Package 'Trading’

August 26, 2022
Type Package
Title CCR, Advanced Correlation \& Beta Estimates, Betting Strategies
Version 2.5
Date 2022-08-26

Author Tasos Grivas

Maintainer Tasos Grivas info@openriskcalculator.com
Description Contains performance analysis metrics of track records including entropy-based correlation and dynamic beta based on the Kalman filter. The normalized sample entropy method has been implemented which produces accurate entropy estimation even on smaller datasets while for the dynamic beta calculation the Kalman filter methodology has been utilized. On a separate stream, trades from the five major assets classes and also functionality to use pricing curves, rating tables, CSAs and add-on tables. The implementation follows an object oriented logic whereby each trade inherits from more abstract classes while also the curves/tables are objects. Furthermore, odds calculators and P\&L back-
testing functionality has been implemented for the most widely used betting/trading strategies including martingale, DAlembert, Labouchere and Fibonacci. Some basic functionality about climate risk
was also added in the latest version.
Imports methods, reticulate, PerformanceAnalytics, data.table
URL https://openriskcalculator.com/
License GPL-3
Collate 'AngularDistance.R' 'Future.R' 'Swap.R' 'Vol.R' 'Option.R'
'Trade.R' 'IRD.R' 'Bond.R' 'CSA.R' 'Chebyshev_distance.R'
'Collateral.R' 'Commodity.R' 'Credit.R' 'CrossSampleEntropy.R'
'Curve.R' 'DynamicBeta.R' 'Equity.R' 'FX.R' 'GetTradeDetails.R'
'HashTable.R' 'InformationAdjustedBeta.R'
'InformationAdjustedCorr.R' 'NormXASampEn.R' 'Other.R'
'ParseTrades.R' 'SampleEntropy.R' 'SelectDerivatives.R'
'VariationOfInformation.R' 'capped_fibonacci_seq.R' 'cf.R'
'ci.R' 'martingale_strategy_calculator.R' 'onLoad.R'
'roulette_pl_calculator_Labouchere.R'
'roulette_pl_calculator_dalembert.R'
'roulette_pl_calculator_fibonacci.R'
'roulette_pl_calculator_martingale.R'
'roulette_pl_calculator_specific_number.R' 'tce.R' 'waci.R'
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Repository/R-Forge/Project ccr
Repository/R-Forge/Revision 64
Repository/R-Forge/DateTimeStamp 2022-08-26 15:30:53
Date/Publication 2022-08-26 19:44:38 UTC
R topics documented:
AngularDistance 3
Bond-class 4
BondFuture-class 5
capped_fibonacci_seq 6
Carbon_Footprint 6
Carbon_Intensity 7
CDOTranche-class 8
CDS-class 9
CDX-class 10
Chebyshev_distance 10
Collateral-class 11
Commodity-class 12
CommodityForward-class 13
CommSwap-class 14
CrossSampleEntropy 14
CSA-class 15
Curve-class 16
DynamicBeta 17
Equity-class 18
EquityIndexFuture-class 18
EquityOptionIndex-class 19
EquityOptionSingle-class 20
FxForward-class 21
FxSwap-class 22
GetTradeDetails 23
HashTable-class 23
InformationAdjustedBeta 24
InformationAdjustedCorr 25
IRDFuture-class 26
IRDSwap-class 26
IRDSwaption-class 27
IRDSwapVol-class 28
AngularDistance 3
martingale_strategy_repetitions 28
NormXASampEn 29
OtherExposure-class 30
ParseTrades 31
roulette_pl_calculator_dalembert 32
roulette_pl_calculator_fibonacci 33
roulette_pl_calculator_labouchere 34
roulette_pl_calculator_martingale 36
roulette_pl_calculator_specific_number 37
SampleEntropy 38
SelectDerivatives 39
Total_Carbon_Emissions 40
VariationOfInformation 41
Weighted_Average_Carbon_Intensity 42
Index43
AngularDistance Angular distance metrics

Description

Calculates the angular distance between a matrix of the track records of various assets/strategies. The sign of the correlation can be ignored for long/short portfolios.

Usage
 AngularDistance(returns_matrix, long_short = FALSE)

Arguments

returns_matrix a matrix containing the track records of the underlying assets/strategies.
long_short a boolean value which results in the sign of the correlation being ignored, default value is FALSE

Value

A matrix containing the angular distance values.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at SSRN: https://ssrn.com/abstract=3512994

Examples

```
## calling AngularDistance() without an argument loads the historical edhec data
## for the "Short Selling" and "Convertible Arbitrage" strategies
returns_matrix = PerformanceAnalytics::edhec[,c("Short Selling","Convertible Arbitrage")]
angular_distance = AngularDistance(returns_matrix, long_short=FALSE)
```

Bond-class Bond Class

Description

Creates a Bond object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
BuySell Takes the values of either 'Buy' or 'Sell' yield The yield of the Bond ISIN The ISIN of the Bond, payment_frequency	
maturity_date frequency that the bond pays coupon (Quarter, SA etc)	the maturity date of the bond
coupon_type	The coupon type of the bond (fixed, floating, flipper etc)
credit_risk_weight	

