
Package ‘adaptr’
August 16, 2022

Title Adaptive Trial Simulator

Version 1.1.1

Date 2022-08-16

Description Package that simulates adaptive clinical trials using adaptive
stopping, adaptive arm dropping, and/or adaptive randomisation.
Developed as part of the INCEPT (Intensive Care Platform Trial) project
(<https://incept.dk/>), which is primarily supported by a grant
from Sygeforsikringen ``danmark'' (<https://www.sygeforsikring.dk/>).

License GPL (>= 3)

Imports stats, parallel, utils

Encoding UTF-8

NeedsCompilation no

URL https://incept.dk/, https://github.com/INCEPTdk/adaptr/,

https://inceptdk.github.io/adaptr/

BugReports https://github.com/INCEPTdk/adaptr/issues/

RoxygenNote 7.2.1

Suggests covr, ggplot2, rmarkdown, knitr, testthat, vdiffr

VignetteBuilder knitr

Config/testthat/edition 3

Author Anders Granholm [aut, cre] (<https://orcid.org/0000-0001-5799-7655>),
Benjamin Skov Kaas-Hansen [aut]

(<https://orcid.org/0000-0003-1023-0371>),
Aksel Karl Georg Jensen [ctb] (<https://orcid.org/0000-0002-1459-0465>),
Theis Lange [ctb] (<https://orcid.org/0000-0001-6807-8347>)

Maintainer Anders Granholm <andersgran@gmail.com>

Repository CRAN

Date/Publication 2022-08-16 12:20:02 UTC

1

https://incept.dk/
https://www.sygeforsikring.dk/
https://incept.dk/
https://github.com/INCEPTdk/adaptr/
https://inceptdk.github.io/adaptr/
https://github.com/INCEPTdk/adaptr/issues/
https://orcid.org/0000-0001-5799-7655
https://orcid.org/0000-0003-1023-0371
https://orcid.org/0000-0002-1459-0465
https://orcid.org/0000-0001-6807-8347


2 adaptr-package

R topics documented:
adaptr-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
extract_results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
find_beta_params . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
plot_history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
plot_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
run_trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
run_trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
setup_trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
setup_trial_binom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
setup_trial_norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Index 38

adaptr-package adaptr: Adaptive Trial Simulator

Description

The adaptr package simulates adaptive (multi-arm) trials using adaptive stopping, adaptive arm
dropping and/or response-adaptive randomisation. The package is developed as part of the IN-
CEPT (Intensive Care Platform Trial) project, funded primarily by a grant from Sygeforsikringen
"danmark".

Details

The adaptr package contains the following primary functions:

1. setup_trial() is the general function that sets up a trial specification. The simpler, special-
case functions setup_trial_binom() and setup_trial_norm() may be used for easier
specification of trial designs using binary, binomially distributed or continuous, normally dis-
tributed outcomes, respectively, with some limitations in flexibility.

2. The run_trial() and run_trials() functions are used to conduct single or multiple simu-
lations, respectively, according to a trial specification setup as described in #1.

3. The extract_results() and summary() functions are used to extract or summarise the re-
sults of multiple trial simulations.

4. The plot_status() and plot_history() functions are used to plot the overall trial/arm
statuses for multiple simulated trials or the history of trial metrics over time for single/multiple
simulated trials, respectively.

For further information see the function documentation or the Overview vignette (vignette("Overview",
package = "adaptr")) for an example of how the functions work in combination. For further
examples and guidance on setting up trial specifications, see setup_trial documentation, the Ba-
sic examples vignette (vignette("Basic-examples", package = "adaptr")) and the Advanced
example vignette (vignette("Advanced-example", package = "adaptr")).

If using the package, please consider citing it using citation(package = "adaptr").

https://incept.dk/
https://incept.dk/
https://www.sygeforsikring.dk/
https://www.sygeforsikring.dk/


extract_results 3

References

Granholm A, Jensen AKG, Lange T, Kaas-Hansen BS (2022). adaptr: an R package for sim-
ulating and comparing adaptive clinical trials. Journal of Open Source Software, 7(72), 4284.
doi:10.21105/joss.04284

Website/manual

GitHub repository

See Also

setup_trial(), setup_trial_binom(), setup_trial_norm(), run_trial(), run_trials(),
extract_results(), summary(), print(), plot_status() and plot_history().

extract_results Extract simulation results

Description

This function extracts relevant information from multiple simulations of the same trial specification
in a tidy data.frame (1 simulation per row). See also the summary() function.

Usage

extract_results(
object,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE

)

Arguments

object trial_results object, output from the run_trials() function.
select_strategy

single character string. For trials not stopped due to superiority (or with only 1
arm remaining, if select_last_arm is set to TRUE in trial designs with a com-
mon control arm; see below), this parameter specifies which arm will be con-
sidered selected when calculating trial design performance metrics (described
below; this corresponds to the consequence of an inconclusive trial, i.e., which
arm would then be used in practice).
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

https://doi.org/10.21105/joss.04284
https://inceptdk.github.io/adaptr/
https://github.com/INCEPTdk/adaptr/


4 extract_results

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error

for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining
arm with the highest probability of being the best in the final analysis).
Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default) in
which case the first control arm is used for trial designs with a common control
arm, or a single trial arm. Will be used when calculating sq_err_te (the squared
error of the treatment effect comparing the selected arm to the comparator arm,
as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests, see setup_trial()
and run_trial()) will be used to calculate sq_err (the squared error of the
estimated compared to the specified effect in the selected arm) and sq_err_te
(the squared error of the treatment effect comparing the selected arm to the com-
parator arm, as described for te_comp and below). If TRUE, the raw estimates
(raw_ests, see setup_trial() and run_trial()) will be used instead of the
posterior estimates.

Value

A data.frame containing the following columns:

• sim: the simulation number (from 1 to the number of simulations).



find_beta_params 5

• final_n: the final sample size in each simulation.
• sum_ys: the sum of the total counts in all arms, e.g., the total number of events in trials

with a binary outcome (setup_trial_binom()) or the sum of the arm totals in trials with a
continuous outcome (setup_trial_norm()).

• ratio_ys: calculated as sum_ys/final_n.
• final_status: the final trial status for each simulation, either "superiority", "equivalence",
"futility", or "max", as described in run_trial().

• superior_arm: the final superior arm in simulations stopped for superiority, will be NA in
simulations not stopped for superiority.

• selected_arm: the final selected arm (as described above), will correspond to the superior_arm
in simulations stopped for superiority and be NA if no arm is selected. See select_strategy
above.

• sq_err: the squared error of the estimate in the selected arm, calculated as (estimated effect - true effect)^2
for the selected arms.

• sq_err_te: the squared error of the treatment effect comparing the selected arm to the com-
parator arm (as specified in te_comp). Calculated as:
((estimated effect in the selected arm - estimated effect in the comparator arm) -
(true effect in the selected arm - true effect in the comparator arm))^2
Will be NA for simulations without a selected arm or with no comparator specified (see te_comp
above).

Examples

# Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

# Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

# Extract results and Select the control arm if available
# in simulations not ending with superiority
extract_results(res, select_strategy = "control")

find_beta_params Find beta distribution parameters from thresholds

Description

Helper function to find a beta distribution with parameters corresponding to the fewest possible
patients with events/non-events and a specified event proportion. Used in the Advanced example
vignette (vignette("Advanced-example", "adaptr")) to derive beta prior distributions for use
in beta-binomial conjugate models, based on a belief that the true event probability lies within a
specified percentile-based interval (defaults to 95%). May similarly be used by users to derive other
beta priors.



6 plot_history

Usage

find_beta_params(
theta = NULL,
boundary_target = NULL,
boundary = "lower",
interval_width = 0.95,
n_dec = 0,
max_n = 10000

)

Arguments

theta single numeric > 0 and < 1, expected true event probability.
boundary_target

single numeric > 0 and < 1, target lower or upper boundary of the interval.

boundary single character string, either "lower" (default) or "upper", used to select which
boundary to use when finding appropriate parameters for the beta distribution.

interval_width width of the credible interval whose lower/upper boundary should be used (see
boundary_target); must be > 0 and < 1; defaults to 0.95.

n_dec single non-negative integer; the returned parameters are rounded to this number
of decimals. Defaults to 0, in which case the parameters will correspond to
whole number of patients.

max_n single integer > 0 (default 10000), the maximum total sum of the parameters,
corresponding to the maximum total number of patients that will be considered
by the function when finding the optimal parameter values. Corresponds to the
maximum number of patients contributing information to a beta prior; more than
the default number of patients are unlikely to be used in a beta prior.

