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add_missing Add missing values to a vector given a MCAR, MAR, or MNAR scheme

Description

Given an input vector, replace elements of this vector with missing values according to some
scheme. Default method replaces input values with a MCAR scheme (where on average 10% of
the values will be replaced with NAs). MAR and MNAR are supported by replacing the default FUN
argument.

Usage

add_missing(y, fun = function(y, rate = 0.1, ...) rep(rate, length(y)), ...)

Arguments

y an input vector that should contain missing data in the form of NA’s

fun a user defined function indicating the missing data mechanism for each element
in y. Function must return a vector of probability values with the length equal
to the length of y. Each value in the returned vector indicates the probability
that the respective element in y will be replaced with NA. Function must contain
the argument y, representing the input vector, however any number of additional
arguments can be included

... additional arguments to be passed to FUN

Details

Given an input vector y, and other relevant variables inside (X) and outside (Z) the data-set, the
three types of missingness are:

MCAR Missing completely at random (MCAR). This is realized by randomly sampling the values
of the input vector (y) irrespective of the possible values in X and Z. Therefore missing values
are randomly sampled and do not depend on any data characteristics and are truly random

MAR Missing at random (MAR). This is realized when values in the dataset (X) predict the missing
data mechanism in y; conceptually this is equivalent to P (y = NA|X). This requires the user
to define a custom missing data function

MNAR Missing not at random (MNAR). This is similar to MAR except that the missing mecha-
nism comes from the value of y itself or from variables outside the working dataset; concep-
tually this is equivalent to P (y = NA|X,Z, y). This requires the user to define a custom
missing data function
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Value

the input vector y with the sampled NA values (according to the FUN scheme)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:

set.seed(1)
y <- rnorm(1000)

## 10% missing rate with default FUN
head(ymiss <- add_missing(y), 10)

## 50% missing with default FUN
head(ymiss <- add_missing(y, rate = .5), 10)

## missing values only when female and low
X <- data.frame(group = sample(c('male', 'female'), 1000, replace=TRUE),

level = sample(c('high', 'low'), 1000, replace=TRUE))
head(X)

fun <- function(y, X, ...){
p <- rep(0, length(y))
p[X$group == 'female' & X$level == 'low'] <- .2
p

}

ymiss <- add_missing(y, X, fun=fun)
tail(cbind(ymiss, X), 10)

## missingness as a function of elements in X (i.e., a type of MAR)
fun <- function(y, X){

# missingness with a logistic regression approach
df <- data.frame(y, X)
mm <- model.matrix(y ~ group + level, df)
cfs <- c(-5, 2, 3) #intercept, group, and level coefs
z <- cfs %*% t(mm)
plogis(z)

}

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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ymiss <- add_missing(y, X, fun=fun)
tail(cbind(ymiss, X), 10)

## missing values when y elements are large (i.e., a type of MNAR)
fun <- function(y) ifelse(abs(y) > 1, .4, 0)
ymiss <- add_missing(y, fun=fun)
tail(cbind(y, ymiss), 10)

## End(Not run)

aggregate_simulations Collapse separate simulation files into a single result

Description

This function aggregates the results from SimDesign’s runSimulation into a single objects suitable
for post-analyses, or combines all the saved results directories and combines them into one. This is
useful when results are run piecewise on one node (e.g., 500 replications in one batch, 500 again at a
later date) or run independently across different nodes/computers that are not on the same network.

Usage

aggregate_simulations(
files = NULL,
file_name = "SimDesign_aggregate.rds",
dirs = NULL,
results_dirname = "SimDesign_aggregate_results"

)

Arguments

files a character vector containing the names of the simulation’s final .rds files

file_name name of .rds file to save aggregate simulation file to. Default is 'SimDesign_aggregate.rds'

dirs a character vector containing the names of the save_results directories to be
aggregated. A new folder will be created and placed in the results_dirname
output folder

results_dirname

the new directory to place the aggregated results files

Value

if files is used the function returns a data.frame with the (weighted) average of the simulation
results. Otherwise, if dirs is used, the function returns NULL
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Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

## Not run:

setwd('my_working_directory')

## run simulations to save the .rds files (or move them to the working directory)
# runSimulation(..., filename='file1')
# runSimulation(..., filename='file2')

# saves to the hard-drive and stores in workspace
final <- aggregate_simulations(files = c('file1.rds', 'file2.rds'))
final

# aggregate saved results for .rds files and results directories
# runSimulation(..., save_results = TRUE, save_details = list(save_results_dirname = 'dir1'))
# runSimulation(..., save_results = TRUE, save_details = list(save_results_dirname = 'dir2'))

# place new saved results in 'SimDesign_results/' by default
aggregate_simulations(files = c('file1.rds', 'file2.rds'),

dirs = c('dir1', 'dir2'))

## End(Not run)

Analyse Compute estimates and statistics

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Description

Compute all relevant test statistics, parameter estimates, detection rates, and so on. This is the com-
putational heavy lifting portion of the Monte Carlo simulation. Users may define a single Analysis
function to perform all the analyses in the same function environment, or may define a list of
named functions to runSimulation to allow for a more modularized approach to performing the
analyses in independent blocks (but that share the same generated data). Note that if a suitable
Generate function was not supplied then this function can be used to be generate and analyse the
Monte Carlo data (though in general this setup is not recommended for larger simulations).

Usage

Analyse(condition, dat, fixed_objects = NULL)

Arguments

condition a single row from the design input (as a data.frame), indicating the simulation
conditions

dat the dat object returned from the Generate function (usually a data.frame,
matrix, vector, or list)

fixed_objects object passed down from runSimulation

Details

In some cases, it may be easier to change the output to a named list containing different parameter
configurations (e.g., when determining RMSE values for a large set of population parameters).

The use of try functions is generally not required in this function because Analyse is internally
wrapped in a try call. Therefore, if a function stops early then this will cause the function to halt
internally, the message which triggered the stop will be recorded, and Generate will be called
again to obtain a different dataset. That said, it may be useful for users to throw their own stop
commands if the data should be re-drawn for other reasons (e.g., an estimated model terminated
correctly but the maximum number of iterations were reached).

Value

returns a named numeric vector or data.frame with the values of interest (e.g., p-values, effects
sizes, etc), or a list containing values of interest (e.g., separate matrix and vector of parameter
estimates corresponding to elements in parameters). If a data.frame is returned with more than
1 row then these objects will be wrapped into suitable list objects

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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See Also

stop, AnalyseIf

Examples

## Not run:

analyse <- function(condition, dat, fixed_objects = NULL) {

# require packages/define functions if needed, or better yet index with the :: operator
require(stats)
mygreatfunction <- function(x) print('Do some stuff')

#wrap computational statistics in try() statements to control estimation problems
welch <- t.test(DV ~ group, dat)
ind <- stats::t.test(DV ~ group, dat, var.equal=TRUE)

# In this function the p values for the t-tests are returned,
# and make sure to name each element, for future reference
ret <- c(welch = welch$p.value,

independent = ind$p.value)

return(ret)
}

# A more modularized example approach

analysis_welch <- function(condition, dat, fixed_objects = NULL) {
welch <- t.test(DV ~ group, dat)
ret <- c(p=welch$p.value)
ret

}

analysis_ind <- function(condition, dat, fixed_objects = NULL) {
ind <- t.test(DV ~ group, dat, var.equal=TRUE)
ret <- c(p=ind$p.value)
ret

}

# pass functions as a named list
# runSimulation(..., analyse=list(welch=analyse_welch, independent=analysis_ind))

## End(Not run)

AnalyseIf Perform a test that indicates whether a given Analyse() function
should be executed
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Description

This function is designed to prevent specific analysis function executions when the design condi-
tions are not met. Primarily useful when the analyse argument to runSimulation was a input as
a named list object, however some of the analysis functions are not interesting/compatible with the
generated data and should therefore be skipped.

Usage

AnalyseIf(x, data = NULL)

Arguments

x logical statement to evaluate. If the statement evaluates to TRUE then the remain-
der of the defined function will be evaluated

data (optional) the current design condition. This does not need to be supplied if the
expression in x evaluates to valid logical (e.g., use Attach(condition) prior to
using AnalyseIf, or use with(condition, AnalyseIf(someLogicalTest)))

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

Analyse, runSimulation

Examples

## Not run:

Design <- createDesign(N=c(10,20,30), var.equal = c(TRUE, FALSE))

Generate <- function(condition, fixed_objects = NULL) {
Attach(condition)
dat <- data.frame(DV = rnorm(N*2), IV = gl(2, N, labels=c('G1', 'G2')))
dat

}

# always run this analysis for each row in Design
Analyse1 <- function(condition, dat, fixed_objects = NULL) {

mod <- t.test(DV ~ IV, data=dat)
mod$p.value

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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}

# Only perform analysis when variances are equal and N = 20 or 30
Analyse2 <- function(condition, dat, fixed_objects = NULL) {

AnalyseIf(var.equal && N %in% c(20, 30), condition)
mod <- t.test(DV ~ IV, data=dat, var.equal=TRUE)
mod$p.value

}

Summarise <- function(condition, results, fixed_objects = NULL) {
ret <- EDR(results, alpha=.05)
ret

}

#-------------------------------------------------------------------

# append names 'Welch' and 'independent' to associated output
res <- runSimulation(design=Design, replications=100, generate=Generate,

analyse=list(Welch=Analyse1, independent=Analyse2),
summarise=Summarise)

res

# leave results unnamed
res <- runSimulation(design=Design, replications=100, generate=Generate,

analyse=list(Analyse1, Analyse2),
summarise=Summarise)

## End(Not run)

Attach Attach objects for easier reference

Description

The behaviour of this function is very similar to attach, however it is environment specific, and
therefore only remains defined in a given function rather than in the Global Environment. Hence,
this function is much safer to use than the attach, which incidentally should never be used in your
code. This is useful primarily as a convenience function when you prefer to call the variable names
in condition directly rather than indexing with condition$sample_size or with(condition,
sample_size), for example.

Usage

Attach(..., omit = NULL, check = TRUE, attach_listone = TRUE)
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Arguments

... a comma separated list of data.frame or tibble objects containing elements
that should be placed in the current working environment

omit an optional character vector containing the names of objects that should not be
attached to the current environment. For instance, if the objects named ’a’ and
’b’ should not be attached then use omit = c('a', 'b'). When NULL (default)
all objects are attached

check logical; check to see if the function will accidentally replace previously defined
variables with the same names as in condition? Default is TRUE, which will
avoid this error

attach_listone logical; if the element to be assign is a list of length one then assign the first
element of this list with the associated name. This generally avoids adding an
often unnecessary list 1 index, such as name <- list[[1L]]

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation, Generate

Examples

## Not run:

# does not use Attach()
Generate <- function(condition, fixed_objects = NULL) {

N1 <- condition$sample_sizes_group1
N2 <- condition$sample_sizes_group2
sd <- condition$standard_deviations

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

# similar to above, but using the Attach() function instead of indexing
Generate <- function(condition, fixed_objects = NULL) {

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Attach(condition)
N1 <- sample_sizes_group1
N2 <- sample_sizes_group2
sd <- standard_deviations

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

## End(Not run)

BF_sim Example simulation from Brown and Forsythe (1974)

Description

Example results from the Brown and Forsythe (1974) article on robust estimators for variance ratio
tests. Statistical tests are organized by columns and the unique design conditions are organized
by rows. See BF_sim_alternative for an alternative form of the same simulation. Code for this
simulation is available of the wiki (https://github.com/philchalmers/SimDesign/wiki).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69(346), 364–367.
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:
data(BF_sim)
head(BF_sim)

#Type I errors
subset(BF_sim, var_ratio == 1)

## End(Not run)

https://github.com/philchalmers/SimDesign/wiki
https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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BF_sim_alternative (Alternative) Example simulation from Brown and Forsythe (1974)

Description

Example results from the Brown and Forsythe (1974) article on robust estimators for variance ratio
tests. Statistical tests and distributions are organized by columns and the unique design condi-
tions are organized by rows. See BF_sim for an alternative form of the same simulation where
distributions are also included in the rows. Code for this simulation is available on the wiki
(https://github.com/philchalmers/SimDesign/wiki).

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69(346), 364–367.

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:
data(BF_sim_alternative)
head(BF_sim_alternative)

#' #Type I errors
subset(BF_sim_alternative, var_ratio == 1)

## End(Not run)

bias Compute (relative/standardized) bias summary statistic

Description

Computes the (relative) bias of a sample estimate from the parameter value. Accepts estimate and
parameter values, as well as estimate values which are in deviation form. If relative bias is requested
the estimate and parameter inputs are both required.

https://github.com/philchalmers/SimDesign/wiki
https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Usage

bias(
estimate,
parameter = NULL,
type = "bias",
abs = FALSE,
percent = FALSE,
unname = FALSE

)

Arguments

estimate a numeric vector, matrix/data.frame, or list of parameter estimates. If a
vector, the length is equal to the number of replications. If a matrix/data.frame,
the number of rows must equal the number of replications. list objects will be
looped over using the same rules after above after first translating the informa-
tion into one-dimensional vectors and re-creating the structure upon return

parameter a numeric scalar/vector indicating the fixed parameters. If a single value is
supplied and estimate is a matrix/data.frame then the value will be recycled
for each column; otherwise, each element will be associated with each respective
column in the estimate input. If NULL then it will be assumed that the estimate
input is in a deviation form (therefore mean(estimate)) will be returned)

type type of bias statistic to return. Default ('bias') computes the standard bias
(average difference between sample and population), 'relative' computes the
relative bias statistic (i.e., divide the bias by the value in parameter; note that
multiplying this by 100 gives the "percent bias" measure), 'abs_relative'
computes the relative bias but the absolute values of the parameters are used in
the denominator rather than the (potentially) signed input values, and 'standardized'
computes the standardized bias estimate (standard bias divided by the standard
deviation of the sample estimates)

abs logical; find the absolute bias between the parameters and estimates? This ef-
fectively just applies the abs transformation to the returned result. Default is
FALSE

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a numeric vector indicating the overall (relative/standardized) bias in the estimates

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

RMSE

Examples

pop <- 2
samp <- rnorm(100, 2, sd = 0.5)
bias(samp, pop)
bias(samp, pop, type = 'relative')
bias(samp, pop, type = 'standardized')

dev <- samp - pop
bias(dev)

# equivalent here
bias(mean(samp), pop)

# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(mat, parameter = 2)
bias(mat, parameter = 2, type = 'relative')
bias(mat, parameter = 2, type = 'standardized')

# different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
bias(mat, parameter = c(2,3))

# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(df, parameter = c(2,2))

# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
bias(estimates, parameters)

# relative difference dividing by the magnitude of parameters
bias(estimates, parameters, type = 'abs_relative')

# relative bias as a percentage
bias(estimates, parameters, type = 'abs_relative', percent = TRUE)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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boot_predict Compute prediction estimates for the replication size using bootstrap
MSE estimates

Description

This function computes bootstrap mean-square error estimates to approximate the sampling behav-
ior of the meta-statistics in SimDesign’s summarise functions. A single design condition is sup-
plied, and a simulation with max(Rstar) replications is performed whereby the generate-analyse
results are collected. After obtaining these replication values, the replications are further drawn
from (with replacement) using the differing sizes in Rstar to approximate the bootstrap MSE be-
havior given different replication sizes. Finally, given these bootstrap estimates linear regression
models are fitted using the predictor term one_sqrtR = 1 / sqrt(Rstar) to allow extrapolation to
replication sizes not observed in Rstar. For more information about the method and subsequent
bootstrap MSE plots, refer to Koehler, Brown, and Haneuse (2009).