The percentage weight of the exposure of the bond that should be attributed to the 'Credit' asset class

Issuer The issuer of the bond

Value

An object of type Bond

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
tr1 = Bond(Notional=10000,MtM=30,Currency="EUR",Si=0, maturity_date="2026-04-04",
BuySell='Buy',payment_frequency="SA",
credit_risk_weight=0.2,coupon_type="Fixed",Issuer="FirmA",ISIN = "XS0943423")
```


Description

Creates a Bond Future object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
yield	The yield of the Underlying Bond
isin	The ISIN of the Underlying Bond,
payment_frequency	
	the frequency that the bond pays coupon (Quarter, SA etc)
maturity_date	the maturity date of the bond
coupon_type	The coupon type of the bond (fixed, floating, flipper etc)
Issuer	The issuer of the bond

Value

An object of type Bond

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
example_trades = ParseTrades()
bondfuture_trade = example_trades[[17]]
tr1 = BondFuture(Notional=10000,MtM=30,Currency="EUR",Si=0,Ei=10,BuySell='Buy',
payment_frequency="SA",coupon_type="Fixed",Issuer="CountryA",ISIN = "XS0943423")
```

capped_fibonacci_seq Fibonacci sequence up to a specified maximum number

Description

Generates the Fibonacci sequence up to a specified maximum number

Usage

capped_fibonacci_seq(max_number)

Arguments

max_number The maximum number up to which the sequence should be generated

Value

A vector containing the Fibonacci sequence

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Fibonacci_number

Examples

fibonacci_seq = capped_fibonacci_seq(max_number = 6000)
Carbon_Footprint Carbon Footprint

Description

Returns the Total carbon emissions for a portfolio normalized by the market value of the portfolio, expressed in tons CO2e / \$M invested.Scope 1 and Scope 2 GHG emissions are allocated to investors based on an equity

Usage

Carbon_Footprint(portfolio_exposure, emissions_capitalization_data)

Arguments

portfolio_exposure
The exposure per issuer in the portfolio
emissions_capitalization_data
The capitalization and the Scope $1 \& 2$ GHG emissions per issuer

Value

Total carbon emissions for a portfolio normalized by the market value of the portfolio, expressed in tons CO2e / \$M invested.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```
portfolio_exposure = data.table::data.table(Issuers = c('A','B','C'),
exposures = c(100, 200, 50))
emissions_capitalization_data = data.table::data.table(Issuers = c('A','B','C'),
emissions = c(1000, 5000, 6000), Capitalization = c(20000, 10000, 30000))
Carbon_Footprint(portfolio_exposure, emissions_capitalization_data)
```

Carbon_Intensity Carbon Intensity

Description

Returns the Volume of carbon emissions per million dollars of revenue expressed in tons CO2e / $\$ \mathrm{M}$ revenue. Scope 1 and Scope 2 GHG emissions are allocated to investors based on an equity ownership approach. The company's (or issuer's) revenue is used to adjust for company size to provide a measurement of the efficiency of output.

Usage

Carbon_Intensity(portfolio_exposure, emissions_capitalization_revenue_data)

Arguments

portfolio_exposure
The exposure per issuer in the portfolio
emissions_capitalization_revenue_data
The capitalization, revenue and the Scope $1 \& 2$ GHG emissions per issuer

Value

Volume of carbon emissions per million dollars of revenue expressed in tons CO2e / \$M revenue.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```
portfolio_exposure = data.table::data.table(Issuers = c('A','B','C'),
    exposures = c(100, 200, 50))
emissions_capitalization_revenue_data = data.table::data.table(Issuers = c('A','B','C'),
    emissions = c(1000, 5000, 6000), revenue = c(2000, 5000, 3000),Capitalization =
    c(20000, 10000, 15000))
Carbon_Intensity (portfolio_exposure, emissions_capitalization_revenue_data)
```

```
CDOTranche-class CDO tranche Class
```


Description

Creates a CDO tranche Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the belongs
Si	The number of years after which the trade will start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
attach_point	The attachment point of the tranche
detach_point	The detachment point of the tranche

Value

An object of type CDOTrance

Examples

```
## a CDO trance object
tr3 = CDOTranche(Notional=10000,MtM=0,Currency="USD",Si=0,Ei=5,
BuySell='Buy',SubClass='IG',RefEntity='CDX.IG',cdo_attach_point=0.3 ,cdo_detach_point=0.5)
```

```
CDS-class CDS Class
```


Description

Creates a CDS Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
SubClass	Specifies the rating of the underlying entity (possible values are A, AA, BB etc)
RefEntity	The name of the underlying entity

Value

An object of type CDS

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
## the CDS trade given in the Basel regulation Credit example
tr1 = CDS(Notional=10000,MtM=20,Currency="USD", Si=0,Ei=3,BuySell='Buy',
SubClass='AA',RefEntity='FirmA')
```