Value

A single-row data.frame with five columns: the two shape parameters of the beta distribution
(alpha, beta), rounded according to n_dec, and the actual lower and upper boundaries of the
interval and the median (with appropriate names, e.g. p2.5, p50, and p97.5 for a 95% interval),
when using those rounded values.

plot_history Plot trial metric history

Description

Plots the history of relevant metrics over the progress of single or multiple simulations. Simulated
trials only contribute until the time they are stopped, i.e., if some trials are stopped earlier than oth-
ers, they will not contribute to the summary statistics at later adaptive looks. Data from individual
arms in a trial contribute until the complete trial is stopped.
These history plots require non-sparse results (sparse set to FALSE; see run_trial() and run_trials())
and the ggplot2 package installed.



plot_history 7

Usage

plot_history(object, x_value = "look", y_value = "prob", line = NULL, ...)

## S3 method for class 'trial_result'
plot_history(object, x_value = "look", y_value = "prob", line = NULL, ...)

## S3 method for class 'trial_results'
plot_history(
object,
x_value = "look",
y_value = "prob",
line = NULL,
ribbon = list(width = 0.5, alpha = 0.2),
...

)

Arguments

object trial_results object, output from the run_trials() function.

x_value single character string, determining whether the number of adaptive analysis
looks ("look", default) or the total cumulated number of patients allocated
("total n") are plotted on the x-axis.

y_value single character string, determining which values are plotted on the y-axis. The
following options are available: allocation probabilities ("prob", default), the
total number of patients allocated to each arm ("n"), the percentage of patients
allocated to each arm of the total number of patients randomised ("pct"), the
sum of all outcomes in each arm ("sum ys"), the ratio of outcomes ("ratio ys",
the sum of outcomes in each arm divided by the number of patients allocated to
that arm).

line list styling the lines as per ggplot2 conventions (e.g., linetype, size).

... additional arguments, not used.

ribbon list, as line but only appropriate for trial_results objects (i.e., when multi-
ple simulations are run). Also allows to specify the width of the interval: must
be between 0 and 1, with 0.5 (default) showing the inter-quartile ranges.

Value

A ggplot2 plot object.

See Also

plot_status().

Examples

#### Only run examples if ggplot2 is installed ####
if (requireNamespace("ggplot2", quietly = TRUE)){



8 plot_status

# Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

# Run a single simulation with a fixed random seed
res <- run_trial(binom_trial, seed = 12345)

# Plot total allocations to each arm according to overall total allocations
plot_history(res, x_value = "total n", y_value = "n")

# Run multiple simulation with a fixed random base seed
# Notice that sparse = FALSE is required
res_mult <- run_trials(binom_trial, n_rep = 15, base_seed = 12345, sparse = FALSE)

# Plot allocation probabilities at each look
plot_history(res_mult, x_value = "look", y_value = "prob")

# Other y_value options are available but not shown in these examples

# Do not return/print last plot in documentation
invisible(NULL)

}

plot_status Plot statuses

Description

Plots the statuses over time of multiple simulated trials (overall or for a specific arm). Requires the
ggplot2 package installed.

Usage

plot_status(object, x_value = "look", arm = NULL, area = list(alpha = 0.5))

## S3 method for class 'trial_results'
plot_status(object, x_value = "look", arm = NULL, area = list(alpha = 0.5))

Arguments

object trial_results object, output from the run_trials() function.



print 9

x_value single character string, determining whether the number of adaptive analysis
looks ("look", default) or the total cumulated number of patients allocated
("total n") are plotted on the x-axis.

arm single character string or NULL (default); can be set to a valid trial arm. If NULL,
the overall trial statuses are plotted, otherwise the statuses for a single, specific
trial arm are plotted.

area list of styling settings for the area as per ggplot2 conventions (e.g., alpha,
size). The default (list(alpha = 0.5)) sets the transparency to 50% so over-
lain shaded areas are visible.

Value

A ggplot2 plot object.

See Also

plot_history().

Examples

#### Only run examples if ggplot2 is installed ####
if (requireNamespace("ggplot2", quietly = TRUE)){

# Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

# Run multiple simulation with a fixed random base seed
res_mult <- run_trials(binom_trial, n_rep = 25, base_seed = 12345)

# Plot trial statuses at each look according to total allocations
plot_status(res_mult, x_value = "total n")

# Do not return/print last plot in documentation
invisible(NULL)

}

print Print methods for adaptive trial objects

Description

Prints contents of the first input x in a human-friendly way, see Details for more information.



10 print

Usage

## S3 method for class 'trial_spec'
print(x, prob_digits = 3, ...)

## S3 method for class 'trial_result'
print(x, prob_digits = 3, ...)

## S3 method for class 'trial_results'
print(
x,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
restrict = NULL,
digits = 1,
...

)

## S3 method for class 'trial_results_summary'
print(x, digits = 1, ...)

Arguments

x object to print, see Details below.

prob_digits single integer, the number of digits used when printing probabilities, allocation
probabilities and softening powers.

... additional arguments, not used.
select_strategy

single character string. For trials not stopped due to superiority (or with only 1
arm remaining, if select_last_arm is set to TRUE in trial designs with a com-
mon control arm; see below), this parameter specifies which arm will be con-
sidered selected when calculating trial design performance metrics (described
below; this corresponds to the consequence of an inconclusive trial, i.e., which
arm would then be used in practice).
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error

for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-



print 11

ple size; this strategy can only be specified for trial designs with a common
control arm.

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining
arm with the highest probability of being the best in the final analysis).
Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default) in
which case the first control arm is used for trial designs with a common control
arm, or a single trial arm. Will be used when calculating sq_err_te (the squared
error of the treatment effect comparing the selected arm to the comparator arm,
as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests, see setup_trial()
and run_trial()) will be used to calculate sq_err (the squared error of the
estimated compared to the specified effect in the selected arm) and sq_err_te
(the squared error of the treatment effect comparing the selected arm to the com-
parator arm, as described for te_comp and below). If TRUE, the raw estimates
(raw_ests, see setup_trial() and run_trial()) will be used instead of the
posterior estimates.

restrict single character string or NULL. If NULL (default), results are summarised for
all simulations; if "superior, results are summarised for simulations ending
with superiority only; if "selected", results are summarised for simulations
ending with a selected arm (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) can only be calculated across all simulations and several
are calculated regardless of restrict settings, but have substantially different
interpretations if restricted.

digits single integer, number of digits to print for probabilities and some other sum-
mary values (with 2 extra digits added for outcome rates).



12 run_trial

Details

The behaviour depends on the class of x:

• trial_spec: prints a trial specification setup by setup_trial(), setup_trial_binom() or
setup_trial_norm().

• trial_result: prints the results of a single trial simulated by run_trial(). More details are
saved in the trial_result object and thus printed if the sparse argument in run_trial()
or run_trials() is set to FALSE; if TRUE, fewer details are printed, but the omitted details are
available by printing the trial_spec object created by setup_trial(), setup_trial_binom()
or setup_trial_norm().

• trial_results: prints the results of multiple simulations generated using run_trials().
Further documentation on how multiple trials are summarised before printing can be found in
the summary() function documentation.

• trial_results_summary: print method for summary of multiple simulations of the same
trial specification, generated by using the summary() function on an object generated by
run_trials().

Value

Invisibly returns x.

Methods (by class)

• print(trial_spec): Trial specification

• print(trial_result): Single trial result

• print(trial_results): Multiple trial results

• print(trial_results_summary): Summary of multiple trial results

run_trial Simulate a single trial

Description

This function conducts a single trial simulation using a trial specification as specified by setup_trial(),
setup_trial_binom() or setup_trial_norm(). During simulation, the function randomises "pa-
tients", randomly generates outcomes, calculates the probabilities that each arm is the best (and
better than the control, if any). This is followed by checking inferiority, superiority, equivalence
and/or futility as desired; dropping arms, and re-adjusting allocation probabilities according to the
criteria specified in the trial specification. If there is no common control arm, the trial simulation
will be stopped at the maximum sample size, when 1 arm is superior to the others, or when all arms
are considered equivalent (if equivalence testing is specified).
If a common control arm is specified, all other arms will be compared to that, and if 1 comparison
crosses the superiority threshold, that arm will become the new control and the old control will be



run_trial 13

considered inferior. If multiple non-control arms cross the superiority threshold in the same anal-
ysis, the one with the highest probability of being the overall best will become the new control.
Equivalence/futility will also be checked in trial designs with common controls if specified, and
equivalent or futile arms will be dropped. The trial simulation will be stopped when only 1 arm is
left, when the final arms are all equivalent, or when the maximum sample size has been reached.

Usage

run_trial(trial_spec, seed = NULL, sparse = FALSE)

Arguments

trial_spec trial_spec object, generated and validated by the setup_trial(), setup_trial_binom()
or setup_trial_norm() function.

seed single integer or NULL (default), if a value is provided, this value will be used
as the random seed when running (the global random seed will be restored after
the function has run, so it is not affected).

sparse single logical; if FALSE (default) everything listed below is included in the re-
turned object. If TRUE, only a limited amount of data is included in the returned
object. This can be practical when running many simulations and saving the
results using the run_trials() function (which relies on this function), as the
output file will thus be substantially smaller. However, printing of individual
trial results will be substantially less detailed for sparse results and non-sparse
results are required by plot_history().

