranks of the values.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colRanks, correls

Examples

x <- rnorm(100)
a1 <- Rank(x)
a2 <- $\operatorname{rank}(x)$

```
Reading the files of a directory
Reading the files of a directory
```


Description

Reading the files of a directory.

Usage

read.directory (path.directory)
read.examples(path.man)

Arguments

path. directory The full path to the directory. For example: \"C:\Users\username\Documents $\backslash \mathrm{R} \backslash \mathrm{Rfast} _1.8 .0 \backslash \mathrm{R} \backslash "$
path.man The full path to the directory with the Rd files in it. For example: \"C:\Userslusername\Documents $\backslash \mathrm{R} \backslash \mathrm{Rfas}$

Details

For function \"read.directory\": Takes as an argument a full path to a directory and returns the names of the files.

For function \"read.examples\": Takes as an argument a full path to the directory of the Rd files. If you don't want the program to read any file add at the top of the file the attribute "\%[dont read]".

Value

For function \"read.directory\": The names of the files.
For function \"read.examples\": a list with 2 fields
examples A character vector with the examples of each Rd file.
files A character vector with the name of the file that each examples belongs.
long_lines A character vector with the name of the file that has large examples.
You can choose which files not to read for both R and Rd. You must add in the first line of the file in comment the "attribute" "\%[dont read]". Finally, that function wil return in the result a list of which files had this attribute.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

AddToNamespace, sourceR, sourceRd, checkRd, checkExamples

Examples

```
# for example: path="C:\some_file\"
# system.time( read.directory(path) )
# system.time( list.dirs(path) )
# for example: path.man="C:\some_file\man\"
# system.time( read.examples(path.man) )
# system.time( read.examples(path.man,dont.read=c("somef_1.Rd",...,"somef_n.Rd") ) )
```

```
Repeated measures anova
```

Repeated measures anova

Description

Repeated measures anova.

Usage

rm.anova(y, logged = FALSE)

Arguments

y
A matrix with the data, where each column refers to a different measurement. The rows denote the subjects.
logged
Should the p-values be returned (FALSE) or their logarithm (TRUE)?

Details

Found in Davis (2002) is the usual repeated measures ANOVA. In this case, suppose you have taken measurements on one or more variables from the same group of people. See the example below on how to put such data.

Value

A vector with the test statistic (t-test) and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Charles S. Davis (2002). Statistical methods for the analysis of repeated measures. Springer-Verlag, New York.

See Also

```
rm. anovas,rint.reg, varcomps.mle
```


Examples

```
y <- c(74.5,81.5,83.6,68.6,73.1,79.4,
75.5,84.6,70.6,87.3,73.0,75.0,
68.9,71.6,55.9,61.9,60.5,61.8,
57.0,61.3,54.1,59.2,56.6,58.8,
78.3,84.9,64.0,62.2,60.1,78.7,
54.0,62.8,63.0,58.0,56.0,51.5,
72.5,68.3,67.8,71.5,65.0,67.7,
80.8,89.9,83.2,83.0,85.7,79.6)
y <- matrix(y, ncol = 6, byrow = TRUE)
res<-rm.anova(y)
```

Replicate columns/rows

Description

Replicate columns/rows.

Usage

rep_col(x, n)
rep_row (x,n)

Arguments

X
A vector with data.
n
Number of new columns/rows.

Value

A matrix where each column/row is equal to "x".

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, rowFalse, nth, colrange, colMedians, colVars, colSort, rowSort, rowTrue

Examples

```
x <- runif(10)
all.equal(rep_col(x,10),matrix(x,nrow=length(x),ncol=10))
all.equal(rep_row (x,10), matrix(x,ncol=length(x), nrow=10, byrow=TRUE))
```

```
Represantation of Stack
```

Represantation of Stack

Description

Represantation of Stack.

Usage

Stack(x, type=NULL)

Arguments

x
Any type that could be convert to vector or an integer value.
type
A type for the Stack, "integer", "numeric" or any other that accepts one argument.

Details

Stack is an abstract data type - data structure based on the principle of last in first out. To access the 3 fields, use operator "\$".

Value

An object of class "Stack". This object holds 3 fields:
pop: remove the first element (from the top). top: access the first element (from the top). push: add an element to the top of the Stack.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colShuffle, colVars, colmeans, read.directory

Examples

```
x<-Stack(10, type=integer)
x$push(5)
x$push(10)
x$top() == 10
x$pop()
x$top() == 5
y<-rnorm(10)
x<-Stack(x)
x$push(5) # length increased to 11
x$top() # access the last element that pushed, 5
x$pop() # pop the last element that pushed
```

```
Round each element of a matrix/vector
                                    Round each element of a matrix/vector
```


Description

Round each element of a matrix/vector.

Usage

Round(x, digit=0,na.rm = FALSE)

Arguments

$x \quad$ A numeric matrix/vector with data or NA. NOT integer values.
digit An integer value for $0 \ldots \mathrm{~N}-1$ where N is the number of the digits. By default is 0 . na.rm TRUE or FAlSE for remove NAs if exists.

Details

Round is a very fast C++ implementation. Especially for large data. It handles NA.

Value

A vector/matrix where each element is been rounded in the given digit.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Lchoose, Log, Choose

Examples

$x<-m a t r i x(\operatorname{rnorm}(500 * 100), \operatorname{ncol}=100)$
system.time($a<-\operatorname{Round}(x, 5)$)
system.time ($b<-\operatorname{round}(x, 5)$)
all.equal (a,b) \#true
x <-rnorm(1000)
system.time ($a<-\operatorname{Round}(x, 5)$)
system.time ($b<-\operatorname{round}(x, 5))$
all.equal (a, b) \# true

Row - Wise matrix/vector count the frequency of a value Row - Wise matrix/vector count the frequency of a value

Description

Row - Wise matrix/vector count the frequency of a value.

Usage

count_value(x, value)
colCountValues(x, values, parallel = FALSE)
rowCountValues(x, values, parallel = FALSE)

Arguments

x
value
values
parallel

A vector with the data (numeric or character) or a numeric matrix.
The value, numeric or character, to check its frequency in the vector "x".
a vector with the values to check its frequency in the matrix " x " by row or column.
Do you want to do it in parallel in C++? TRUE or FALSE. Works with every other argument.

Details

The functions is written in C++ in order to be as fast as possible. The " x " and "value" must have the same type. The type can be numeric or character.

Value

The frequency of a value/values in a vector in linear time or by row/column in a matrix.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
Median,binary_search,Order,nth
```


Examples

```
x <- rnorm(100)
value <- x[50]
system.time( count_value(x,value) )
y <- sample(letters,replace=TRUE)
value <- "r"
system.time( count_value(y,value) )
values <- sample(x,100,replace=TRUE)
x <- matrix(x,100,100)
res<-colCountValues(x,values)
res<-rowCountValues(x,values)
x<-value<-values<-y<-NULL
```

Row-wise minimum and maximum

Row-wise minimum and maximum of a matrix.

Description

Row-wise minimum and maximum of a matrix.

Usage

rowMins(x, value $=$ FALSE)
rowMaxs (x, value $=$ FALSE)
rowMinsMaxs(x)

Arguments

X
value

A numerical matrix with data.
If the value is FALSE it returns the indices of the minimum/maximum, otherwise it returns the minimum and maximum values.

Value

A vector with the relevant values.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colMins, colMaxs, nth, rowrange colMedians, colVars, colSort, rowSort

Examples

```
x <- matrix( rnorm(500 * 500), ncol = 500 )
system.time( s1 <- rowMins(x) )
system.time( s2 <- apply(x, 1, min) )
system.time( s1 <- rowMaxs(x) )
system.time( s2 <- apply(x, 1, max) )
system.time( s1 <- c(apply(x, 1, min),apply(x, 1, max) ))
system.time( s2 <- rowMinsMaxs(x) )
x<-s1<-s2<-NULL
```


Description

Row-wise true value of a matrix.

Usage

rowTrue (x)
rowFalse(x)
rowTrueFalse(x)

Arguments

$x \quad$ A logical matrix with data.

Value

An integer vector where item " i " is the number of the true/false values of " i " row.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

rowMins, colFalse, nth, rowrange, rowMedians, rowVars, colTrue

Examples

$x<-$ matrix(as.logical(rbinom(100*100,1,0.5)), 100, 100)
s1 <- rowTrue(x)
s1 <- rowFalse(x)
s1 <- rowTrueFalse(x)
$x<-s 1<-N U L L$

Description

Search for variables with zero range in a matrix.

Usage

check_data(x, ina = NULL)

Arguments

x
ina If your data are grouped, for example there is a factor or numerical variable indicating the groups of the data supply it here, otherwise leave it NULL.

Details

The function identifies the variabels with zero range, instead of a zero variance as this is faster. It will work with matrices and data.frames.

Value

A numerical vector of length zero if no zero ranged variable exists, or of length at least one with the index (or indices) of the variable(s) that need attention or need to be removed.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colrange, colVars

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
res<-check_data(x)
## some variables have a constant value
x[, c(1,10, 50, 70)] <- 1
res<-check_data(x)
id <- rep(1:4, each = 25)
x[1:25, 2] <- 0
res<-check_data(x) ## did not use the id variable
res<-check_data(x, id) ## see now
x <- NULL
```

Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression

Description

Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression.

Usage

anova_propreg(mod, poia = NULL)
anova_qpois.reg(mod, poia = NULL)

Arguments

mod	An object as returned by the "prop.reg" or the "qpois.reg" function.
poia	If you want to test the significance of a single coefficient this must be a number.
In this case, the "prop.reg" or the "qpois.reg" function contains this information.	
If you want more coefficients to be testes simultaneously, e.g. for a categorical	
predictor, then this must contain the positions of the coefficients. If you want to	
see if all coefficients are zero, like an overall F-test, leave this NULL.	

Details

Even though the name of this function starts with anova it is not an ANOVA type significance testing, but a Wald type.

Value

A vector with three elements, the test statistic value, its associated p-value and the relevant degrees of freedom.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632. McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

```
prop.reg,qpois.reg,univglms,score.glms,logistic_only
```


Examples

```
## Not run:
y <- rbeta(1000, 1, 4)
x <- matrix(rnorm(1000 * 3), ncol = 3)
a <- prop.reg(y, x)
## all coefficients are tested
res<-anova_propreg(a)
## the first predictor variable is tested
res<-anova_propreg(a, 2)
a ## this information is already included in the model output
## the first and the second predictor variables are tested
res<-anova_propreg(a, 2:3)
## End(Not run)
```

```
Simulation of random values from a Bingham distribution
                        Simulating from a Bingham distribution
```


Description

Simulation from a Bingham distribution using the code suggested by Kent et al. (2013).

Usage

rbing(n, lam)

Arguments

n Sample size
lam Eigenvalues of the diagonal symmetric matrix of the Bingham distribution. See details for more information on this.

Details

The user must have calculated the eigenvalues of the diagonal symmetric matrix of the Bingham distribution. The function accepts the q-1 eigenvalues only. This means, that the user must have subtracted the lowest eigenvalue from the rest and give the non zero ones. The function uses rejection sampling.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf
C.J. Fallaize and T. Kypraios (2014). Exact Bayesian Inference for the Bingham Distribution. Statistics and Computing (No volum assigned yet). http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rvmf

Examples

```
x <- rbing( 100, c(1, 0.6, 0.1) )
```

x

Simulation of random values from a Bingham distribution with any symmetric matrix Simulation of random values from a Bingham distribution with any symmetric matrix

Description

Simulation of random values from a Bingham distribution with any symmetric matrix.

Usage

rbingham(n, A)

Arguments

n Sample size.
A A symmetric matrix.

Details

The eigenvalues of the $\mathrm{q} \times \mathrm{q}$ symmetric matrix A are calculated and the smallest of them is subtracted from the rest. The q-1 non zero eiqenvalues are then passed to rbing. The generated data are then right multiplied by V^{T}, where V is the matrix of eigenvectors of the matrix A .

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and related distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf
C.J. Fallaize and T. Kypraios (2014). Exact Bayesian Inference for the Bingham Distribution. Statistics and Computing (No volum assigned yet). http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rvmf

Examples

```
A <- cov( iris[, 1:4] )
x <- rbingham(100, A)
x
```

Simulation of random values from a normal distribution
Simulation of random values from a normal distribution

Description

Simulation of random values from a normal distribution.

Usage

Rnorm(n, m = 0, s = 1, seed = NULL)

Arguments

n
m
s
seed

The sample size.
The mean, set to 0 by default.
The standard devation, set to 1 by default.
If you want the same to be generated again use a seed for the generator, an integer number.

Details

By using the Ziggurat method of generating standard normal variates, this function is really fast when you want to generate large vectors. For less than 2,000 this might make no difference when compared with R's "rnorm", but for 10,000 this will be 6-7 times faster.

Value

A vector with n values.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

See Also
matrnorm, rvonmises,rvmf,rmvnorm

Examples

x <- Rnorm(500)

Simulation of random values from a von Mises-Fisher distribution

Description

It generates random vectors following the von Mises-Fisher distribution. The data can be spherical or hyper-spherical.

Usage

$\operatorname{rvmf}(n, m u, k)$

Arguments

n
mu
$\mathrm{k} \quad$ The concentration parameter. If $\mathrm{k}=0$, random values from the spherical uniform will be drwan. Values from a multivariate normal distribution with zero mean vector and the identity matrix as the covariance matrix. Then each vector becomes a unit vector.

Details

It uses a rejection smapling as suggested by Andrew Wood (1994).

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm85@gmail.com

References

Wood A. T. A. (1994). Simulation of the von Mises Fisher distribution. Communications in statistics-simulation and computation, 23(1): 157-164.
Dhillon I. S. \& Sra S. (2003). Modeling data using directional distributions. Technical Report TR-
03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?

