Package 'SmallCountRounding'

August 26, 2022
Type Package
Title Small Count Rounding of Tabular Data
Version 1.0.0
Date 2022-08-26
Author Øyvind Langsrud [aut, cre], Johan Heldal [aut]

Maintainer Øyvind Langsrud oyl@ssb.no
Depends Matrix, SSBtools ($>=1.3 .4$)
Imports methods
VignetteBuilder knitr
Suggests knitr, rmarkdown, kableExtra, sdcHierarchies, testthat
Description A statistical disclosure control tool to protect frequency tables in cases where small values are sensitive. The function PLSrounding() performs small count rounding of necessary inner cells so that all small frequencies of cross-classifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. The methodology is described in Langsrud and Heldal (2018) <https://www.researchgate. net/publication/ 327768398_An_Algorithm_for_Small_Count_Rounding_of_Tabular_Data>.

License Apache License 2.0
URL https://github.com/statisticsnorway/SmallCountRounding
BugReports https://github.com/statisticsnorway/SmallCountRounding/issues
RoxygenNote 7.2.0
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-26 19:34:49 UTC

R topics documented:

SmallCountRounding-package 2
HD 3
PLS2way 4
PLSrounding 5
PLSroundingFits 8
PLSroundingLoop 10
print.PLSrounded 11
RoundViaDummy 12
SmallCountData 15
Index 17
SmallCountRounding-package
Small Count Rounding of Tabular Data

Description

A statistical disclosure control tool to protect frequency tables in cases where small values are sensitive. The main function, PLSrounding, performs small count rounding of necessary inner cells (Heldal, 2017) so that all small frequencies of cross-classifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. This is performed by an algorithm inspired by partial least squares regression (Langsrud and Heldal, 2018).

References

Heldal, J. (2017): "The European Census Hub 2011 Hypercubes - Norwegian SDC Experiences". In: Work Session on Statistical Data Confidentiality, Skopje, The former Yugoslav Republic of Macedonia, September 20-22, 2017.

Langsrud, Ø. and Heldal, J. (2018): "An Algorithm for Small Count Rounding of Tabular Data". Presented at: Privacy in statistical databases, Valencia, Spain. September 26-28, 2018. https:// www.researchgate.net/publication/327768398_An_Algorithm_for_Small_Count_Rounding_ of_Tabular_Data

Description

Hellinger distance (HD) and a related utility measure (HDutility) described in the reference below. The utility measure is made to be bounded between 0 and 1 .

Usage

$H D(f, g)$
HDutility (f, g)

Arguments

$f \quad$ Vector of original counts
g Vector of perturbed counts

Details

HD is defined as "sqrt(sum((sqrt $\left.\left.(f)-\operatorname{sqrt}(g))^{\wedge} 2\right) / 2\right)$ " and HDutility is defined as " $1-H D(f$, g)/sqrt(sum(f))".

Value

Hellinger distance or related utility measure

References

Shlomo, N., Antal, L., \& Elliot, M. (2015). Measuring Disclosure Risk and Data Utility for Flexible Table Generators, Journal of Official Statistics, 31(2), 305-324. doi: 10.1515/jos20150019

Examples

```
f <- 1:6
g <- c(0, 3, 3, 3, 6, 6)
print(c(
    HD = HD(f,g),
    HDutility = HDutility(f, g),
    maxdiff = max(abs(g - f)),
    meanAbsDiff = mean(abs(g - f)),
    rootMeanSquare = sqrt(mean((g - f)^2))
))
```


Description

Output from PLSrounding is presented as two-way table(s) in cases where this is possible. A requirement is that the number of main dimensional variables is two.

Usage

PLS2way(obj, variable = c("rounded", "original", "difference", "code"))

Arguments

obj Output object from PLSrounding
variable One of "rounded" (default), "original", "difference" or "code".

Details

When parameter "variable" is "code", output is coded as "\#" (publish), "." (inner) and "\&" (both).