Value

A trial_result object containing everything listed below if sparse (as described above) is FALSE.
Otherwise only final_status, final_n, trial_res, seed and sparse are included.

• final_status: either "superiority", "equivalence", "futility", or "max".

• final_n: the total number of patients randomised.

• max_n: the pre-specified maximum sample size.

• looks: numeric vector, the total number of patients at each conducted adaptive analysis.

• planned_looks: numeric vector, the cumulated number of patients planned to be randomised
at each adaptive analysis, even those not conducted if the simulation is stopped before the
maximum sample size.

• start_control: character, initial common control arm (if specified).

• final_control: character, final common control arm (if relevant).

• control_prob_fixed: fixed common control arm probabilities (if specified; see setup_trial()).

• inferiority, superiority, equivalence_prob, equivalence_diff, equivalence_only_first,
futility_prob, futility_diff, futility_only_first, highest_is_best, and soften_power:
as specified in setup_trial().

• best_arm: the best arm(s), as described in setup_trial().



14 run_trial

• trial_res: a data.frame containing most of the information specified for each arm in
setup_trial() including true_ys (true outcomes as specified in setup_trial()) and for
each arm the sum of the outcomes (sum_ys; i.e., the total number of events for binary out-
comes or the totals of continuous outcomes) and patients randomised (ns), summary statis-
tics for the raw outcome data (raw_ests, calculated as specified in setup_trial(), de-
faults to mean values, i.e., event rates for binary outcomes or means for continuous out-
comes) and posterior estimates (post_ests, post_errs, lo_cri, and hi_cri, as specified in
setup_trial()), final_status of each arm ("inferior", "superior", "equivalence",
"futile", "active", or "control" (currently active control arm, including if the current
control when stopped for equivalence)), status_look (specifying the cumulated number of
patients randomised when an adaptive analysis changed the final_status to "superior",
"inferior", "equivalence", or "futile"), status_probs, the probability that each treat-
ment was the best/better than the common control arm (if any)/equivalent to the common
control arm (if any and stopped for equivalence; NA if the control arm was stopped due to the
last remaining other arm(s) being stopped for equivalence)/futile if stopped for futility at the
last analysis it was included in, final_alloc, the final allocation probability for each arm the
last time patients were randomised to it, including for arms stopped at the maximum sample
size, and probs_best_last, the probabilities of each remaining arm being the overall best in
the last conducted analysis (NA for previously dropped arms).

• all_looks: a list of lists containing one list per conducted trial look (adaptive analysis).
These lists contain the variables arms, old_status (status before the analysis of the current
round was conducted), new_status (as specified above, status after current analysis has been
conducted), sum_ys (as described above), ns (as described above), old_alloc (the alloca-
tion probability used during this look), probs_best (the probabilities of each arm being the
best in the current adaptive analysis), new_alloc (the allocation probabilities after updating
these in the current adaptive analysis; NA for all arms when the trial is stopped and no fur-
ther analyses will be conducted), probs_better_first (if a common control is provided,
specifying the probabilities that each arm was better than the control in the first analysis con-
ducted during that look), probs_better (as probs_better_first, but updated if another
arm becomes the new control), probs_equivalence_first and probs_equivalence (as for
probs_better/probs_better_first, but for equivalence if equivalence is assessed). The
last variables are NA if the arm was not active in the applicable adaptive analysis or if they
would not be included during the next adaptive analysis.

• allocs: a character vector containing the allocations of all patients in the order of random-
ization.

• ys: a numeric vector containing the outcomes of all patients in the order of randomization (0
or 1 for binary outcomes).

• seed: the random seed used, if specified.

• description, add_info, cri_width, n_draws, robust: as specified in setup_trial(),
setup_trial_binom() or setup_trial_norm().

• sparse: single logical, corresponding to the sparse input.

Examples

# Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

true_ys = c(0.20, 0.18, 0.22, 0.24),



run_trials 15

data_looks = 1:20 * 100)

# Run trial with a specified random seed
res <- run_trial(binom_trial, seed = 12345)

# Print results with 3 decimals
print(res, digits = 3)

run_trials Simulate multiple trials

Description

This function conducts multiple simulations using a trial specification as specified by setup_trial(),
setup_trial_binom() or setup_trial_norm(). This function essentially manages random seeds
and runs multiple simulation using run_trial() - additional details on individual simulations are
provided in that function’s description. This function allows simulating trials in parallel using
multiple cores, automatically saving and re-loading saved objects, and "growing" already saved
simulation files (i.e., appending additional simulations to the same file).

Usage

run_trials(
trial_spec,
n_rep,
path = NULL,
overwrite = FALSE,
grow = FALSE,
cores = 1,
base_seed = NULL,
sparse = TRUE,
progress = NULL,
version = NULL,
compress = TRUE,
export = NULL,
export_envir = parent.frame()

)

Arguments

trial_spec trial_spec object, generated and validated by the setup_trial(), setup_trial_binom()
or setup_trial_norm() function.

n_rep single integer; the number of simulations to run.

path single character; if specified (defaults to NULL), files will be written to and loaded
from this path using the saveRDS() / readRDS() functions.



16 run_trials

overwrite single logical; defaults to FALSE, in which case previous simulations saved in
the same path will be re-loaded (if the same trial specification was used). If
TRUE, the previous file is overwritten. If grow is TRUE, this argument must be set
to FALSE.

grow single logical; defaults to FALSE. If TRUE and a valid path to a valid previous
file containing less simulations than n_rep, the additional number of simula-
tions will be run (appropriately re-using the same base_seed, if specified) and
appended to the same file.

cores single integer; the number of cores to run the simulations on using the parallel
library. Defaults to 1; may be increased to run multiple simulations in parallel.
parallel::detectCores() may be used to find the number of available cores.

base_seed single integer; a random seed used as the basis for simulations; each simulation
will set the random seed to a value based on this (+ the trial number), without
affecting the global random seed after the function has been run.

sparse single logical, as described in run_trial(); defaults to TRUE when running
multiple simulations, in which case only the data necessary to summarise all
simulations are saved for each simulation. If FALSE, more detailed data for
each simulation is saved, allowing more detailed printing of individual trial
results and plotting using plot_history() (plot_status() does not require
non-sparse results).

progress single numeric > 0 and <= 1 or NULL. If NULL (default), no progress is printed to
the console. Otherwise, progress messages are printed to the control at intervals
proportional to the value specified by progress.
Note: as printing is not possible from within clusters on multiple cores, the
function conducts batches of simulations on multiple cores (if specified), with
intermittent printing of statuses. Thus, all cores have to finish running their
current assigned batches before the other cores may proceed with the next batch.
If there is substantial differences in the simulation speeds across cores, using
progress may thus increase total simulation times.

version passed to saveRDS() when saving simulations, defaults to NULL (as in saveRDS()),
which means that the current default version is used. Ignored if simulations are
not saved.

compress passed to saveRDS() when saving simulations, defaults to TRUE (as in saveRDS()),
see saveRDS() for other options. Ignored if simulations are not saved.

export character vector of names of objects to export to each parallel core if cores > 1;
passed as the varlist argument to parallel::clusterExport(). Defaults to
NULL (no objects exported), ignored if cores == 1. See Details below.

export_envir environment where to look for the objects defined in export if cores > 1 and
export is not NULL. Defaults to the environment from where run_trials() is
called.

Details

Exporting objects when using multiple cores
If setup_trial() is used to define a trial specification with custom functions (in the fun_y_gen,
fun_draws, and fun_raw_est arguments of setup_trial()) and run_trials() is run with cores



setup_trial 17

> 1, it is necessary to export additional functions or objects used by these functions and defined by
the user outside the function definitions provided. Similarly, functions from external packages
loaded using library() or require() must be exported or called prefixed with the namespace,
i.e., package::function. The export and export_envir arguments are used to export objects
calling the parallel::clusterExport()-function.

Value

A list of a special class "trial_results", which contains the trial_results (results from all
simulations), trial_spec (the trial specification), n_rep, base_seed, elapsed_time (the total
simulation run time) and sparse (as described above). These results may be extracted using the
extract_results() function and summarised using the summary() or print (print.trial_results())
functions; see function documentation for details on additional arguments used to select arms in
simulations not ending in superiority and other summary choices.