See Also

> vmf.mle,rvonmises,iag.mle

Examples

```
m <- rnorm(4)
m <- m/sqrt(sum(m^2))
x <- rvmf(1000, m, 25)
m
res<-vmf.mle(x)
```

Skeleton of the PC algorithm
The skeleton of a Bayesian network produced by the PC algorithm

Description

The skeleton of a Bayesian network produced by the PC algorithm.

Usage

pc.skel(dataset, method = "pearson", alpha $=0.01, R=1$, stat $=$ NULL, ini. pvalue $=$ NULL)

Arguments

dataset A numerical matrix with the variables. If you have a data.frame (i.e. categorical data) turn them into a matrix using data.frame.to_matrix. Note, that for the categorical case data, the numbers must start from 0 . No missing data are allowed.
method If you have continuous data, you can choose either "pearson" or "spearman". If you have categorical data though, this must be "cat". In this case, make sure the minimum value of each variable is zero. The g2Test and the relevant functions work that way.
alpha The significance level (suitable values in $(0,1)$) for assessing the p -values. Default (preferred) value is 0.01 .
$R \quad$ The number of permutations to be conducted. The p-values are assessed via permutations. Use the default value if you want no permutation based assessment.
stat If the initial test statistics (univariate associations) are available, pass them through this parameter.
ini.pvalue if the initial p-values of the univariate associations are available, pass them through this parameter.

Details

The PC algorithm as proposed by Spirtes et al. (2000) is implemented. The variables must be either continuous or categorical, only. The skeleton of the PC algorithm is order independent, since we are using the third heuristic (Spirte et al., 2000, pg. 90). At every stage of the algorithm use the pairs which are least statistically associated. The conditioning set consists of variables which are most statistically associated with each other of the pair of variables.
For example, for the pair (X, Y) there can be two conditioning sets for example (Z1, Z2) and (W1, W2). All p-values and test statistics and degrees of freedom have been computed at the first step of the algorithm. Take the p -values between $(\mathrm{Z} 1, \mathrm{Z} 2)$ and (X, Y) and between $(\mathrm{Z} 1, \mathrm{Z} 2)$ and $(\mathrm{X}$, $\mathrm{Y})$. The conditioning set with the minimum p -value is used first. If the minimum p-values are the same, use the second lowest p-value. If the unlikely, but not impossible, event of all p-values being the same, the test statistic divided by the degrees of freedom is used as a means of choosing which conditioning set is to be used first.
If two or more p-values are below the machine epsilon (.Machine\$double.eps which is equal to $2.220446 \mathrm{e}-16$), all of them are set to 0 . To make the comparison or the ordering feasible we use the logarithm of p-value. Hence, the logarithm of the p-values is always calculated and used.
In the case of the G^{2} test of independence (for categorical data) with no permutations, we have incorporated a rule of thumb. If the number of samples is at least 5 times the number of the parameters to be estimated, the test is performed, otherwise, independence is not rejected according to Tsamardinos et al. (2006). We have modified it so that it calculates the p-value using permutations.

Value

A list including:

stat	The test statistics of the univariate associations.
ini.pvalue	The initial p-values univariate associations.
pvalue	The logarithm of the p-values of the univariate associations.
runtime	The amount of time it took to run the algorithm. kappa
The maximum value of k, the maximum cardinality of the conditioning set at which the algorithm stopped.	
n.tests	The number of tests conducted during each k.
G The adjancency matrix. A value of 1 in $\mathrm{G}[\mathrm{i}, \mathrm{j}]$ appears in $\mathrm{G}[\mathrm{j}, \mathrm{i}]$ also, indicating	

Author(s)

Marios Dimitriadis.
R implementation and documentation: Marios Dimitriadis kmdimitriadis@gmail.com.

References

Spirtes P., Glymour C. and Scheines R. (2001). Causation, Prediction, and Search. The MIT Press, Cambridge, MA, USA, 3nd edition.

Tsamardinos I., Borboudakis G. (2010) Permutation Testing Improves Bayesian Network Learning. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2010. 322-337.
Tsamardinos I., Brown E.L. and Aliferis F.C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine learning 65(1):31-78.

See Also

```
g2Test,g2Test_univariate,cora,correls
```


Examples

```
# simulate a dataset with continuous data
dataset <- matrix(rnorm(100 * 50, 1, 100), nrow = 100)
a <- pc.skel(dataset, method = "pearson", alpha = 0.05)
```

Skewness and kurtosis coefficients
Skewness and kurtosis coefficients

Description

Skewness and kurtosis coefficients.

Usage

$\operatorname{skew}(x$, pvalue $=$ FALSE $)$
kurt $(x$, pvalue $=$ FALSE $)$

Arguments

x
pvalue

A numerical vector with data.
If you want a hypothesis test that the skewness or kurtosis are significant set this to TRUE. This checks whether the skewness is significantly different from 0 and whether the kurtosis is significantly different from 3.

Details

The sample skewness and kurtosis coefficient are calculated. For the kurtosis we do not subtract 3 .

Value

If "pvalue" is FALSE (default value) the skewness or kurtosis coefficients are returned. Otherwise, the p -value of the significance of the coefficient is returned.

Author(s)

Klio Lakiotaki
R implementation and documentation: Klio Lakiotaki kliolak@gmail.com.

References

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

See Also

colskewness, skew.test2, colmeans, colVars,colMedians

Examples

```
x <- rgamma(500,1, 4)
res<-skew(x)
res<-kurt(x, TRUE)
```

```
Some summary statistics of a vector for each level of a grouping variable
Some summary statistics of a vector for each level of a grouping vari-
able.
```


Description

Some summary statistics of a vector for each level of a grouping variable.

Usage

group(x,ina,method="sum",ina.min=NULL,ina.max = NULL,
ina.length. unique=NULL, mad.method="median")
group.sum(x, ina,ina.max = NULL,ina.min = NULL)
group.mean(x, ina,ina.max $=\max (i n a)$)

Arguments

x	A numerical vector with data.
ina	A numerical vector with numbers. Note that zero and negative values are not allowed as this can cause R to run forever or crash.
ina.length.unique	
	Length of the unique numerical values of ina argument.
method	A character vector with values "sum", "var", "all", "any", "mad", "mean", "med", "min", "max", "min.max".
ina.max	Maximum number for vector ina.
ina.min	Minimum number for vector ina.
mad.method	A character vector with values "median", for median absolute deviation or "mean", for mean absolute deviation. This works only with method="mad".

Details

This command works only for vectors. Median absolute deviation, mean, median, minimum, maximum are some of the options offered.

Value

A vector with the variance, or standard deviation, or mean, or minimum, or maximum, or median, or minimum-maximum of x for each distinct value of ina.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Manos Papadakis papadakm95@gmail.com and Michail Tsagris mtsagris@uoc.gr.

See Also

```
colmeans,colVars,colMedians
```


Examples

```
## Not run:
x <- rgamma(100,1, 4)
ina <- sample(1:5, 100, TRUE)
res<-group(x, ina,method="var")
## End(Not run)
```

```
Sort - Integer Sort - Sort a vector coresponding to another
                                    Sort - Integer Sort - Sort a vector coresponding to another
```


Description

Fast sorting a vector.

Usage

Sort(x, descending=FALSE, partial=NULL, stable=FALSE, na.last=NULL)
Sort.int(x)
sort_cor_vectors(x, base, stable = FALSE, descending = FALSE)

Arguments

X
base
descending
partial This argument has two usages. The first is an index number for sorting partial the vector. The second is a vector with 2 values, start and end c(start,end). Gives you a vector where the elements between start and end will be sorted only. Not character vector.
stable A boolean value (TRUE/FALSE) for choosing a stable sort algorithm. Stable means that discriminates on the same elements. Not character vector.
na. last Accept 4 values. TRUE, FALSE, NA, NULL.
TRUE/FALSE: for put NAs last or first.
NA: for remove NAs completely from vector.
NULL: by default. Leave it like that if there is no NA values.

Details

This function uses the sorting algorithm from C++. The implementation is very fast and highly optimised. Especially for large data.

Value

Sort and Sort.int: The sorted vector.
sort_cor_vectors: The first argument but sorted acording to the second.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
nth,colnth,rownth,sort_unique,Round
```


Examples

```
x <- rnorm(1000)
system.time( s1 <- Sort(x) )
system.time( s2 <- sort(x) )
all.equal(s1,s2) #true but not if many duplicates.
system.time( s1 <- Sort(x,partial=100) )
system.time( s2 <- sort(x,partial=100) )
all.equal(s1,s2) #true
```

```
    system.time( s1 <- Sort(x,stable=TRUE) )
    system.time( s2 <- sort(x) )
    all.equal(s1,s2) #true
    x <- as.character(x)
    system.time( s1 <- Sort(x) )
    system.time( s2 <- sort(x) )
    all.equal(s1,s2) #true
    y <- runif(1000)
    b <- sort_cor_vectors(x,y)
    x<-rpois(100,100)
    all.equal(Sort.int(x),sort.int(x))
x<-y<-y<-s1<-s2<-NULL
```

Sort and unique numbers
Sort and unique

Description

Sort and unique numbers.

Usage

sort_unique (x)
sort_unique.length(x)

Arguments

Details

The "sort_unique" function implements R's "unique" function using C++'s function but also sort the result. The "sort_unique.length" returns the length of the unique numbers only for itegers.

Value

Returns the discrete values but sorted or their length (depending on the function you do).

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com

See Also

colSort, rowSort,sort_cor_vectors

Examples

```
y <- rnorm(100)
a <- sort_unique(y)
b <- sort.int(unique(y))
all.equal(as.vector(a), as.vector(b))
x <- rpois(1000,10)
sort_unique.length(x)
length(sort_unique(x))
x<-a<-b<-NULL
```

Sorting of the columns-rows of a matrix

Description

Fast sorting of the columns-rows of a matrix.

Usage

colSort(x, descending = FALSE, stable = FALSE, parallel=FALSE)
rowSort(x, descending = FALSE, stable = FALSE,parallel=FALSE)
sort_mat (x, by. row=FALSE, descending=FALSE, stable=FALSE, parallel=FALSE)

Arguments

X
descending
stable If you the stable version, so that the results are the same as R's (in the case of ties) set this to TRUE. If this is TRUE, the algorithm is a bit slower.
parallel Do you want to do it in parallel in C++? TRUE or FALSE. Works with every other argument.
by.row
A numerical matrix with data.
If you want the sorting in descending order, set this to TRUE.

TRUE or FALSE for applying sort in rows or column.

Value

The matrix with its columns-rows (or rows) independently sorted.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
nth,colMaxs,colMins,colrange,sort_cor_vectors,sort_unique
```


Examples

```
\(x<-\operatorname{matrix}(\operatorname{rnorm}(100 * 500), \operatorname{ncol}=500)\)
system.time( s1 <- colSort(x) )
system.time( s2 <- apply(x, 2, sort) )
all.equal(as.vector(s1), as.vector(s2))
\(x<-\) NULL
```

Source many R files Source many R files

Description

Source many R/Rd files.

Usage

sourceR(path, local=FALSE, encode = "UTF-8", print.errors=FALSE)
sourceRd(path, print.errors=FALSE)

Arguments

path An full path to the directory where R file are.
local TRUE, FALSE or an environment, determining where the parsed expressions are evaluated. FALSE (the default) corresponds to the user's workspace (the global environment) and TRUE to the environment from which source is called.
encode Character vector. The encoding(s) to be assumed when file is a character string: see file. A possible value is "unknown" when the encoding is guessed: see the "Encodings" section.
print.errors A boolean value (TRUE/FALSE) for printing the errors, if exists, for every file.

Details

Reads many R files and source them.

Value

Returns the files that had produced errors during source.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

```
read.directory,AddToNamespace
```


Examples

```
# for example: path="C:\some_file\R\" where is R files are
# system.time( a<-sourceR(path) )
# for example: path="C:\some_file\man\" where is Rd files are
# system.time( a<-sourceRd(path) )
```

```
Spatial median for Euclidean data
    Spatial median for Euclidean data
```


Description

Spatial median for Euclidean data.

Usage

spat.med(x, tol $=1 \mathrm{e}-09)$

Arguments

$x \quad$ A matrix with Euclidean data, continuous variables.
tol A tolerance level to terminate the process. This is set to $1 \mathrm{e}-09$ by default.

Details

The spatial median, using a fixed point iterative algorithm, for Euclidean data is calculated. It is a robust location estimate.

Value

A vector with the spatial median.

Author(s)

Manos Papadakis and Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Jyrki Mottonen, Klaus Nordhausen and Hannu Oja (2010). Asymptotic theory of the spatial median. In Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A Festschrift in honor of Professor Jana Jureckova.
T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems, EUROGEN 2005, R. Schilling, W.Haase, J. Periaux, H. Baier, G. Bugeda (Eds) FLM, Munich. http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf

See Also

colMedians

Examples

```
res<-spat.med( as.matrix( iris[, 1:4] ) )
res<-colMeans( as.matrix(iris[, 1:4]) )
res<-colMedians( as.matrix(iris[, 1:4]) )
```

Spatial median regression
Spatial median regression

Description

Spatial median regression with Euclidean data.

Usage

spatmed.reg(y, x, tol $=1 \mathrm{e}-07)$

Arguments

$y \quad$ A matrix with the response variable.
$x \quad$ The predictor variable(s), they have to be continuous.
tol The threshold upon which to stop the iterations of the Newton-Rapshon algorithm.

Details

The objective function is the minimization of the sum of the absolute residuals. It is the multivariate generalisation of the median regression.

Value

A list including:
iters The number of iterations that were required.
be The beta coefficients.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Biman Chakraborty (2003) On multivariate quantile regression. Journal of Statistical Planning and Inference http://www.stat.nus.edu.sg/export/sites/dsap/research/documents/tr01_2000.pdf

See Also

```
spat.med,sscov,lmfit
```


Examples

```
## Not run:
x <- as.matrix(iris[, 3:4])
y <- as.matrix(iris[, 1:2])
mod1 <- spatmed.reg(y, x)
## End(Not run)
```

```
Spatial sign covariance matrix
                        Spatial sign covariance matrix
```


Description

Spatial sign covariance matrix.