```
CDX-class CDX Class
```


Description

Creates a Credit Index Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the belongs
Si	The number of years after which the trade will start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
SubClass	Specifies if the underlying Index is investment grade or not (possible values are IG \& SG)
RefEntity	The name of the underlying Index

Value
An object of type CDX

Examples

\#\# the CDX trade given in the Basel regulation Credit example tr3 $=$ CDX (Notional $=10000, \mathrm{MtM}=0$, Currency="USD", $\mathrm{Si}=0, \mathrm{Ei}=5$, BuySell='Buy', SubClass='IG',RefEntity='Portfolio_1')

Chebyshev_distance Chebyshev distance

Description

Calculates the Chebyshev distance

Usage

Chebyshev_distance (x, y)

Arguments

$x \quad$ a vector containing the track record of the underlying asset/strategy
$y \quad a \quad$ vector containing the track record of the underlying asset/strategy

Value

The Chebyshev distance of the two vectors

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Chebyshev_distance

Examples

$$
x=\operatorname{rnorm}(1000)
$$

y $=$ rnorm(1000)
chebyshev_dist $=$ Chebyshev_distance (x, y)

Collateral-class Collateral Class

Description

Creates a Collateral amount object which needs to be linked with a CSA ID

Arguments

ID
Amount
csa_id
type

The ID of each object
The collateral amount
The csa_id that this object is linked with
Describes the type of the collateral: can be "ICA", "VariationMargin" etc

Value

An object of type Collateral

Author(s)

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
colls = list()
coll_raw = read.csv(system.file("extdata", "coll.csv", package = "Trading"),header=TRUE,
stringsAsFactors = FALSE)
for(i in 1:nrow(coll_raw))
{
    colls[[i]] = Collateral()
    colls[[i]]$PopulateViaCSV(coll_raw[i,])
}
```

Commodity-class Commodity Class

Description

Creates a Commodity Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si The number of years that the trade will take to start (zero if already started)
BuySell Takes the values of either 'Buy' or 'Sell'
commodity_type Takes the values of 'Oil/Gas','Silver','Electricity' etc.

Value

An object of type Commodity

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
tr1 = Commodity(Notional=10000,MtM=-50,
```

BuySell='Buy', SubClass='Energy', commodity_type='Oil')

CommodityForward-class

Commodity Forward Class

Description

Creates a Commodity Forward Object with the relevant info needed to calculate the Exposure-atDefault (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
commodity_type	Takes the values of 'Oil','Gas','Silver','Electricity' etc.
SubClass	Defines the relevant hedging set. Possible values: 'Energy','Agriculture','Metal','Other','Climatic',

Value
An object of type Commodity Forward

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May $2019 \mathrm{http}: / /$ data.europa.eu/eli/reg/2019/8

Examples

```
## the Commodity Forward trade given in the Basel regulation Commodity example
tr1 = CommodityForward(Notional=10000,MtM=-50, Si=0, Ei=0.75,
BuySell='Buy',SubClass='Energy',commodity_type='0il')
```

CommSwap-class Commodity Swap Class

Description

Creates a Commodity Swap Object with the relevant info needed to calculate the Exposure-atDefault (EAD)

Value

An object of type CommSwap

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Description

Calculates the cross sample entropy between two track records of various assets/strategies.

Usage

CrossSampleEntropy(returns_matrix, m = 2, r = 0.2)

Arguments

returns_matrix a matrix containing the track records of the underlying assets/strategies. These will be normalized during the algorithm
$m \quad$ an integer value defining the embedding dimension, default value is 2
$r \quad$ a double value defining the tolerance, default value is 0.2

Value

The value of cross sample entropy

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://physoc.onlinelibrary.wiley.com/doi/epdf/10.1113/expphysiol.2007.037150

Examples

```
## calling CrossSampleEntropy() without an argument loads the historical edhec data
## for the "Short Selling" and "Convertible Arbitrage" strategies
returns_matrix = PerformanceAnalytics::edhec[,c("Short Selling", "Convertible Arbitrage")]
Cross_Sample_Entropy = CrossSampleEntropy(returns_matrix,m=2,r=0.2)
```

CSA-class CSA Class

Description

Creates a collateral agreement Object containing all the relevant data and methods regarding the maturity factor and the calculation of the exposures after applying the relevant threshold

Arguments

ID	The ID of the CSA ID
Counterparty	The counterparty the CSA is linked to
Currency	The currency that the CSA applies to (can be a list of different currencies)
TradeGroups	The trade groups that the CSA applies to
Values_type	The type of the numerical values (can be "Actual" or "Perc" whereby the values are percentages of the MtM)
thres_cpty	The maximum exposure that the counterparty can generate before collateral will need to be posted
thres_P0	The maximum exposure that the processing organization can generate before collateral will need to be posted
MTA_cpty	The minimum transfer amount for the counterparty
MTA_PO	The minimum transfer amount for the processing organization
IM_cpty	The initial margin that is posted by the counterparty
IM_PO	The initial margin that is posted by the processing organization
mpor_days	The margin period of risk in days
remargin_freq	The frequency of re-margining the exposure in days
rounding	The rounding amount of the transfers

Value

An object of type CSA

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
    csa_raw = read.csv(system.file("extdata", "CSA.csv", package = "Trading"),
    header=TRUE,stringsAsFactors = FALSE)
csas = list()
for(i in 1:nrow(csa_raw))
{
    csas[[i]] = CSA()
    csas[[i]]$PopulateViaCSV(csa_raw[i,])
}
```

Curve-class Curve Class

Description

Creates a Curve Object containing pairs of Tenors with relevant rates and the interpolation function. Also, methods for populating the object via a .csv file and the generation of the interpolation function via cubic splines are included.