Examples

# Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

# Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

# See ?summary and ?print for details on summarising and printing

setup_trial Setup a generic trial specification

Description

Specifies the design of an adaptive trial with any type of outcome and validates all inputs. Use
run_trial() or run_trials() to conduct single/multiple simulations of the specified trial, re-
spectively.
See setup_trial_binom() and setup_trial_norm() for simplified setup of trial designs com-
mon outcome types. For additional trial specification examples, see the the Basic examples vi-
gnette (vignette("Basic-examples", package = "adaptr")) and the Advanced example vi-
gnette (vignette("Advanced-example", package = "adaptr")).

Usage

setup_trial(
arms,
true_ys,
fun_y_gen = NULL,
fun_draws = NULL,



18 setup_trial

start_probs = NULL,
fixed_probs = NULL,
min_probs = rep(NA, length(arms)),
max_probs = rep(NA, length(arms)),
data_looks = NULL,
max_n = NULL,
look_after_every = NULL,
control = NULL,
control_prob_fixed = NULL,
inferiority = 0.01,
superiority = 0.99,
equivalence_prob = NULL,
equivalence_diff = NULL,
equivalence_only_first = NULL,
futility_prob = NULL,
futility_diff = NULL,
futility_only_first = NULL,
highest_is_best = FALSE,
soften_power = 1,
fun_raw_est = mean,
cri_width = 0.95,
n_draws = 5000,
robust = TRUE,
description = NULL,
add_info = NULL

)

Arguments

arms character vector with unique names for the trial arms.

true_ys numeric vector specifying true outcomes (e.g., event probabilities, mean values,
etc.) for all trial arms.

fun_y_gen function, generates outcomes. See setup_trial() Details for information on
how to specify this function.
Note: this function is called once during setup to validate the output structure.

fun_draws function, generates posterior draws. See setup_trial() Details for informa-
tion on how to specify this function.
Note: this function is called up to three times during setup to validate the output
structure.

start_probs numeric vector, allocation probabilities for each arm at the beginning of the trial.
The default (NULL) is automatically changed to equal randomisation.

fixed_probs numeric vector, fixed allocation probabilities for each arm - must be either a nu-
meric vector with NA for arms without fixed probabilities and values between 0
and 1 for the other arms or NULL (default), if adaptive randomisation is used for
all arms or if one of the special settings ("sqrt-based", "sqrt-based start",
"sqrt-based fixed", or "match") is specified for control_prob_fixed (de-
scribed below).



setup_trial 19

min_probs numeric vector, lower threshold for adaptive allocation probabilities, lower prob-
abilities will be rounded up to these values. Must be NA (default for all arms) if
no boundary is wanted.

max_probs numeric vector, upper threshold for adaptive allocation probabilities, higher
probabilities will be rounded down to these values. Must be NA (default for
all arms) if no boundary is wanted.

data_looks vector of increasing integers, specifies when to conduct adaptive analyses (=
the total number of patients randomised at each adaptive analysis). The last
number in the vector represents the maximum sample size. Instead of specify-
ing data_looks, the max_n and look_after_every arguments can be used in
combination (then data_looks must be NULL, the default).

max_n single integer, maximum total sample size (defaults to NULL). Must only be spec-
ified if data_looks is NULL. Requires specification of the look_after_every
argument.

look_after_every

single integer, specified together with max_n. Adaptive analyses will be con-
ducted after every look_after_every patients randomised, and at the total
sample size as specified by max_n (max_n does not need to be a multiple of
look_after_every). If specified, data_looks must be NULL (as default).

control single character string, name of one of the arms or NULL (default). If specified,
this arm will serve as a common control arm, to which all other arms will be
compared and the inferiority/superiority/equivalence thresholds (see below) will
be for those comparisons. See setup_trial() Details below for information
on behaviour with respect to these comparisons.

control_prob_fixed

if a common control arm is specified, this must be set to either NULL (the de-
fault), in which case the control arm allocation probability will not be fixed if
control arms change (the allocation probability to the first control arm may still
be fixed using fixed_probs) Otherwise a vector of probabilities of either length
1 or number of arms - 1 can be provided, or one of the special arguments
"sqrt-based", "sqrt-based start", "sqrt-based fixed" or "match". See
setup_trial() Details below for details in behaviour.

inferiority single numeric (> 0 and <1, default is 0.01) specifying the inferiority thresh-
old. An arm will be considered inferior and dropped if the probability that it is
best (when comparing all arms) or better than the control arm (when a common
control is used) drops below this threshold.

superiority single numeric (>0 and <1, default is 0.99) specifying the superiority threshold.
If the probability that an arm is best (when comparing all arms) or better than the
control arm (when a common control is used) exceeds this number, said arm
will be declared the winner and the trial will be stopped (if no common control
is used or if the last comparator is dropped in a design with a common control)
or become the new control and the trial will continue (if a common control is
specified).

equivalence_prob

single numeric (> 0 and < 1) or NULL (default, corresponding to no equivalence
assessment). If a numeric value is specified, arms will be stopped for equiva-
lence if the probability of either (a) equivalence compared to a common control



20 setup_trial

or (b) equivalence between all arms remaining (designs without a common con-
trol) exceeds this threshold. Requires specification of equivalence_diff, equivalence_only_first,
and a common control arm.

equivalence_diff

single numeric value (> 0) or NULL (default, corresponding to no equivalence
assessment). If a numeric value is specified, estimated differences below this
threshold will be considered equivalent when assessing equivalence. For designs
with a common control arm, the differences between each non-control arm and
the control arm is used, and for trials without a common control arm, the
difference between the highest and lowest estimated outcome rates are used and
the trial is only stopped for equivalence if all remaining arms are thus equivalent.

equivalence_only_first

single logical in trial specifications where equivalence_prob and equivalence_diff
are specified, otherwise NULL (default). Must be NULL for designs without a
common control arm. If a common control arm is used, this specifies whether
equivalence will only be assessed for the first control (if TRUE) or also for sub-
sequent control arms (if FALSE) if one arm is superior to the first control and
becomes the new control.

futility_prob single numeric (> 0 and < 1) or NULL (default, corresponds to no futility assess-
ment). If a numeric value is specified, arms will be stopped for futility when the
probability for futility compared to the common control exceeds this thresh-
old. Requires a common control arm, specification of futility_diff and
futility_only_first.

futility_diff single numeric value (> 0) or NULL (default, corresponding to no futility assess-
ment). If a numeric value is specified, estimated differences below this threshold
in the beneficial direction (as specified in highest_is_best) will be considered
futile when assessing futility in designs with a common control arm. If only
1 arm remains after dropping arms for futility, the trial will be stopped without
declaring the last arm superior.

futility_only_first

single logical in trial specifications designs where futility_prob and futility_diff
are specified, otherwise NULL (default). Must be NULLfor designs without a commoncontrolarm. Specifies whether futility will only be assessed against the firstcontrol(ifTRUE) or also for subsequent control arms (if FALSE‘)
if one arm is superior to the first control and becomes the new control.

highest_is_best

single logical, specifies whether larger estimates of the outcome are favourable
or not; defaults to FALSE, corresponding to, e.g., an undesirable binary outcomes
(e.g., mortality) or a continuous outcome where lower numbers are preferred
(e.g., hospital length of stay).

soften_power either a single numeric value or a numeric vector of exactly the same length as
the maximum number of looks/adaptive analyses. Values must be between 0
and 1 (default); if < 1, then re-allocated non-fixed allocation probabilities are all
raised to this power to make allocation probabilities less extreme, in turn used
to redistribute remaining probability while respecting limits when defined by
min_probs and/or max_probs. If 1, then no softening is applied.

fun_raw_est function that takes a numeric vector and returns a single numeric value, used
to calculate a raw summary estimate of the outcomes in each arm. Defaults to
mean(), which is always used in the setup_trial_binom() and setup_trial_norm()



setup_trial 21

functions.
Note: the function is called one time per arm during setup to validate the output
structure.

cri_width single numeric >= 0 and < 1, the width of the percentile-based credible intervals
used when summarising individual trial results. Defaults to 0.95, corresponding
to 95% credible intervals.

n_draws single integer, the number of draws from the posterior distributions (for each
arm) used when running the trial. Defaults to 5000; can be reduced for a speed
gain (at the potential loss of stability of results if too low) or increased for
increased precision (takes longer). Values < 100 are not allowed and values
< 1000 are not recommended and warned against.

robust single logical, if TRUE (default) the medians and median absolute deviations
(scaled to be comparable to the standard deviation for normal distributions;
MAD_SD) are used to summarise the posterior distributions; if FALSE, the means
and standard deviations (SDs) are used instead (slightly faster, but may be less
appropriate for posteriors skewed on the natural scale).

description optional single character string describing the trial design, will only be used in
print functions if not NULL (the default).

add_info optional single string containing additional information regarding the trial de-
sign or specifications, will only be used in print functions if not NULL (the de-
fault).

Details

How to specify the fun_y_gen function
The function must take the following inputs:

• allocs: character vector, the trial arms that new patients allocated since the last adaptive
analysis are randomised to.