Usage

$\operatorname{sscov}(x, m e=N U L L$, tol $=1 \mathrm{e}-09)$

Arguments

x
me
tol

A matrix with continuous data.
If you have already computed the spatial median plug it in here.
A tolerance level to terminate the process of finding the spatial median. This is set to 1e-09 by default.

Details

The spatial median is at first computed (if not supplied) and then the covariance matrix.

Value

The spatial sign covariance matrix.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Durre A, Vogel D. and D.E. Tyler D.E.(2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117. http://arxiv.org/pdf/1307.5706v2.pdf

See Also

```
spat.med,spatmed.reg
```


Examples

res<-sscov(as.matrix(iris[, 1:4]))

Spherical and hyperspherical median
Fast calculation of the spherical and hyperspherical median

Description

It calculates, very fast, the (hyper-) spherical median of a sample.

Usage

mediandir(x)

Arguments

x
The data, a numeric matrix with unit vectors.

Details

The "mediandir" employes a fixed poit iterative algorithm stemming from the first derivative (Cabrera and Watson, 1990) to find the median direction as described in Fisher (1985) and Fisher, Lewis and Embleton (1987).

Value

The median direction.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Fisher N. I. (1985). Spherical medians. Journal of the Royal Statistical Society. Series B, 47(2): 342-348.
Fisher N. I., Lewis T. and Embleton B. J. (1987). Statistical analysis of spherical data. Cambridge university press.
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973-1986.

See Also

vmf.mle

Examples

m <- rnorm(3)
$m<-m / \operatorname{sqrt}\left(\operatorname{sum}\left(m^{\wedge} 2\right)\right)$
$x<-\operatorname{rvmf}(100, m, 10)$
res<-mediandir(x)
x <- NULL

Standardisation Standardisation

Description

Standardisation.

Usage

standardise $(x$, center $=$ TRUE, scale $=$ TRUE $)$

Arguments

$x \quad$ A matrix with data. It has to be matrix, if it is data.frame for example the function does not turn it into a matrix.
center Should the data be centred as well? TRUE or FALSE.
scale Should the columns have unit variance, yes (TRUE) or no (FALSE)?

Details

Similar to R's built in functions "scale" there is the option for centering or scaling only or both (default).

Value

A matrix with the standardised data.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colVars, colmeans, colMads

Examples

x <- matrnorm(100, 100)
a1 <- scale(x)[1:100,]
a2 <- standardise(x)
all.equal(as.vector(a1), as.vector(a2))
x <- NULL

Sub-matrix
Sub-matrix

Description

Sub-matrix.

Usage

submatrix (x, rowStart=1, rowEnd=1, colStart=1, colEnd=1)

Arguments

x
rowStart
rowEnd End of the row.
colStart Start of the col.
colEnd End of the col.
Start of the row.

A Matrix, List, Dataframe or Vector.

Value

sub matrix like R's, x[startrow:endrow,startcol:endcol]. Fast especially for big sub matrices.

Author(s)

Manos Papadakis
R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Match, mvbetas, correls, univglms, colsums, colVars

Examples

```
x <- matrix( rnorm(100 * 100), ncol = 100 )
res<-submatrix(x,1,50,1,25) # x[1:50,1:25]
x<-NULL
```

Sum of all pairwise distances in a distance matrix
Sum of all pairwise distances in a distance matrix

Description

Sum of all pairwise distances in a distance matrix.

Usage

total.dist(x, method $=$ "euclidean", square $=$ FALSE, $p=0$)
total.dista(x, y, square $=$ FALSE)

Arguments

x
$y \quad$ A second matrix with data. The number of comlumns of this matrix must be the same with the matrix x. The number of rows can be different.
method This is either "euclidean", "manhattan", "canberra1", "canberra2", "minimum", "maximum", "minkowski","bhattacharyya", "hellinger", "total_variation" or "kullback_leibler/jensen_shannon". The last two options are basically the same.
square If you choose "euclidean" or "hellinger" as the method, then you can have the option to return the squared Euclidean distances by setting this argument to TRUE.
This is for the the Minkowski, the power of the metric.

Details

In order to do the total.dist one would have to calcualte the distance matrix and sum it. We do this internally in C++ without creating the matrix. For the total.dista it is the same thing.

Value

A numerical value, the sum of the distances.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

Dist, dista

Examples

```
\(x\) <- matrix( rnorm(50 * 10), ncol = 10 )
res<-total.dist(x)
y <- matrix( rnorm(40 * 10), ncol = 10)
res<-total.dista(x, y)
res<-total.dista(y, x)
\(x<-y<-N U L L\)
```

```
Table Creation - Frequency of each value
                                    Table Creation-Frequency of each value
```


Description

Table Creation - Frequency of each value.

Usage

Table($x, y=$ NULL, names $=$ TRUE, useNA = FALSE, rm.zeros $=$ FALSE)
Table.sign(x,names = TRUE,useNA = FALSE)

Arguments

x
names
y
rm.zeros

A vector with numeric/character data.
A logical value (TRUE/FALSE) for add names.
A vector with numeric/character data. Doesn't work with "useNA".
A logical value for removing zero columns/rows. Only for integer vectors for now.

useNA Table: Integer/logical value:
 FALSE: not NA values in vector. TRUE: count NAs and add the value in the last position of the returned vector. any other integer except 0,1 : for just removing NAs.
 Table.sign: Logical value, TRUE, for count NAs. Otherwise FALSE.
 Doesn't work character data.

Details

Like R's "table":
for giving one argument,"x": If "names" is FALSE then, if "useNA" is TRUE then the NAs will be count, if is FALSE it means there are no NAs and for any other integer value the NAs will be ignored.
for giving two arguments,"x","y": If "names" is FALSE then, creates the contigency table, otherwise sets the col-row names with discrete values. If "rm.zeros" is FALSE then it won't remove the zero columns/rows from the result but it will work only for positive integers for now. For this if "names" is TRUE then the col-row names will be the $\operatorname{seq}(\min (), \max ())$ for $" x ", " y$ ". In future updates it will be changed.
for both algorithms: You can't use "useNA" with "names" for now. It is much faster to get the result without names (names $=$ FALSE) but all the algorithms are more efficient than R's.

Like R's "table(sign())" but more efficient. Count the frequencies of positives, negatives, zeros and NAs values. If argument "names" is FALSE then the returned vector doesn't have names. Otherwise " $-1,0,+1$, NA". If "useNA" is TRUE then the NAs will be count, otherwise not. You can use "useNA" with "names".

Value

Table:
for giving one argument," x ": if "names" is TRUE then return a vector with names the discrete values of " x " and values there frequencies, otherwise only the frequencies
for giving two arguments,"x","y": if "names" is TRUE then return a contigency matrix with rownames the discrete values of "x", colnames the dicrete values of "y" and values the freuquencies of the pairs, otherwise only the freuquencies of the pairs.
Table.sign: A vector with 4 values/frequencies: index 1: negatives index 2: zeros index 3: postives if "names" is TRUE then the returned vector have names " $-1,0,+1$ ". if "useNA" is TRUE then 4 th value has the frequencies of NAs and the returned vector will have one more name, " $-1,0,+1, \mathrm{NA} "$, if "names" is also TRUE.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colShuffle, colVars, colmeans, read.directory,is_integer, as_integer

Examples

```
x<-runif(10)
y1<-Table(x)
y2<-as.vector(table(x)) # Neads a lot of time.
all.equal(y1,y2)
y1<-Table(x,names=FALSE)
all.equal(y1,y2) # the name attribute of y1 is null
y1<-Table.sign(x)
y2<-table(sign(x))
all.equal(y1,y2)
x<-y1<-y2<-NULL
```

Tests for the dispersion parameter in Poisson distribution
Tests for the dispersion parameter in Poisson distribution

Description

Tests for the dispersion parameter in Poisson distribution.

Usage

```
poisdisp.test(y, alternative = "either", logged = FALSE)
pois.test(y, logged = FALSE)
```


Arguments

y	A numerical vector with count data, $0,1, \ldots$
alternative	Do you want to test specifically for either over or underspirsion ("either"), overdis- persion ("over") or undersispersion ("under")?
logged	Set to TRUE if you want the logarithm of the p-value.

Value

A vector with two elements, the test statistic and the (logged) p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

References

Yang Zhao, James W. Hardin, and Cheryl L. Addy. (2009). A score test for overdispersion in Poisson regression based on the generalized Poisson-2 model. Journal of statistical planning and inference 139(4): 1514-1521.
Dimitris Karlis and Evdokia Xekalaki (2000). A Simulation Comparison of Several Procedures for Testing the Poisson Assumption. Journal of the Royal Statistical Society. Series D (The Statistician), 49(3): 355-382.
Bohning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994) The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics, 46(): 373-388.

See Also

```
poisson.mle,negbin.mle,poisson.anova,poisson.anovas,poisson_only
```


Examples

```
y <- rnbinom(500, 10, 0.6)
res<-poisdisp.test(y, "either")
res<-poisdisp.test(y, "over")
res<-pois.test(y)
y <- rpois(500, 10)
res<-poisdisp.test(y, "either")
res<-poisdisp.test(y, "over")
res<-pois.test(y)
```

```
Topological sort of a DAG
```

 Topological sort of a DAG

Description

Topological sort of a DAG.

Usage

topological_sort(dag)

Arguments

dag A square matrix representing a directed graph which contains 0 s and 1 s . If $\mathrm{G}[\mathrm{i}$, $j]=1$ it means there is an arrow from node i to node j. When there is no edge between nodes i and j if $\mathrm{G}[\mathrm{i}, \mathrm{j}]=0$.

Details

The function is an R translation from an old matlab code.

Value

A vector with numbers indicating the sorting. If the dag is not a Directed acyclic Graph, NA will be returned.

Author(s)

Michail Tsagris and Manos Papadakis
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com

References

Chickering, D.M. (1995). A transformational characterization of equivalent Bayesian network structures. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 87-98.

See Also

floyd,pc.skel

Examples

G <- matrix(0, 5, 5)
$\mathrm{G}[2,1]<-1$
$G[3,1]<-1$
$G[4,2]<-1$
$G[5,4]<-1$
res<-topological_sort(G)
G[2, 4] <- 1
res<-topological_sort(G)

Transpose of a matrix Transpose of a matrix

Description

Transpose of a matrix.

Usage

transpose (x)

Arguments

$x \quad$ A numerical square matrix with data.

Value

The transposed matrix.

Author(s)

Manos Papadakis

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

References

Gilbert Strang (2006). Linear Algebra and its Applications (4th edition).

See Also

nth, colMaxs, colMins, colrange

Examples

x <- matrix (rnorm(500 * 500), ncol $=500$, nrow=500)
system.time(transpose(x))
system.time($t(x)$)
$x<-$ NULL

Uniformity test for circular data
Uniformity tests for circular data

Description

Hypothesis tests of uniformity for circular data.

Usage

kuiper (u)
watson(u)

Arguments

u
A numeric vector containing the circular data which are expressed in radians.

Details

These tests are used to test the hypothesis that the data come from a circular uniform distribution.

Value

A vector with two elements, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153-55 (Kuiper's test) \& 156-157 (Watson's test).

See Also

vmf.mle, rvonmises

Examples

```
\(\mathrm{x}<-\) rvonmises \((\mathrm{n}=50, \mathrm{~m}=2, \mathrm{k}=10)\)
res<-kuiper (x)
res<-watson ( \(x\) )
\(x<-\operatorname{runif}(50,0,2\) * pi)
res<-kuiper(x)
res<-watson(x)
```

Variance of a vector Variance (and standard deviation) of a vector

Description

Variance (and standard deviation) of a vector.

Usage

$\operatorname{Var}(\mathrm{x}, \mathrm{std}=$ FALSE, na.rm = FALSE)

Arguments

x	A vector with data.
std	If you want the standard deviation set this to TRUE, otherwise leave it FALSE.
na.rm	TRUE or FALSE for remove NAs if exists.

Details

This is a faster calculation of the usual variance of a matrix.

Value

The variance of the vector.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Manos Papadakis papadakm95@gmail.com.

See Also

colVars, cova

Examples

$x<-\operatorname{rnorm}(100)$
a1 <- Var (x)
a2 <- $\operatorname{var}(x)$
x<-NULL

```
Vector allocation in a symmetric matrix
    Vector allocation in a symmetric matrix
```


Description

Vector allocation in a symmetric matrix.

Usage

squareform(x)

Arguments

x
An numverical vector whose size must be the one that matches the dimensions of the final matrix. See examples.

Details

The functions is written in $\mathrm{C}++$ in order to be as fast as possible.

Value

A symmetric matrix. The vector is allocated in the upper and in the lower part of the matrix. The diagonal is filled with zeros.

Author(s)

R implementation and documentation: Manos Papadakis papadakm95@gmail.com.

See Also

colShuffle, colVars,colmeans

Examples

```
x <- rnorm(1)
res<-squareform(x) ## OK
x <- rnorm(3)
res<-squareform(x) ## OK
x <- rnorm(4)
res<-squareform(x) ## not OK
```

Weibull regression model
Weibull regression model

Description

Weibull regression model.

Usage

weib.reg(y, x, tol $=1 \mathrm{e}-07$, maxiters $=100)$

Arguments

$y \quad$ The dependent variable; a numerical vector with strictly positive data, i.e. greater than zero.
$x \quad$ A matrix with the data, where the rows denote the samples (and the two groups) and the columns are the variables. This can be a matrix or a data.frame (with factors).
tol The tolerance value to terminate the Newton-Raphson algorithm.
maxiters The max number of iterations that can take place in each regression.

Details

The function is written in C++ and this is why it is very fast. No standard errors are returned as they are not corectly estimated. We focused on speed.

Value

When full is FALSE a list including:
iters The iterations required by the Newton-Raphson.
loglik The log-likelihood of the model.
shape The shape parameter of the Weibull regression.
be The regression coefficients.