Usage

boot_predict(
condition,
generate,
analyse,
summarise,
fixed_objects = NULL,
...,
Rstar = seq(100, 500, by = 100),
boot_draws = 1000

)

Arguments

condition a data.frame consisting of one row from the original design input object used
within runSimulation

generate see runSimulation

analyse see runSimulation

summarise see runSimulation

fixed_objects see runSimulation

... additional arguments to be passed to runSimulation

Rstar a vector containing the size of the bootstrap subsets to obtain. Default investi-
gates the vector [100, 200, 300, 400, 500] to compute the respective MSE terms

boot_draws number of bootstrap replications to draw. Default is 1000
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Value

returns a list of linear model objects (via lm) for each meta-statistics returned by the summarise()
function

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Koehler, E., Brown, E., & Haneuse, S. J.-P. A. (2009). On the Assessment of Monte Carlo Error in
Simulation-Based Statistical Analyses. The American Statistician, 63, 155-162.

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

set.seed(4321)
Design <- createDesign(sigma = c(1, 2))

#-------------------------------------------------------------------

Generate <- function(condition, fixed_objects = NULL) {
dat <- rnorm(100, 0, condition$sigma)
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
CIs <- t.test(dat)$conf.int
names(CIs) <- c('lower', 'upper')
ret <- c(mean = mean(dat), CIs)
ret

}

Summarise <- function(condition, results, fixed_objects = NULL) {
ret <- c(mu_bias = bias(results[,1], 0),

mu_coverage = ECR(results[,2:3], parameter = 0))
ret

}

## Not run:
# boot_predict supports only one condition at a time
out <- boot_predict(condition=Design[1L, , drop=FALSE],

generate=Generate, analyse=Analyse, summarise=Summarise)
out # list of fitted linear model(s)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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# extract first meta-statistic
mu_bias <- out$mu_bias

dat <- model.frame(mu_bias)
print(dat)

# original R metric plot
R <- 1 / dat$one_sqrtR^2
plot(R, dat$MSE, type = 'b', ylab = 'MSE', main = "Replications by MSE")

plot(MSE ~ one_sqrtR, dat, main = "Bootstrap prediction plot", xlim = c(0, max(one_sqrtR)),
ylim = c(0, max(MSE)), ylab = 'MSE', xlab = expression(1/sqrt(R)))

beta <- coef(mu_bias)
abline(a = 0, b = beta, lty = 2, col='red')

# what is the replication value when x-axis = .02? What's its associated expected MSE?
1 / .02^2 # number of replications
predict(mu_bias, data.frame(one_sqrtR = .02)) # y-axis value

# approximately how many replications to obtain MSE = .001?
(beta / .001)^2

## End(Not run)

CC Compute congruence coefficient

Description

Computes the congruence coefficient, also known as an "unadjusted" correlation or Tucker’s con-
gruence coefficient.

Usage

CC(x, y = NULL, unname = FALSE)

Arguments

x a vector or data.frame/matrix containing the variables to use. If a vector then
the input y is required, otherwise the congruence coefficient is computed for all
bivariate combinations

y (optional) the second vector input to use if x is a vector

unname logical; apply unname to the results to remove any variable names?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

cor

Examples

vec1 <- runif(1000)
vec2 <- runif(1000)

CC(vec1, vec2)
# compare to cor()
cor(vec1, vec2)

# column input
df <- data.frame(vec1, vec2, vec3 = runif(1000))
CC(df)
cor(df)

createDesign Create the simulation Design object

Description

Create a partially or fully-crossed data object reflecting the unique simulation design conditions.
Each row of the returned object represents a unique simulation condition, and each column repre-
sents the named factor variables under study.

Usage

createDesign(..., subset, tibble = TRUE, stringsAsFactors = FALSE)

## S3 method for class 'Design'
print(x, list2char = TRUE, ...)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Arguments

... comma separated list of named input objects representing the simulation factors
to completely cross. Note that these arguments are passed to expand.grid to
perform the complete crossings

subset (optional) a logical vector indicating elements or rows to keep to create a par-
tially crossed simulation design

tibble logical; return a tibble object instead of a data.frame? Default is TRUE
stringsAsFactors

logical; should character variable inputs be coerced to factors when building a
data.frame? Default is FALSE

x object returned by createDesign

list2char logical; for tibble object re-evaluate list elements as character vectors for better
printing of the levels? Note that this does not change the original classes of the
object, just how they are printed. Default is TRUE

Value

a tibble or data.frame containing the simulation experiment conditions to be evaluated in runSimulation

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:

# modified example from runSimulation()

Design <- createDesign(N = c(10, 20),
SD = c(1, 2))

Design

# remove N=10, SD=2 row from initial definition
Design <- createDesign(N = c(10, 20),

SD = c(1, 2),
subset = !(N == 10 & SD == 2))

Design

# example with list inputs

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Design <- createDesign(N = c(10, 20),
SD = c(1, 2),
combo = list(c(0,0), c(0,0,1)))

Design # notice levels printed (not typical for tibble)
print(Design, list2char = FALSE) # standard tibble output

Design <- createDesign(N = c(10, 20),
SD = c(1, 2),
combo = list(c(0,0), c(0,0,1)),
combo2 = list(c(5,10,5), c(6,7)))

Design
print(Design, list2char = FALSE) # standard tibble output

## End(Not run)

ECR Compute empirical coverage rates

Description

Computes the detection rate for determining empirical coverage rates given a set of estimated con-
fidence intervals. Note that using 1 - ECR(CIs, parameter) will provide the empirical detection
rate. Also supports computing the average width of the CIs, which may be useful when comparing
the efficiency of CI estimators.

Usage

ECR(
CIs,
parameter,
tails = FALSE,
CI_width = FALSE,
names = NULL,
unname = FALSE

)

Arguments

CIs a numeric vector or matrix of confidence interval values for a given parame-
ter value, where the first element/column indicates the lower confidence interval
and the second element/column the upper confidence interval. If a vector of
length 2 is passed instead then the returned value will be either a 1 or 0 to indi-
cate whether the parameter value was or was not within the interval, respectively.
Otherwise, the input must be a matrix with an even number of columns

parameter a numeric scalar indicating the fixed parameter value. Alternative, a numeric
vector object with length equal to the number of rows as CIs (use to compare
sets of parameters at once)
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tails logical; when TRUE returns a vector of length 2 to indicate the proportion of
times the parameter was lower or higher than the supplied interval, respectively.
This is mainly only useful when the coverage region is not expected to be sym-
metric, and therefore is generally not required. Note that 1 - sum(ECR(CIs,
parameter, tails=TRUE)) == ECR(CIs, parameter)

CI_width logical; rather than returning the overall coverage rate, return the average width
of the CIs instead? Useful when comparing the efficiency of different CI esti-
mators

names an optional character vector used to name the returned object. Generally useful
when more than one CI estimate is investigated at once

unname logical; apply unname to the results to remove any variable names?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

EDR

Examples

CIs <- matrix(NA, 100, 2)
for(i in 1:100){

dat <- rnorm(100)
CIs[i,] <- t.test(dat)$conf.int

}

ECR(CIs, 0)
ECR(CIs, 0, tails = TRUE)

# single vector input
CI <- c(-1, 1)
ECR(CI, 0)
ECR(CI, 2)
ECR(CI, 2, tails = TRUE)

# parameters of the same size as CI
parameters <- 1:10
CIs <- cbind(parameters - runif(10), parameters + runif(10))
parameters <- parameters + rnorm(10)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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ECR(CIs, parameters)

# average width of CIs
ECR(CIs, parameters, CI_width=TRUE)

# ECR() for multiple CI estimates in the same object
parameter <- 10
CIs <- data.frame(lowerCI_1=parameter - runif(10),

upperCI_1=parameter + runif(10),
lowerCI_2=parameter - 2*runif(10),
upperCI_2=parameter + 2*runif(10))

head(CIs)
ECR(CIs, parameter)
ECR(CIs, parameter, tails=TRUE)
ECR(CIs, parameter, CI_width=TRUE)

# often a good idea to provide names for the output
ECR(CIs, parameter, names = c('this', 'that'))
ECR(CIs, parameter, CI_width=TRUE, names = c('this', 'that'))
ECR(CIs, parameter, tails=TRUE, names = c('this', 'that'))

EDR Compute the empirical detection rate for Type I errors and Power

Description

Computes the detection rate for determining empirical Type I error and power rates using informa-
tion from p-values.

Usage

EDR(p, alpha = 0.05, unname = FALSE)

Arguments

p a numeric vector or matrix/data.frame of p-values from the desired statistical
estimator. If a matrix, each statistic must be organized by column, where the
number of rows is equal to the number of replications

alpha the nominal detection rate to be studied (typical values are .10, .05, and .01).
Default is .05

unname logical; apply unname to the results to remove any variable names?

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

ECR

Examples

rates <- numeric(100)
for(i in 1:100){

dat <- rnorm(100)
rates[i] <- t.test(dat)$p.value

}

EDR(rates)
EDR(rates, alpha = .01)

# multiple rates at once
rates <- cbind(runif(1000), runif(1000))
EDR(rates)

Generate Generate data

Description

Generate data from a single row in the design input (see runSimulation). R contains numer-
ous approaches to generate data, some of which are contained in the base package, as well as in
SimDesign (e.g., rmgh, rValeMaurelli, rHeadrick). However the majority can be found in ex-
ternal packages. See CRAN’s list of possible distributions here: https://CRAN.R-project.org/
view=Distributions. Note that this function technically can be omitted if the data generation is
provided in the Analyse step, though in general this is not recommended.

Usage

Generate(condition, fixed_objects = NULL)

Arguments

condition a single row from the design input (as a data.frame), indicating the simulation
conditions

fixed_objects object passed down from runSimulation

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/view=Distributions
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Details

The use of try functions is generally not required in this function because Generate is internally
wrapped in a try call. Therefore, if a function stops early then this will cause the function to halt
internally, the message which triggered the stop will be recorded, and Generate will be called
again to obtain a different dataset. That said, it may be useful for users to throw their own stop
commands if the data should be re-drawn for other reasons (e.g., an estimated model terminated
correctly but the maximum number of iterations were reached).

Value

returns a single object containing the data to be analyzed (usually a vector, matrix, or data.frame),
or list

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

add_missing, Attach, rmgh, rValeMaurelli, rHeadrick

Examples

## Not run:

generate <- function(condition, fixed_objects = NULL) {
N1 <- condition$sample_sizes_group1
N2 <- condition$sample_sizes_group2
sd <- condition$standard_deviations

group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
# just a silly example of a simulated parameter
pars <- list(random_number = rnorm(1))

list(dat=dat, parameters=pars)
}

# similar to above, but using the Attach() function instead of indexing
generate <- function(condition, fixed_objects = NULL) {

Attach(condition)
N1 <- sample_sizes_group1
N2 <- sample_sizes_group2
sd <- standard_deviations

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)),

DV = c(group1, group2))
dat

}

generate2 <- function(condition, fixed_objects = NULL) {
mu <- sample(c(-1,0,1), 1)
dat <- rnorm(100, mu)
dat #return simple vector (discard mu information)

}

generate3 <- function(condition, fixed_objects = NULL) {
mu <- sample(c(-1,0,1), 1)
dat <- data.frame(DV = rnorm(100, mu))
dat

}

## End(Not run)

IRMSE Compute the integrated root mean-square error

Description

Computes the average/cumulative deviation given two continuous functions and an optional func-
tion representing the probability density function. Only one-dimensional integration is supported.

Usage

IRMSE(
estimate,
parameter,
fn,
density = function(theta, ...) 1,
lower = -Inf,
upper = Inf,
...

)

Arguments

estimate a vector of parameter estimates

parameter a vector of population parameters
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fn a continuous function where the first argument is to be integrated and the sec-
ond argument is a vector of parameters or parameter estimates. This function
represents a implied continuous function which uses the sample estimates or
population parameters

density (optional) a density function used to marginalize (i.e., average), where the first
argument is to be integrated, and must be of the form density(theta, ...) or
density(theta, param1, param2), where param1 is a placeholder name for
the hyper-parameters associated with the probability density function. If omitted
then the cumulative different between the respective functions will be computed
instead

lower lower bound to begin numerical integration from

upper upper bound to finish numerical integration to

... additional parameters to pass to fnest, fnparam, density, and integrate,

Details

The integrated root mean-square error (IRMSE) is of the form

IRMSE(θ) =

√∫
[f(θ, ψ̂)− f(θ, ψ)]2g(θ, ...)

where g(θ, ...) is the density function used to marginalize the continuous sample (f(θ, ψ̂)) and
population (f(θ, ψ)) functions.