The function must return a single numeric vector, corresponding to the outcomes for all patients
allocated since the last adaptive analysis, in the same order as allocs.
See the Examples vignette (vignette("Examples", "adaptr")) for an example with further de-
tails.

How to specify the fun_draws function
The function must take the following inputs:

• arms: character vector, the unique trial arms, in the same order as above, but only the cur-
rently active arms are specified when the function is called.

• allocs: a vector of allocations for all patients, corresponding to the trial arms, including
patients allocated to currently inactive arms when called,

• ys: a vector of outcomes for all patients in the same order as allocs, including outcomes for
patients allocated to currently inactive arms when called.

• control: single character, the current control arm, will be NULL for designs without a com-
mon control arm, but required regardless as the argument is supplied by run_trial()/run_trials().

• n_draws: single integer, the number of posterior draws for each arm.



22 setup_trial

The function must return a matrix (with numeric values) with arms columns and n_draws rows.
The matrix must have columns only for currently active arms (when called). Each row should
contain a single posterior draw for each arm on the original outcome scale: if they are estimated
as, e.g., the log(odds), these estimates must be transformed to probabilities and similarly for other
measures.
Important: the matrix cannot contain NAs, even if no patients have been randomised to an arm yet.
See the provided example for one way to alleviate this.
See the Examples vignette (vignette("Examples", "adaptr")) for an example with further de-
tails.

Notes

• Different estimation methods and prior distributions may be used; complex functions will lead
to slower simulations compared to simpler methods for obtaining posterior draws, including
those specified using the setup_trial_binom() and setup_trial_norm() functions.

• Technically, using log relative effect measures — e.g. log(odds ratio) or log(risk ratios) - or
differences compared to a reference arm (e.g., mean differences or absolute risk differences)
instead of absolute values in each arm will work to some extent (be cautious!):

• Stopping for superiority/inferiority/max sample sizes will work.

• Stopping for equivalence/futility may be used with relative effect measures on the log scale.

• Several summary statistics from run_trial() (sum_ys and posterior estimates) may be non-
sensical if relative effect measures are used (depending on calculation method).

• In the same vein, extract_results() (sum_ys, sq_err, and sq_err_te), and summary()
(sum_ys_mean/sd/median/q25/q75, rmse, rmse_te and idp) may be equally nonsensical
when calculated on the relative scale.

Using additional custom or functions from loaded packages in the custom functions If the
fun_y_gen, fun_draws, or fun_raw_est functions calls other user-specified functions (or uses
objects defined by the user outside these functions or the setup_trial()-call) or functions from
external packages and simulations are conducted on multiple cores, these objects or functions must
be exported or prefixed with their namespaces, respectively, as described in run_trials().

More information on arguments

• control: if one or more treatment arms are superior to the control arm (i.e., passes the supe-
riority threshold as defined above), this arm will become the new control (if multiple arms are
superior, the one with the highest probability of being the overall best will become the new
control), the previous control will be dropped for inferiority, and all remaining arms will be
immediately compared to the new control in the same adaptive analysis and dropped if inferior
(or possibly equivalent/futile, see below) compared to this new control arm. Only applies in
trials with a common control.

• control_prob_fixed: If the length is 1, then this allocation probability will be used for
the control group (including if a new arm becomes the control and the original control is
dropped). If multiple values are specified the first value will be used when all arms are active,
the second when one arm has been dropped, and so forth. If 1 or more values are specified,
previously set fixed_probs, min_probs or max_probs for new control arms will be ignored.
If all allocation probabilities do not sum to 1 (e.g, due to multiple limits) they will be re-scaled
to do so.
Can also be set to one of the special arguments "sqrt-based", "sqrt-based start", "sqrt-based



setup_trial 23

fixed" or "match" (written exactly as one of those, case sensitive). This requires start_probs
to be NULL and relevant fixed_probs to be NULL (or NA for the control arm).
If one of the "sqrt-based"/"sqrt-based start"/"sqrt-based fixed" options are used,
the function will set square-root-transformation-based starting allocation probabilities. These
are defined as:
square root of number of non-control arms to 1-ratio for other arms
scaled to sum to 1, which will generally increase power for comparisons against the common
control, as discussed in, e.g., Park et al, 2020 doi:10.1016/j.jclinepi.2020.04.025.
If "sqrt-based", square-root-transformation-based allocation probabilities will also be used
for new controls when arms are dropped. If "sqrt-based start", the control arm will be
fixed to this allocation probability at all times (also after arm dropping, with re-scaling as
necessary, as specified above). If "sqrt-based fixed" is chosen, square-root-transformation-
based allocation probabilities will be used and all allocation probabilities will be fixed through-
out the trial (with re-scaling when arms are dropped).
If "match" is specified, the control group allocation will always be matched to be similar to
the highest non-control arm allocation ratio.

Superiority and inferiority
In trial designs without a common control arm, superiority and inferiority are assessed by compar-
ing all currently active groups. This means that if a "final" analysis of a trial without a common
control and > 2 arms is conducted including all arms (as will often be done in practice) after an
adaptive trial have stopped, the final probabilities of the best arm being superior may differ slightly.
For example, in a trial with three arms and no common control arm, one arm may be dropped early
for inferiority defined as < 1% probability of being the overall best arm. The trial may then continue
with the two remaining arms, and stopped when one is declared superior to the other defined as
> 99% probability of being the overall best arm. If a final analysis is then conducted including all
arms, the final probability of the best arm being overall superior will generally be slightly lower as
the probability of the first dropped arm being the best will generally be > 0%, even if very low and
below the inferiority threshold.
This is not relevant trial designs with a common control, as pairwise assessments of superior-
ity/inferiority compared to the common control will not be influenced similarly by previously
dropped arms (and previously dropped arms may be included in the analyses, even if posterior
distributions are not returned for those). Similarly, in actual clinical trials, final probabilities may
change slightly as the most recently randomised patients will generally not have outcome data avail-
able at the final adaptive analysis where the trial is stopped.

Equivalence
Equivalence is assessed after both inferiority and superiority have been assessed (and in case of
superiority, it will be assessed against the new control arm in designs with a common control, if
specified - see above).

Futility
Futility is assessed after inferiority, superiority, and equivalence have been assessed (and in case
of superiority, it will be assessed against the new control arm in designs with a common control, if
specified - see above). Arms will thus be dropped for equivalence before futility.

Value

A trial_spec object used to run simulations by run_trial() or run_trials(). The output is
essentially a list containing the input values (some combined in a data.frame called trial_arms),

https://doi.org/10.1016/j.jclinepi.2020.04.025


24 setup_trial

but its class signals that these inputs have been validated and inappropriate combinations and set-
tings have been ruled out. Also contains best_arm holding the arm(s) with the best value(s) in
true_ys. Use str() to peruse the actual content of the returned object

Examples

# Setup a custom trial specification with right-skewed, log-normally
# distributed continuous outcomes (higher values are worse)

# Define the function that will generate the outcomes in each arm
# Notice: contents should match arms/true_ys in the setup_trial() call below
get_ys_lognorm <- function(allocs) {

y <- numeric(length(allocs))
# arms (names and order) and values (except for exponentiation) should match
# those used in setup_trial (below)
means <- c("Control" = 2.2, "Experimental A" = 2.1, "Experimental B" = 2.3)
for (arm in names(means)) {
ii <- which(allocs == arm)
y[ii] <- rlnorm(length(ii), means[arm], 1.5)

}
y

}

# Define the function that will generate posterior draws
# In this example, the function uses no priors (corresponding to improper
# flat priors) and calculates results on the log-scale, before exponentiating
# back to the natural scale, which is required for assessments of
# equivalence, futility and general interpretation
get_draws_lognorm <- function(arms, allocs, ys, control, n_draws) {

draws <- list()
logys <- log(ys)
for (arm in arms){

ii <- which(allocs == arm)
n <- length(ii)
if (n > 1) {

# Necessary to avoid errors if too few patients randomised to this arm
draws[[arm]] <- exp(rnorm(n_draws, mean = mean(logys[ii]), sd = sd(logys[ii])/sqrt(n - 1)))
} else {

# Too few patients randomised to this arm - extreme uncertainty
draws[[arm]] <- exp(rnorm(n_draws, mean = mean(logys), sd = 1000 * (max(logys) - min(logys))))
}

}
do.call(cbind, draws)