Author(s)

Stefanos Fafalios
R implementation and documentation: Stefanos Fafalios stefanosfafalios@gmail.com.

References

McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

poisson_only,logistic_only, univglms, regression

Examples

```
## Not run:
x <- matrix(rnorm(100 * 2), ncol = 2)
y <- rexp(100, 1)
res<-weib.reg(y, x)
## End(Not run)
```

```
Yule's Y (coefficient of colligation)
        Yule's Y(coefficient of colligation)
```


Description

Yule's Y (coefficient of colligation).

Usage

yule(x)

Arguments

$x \quad$ A 2×2 matrix or a vector with 4 elements. In the case of the vector make sure it corresponds to the correct table.

Details

Yule's coefficient of colligation is calculated.

Value

Yule's Y is returned.

Author(s)

Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr

References

Yule G. Udny (1912). On the Methods of Measuring Association Between Two Attributes. Journal of the Royal Statistical Society, 75(6):579-652.

See Also

col.yule,odds.ratio

Examples

```
x <- rpois(4, 30) + 2
res<-yule(x)
res<-yule( matrix(x, ncol = 2) )
```


Index

!=.iterator (Iterator), 121

* 2 sample proportions tests

Many 2 sample proportions tests, 136

* 2 variances test

Many 2 sample tests, 137

* AR(1) model

Estimation of an AR(1) model, 87

* All possibe combinations

All k possible combinations from n elements, 10

* Analysis of covariance

Analysis of covariance, 11
Many ANCOVAs, 140

* Analysis of variance

Analysis of variance with a count variable, 12

* Angular central Gaussian distribution

Angular central Gaussian random values simulation, 13

* Area aunder the curve

Many (and one) area aunder the curve values, 135

* BIC

BIC (using partial correlation) forward regression, 19
BIC forward regression with generalised linear models, 20

* Beta distribution

MLE of distributions defined in the (0, 1) interval, 198

* Beta function

Natural logarithm of the beta function, 218

* Binary search Algorithm

Binary search algorithm, 21

* Bradley-Terry model

Fitted probabilities of the Terry-Bradley model, 97

* Canberra distance

Distance matrix, 78

* Cauchy

MLE of continuous univariate distributions defined on the real line, 195

* Checking Alias

Check Namespace and Rd files, 26

* Checking Examples

Check Namespace and Rd files, 26

* Checking Rd

Check Namespace and Rd files, 26

* Checking R

Check Namespace and Rd files, 26

* Checking Usage section

Check Namespace and Rd files, 26

* Checking for FALSE

Check Namespace and Rd files, 26

* Checking for TRUE

Check Namespace and Rd files, 26

* Cholesky decomposition

Cholesky decomposition of a square matrix, 31

* Circular data

Column-wise uniformity Watson test for circular data, 58
Uniformity test for circular data, 277

* Circular regression

Circular or angular regression, 32
Many simple circular or angular regressions, 164

* Circular-linear correlation

Circular-linear correlation, 33

* Cochran's Q test

Many non parametric multi-sample tests, 152

* Column means

Column and row-wise means of a
matrix, 37

* Column sums

Column and row-wise sums of a matrix, 46

* Column-Row wise checking

Check if any column or row is fill with values, 24

* Column-wise Any

Column and row-wise Any/All, 36

* Column-wise Shuffle

Column and row-wise Shuffle, 45

* Column-wise median absolute deviations

Column and rows-wise mean absolute deviations, 49

* Column-wise medians

Column and row-wise medians, 38

* Column-wise minimum

Column-wise minimum and maximum, 54

* Column-wise nth

Column and row-wise nth smallest value of a matrix/vector, 39

* Column-wise ranges

Column and row-wise range of values of a matrix, 43

* Column-wise tabulate

Column and row-wise tabulate, 47

* Column-wise true

Column-wise true/false value, 57

* Column-wise variances

Column and row-wise variances and standard deviations, 48

* Column-wise

Column-wise MLE of some univariate distributions, 55

* Combinatorics

All k possible combinations from n elements, 10

* Continuous distributions

MLE of continuous univariate distributions defined on the positive line, 193
MLE of continuous univariate distributions defined on the real line, 195

* Correlations

Correlation between pairs of variables, 63
Correlations, 65

* Covariance matrix

Covariance and correlation matrix, 66

* Create - Fill

Diagonal Matrix, 75

* DAG

Topological sort of a DAG, 275

* Data Frame

Index of the columns of a
data.frame which are a
specific type, 117

* Dataframe to Matrix Convert a dataframe to matrix, 60
* Deep copy

Deep copy, 72

* Design Matrix Design Matrix, 74
* Determinant Check if any column or row is fill with values, 24

* Diagonal Matrix

Diagonal Matrix, 75

* Differences

Column-wise differences, 51

* Directional k-NN algorithm
k-NN algorithm using the arc cosinus distance, 126
* Dirichlet distribution

Fitting a Dirichlet distribution via Newton-Rapshon, 98

* Discrimination

Prediction with some naive Bayes classifiers, 233

* Distance correlation

Distance correlation, 77

* Distance covariance

Distance variance and covariance, 80

* Distance matrix

Distance matrix, 78

* Distance variance

Distance variance and covariance, 80

* Distances

Distance between vectors and a matrix, 76
Sum of all pairwise distances in a distance matrix, 271

* Divide and Qonquer

Binary search algorithm, 21
Find element, 95

* Eigenvalues

Eigenvalues and eigenvectors in
high dimensional principal
component analysis, 81

* Energy distances

Energy distance between matrices, 85

* Environment

Deep copy, 72
Iterator, 121
Represantation of Stack, 244

* Equality check

Equality of objects, 86

* Euclidean distance

Distance matrix, 78

* Exponential regressions

Many exponential regressions, 142

* Export functions

Insert/remove function names in/from the NAMESPACE file, 118
Source many R files, 264

* Extract columns/rows

Get specific columns/rows fo a matrix, 107

* F-tests

Many F-tests with really huge
matrices, 143
Many multi-sample tests, 150

* F-test

Multi-sample tests for vectors, 209

* Factor variables

Index of the columns of a data.frame which are a specific type, 117

* Factorials

Binomial coefficient and its logarithm, 22

* Factor

Fast and general - untyped represantation of a factor variable, 93

* Find Value

Find the given value in a hash table, 96

* Find element

Find element, 95

* Floyd-Warshall algorithm

Floyd-Warshall algorithm, 99

* Forward regression

BIC (using partial correlation)
forward regression, 19
BIC forward regression with generalised linear models, 20
Correlation based forward regression, 62
Forward selection with generalised linear regression models, 101

* GLMS

Many score based regressions, 161

* GLMs

Quasi binomial regression for proportions, 234
Quasi Poisson regression for count data, 236
Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression, 250

* $\mathbf{G}^{\wedge} \mathbf{2}$ test of conditional independence

Chi-square and G-square tests of (unconditional) indepdence, 30
G-square and Chi-square test of conditional indepdence, 102

* $\mathbf{G}^{\wedge} 2$ test of independence

Matrix with G-square tests of indepedence, 183

* $\mathbf{G}^{\wedge} 2$ tests of independence

Many G-square and Chi-square tests of indepedence, 144

* Gini coefficient

Many Gini coefficients, 146

* Goodness of fit test

Hypothesis test for von Mises-Fisher distribution over Kent distribution, 115

* Gumbel distribution

MLE of continuous univariate distributions defined on the real line, 195

* Hash Function

Find the given value in a hash table, 96
Hash - Pair function, 108

* Hash tables

Hash object, 109
Hash object to a list object, 110

* Hellinger distance

Distance matrix, 78

* High dimensional data

High dimensional MCD based detection of outliers, 111

* Hypothesis testing

Empirical and exponential empirical likelihood tests for one sample, 82
Empirical and exponential empirical likelihood tests for two samples, 83
Many one sample tests, 156

* Hypothesis test

Exponential empirical likelihood for a one sample mean vector hypothesis testing, 90

* Integer variables

Index of the columns of a data.frame which are a specific type, 117

* Inverse matrix

Inverse of a symmetric positive definite matrix, 120

* Inverted Dirichlet distribution

MLE of the inverted Dirichlet distribution, 201

* James test

Multi-sample tests for vectors, 209

* Kent distribution

Hypothesis test for von Mises-Fisher distribution over Kent distribution, 115

* Laplace distribution

MLE of continuous univariate distributions defined on the real line, 195

* Linear mixed models

Column and row wise coefficients of variation, 35
Many random intercepts LMMs for balanced data with a single identical covariate., 157
Random intercepts linear mixed models, 237

* Linear models

Linear models for large scale data, 128

* Linear time

Find element, 95

* Log matrix

Natural Logarithm each element of a matrix, 217

* Logarithm of gamma function

Natural logarithm of the gamma function and its derivatives, 219

* Logical variables

Index of the columns of a data.frame which are a specific type, 117

* Logistic distribution

MLE of continuous univariate distributions defined on the real line, 195

* Logistic regressions

Many univariate simple logistic and Poisson regressions, 176

* Logistic regression

Logistic and Poisson regression models, 130
Logistic or Poisson regression with a single categorical predictor, 131

* Lower and Upper triangular of a matrix Lower and Upper triangular of a matrix, 133
* MCD estimation

High dimensional MCD based detection of outliers, 111

* Mahalanobis distance

Mahalanobis distance, 134

* Manhattan distance

Distance matrix, 78

* Many betas in regression

Many multivariate simple linear regressions coefficients, 151
Many simple linear regressions coefficients, 167

* Match Function

Match, 180

* Matrices

Number of equal columns between
two matrices, 221

* McNemar's test

Many 2 sample tests, 137

* Median direction

Spherical and hyperspherical median, 268

* Multinomial distribution

MLE for multivariate discrete data, 190
Multinomial regression, 211

* Multivariate analysis of variance

James multivariate version of the t-test, 123

* Multivariate data

Multivariate kurtosis, 212

* Multivariate hypothesis testing

Exponential empirical likelihood hypothesis testing for two mean vectors, 91

* Multivariate normal distribution

Density of the multivariate normal and t distributions, 73
MLE of the multivariate (log-) normal distribution, 202

* Namespace file

Check Namespace and Rd files, 26
Insert/remove function names in/from the NAMESPACE file, 118
Source many R files, 264

* Newton-Raphson

Fitting a Dirichlet distribution via Newton-Rapshon, 98
MLE of distributions defined in the (0,1) interval, 198

* Norm of a matrix

Norm of a matrix, 220

* Numeric variables

Index of the columns of a data.frame which are a specific type, 117

* Odds ratios

Many odds ratio tests, 154

* Odds ratio

Odds ratio and relative risk, 222

* One sample t-test

One sample t-test for a vector, 223

* Orderings

Column and row-wise Order - Sort

Indices, 41

* Ordinal model

MLE of the ordinal model without covariates, 205

* PC algorithm

Skeleton of the PC algorithm, 256

* Pair Function

Hash - Pair function, 108

* Pairs of vectors

Column-row wise minima and maxima of two matrices, 50
Minima and maxima of two vectors/matrices, 187

* Pareto

MLE of continuous univariate distributions defined on the positive line, 193

* Pearson correlation

Correlation based forward regression, 62

* Permutation Function

Permutation, 228

* Poisson distribution

Analysis of variance with a count variable, 12
Many analysis of variance tests with a discrete variable, 139
Many tests for the dispersion parameter in Poisson distribution, 171
MLE of count data (univariate discrete distributions), 196
Prediction with some naive Bayes classifiers, 233
Tests for the dispersion parameter in Poisson distribution, 274

* Poisson regressions

Many univariate simple quasi poisson regressions, 178

* Poisson regression

Logistic or Poisson regression with a single categorical predictor, 131

* Poisson

Forward selection with generalised linear regression models, 101

* Products

Column and row-wise products, 42

* Quasi Poisson regression

Quasi Poisson regression for count data, 236

* Quasi regression

Quasi binomial regression for proportions, 234
Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression, 250

* Random values simulation

Random values simulation from a von Mises distribution, 239
Simulation of random values from a von Mises-Fisher distribution, 255

* Read Examples

Reading the files of a directory, 241

* Read directory

Reading the files of a directory, 241

* Remove functions

Insert/remove function names in/from the NAMESPACE file, 118

* Repeated measures

Many regression based tests for single sample repeated measures, 159
Repeated measures anova, 242

* Replicate in columns/rows

Replicate columns/rows, 243

* Round vector/matrix

Round each element of a matrix/vector, 245

* Row - Wise matrix/vector count the frequency of a value
Row - Wise matrix/vector count the frequency of a value, 246
* Row sums

Column and row-wise sums of a matrix, 46

* Row-wise Any

Column and row-wise Any/All, 36

* Row-wise Shuffle

Column and row-wise Shuffle, 45

* Row-wise false

Row-wise true value, 248

* Row-wise medians

 Column and row-wise medians, 38* Row-wise minimum Row-wise minimum and maximum, 247
* Row-wise nth Column and row-wise nth smallest value of a matrix/vector, 39
* Row-wise tabulate Column and row-wise tabulate, 47
* Row-wise true-false Row-wise true value, 248
* Row-wise true Row-wise true value, 248
* Shapiro-Francia

Many Shapiro-Francia normality tests, 163

* Significance testing

Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression, 250

* Simple linear regressions

Many univariate simple linear regressions, 175

* Skewness coefficient

Column-wise kurtosis and skewness coefficients, 52

* Skewness

Hypothesis testing between two skewness or kurtosis coefficients, 116
Skewness and kurtosis coefficients, 258

* Sort 2 vectors

Sort - Integer Sort - Sort a vector coresponding to another, 260

* Sort function

Sort and unique numbers, 262

* Sorting

Sorting of the columns-rows of a matrix, 263

* Sort

Sort - Integer Sort - Sort a vector coresponding to another, 260

* Stable Sort

Sort - Integer Sort - Sort a
vector coresponding to another, 260

* Stack

Represantation of Stack, 244

* Standardisation

Standardisation, 269

* Sub-matrix

Sub-matrix, 270

* Sum

Operations between two matrices or matrix and vector, 224

* Supervised classification
k-NN algorithm using the arc
cosinus distance, 126
* Symmetric matrix