Arguments

Tenors	The Tenors of the curve
Rates	The rates on the corresponding tenors
interp_function	

(Optional) The interpolation function of the curve. Can be populated via the 'CalcInterpPoints' method

Value

An object of type Curve

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
## generating a curve either directly or through a csv -
## the spot_rates.csv file can be found on the extdata folder in the installation library path
funding_curve = Curve(Tenors=c(1, 2, 3,4,5,6,10),Rates=c(4,17,43,47,76,90,110))
spot_rates = Curve()
spot_rates$PopulateViaCSV('spot_rates.csv')
time_points = seq(0,5,0.01)
spot_curve = spot_rates$CalcInterpPoints(time_points)
```

DynamicBeta Time Varying Beta via Kalman filter \& smoother

Description

Calculates the beta of an investment strategy or stock by applying the Kalman filter \& smoother. Apart from the beta timeseries, the state covariances are also returned so as to provide an estimate of the uncertainty of the results. The python package "Pykalman" is used for the calculations given its proven stability.

Usage

DynamicBeta(csvfilename, do_not_set_to_true = FALSE)

Arguments

csvfilename the name of csv file containing the track record of the fund $\&$ the benchmark do_not_set_to_true
function returns zero when TRUE - used only so as to pass the CRAN tests where pykalman couldn't be installed

Value

A list of beta values based on Kalman Filter \& smoother and the respective covariance matrices

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
## calling DynamicBeta() without an argument loads a test file containing a sample track
## record and a benchmark index
## ATTENTION!!: set do_not_set_to_true to FALSE when running the example
##-- this is only used to pass CRAN tests whereby
## pykalman was not installable!
dyn_beta_values = DynamicBeta(do_not_set_to_true = TRUE)
```

| Equity-class \quad Equity Class |
| :--- | :--- |

Description

Creates an Equity object

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
BuySell	Takes the values of either 'Buy' or 'Sell'
ISIN	the ISIN of the Equity
traded_price	the price that trade was done
Issuer	the issuer of the stock

Value

An object of type Equity

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
tr1 = Equity(external_id="ext1",Notional=10000,MtM=30,Currency="EUR",BuySell='Buy',
traded_price = 10,ISIN = "XS04340432",Issuer='FirmA')
```

EquityIndexFuture-class

Equity Index Future Class

Description

Creates an Equity Index Future object with the relevant info needed to calculate the Exposure-atDefault (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
traded_price	the price that trade was done

Value

An object of type EquityIndexFuture

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
example_trades = ParseTrades()
Equity_Index_Future_trade = example_trades[[18]]
```

```
EquityOptionIndex-class
```

 Equity Option Index Class

Description

Creates an Equity Option Index object with the relevant info needed to calculate the Exposure-atDefault (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
traded_price	the price that trade was done

Value

An object of type EquityOption

Author(s)

Tasos Grivas tasos@openriskcalculator.com

```
EquityOptionSingle-class
    Equity Option Single Class
```


Description

Creates an Equity Option Single object with the relevant info needed to calculate the Exposure-atDefault (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
traded_price	the price that trade was done

Value

An object of type EquityOption

Author(s)

Tasos Grivas tasos@openriskcalculator.com
FxForward-class FX Forward Class

Description

Creates a FX Forward Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency that the input amounts are in
ccyPair	The currency Pair of the trade
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
traded_price	the price that trade was done

Value

An object of type FX Forward

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
## an FX Forward trade
tr1 = FxForward(Notional=10000,MtM=-50,Si=0,Ei=0.75,BuySell='Buy',ccyPair="EUR/USD")
## a dynamic version of the same trade
tr2 = FxForward(MtM=-50, Si=0,Ei=0.75,ccy_paying="USD", amount_paying=10000,
ccy_receiving="EUR", amount_receiving=9900)
tr2$base_ccy="EUR"
tr2$setFXDynamic()
```

FxSwap-class Fx Swap Class

Description

Creates an FX Swap object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency that the input amounts are in
ccyPair The currency Pair of the trade
Si The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'
traded_price the price that trade was done
fx_near_leg_fields
(Optional) In case the near leg hasn't settled yet, its notional, MtM, settlement date should be provided separated via a semicolon

Value

An object of type FXSwap

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
tr1 = FxSwap(Notional=10000,MtM=30, ccyPair="EUR/USD",Si=0,Ei=10,
BuySell='Buy',fx_near_leg_fields='1000;-20;2020-02-11')
```


Description

Returns a list with the populated fields of a Trade Object

Usage

GetTradeDetails(trade)