}

# The actual trial specification is then defined
lognorm_trial <- setup_trial(

# arms should match those above
arms = c("Control", "Experimental A", "Experimental B"),
# true_ys should match those above
true_ys = exp(c(2.2, 2.1, 2.3)),
fun_y_gen = get_ys_lognorm, # as specified above
fun_draws = get_draws_lognorm, # as specified above



setup_trial_binom 25

max_n = 5000,
look_after_every = 200,
control = "Control",
# Qquare-root-based, fixed control group allocation ratio
# and response-adaptive randomisation for other arms
control_prob_fixed = "sqrt-based",
# Equivalence assessment
equivalence_prob = 0.9,
equivalence_diff = 0.5,
equivalence_only_first = TRUE,
highest_is_best = FALSE,
# Summarise raw results by taking the mean on the
# log scale and back-transforming
fun_raw_est = function(x) exp(mean(log(x))) ,
# Summarise posteriors using medians with MAD-SDs,
# as distributions will not be normal on the actual scale
robust = TRUE,
# Description/additional info used when printing
description = "continuous, log-normally distributed outcome",
add_info = "SD on the log scale for all arms: 1.5"

)

# Print trial specification with 3 digits for all probabilities
print(lognorm_trial, prob_digits = 3)

setup_trial_binom Setup a trial specification using a binary, binomially distributed out-
come

Description

Specifies the design of an adaptive trial with a binary, binomially distributed outcome and validates
all inputs. Uses beta-binomial conjugate models with beta(1, 1) prior distributions, correspond-
ing to a uniform prior (or the addition of 2 patients, 1 with an event and 1 without) to the trial.
Use run_trial() or run_trials() to conduct single/multiple simulations of the specified trial,
respectively.
Note: add_info as specified in setup_trial() is set to NULL for trial specifications setup by this
function.
Further details: please see setup_trial(). See setup_trial_norm() for simplified setup of
trials with normally distributed continuous outcomes.
For additional trial specification examples, see the the Basic examples vignette (vignette("Basic-examples",
package = "adaptr")) and the Advanced example vignette (vignette("Advanced-example",
package = "adaptr")).

Usage

setup_trial_binom(
arms,



26 setup_trial_binom

true_ys,
start_probs = NULL,
fixed_probs = NULL,
min_probs = rep(NA, length(arms)),
max_probs = rep(NA, length(arms)),
data_looks = NULL,
max_n = NULL,
look_after_every = NULL,
control = NULL,
control_prob_fixed = NULL,
inferiority = 0.01,
superiority = 0.99,
equivalence_prob = NULL,
equivalence_diff = NULL,
equivalence_only_first = NULL,
futility_prob = NULL,
futility_diff = NULL,
futility_only_first = NULL,
highest_is_best = FALSE,
soften_power = 1,
cri_width = 0.95,
n_draws = 5000,
robust = TRUE,
description = "generic binomially distributed outcome trial"

)

Arguments

arms character vector with unique names for the trial arms.

true_ys numeric vector, true probabilities (between 0 and 1) of outcomes in all trial arms.

start_probs numeric vector, allocation probabilities for each arm at the beginning of the trial.
The default (NULL) is automatically changed to equal randomisation.

fixed_probs numeric vector, fixed allocation probabilities for each arm - must be either a nu-
meric vector with NA for arms without fixed probabilities and values between 0
and 1 for the other arms or NULL (default), if adaptive randomisation is used for
all arms or if one of the special settings ("sqrt-based", "sqrt-based start",
"sqrt-based fixed", or "match") is specified for control_prob_fixed (de-
scribed below).

min_probs numeric vector, lower threshold for adaptive allocation probabilities, lower prob-
abilities will be rounded up to these values. Must be NA (default for all arms) if
no boundary is wanted.

max_probs numeric vector, upper threshold for adaptive allocation probabilities, higher
probabilities will be rounded down to these values. Must be NA (default for
all arms) if no boundary is wanted.

data_looks vector of increasing integers, specifies when to conduct adaptive analyses (=
the total number of patients randomised at each adaptive analysis). The last



setup_trial_binom 27

number in the vector represents the maximum sample size. Instead of specify-
ing data_looks, the max_n and look_after_every arguments can be used in
combination (then data_looks must be NULL, the default).

max_n single integer, maximum total sample size (defaults to NULL). Must only be spec-
ified if data_looks is NULL. Requires specification of the look_after_every
argument.

look_after_every

single integer, specified together with max_n. Adaptive analyses will be con-
ducted after every look_after_every patients randomised, and at the total
sample size as specified by max_n (max_n does not need to be a multiple of
look_after_every). If specified, data_looks must be NULL (as default).

control single character string, name of one of the arms or NULL (default). If specified,
this arm will serve as a common control arm, to which all other arms will be
compared and the inferiority/superiority/equivalence thresholds (see below) will
be for those comparisons. See setup_trial() Details below for information
on behaviour with respect to these comparisons.

control_prob_fixed

if a common control arm is specified, this must be set to either NULL (the de-
fault), in which case the control arm allocation probability will not be fixed if
control arms change (the allocation probability to the first control arm may still
be fixed using fixed_probs) Otherwise a vector of probabilities of either length
1 or number of arms - 1 can be provided, or one of the special arguments
"sqrt-based", "sqrt-based start", "sqrt-based fixed" or "match". See
setup_trial() Details below for details in behaviour.

inferiority single numeric (> 0 and <1, default is 0.01) specifying the inferiority thresh-
old. An arm will be considered inferior and dropped if the probability that it is
best (when comparing all arms) or better than the control arm (when a common
control is used) drops below this threshold.

superiority single numeric (>0 and <1, default is 0.99) specifying the superiority threshold.
If the probability that an arm is best (when comparing all arms) or better than the
control arm (when a common control is used) exceeds this number, said arm
will be declared the winner and the trial will be stopped (if no common control
is used or if the last comparator is dropped in a design with a common control)
or become the new control and the trial will continue (if a common control is
specified).

equivalence_prob

single numeric (> 0 and < 1) or NULL (default, corresponding to no equivalence
assessment). If a numeric value is specified, arms will be stopped for equiva-
lence if the probability of either (a) equivalence compared to a common control
or (b) equivalence between all arms remaining (designs without a common con-
trol) exceeds this threshold. Requires specification of equivalence_diff, equivalence_only_first,
and a common control arm.

equivalence_diff

single numeric value (> 0) or NULL (default, corresponding to no equivalence
assessment). If a numeric value is specified, estimated differences below this
threshold will be considered equivalent when assessing equivalence. For designs
with a common control arm, the differences between each non-control arm and



28 setup_trial_binom

the control arm is used, and for trials without a common control arm, the
difference between the highest and lowest estimated outcome rates are used and
the trial is only stopped for equivalence if all remaining arms are thus equivalent.

equivalence_only_first

single logical in trial specifications where equivalence_prob and equivalence_diff
are specified, otherwise NULL (default). Must be NULL for designs without a
common control arm. If a common control arm is used, this specifies whether
equivalence will only be assessed for the first control (if TRUE) or also for sub-
sequent control arms (if FALSE) if one arm is superior to the first control and
becomes the new control.

futility_prob single numeric (> 0 and < 1) or NULL (default, corresponds to no futility assess-
ment). If a numeric value is specified, arms will be stopped for futility when the
probability for futility compared to the common control exceeds this thresh-
old. Requires a common control arm, specification of futility_diff and
futility_only_first.

futility_diff single numeric value (> 0) or NULL (default, corresponding to no futility assess-
ment). If a numeric value is specified, estimated differences below this threshold
in the beneficial direction (as specified in highest_is_best) will be considered
futile when assessing futility in designs with a common control arm. If only
1 arm remains after dropping arms for futility, the trial will be stopped without
declaring the last arm superior.

futility_only_first

single logical in trial specifications designs where futility_prob and futility_diff
are specified, otherwise NULL (default). Must be NULLfor designs without a commoncontrolarm. Specifies whether futility will only be assessed against the firstcontrol(ifTRUE) or also for subsequent control arms (if FALSE‘)
if one arm is superior to the first control and becomes the new control.

highest_is_best

single logical, specifies whether larger estimates of the outcome are favourable
or not; defaults to FALSE, corresponding to, e.g., an undesirable binary outcomes
(e.g., mortality) or a continuous outcome where lower numbers are preferred
(e.g., hospital length of stay).

soften_power either a single numeric value or a numeric vector of exactly the same length as
the maximum number of looks/adaptive analyses. Values must be between 0
and 1 (default); if < 1, then re-allocated non-fixed allocation probabilities are all
raised to this power to make allocation probabilities less extreme, in turn used
to redistribute remaining probability while respecting limits when defined by
min_probs and/or max_probs. If 1, then no softening is applied.

cri_width single numeric >= 0 and < 1, the width of the percentile-based credible intervals
used when summarising individual trial results. Defaults to 0.95, corresponding
to 95% credible intervals.

n_draws single integer, the number of draws from the posterior distributions (for each
arm) used when running the trial. Defaults to 5000; can be reduced for a speed
gain (at the potential loss of stability of results if too low) or increased for
increased precision (takes longer). Values < 100 are not allowed and values
< 1000 are not recommended and warned against.

robust single logical, if TRUE (default) the medians and median absolute deviations
(scaled to be comparable to the standard deviation for normal distributions;



setup_trial_norm 29

MAD_SD) are used to summarise the posterior distributions; if FALSE, the means
and standard deviations (SDs) are used instead (slightly faster, but may be less
appropriate for posteriors skewed on the natural scale).

description character string, default is "generic binomially distributed outcome trial".
See arguments of setup_trial().