Value

returns a single numeric term indicating the average/cumulative deviation given the supplied con-
tinuous functions

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

RMSE

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Examples

# logistic regression function with one slope and intercept
fn <- function(theta, param) 1 / (1 + exp(-(param[1] + param[2] * theta)))

# sample and population sets
est <- c(-0.4951, 1.1253)
pop <- c(-0.5, 1)

theta <- seq(-10,10,length.out=1000)
plot(theta, fn(theta, pop), type = 'l', col='red', ylim = c(0,1))
lines(theta, fn(theta, est), col='blue', lty=2)

# cumulative result (i.e., standard integral)
IRMSE(est, pop, fn)

# integrated RMSE result by marginalizing over a N(0,1) distribution
den <- function(theta, mean, sd) dnorm(theta, mean=mean, sd=sd)

IRMSE(est, pop, fn, den, mean=0, sd=1)

# this specification is equivalent to the above
den2 <- function(theta, ...) dnorm(theta, ...)

IRMSE(est, pop, fn, den2, mean=0, sd=1)

MAE Compute the mean absolute error

Description

Computes the average absolute deviation of a sample estimate from the parameter value. Accepts
estimate and parameter values, as well as estimate values which are in deviation form.

Usage

MAE(estimate, parameter = NULL, type = "MAE", percent = FALSE, unname = FALSE)

Arguments

estimate a numeric vector, matrix/data.frame, or list of parameter estimates. If a
vector, the length is equal to the number of replications. If a matrix/data.frame
the number of rows must equal the number of replications. list objects will be
looped over using the same rules after above after first translating the informa-
tion into one-dimensional vectors and re-creating the structure upon return
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parameter a numeric scalar/vector or matrix indicating the fixed parameter values. If a
single value is supplied and estimate is a matrix/data.frame then the value
will be recycled for each column; otherwise, each element will be associated
with each respective column in the estimate input. If NULL, then it will be as-
sumed that the estimate input is in a deviation form (therefore mean(abs(estimate))
will be returned)

type type of deviation to compute. Can be 'MAE' (default) for the mean absolute er-
ror, 'NMSE' for the normalized MAE (MAE / (max(estimate) - min(estimate))),
or 'SMSE' for the standardized MAE (MAE / sd(estimate))

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a numeric vector indicating the overall mean absolute error in the estimates

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

RMSE

Examples

pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
MAE(samp, pop)

dev <- samp - pop
MAE(dev)
MAE(samp, pop, type = 'NMAE')
MAE(samp, pop, type = 'SMAE')

# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(mat, parameter = 2)

# same, but with data.frame

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
MAE(df, parameter = c(2,2))

# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
MAE(estimates, parameters)

MSRSE Compute the relative performance behavior of collections of standard
errors

Description

The mean-square relative standard error (MSRSE) compares standard error estimates to the standard
deviation of the respective parameter estimates. Values close to 1 indicate that the behavior of the
standard errors closely matched the sampling variability of the parameter estimates.

Usage

MSRSE(SE, SD, percent = FALSE, unname = FALSE)

Arguments

SE a numeric scalar/vector indicating the average standard errors across the repli-
cations, or a matrix of collected standard error estimates themselves to be used
to compute the average standard errors. Each column/element in this input cor-
responds to the column/element in SD

SD a numeric scalar/vector indicating the standard deviation across the replications,
or a matrix of collected parameter estimates themselves to be used to compute
the standard deviations. Each column/element in this input corresponds to the
column/element in SE

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Details

Mean-square relative standard error (MSRSE) is expressed as

MSRSE =
E(SE(ψ)2)

SD(ψ)2
=

1/R ∗
∑R

r=1 SE(ψr)
2

SD(ψ)2

where SE(ψr) represents the estimate of the standard error at the rth simulation replication, and
SD(ψ) represents the standard deviation estimate of the parameters across all R replications. Note
that SD(ψ)2 is used, which corresponds to the variance of ψ.
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Value

returns a vector of ratios indicating the relative performance of the standard error estimates to
the observed parameter standard deviation. Values less than 1 indicate that the standard errors
were larger than the standard deviation of the parameters (hence, the SEs are interpreted as more
conservative), while values greater than 1 were smaller than the standard deviation of the parameters
(i.e., more liberal SEs)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Generate <- function(condition, fixed_objects = NULL) {
X <- rep(0:1, each = 50)
y <- 10 + 5 * X + rnorm(100, 0, .2)
data.frame(y, X)

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
mod <- lm(y ~ X, dat)
so <- summary(mod)
ret <- c(SE = so$coefficients[,"Std. Error"],

est = so$coefficients[,"Estimate"])
ret

}

Summarise <- function(condition, results, fixed_objects = NULL) {
MSRSE(SE = results[,1:2], SD = results[,3:4])

}

results <- runSimulation(replications=500, generate=Generate,
analyse=Analyse, summarise=Summarise)

results

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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quiet Suppress function messages and Concatenate and Print (cat)

Description

This function is used to suppress information printed from external functions that make internal use
of link{message} and cat, which provide information in interactive R sessions. For simulations,
the session is not interactive, and therefore this type of output should be suppressed. For simi-
lar behaviour for suppressing warning messages see suppressWarnings, though use this function
carefully as some warnings can be meaningful and unexpected.

Usage

quiet(..., messages = FALSE, cat = FALSE)

Arguments

... the functional expression to be evaluated

messages logical; suppress all messages?

cat logical; suppress all concatenate and print calls from cat?

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

myfun <- function(x){
message('This function is rather chatty')
cat("It even prints in different output forms!\n")
message('And even at different....')
cat("...times!\n")
x

}

out <- myfun(1)
out

# tell the function to shhhh
out <- quiet(myfun(1))
out

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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RAB Compute the relative absolute bias of multiple estimators

Description

Computes the relative absolute bias given the bias estimates for multiple estimators.

Usage

RAB(x, percent = FALSE, unname = FALSE)

Arguments

x a numeric vector of bias estimates (see bias), where the first element will be
used as the reference

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a vector of absolute bias ratios indicating the relative bias effects compared to the first
estimator. Values less than 1 indicate better bias estimates than the first estimator, while values
greater than 1 indicate worse bias than the first estimator

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

pop <- 1
samp1 <- rnorm(5000, 1)
bias1 <- bias(samp1, pop)
samp2 <- rnorm(5000, 1)
bias2 <- bias(samp2, pop)

RAB(c(bias1, bias2))
RAB(c(bias1, bias2), percent = TRUE) # as a percentage

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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rbind.SimDesign Combine two separate SimDesign objects by row

Description

This function combines two Monte Carlo simulations executed by SimDesign’s runSimulation
function which, for all intents and purposes, could have been executed in a single run. This situa-
tion arises when a simulation has been completed, however the Design object was later modified to
include more levels in the defined simulation factors. Rather than re-executing the previously com-
pleted simulation combinations, only the new combinations need to be evaluated into a different
object and then rbind together to create the complete object combinations.

Usage

## S3 method for class 'SimDesign'
rbind(...)

Arguments

... two or more SimDesign objects that should be combined by rows

Value

same object that is returned by runSimulation

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:

# modified example from runSimulation()

Design <- createDesign(N = c(10, 20),
SD = c(1, 2))

Generate <- function(condition, fixed_objects = NULL) {
dat <- with(condition, rnorm(N, 10, sd=SD))

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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dat
}

Analyse <- function(condition, dat, fixed_objects = NULL) {
ret <- mean(dat) # mean of the sample data vector
ret

}

Summarise <- function(condition, results, fixed_objects = NULL) {
ret <- c(mu=mean(results), SE=sd(results)) # mean and SD summary of the sample means
ret

}

Final1 <- runSimulation(design=Design, replications=1000,
generate=Generate, analyse=Analyse, summarise=Summarise)

Final1

###
# later decide that N = 30 should have also been investigated. Rather than
# running the following object ....
newDesign <- createDesign(N = c(10, 20, 30),

SD = c(1, 2))

# ... only the new subset levels are executed to save time
subDesign <- subset(newDesign, N == 30)
subDesign

Final2 <- runSimulation(design=subDesign, replications=1000,
generate=Generate, analyse=Analyse, summarise=Summarise)

Final2

# glue results together by row into one object as though the complete 'Design'
# object were run all at once
Final <- rbind(Final1, Final2)
Final

summary(Final)

## End(Not run)

RD Compute the relative difference

Description

Computes the relative difference statistic of the form (est - pop)/ pop, which is equivalent to the
form est/pop - 1. If matrices are supplied then an equivalent matrix variant will be used of the
form (est - pop) * solve(pop). Values closer to 0 indicate better relative parameter recovery.
Note that for single variable inputs this is equivalent to bias(..., type = 'relative').
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Usage

RD(est, pop, as.vector = TRUE, unname = FALSE)

Arguments

est a numeric vector, matrix/data.frame, or list containing the parameter esti-
mates

pop a numeric vector or matrix containing the true parameter values. Must be of
comparable dimension to est

as.vector logical; always wrap the result in a as.vector function before returning?

unname logical; apply unname to the results to remove any variable names?

Value

returns a vector or matrix depending on the inputs and whether as.vector was used

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

# vector
pop <- seq(1, 100, length.out=9)
est1 <- pop + rnorm(9, 0, .2)
(rds <- RD(est1, pop))
summary(rds)

# matrix
pop <- matrix(c(1:8, 10), 3, 3)
est2 <- pop + rnorm(9, 0, .2)
RD(est2, pop, as.vector = FALSE)
(rds <- RD(est2, pop))
summary(rds)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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RE Compute the relative efficiency of multiple estimators

Description

Computes the relative efficiency given the RMSE (default) or MSE values for multiple estimators.

Usage

RE(x, MSE = FALSE, percent = FALSE, unname = FALSE)

Arguments

x a numeric vector of root mean square error values (see RMSE), where the first
element will be used as the reference. Otherwise, the object could contain MSE
values if the flag MSE = TRUE is also included

MSE logical; are the input value mean squared errors instead of root mean square
errors?

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a vector of variance ratios indicating the relative efficiency compared to the first estimator.
Values less than 1 indicate better efficiency than the first estimator, while values greater than 1
indicate worse efficiency than the first estimator

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

pop <- 1
samp1 <- rnorm(100, 1, sd = 0.5)
RMSE1 <- RMSE(samp1, pop)
samp2 <- rnorm(100, 1, sd = 1)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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RMSE2 <- RMSE(samp2, pop)

RE(c(RMSE1, RMSE2))
RE(c(RMSE1, RMSE2), percent = TRUE) # as a percentage

# using MSE instead
mse <- c(RMSE1, RMSE2)^2
RE(mse, MSE = TRUE)

rejectionSampling Rejection sampling (i.e., accept-reject method)

Description

This function supports the rejection sampling (i.e., accept-reject) approach to drawing values from
seemingly difficult (probability) density functions by sampling values from more manageable proxy
distributions.

Usage

rejectionSampling(
n,
df,
dg,
rg,
M,
method = "optimize",
interval = NULL,
logfuns = FALSE,
maxM = 1e+05,
parstart = rg(1L),
ESRS_Mstart = 1.0001

)

Arguments

n number of samples to draw

df the desired (potentially un-normed) density function to draw independent sam-
ples from. Must be in the form of a function with a single input corresponding
to the values sampled from rg. Function is assumed to be vectorized (if not, see
Vectorize)

dg the proxy (potentially un-normed) density function to draw samples from in lieu
of drawing samples from df. The support for this density function should be
the same as df (i.e., when df(x) > 0 then dg(x) > 0). Must be in the form of
a function with a single input corresponding to the values sampled from rg.
Function is assumed to be vectorized (if not, see Vectorize)
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rg the proxy random number generation function, associated with dg, used to draw
proposal samples from. Must be in the form of a function with a single input
corresponding to the number of values to draw, while the output can either be a
vector or a matrix (if a matrix, each independent observation must be stored in
a unique row). Function is assumed to be vectorized (if not, see Vectorize)

M the upper-bound of the ratio of probability density functions to help minimize
the number of discarded draws and define the corresponding rescaled proposal
envelope. When missing, M is computed internally by finding a reasonable max-
imum of log(df(x)) - log(dg(x)), and this value is returned to the console.
When both df and dg are true probability density functions (i.e., integrate to 1)
the acceptance probability is equal to 1/M

method when M is missing, the optimization of M is done either by finding the mode
of the log-density values ("optimize") or by using the "Empirical Supremum
Rejection Sampling" method ("ESRS")

interval when M is missing, for univariate density function draws, the interval to search
within via optimize. If not specified, a sample of 5000 values from the rg
function definition will be collected, and the min/max will be obtained via this
random sample

logfuns logical; have the df and dg function been written so as to return log-densities
instead of the original densities? The FALSE default assumes the original densi-
ties are returned (use TRUE when higher accuracy is required when generating
each density definition)

maxM logical; if when optimizing M the value is greater than this cut-off then stop;
ampler would likelihood be too efficient, or optimization is failing

parstart starting value vector for optimization of M in multidimensional distributions

ESRS_Mstart starting M value for the ESRS algorithm

Details

The accept-reject algorithm is a flexible approach to obtaining i.i.d.’s from a difficult to sample from
(probability) density function where either the transformation method fails or inverse transform
method is difficult to manage. The algorithm does so by sampling from a more "well-behaved"
proxy distribution (with identical support, up to some proportionality constant M that reshapes the
proposal density to envelope the target density), and accepts the draws if they are likely within
the target density. Hence, the closer the shape of dg(x) is to the desired df(x), the more likely the
draws are to be accepted; otherwise, many iterations of the accept-reject algorithm may be required,
which decreases the computational efficiency.

Value

returns a vector or matrix of draws (corresponding to the output class from rg) from the desired df

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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References

Caffo, B. S., Booth, J. G., and Davison, A. C. (2002). Empirical supremum rejection sampling.
Biometrika, 89, 745–754.