Arguments

$$
\text { trade } \quad \text { A trade Object }
$$

Value

A list of fields

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
    example_trades = ParseTrades()
```

 Equity_Index_Future_trade = example_trades[[18]]
 populated_fields = GetTradeDetails(Equity_Index_Future_trade)
 HashTable-class Hashtable Class

Description

Creates a hashtable-like object so as to represent data with a key structure (for example addon tables, rating-based factors etc). Also, it includes methods for populating the object via a .csv file and finding a value based on a specific key on an interval of keys For examples of the format of the CSVs files, please view RatingsMapping.csv or AddonTable.csv on the extdata folder in the installation folder of the library

Arguments

keys	A vector of keys
values	A vector of values mapping to the keys
keys_type	The type of the keys
values_type	The type of the values

Value
An object of type HashTable

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
## loading a ratings' mapping matrix from the extdata folder
rating_table = HashTable('RatingsMapping.csv',"character","numeric")
reg_weight =rating_table$FindValue("AAA")
```

InformationAdjustedBeta
Information Adjusted Beta

Description

Calculates the Information-Adjusted Beta between the track records of two assets/strategies which covers for cases whereby the 'typical' linearity and Gaussian I.I.D assumptions do not hold. The normalized cross sample entropy has been utilized for the mutual information estimation.

Usage

InformationAdjustedBeta(x, y, m = 2, r = 0.2)

Arguments

$x \quad a \quad$ vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
y a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
$\mathrm{m} \quad$ an integer value defining the embedding dimension for the sample entropy calculation, default value is 2
$r \quad$ a double value defining the tolerance for the sample entropy calculation, default value is 0.2

Value

The information adjusted Beta

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://github.com/devisechain/Devise/blob/master/yellow_paper.pdf

Examples

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Information_Adjusted_Beta = InformationAdjustedBeta = function(x, y, m=2, r=0.2)
```

```
InformationAdjustedCorr
```

> Information Adjusted Correlation

Description

Calculates the Information-Adjusted Correlation between the track records of various assets/strategies which covers for cases whereby the 'typical' Pearson's correlation assumptions do not hold. The normalized cross sample entropy has been utilized for the mutual information estimation.

Usage

InformationAdjustedCorr(x, y, m = 2, r = 0.2)

Arguments

x
a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
y a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
$\mathrm{m} \quad$ an integer value defining the embedding dimension for the sample entropy calculation, default value is 2
$r \quad$ a double value defining the tolerance for the sample entropy calculation, default value is 0.2

Value

The information adjusted correlation

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://github.com/devisechain/Devise/blob/master/yellow_paper.pdf

Examples

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Information_Adjusted_Corr = InformationAdjustedCorr(x, y, m=2, r=0.2)
```

```
IRDFuture-class IRD Future Class
```


Description

Creates an IRD Future Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'

Value

An object of type IRDFuture

```
IRDSwap-class IRD Swap Class
```


Description

Creates an IRD Swap Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si
The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'

Value

An object of type IRDSwap

Examples

\# the IRD Swap trade given in the Basel regulation IRD example
tr1 = IRDSwap(Notional=10000, MtM=30, Currency="USD", Si=0, Ei=10, BuySell='Buy')

IRDSwaption-class IRD Swaption Class

Description

Creates an IRD Swaption Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
OptionType	Takes the values of either 'Put' or 'Call'
UnderlyingPrice	

Value

An object of type IRDSwaption

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

Examples

```
# the Swaption trade given in the Basel regulation IRD example
tr3 = IRDSwaption(Notional=5000,MtM=50,Currency="EUR",Si=1,Ei=11,BuySell='Sell',
OptionType='Put',UnderlyingPrice=0.06,StrikePrice=0.05)
```

IRDSwapVol-class IRD Swap Volatility Class

Description

Creates an IRD Swap Volatility-based Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Value

An object of type IRDSwapVol

```
martingale_strategy_repetitions
```

Martingale Strategy Repetitions

Description

Calculates the number of repetitions needed for a specific number of consequtive failed trades/bet to appear. This can apply to roulette betting but also trading algorithms which use the same logic on doubling down after a failed trade.

Usage

```
martingale_strategy_repetitions(
    length_of_targeted_sequence,
    prob_of_success = 18/37,
    simulations_num,
    trials_per_sim,
    quantile_perc
)
```


Arguments

length_of_targeted_sequence
The number of consecutive failed trades/bets that we try to calculate the expected number of repetitions for
prob_of_success
The probability of a sucessful trade/bet
simulations_num
The number of simulations to be run
trials_per_sim The number of trials in each simulation
quantile_perc (Optional) When set, the number of repetitions expected with such probability is returned.

Value

A list containing the number of repetitions needed to reach the targeted sequence for the first time in each simulation (will be zero if the sequence is not found) and, when the quantile_perc is set, the above number of repetitions.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Roulette\#Betting_strategies_and_tactics

Examples

```
# This software is covered by GPL license and provided strictly for educational
# reasons (no actual investment or betting decisions should be taken based on this)
# On top of these, the below example contains a tiny number of simulations and
# trials just to pass CRAN tests - the user would have to highly increase both
# variables when running these.
repetitions_for_failed_sequence = martingale_strategy_repetitions(length_of_targeted_sequence = 8,
prob_of_success = 18/37, simulations_num = 1000, trials_per_sim = 10000, quantile_perc = 0.1)
repetitions_for_failed_sequence$relevant_quantile
summary(repetitions_for_failed_sequence$num_of_trials_needed)
```

NormXASampEn Normalized Cross Sample Entropy

Description

Calculates the Normalized Cross Sample Entropy of the track records of two assets/strategies based on the sample entropy.