Value

A data frame

Examples

```
# Making tables from PLSrounding examples
z <- SmallCountData("e6")
a <- PLSrounding(z, "freq", formula = ~eu * year + geo)
PLS2way(a, "original")
PLS2way(a, "difference")
PLS2way(a, "code")
PLS2way(PLSrounding(z, "freq", formula = ~eu * year + geo * year), "code")
eHrc2 <- list(geo = c("EU", "@Portugal", "@Spain", "Iceland"), year = c("2018", "2019"))
PLS2way(PLSrounding(z, "freq", hierarchies = eHrc2))
```


Description

Small count rounding of necessary inner cells are performed so that all small frequencies of crossclassifications to be published (publishable cells) are rounded. The publishable cells can be defined from a model formula, hierarchies or automatically from data.

Usage

PLSrounding(
data, freqVar $=$ NULL, roundBase = 3, hierarchies = NULL, formula $=$ NULL, dimVar = NULL, maxRound = roundBase - 1 , printInc $=$ nrow(data) >1000, output = NULL, preAggregate = is.null(freqVar),
)
PLSroundingInner(..., output = "inner")
PLSroundingPublish(..., output = "publish")

Arguments

data	Input data as a data frame (inner cells)
freqVar	Variable holding counts (inner cells frequencies). When NULL (default), micro- data is assumed.
roundBase	Rounding base
hierarchies	List of hierarchies
formula	Model formula defining publishable cells dimVar
The main dimensional variables and additional aggregating variables. This pa-	
maxRound	rameter can be useful when hierarchies and formula are unspecified. Inner cells contributing to original publishable cells equal to or less than maxRound will be rounded
printInc	Printing iteration information to console when TRUE output
Possible non-NULL values are "input", "inner" and "publish". Then a sin- gle data frame is returned.	

preAggregate When TRUE, the data will be aggregated beforehand within the function by the dimensional variables.
... Further parameters sent to RoundViaDummy

Details

This function is a user-friendly wrapper for RoundViaDummy with data frame output and with computed summary of the results. See RoundViaDummy for more details.

Value

Output is a four-element list with class attribute "PLSrounded" (to ensure informative printing).
inner Data frame corresponding to input data with the main dimensional variables and with cell frequencies (original, rounded, difference).
publish Data frame of publishable data with the main dimensional variables and with cell frequencies (original, rounded, difference).
metrics A named character vector of various statistics calculated from the two output data frames ("inner_" used to distinguish). See examples below and the function HDutility.
freqTable Matrix of frequencies of cell frequencies and absolute differences. For example, row "rounded" and column "inn. $4+$ " is the number of rounded inner cell frequencies greater than or equal to 4 .

References

Langsrud, Ø. and Heldal, J. (2018): "An Algorithm for Small Count Rounding of Tabular Data". Presented at: Privacy in statistical databases, Valencia, Spain. September 26-28, 2018. https: // www.researchgate.net/publication/327768398_An_Algorithm_for_Small_Count_Rounding_ of_Tabular_Data