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:

# Generate X ~ beta(a,b), where a and b are a = 2.7 and b = 6.3,
# and the support is Y ~ Unif(0,1)
dfn <- function(x) dbeta(x, shape1 = 2.7, shape2 = 6.3)
dgn <- function(x) dunif(x, min = 0, max = 1)
rgn <- function(n) runif(n, min = 0, max = 1)

# when df and dg both integrate to 1, acceptance probability = 1/M
M <- rejectionSampling(df=dfn, dg=dgn, rg=rgn)
M
dat <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, M=M)
hist(dat, 100)
hist(rbeta(10000, 2.7, 6.3), 100) # compare

# obtain empirical estimate of M via ESRS method
M <- rejectionSampling(1000, df=dfn, dg=dgn, rg=rgn, method='ESRS')
M

# generate using better support function (here, Y ~ beta(2,6)),
# and use log setup in initial calls (more numerically accurate)
dfn <- function(x) dbeta(x, shape1 = 2.7, shape2 = 6.3, log = TRUE)
dgn <- function(x) dbeta(x, shape1 = 2, shape2 = 6, log = TRUE)
rgn <- function(n) rbeta(n, shape1 = 2, shape2 = 6)
M <- rejectionSampling(df=dfn, dg=dgn, rg=rgn, logfuns=TRUE) # better M
M
## Alternative estimation of M
## M <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, logfuns=TRUE,
## method='ESRS')
dat <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, M=M, logfuns=TRUE)
hist(dat, 100)

#------------------------------------------------------
# sample from wonky (and non-normalized) density function, like below
dfn <- function(x){

ret <- numeric(length(x))
ret[x <= .5] <- dnorm(x[x <= .5])
ret[x > .5] <- dnorm(x[x > .5]) + dchisq(x[x > .5], df = 2)
ret

}

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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y <- seq(-5,5, length.out = 1000)
plot(y, dfn(y), type = 'l', main = "Function to sample from")

# choose dg/rg functions that have support within the range [-inf, inf]
rgn <- function(n) rnorm(n, sd=4)
dgn <- function(x) dnorm(x, sd=4)

## example M height from above graphic
## (M selected using ESRS to help stochastically avoid local mins)
M <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, method='ESRS')
M
lines(y, dgn(y)*M, lty = 2)
dat <- rejectionSampling(10000, df=dfn, dg=dgn, rg=rgn, M=M)
hist(dat, 100, prob=TRUE)

# true density (normalized)
C <- integrate(dfn, -Inf, Inf)$value
ndfn <- function(x) dfn(x) / C
curve(ndfn, col='red', lwd=2, add=TRUE)

#-----------------------------------------------------
# multivariate distribution
dfn <- function(x) sum(log(c(dnorm(x[1]) + dchisq(x[1], df = 5),

dnorm(x[2], -1, 2))))
rgn <- function(n) c(rnorm(n, sd=3), rnorm(n, sd=3))
dgn <- function(x) sum(log(c(dnorm(x[1], sd=3), dnorm(x[1], sd=3))))

# M <- rejectionSampling(df=dfn, dg=dgn, rg=rgn, logfuns=TRUE)
dat <- rejectionSampling(5000, df=dfn, dg=dgn, rg=rgn, M=4.6, logfuns=TRUE)
hist(dat[,1], 30)
hist(dat[,2], 30)
plot(dat)

## End(Not run)

reSummarise Run a summarise step for results that have been saved to the hard drive

Description

When runSimulation() uses the option save_results = TRUE the R replication results from the
Generate-Analyse functions are stored to the hard drive. As such, additional summarise components
may be required at a later time, whereby the respective .rds files must be read back into R to be
summarised. This function performs the reading of these files, application of a provided summarise
function, and final collection of the respective results.
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Usage

reSummarise(
summarise,
dir = NULL,
files = NULL,
results = NULL,
Design = NULL,
fixed_objects = NULL,
boot_method = "none",
boot_draws = 1000L,
CI = 0.95

)

Arguments

summarise a summarise function to apply to the read-in files. See runSimulation for de-
tails

dir directory pointing to the .rds files to be read-in that were saved from runSimulation(...,
save_results=TRUE). If NULL, it is assumed the current working directory con-
tains the .rds files

files (optional) names of files to read-in. If NULL all files located within dir will be
used

results (optional) the results of runSimulation when no summarise function was pro-
vided. Can be either a tibble or matrix (indicating that exactly one design
condition was evaluated), or a list of matrix/tibble objects indicating that
multiple conditions were performed with no summarise evaluation.
Alternatively, if store_results = TRUE in the runSimulation() execution then
the final SimDesign object may be passed, where the generate-analyse informa-
tion will be extracted from the object instead

Design (optional) if results input used, and design condition information important
in the summarise step, then the original design object from runSimulation
should be included

fixed_objects (optional) see runSimulation for details

boot_method method for performing non-parametric bootstrap confidence intervals for the re-
spective meta-statistics computed by the Summarise function. See runSimulation
for details

boot_draws number of non-parametric bootstrap draws to sample for the summarise func-
tion after the generate-analyse replications are collected. Default is 1000

CI bootstrap confidence interval level (default is 95%)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

Design <- createDesign(N = c(10, 20, 30))

Generate <- function(condition, fixed_objects = NULL) {
dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5)
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
ret <- c(mean=mean(dat), median=median(dat)) # mean/median of sample data
ret

}

## Not run:
# run the simulation
runSimulation(design=Design, replications=50,

generate=Generate, analyse=Analyse,
summarise=NA, save_results=TRUE,
save_details = list(save_results_dirname='simresults'))

Summarise <- function(condition, results, fixed_objects = NULL){
apply(results, 2, mean)

}

res <- reSummarise(Summarise, dir = 'simresults/')
res

Summarise2 <- function(condition, results, fixed_objects = NULL){
ret <- c(mean_ests=apply(results, 2, mean),

SE=apply(results, 2, sd))
ret

}

res2 <- reSummarise(Summarise2, dir = 'simresults/')
res2

SimClean('simresults/')

## End(Not run)

###

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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# similar to above, but using objects defined in workspace
results <- runSimulation(design=Design, replications=50,

generate=Generate, analyse=Analyse)
str(results)

Summarise <- function(condition, results, fixed_objects = NULL){
ret <- c(mean_ests=apply(results, 2, mean),

SE=apply(results, 2, sd))
ret

}

res <- reSummarise(Summarise, results=results, Design=Design)
res

res <- reSummarise(Summarise, results=results, boot_method = 'basic')
res

###
# Also similar, but storing the results within the summarised simulation

Summarise <- function(condition, results, fixed_objects = NULL){
ret <- c(mean_ests=apply(results, 2, mean),

SE=apply(results, 2, sd))
ret

}

res <- runSimulation(design=Design, replications=50, store_results = TRUE,
generate=Generate, analyse=Analyse, summarise=Summarise)

res

# internal results stored
results <- SimExtract(res, what = 'results')
str(results)

# pass SimDesign object to results
res <- reSummarise(Summarise, results=res, boot_method = 'basic')
res

rHeadrick Generate non-normal data with Headrick’s (2002) method

Description

Generate multivariate non-normal distributions using the fifth-order polynomial method described
by Headrick (2002).

Usage

rHeadrick(
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n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
skew = rep(0, nrow(sigma)),
kurt = rep(0, nrow(sigma)),
gam3 = NaN,
gam4 = NaN,
return_coefs = FALSE,
coefs = NULL,
control = list(trace = FALSE, max.ntry = 15, obj.tol = 1e-10, n.valid.sol = 1)

)

Arguments

n number of samples to draw

mean a vector of k elements for the mean of the variables

sigma desired k x k covariance matrix between bivariate non-normal variables

skew a vector of k elements for the skewness of the variables

kurt a vector of k elements for the kurtosis of the variables

gam3 (optional) explicitly supply the gamma 3 value? Default computes this internally

gam4 (optional) explicitly supply the gamma 4 value? Default computes this internally

return_coefs logical; return the estimated coefficients only? See below regarding why this is
useful.

coefs (optional) supply previously estimated coefficients? This is useful when there
must be multiple data sets drawn and will avoid repetitive computations. Must
be the object returned after passing return_coefs = TRUE

control a list of control parameters when locating the polynomial coefficients

Details

This function is primarily a wrapper for the code written by Oscar L. Olvera Astivia (last edited Feb
26, 2015) with some modifications (e.g., better starting values for the Newton optimizer, passing
previously saved coefs, etc).

Author(s)

Oscar L. Olvera Astivia and Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Headrick, T. C. (2002). Fast fifth-order polynomial transforms for generating univariate and multi-
variate nonnormal distributions. Computational Statistics & Data Analysis, 40, 685-711.

Olvera Astivia, O. L., & Zumbo, B. D. (2015). A Cautionary Note on the Use of the Vale and
Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes. Educational
and Psychological Measurement, 75, 541-567.

Examples

## Not run:
set.seed(1)

N <- 200
mean <- c(rep(0,4))
Sigma <- matrix(.49, 4, 4)
diag(Sigma) <- 1
skewness <- c(rep(1,4))
kurtosis <- c(rep(2,4))

nonnormal <- rHeadrick(N, mean, Sigma, skewness, kurtosis)
# cor(nonnormal)
# psych::describe(nonnormal)

#-----------
# compute the coefficients, then supply them back to the function to avoid
# extra computations

cfs <- rHeadrick(N, mean, Sigma, skewness, kurtosis, return_coefs = TRUE)
cfs

# compare
system.time(nonnormal <- rHeadrick(N, mean, Sigma, skewness, kurtosis))
system.time(nonnormal <- rHeadrick(N, mean, Sigma, skewness, kurtosis,

coefs=cfs))

## End(Not run)

rint Generate integer values within specified range

Description

Efficiently generate positive and negative integer values with (default) or without replacement. This
function is mainly a wrapper to the sample.int function (which itself is much more efficient integer
sampler than the more general sample), however is intended to work with both positive and negative
integer ranges since sample.int only returns positive integer values that must begin at 1L.
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Usage

rint(n, min, max, replace = TRUE, prob = NULL)

Arguments

n number of samples to draw

min lower limit of the distribution. Must be finite

max upper limit of the distribution. Must be finite

replace should sampling be with replacement?

prob a vector of probability weights for obtaining the elements of the vector being
sampled

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

set.seed(1)

# sample 1000 integer values within 20 to 100
x <- rint(1000, min = 20, max = 100)
summary(x)

# sample 1000 integer values within 100 to 10 billion
x <- rint(1000, min = 100, max = 1e8)
summary(x)

# compare speed to sample()
system.time(x <- rint(1000, min = 100, max = 1e8))
system.time(x2 <- sample(100:1e8, 1000, replace = TRUE))

# sample 1000 integer values within -20 to 20
x <- rint(1000, min = -20, max = 20)
summary(x)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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rinvWishart Generate data with the inverse Wishart distribution

Description

Function generates data in the form of symmetric matrices from the inverse Wishart distribution
given a covariance matrix and degrees of freedom.

Usage

rinvWishart(n = 1, df, sigma)

Arguments

n number of matrix observations to generate. By default n = 1, which returns a
single symmetric matrix. If n > 1 then a list of n symmetric matrices are returned
instead

df degrees of freedom

sigma positive definite covariance matrix

Value

a numeric matrix with columns equal to ncol(sigma) when n = 1, or a list of n matrices with the
same properties

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Examples

# random inverse Wishart matrix given variances [3,6], covariance 2, and df=15
sigma <- matrix(c(3,2,2,6), 2, 2)
x <- rinvWishart(sigma = sigma, df = 15)
x

# list of matrices
x <- rinvWishart(20, sigma = sigma, df = 15)
x

rmgh Generate data with the multivariate g-and-h distribution

Description

Generate non-normal distributions using the multivariate g-and-h distribution. Can be used to gen-
erate several different classes of univariate and multivariate distributions.

Usage

rmgh(n, g, h, mean = rep(0, length(g)), sigma = diag(length(mean)))

Arguments

n number of samples to draw

g the g parameter(s) which control the skew of a distribution in terms of both
direction and magnitude

h the h parameter(s) which control the tail weight or elongation of a distribution
and is positively related with kurtosis

mean a vector of k elements for the mean of the variables

sigma desired k x k covariance matrix between bivariate non-normal variables

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Examples

set.seed(1)

# univariate
norm <- rmgh(10000,1e-5,0)
hist(norm)

skew <- rmgh(10000,1/2,0)
hist(skew)

neg_skew_platykurtic <- rmgh(10000,-1,-1/2)
hist(neg_skew_platykurtic)

# multivariate
sigma <- matrix(c(2,1,1,4), 2)
mean <- c(-1, 1)
twovar <- rmgh(10000, c(-1/2, 1/2), c(0,0),

mean=mean, sigma=sigma)
hist(twovar[,1])
hist(twovar[,2])
plot(twovar)

RMSE Compute the (normalized) root mean square error

Description

Computes the average deviation (root mean square error; also known as the root mean square de-
viation) of a sample estimate from the parameter value. Accepts estimate and parameter values, as
well as estimate values which are in deviation form.

Usage

RMSE(
estimate,
parameter = NULL,
type = "RMSE",
MSE = FALSE,
percent = FALSE,
unname = FALSE

)

RMSD(
estimate,
parameter = NULL,
type = "RMSE",
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MSE = FALSE,
percent = FALSE,
unname = FALSE

)

Arguments

estimate a numeric vector, matrix/data.frame, or list of parameter estimates. If a
vector, the length is equal to the number of replications. If a matrix/data.frame,
the number of rows must equal the number of replications. list objects will be
looped over using the same rules after above after first translating the informa-
tion into one-dimensional vectors and re-creating the structure upon return

parameter a numeric scalar/vector indicating the fixed parameter values. If a single value
is supplied and estimate is a matrix/data.frame then the value will be re-
cycled for each column; otherwise, each element will be associated with each
respective column in the estimate input. If NULL then it will be assumed that
the estimate input is in a deviation form (therefore sqrt(mean(estimate^2))
will be returned)

type type of deviation to compute. Can be 'RMSE' (default) for the root mean square-
error, 'NRMSE' for the normalized RMSE (RMSE / (max(estimate) - min(estimate))),
'SRMSE' for the standardized RMSE (RMSE / sd(estimate)), 'CV' for the coef-
ficient of variation, or 'RMSLE' for the root mean-square log-error

MSE logical; return the mean square error equivalent of the results instead of the root
mean-square error (in other words, the result is squared)? Default is FALSE

percent logical; change returned result to percentage by multiplying by 100? Default is
FALSE

unname logical; apply unname to the results to remove any variable names?