Usage

NormXASampEn(x, y, m = 2, r = 0.2)

Arguments

$x \quad$ a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
y a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
$\mathrm{m} \quad$ an integer value defining the embedding dimension, default value is 2
$r \quad$ a double value defining the tolerance, default value is 0.2

Value

A value containing the NormXASampEn

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at SSRN: https://ssrn.com/abstract=3512994

Examples

$x=$ PerformanceAnalytics: :edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Normalized_Cross_Sample_Entropy = NormXASampEn(x, y, m=2, r=0.2)

Description

Creates a OtherExposure Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional	The notional amount of the trade
MTM	The mark-to-market valuation of the trade
Currency	The currency set that the trade belongs to
Si	The number of years that the trade will take to start (zero if already started)
Ei	The number of years that the trade will expire
BuySell	Takes the values of either 'Buy' or 'Sell'
SubClass	Defines the hedging set the relevant trade will belong to

Value

An object of type OtherExposure

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May $2019 \mathrm{http}: / /$ data.europa.eu/eli/reg/2019/8

Examples

$\operatorname{tr} 1=$ OtherExposure(Notional $=10000, \mathrm{MtM}=-50, \mathrm{Si}=0, \mathrm{Ei}=10$,
BuySell='Buy', SubClass='Other_1')
ParseTrades Parse trades through a .csv file.

Description

Parse trades through a .csv file. In case no file name is given, an example file is automatically loaded containing trades corresponding to Basel's SA-CCR regulation (the example trades file can be found on the extdata folder in the installation library path)

Usage

ParseTrades(csvfilename)

Arguments

csvfilename the name of csv file containing the trades

Value

A list of trades

Author(s)

Tasos Grivas tasos@openriskcalculator.com

Examples

```
## calling ParseTrades() without an argument loads a test file containing all
## the different trade types supported
example_trades = ParseTrades()
```

roulette_pl_calculator_dalembert

Roulette P\&L betting based on the D’Alembert Betting System

Description

Calculates the potential profit or loss when someone is betting in the roulette based on the D'Alembert Betting System

Usage

roulette_pl_calculator_dalembert(
bet_minimum,
bet_maximum,
initial_capital,
simulations_num,
trials_per_sim
)

Arguments

$$
\begin{array}{ll}
\text { bet_minimum } & \text { The minimum betting amount that the casino allows } \\
\text { bet_maximum } & \text { The maximum betting amount that the casino allows } \\
\text { initial_capital }
\end{array}
$$

The initial capital to be used
simulations_num
The number of simulations to be run
trials_per_sim The number of trials in each simulation

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P\&L graph for the last simulation will be plotted.
roulette_pl_calculator_fibonacci

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Roulette\#Betting_strategies_and_tactics

Examples

```
# This software is covered by GPL license and provided strictly for educational
# reasons (no actual investment/betting decisions should be taken based on this)
# On top of these, the below example contains a tiny number of simulations and
# trials just to pass CRAN tests - the user would have to highly increase both
# variables when running these.
pl_results = roulette_pl_calculator_dalembert(bet_minimum = 0.1 , bet_maximum = 3276.8,
initial_capital = 20000, simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)
```

```
roulette_pl_calculator_fibonacci
```

 Roulette P\&L betting based on the Fibonacci Betting System

Description

Calculates the potential profit or loss when someone is betting in the roulette based on the Fibonacci Betting System.

Usage

```
    roulette_pl_calculator_fibonacci(
        bet_minimum,
        bet_maximum,
        initial_capital,
        simulations_num,
        trials_per_sim
    )
```


Arguments

bet_minimum The minimum betting amount that the casino allows
bet_maximum The maximum betting amount that the casino allows
initial_capital
The initial capital to be used

```
simulations_num
```

The number of simulations to be run
trials_per_sim The number of trials in each simulation

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P\&L graph for the last simulation will be plotted.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Roulette\#Betting_strategies_and_tactics

Examples

```
# This software is covered by GPL license and provided strictly for educational
# reasons (no actual investment or betting decisions should be taken based on this)
# On top of these, the below example contains a tiny number of simulations and
# trials just to pass CRAN tests - the user would have to highly increase both
# variables when running these.
pl_results = roulette_pl_calculator_fibonacci(bet_minimum = 0.1 , bet_maximum = 6000,
    initial_capital = 20000, simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)
```

```
roulette_pl_calculator_labouchere
Roulette P\&L betting based on the Labouchere Betting System
```


Description

Calculates the potential profit or loss when someone is betting in the roulette based on the Labouchere Betting System.