Check whether a square matrix is symmetric, 29

* Table Creation

Table Creation - Frequency of each value, 272

* Time series

Estimation of an AR(1) model, 87

* Tobit model

MLE of the tobit model, 206

* Topological sort

Topological sort of a DAG, 275

* Transpose

Transpose of a matrix, 276

* Two-way ANOVA

Many two-way ANOVAs, 172

* Unequality of the covariance matrices

James multivariate version of the t-test, 123

* Univariate normality test

Many Shapiro-Francia normality tests, 163

* Variance components

Moment and maximum likelihood estimation of variance components, 207

* Variance

Some summary statistics of a vector for each level of a grouping variable, 259
Variance of a vector, 278

* Weibull

MLE of continuous univariate distributions defined on the
positive line, 193

* Wigner semicircle distribution

MLE of continuous univariate distributions defined on the real line, 195

* Zero range

Search for variables with zero range in a matrix, 249

* analysis of variance

Logistic or Poisson regression with a single categorical predictor, 131
Many analysis of variance tests with a discrete variable, 139
Many F-tests with really huge matrices, 143
Many multi-sample tests, 150
Many non parametric multi-sample tests, 152
Multi-sample tests for vectors, 209

* balanced design

Column and row wise coefficients of variation, 35
Many random intercepts LMMs for balanced data with a single identical covariate., 157
Random intercepts linear mixed models, 237

* beta prime

MLE of continuous univariate distributions defined on the positive line, 193

* bias corrected

Distance correlation, 77

* binary data

Forward selection with generalised linear regression models, 101

* binomial distribution

MLE of count data (univariate discrete distributions), 196

* bivariate angular Gaussian

MLE of some circular distributions, 200

* blocking ANOVA

Many multi-sample tests, 150
Multi-sample tests for vectors, 209

* categorical variables

Many univariate simple linear
regressions, 175

* censored observations

MLE of the tobit model, 206

* central angular Gaussian distribution

MLE of (hyper-) spherical
distributions, 191

* circular data

MLE of some circular
distributions, 200

* column-wise false

Column-wise true/false value, 57

* column-wise maximum

Column-wise minimum and maximum, 54

* column-wise minimum-maximum

Column-wise minimum and maximum, 54

* column-wise true-false

Column-wise true/false value, 57

* combinatorics

Binomial coefficient and its logarithm, 22

* conditional MLE

Estimation of an AR(1) model, 87

* continuous distributions

Column-wise MLE of some univariate distributions, 55

* covariance matrix

Pooled covariance matrix, 232
Spatial sign covariance matrix, 267

* cross-validation

Cross-Validation for the $\mathrm{k}-\mathrm{NN}$ algorithm, 68

* data check

Search for variables with zero range in a matrix, 249

* density values

Density of the multivariate normal and t distributions, 73

* dependent binary data

Multi-sample tests for vectors, 209

* derivatives

Natural logarithm of the gamma function and its derivatives, 219

* digamma function

Natural logarithm of the gamma function and its derivatives, 219

* directed graph

Floyd-Warshall algorithm, 99

* directional data

Angular central Gaussian random values simulation, 13
MLE of (hyper-)spherical distributions, 191

* discrete distributions

Column-wise MLE of some univariate distributions, 55

* dispersion parameter

Many tests for the dispersion parameter in Poisson distribution, 171
Tests for the dispersion parameter in Poisson distribution, 274

* equality of variances

Many multi-sample tests, 150
Multi-sample tests for vectors, 209

* excessive zeros

MLE of count data (univariate discrete distributions), 196

* fitted probabilities

Fitted probabilities of the Terry-Bradley model, 97

* folded normal

MLE of continuous univariate distributions defined on the positive line, 193

* fractional response

Quasi binomial regression for proportions, 234
Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression, 250

* gamma distribution

MLE of continuous univariate distributions defined on the positive line, 193

* generalised linear models

Logistic and Poisson regression models, 130
Many univariate simple logistic and Poisson regressions, 176
Many univariate simple quasi poisson regressions, 178

* geometric distribution

Analysis of variance with a count
variable, 12
Many analysis of variance tests with a discrete variable, 139
MLE of count data (univariate discrete distributions), 196

* grouppings

Some summary statistics of a vector for each level of a grouping variable, 259

* half normal

MLE of continuous univariate distributions defined on the positive line, 193

* harmonic means

Column and row-wise means of a matrix, 37

* high dimensional data

Eigenvalues and eigenvectors in high dimensional principal component analysis, 81

* huge datasets

Many F-tests with really huge matrices, 143

* hypersecant distribution for proportions

MLE of distributions defined in the (0,1) interval, 198

* hypothesis testing

Column-wise uniformity Watson test for circular data, 58
Hypothesis testing between two skewness or kurtosis coefficients, 116
Uniformity test for circular data, 277

* inflated beta distribution

MLE of distributions defined in the (0, 1) interval, 198

* interaction

Many two-way ANOVAs, 172

* is_integer Creation

Check if values are integers and convert to integer, 25

* iterator

Iterator, 121

* k-NN algorithm

Cross-Validation for the $\mathrm{k}-\mathrm{NN}$ algorithm, 68
k nearest neighbours algorithm
($\mathrm{k}-\mathrm{NN}$), 124

* kurtosis coefficient

Column-wise kurtosis and skewness coefficients, 52

* kurtosis

Hypothesis testing between two skewness or kurtosis coefficients, 116
Multivariate kurtosis, 212
Skewness and kurtosis coefficients, 258

* large scale data

Linear models for large scale data, 128

* left censoring

MLE of the tobit model, 206

* list

Hash object, 109
Hash object to a list object, 110

* logarithm

Natural logarithm of the beta function, 218

* logistic normal distribution

MLE of distributions defined in the (0,1) interval, 198

* matrix

Column and row-wise Order - Sort Indices, 41
Column and row-wise products, 42
Column-wise differences, 51
Transpose of a matrix, 276

* maximum frequency

Minimum and maximum frequencies, 189

* maximum likelihood estimation

Column and row wise coefficients of variation, 35
Fitting a Dirichlet distribution via Newton-Rapshon, 98
Many random intercepts LMMs for balanced data with a single identical covariate., 157
MLE of (hyper-)spherical distributions, 191
MLE of distributions defined in the (0,1) interval, 198
Moment and maximum likelihood estimation of variance
components, 207
Random intercepts linear mixed models, 237

* maximum

Column-row wise minima and maxima of two matrices, 50
Minima and maxima of two vectors/matrices, 187
Minimum and maximum, 188

* mean vector

Exponential empirical likelihood for a one sample mean vector hypothesis testing, 90

* minimum frequency

Minimum and maximum frequencies, 189

* minimum or maximum of negative

Apply method to Positive and Negative number, 15

* minimum or maximum of positive

Apply method to Positive and Negative number, 15

* minimum

Column-row wise minima and maxima of two matrices, 50
Minima and maxima of two vectors/matrices, 187
Minimum and maximum, 188

* moments estimation

Moment and maximum likelihood estimation of variance components, 207

* multinomial distribution

Prediction with some naive Bayes classifiers, 233

* multinomial regressions

Many score based regressions, 161

* multivariate Laplace distribution

Multivariate Laplace random values simulation, 213

* multivariate discrete data

MLE for multivariate discrete data, 190

* multivariate normal distribution

Multivariate normal and t random values simulation, 214

* multivariate \mathbf{t} distribution

Density of the multivariate normal
and t distributions, 73

* naive Bayes

Prediction with some naive Bayes classifiers, 233

* negative binomial

MLE of count data (univariate discrete distributions), 196

* negative numbers

Apply method to Positive and Negative number, 15

* non parametric statistics

Many non parametric multi-sample tests, 152

* non parametric test Empirical and exponential empirical likelihood tests for one sample, 82
Empirical and exponential empirical likelihood tests for two samples, 83
Exponential empirical likelihood hypothesis testing for two mean vectors, 91
* normal distribution

Prediction with some naive Bayes classifiers, 233

* nth elements

Column and row-wise nth smallest value of a matrix/vector, 39
Median of a vector, 186

* one sample

Empirical and exponential
empirical likelihood tests for one sample, 82
Many one sample tests, 156

* operations

Operations between two matrices or matrix and vector, 224

* outliers

High dimensional MCD based detection of outliers, 111

* partial correlation

BIC (using partial correlation)
forward regression, 19
Correlation based forward regression, 62

* percentages

Hypothesis test for two means of
percentages, 114
Many hypothesis tests for two means of percentages, 147

* poisson regression

Logistic and Poisson regression models, 130

* positive definite

Inverse of a symmetric positive definite matrix, 120

* positive multivariate data

MLE of the inverted Dirichlet distribution, 201

* positive numbers

Apply method to Positive and Negative number, 15

* projected normal distribution

MLE of (hyper-)spherical distributions, 191

* projected normal

Circular or angular regression, 32
Many simple circular or angular regressions, 164

* proportion test

Many one sample tests, 156

* proportional odds

MLE of the ordinal model without covariates, 205

* proportions

Forward selection with generalised linear regression models, 101
MLE of distributions defined in the (0,1) interval, 198

* random values simulation

Angular central Gaussian random values simulation, 13
Multivariate Laplace random values simulation, 213
Multivariate normal and t random values simulation, 214

* regression

Many regression based tests for single sample repeated measures, 159
Multinomial regression, 211
Repeated measures anova, 242

* robust statistics

Pooled covariance matrix, 232
Spatial median for Euclidean data,

265
Spatial sign covariance matrix, 267

* row means

Column and row-wise means of a matrix, 37

* row-wise maximum

Row-wise minimum and maximum, 247

* row-wise variances

Column and row-wise variances and standard deviations, 48

* score based tests

Many score based regressions, 161

* shortest paths

Floyd-Warshall algorithm, 99

* single categorical predictor

Logistic or Poisson regression with a single categorical predictor, 131

* sorting

Median of a vector, 186

* spatial median

Spatial median for Euclidean data, 265

* spherical data

MLE of (hyper-)spherical distributions, 191

* summary statistics

Many regression based tests for single sample repeated measures, 159
Repeated measures anova, 242

* symmetric matrix

Inverse of a symmetric positive definite matrix, 120
Vector allocation in a symmetric matrix, 279

* t distribution

MLE of continuous univariate distributions defined on the real line, 195

* t-tests

Many 2 sample tests, 137
Many hypothesis tests for two means of percentages, 147
Matrix with all pairs of t-tests, 182

* t-test

Hypothesis test for two means of
percentages, 114
Many one sample tests, 156

* total sum

Energy distance between matrices, 85
Sum of all pairwise distances in a distance matrix, 271

* trigamma function

Natural logarithm of the gamma function and its derivatives, 219

* two samples

Empirical and exponential empirical likelihood tests for two samples, 83

* uniformity tests

Column-wise uniformity Watson test for circular data, 58

* uniformity test

Uniformity test for circular data, 277

* unique numbers

Sort and unique numbers, 262

* univariate approach

Many regression based tests for single sample repeated measures, 159
Repeated measures anova, 242

* variable selection

Forward selection with generalised linear regression models, 101

* variance test

Many one sample tests, 156

* variances of many samples

Column and row-wise variances and standard deviations, 48

* von Mises distribution

MLE of some circular distributions, 200

* von Mises-Fisher distribution

Hypothesis test for von Mises-Fisher distribution over Kent distribution, 115
MLE of (hyper-)spherical distributions, 191
Random values simulation from a von Mises distribution, 239
Simulation of random values from a
von Mises-Fisher distribution, 255

* wrapped Cauchy distribution

MLE of some circular distributions, 200

* zero inflated Poisson

MLE of count data (univariate discrete distributions), 196

* zero truncated Poisson

MLE of count data (univariate discrete distributions), 196
.lm.fit, 129
==.iterator (Iterator), 121
[.Hash (Hash object), 109
[.ufactor (Fast and general - untyped represantation of a factor variable), 93
[<-. Hash (Hash object), 109
AddToNamespace (Insert/remove function names in/from the NAMESPACE file), 118
env.copy (Deep copy), 72
RemoveFromNamespace (Insert/remove function names in/from the NAMESPACE file), 118
Stack (Represantation of Stack), 244
acg.mle, $14,33,165$
acg.mle (MLE of (hyper-) spherical distributions), 191
AddToNamespace, 28, 242, 265
All k possible combinations from n elements, 10
all_equals (Equality of objects), 86
allbetas, 64, 65, 106, 129, 152, 167, 170, 174-177, 179, 180
allbetas (Many simple linear regressions coefficients), 167
allttests (Matrix with all pairs of t-tests), 182
Analysis of covariance, 11
Analysis of variance with a count variable, 12
ancova1 (Analysis of covariance), 11
ancovas, 12, 173
ancovas (Many ANCOVAs), 140
Angular central Gaussian random values simulation, 13
anova, 13, 98, 132, 139
ANOVA for two quasi Poisson regression models, 14
anova1, 12, 224
anova1 (Multi-sample tests for vectors), 209
anova_propreg, 235
anova_propreg (Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression), 250
anova_qpois.reg, 15
anova_qpois.reg (Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression), 250
anova_quasipois.reg (ANOVA for two quasi Poisson regression models), 14
anovas, 138, 141
anovas (Many multi-sample tests), 150
Apply method to Positive and Negative number, 15
Apply to each column a method under condition, 17
apply.condition (Apply to each column a method under condition), 17
ar1 (Estimation of an AR(1) model), 87
as.Rfast.function (Convert R function to the Rfast's coresponding), 61
as_integer, 26, 273
as_integer (Check if values are integers and convert to integer), 25
auc, 89
auc (Many (and one) area aunder the curve values), 135