Value

returns a numeric vector indicating the overall average deviation in the estimates

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

bias

MAE

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Examples

pop <- 1
samp <- rnorm(100, 1, sd = 0.5)
RMSE(samp, pop)

dev <- samp - pop
RMSE(dev)

RMSE(samp, pop, type = 'NRMSE')
RMSE(dev, type = 'NRMSE')
RMSE(dev, pop, type = 'SRMSE')
RMSE(samp, pop, type = 'CV')
RMSE(samp, pop, type = 'RMSLE')

# percentage reported
RMSE(samp, pop, type = 'NRMSE')
RMSE(samp, pop, type = 'NRMSE', percent = TRUE)

# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
RMSE(mat, parameter = 2)
RMSE(mat, parameter = c(2, 3))

# different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
RMSE(mat, parameter = c(2,3))

# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
RMSE(df, parameter = c(2,2))

# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
RMSE(estimates, parameters)

rmvnorm Generate data with the multivariate normal (i.e., Gaussian) distribu-
tion

Description

Function generates data from the multivariate normal distribution given some mean vector and/or
covariance matrix.

Usage

rmvnorm(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)))
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Arguments

n number of observations to generate

mean mean vector, default is rep(0, length = ncol(sigma))

sigma positive definite covariance matrix, default is diag(length(mean))

Value

a numeric matrix with columns equal to length(mean)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

# random normal values with mean [5, 10] and variances [3,6], and covariance 2
sigma <- matrix(c(3,2,2,6), 2, 2)
mu <- c(5,10)
x <- rmvnorm(1000, mean = mu, sigma = sigma)
head(x)
summary(x)
plot(x[,1], x[,2])

rmvt Generate data with the multivariate t distribution

Description

Function generates data from the multivariate t distribution given a covariance matrix, non-centrality
parameter (or mode), and degrees of freedom.

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Usage

rmvt(n, sigma, df, delta = rep(0, nrow(sigma)), Kshirsagar = FALSE)

Arguments

n number of observations to generate

sigma positive definite covariance matrix

df degrees of freedom. df = 0 and df = Inf corresponds to the multivariate normal
distribution

delta the vector of non-centrality parameters of length n which specifies the either the
modes (default) or non-centrality parameters

Kshirsagar logical; triggers whether to generate data with non-centrality parameters or to
adjust the simulated data to the mode of the distribution. The default uses the
mode

Value

a numeric matrix with columns equal to ncol(sigma)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

# random t values given variances [3,6], covariance 2, and df = 15
sigma <- matrix(c(3,2,2,6), 2, 2)
x <- rmvt(1000, sigma = sigma, df = 15)
head(x)
summary(x)
plot(x[,1], x[,2])

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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RSE Compute the relative standard error ratio

Description

Computes the relative standard error ratio given the set of estimated standard errors (SE) and the
deviation across the R simulation replications (SD). The ratio is formed by finding the expectation of
the SE terms, and compares this expectation to the general variability of their respective parameter
estimates across the R replications (ratio should equal 1). This is used to roughly evaluate whether
the SEs being advertised by a given estimation method matches the sampling variability of the
respective estimates across samples.

Usage

RSE(SE, ests, unname = FALSE)

Arguments

SE a numeric matrix of SE estimates across the replications (extracted from the
results object in the Summarise step). Alternatively, can be a vector containing
the mean of the SE estimates across the R simulation replications

ests a numeric matrix object containing the parameter estimates under investigation
found within the Summarise function. This input is used to compute the standard
deviation/variance estimates for each column to evaluate how well the expected
SE matches the standard deviation

unname logical; apply unname to the results to remove any variable names?

Value

returns vector of variance ratios, (RSV = SE^2/SD^2)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Examples

R <- 10000
par_ests <- cbind(rnorm(R), rnorm(R, sd=1/10),

rnorm(R, sd=1/15))
colnames(par_ests) <- paste0("par", 1:3)
(SDs <- apply(par_ests, 2, sd))

SEs <- cbind(1 + rnorm(R, sd=.01),
1/10 + + rnorm(R, sd=.01),
1/15 + rnorm(R, sd=.01))

(E_SEs <- colMeans(SEs))
RSE(SEs, par_ests)

# equivalent to the form
colMeans(SEs) / (SDs)

rtruncate Generate a random set of values within a truncated range

Description

Function generates data given a supplied random number generating function that are constructed
to fall within a particular range. Sampled values outside this range are discarded and re-sampled
until the desired criteria has been met.

Usage

rtruncate(n, rfun, range, ..., redraws = 100L)

Arguments

n number of observations to generate. This should be the first argument passed to
rfun

rfun a function to generate random values. Function can return a numeric/integer
vector or matrix, and additional arguments requred for this function are passed
through the argument ...

range a numeric vector of length two, where the first element indicates the lower bound
and the second the upper bound. When values are generated outside these two
bounds then data are redrawn until the bounded criteria is met. When the output
of rfun is a matrix then this input can be specified as a matrix with two rows,
where each the first row corresponds to the lower bound and the second row the
upper bound for each generated column in the output

... additional arguments to be passed to rfun
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redraws the maximum number of redraws to take before terminating the iterative se-
quence. This is in place as a safety in case the range is too small given the
random number generator, causing too many consecutive rejections. Default is
100

Details

In simulations it is often useful to draw numbers from truncated distributions rather than across
the full theoretical range. For instance, sampling parameters within the range [-4,4] from a normal
distribution. The rtruncate function has been designed to accept any sampling function, where the
first argument is the number of values to sample, and will draw values iteratively until the number
of values within the specified bound are obtained. In situations where it is unlikely for the bounds
to be located (e.g., sampling from a standard normal distribution where all values are within [-10,-
6]) then the sampling scheme will throw an error if too many re-sampling executions are required
(default will stop if more that 100 calls to rfun are required).

Value

either a numeric vector or matrix, where all values are within the desired range

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

# n = 1000 truncated normal vector between [-2,3]
vec <- rtruncate(1000, rnorm, c(-2,3))
summary(vec)

# truncated correlated multivariate normal between [-1,4]
mat <- rtruncate(1000, rmvnorm, c(-1,4),

sigma = matrix(c(2,1,1,1),2))
summary(mat)

# truncated correlated multivariate normal between [-1,4] for the
# first column and [0,3] for the second column
mat <- rtruncate(1000, rmvnorm, cbind(c(-1,4), c(0,3)),

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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sigma = matrix(c(2,1,1,1),2))
summary(mat)

# truncated chi-square with df = 4 between [2,6]
vec <- rtruncate(1000, rchisq, c(2,6), df = 4)
summary(vec)

runSimulation Run a Monte Carlo simulation given a data.frame of conditions and
simulation functions

Description

This function runs a Monte Carlo simulation study given a set of predefined simulation func-
tions, design conditions, and number of replications. Results can be saved as temporary files
in case of interruptions and may be restored by re-running runSimulation, provided that the
respective temp file can be found in the working directory. runSimulation supports parallel
and cluster computing, global and local debugging, error handling (including fail-safe stopping
when functions fail too often, even across nodes), provides bootstrap estimates of the sampling
variability (optional), and automatic tracking of error and warning messages and their associ-
ated .Random.seed states. For convenience, all functions available in the R work-space are ex-
ported across all computational nodes so that they are more easily accessible (however, other R
objects are not, and therefore must be passed to the fixed_objects input to become available
across nodes). For an in-depth tutorial of the package please refer to Chalmers and Adkins (2020;
doi:10.20982/tqmp.16.4.p248). For an earlier didactic presentation of the package refer to Sigal
and Chalmers (2016; doi:10.1080/10691898.2016.1246953). Finally, see the associated wiki on
Github (https://github.com/philchalmers/SimDesign/wiki) for tutorial material, examples,
and applications of SimDesign to real-world simulation experiments.

Usage

runSimulation(
design,
replications,
generate,
analyse,
summarise,
fixed_objects = NULL,
packages = NULL,
filename = NULL,
debug = "none",
load_seed = NULL,
save_results = FALSE,
parallel = FALSE,
ncores = parallel::detectCores(),
cl = NULL,

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
https://github.com/philchalmers/SimDesign/wiki
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notification = "none",
beep = FALSE,
sound = 1,
CI = 0.95,
seed = NULL,
boot_method = "none",
boot_draws = 1000L,
max_errors = 50L,
save_seeds = FALSE,
save = TRUE,
store_results = FALSE,
save_details = list(),
extra_options = list(),
progress = TRUE,
verbose = TRUE

)

## S3 method for class 'SimDesign'
summary(object, ...)

## S3 method for class 'SimDesign'
print(x, list2char = TRUE, ...)

Arguments

design a tibble or data.frame object containing the Monte Carlo simulation con-
ditions to be studied, where each row represents a unique condition and each
column a factor to be varied. See createDesign for the standard approach to
create this simulation design object

replications number of independent replications to perform per condition (i.e., each row in
design). Must be greater than 0

generate user-defined data and parameter generating function. See Generate for details.
Note that this argument may be omitted by the user if they wish to generate the
data with the analyse step, but for real-world simulations this is generally not
recommended

analyse user-defined analysis function (or named list of functions) that acts on the data
generated from Generate (or, if generate was omitted, can be used to generate
and analyses the simulated data). See Analyse for details

summarise optional (but highly recommended) user-defined summary function from Summarise
to be used to compute meta-statistical summary information after all the repli-
cations have completed within each design condition.
Omitting this function will return a list of data.frames (or a single data.frame,
if only one row in design is supplied) or, for more general objects (such as
lists), a list containing the results returned form Analyse. Alternatively,
the value NA can be passed to let the generate-analyse-summarise process to
run as usual, where the summarise components are instead included only as a
placeholder. Omitting this input is only recommended for didactic purposes
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because it leaves out a large amount of information (e.g., try-errors, warning
messages, saving files, etc), can witness memory related issues, and generally is
not as flexible internally.
If users do not wish to supply a summarise function then it is is recommended
to pass NA to this argument while also supplying passing save_results = TRUE
to save the results to the hard-drive during the simulation. This provides a more
RAM friendly alternative to storing all the Generate-Analyse results in the work-
ing environment, where the Analysis results can be summarised at a later time

fixed_objects (optional) an object (usually a named list) containing additional user-defined
objects that should remain fixed across conditions. This is useful when includ-
ing large vectors/matrices of population parameters, fixed data information that
should be used across all conditions and replications (e.g., including a common
design matrix for linear regression models), or simply control constant global
elements (e.g., a constant for sample size)

packages a character vector of external packages to be used during the simulation (e.g.,
c('MASS', 'extraDistr', 'simsem') ). Use this input when parallel = TRUE
or MPI = TRUE to use non-standard functions from additional packages, other-
wise the functions must be made available by using explicit library or require
calls within the provided simulation functions. Alternatively, functions can
be called explicitly without attaching the package with the :: operator (e.g.,
extraDistr::rgumbel())

filename (optional) the name of the .rds file to save the final simulation results to. If the
extension .rds is not included in the file name (e.g. "mysimulation" versus
"mysimulation.rds") then the .rds extension will be automatically added to
the file name to ensure the file extension is correct.
Note that if the same file name already exists in the working directly at the
time of saving then a new file will be generated instead and a warning will be
thrown. This helps to avoid accidentally overwriting existing files. Default is
NULL, indicating no file will be saved by default

debug a string indicating where to initiate a browser() call for editing and debugging,
and pairs particularly well with the load_seed argument for precise debugging.
General options are 'none' (default; no debugging), 'error', which starts the
debugger when any error in the code is detected in one of three generate-analyse-
summarise functions, and 'all', which debugs all the user defined functions
regardless of whether an error was thrown or not. Specific options include:
'generate' to debug the data simulation function, 'analyse' to debug the
computational function, and 'summarise' to debug the aggregation function.
If the Analyse argument is supplied as a named list of functions then it is also
possible to debug the specific function of interest by passing the name of the re-
spective function in the list. For instance, if analyse = list(A1=Analyse.A1,
A2=Analyse.A2) then passing debug = 'A1' will debug only the first function
in this list, and all remaining analysis functions will be ignored.
Alternatively, users may place browser calls within the respective functions for
debugging at specific lines, which is useful when debugging based on condi-
tional evaluations (e.g., if(this == 'problem') browser()). Note that paral-
lel computation flags will automatically be disabled when a browser() is de-
tected or when a debugging argument other than 'none' is supplied
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load_seed used to replicate an exact simulation state, which is primarily useful for de-
bugging purposes. Input can be a character object indicating which file to load
from when the .Random.seeds have be saved (after a call with save_seeds =
TRUE), or an integer vector indicating the actual .Random.seed values. E.g.,
load_seed = 'design-row-2/seed-1' will load the first seed in the second
row of the design input, or explicitly passing the elements from .Random.seed
(see SimExtract to extract the seeds associated explicitly with errors during
the simulation, where each column represents a unique seed). If the input is a
character vector then it is important NOT to modify the design input object,
otherwise the path may not point to the correct saved location, while if the input
is an integer vector (or single column tbl object) then it WILL be important to
modify the design input in order to load this exact seed for the corresponding
design row. Default is NULL

save_results logical; save the results returned from Analyse to external .rds files located
in the defined save_results_dirname directory/folder? Use this if you would
like to keep track of the individual parameters returned from the analysis func-
tion. Each saved object will contain a list of three elements containing the con-
dition (row from design), results (as a list or matrix), and try-errors. See
SimResults for an example of how to read these .rds files back into R after the
simulation is complete. Default is FALSE.
WARNING: saving results to your hard-drive can fill up space very quickly
for larger simulations. Be sure to test this option using a smaller number of
replications before the full Monte Carlo simulation is performed. See also
reSummarise for applying summarise functions from saved simulation results

parallel logical; use parallel processing from the parallel package over each unique
condition?