Usage

roulette_pl_calculator_labouchere(

```
        bet_minimum,
```

 bet_maximum,
 initial_capital,
 profit_target,
 profit_sequence,
    ```
        simulations_num,
        trials_per_sim
    )
```


Arguments

bet_minimum The minimum betting amount that the casino allows
bet_maximum The maximum betting amount that the casino allows
initial_capital
The initial capital to be used
profit_target The profit amount to be earned
profit_sequence
(Optional) the amounts of the bets to reach this profit amount. If omitted, the minimum betting amount will be used
simulations_num
The number of simulations to be run
trials_per_sim The number of trials in each simulation

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P\&L graph for the last simulation will be plotted.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Roulette\#Betting_strategies_and_tactics

Examples

```
# This software is covered by GPL license and provided strictly for educational
# reasons (no actual investment/betting decisions should be taken based on this)
# On top of these, the below example contains a tiny number of simulations and
# trials just to pass CRAN tests - the user would have to highly increase both
# variables when running these.
pl_results = roulette_pl_calculator_labouchere(bet_minimum = 0.1 , bet_maximum = 3276.8,
initial_capital = 20000, profit_target = 100, profit_sequence = rep(10,10),
    simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)
```

```
roulette_pl_calculator_martingale
```

 Roulette P\&L betting based on a modified martingale strategy

Description

Calculates the potential profit or loss when someone is betting in the roulette based on the martingale system while trying to reduce the risk by 1 . Starting to double after the first loss 2 . Not doubling if the second number is zero.

Usage

roulette_pl_calculator_martingale(
bet_minimum,
bet_maximum,
initial_capital,
simulations_num,
trials_per_sim
)

Arguments

bet_minimum The minimum betting amount that the casino allows
bet_maximum The maximum betting amount that the casino allows
initial_capital
The initial capital to be used
simulations_num
The number of simulations to be run
trials_per_sim The number of trials in each simulation

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P\&L graph for the last simulation will be plotted.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Roulette\#Betting_strategies_and_tactics

Examples

```
# This software is covered by GPL license and provided strictly for educational
# reasons (no actual investment/betting decisions should be taken based on this)
# On top of these, the below example contains a tiny number of simulations and
# trials just to pass CRAN tests - the user would have to highly increase both
# variables when running these.
pl_results = roulette_pl_calculator_martingale(bet_minimum = 0.1 , bet_maximum = 3276.8,
initial_capital = 20000, simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)
```

roulette_pl_calculator_specific_number
Roulette $P \& L$ betting on a specific number

Description

Calculates the potential profit or loss when someone is betting on a specific number in the roulette and keeps doubling every eighteen spins if the number hasn't appeared yet.

Usage

```
roulette_pl_calculator_specific_number(
    bet_minimum,
    bet_maximum,
    initial_capital,
    targeted_number,
    simulations_num,
    trials_per_sim,
    stop_loss
)
```


Arguments

bet_minimum The minimum betting amount that the casino allows
bet_maximum The maximum betting amount that the casino allows
initial_capital
The initial capital to be used
targeted_number
The specific number that we expect to be drawn (statistically speaking, this should have zero effect on the results)
simulations_num
The number of simulations to be run
trials_per_sim The number of trials in each simulation
stop_loss (Optional) The number of spins after which the betting amount will go back to the minimum if the targeted number hasn't appeared.

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P\&L graph for the last simulation will be plotted.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Roulette\#Betting_strategies_and_tactics

Examples

```
# This software is covered by GPL license and provided strictly for educational
# reasons (no actual investment or betting decisions should be taken based on this)
# On top of these, the below example contains a tiny number of simulations and
# trials just to pass CRAN tests - the user would have to highly increase both
# variables when running these.
pl_results = roulette_pl_calculator_specific_number(bet_minimum =0.1 , bet_maximum = 3276.8,
initial_capital = 20000, targeted_number = 0, simulations_num = 100,
trials_per_sim = 100, stop_loss = 180)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)
```

SampleEntropy Sample Entropy

Description

Calculates the sample entropy of a track record. Sample entropy is an improvement of the approximate entropy and should produce accurate results for timeseries of smaller length like historical returns of strategies

Usage

SampleEntropy(returns, m = 2, r = 0.2)

Arguments

returns a vector containing the track record of the underlying asset/strategy, these will be normalized during the algorithm
m an integer value defining the embedding dimension, default value is 2
a double value defining the tolerance, default value is 0.2

Value

The sample Entropy of the input returns

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://en.wikipedia.org/wiki/Sample_entropy

Examples

```
## calling SampleEntropy() without an argument loads the historical edhec
## data for the "Short Selling" strategy
returns = PerformanceAnalytics::edhec[,c("Short Selling")]
Sample_Entropy = SampleEntropy(returns,m=2,r=0.2)
```


Description

Select the derivatives out of a trades' list which will be utilized to calculate the CCR Exposure.

Usage

SelectDerivatives(trades_list)

Arguments

trades_list the file holding the trades of the portfolio

Value

The derivatives out of a trades' list

Author(s)

Tasos Grivas info@openriskcalculator.com

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May $2019 \mathrm{http}: / /$ data.europa.eu/eli/reg/2019/8