Backward selection regression, 18
bc (Estimation of the Box-Cox transformation), 88
bcdcor, 113
bcdcor (Distance correlation), 77
beta.mle, 99, 194, 205, 218, 219
beta.mle (MLE of distributions defined in the (0, 1) interval), 198
betabinom.mle (MLE of count data (univariate discrete
distributions)), 196
betageom.mle (MLE of count data (univariate discrete distributions)), 196
betaprime.mle (MLE of continuous univariate distributions defined on the positive line), 193
BIC (using partial correlation) forward regression, 19
BIC forward regression with generalised linear models, 20
bic.corfsreg, 21
bic.corfsreg (BIC (using partial correlation) forward regression), 19
bic.fs.reg (BIC forward regression with generalised linear models), 20
Binary search algorithm, 21
binary_search, 96, 247
binary_search (Binary search algorithm), 21
bincomb (Permutation), 228
binom.mle (MLE of count data (univariate discrete distributions)), 196
Binomial coefficient and its logarithm, 22
block.anova (Multi-sample tests for vectors), 209
block. anovas, 153
block.anovas (Many multi-sample tests), 150
boot.ttest2, 90, 142
boot.ttest2 (Bootstrap t-test for 2 independent samples), 23
Bootstrap t-test for 2 independent samples, 23
borel.mle (MLE of count data (univariate discrete distributions)), 196
bs.reg (Backward selection regression), 18
btmprobs (Fitted probabilities of the Terry-Bradley model), 97
cat.goftests (Many one sample goodness of fit tests for categorical data), 155
cauchy.mle (MLE of continuous univariate distributions defined on the real line), 195
Check if any column or row is fill with values, 24
Check if values are integers and convert to integer, 25
Check Namespace and Rd files, 26
Check whether a square matrix is symmetric, 29
check_data (Search for variables with zero range in a matrix), 249
checkAliases (Check Namespace and Rd files), 26
checkExamples, 242
checkExamples (Check Namespace and Rd files), 26
checkNamespace (Check Namespace and Rd files), 26
checkRd, 242
checkTF (Check Namespace and Rd files), 26
checkUsage (Check Namespace and Rd files), 26
Chi-square and G-square tests of (unconditional) indepdence, 30
chi2Test (G-square and Chi-square test of conditional indepdence), 102
chi2Test_univariate (Matrix with G-square tests of indepedence), 183
chi2tests (Many G-square and Chi-square tests of indepedence), 144
chisq.mle (MLE of continuous univariate distributions defined on the positive line), 193
cholesky, 29, 121
cholesky (Cholesky decomposition of a square matrix), 31
Cholesky decomposition of a square matrix, 31
Choose, 217, 246
Choose (Binomial coefficient and its logarithm), 22
circlin.cor (Circular-linear correlation), 33
Circular or angular regression, 32
Circular-linear correlation, 33
col.coxpoisrat (Cox confidence interval for the ratio of two Poisson variables), 67
col.yule, 282
col.yule (Column-wise Yule's Y
(coefficient of colligation)), 59
colAll (Column and row-wise Any/All), 36 colanovas (Many Welch's F-tests), 179
colAny (Column and row-wise Any/All), 36
colar1 (Estimation of an $\operatorname{AR(1)}$ model), 87
colaucs (Many (and one) area aunder the curve values), 135
colCountValues (Row - Wise matrix/vector count the frequency of a value), 246
colCumMaxs (Colum-wise cumulative operations (sum, prod, min, max)), 34
colCumMins (Colum-wise cumulative operations (sum, prod, min, max)), 34
colCumProds (Colum-wise cumulative operations (sum, prod, min, max)), 34
colCumSums (Colum-wise cumulative operations (sum, prod, min, max)), 34
colcvs (Column and row wise coefficients of variation), 35
coldiffs, 41, 43
coldiffs (Column-wise differences), 51
colexp2.mle (Column-wise MLE of some univariate distributions), 55
colexpmle (Column-wise MLE of some univariate distributions), 55
colFalse, 76, 133, 249
colFalse (Column-wise true/false value), 57
colgammamle (Column-wise MLE of some univariate distributions), 55
colgeom.mle (MLE for multivariate discrete data), 190
colhameans (Column and row-wise means of a matrix), 37
colinvgauss.mle (Column-wise MLE of some univariate
distributions), 55
colkurtosis (Column-wise kurtosis and skewness coefficients), 52
collaplace.mle (Column-wise MLE of some univariate distributions), 55
collindley.mle (Column-wise MLE of some univariate distributions), 55
colMads, $38,185,225,270$
colMads (Column and rows-wise mean absolute deviations), 49
colmaxboltz.mle (Column-wise MLE of some univariate distributions), 55
colMaxs, 10, 43, 50, 248, 264, 277
colMaxs (Column-wise minimum and maximum), 54
colMeans, 37, 39, 40, 46, 49
colmeans, 26, 46, 47, 49, 51, 52, 72, 112, 116, $118,122,135,146,212,216,220$, $221,225,245,259,260,270,273$, 280
colmeans (Column and row-wise means of a matrix), 37
colMedians, $17,25,35,37,38,40,41,43,46$, $49,50,52,55,57,61,79,108,112$, 116, 185, 186, 188, 189, 212, 221, 244, 248, 259, 260, 266
colMedians (Column and row-wise medians), 38
colMins, $10,38,43,50,187,248,264,277$
colMins (Column-wise minimum and maximum), 54
colMinsMaxs (Column-wise minimum and maximum), 54
colnormal.mle (Column-wise MLE of some univariate distributions), 55
colnormlog.mle (Column-wise MLE of some univariate distributions), 55
colnth, 16,261
colnth (Column and row-wise nth smallest value of a matrix/vector), 39
colOrder (Column and row-wise Order Sort Indices), 41
colpareto.mle (Column-wise MLE of some univariate distributions), 55
colPmax (Column-row wise minima and maxima of two matrices), 50
colPmin (Column-row wise minima and maxima of two matrices), 50
colpois.tests (Many tests for the dispersion parameter in Poisson distribution), 171
colpoisdisp.tests (Many tests for the dispersion parameter in Poisson distribution), 171
colpoisson.anovas (Many ANOVAS for count data with Poisson or quasi Poisson models), 141
colpoisson.mle, 233
colpoisson.mle (MLE for multivariate discrete data), 190
colprods, 41
colprods (Column and row-wise products), 42
colquasipoisson.anovas (Many ANOVAS for count data with Poisson or quasi Poisson models), 141
colrange, $10,25,49,55,57,108,188,189$, 198, 244, 250, 264, 277
colrange (Column and row-wise range of values of a matrix), 43
colRanks, 241
colRanks (Column and row-wise ranks), 44
colrayleigh.mle (Column-wise MLE of some univariate distributions), 55
colrint. regbx, 149
colrint.regbx (Many random intercepts LMMs for balanced data with a single identical covariate.), 157
colrow.value (Check if any column or row is fill with values), 24
colShuffle, 47, 72, 118, 122, 245, 273, 280
colShuffle (Column and row-wise Shuffle), 45
colskewness, 116, 146, 212, 259
colskewness (Column-wise kurtosis and skewness coefficients), 52
colSort, 25, 43, 55, 57, 76, 100, 108, 187-189, 244, 248, 263
colSort (Sorting of the columns-rows of a matrix), 263
colsums, $17,35,36,38,41,43,61,87,168$, 181, 271
colsums (Column and row-wise sums of a matrix), 46
colTabulate, 54
colTabulate (Column and row-wise tabulate), 47
colTrue, 76, 133, 249
colTrue (Column-wise true/false value), 57
colTrueFalse (Column-wise true/false value), 57
Colum-wise cumulative operations (sum, prod, min, max), 34
Column and row wise coefficients of variation, 35
Column and row-wise Any/All, 36
Column and row-wise means of a matrix, 37
Column and row-wise medians, 38
Column and row-wise nth smallest value of a matrix/vector, 39
Column and row-wise Order - Sort Indices, 41
Column and row-wise products, 42
Column and row-wise range of values of a matrix, 43
Column and row-wise ranks, 44
Column and row-wise Shuffle, 45
Column and row-wise sums of a matrix, 46
Column and row-wise tabulate, 47
Column and row-wise variances and standard deviations, 48
Column and rows-wise mean absolute deviations, 49
Column-row wise minima and maxima of two matrices, 50
Column-wise differences, 51
Column-wise kurtosis and skewness coefficients, 52
Column-wise matching coefficients, 53
Column-wise minimum and maximum, 54
Column-wise MLE of some univariate distributions, 55
Column-wise true/false value, 57
Column-wise uniformity Watson test for circular data, 58
Column-wise Yule's Y (coefficient of colligation), 59
columns (Get specific columns/rows fo a matrix), 107
colvarcomps.mle, 158, 208
colvarcomps.mle (Many moment and maximum likelihood estimations of variance components), 148
colvarcomps.mom, 239
colvarcomps.mom (Many moment and maximum likelihood estimations of variance components), 148
colVars, $17,25,26,35,36,39,43,46,47,49$, $52,55,57,61,67,72,87,94,108$, $112,116,118,122,137,168,212$, 216, 233, 244, 245, 248, 250, 259, 260, 270, 271, 273, 279, 280
colVars (Column and row-wise variances and standard deviations), 48
colvm.mle (Column-wise MLE of some univariate distributions), 55
colwatsons (Column-wise uniformity Watson test for circular data), 58
colweibull.mle (Column-wise MLE of some univariate distributions), 55
comb_n, 23, 229
comb_n (All k possible combinations from n elements), 10
combn, 229
Convert a dataframe to matrix, 60
Convert R function to the Rfast's coresponding, 61
cor, 66, 67
cor.fbed, 227
cor.fbed (FBED variable selection method using the correlation), 94
cor.fsreg, 18, 20, 21, 95, 102, 126, 129, 227
cor.fsreg (Correlation based forward regression), 62
cora, 29, 258
cora (Covariance and correlation matrix), 66
corpairs, 146
corpairs (Correlation between pairs of variables), 63
Correlation based forward regression, 62
Correlation between pairs of
variables, 63
Correlations, 65
correls, 45, 64, 68, 87, 89, 95, 103, 129, 146, $152,168,174,176,177,180,184$, 227, 231, 241, 258, 271
correls (Correlations), 65
count_value (Row - Wise matrix/vector count the frequency of a value), 246
cov, 67
cova, 29, 121, 279
cova (Covariance and correlation matrix), 66
Covariance and correlation matrix, 66
Cox confidence interval for the ratio of two Poisson variables, 67
cox. poisrat (Cox confidence interval for the ratio of two Poisson variables), 67
cqtest (Multi-sample tests for vectors), 209
cqtests (Many non parametric multi-sample tests), 152
Cross-Validation for the $k-N N$ algorithm, 68
Cross-Validation for the $k-N N$ algorithm using the arc cosinus distance, 70
Crossprod, 66, 81
Crossprod (Matrix multiplication), 181
ct.mle (MLE of continuous univariate distributions defined on the real line), 195
data.frame.to_matrix, 256
data.frame.to_matrix (Convert a dataframe to matrix), 60
dcor, 80
dcor (Distance correlation), 77
dcor.ttest, 78
dcor.ttest (Hypothesis test for the distance correlation), 112
dcov, 78, 113
dcov (Distance variance and covariance), 80
Deep copy, 72
Density of the multivariate normal and t distributions, 73
Design Matrix, 74
design_matrix (Design Matrix), 74
Diag.fill, 225
Diag.fill (Diagonal Matrix), 75
Diag.matrix (Diagonal Matrix), 75
Diagonal Matrix, 75
Digamma (Natural logarithm of the gamma function and its derivatives), 219
diri.nr2, 199, 202, 205, 218, 219
diri.nr2(Fitting a Dirichlet distribution via Newton-Rapshon), 98
dirimultinom.mle (MLE for multivariate discrete data), 190
dirknn, 72, 126
dirknn (k-NN algorithm using the arc cosinus distance), 126
dirknn.cv, 70, 127
dirknn.cv (Cross-Validation for the k-NN algorithm using the arc cosinus distance), 70
Dist, 51, 70, 77, 86, 220, 225, 272
Dist (Distance matrix), 78
dista, 51, 70, 79, 86, 135, 220, 225, 272
dista (Distance between vectors and a matrix), 76
Distance between vectors and a matrix, 76
Distance correlation, 77
Distance matrix, 78
Distance variance and covariance, 80
dmvnorm, 203, 204
dmvnorm (Density of the multivariate normal and t distributions), 73
dmvt (Density of the multivariate normal and t distributions), 73
dvar, 86
dvar (Distance variance and covariance), 80
eachcol.apply (Operations between two matrices or matrix and vector), 224
eachrow (Operations between two matrices or matrix and vector), 224
edist, 78, 80, 113
edist (Energy distance between matrices), 85
eel.test1 (Empirical and exponential empirical likelihood tests for one sample), 82
eel.test2 (Empirical and exponential empirical likelihood tests for two samples), 83
eigen.sym(Limited number of eigenvalues and eigenvectors of a symmetric matrix), 127
Eigenvalues and eigenvectors in high dimensional principal component analysis, 81
el.test1 (Empirical and exponential empirical likelihood tests for one sample), 82
el.test2 (Empirical and exponential empirical likelihood tests for two samples), 83
Elem (Iterator), 121
Elem<- (Iterator), 121
Empirical and exponential empirical likelihood tests for one sample, 82
Empirical and exponential empirical likelihood tests for two samples, 83
Energy distance between matrices, 85
Equality of objects, 86
Estimation of an AR(1) model, 87
Estimation of the Box-Cox transformation, 88
Exact t-test for 2 independent samples, 89
exact.ttest2, 24
exact.ttest2 (Exact t-test for 2
independent samples), 89
exp2.mle (MLE of continuous univariate distributions defined on the positive line), 193
expmle (MLE of continuous univariate distributions defined on the positive line), 193
Exponential empirical likelihood for a one sample mean vector hypothesis testing, 90
Exponential empirical likelihood hypothesis testing for two mean vectors, 91
expregs (Many exponential regressions), 142
factor, 94
Fast and general - untyped represantation of a factor variable, 93
FBED variable selection method using the correlation, 94
Find element, 95
Find the given value in a hash table, 96
fish.kent (Hypothesis test for von Mises-Fisher distribution over Kent distribution), 115
Fitted probabilities of the Terry-Bradley model, 97
Fitting a Dirichlet distribution via Newton-Rapshon, 98
floyd, 276
floyd (Floyd-Warshall algorithm), 99
Floyd-Warshall algorithm, 99
foldnorm.mle (MLE of continuous univariate distributions defined on the positive line), 193
Forward selection with generalised linear regression models, 101
freq.max (Minimum and maximum frequencies), 189
freq.min (Minimum and maximum frequencies), 189
fs.reg, 18, 21, 95, 126, 227
fs.reg (Forward selection with generalised linear regression models), 101
ftest, 24, 83, 90, 114, 142, 148
ftest (Multi-sample tests for vectors), 209
ftests, $12,84,136-138,141,143,144,153$, $155,157,164,173,179,180,183$, 210
ftests (Many multi-sample tests), 150
G-square and Chi-square test of conditional indepdence, 102
g2Test, 12, 13, 30, 146, 184, 223, 256, 258
g2Test (G-square and Chi-square test of conditional indepdence), 102

```
g2Test_perm, 146,184
g2Test_perm(G-square and Chi-square
    test of conditional
    indepdence),102
g2Test_univariate, 30, 102, 103, 154, 183,
    258
g2Test_univariate (Matrix with
    G-square tests of
    indepedence), }18
g2Test_univariate_perm, 30, 102, 103
g2Test_univariate_perm (Matrix with
    G-square tests of
    indepedence),}18
g2tests, 98, 139
g2tests (Many G-square and Chi-square
    tests of indepedence),144
g2tests_perm(Many G-square and
    Chi-square tests of
    indepedence),144
Gamma regression with a log-link,104
gammacon (Gamma regression with a
    log-link),104
gammamle, 56, 196, 207
gammamle (MLE of continuous univariate
    distributions defined on the
    positive line),193
gammanb (Naive Bayes classifiers),215
gammanb.pred(Prediction with some
    naive Bayes classifiers),233
gammareg (Gamma regression with a
    log-link),104
gammaregs, 105
```