Value

A trial_spec object used to run simulations by run_trial() or run_trials(). The output is
essentially a list containing the input values (some combined in a data.frame called trial_arms),
but its class signals that these inputs have been validated and inappropriate combinations and set-
tings have been ruled out. Also contains best_arm holding the arm(s) with the best value(s) in
true_ys. Use str() to peruse the actual content of the returned object

Examples

# Setup a trial specification a binary, binomially distributed, undesirable outcome
binom_trial <- setup_trial_binom(

arms = c("Arm A", "Arm B", "Arm C"),
true_ys = c(0.25, 0.20, 0.30),
# Minimum allocation of 15% in all arms
min_probs = rep(0.15, 3),
data_looks = seq(from = 300, to = 2000, by = 100),
# Stop for equivalence if > 90% probability of
# differences < 5 percentage points
equivalence_prob = 0.9,
equivalence_diff = 0.05,
soften_power = 0.5 # Limit extreme allocation ratios

)

# Print using 3 digits for probabilities
print(binom_trial, prob_digits = 3)

setup_trial_norm Setup a trial specification using a continuous, normally distributed
outcome

Description

Specifies the design of an adaptive trial with a continuous, normally distributed outcome and vali-
dates all inputs. Uses normally distributed posterior distributions for the mean values in each trial
arm; technically, no priors are used (as using normal-normal conjugate prior models with extremely
wide or uniform priors gives similar results for these simple, unadjusted estimates). Technically,
this thus corresponds to using improper, flat priors, although not explicitly specified as such. Use
run_trial() or run_trials() to conduct single/multiple simulations of the specified trial, respec-
tively.
Note: add_info as specified in setup_trial() is set to the arms and standard deviations used for



30 setup_trial_norm

trials specified using this function.
Further details: please see setup_trial(). See setup_trial_binom() for simplified setup of
trials with binomially distributed binary outcomes.
For additional trial specification examples, see the the Basic examples vignette (vignette("Basic-examples",
package = "adaptr")) and the Advanced example vignette (vignette("Advanced-example",
package = "adaptr")).

Usage

setup_trial_norm(
arms,
true_ys,
sds,
start_probs = NULL,
fixed_probs = NULL,
min_probs = rep(NA, length(arms)),
max_probs = rep(NA, length(arms)),
data_looks = NULL,
max_n = NULL,
look_after_every = NULL,
control = NULL,
control_prob_fixed = NULL,
inferiority = 0.01,
superiority = 0.99,
equivalence_prob = NULL,
equivalence_diff = NULL,
equivalence_only_first = NULL,
futility_prob = NULL,
futility_diff = NULL,
futility_only_first = NULL,
highest_is_best = FALSE,
soften_power = 1,
cri_width = 0.95,
n_draws = 5000,
robust = FALSE,
description = "generic normally distributed outcome trial"

)

Arguments

arms character vector with unique names for the trial arms.

true_ys numeric vector, simulated means of the outcome in all trial arms.

sds numeric vector, true standard deviations (must be > 0) of the outcome in all trial
arms.

start_probs numeric vector, allocation probabilities for each arm at the beginning of the trial.
The default (NULL) is automatically changed to equal randomisation.

fixed_probs numeric vector, fixed allocation probabilities for each arm - must be either a nu-
meric vector with NA for arms without fixed probabilities and values between 0



setup_trial_norm 31

and 1 for the other arms or NULL (default), if adaptive randomisation is used for
all arms or if one of the special settings ("sqrt-based", "sqrt-based start",
"sqrt-based fixed", or "match") is specified for control_prob_fixed (de-
scribed below).

min_probs numeric vector, lower threshold for adaptive allocation probabilities, lower prob-
abilities will be rounded up to these values. Must be NA (default for all arms) if
no boundary is wanted.

max_probs numeric vector, upper threshold for adaptive allocation probabilities, higher
probabilities will be rounded down to these values. Must be NA (default for
all arms) if no boundary is wanted.

data_looks vector of increasing integers, specifies when to conduct adaptive analyses (=
the total number of patients randomised at each adaptive analysis). The last
number in the vector represents the maximum sample size. Instead of specify-
ing data_looks, the max_n and look_after_every arguments can be used in
combination (then data_looks must be NULL, the default).

max_n single integer, maximum total sample size (defaults to NULL). Must only be spec-
ified if data_looks is NULL. Requires specification of the look_after_every
argument.

look_after_every

single integer, specified together with max_n. Adaptive analyses will be con-
ducted after every look_after_every patients randomised, and at the total
sample size as specified by max_n (max_n does not need to be a multiple of
look_after_every). If specified, data_looks must be NULL (as default).

control single character string, name of one of the arms or NULL (default). If specified,
this arm will serve as a common control arm, to which all other arms will be
compared and the inferiority/superiority/equivalence thresholds (see below) will
be for those comparisons. See setup_trial() Details below for information
on behaviour with respect to these comparisons.

control_prob_fixed

if a common control arm is specified, this must be set to either NULL (the de-
fault), in which case the control arm allocation probability will not be fixed if
control arms change (the allocation probability to the first control arm may still
be fixed using fixed_probs) Otherwise a vector of probabilities of either length
1 or number of arms - 1 can be provided, or one of the special arguments
"sqrt-based", "sqrt-based start", "sqrt-based fixed" or "match". See
setup_trial() Details below for details in behaviour.

inferiority single numeric (> 0 and <1, default is 0.01) specifying the inferiority thresh-
old. An arm will be considered inferior and dropped if the probability that it is
best (when comparing all arms) or better than the control arm (when a common
control is used) drops below this threshold.

superiority single numeric (>0 and <1, default is 0.99) specifying the superiority threshold.
If the probability that an arm is best (when comparing all arms) or better than the
control arm (when a common control is used) exceeds this number, said arm
will be declared the winner and the trial will be stopped (if no common control
is used or if the last comparator is dropped in a design with a common control)
or become the new control and the trial will continue (if a common control is
specified).



32 setup_trial_norm

equivalence_prob

single numeric (> 0 and < 1) or NULL (default, corresponding to no equivalence
assessment). If a numeric value is specified, arms will be stopped for equiva-
lence if the probability of either (a) equivalence compared to a common control
or (b) equivalence between all arms remaining (designs without a common con-
trol) exceeds this threshold. Requires specification of equivalence_diff, equivalence_only_first,
and a common control arm.

equivalence_diff

single numeric value (> 0) or NULL (default, corresponding to no equivalence
assessment). If a numeric value is specified, estimated differences below this
threshold will be considered equivalent when assessing equivalence. For designs
with a common control arm, the differences between each non-control arm and
the control arm is used, and for trials without a common control arm, the
difference between the highest and lowest estimated outcome rates are used and
the trial is only stopped for equivalence if all remaining arms are thus equivalent.

equivalence_only_first

single logical in trial specifications where equivalence_prob and equivalence_diff
are specified, otherwise NULL (default). Must be NULL for designs without a
common control arm. If a common control arm is used, this specifies whether
equivalence will only be assessed for the first control (if TRUE) or also for sub-
sequent control arms (if FALSE) if one arm is superior to the first control and
becomes the new control.

futility_prob single numeric (> 0 and < 1) or NULL (default, corresponds to no futility assess-
ment). If a numeric value is specified, arms will be stopped for futility when the
probability for futility compared to the common control exceeds this thresh-
old. Requires a common control arm, specification of futility_diff and
futility_only_first.

futility_diff single numeric value (> 0) or NULL (default, corresponding to no futility assess-
ment). If a numeric value is specified, estimated differences below this threshold
in the beneficial direction (as specified in highest_is_best) will be considered
futile when assessing futility in designs with a common control arm. If only
1 arm remains after dropping arms for futility, the trial will be stopped without
declaring the last arm superior.

futility_only_first

single logical in trial specifications designs where futility_prob and futility_diff
are specified, otherwise NULL (default). Must be NULLfor designs without a commoncontrolarm. Specifies whether futility will only be assessed against the firstcontrol(ifTRUE) or also for subsequent control arms (if FALSE‘)
if one arm is superior to the first control and becomes the new control.

highest_is_best

single logical, specifies whether larger estimates of the outcome are favourable
or not; defaults to FALSE, corresponding to, e.g., an undesirable binary outcomes
(e.g., mortality) or a continuous outcome where lower numbers are preferred
(e.g., hospital length of stay).

soften_power either a single numeric value or a numeric vector of exactly the same length as
the maximum number of looks/adaptive analyses. Values must be between 0
and 1 (default); if < 1, then re-allocated non-fixed allocation probabilities are all
raised to this power to make allocation probabilities less extreme, in turn used
to redistribute remaining probability while respecting limits when defined by
min_probs and/or max_probs. If 1, then no softening is applied.



setup_trial_norm 33

cri_width single numeric >= 0 and < 1, the width of the percentile-based credible intervals
used when summarising individual trial results. Defaults to 0.95, corresponding
to 95% credible intervals.

n_draws single integer, the number of draws from the posterior distributions (for each
arm) used when running the trial. Defaults to 5000; can be reduced for a speed
gain (at the potential loss of stability of results if too low) or increased for
increased precision (takes longer). Values < 100 are not allowed and values
< 1000 are not recommended and warned against.

robust single logical, if TRUE (default) the medians and median absolute deviations
(scaled to be comparable to the standard deviation for normal distributions;
MAD_SD) are used to summarise the posterior distributions; if FALSE, the means
and standard deviations (SDs) are used instead (slightly faster, but may be less
appropriate for posteriors skewed on the natural scale).

description character string, default is "generic normally distributed outcome trial".
See arguments of setup_trial().