```
Total_Carbon_Emissions
```


Total Carbon Emissions

Description

Returns the absolute greenhouse gas emissions associated with a portfolio, expressed in tons CO2e. Under this approach, if an investor owns 5 percent of a company's total market capitalization, then the investor owns 5 percent of the company as well as 5 percent of the company's GHG (or carbon) emissions.

Usage

Total_Carbon_Emissions(portfolio_exposure, emissions_capitalization_data)

Arguments

portfolio_exposure
The exposure per issuer in the portfolio
emissions_capitalization_data
The capitalization and the Scope $1 \& 2$ GHG emissions per issuer

Value

The absolute greenhouse gas emissions associated with a portfolio, expressed in tons CO2e

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```
portfolio_exposure = data.table::data.table(Issuers = c('A','B','C'),
exposures = c(100, 200, 50))
emissions_capitalization_data = data.table::data.table(Issuers = c('A','B','C'),
    emissions = c(1000, 5000, 6000),
    Capitalization = c(20000, 10000, 30000))
Total_Carbon_Emissions(portfolio_exposure, emissions_capitalization_data)
```

VariationOfInformation
Variation of Information

Description

Calculates the variation of information of the track records of two assets/strategies based on the sample entropy.

Usage

VariationOfInformation(x, y, m = 2, r = 0.2, normalized = TRUE)

Arguments

$x \quad$ a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
y a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
$m \quad$ an integer value defining the embedding dimension, default value is 2
$r \quad$ a double value defining the tolerance, default value is 0.2
normalized a boolean value so as to bound the return value between 0 and 1 , default value is TRUE

Value

A value containing the variation of information

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at SSRN: https://ssrn.com/abstract=3512994

Examples

```
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
variation_of_information = VariationOfInformation(x, y, m=2, r=0.2, normalized = TRUE)
```

```
Weighted_Average_Carbon_Intensity
    Weighted Average Carbon Intensity
```


Description

Returns the portfolio's exposure to each issuer expressed in tons CO2e / \$M revenue. Scope 1 and Scope 2 GHG emissions are allocated based on portfolio weights (the current value of the investment relative to the current portfolio value), rather than the equity ownership approach

Usage

Weighted_Average_Carbon_Intensity(portfolio_exposure, emissions_revenue_data)

Arguments

portfolio_exposure
The exposure per issuer in the portfolio
emissions_revenue_data
The capitalization, revenue and the Scope $1 \& 2$ GHG emissions per issuer

Value

Total carbon emissions for a portfolio normalized by the market value of the portfolio, expressed in tons CO2e / \$M invested.

Author(s)

Tasos Grivas tasos@openriskcalculator.com

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```
portfolio_exposure = data.table::data.table(Issuers = c('A','B','C'),
    exposures = c(100, 200, 50))
    emissions_revenue_data = data.table::data.table(Issuers = c('A','B','C'),
    emissions = c(1000, 5000, 2000),
    revenue = c(2000, 5000, 3000))
    Weighted_Average_Carbon_Intensity(portfolio_exposure, emissions_revenue_data)
```


Index

```
AngularDistance, 3
Bond (Bond-class), 4
Bond-class,4
BondFuture (BondFuture-class), 5
BondFuture-class, 5
capped_fibonacci_seq, 6
Carbon_Footprint,6
Carbon_Intensity,7
CDOTranche (CDOTranche-class), }
CDOTranche-class, }
CDS (CDS-class), }
CDS-class,9
CDX (CDX-class), 10
CDX-class,10
Chebyshev_distance, 10
Collateral (Collateral-class), 11
Collateral-class, 11
Commodity (Commodity-class), 12
Commodity-class, 12
CommodityForward
    (CommodityForward-class), 13
CommodityForward-class, 13
CommSwap (CommSwap-class), }1
CommSwap-class,14
CrossSampleEntropy,14
CSA (CSA-class), }1
CSA-class, 15
Curve (Curve-class), 16
Curve-class,16
DynamicBeta, 17
Equity (Equity-class), 18
Equity-class,18
EquityIndexFuture
    (EquityIndexFuture-class),18
EquityIndexFuture-class, 18
EquityOptionIndex
    (EquityOptionIndex-class),19
```

EquityOptionIndex-class, 19
EquityOptionSingle
(EquityOptionSingle-class), 20
EquityOptionSingle-class, 20
FxForward (FxForward-class), 21
FxForward-class, 21
FxSwap (FxSwap-class), 22
FxSwap-class, 22

GetTradeDetails, 23
HashTable (HashTable-class), 23
HashTable-class, 23

InformationAdjustedBeta, 24
InformationAdjustedCorr, 25
IRDFuture (IRDFuture-class), 26
IRDFuture-class, 26
IRDSwap (IRDSwap-class), 26
IRDSwap-class, 26
IRDSwaption (IRDSwaption-class), 27
IRDSwaption-class, 27
IRDSwapVol (IRDSwapVol-class), 28
IRDSwapVol-class, 28
martingale_strategy_repetitions, 28
NormXASampEn, 29

OtherExposure (OtherExposure-class), 30
OtherExposure-class, 30
ParseTrades, 31
roulette_pl_calculator_dalembert, 32
roulette_pl_calculator_fibonacci, 33
roulette_pl_calculator_labouchere, 34
roulette_pl_calculator_martingale, 36
roulette_pl_calculator_specific_number, 37

SampleEntropy, 38
SelectDerivatives, 39
Total_Carbon_Emissions, 40
VariationOfInformation, 41
Weighted_Average_Carbon_Intensity, 42