ncores number of cores to be used in parallel execution. Default uses all available

cl cluster object defined by makeCluster used to run code in parallel. If NULL
and parallel = TRUE, a local cluster object will be defined which selects the
maximum number cores available and will be stopped when the simulation is
complete. Note that supplying a cl object will automatically set the parallel
argument to TRUE. Define and supply this cluster object yourself whenever you
have multiple nodes to chain together (note in this case that you must use either
the "MPI" or "PSOCK" clusters)

notification an optional character vector input that can be used to send Pushbullet notifica-
tions from a configured computer. This reports information such as the total
execution time, the condition completed, and error/warning messages recorded.
This arguments assumes that users have already A) registered for a Pushbullet
account, B) installed the application on their mobile device and computer, and
C) created an associated JSON file of the form ~/.rpushbullet.json using
RPushbullet::pbSetup()).
To utilize the RPushbullet in SimDesign first call library(RPushbullet be-
fore running runSimulation() to read-in the default JSON file. Next, pass
one of the following supported options: 'none' (default; send no notifica-
tion), 'condition' to send a notification after each condition has completed,
or 'complete' to send a notification only when the simulation has finished.

beep logical; call the beepr package when the simulation is completed?
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sound sound argument passed to beepr::beep()

CI bootstrap confidence interval level (default is 95%)
seed a vector of integers to be used for reproducibility. The length of the vector

must be equal the number of rows in design. This argument calls set.seed
or clusterSetRNGStream for each condition, respectively, but will not be run
when MPI = TRUE. Default randomly generates seeds within the range 1 to 2147483647
for each condition.

boot_method method for performing non-parametric bootstrap confidence intervals for the re-
spective meta-statistics computed by the Summarise function. Can be 'basic'
for the empirical bootstrap CI, 'percentile' for percentile CIs, 'norm' for
normal approximations CIs, or 'studentized' for Studentized CIs (should
only be used for simulations with lower replications due to its computational in-
tensity). Alternatively, CIs can be constructed using the argument 'CLT', which
computes the intervals according to the large-sample standard error approxima-
tion SD(results)/

√
R. Default is 'none', which performs no CI computations

boot_draws number of non-parametric bootstrap draws to sample for the summarise func-
tion after the generate-analyse replications are collected. Default is 1000

max_errors the simulation will terminate when more than this number of consecutive errors
are thrown in any given condition, causing the simulation to continue to the next
unique design condition. This is included to avoid getting stuck in infinite re-
draws, and to indicate that something fatally problematic is going wrong in the
generate-analyse phases. Default is 50

save_seeds logical; save the .Random.seed states prior to performing each replication into
plain text files located in the defined save_seeds_dirname directory/folder?
Use this if you would like to keep track of every simulation state within each
replication and design condition. This can be used to completely replicate any
cell in the simulation if need be. As well, see the load_seed input to load a
given .Random.seed to exactly replicate the generated data and analysis state
(mostly useful for debugging). When TRUE, temporary files will also be saved to
the working directory (in the same way as when save = TRUE). Default is FALSE
Note, however, that this option is not typically necessary or recommended since
the .Random.seed states for simulation replications that throw errors during the
execution are automatically stored within the final simulation object, and can
be extracted and investigated using SimExtract. Hence, this option is only of
interest when all of the replications must be reproducible (which occurs very
rarely), otherwise the defaults to runSimulation should be sufficient

save logical; save the temporary simulation state to the hard-drive? This is useful
for simulations which require an extended amount of time, though for shorter
simulations can be disabled to slightly improve computational efficiency. When
TRUE, a temp file will be created in the working directory which allows the sim-
ulation state to be saved and recovered (in case of power outages, crashes, etc).
As well, triggering this flag will save any fatal .Random.seed states when condi-
tions unexpectedly crash (where each seed is stored row-wise in an external .rds
file), which provides a much easier mechanism to debug issues (see load_seed
for details). Upon completion, this temp file will be removed.
To recover your simulation at the last known location (having patched the issues
in the previous execution code) simply re-run the code you used to initially
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define the simulation and the external file will automatically be detected and
read-in. Default is TRUE

store_results logical; store the complete tables of simulation results in the returned object?
This is FALSE by default to help avoid RAM issues (see save_results as a
more suitable alternative). However, if the Design object is omitted from the
call to runSimulation(), or the number of rows in Design is exactly 1, then
this argument is automatically set to TRUE as RAM storage will no longer be an
issue.
To extract these results pass the returned object to SimExtract(..., what =
'results'), which will return a named list of all the simulation results for each
condition if nrow(Design) > 1; otherwise, if nrow(Design) == 1 or Design
was missing the results object will be stored as-is

save_details a list pertaining to information regarding how and where files should be saved
when the save or save_results flags are triggered.

safe logical; trigger whether safe-saving should be performed. When TRUE
files will never be overwritten accidentally, and where appropriate the pro-
gram will either stop or generate new files with unique names. Default is
TRUE

compname name of the computer running the simulation. Normally this doesn’t
need to be modified, but in the event that a manual node breaks down while
running a simulation the results from the temp files may be resumed on an-
other computer by changing the name of the node to match the broken com-
puter. Default is the result of evaluating unname(Sys.info()['nodename'])

out_rootdir root directory to save all files to. Default uses the current working
directory

save_results_dirname a string indicating the name of the folder to save result
objects to when save_results = TRUE. If a directory/folder does not exist
in the current working directory then a unique one will be created automat-
ically. Default is 'SimDesign-results_' with the associated compname
appended

save_seeds_dirname a string indicating the name of the folder to save .Random.seed
objects to when save_seeds = TRUE. If a directory/folder does not exist in
the current working directory then one will be created automatically. De-
fault is 'SimDesign-seeds_' with the associated compname appended

extra_options a list for extra information flags no commonly used. These can be

stop_on_fatal logical (default is FALSE); should the simulation be terminated
immediately when the maximum number of consecutive errors (max_errors)
is reached? If FALSE, the simulation will continue as though errors did not
occur, however a column FATAL_TERMINATION will be included in the re-
sulting object indicating the final error message observed, and NA place-
holders will be placed in all other row-elements. Default is FALSE

warnings_as_errors logical (default is FALSE); treat warning messages as er-
ror messages during the simulation? Default is FALSE, therefore warnings
are only collected and not used to restart the data generation step, and the
seeds associated with the warning message conditions are not stored within
the final simulation object
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store_warning_seeds logical (default is FALSE); in addition to storing the
.Random.seed states whenever error messages are raised, also store the
.Random.seed states when warnings are raised? This is disabled by de-
fault since warnings are generally less problematic than errors, and because
many more warnings messages may be raised throughout the simulation
(potentially causing RAM related issues when constructing the final sim-
ulation object as any given simulation replicate could generate numerous
warnings, and storing the seeds states could add up quickly).
Set this to TRUE when replicating warning messages is important, however
be aware that too many warnings messages raised during the simulation
implementation could cause RAM related issues.

include_replication_index logical (default is FALSE); should a REPLICA-
TION element be added to the condition object when performing the sim-
ulation to track which specific replication experiment is being evaluated?
This is useful when, for instance, attempting to run external software pro-
grams (e.g., Mplus) that require saving temporary data sets to the hard-drive
(see the Wiki for examples)

try_all_analyse logical; when analyse is a list, should every generated data
set be analyzed by each function definition in the analyse list? Default is
TRUE.
Note that this TRUE default can be computationally demanding when some
analysis functions require more computational resources than others, and
the data should be discarded early as an invalid candidate (e.g., estimat-
ing a model via maximum-likelihood in on analyze component, while es-
timating a model using MCMC estimation on another). Hence, the main
benefit of using FALSE instead is that the data set may be rejected earlier,
where easier/faster to estimate analyse definitions should be placed ear-
lier in the list as the functions are evaluated in sequence (e.g., Analyse =
list(MLE=MLE_definition, MCMC=MCMC_definition))

allow_na logical (default is FALSE); should NAs be allowed in the analyse step
as a valid result from the simulation analysis?

allow_nan logical (default is FALSE); should NaNs be allowed in the analyse
step as a valid result from the simulation analysis?

type default type of cluster to create for the cl object if no supplied. For Win-
dows OS this defaults to "PSOCK", otherwise "SOCK" is selected (suitable
for Linux and Mac OSX). This is ignored if the user specifies their own cl
object

MPI logical (default is FALSE); use the foreach package in a form usable by
MPI to run simulation in parallel on a cluster?

.options.mpi list of arguments passed to foreach() to control the MPI exe-
cution properties. Only used when MPI = TRUE

progress logical; display a progress bar (using the pbapply package) for each simulation
condition? This is useful when simulations conditions take a long time to run
(see also the notifications argument). Default is TRUE

verbose logical; print messages to the R console? Default is TRUE
object SimDesign object returned from runSimulation

... additional arguments
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x SimDesign object returned from runSimulation

list2char logical; for tibble object re-evaluate list elements as character vectors for better
printing of the levels? Note that this does not change the original classes of the
object, just how they are printed. Default is TRUE

Details

The strategy for organizing the Monte Carlo simulation work-flow is to

1) Define a suitable Design object (a tibble or data.frame) containing fixed conditional informa-
tion about the Monte Carlo simulations. Each row or this design object pertains to a unique
set of simulation to study, while each column the simulation factor under investigation (e.g.,
sample size, distribution types, etc). This is often expedited by using the createDesign func-
tion, and if necessary the argument subset can be used to remove redundant or non-applicable
rows

2) Define the three step functions to generate the data (Generate; see also https://CRAN.R-project.
org/view=Distributions for a list of distributions in R), analyse the generated data by com-
puting the respective parameter estimates, detection rates, etc (Analyse), and finally sum-
marise the results across the total number of replications (Summarise).

3) Pass the design object and three defined R functions to runSimulation, and declare the number
of replications to perform with the replications input. This function will return a suitable
tibble object with the complete simulation results and execution details

4) Analyze the output from runSimulation, possibly using ANOVA techniques (SimAnova) and
generating suitable plots and tables

Expressing the above more succinctly, the functions to be called have the following form, with the
exact functional arguments listed:

Design <- createDesign(...)

Generate <- function(condition, fixed_objects = NULL) {...}

Analyse <- function(condition, dat, fixed_objects = NULL) {...}

Summarise <- function(condition, results, fixed_objects = NULL) {...}

res <- runSimulation(design=Design, replications, generate=Generate, analyse=Analyse, summarise=Summarise)

The condition object above represents a single row from the design object, indicating a unique
Monte Carlo simulation condition. The condition object also contains two additional elements
to help track the simulation’s state: an ID variable, indicating the respective row number in the
design object, and a REPLICATION element indicating the replication iteration number (an integer
value between 1 and replication). This setup allows users to easily locate the rth replication (e.g.,
REPLICATION == 500) within the jth row in the simulation design (e.g., ID == 2). The REPLICATION
input is also useful when temporarily saving files to the hard-drive when calling external command
line utilities (see examples on the wiki).

For a template-based version of the work-flow, which is often useful when initially defining a sim-
ulation, use the SimFunctions function. This function will write a template simulation to one/two
files so that modifying the required functions and objects can begin immediately. This means that

https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/view=Distributions
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users can focus on their Monte Carlo simulation details right away rather than worrying about the
repetitive administrative code-work required to organize the simulation’s execution flow.

Finally, examples, presentation files, and tutorials can be found on the package wiki located at
https://github.com/philchalmers/SimDesign/wiki.

Value

a tibble from the dplyr package (also of class 'SimDesign') with the original design conditions
in the left-most columns, simulation results in the middle columns, and additional information in
the right-most columns (see below).

The right-most column information for each condition are: REPLICATIONS to indicate the number
of Monte Carlo replications, SIM_TIME to indicate how long (in seconds) it took to complete all
the Monte Carlo replications for each respective design condition, COMPLETED to indicate the date
in which the given simulation condition completed, SEED for the integer values in the seed argu-
ment, and, if applicable, ERRORS and WARNINGS which contain counts for the number of error or
warning messages that were caught (if no errors/warnings were observed these columns will be
omitted). Note that to extract the specific error and warnings messages see SimExtract. Finally,
if boot_method was a valid input other than ’none’ then the final right-most columns will contain
the labels BOOT_ followed by the name of the associated meta-statistic defined in summarise() and
and bootstrapped confidence interval location for the meta-statistics.

Saving data, results, seeds, and the simulation state

To conserve RAM, temporary objects (such as data generated across conditions and replications)
are discarded; however, these can be saved to the hard-disk by passing the appropriate flags. For
longer simulations it is recommended to use the save_results flag to write the analysis results to
the hard-drive.

The use of the save_seeds option can be evoked to save R’s .Random.seed state to allow for
complete reproducibility of each replication within each condition. These individual .Random.seed
terms can then be read in with the load_seed input to reproduce the exact simulation state at
any given replication. Most often though, save_seeds is less useful since problematic seeds are
automatically stored in the final simulation object to allow for easier replicability of potentially
problematic errors (which incidentally can be extracted using SimExtract(res, 'error_seeds')
and passed to the load_seed argument). Finally, providing a vector of seeds is also possible to
ensure that each simulation condition is macro reproducible under the single/multi-core method
selected.

Finally, when the Monte Carlo simulation is complete it is recommended to write the results to a
hard-drive for safe keeping, particularly with the filename argument provided (for reasons that
are more obvious in the parallel computation descriptions below). Using the filename argument
supplied is safer than using, for instance, saveRDS directly because files will never accidentally
be overwritten, and instead a new file name will be created when a conflict arises; this type of
implementation safety is prevalent in many locations in the package to help avoid unrecoverable
(yet surprisingly common) mistakes during the process of designing and executing Monte Carlo
simulations.

https://github.com/philchalmers/SimDesign/wiki
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Resuming temporary results

In the event of a computer crash, power outage, etc, if save = TRUE was used (the default) then the
original code used to execute runSimulation() need only be re-run to resume the simulation. The
saved temp file will be read into the function automatically, and the simulation will continue one the
condition where it left off before the simulation state was terminated. If users wish to remove this
temporary simulation state entirely so as to start anew then simply pass SimClean(temp = TRUE) in
the R console to remove any previously saved temporary objects.