Details

Because the posteriors used in this type of trial (with a generic, continuous, normally distributed
outcome) are by definition normally distributed, FALSE is used as the default value for the robust
argument.

Value

A trial_spec object used to run simulations by run_trial() or run_trials(). The output is
essentially a list containing the input values (some combined in a data.frame called trial_arms),
but its class signals that these inputs have been validated and inappropriate combinations and set-
tings have been ruled out. Also contains best_arm holding the arm(s) with the best value(s) in
true_ys. Use str() to peruse the actual content of the returned object

Examples

# Setup a trial specification using a continuous, normally distributed, desirable outcome
norm_trial <- setup_trial_norm(

arms = c("Control", "New A", "New B", "New C"),
true_ys = c(15, 20, 14, 13),
sds = c(2, 2.5, 1.9, 1.8), # SDs in each arm
max_n = 500,
look_after_every = 50,
control = "Control", # Common control arm
# Square-root-based, fixed control group allocation ratios
control_prob_fixed = "sqrt-based fixed",
# Desirable outcome
highest_is_best = TRUE,
soften_power = 0.5 # Limit extreme allocation ratios

)

# Print using 3 digits for probabilities
print(norm_trial, prob_digits = 3)



34 summary

summary Summary of simulated trial results

Description

Summarises simulation results from the run_trials() function. Uses extract_results(), which
may be used directly to extract key trial results without summarising.

Usage

## S3 method for class 'trial_results'
summary(
object,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
restrict = NULL,
...

)

Arguments

object trial_results object, output from the run_trials() function.
select_strategy

single character string. For trials not stopped due to superiority (or with only 1
arm remaining, if select_last_arm is set to TRUE in trial designs with a com-
mon control arm; see below), this parameter specifies which arm will be con-
sidered selected when calculating trial design performance metrics (described
below; this corresponds to the consequence of an inconclusive trial, i.e., which
arm would then be used in practice).
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error

for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.



summary 35

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining
arm with the highest probability of being the best in the final analysis).
Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default) in
which case the first control arm is used for trial designs with a common control
arm, or a single trial arm. Will be used when calculating sq_err_te (the squared
error of the treatment effect comparing the selected arm to the comparator arm,
as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests, see setup_trial()
and run_trial()) will be used to calculate sq_err (the squared error of the
estimated compared to the specified effect in the selected arm) and sq_err_te
(the squared error of the treatment effect comparing the selected arm to the com-
parator arm, as described for te_comp and below). If TRUE, the raw estimates
(raw_ests, see setup_trial() and run_trial()) will be used instead of the
posterior estimates.

restrict single character string or NULL. If NULL (default), results are summarised for
all simulations; if "superior, results are summarised for simulations ending
with superiority only; if "selected", results are summarised for simulations
ending with a selected arm (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) can only be calculated across all simulations and several
are calculated regardless of restrict settings, but have substantially different
interpretations if restricted.

... additional arguments, not used.

Details

The ideal design percentage (IDP) returned (described below) is based on Viele et al, 2020 doi:10.1177/
1740774519877836 and has been adapted to work for trials with both desirable/undesirable out-

https://doi.org/10.1177/1740774519877836
https://doi.org/10.1177/1740774519877836


36 summary

comes and non-binary outcomes. Briefly, the expected outcome is calculated as the sum of the true
outcomes in each arm multiplied by the corresponding selection probabilities (ignoring simulations
with no selected arm). The IDP is then calculated as:

• For desirable outcomes:
100 * (expected outcome - lowest true outcome) / (highest true outcome - lowest true outcome)

• For undesirable outcomes:
100 - IDP calculated for desirable outcomes

Value

A "trial_results_summary" object containing the following:

• n_rep: the number of simulations.
• n_summarised: the number of simulations summarised.
• highest_is_best: as specified in setup_trial().
• elapsed_time: the total simulation time.
• size_mean, size_sd, size_median, size_p25, size_p75: the mean, standard deviation, me-

dian as well as 25- and 75-percentiles of the sample sizes of the summarised trial simulations.
• sum_ys_mean, sum_ys_sd, sum_ys_median, sum_ys_p25, sum_ys_p75: the mean, standard

deviation, median as well as 25- and 75-percentiles of the total sum_ys (e.g., the total number
of events in trials with a binary outcome, or the sums of continuous values for all patients
across all arms in trials with a continuous outcome) across all arms in the summarised trial
simulations.

• ratio_ys_mean, ratio_ys_sd, ratio_ys_median, ratio_ys_p25, ratio_ys_p75: the mean,
standard deviation, median as well as 25- and 75-percentiles of the final ratio_ys (sum_ys/final_n)
across all arms in the summarised trial simulations.

• prob_conclusive: the proportion of conclusive trial simulations (simulations not stopped at
the maximum sample size without a superiority, equivalence or futility decision).

• prob_superior, prob_equivalence, prob_futility, prob_max: the proportion (0-1) of
trial simulations stopped for superiority, equivalence, futility or inconclusive at the maximum
allowed sample size, respectively.

• prob_select_*: the selection probabilities for each arm and for no selection, according to the
specified selection strategy. Contains one element per arm, named as prob_select_arm_<arm name>
and prob_select_none for the probability of selecting no arm.

• rmse, rmse_te: the root mean squared error of the estimates for the selected arm and for the
treatment effect, as described further in extract_results().

• idp: the ideal design percentage (IDP; 0-100%), see Details.
• select_strategy, select_last_arm, select_preferences, te_comp, raw_ests,restrict:

as specified above.
• control: the control arm specified by setup_trial(), setup_trial_binom() or setup_trial_norm();
NULL if no control.

• equivalence_assessed, futility_assessed: single logicals, specifies whether the trial
design specification includes assessments of equivalence and/or futility.

• base_seed: as specified in run_trials().
• cri_width, n_draws, robust, description, add_info: as specified in setup_trial(),
setup_trial_binom() or setup_trial_norm().



summary 37

Examples

# Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

# Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

# Summarise simulations - select the control arm if available in trials not
# ending with a superiority decision
res_sum <- summary(res, select_strategy = "control")

# Print summary
print(res_sum, digits = 1)



Index

adaptr (adaptr-package), 2
adaptr-package, 2

extract_results, 3
extract_results(), 2, 3, 17, 22, 34, 36

find_beta_params, 5

library(), 17

mean(), 20

parallel::clusterExport(), 16, 17
parallel::detectCores(), 16
plot_history, 6
plot_history(), 2, 3, 9, 13, 16
plot_status, 8
plot_status(), 2, 3, 7, 16
print, 9
print(), 3
print.trial_results(), 17

readRDS(), 15
require(), 17
run_trial, 12
run_trial(), 2–6, 11, 12, 15–17, 21–23, 25,

29, 33, 35
run_trials, 15
run_trials(), 2, 3, 6–8, 12, 13, 16, 17,

21–23, 25, 29, 33, 34, 36

saveRDS(), 15, 16
setup_trial, 2, 17
setup_trial(), 2–4, 11–16, 18, 19, 22, 25,

27, 29–31, 33, 35, 36
setup_trial_binom, 25
setup_trial_binom(), 2, 3, 5, 12–15, 17, 20,

22, 30, 36
setup_trial_norm, 29
setup_trial_norm(), 2, 3, 5, 12–15, 17, 20,

22, 25, 36

summary, 34
summary(), 2, 3, 12, 17, 22

38


	adaptr-package
	extract_results
	find_beta_params
	plot_history
	plot_status
	print
	run_trial
	run_trials
	setup_trial
	setup_trial_binom
	setup_trial_norm
	summary
	Index