See Also

RoundViaDummy, PLS2way, ModelMatrix

Examples

```
# Small example data set
z <- SmallCountData("e6")
print(z)
# Publishable cells by formula interface
a <- PLSrounding(z, "freq", roundBase = 5, formula = ~geo + eu + year)
print(a)
print(a$inner)
print(a$publish)
print(a$metrics)
print(a$freqTable)
# Recalculation of maxdiff, HDutility, meanAbsDiff and rootMeanSquare
```

```
max(abs(a$publish[, "difference"]))
HDutility(a$publish[, "original"], a$publish[, "rounded"])
mean(abs(a$publish[, "difference"]))
sqrt(mean((a$publish[, "difference"])^2))
# Six lines below produce equivalent results
# Ordering of rows can be different
PLSrounding(z, "freq") # All variables except "freq" as dimVar
PLSrounding(z, "freq", dimVar = c("geo", "eu", "year"))
PLSrounding(z, "freq", formula = ~eu * year + geo * year)
PLSrounding(z[, -2], "freq", hierarchies = SmallCountData("eHrc"))
PLSrounding(z[, -2], "freq", hierarchies = SmallCountData("eDimList"))
PLSrounding(z[, -2], "freq", hierarchies = SmallCountData("eDimList"), formula = ~geo * year)
# Define publishable cells differently by making use of formula interface
PLSrounding(z, "freq", formula = ~eu * year + geo)
# Define publishable cells differently by making use of hierarchy interface
eHrc2 <- list(geo = c("EU", "@Portugal", "@Spain", "Iceland"), year = c("2018", "2019"))
PLSrounding(z, "freq", hierarchies = eHrc2)
# Also possible to combine hierarchies and formula
PLSrounding(z, "freq", hierarchies = SmallCountData("eDimList"), formula = ~geo + year)
# Single data frame output
PLSroundingInner(z, "freq", roundBase = 5, formula = ~geo + eu + year)
PLSroundingPublish(z, roundBase = 5, formula = ~geo + eu + year)
# Microdata input
PLSroundingInner(rbind(z, z), roundBase = 5, formula = ~geo + eu + year)
# Parameter avoidHierarchical (see RoundViaDummy and ModelMatrix)
PLSroundingPublish(z, roundBase = 5, formula = ~geo + eu + year, avoidHierarchical = TRUE)
# Package sdcHierarchies can be used to create hierarchies.
# The small example code below works if this package is available.
if (require(sdcHierarchies)) {
    z2 <- cbind(geo = c("11", "21", "22"), z[, 3:4], stringsAsFactors = FALSE)
    h2 <- list(
        geo = hier_compute(inp = unique(z2$geo), dim_spec = c(1, 1), root = "Tot", as = "df"),
        year = hier_convert(hier_create(root = "Total", nodes = c("2018", "2019")), as = "df"))
    PLSrounding(z2, "freq", hierarchies = h2)
}
# Use PLS2way to produce tables as in Langsrud and Heldal (2018) and to demonstrate
# parameters maxRound, zeroCandidates and identifyNew (see RoundViaDummy).
# Parameter rndSeed used to ensure same output as in reference.
exPSD <- SmallCountData("exPSD")
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, rndSeed=124)
PLS2way(a, "original") # Table 1
PLS2way(a) # Table 2
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, identifyNew = FALSE, rndSeed=124)
PLS2way(a) # Table 3
```

```
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, maxRound = 7)
PLS2way(a) # Values in col1 rounded
a <- PLSrounding(exPSD, "freq", 5, formula = ~rows + cols, zeroCandidates = TRUE)
PLS2way(a) # (row3, col4): original is 0 and rounded is 5
```

PLSroundingFits Small count rounding with post-processing to expected frequencies

Description

The counts rounded by PLSrounding Thereafter, based on the publishable rounded data, expected inner cell frequencies are generated by iterative proportional fitting using Mipf. To ensure that empty cells missing in input data are included in the fitting process, the data is first extended using Extend0.

Usage

PLSroundingFits(
data,
freqVar = NULL,
roundBase = 3,
hierarchies = NULL,
formula = NULL,
dimVar = NULL,
preAggregate = is.null(freqVar),
xReturn = FALSE,
extend0 $=$ TRUE,
limit $=1 \mathrm{e}-10$,
viaQR = FALSE,
iter = 1000,
eps = 0.01,
tol $=1 \mathrm{e}-13$,
reduceBy0 = TRUE,
reduceByColSums = TRUE,
reduceByLeverage = FALSE,
)

Arguments

data	data frame (inner cells)
freqVar	Variable holding counts
roundBase	Rounding base
hierarchies	List of hierarchies
formula	Model formula
dimVar	Dimensional variables

preAggregate	Aggregation
xReturn	Dummy matrix in output when TRUE. To return crossTable as well, use xReturn $=2$.
extend0	Data is automatically extended by Extend0 when TRUE. Can also be specified as a list meaning parameter varGroups to Extend0.
limit	LSfitNonNeg parameter
viaQR	LSfitNonNeg parameter
iter	Mipf parameter
eps	Mipf parameter
tol	Mipf parameter
reduceBy0	Mipf parameter
reduceByColSums	
	Mipf parameter
reduceByLeverage	
	Mipf parameter
. .	Further parameters to PLSrounding.