A note on parallel computing

When running simulations in parallel (either with parallel = TRUE or MPI = TRUE) R objects de-
fined in the global environment will generally not be visible across nodes. Hence, you may see
errors such as Error: object 'something' not found if you try to use an object that is defined in
the work space but is not passed to runSimulation. To avoid this type or error, simply pass addi-
tional objects to the fixed_objects input (usually it’s convenient to supply a named list of these
objects). Fortunately, however, custom functions defined in the global environment are exported
across nodes automatically. This makes it convenient when writing code because custom functions
will always be available across nodes if they are visible in the R work space. As well, note the
packages input to declare packages which must be loaded via library() in order to make specific
non-standard R functions available across nodes.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References
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See Also

SimFunctions, createDesign, Generate, Analyse, Summarise, SimExtract, reSummarise, SimClean,
SimAnova, SimResults, aggregate_simulations, Attach, AnalyseIf, SimShiny

Examples

#-------------------------------------------------------------------------------
# Example 1: Sampling distribution of mean

# This example demonstrate some of the simpler uses of SimDesign,
# particularly for classroom settings. The only factor varied in this simulation
# is sample size.

# skeleton functions to be saved and edited

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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SimFunctions()

#### Step 1 --- Define your conditions under study and create design data.frame

Design <- createDesign(N = c(10, 20, 30))

#~~~~~~~~~~~~~~~~~~~~~~~~
#### Step 2 --- Define generate, analyse, and summarise functions

# help(Generate)
Generate <- function(condition, fixed_objects = NULL) {

dat <- with(condition, rnorm(N, 10, 5)) # distributed N(10, 5)
dat

}

# help(Analyse)
Analyse <- function(condition, dat, fixed_objects = NULL) {

ret <- mean(dat) # mean of the sample data vector
ret

}

# help(Summarise)
Summarise <- function(condition, results, fixed_objects = NULL) {

ret <- c(mu=mean(results), SE=sd(results)) # mean and SD summary of the sample means
ret

}

#~~~~~~~~~~~~~~~~~~~~~~~~
#### Step 3 --- Collect results by looping over the rows in design

# run the simulation
Final <- runSimulation(design=Design, replications=1000,

generate=Generate, analyse=Analyse, summarise=Summarise)
Final

# reproduce exact simulation
Final_rep <- runSimulation(design=Design, replications=1000, seed=Final$SEED,

generate=Generate, analyse=Analyse, summarise=Summarise)
Final_rep

#~~~~~~~~~~~~~~~~~~~~~~~~
#### Extras
## Not run:
# compare SEs estimates to the true SEs from the formula sigma/sqrt(N)
5 / sqrt(Design$N)

# To store the results from the analyse function either
# a) omit a definition of of summarise(), or
# b) pass save_results = TRUE to runSimulation() and read the results in with SimResults()
# Note that the latter method should be adopted for longer simulations
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# e.g., the a) approach
res <- runSimulation(design=Design, replications=1000,

generate=Generate, analyse=Analyse)
str(res)
head(res[[1]])

# or b) approach
Final <- runSimulation(design=Design, replications=1000, save_results=TRUE,

generate=Generate, analyse=Analyse, summarise=Summarise)
res <- SimResults(Final)
str(res)
head(res[[1]]$results)

# obtain empirical bootstrapped CIs during an initial run
# the simulation was completed (necessarily requires save_results = TRUE)
res <- runSimulation(design=Design, replications=1000, boot_method = 'basic',

generate=Generate, analyse=Analyse, summarise=Summarise)
res

# alternative bootstrapped CIs that uses saved results via reSummarise().
# Default directory save to:
dirname <- paste0('SimDesign-results_', unname(Sys.info()['nodename']), "/")
res <- reSummarise(summarise=Summarise, dir=dirname, boot_method = 'basic')
res

# remove the saved results from the hard-drive if you no longer want them
SimClean(results = TRUE)

## End(Not run)

#-------------------------------------------------------------------------------
# Example 2: t-test and Welch test when varying sample size, group sizes, and SDs

# skeleton functions to be saved and edited
SimFunctions()

## Not run:
# in real-world simulations it's often better/easier to save
# these functions directly to your hard-drive with
SimFunctions('my-simulation')

## End(Not run)

#### Step 1 --- Define your conditions under study and create design data.frame

Design <- createDesign(sample_size = c(30, 60, 90, 120),
group_size_ratio = c(1, 4, 8),
standard_deviation_ratio = c(.5, 1, 2))

Design
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#~~~~~~~~~~~~~~~~~~~~~~~~
#### Step 2 --- Define generate, analyse, and summarise functions

Generate <- function(condition, fixed_objects = NULL) {
N <- condition$sample_size # could use Attach() to make objects available
grs <- condition$group_size_ratio
sd <- condition$standard_deviation_ratio
if(grs < 1){

N2 <- N / (1/grs + 1)
N1 <- N - N2

} else {
N1 <- N / (grs + 1)
N2 <- N - N1

}
group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)), DV = c(group1, group2))
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
welch <- t.test(DV ~ group, dat)
ind <- t.test(DV ~ group, dat, var.equal=TRUE)

# In this function the p values for the t-tests are returned,
# and make sure to name each element, for future reference
ret <- c(welch = welch$p.value, independent = ind$p.value)
ret

}

Summarise <- function(condition, results, fixed_objects = NULL) {
#find results of interest here (e.g., alpha < .1, .05, .01)
ret <- EDR(results, alpha = .05)
ret

}

#~~~~~~~~~~~~~~~~~~~~~~~~
#### Step 3 --- Collect results by looping over the rows in design

# first, test to see if it works
res <- runSimulation(design=Design, replications=5,

generate=Generate, analyse=Analyse, summarise=Summarise)
res

## Not run:
# complete run with 1000 replications per condition
res <- runSimulation(design=Design, replications=1000, parallel=TRUE,

generate=Generate, analyse=Analyse, summarise=Summarise)
res
View(res)
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## save final results to a file upon completion, and play a beep when done
runSimulation(design=Design, replications=1000, parallel=TRUE, filename = 'mysim',

generate=Generate, analyse=Analyse, summarise=Summarise, beep=TRUE)

## same as above, but send a notification via Pushbullet upon completion
library(RPushbullet) # read-in default JSON file
runSimulation(design=Design, replications=1000, parallel=TRUE, filename = 'mysim',

generate=Generate, analyse=Analyse, summarise=Summarise,
notification = 'complete')

## Debug the generate function. See ?browser for help on debugging
## Type help to see available commands (e.g., n, c, where, ...),
## ls() to see what has been defined, and type Q to quit the debugger
runSimulation(design=Design, replications=1000,

generate=Generate, analyse=Analyse, summarise=Summarise,
parallel=TRUE, debug='generate')

## Alternatively, place a browser() within the desired function line to
## jump to a specific location
Summarise <- function(condition, results, fixed_objects = NULL) {

#find results of interest here (e.g., alpha < .1, .05, .01)
browser()
ret <- EDR(results[,nms], alpha = .05)
ret

}

runSimulation(design=Design, replications=1000,
generate=Generate, analyse=Analyse, summarise=Summarise,
parallel=TRUE)

## EXTRA: To run the simulation on a MPI cluster, use the following setup (not run)
# library(doMPI)
# cl <- startMPIcluster()
# registerDoMPI(cl)
# Final <- runSimulation(design=Design, replications=1000, MPI=TRUE,
# generate=Generate, analyse=Analyse, summarise=Summarise)
# saveRDS(Final, 'mysim.rds')
# closeCluster(cl)
# mpi.quit()

## Similarly, run simulation on a network linked via ssh
## (two way ssh key-paired connection must be possible between master and slave nodes)
##
## define IP addresses, including primary IP
# primary <- '192.168.2.20'
# IPs <- list(
# list(host=primary, user='phil', ncore=8),
# list(host='192.168.2.17', user='phil', ncore=8)
# )
# spec <- lapply(IPs, function(IP)
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# rep(list(list(host=IP$host, user=IP$user)), IP$ncore))
# spec <- unlist(spec, recursive=FALSE)
#
# cl <- parallel::makeCluster(type='PSOCK', master=primary, spec=spec)
# res <- runSimulation(design=Design, replications=1000, parallel = TRUE,
# generate=Generate, analyse=Analyse, summarise=Summarise, cl=cl)

#~~~~~~~~~~~~~~~~~~~~~~~~
###### Post-analysis: Analyze the results via functions like lm() or SimAnova(), and create
###### tables(dplyr) or plots (ggplot2) to help visualize the results.
###### This is where you get to be a data analyst!

library(dplyr)
res %>% summarise(mean(welch), mean(independent))
res %>% group_by(standard_deviation_ratio, group_size_ratio) %>%

summarise(mean(welch), mean(independent))

# quick ANOVA analysis method with all two-way interactions
SimAnova( ~ (sample_size + group_size_ratio + standard_deviation_ratio)^2, res,

rates = TRUE)

# or more specific ANOVAs
SimAnova(independent ~ (group_size_ratio + standard_deviation_ratio)^2,

res, rates = TRUE)

# make some plots
library(ggplot2)
library(tidyr)
dd <- res %>%

select(group_size_ratio, standard_deviation_ratio, welch, independent) %>%
pivot_longer(cols=c('welch', 'independent'), names_to = 'stats')

dd

ggplot(dd, aes(factor(group_size_ratio), value)) + geom_boxplot() +
geom_abline(intercept=0.05, slope=0, col = 'red') +
geom_abline(intercept=0.075, slope=0, col = 'red', linetype='dotted') +
geom_abline(intercept=0.025, slope=0, col = 'red', linetype='dotted') +
facet_wrap(~stats)

ggplot(dd, aes(factor(group_size_ratio), value, fill = factor(standard_deviation_ratio))) +
geom_boxplot() + geom_abline(intercept=0.05, slope=0, col = 'red') +
geom_abline(intercept=0.075, slope=0, col = 'red', linetype='dotted') +
geom_abline(intercept=0.025, slope=0, col = 'red', linetype='dotted') +
facet_grid(stats~standard_deviation_ratio) +
theme(legend.position = 'none')

## End(Not run)

rValeMaurelli Generate non-normal data with Vale & Maurelli’s (1983) method
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Description

Generate multivariate non-normal distributions using the third-order polynomial method described
by Vale & Maurelli (1983). If only a single variable is generated then this function is equivalent to
the method described by Fleishman (1978).

Usage

rValeMaurelli(
n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
skew = rep(0, nrow(sigma)),
kurt = rep(0, nrow(sigma))

)

Arguments

n number of samples to draw

mean a vector of k elements for the mean of the variables

sigma desired k x k covariance matrix between bivariate non-normal variables

skew a vector of k elements for the skewness of the variables

kurt a vector of k elements for the kurtosis of the variables

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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Examples

set.seed(1)

# univariate with skew
nonnormal <- rValeMaurelli(10000, mean=10, sigma=5, skew=1, kurt=3)
# psych::describe(nonnormal)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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# multivariate with skew and kurtosis
n <- 10000
r12 <- .4
r13 <- .9
r23 <- .1
cor <- matrix(c(1,r12,r13,r12,1,r23,r13,r23,1),3,3)
sk <- c(1.5,1.5,0.5)
ku <- c(3.75,3.5,0.5)

nonnormal <- rValeMaurelli(n, sigma=cor, skew=sk, kurt=ku)
# cor(nonnormal)
# psych::describe(nonnormal)

Serlin2000 Empirical detection robustness method suggested by Serlin (2000)

Description

Hypothesis test to determine whether an observed empirical detection rate, coupled with a given
robustness interval, statistically differs from the population value. Uses the methods described
by Serlin (2000) as well to generate critical values (similar to confidence intervals, but define a
fixed window of robustness). Critical values may be computed without performing the simulation
experiment (hence, can be obtained a priori).

Usage

Serlin2000(p, alpha, delta, R, CI = 0.95)

Arguments

p (optional) a vector containing the empirical detection rate(s) to be tested. Omit-
ting this input will compute only the CV1 and CV2 values, while including this
input will perform a one-sided hypothesis test for robustness

alpha Type I error rate (e.g., often set to .05)

delta (optional) symmetric robustness interval around alpha (e.g., a value of .01 when
alpha = .05 would test the robustness window .04-.06)

R number of replications used in the simulation

CI confidence interval for alpha as a proportion. Default of 0.95 indicates a 95%
interval

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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Examples

# Cochran's criteria at alpha = .05 (i.e., 0.5 +- .01), assuming N = 2000
Serlin2000(p = .051, alpha = .05, delta = .01, R = 2000)

# Bradley's liberal criteria given p = .06 and .076, assuming N = 1000
Serlin2000(p = .060, alpha = .05, delta = .025, R = 1000)
Serlin2000(p = .076, alpha = .05, delta = .025, R = 1000)

# multiple p-values
Serlin2000(p = c(.05, .06, .07), alpha = .05, delta = .025, R = 1000)

# CV values computed before simulation performed
Serlin2000(alpha = .05, R = 2500)

SimAnova Function for decomposing the simulation into ANOVA-based effect
sizes

Description

Given the results from a simulation with runSimulation form an ANOVA table (without p-values)
with effect sizes based on the eta-squared statistic. These results provide approximate indications
of observable simulation effects, therefore these ANOVA-based results are generally useful as ex-
ploratory rather than inferential tools.