gammaregs (Many simple regressions for
positive valued data), 169
Gaussian regression with a log-link,
105
gaussian.nb, 203, 204, 233
gaussian.nb (Naive Bayes classifiers),
215
gaussiannb.pred, 216
gaussiannb.pred (Prediction with some naive Bayes classifiers), 233
gchi2Test (Chi-square and G-square tests of (unconditional) indepdence), 30
Generates random values from a normal and puts them in a matrix, 106 geom. anova (Analysis of variance with
a count variable), 12
geom. anovas (Many analysis of variance tests with a discrete variable), 139
geom.mle (MLE of count data (univariate discrete distributions)), 196
geom.nb (Naive Bayes classifiers), 215
geom.regs (Many simple geometric regressions), 165
geomnb. pred (Prediction with some naive Bayes classifiers), 233
Get specific columns/rows fo a matrix, 107
ginis (Many Gini coefficients), 146
glm_logistic, 102, 211
glm_logistic (Logistic and Poisson regression models), 130
glm_poisson, 102
glm_poisson (Logistic and Poisson regression models), 130
group (Some summary statistics of a vector for each level of a grouping variable), 259
groupcorrels (Correlations), 65
gumbel.mle (MLE of continuous univariate distributions defined on the real line), 195
halfnorm.mle (MLE of continuous univariate distributions defined on the positive line), 193
Hash (Hash object), 109
Hash - Pair function, 108
Hash object, 109
Hash object to a list object, 110
hash.find, 109-111
hash.find (Find the given value in a hash table), 96
hash.list, 97, 110, 111
hash.list (Hash - Pair function), 108
hash2list (Hash object to a list object), 110
hd.eigen, 128
hd.eigen (Eigenvalues and eigenvectors in high dimensional principal component analysis), 81
High dimensional MCD based detection of outliers, 111
hsecant01.mle (MLE of distributions defined in the (0,1) interval), 198
Hypothesis test for the distance correlation, 112
Hypothesis test for two means of percentages, 114
Hypothesis test for von Mises-Fisher distribution over Kent distribution, 115
Hypothesis testing between two skewness or kurtosis coefficients, 116
iag.mle, 33, 74, 115, 165, 256
iag.mle (MLE of (hyper-) spherical distributions), 191
ibeta.mle (MLE of distributions defined in the (0, 1) interval), 198
Index of the columns of a data.frame which are a specific type, 117
Insert/remove function names in/from the NAMESPACE file, 118
invdir.mle (MLE of the inverted Dirichlet distribution), 201
Inverse Gaussian regression with a log-link, 119
Inverse of a symmetric positive definite matrix, 120
invgauss.mle (MLE of continuous univariate distributions defined on the positive line), 193
invgauss.reg, 105
invgauss.reg (Inverse Gaussian regression with a log-link), 119
invgauss.regs, 120
invgauss.regs (Many simple regressions for positive valued data), 169
is.symmetric, 31,60
is.symmetric (Check whether a square matrix is symmetric), 29
is_element, 22
is_element (Find element), 95
is_integer, 273
is_integer (Check if values are integers and convert to integer), 25

Iterator, 121
iterator (Iterator), 121
james, 91, 93
james (James multivariate version of the t-test), 123
James multivariate version of the t-test, 123
k nearest neighbours algorithm (k-NN), 124
k-NN algorithm using the arc cosinus distance, 126
knn, 70, 72, 127
knn (k nearest neighbours algorithm ($k-N N$)), 124
knn.cv, 72, 126
knn.cv (Cross-Validation for the $k-N N$ algorithm), 68
kruskaltest (Multi-sample tests for vectors), 209
kruskaltests (Many non parametric multi-sample tests), 152
kuiper (Uniformity test for circular data), 277
kurt (Skewness and kurtosis coefficients), 258
kurt.test2 (Hypothesis testing between two skewness or kurtosis coefficients), 116
laplace.mle (MLE of continuous univariate distributions defined on the real line), 195
Lbeta, 23, 217
Lbeta (Natural logarithm of the beta function), 218
Lchoose, 217, 246
Lchoose (Binomial coefficient and its logarithm), 22
length. Hash (Hash object), 109
Lgamma, 23, 218
Lgamma (Natural logarithm of the gamma function and its derivatives), 219
Limited number of eigenvalues and eigenvectors of a symmetric matrix, 127
lindley.mle (MLE of continuous univariate distributions defined on the positive line), 193
Linear models for large scale data, 128
list.ftests (Many F-tests with really huge matrices), 143
lm, 129
lm.fit, 129
lmfit, 267
lmfit (Linear models for large scale data), 128
Log, 246
Log (Natural Logarithm each element of a matrix), 217
logcauchy.mle (MLE of continuous univariate distributions defined on the positive line), 193
Logistic and Poisson regression models, 130
Logistic or Poisson regression with a single categorical predictor, 131
logistic.cat1, 13
logistic.cat1 (Logistic or Poisson regression with a single categorical predictor), 131
logistic.mle (MLE of continuous univariate distributions defined on the real line), 195
logistic_only, 20, 21, 63, 102, 107, 126, $131,132,143,162,167,174,179$, 211, 235, 251, 281
logistic_only (Many univariate simple logistic and Poisson regressions), 176
logitnorm.mle (MLE of distributions defined in the (0,1) interval), 198
loglm, 30
loglogistic.mle (MLE of continuous univariate distributions defined on the positive line), 193
lognorm.mle (MLE of continuous univariate distributions defined on the positive line),

193
logseries.mle (MLE of count data (univariate discrete distributions)), 196
lomax.mle (MLE of continuous univariate distributions defined on the positive line), 193
Lower and Upper triangular of a matrix, 133
lower_tri (Lower and Upper triangular of a matrix), 133

Mad (Mean - Median absolute deviation of a vector), 185
mad2 (Mean - Median absolute deviation of a vector), 185
mahala, 77
mahala (Mahalanobis distance), 134
Mahalanobis distance, 134
Many (and one) area aunder the curve values, 135
Many 2 sample proportions tests, 136
Many 2 sample tests, 137
Many analysis of variance tests with a discrete variable, 139
Many ANCOVAs, 140
Many ANOVAS for count data with Poisson or quasi Poisson models, 141
Many exponential regressions, 142
Many F-tests with really huge matrices, 143
Many G-square and Chi-square tests of indepedence, 144
Many Gini coefficients, 146
Many hypothesis tests for two means of percentages, 147
Many moment and maximum likelihood estimations of variance components, 148
Many multi-sample tests, 150
Many multivariate simple linear regressions coefficients, 151
Many non parametric multi-sample tests, 152
Many odds ratio tests, 154
Many one sample goodness of fit tests for categorical data, 155
Many one sample tests, 156

Many random intercepts LMMs for balanced data with a single identical covariate., 157
Many regression based tests for single sample repeated measures, 159
Many score based regressions, 161
Many Shapiro-Francia normality tests, 163
Many simple circular or angular regressions, 164
Many simple geometric regressions, 165
Many simple linear mixed model regressions, 166
Many simple linear regressions coefficients, 167
Many simple multinomial regressions, 168
Many simple regressions for positive valued data, 169
Many tests for the dispersion parameter in Poisson distribution, 171
Many two-way ANOVAs, 172
Many univariate generalised linear models, 173
Many univariate simple linear regressions, 175
Many univariate simple logistic and Poisson regressions, 176
Many univariate simple quasi poisson regressions, 178
Many Welch's F-tests, 179
mat.mat (Number of equal columns between two matrices), 221
mat.mult, 228
mat.mult (Matrix multiplication), 181
Match, 60, 87, 117, 180, 221, 271
match, 181
match. coefs (Column-wise matching coefficients), 53
Matrix multiplication, 181
Matrix with all pairs of t-tests, 182
Matrix with G-square tests of indepedence, 183
matrnorm, 254
matrnorm (Generates random values from a normal and puts them in a matrix), 106
maxboltz.mle (MLE of continuous univariate distributions defined on the positive line), 193
mcnemar (Multi-sample tests for vectors), 209
mcnemars (Many 2 sample tests), 137
Mean - Median absolute deviation of a vector, 185
med (Median of a vector), 186
Median, 37, 39, 40, 46, 185, 247
Median (Median of a vector), 186
Median of a vector, 186
mediandir (Spherical and hyperspherical median), 268
min_max (Minimum and maximum), 188
Minima and maxima of two vectors/matrices, 187
Minimum and maximum, 188
Minimum and maximum frequencies, 189
MLE for multivariate discrete data, 190
MLE of (hyper-)spherical
distributions, 191
MLE of continuous univariate distributions defined on the positive line, 193
MLE of continuous univariate distributions defined on the real line, 195
MLE of count data (univariate discrete distributions), 196
MLE of distributions defined in the (0, 1) interval, 198
MLE of some circular distributions, 200
MLE of the inverted Dirichlet distribution, 201
MLE of the multivariate (log-) normal distribution, 202
MLE of the multivariate t distribution, 204
MLE of the ordinal model without covariates, 205
MLE of the tobit model, 206
model.matrix, 75
Moment and maximum likelihood estimation of variance components, 207
Multi-sample tests for vectors, 209
multinom.mle, 202, 203
multinom.mle (MLE for multivariate discrete data), 190
multinom.nb (Naive Bayes classifiers), 215
multinom.reg (Multinomial regression), 211
multinom.regs (Many simple multinomial regressions), 168
Multinomial regression, 211
multinomnb.pred (Prediction with some naive Bayes classifiers), 233
Multivariate kurtosis, 212
Multivariate Laplace random values simulation, 213
Multivariate normal and t random values simulation, 214
multivmf.mle (MLE of (hyper-)spherical distributions), 191
mv.eeltest1, 93
mv.eeltest1 (Exponential empirical likelihood for a one sample mean vector hypothesis testing), 90
mv.eeltest2, 91, 124
mv.eeltest2 (Exponential empirical likelihood hypothesis testing for two mean vectors), 91
mvbetas, $64,87,129,168,176,271$
mvbetas (Many multivariate simple linear regressions coefficients), 151
mvkurtosis (Multivariate kurtosis), 212 mvlnorm.mle (MLE of the multivariate (log-) normal distribution), 202
mvnorm.mle, 74, 204
mvnorm.mle (MLE of the multivariate (log-) normal distribution), 202
mvt.mle (MLE of the multivariate t distribution), 204

Naive Bayes classifiers, 215
Natural Logarithm each element of a matrix, 217
Natural logarithm of the beta function, 218

Natural logarithm of the gamma function and its derivatives, 219
negative (Apply method to Positive and Negative number), 15
negbin.mle, 172, 191, 275
negbin.mle (MLE of count data (univariate discrete distributions)), 196
Norm (Norm of a matrix), 220
Norm of a matrix, 220
normal.mle, 56, 194, 207
normal.mle (MLE of continuous univariate distributions defined on the real line), 195
normlog.mle (MLE of continuous univariate distributions defined on the positive line), 193
normlog.reg, 105, 120, 170
normlog.reg (Gaussian regression with a log-link), 105
normlog.regs, 106
normlog.regs (Many simple regressions for positive valued data), 169
nth, $10,16,25,43,55,57,76,108,117,133$, 186, 188, 189, 244, 247-249, 261, 264, 277
nth (Column and row-wise nth smallest value of a matrix/vector), 39
Number of equal columns between two matrices, 221
odds, 54, 59, 223
odds (Many odds ratio tests), 154
Odds ratio and relative risk, 222
odds.ratio, 154, 282
odds.ratio (Odds ratio and relative risk), 222
omp (Orthogonal matching pursuit variable selection), 226
ompr, 95
ompr (Orthogonal matching pursuit variable selection), 226
One sample t-test for a vector, 223
Operations between two matrices or matrix and vector, 224
Order, 247