Details

The seven first parameters is documented in more detail in PLSrounding. If iterative proportional fitting succeeds, the maximum difference between rounded counts and ipFit is less than input parameter eps.

Value

Output from PLSrounding (class attribute "PLSrounded") with modified versions of inner and publish:
inner Extended with more input data variables and with expected frequencies (ipFit).
publish Extended with aggregated expected frequencies (ipFit).

Examples

```
z <- data.frame(geo = c("Iceland", "Portugal", "Spain"),
            eu = c("nonEU", "EU", "EU"),
            year = rep(c("2018","2019"), each = 3),
            freq = c(2,3,7,1,5,6), stringsAsFactors = FALSE)
z4 <- z[-c(1:2), ]
PLSroundingFits(z4, "freq", formula = ~eu * year + geo, extend0 = FALSE)[c("inner", "publish")]
PLSroundingFits(z4, "freq", formula = ~eu * year + geo)[c("inner", "publish")]
my_km2 <- SSBtools::SSBtoolsData("my_km2")
# Default automatic extension (extend0 = TRUE)
PLSroundingFits(my_km2, "freq",
    formula = ~(Sex + Age) * Municipality * Square1000m + Square250m)[c("inner", "publish")]
```

```
    # Manual specification to avoid Nittedal combined with another_km
    PLSroundingFits(my_km2, "freq", formula = ~(Sex + Age) * Municipality * Square1000m + Square250m,
        extend0 = list(c("Sex", "Age"),
    c("Municipality", "Square1000m", "Square250m")))[c("inner", "publish")]
```


PLSroundingLoop PLSrounding on portions of data at a time

Description

The PLSrounding runs are coordinated by using preliminary differences as input for the next run (parameter preDifference)

Usage

PLSroundingLoop(data, loopId,
...,
zeroCandidates = FALSE,
forceInner = FALSE,
preRounded $=$ NULL,
plsWeights = NULL,
printInc = TRUE,
preDifference = TRUE,
preOutput = NULL,
rndSeed = 123
)

Arguments

$$
\begin{array}{ll}
\text { data } & \text { Input data as a data frame (inner cells) } \\
\text { loopId } & \text { Variable holding id for loops } \\
\ldots & \text { PLSrounding parameters } \\
\text { zeroCandidates } & \text { PLSrounding parameter (see details) } \\
\text { forceInner } & \text { PLSrounding parameter (see details) } \\
\text { preRounded } & \text { PLSrounding parameter (see details) } \\
\text { plsWeights } & \text { PLSrounding parameter (see details) } \\
\text { printInc } & \text { Printing iteration information to console when TRUE } \\
\text { preDifference } & \text { When TRUE, the preDifference parameter to PLSrounding is used. Each time } \\
& \text { with the differences obtained so far. } \\
\text { preOutput } & \text { preOutput The function can continue from output from a previous run } \\
\text { rndSeed } & \text { If non-NULL, a random generator seed to be set locally at the beginning of } \\
& \text { PLSroundingLoop without affecting the random value stream in R. Within PLSroundingLoop, } \\
& \text { PLSrounding is called with rndSeed = NULL. }
\end{array}
$$

Details

Note that in this function zeroCandidates, forceInner, preRounded and plsWeights cannot be supplied as vectors. They may be specified as functions or as variables in the input data.

Value

As output from PLSrounding

Examples

```
mf2 <- ~region + fylke * hovedint
z2 <- SmallCountData("z2")
a <- PLSroundingLoop(z2, loopId = "kostragr", freqVar = "ant", formula = mf2)
a
```

print.PLSrounded Print method for PLSrounded

Description

Print method for PLSrounded

Usage

```
## S3 method for class 'PLSrounded'
print(x, digits = max(getOption("digits") - 3, 3), ...)
```


Arguments

x	PLSrounded object
digits	positive integer. Minimum number of significant digits to be used for printing most numbers.
\ldots	further arguments sent to the underlying

Value
Invisibly returns the original object.