Usage

SimAnova(formula, dat, subset = NULL, rates = TRUE)

Arguments

formula an R formula generally of a form suitable for lm or aov. However, if the de-
pendent variable (left size of the equation) is omitted then all the dependent
variables in the simulation will be used and the result will return a list of analy-
ses

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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dat an object returned from runSimulation of class 'SimDesign'

subset an optional argument to be passed to subset with the same name. Used to subset
the results object while preserving the associated attributes

rates logical; does the dependent variable consist of rates (e.g., returned from ECR or
EDR)? Default is TRUE, which will use the logit of the DV to help stabilize the
proportion-based summary statistics when computing the parameters and effect
sizes

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

data(BF_sim)

# all results (not usually good to mix Power and Type I results together)
SimAnova(alpha.05.F ~ (groups_equal + distribution)^2, BF_sim)

# only use anova for Type I error conditions
SimAnova(alpha.05.F ~ (groups_equal + distribution)^2, BF_sim, subset = var_ratio == 1)

# run all DVs at once using the same formula
SimAnova(~ groups_equal * distribution, BF_sim, subset = var_ratio == 1)

SimCheck Check the status of the simulation’s temporary results

Description

This function reads the temporary file saved by runSimulation by collapsing the information into a
suitable (albeit temporary) object of class 'SimDesign'. This is useful when taking a quick-peak at
how the early simulation results are performing (useful long running simulation results with many
rows in the Design object). Returns a tibble-based data.frame object (tbl_df).

Usage

SimCheck(file)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Arguments

file the temp file currently saving the simulation state. If missing the file is assumed
to be in the current working directory, and start with the name 'SIMDESIGN-TEMPFILE'

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

## Not run:

# explicit
temp_results <- SimCheck(file = 'SIMDESIGN-TEMPFILE_mycomp.rds')
temp_results

# works if file is in the current working directory
temp_results <- SimCheck()
temp_results

## End(Not run)

SimClean Removes/cleans files and folders that have been saved

Description

This function is mainly used in pilot studies where results and datasets have been temporarily saved
by runSimulation but should be removed before beginning the full Monte Carlo simulation (e.g.,
remove files and folders which contained bugs/biased results).

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Usage

SimClean(
...,
dirs = NULL,
temp = TRUE,
results = FALSE,
seeds = FALSE,
save_details = list()

)

Arguments

... one or more character objects indicating which files to remove. Used to re-
move .rds files which were saved with saveRDS or when using the save and
filename inputs to runSimulation

dirs a character vector indicating which directories to remove

temp logical; remove the temporary file saved when passing save = TRUE?

results logical; remove the .rds results files saved when passing save_results = TRUE?

seeds logical; remove the seed files saved when passing save_seeds = TRUE?

save_details a list pertaining to information about how and where files were saved (see the
corresponding list in runSimulation)

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation

Examples

## Not run:

# remove file called 'results.rds'
SimClean('results.rds')

# remove default temp file
SimClean()

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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# remove customized saved-results directory called 'mydir'
SimClean(results = TRUE, save_details = list(save_results_dirname = 'mydir'))

## End(Not run)

SimDesign Structure for Organizing Monte Carlo Simulation Designs

Description

Structure for Organizing Monte Carlo Simulation Designs

Details

Provides tools to help organize Monte Carlo simulations in R. The package controls the struc-
ture and back-end of Monte Carlo simulations by utilizing a general generate-analyse-summarise
strategy. The functions provided control common simulation issues such as re-simulating non-
convergent results, support parallel back-end and MPI distributed computations, save and restore
temporary files, aggregate results across independent nodes, and provide native support for debug-
ging. The primary function for organizing the simulations is runSimulation. For an in-depth
tutorial of the package please refer to Chalmers and Adkins (2020; doi:10.20982/tqmp.16.4.p248).
For an earlier didactic presentation of the package users can refer to Sigal and Chalmers (2016;
doi:10.1080/10691898.2016.1246953). Finally, see the associated wiki on Github (https://github.
com/philchalmers/SimDesign/wiki) for other tutorial material, examples, and applications of
SimDesign to real-world simulations.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953
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SimExtract Function to extract extra information from SimDesign objects

Description

Function used to extract any error or warnings messages, the seeds associated with any error or
warning messages, and any analysis results that were stored in the final simulation object.

Usage

SimExtract(object, what, fuzzy = TRUE)

Arguments

object object returned from runSimulation

what character indicating what information to extract. Possible inputs include 'errors'
to return a tibble object containing counts of any error messages, 'warnings'
to return a data.frame object containing counts of any warning messages,
'error_seeds' and 'warning_seeds' to extract the associated .Random.seed
values associated with the ERROR/WARNING messages, 'results' to extract
the simulation results if the option store_results was passed to runSimulation,
and 'summarise' if the Summarise definition returned a named list rather than
a named numeric vector.
Note that 'warning_seeds' are not stored automatically in simulations and re-
quire passing store_warning_seeds = TRUE to runSimulation.

fuzzy logical; use fuzzy string matching to reduce effectively identical messages? For
example, when attempting to invert a matrix the error message "System is com-
putationally singular: reciprocal condition number = 1.92747e-17" and "Sys-
tem is computationally singular: reciprocal condition number = 2.15321e-16"
are effectively the same, and likely should be reported in the same columns of
the extracted output

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References
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tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
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Examples

## Not run:

Generate <- function(condition, fixed_objects = NULL) {
int <- sample(1:10, 1)
if(int > 5) warning('GENERATE WARNING: int greater than 5')
if(int == 1) stop('GENERATE WARNING: integer is 1')
rnorm(5)

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
int <- sample(1:10, 1)
if(int > 5) warning('ANALYSE WARNING: int greater than 5')
if(int == 1) stop('ANALYSE WARNING: int is 1')
c(ret = 1)

}

Summarise <- function(condition, results, fixed_objects = NULL) {
mean(results)

}

res <- runSimulation(replications = 100, seed=1234, verbose=FALSE,
generate=Generate, analyse=Analyse, summarise=Summarise)

res

SimExtract(res, what = 'errors')
SimExtract(res, what = 'warnings')
seeds <- SimExtract(res, what = 'error_seeds')
seeds[,1:3]

# replicate a specific error for debugging (type Q to exit debugger)
res <- runSimulation(replications = 100, load_seed=seeds[,1], debug='analyse',

generate=Generate, analyse=Analyse, summarise=Summarise)

## End(Not run)

SimFunctions Template-based generation of the Generate-Analyse-Summarise func-
tions

Description

This function prints template versions of the required Design and Generate-Analyse-Summarise
functions for SimDesign to run simulations. Templated output comes complete with the correct
inputs, class of outputs, and optional comments to help with the initial definitions. Use this at the
start of your Monte Carlo simulation study. Following the definition of the SimDesign template file
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please refer to detailed the information in runSimulation for how to edit this template to make a
working simulation study.

Usage

SimFunctions(
filename = NULL,
dir = getwd(),
comments = FALSE,
singlefile = TRUE,
summarise = TRUE,
generate = TRUE,
nAnalyses = 1,
openFiles = TRUE

)

Arguments

filename a character vector indicating whether the output should be saved to two respec-
tive files containing the simulation design and the functional components, re-
spectively. Using this option is generally the recommended approach when be-
ginning to write a Monte Carlo simulation

dir the directory to write the files to. Default is the working directory

comments logical; include helpful comments? Default is FALSE

singlefile logical; when filename is included, put output in one files? When FALSE the
output is saved to two separate files containing the functions and design defi-
nitions. The two-file format often makes organization and debugging slightly
easier, especially for larger Monte Carlo simulations. Default is TRUE

summarise include summarise function? Default is TRUE

generate include generate function? Default is TRUE

nAnalyses number of analysis functions to create (default is 1). Increasing the value of
this argument when independent analysis are being performed allows function
definitions to be better partitioned and potentially more modular

openFiles logical; after files have been generated, open them in your text editor (e.g., if
Rstudio is running the scripts will open in a new tab)?

Details

The recommended approach to organizing Monte Carlo simulation files is to first save the tem-
plate generated by this function to the hard-drive by passing a suitable filename argument (which,
if users are interacting with R via the RStudio IDE, will also open the template file after it has
been saved). For larger simulations, two separate files could also be used (achieved by passing
singlefile = FALSE), and may be easier for debugging/sourcing the simulation code; however,
this is a matter of preference and does not change any functionality in the package.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>
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References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
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See Also

runSimulation

Examples

SimFunctions()
SimFunctions(comments = TRUE) #with helpful comments

## Not run:

# write output files to a single file with comments
SimFunctions('mysim', comments = TRUE)

# Multiple analysis functions for optional partitioning
SimFunctions(nAnalyses = 2)
SimFunctions(nAnalyses = 3)

## End(Not run)

SimResults Function to read in saved simulation results

Description

If runSimulation was passed the flag save_results = TRUE then the row results corresponding to
the design object will be stored to a suitable sub-directory as individual .rds files. While users
could use readRDS directly to read these files in themselves, this convenience function will read the
desired rows in automatically given the returned object from the simulation. Can be used to read in
1 or more .rds files at once (if more than 1 file is read in then the result will be stored in a list).

Usage

SimResults(results, which, wd = getwd())

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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Arguments

results object returned from runSimulation where save_results = TRUE was used

which a numeric vector indicating which rows should be read in. If missing, all rows
will be read in

wd working directory; default is found with getwd.

Value

the returned result is either a nested list (when length(which) > 1) or a single list (when length(which)
== 1) containing the simulation results. Each read-in result refers to a list of 4 elements:

condition the associate row (ID) and conditions from the respective design object

results the object with returned from the analyse function, potentially simplified into a matrix
or data.frame

errors a table containing the message and number of errors that caused the generate-analyse steps
to be rerun. These should be inspected carefully as they could indicate validity issues with the
simulation that should be noted

warnings a table containing the message and number of non-fatal warnings which arose from the
analyse step. These should be inspected carefully as they could indicate validity issues with
the simulation that should be noted

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

Examples

## Not run:

results <- runSimulation(..., save_results = TRUE)

# row 1 results
row1 <- SimResults(results, 1)

# rows 1:5, stored in a named list
rows_1to5 <- SimResults(results, 1:5)

# all results
rows_all <- SimResults(results)

https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.1080/10691898.2016.1246953
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## End(Not run)

SimShiny Generate a basic Monte Carlo simulation GUI template

Description

This function generates suitable stand-alone code from the shiny package to create simple web-
interfaces for performing single condition Monte Carlo simulations. The template generated is
relatively minimalistic, but allows the user to quickly and easily edit the saved files to customize
the associated shiny elements as they see fit.

Usage

SimShiny(filename = NULL, dir = getwd(), design, ...)

Arguments

filename an optional name of a text file to save the server and UI components (e.g.,
’mysimGUI.R’). If omitted, the code will be printed to the R console instead

dir the directory to write the files to. Default is the working directory

design design object from runSimulation

... arguments to be passed to runSimulation. Note that the design object is not
used directly, and instead provides options to be selected in the GUI

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

runSimulation
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Examples

## Not run:

Design <- createDesign(sample_size = c(30, 60, 90, 120),
group_size_ratio = c(1, 4, 8),
standard_deviation_ratio = c(.5, 1, 2))

Generate <- function(condition, fixed_objects = NULL) {
N <- condition$sample_size
grs <- condition$group_size_ratio
sd <- condition$standard_deviation_ratio
if(grs < 1){

N2 <- N / (1/grs + 1)
N1 <- N - N2

} else {
N1 <- N / (grs + 1)
N2 <- N - N1

}
group1 <- rnorm(N1)
group2 <- rnorm(N2, sd=sd)
dat <- data.frame(group = c(rep('g1', N1), rep('g2', N2)), DV = c(group1, group2))
dat

}

Analyse <- function(condition, dat, fixed_objects = NULL) {
welch <- t.test(DV ~ group, dat)
ind <- t.test(DV ~ group, dat, var.equal=TRUE)

# In this function the p values for the t-tests are returned,
# and make sure to name each element, for future reference
ret <- c(welch = welch$p.value, independent = ind$p.value)
ret

}

Summarise <- function(condition, results, fixed_objects = NULL) {
#find results of interest here (e.g., alpha < .1, .05, .01)
ret <- EDR(results, alpha = .05)
ret

}

# test that it works
# Final <- runSimulation(design=Design, replications=5,
# generate=Generate, analyse=Analyse, summarise=Summarise)

# print code to console
SimShiny(design=Design, generate=Generate, analyse=Analyse,

summarise=Summarise, verbose=FALSE)

# save shiny code to file
SimShiny('app.R', design=Design, generate=Generate, analyse=Analyse,

summarise=Summarise, verbose=FALSE)
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# run the application
shiny::runApp()
shiny::runApp(launch.browser = TRUE) # in web-browser

## End(Not run)

Summarise Summarise simulated data using various population comparison
statistics

Description

This collapses the simulation results within each condition to composite estimates such as RMSE,
bias, Type I error rates, coverage rates, etc. See the See Also section below for useful functions to
be used within Summarise.

Usage

Summarise(condition, results, fixed_objects = NULL)

Arguments

condition a single row from the design input from runSimulation (as a data.frame),
indicating the simulation conditions

results a tibble data frame (if Analyse returned a named numeric vector of any length)
or a list (if Analyse returned a list or multi-rowed data.frame) containing
the analysis results from Analyse, where each cell is stored in a unique row/list
element

fixed_objects object passed down from runSimulation

Value

for best results should return a named numeric vector or data.frame with the desired meta-
simulation results. Named list objects can also be returned, however the subsequent results must
be extracted via SimExtract

References

Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simula-
tions with the SimDesign Package. The Quantitative Methods for Psychology, 16(4), 248-280.
doi:10.20982/tqmp.16.4.p248

Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte Carlo simula-
tion. Journal of Statistics Education, 24(3), 136-156. doi:10.1080/10691898.2016.1246953

See Also

bias, RMSE, RE, EDR, ECR, MAE, SimExtract
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Examples

## Not run:

summarise <- function(condition, results, fixed_objects = NULL) {

#find results of interest here (alpha < .1, .05, .01)
lessthan.05 <- EDR(results, alpha = .05)

# return the results that will be appended to the design input
ret <- c(lessthan.05=lessthan.05)
ret

}

## End(Not run)
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