Order (Column and row-wise Order Sort Indices), 41
ordinal.mle (MLE of the ordinal model without covariates), 205
Orthogonal matching pursuit variable selection, 226
Outer (Outer function), 227
Outer function, 227
pareto.mle (MLE of continuous univariate distributions defined on the positive line), 193
pc.skel, 230, 276
pc.skel (Skeleton of the PC algorithm), 256
percent.ttest (Hypothesis test for two means of percentages), 114
percent.ttests (Many hypothesis tests for two means of percentages), 147
permcor (Permutation based p-value for the Pearson correlation coefficient), 229
Permutation, 228
permutation, 60
permutation (Permutation), 228
Permutation based p-value for the Pearson correlation coefficient, 229
Pmax (Minima and maxima of two vectors/matrices), 187
Pmin (Minima and maxima of two vectors/matrices), 187
Pmin_Pmax (Minima and maxima of two vectors/matrices), 187
pois.test (Tests for the dispersion parameter in Poisson distribution), 274
poisdisp.test (Tests for the dispersion parameter in Poisson distribution), 274
poisson. anova, 98, 132, 139, 142, 172, 275
poisson. anova (Analysis of variance with a count variable), 12
poisson.anovas, 13, 132, 172, 275
poisson. anovas (Many analysis of variance tests with a discrete variable), 139
poisson.cat1 (Logistic or Poisson regression with a single categorical predictor), 131
poisson.mle, 13, 56, 98, 139, 172, 191, 275
poisson.mle (MLE of count data (univariate discrete distributions)), 196
poisson.nb, 191
poisson.nb (Naive Bayes classifiers), 215
poisson_only, 13, 20, 21, 63, 98, 102, 131, $132,139,143,162,166,169,172$, 174, 179, 198, 237, 275, 281
poisson_only (Many univariate simple logistic and Poisson regressions), 176
poissonnb. pred (Prediction with some naive Bayes classifiers), 233
poly.cor (Polyserial correlation), 230
Polyserial correlation, 230
Pooled covariance matrix, 232
pooled.cov (Pooled covariance matrix), 232
positive (Apply method to Positive and Negative number), 15
Prediction with some naive Bayes classifiers, 233
print. Hash (Hash object), 109
print.iterator (Iterator), 121
print.ufactor (Fast and general untyped represantation of a factor variable), 93
prop. reg, 114, 147, 148, 237, 251
prop.reg (Quasi binomial regression for proportions), 234
prop.regs, 106, 166, 169, 170, 177
prop.regs (Quasi binomial regression for proportions), 234
proptest (Many one sample tests), 156
proptests (Many 2 sample proportions tests), 136
qpois.reg, 15, 251
qpois.reg (Quasi Poisson regression for count data), 236
qpois.regs (Quasi Poisson regression for count data), 236
Quasi binomial regression for proportions, 234

Quasi Poisson regression for count data, 236
quasi.poisson_only, 177
quasi.poisson_only (Many univariate simple quasi poisson regressions), 178
quasipoisson.anova, 15
quasipoisson. anova (Analysis of variance with a count variable), 12
quasipoisson.anovas (Many analysis of variance tests with a discrete variable), 139
racg, 192, 213, 215
racg (Angular central Gaussian random values simulation), 13
Random intercepts linear mixed models, 237
Random values simulation from a von Mises distribution, 239
Rank, 45
Rank (Ranks of the values of a vector), 240
Ranks of the values of a vector, 240
rayleigh.mle (MLE of continuous univariate distributions defined on the positive line), 193
rbing, 253
rbing (Simulation of random values from a Bingham distribution), 252
rbingham (Simulation of random values from a Bingham distribution with any symmetric matrix), 253
read.directory, 26, 28, 72, 118, 122, 245, 265, 273
read.directory (Reading the files of a directory), 241
read.examples, 28
read.examples (Reading the files of a directory), 241
Reading the files of a directory, 241
regression, 20, 21, 63, 129, 131, 143, 162, $174,177,179,180,281$
regression (Many univariate simple linear regressions), 175
rel.risk (Odds ratio and relative risk), 222
rep_col (Replicate columns/rows), 243
rep_row (Replicate columns/rows), 243
Repeated measures anova, 242
Replicate columns/rows, 243
Represantation of Stack, 244
Rfast-package, 6
rint.mle (Moment and maximum likelihood estimation of variance components), 207
rint.reg, $158,160,167,208,243$
rint.reg (Random intercepts linear mixed models), 237
rint.regbx, 158, 160, 208
rint.regbx (Random intercepts linear mixed models), 237
rint.regs (Many simple linear mixed model regressions), 166
rm.anova (Repeated measures anova), 242
rm. anovas, 88, 243
rm.anovas (Many regression based tests for single sample repeated measures), 159
rm.lines, 88, 158, 239
rm.lines (Many regression based tests for single sample repeated measures), 159
rmdp, 82
rmdp (High dimensional MCD based detection of outliers), 111
rmvlaplace, 14, 215
rmvlaplace (Multivariate Laplace random values simulation), 213
rmvnorm, 14, 74, 107, 213, 254
rmvnorm (Multivariate normal and t random values simulation), 214
rmvt, 14, 74, 213, 215
rmvt (Multivariate normal and t random values simulation), 214
Rnorm, 107
Rnorm (Simulation of random values from a normal distribution), 254
Round, 16, 261
Round (Round each element of a matrix/vector), 245
Round each element of a matrix/vector, 245
Row - Wise matrix/vector count the frequency of a value, 246

Row-wise minimum and maximum, 247
Row-wise true value, 248
rowAll (Column and row-wise Any/All), 36
rowAny (Column and row-wise Any/All), 36
rowCountValues (Row - Wise matrix/vector count the frequency of a value), 246
rowcvs (Column and row wise coefficients of variation), 35
rowFalse, 25, 57, 108, 244
rowFalse (Row-wise true value), 248
rowhameans (Column and row-wise means of a matrix), 37
rowMads, 225
rowMads (Column and rows-wise mean absolute deviations), 49
rowMaxs, 43, 55, 188, 189
rowMaxs (Row-wise minimum and maximum), 247
rowmeans (Column and row-wise means of a matrix), 37
rowMedians, 49, 76, 133, 249
rowMedians (Column and row-wise medians), 38
rowMins, $25,43,55,57,76,108,133,188$, 189, 244, 249
rowMins (Row-wise minimum and maximum), 247
rowMinsMaxs (Row-wise minimum and maximum), 247
rownth, 16,261
rownth (Column and row-wise nth smallest value of a matrix/vector), 39
rowOrder (Column and row-wise Order Sort Indices), 41
rowprods (Column and row-wise products), 42
rowrange, 76, 133, 248, 249
rowrange (Column and row-wise range of values of a matrix), 43
rowRanks (Column and row-wise ranks), 44
rows (Get specific columns/rows fo a matrix), 107
rowShuffle (Column and row-wise Shuffle), 45
rowSort, 25, 43, 55, 57, 76, 100, 108, 187-189, 244, 248, 263
rowSort (Sorting of the columns-rows of a matrix), 263
rowsums, 38
rowsums (Column and row-wise sums of a matrix), 46
rowTabulate (Column and row-wise tabulate), 47
rowTrue, $25,57,108,244$
rowTrue (Row-wise true value), 248
rowTrueFalse (Row-wise true value), 248
rowVars, 76, 133, 249
rowVars (Column and row-wise variances and standard deviations), 48
rvmf, 107, 192, 201, 240, 252, 254
rvmf (Simulation of random values from a von Mises-Fisher distribution), 255
rvonmises, 58, 107, 201, 254, 256, 278
rvonmises (Random values simulation from a von Mises distribution), 239
score.betaregs (Many score based regressions), 161
score.expregs (Many score based regressions), 161
score.gammaregs (Many score based regressions), 161
score.geomregs, 166, 169
score. geomregs (Many score based regressions), 161
score.glms, 20, 21, 63, 106, 120, 143, 167, 170, 177, 235, 237, 251
score.glms (Many score based regressions), 161
score.invgaussregs (Many score based regressions), 161
score.multinomregs, 211
score.multinomregs (Many score based regressions), 161
score.negbinregs (Many score based regressions), 161
score.weibregs (Many score based regressions), 161
score.ztpregs (Many score based regressions), 161
Search for variables with zero range in a matrix, 249
sftest (Many Shapiro-Francia normality tests), 163
sftests, 52, 107
sftests (Many Shapiro-Francia normality tests), 163
Significance testing for the coefficients of Quasi binomial or the quasi Poisson regression, 250
Simulation of random values from a Bingham distribution, 252
Simulation of random values from a Bingham distribution with any symmetric matrix, 253
Simulation of random values from a normal distribution, 254
Simulation of random values from a von Mises-Fisher distribution, 255
Skeleton of the PC algorithm, 256
skew, 52, 116
skew (Skewness and kurtosis
coefficients), 258
skew.test2, 52, 212, 259
skew.test2 (Hypothesis testing between two skewness or kurtosis coefficients), 116
Skewness and kurtosis coefficients, 258
Some summary statistics of a vector for each level of a grouping variable, 259
Sort, 50, 187
Sort (Sort - Integer Sort - Sort a vector coresponding to another), 260
Sort - Integer Sort - Sort a vector coresponding to another, 260
Sort and unique numbers, 262
sort_cor_vectors, 263, 264
sort_cor_vectors (Sort - Integer Sort - Sort a vector coresponding to another), 260
sort_mat (Sorting of the columns-rows of a matrix), 263
sort_unique, 16, 261, 264
sort_unique (Sort and unique numbers), 262
Sorting of the columns-rows of a matrix, 263

Source many R files, 264
sourceR, 28, 242
sourceR (Source many R files), 264
sourceRd, 28, 242
sourceRd (Source many R files), 264
spat.med, 232, 267, 268
spat.med (Spatial median for Euclidean data), 265
Spatial median for Euclidean data, 265
Spatial median regression, 266
Spatial sign covariance matrix, 267
spatmed.reg, 232, 268
spatmed.reg (Spatial median regression), 266
spdinv (Inverse of a symmetric positive definite matrix), 120
Spherical and hyperspherical median, 268
spml.mle, 33, 127, 165
spml.mle (MLE of some circular distributions), 200
spml.reg, 34
spml.reg (Circular or angular regression), 32
spml.regs (Many simple circular or angular regressions), 164
squareform(Vector allocation in a symmetric matrix), 279
sscov, 267
sscov (Spatial sign covariance matrix), 267
Standardisation, 269
standardise (Standardisation), 269
Sub-matrix, 270
submatrix (Sub-matrix), 270
Sum of all pairwise distances in a distance matrix, 271

Table, 68, 231
Table (Table Creation - Frequency of each value), 272
Table Creation - Frequency of each value, 272
Tcrossprod, 66, 81
Tcrossprod (Matrix multiplication), 181
Tests for the dispersion parameter in Poisson distribution, 274
tmle (MLE of continuous univariate distributions defined on the
real line), 195
tobit.mle (MLE of the tobit model), 206
Topological sort of a DAG, 275
topological_sort (Topological sort of a DAG), 275
total.dist, 77, 86
total.dist (Sum of all pairwise distances in a distance matrix), 271
total.dista, 77, 86
total.dista (Sum of all pairwise distances in a distance matrix), 271
transpose, 181
transpose (Transpose of a matrix), 276
Transpose of a matrix, 276
Trigamma (Natural logarithm of the gamma function and its derivatives), 219
ttest, 84, 136, 138, 155, 164, 183, 224
ttest (Many one sample tests), 156
ttest1, 83
ttest1 (One sample t-test for a vector), 223
ttest2, 24, 90, 114, 142, 148
ttest2 (Multi-sample tests for vectors), 209
ttests, 12, 84, 136, 137, 141, 144, 151, 155, $157,164,173,183,210,224$
ttests (Many 2 sample tests), 137
ttests. pairs (Matrix with all pairs of t-tests), 182
twoway.anova (Multi-sample tests for vectors), 209
twoway. anovas (Many two-way ANOVAs), 172
ufactor (Fast and general - untyped represantation of a factor variable), 93
Uniformity test for circular data, 277 univglms, 15, 18, 20, 21, 63, 65, 87, 103, 131, $143,146,152,162,167,168,176$, 177, 179, 184, 235, 237, 251, 271, 281
univglms (Many univariate generalised linear models), 173
univglms2 (Many univariate generalised linear models), 173
upper_tri (Lower and Upper triangular of a matrix), 133

Var (Variance of a vector), 278
var2test (Multi-sample tests for vectors), 209
var2tests (Many 2 sample tests), 137
varcomps.mle, 88, 149, 160, 243
varcomps.mle (Moment and maximum
likelihood estimation of variance components), 207
varcomps.mom, 158, 239
varcomps.mom (Moment and maximum likelihood estimation of variance components), 207
Variance of a vector, 278
vartest (Many one sample tests), 156
vartests (Many multi-sample tests), 150
vecdist, 228
vecdist (Distance matrix), 78
Vector allocation in a symmetric matrix, 279
vm.mle, 56, 192, 196, 240
vm.mle (MLE of some circular distributions), 200
vmf.mle, 58, 115, 127, 201, 256, 269, 278
vmf.mle (MLE of (hyper-) spherical distributions), 191
watson, 58
watson (Uniformity test for circular data), 277
weib.reg (Weibull regression model), 280
Weibull regression model, 280
weibull.mle (MLE of continuous univariate distributions defined on the positive line), 193
which.is (Index of the columns of a data.frame which are a specific type), 117
wigner.mle (MLE of continuous univariate distributions defined on the real line), 195
wrapcauchy.mle (MLE of some circular distributions), 200

XopY.sum (Operations between two matrices or matrix and vector), 224
yule, 59
yule (Yule's Y (coefficient of colligation)), 281
Yule's Y (coefficient of colligation), 281
zip.mle, 191, 194, 196
zip.mle (MLE of count data (univariate discrete distributions)), 196
ztp.mle, 191
ztp.mle (MLE of count data (univariate discrete distributions)), 196