Description

Small count rounding via a dummy matrix and by an algorithm inspired by PLS

Usage

RoundViaDummy (data, freqVar, formula $=$ NULL, roundBase $=3$, singleRandom = FALSE, crossTable = TRUE, total = "Total", maxIterRows $=1000$, maxIter $=1 \mathrm{e}+07$, $x=$ NULL, hierarchies = NULL, xReturn = FALSE, maxRound $=$ roundBase - 1 , zeroCandidates = FALSE, forceInner = FALSE, identifyNew = TRUE, step $=0$, preRounded = NULL, leverageCheck = FALSE, easyCheck = TRUE, printInc = TRUE, rndSeed = 123, dimVar = NULL, plsWeights = NULL, preDifference = NULL, allSmall = FALSE,
)

Arguments

data	Input data as a data frame (inner cells)
freqVar	Variable holding counts (name or number)
formula	Model formula defining publishable cells. Will be used to calculate x (via
	ModelMatrix). When NULL, x must be supplied.
roundBase	Rounding base

\(\left.$$
\begin{array}{ll}\text { singleRandom } & \text { Single random draw when TRUE (instead of algorithm) } \\
\text { crossTable } & \text { When TRUE, cross table in output and caculations via FormulaSums() } \\
\text { total } & \text { String used to name totals } \\
\text { maxIterRows } & \begin{array}{l}\text { See details }\end{array} \\
\text { maxIter } & \text { Maximum number of iterations } \\
\text { x } & \begin{array}{l}\text { Dummy matrix defining publishable cells }\end{array} \\
\text { hierarchies } & \begin{array}{l}\text { List of hierarchies, which can be converted by AutoHierarchies. Thus, a } \\
\text { single string as hierarchy input is assumed to be a total code. Exceptions are } \\
\text { "rowFactor" or "", which correspond to only using the categories in the data. }\end{array} \\
\text { xReturn } & \begin{array}{l}\text { Dummy matrix in output when TRUE (as input parameter x) }\end{array} \\
\text { maxRound } & \begin{array}{l}\text { Inner cells contributing to original publishable cells equal to or less than maxRound } \\
\text { will be rounded. }\end{array} \\
\text { zeroCandidates } & \begin{array}{l}\text { When TRUE, inner cells in input with zero count (and multiple of roundBase } \\
\text { when maxRound is in use) contributing to publishable cells will be included as }\end{array}
$$

candidates to obtain roundBase value. With vector input, the rule is specified\end{array}\right]\)| individually for each cell. This can be specified as a vector, a variable in data or |
| :--- |
| a function generating it (see details). |

plsWeights	A vector of weights for each cell to be published or a function generating it (see details). For use in the algorithm criterion.
preDifference	A data.frame with differences already obtained from rounding another subset of data. There must be columns that match crossTable. Differences must be in the last column.
allSmall	When TRUE, all small inner cells (<= maxRound) are rounded. This parameter is a simplified alternative to specifying forceInner (see details).
\ldots	Further parameters sent to ModelMatrix. In particular, one can specify removeEmpty=TRUE to omit empty combinations. The parameter inputInOutput can be used to specify whether to include codes from input. The parameter avoidHierarchical (Formula2ModelMatrix) can be combined with formula input.

Details

Small count rounding of necessary inner cells are performed so that all small frequencies of crossclassifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. The matrix multiplication formula is: $y P u b l i s h=t(x) \% * \%$ yInner, where x is the dummy matrix.
Parameters zeroCandidates, forceInner, preRounded and plsWeights can be specified as functions. The supplied functions take the following arguments: data, yPublish, yInner, crossTable, x, roundBase, maxRound, and ..., where the first two are numeric vectors of original counts. When allSmall is TRUE, forceInner is set to function(yInner, maxRound, ...) yInner <= maxRound.

Value

A list where the two first elements are two column matrices. The first matrix consists of inner cells and the second of cells to be published. In each matrix the first and the second column contains, respectively, original and rounded values. By default the cross table is the third element of the output list.

Note

Iterations are needed since after initial rounding of identified cells, new cells are identified. If cases of a high number of identified cells the algorithm can be too memory consuming (unless singleRandom=TRUE). To avoid problems, not more than maxIterRows cells are rounded in each iteration. The iteration limit (maxIter) is by default set to be high since a low number of maxIterRows may need a high number of iterations.

See Also

See the user-friendly wrapper PLSrounding and see Round2 for rounding by other algorithm

Examples

\# See similar and related examples in PLSrounding documentation
RoundViaDummy (SmallCountData("e6"), "freq")
RoundViaDummy (SmallCountData("e6"), "freq", formula = ~eu * year + geo)

```
RoundViaDummy(SmallCountData("e6"), "freq", hierarchies =
    list(geo = c("EU", "@Portugal", "@Spain", "Iceland"), year = c("2018", "2019")))
RoundViaDummy(SmallCountData('z2'),
    'ant', ~region + hovedint + fylke*hovedint + kostragr*hovedint, 10)
mf <- ~region*mnd + hovedint*mnd + fylke*hovedint*mnd + kostragr*hovedint*mnd
a <- RoundViaDummy(SmallCountData('z3'), 'ant', mf, 5)
b <- RoundViaDummy(SmallCountData('sosialFiktiv'), 'ant', mf, 4)
print(cor(b[[2]]),digits=12) # Correlation between original and rounded
# Demonstrate parameter leverageCheck
# The 42nd inner cell must be rounded since it can be revealed from the published cells.
mf2 <- ~region + hovedint + fylke * hovedint + kostragr * hovedint
RoundViaDummy(SmallCountData("z2"), "ant", mf2, leverageCheck = FALSE)$yInner[42, ]
RoundViaDummy(SmallCountData("z2"), "ant", mf2, leverageCheck = TRUE)$yInner[42, ]
## Not run:
# Demonstrate parameters maxRound, zeroCandidates and forceInner
# by tabulating the inner cells that have been changed.
z4 <- SmallCountData("sosialFiktiv")
for (forceInner in c("FALSE", "z4$ant < 10"))
    for (zeroCandidates in c(FALSE, TRUE))
        for (maxRound in c(2, 5)) {
            set.seed(123)
            a <- RoundViaDummy(z4, "ant", formula = mf, maxRound = maxRound,
                    zeroCandidates = zeroCandidates,
                        forceInner = eval(parse(text = forceInner)))
            change <- a$yInner[, "original"] != a$yInner[, "rounded"]
            cat("\n\n---------------------------------------------------------")
            cat(" maxRound:", maxRound, "\n")
            cat("zeroCandidates:", zeroCandidates, "\n")
            cat(" forceInner:", forceInner, "\n\n")
        print(table(original = a$yInner[change, "original"], rounded = a$yInner[change, "rounded"]))
            cat("----------------------------------------------------------")
        }
## End(Not run)
```

SmallCountData
Function that returns a dataset

Description

Function that returns a dataset

Usage

SmallCountData(dataset, path $=$ NULL)

Arguments

dataset Name of data set within the SmallCountRounding package
path When non-NULL the data set is read from "path/dataset.RData"

Value

The dataset

Note

Except for "europe6", "eHrc", "eDimList" and "exPSD", the function returns the same datasets as SSBtoolsData.

See Also

SSBtoolsData, Hrc2DimList

Examples

```
SmallCountData("z1")
SmallCountData("e6")
SmallCountData("eHrc") # TauArgus coded hierarchies
SmallCountData("eDimList") # sdcTable coded hierarchies
SmallCountData("exPSD") # Example data in presentation at Privacy in statistical databases
```


Index

```
* print
        print.PLSrounded,11
AutoHierarchies, 13
Extend0,8
Formula2ModelMatrix, 14
HD, 3
HDutility,6
HDutility (HD), 3
Hrc2DimList,16
Mipf, }
ModelMatrix, 6, 12, 14
PLS2way, 4, }
PLSrounding, 2, 4, 5, 8-11, 14
PLSroundingFits,8
PLSroundingInner (PLSrounding), 5
PLSroundingLoop,10
PLSroundingPublish (PLSrounding), 5
print.PLSrounded,11
Reduce0exact,13
RoundViaDummy, 6, 12
SmallCountData, 15
SmallCountRounding
    (SmallCountRounding-package), 2
SmallCountRounding-package, 2
SSBtoolsData,16
```

