Package 'asbio'

August 26, 2022
Type Package
Title A Collection of Statistical Tools for Biologists
Version 1.8-2
Depends R (>= 3.5.0), tcltk
Imports scatterplot3d, pixmap, plotrix, mvtnorm, deSolve, lattice,multcompView, grDevices, graphics, stats, utils, gWidgets2,gWidgets2tcltk
Suggests boot, tkrplot
Date 2022-8-24
SystemRequirements BWidget
Author Ken Aho
Maintainer Ken Aho kenaho1@gmail.com
Description Contains functions from: Aho, K. (2014) Foundational and Applied Statistics for Biolo-gists using R. CRC/Taylor and Francis, Boca Raton, FL, ISBN: 978-1-4398-7338-0.
License GPL (>=2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-25 22:22:43 UTC
R topics documented:
agrostis 6
aids 7
alfalfa.split.plot 7
alpha.div 8
anm.ci 9
anm.coin 11
anm.cont.pdf 12
anm.die 12
anm.ExpDesign 13
anm.geo.growth 17
anm.loglik 18
anm.ls 21
anm.ls.reg 23
anm.LV 24
anm.mc.bvn 26
anm.samp.design 28
anolis 29
anscombe 29
ant.dew 31
AP.test 31
asthma 32
auc 33
baby.walk 34
bats 35
Bayes.disc 35
bayes.lm 36
BCI.count 37
BCI.plant 38
BDM.test 39
bear 40
beetle 41
best.agreement 42
bin2dec 43
bombus 44
bone 44
book.menu 45
boot.ci.M 46
bootstrap 47
bound.angle 48
bplot 49
bromus 52
bv.boxplot 52
bvn.plot 55
C.isotope 56
caribou 57
case0902 58
case 1202 59
chi.plot 60
chronic 61
ci.boot 62
ci.impt 63
ci.median 65
ci.mu.oneside 66
ci.mu.z 67
ci.p 68
ci.prat 71
ci.prat.ak 74R topics documented:3
ci.sigma 77
ci.strat 78
cliff.env 80
cliff.sp 81
concrete 81
ConDis.matrix 83
corn 84
crab.weight 84
crabs 85
cuckoo 86
D.sq 86
death.penalty 87
deer 88
deer. 296 89
depression 89
DH.test 90
dO2 91
drugs 92
e.cancer 93
eff.rbd 93
enzyme 94
ES.May 95
exercise.repeated 96
facebook 97
Fbird 98
fire 99
fly.sex 99
frog 100
fruit 101
G.mean 101
g.test 102
garments 103
Glucose2 103
goats 104
grass 105
H.mean 105
heart 106
HL.mean 107
huber.mu 108
huber.NR 109
huber.one.step 110
illusions 111
ipomopsis 111
joint.ci.bonf 112
K 113
Kappa 114
km 115
Kullback 116
larrea 117
life.exp 118
lm.select 119
magnets 120
MC 120
MC.test 121
mcmc.norm.hier 123
ML.k 124
Mode 125
modlevene.test 126
montane.island 127
moose.sel 128
mosquito 129
MS.test 129
myeloma 130
near.bound 131
one.sample.t 132
one.sample.z 133
paik 134
pairw.anova 135
pairw.fried 138
pairw.kw 140
pairw.oneway 141
panel.cor.res 142
partial.R2 143
partial.resid.plot 144
PCB 146
perm.fact.test 146
pika 148
plantTraits 149
plot.pairw 150
plotAncova 152
plotCI.reg 153
PM2.5 154
polyamine 155
portneuf 155
potash 156
potato 157
power.z.test 157
press 159
Preston.dist 160
prostate 161
prp 162
pseudo.v 164
qq.Plot 166
r.bw 167
r.dist 168
R.hat 170
r.pb 171
Rabino_CO2 172
rat 173
refinery 173
rinvchisq 174
rmvm 175
samp.dist 176
samp.dist.mech 180
savage 181
sc.twin 182
se.jack 182
sedum.ts 183
see.accPrec.tck 184
see.ancova.tck 184
see.anova.tck 185
see.cor.range.tck 185
see.exppower.tck 186
see.HW 186
see.lma.tck 187
see.lmr.tck 187
see.lmu.tck 188
see.logic 189
see.M 189
see.mixedII 190
see.mnom.tck 191
see.move 191
see.nlm 192
see.norm.tck 192
see.power 193
see..Effect.tck 194
see.regression.tck 195
see.roc.tck 195
see.smooth.tck 196
see.ttest.tck 196
see.typeI_II 197
selftest.se.tck 1 197
Semiconductor 198
SexDeterm 198
shad 199
shade.norm 200
shade.norm.tck 202
simberloff 203
skew 204
SM.temp.moist 205
snore 206
so2.us.cities 206
stan.error 207
starkey 208
suess 208
trag 209
transM 210
trim.me 211
trim.ranef.test 212
trim.test 213
tukey.add.test 214
veneer 215
Venn 216
vs 217
wash.rich 217
webs 218
wheat 219
whickham 219
wildebeest 220
win 221
wine 222
world.co2 223
world.emissions 224
world.pop 225
Index 227
agrostis Agrostis variabilis cover measurements

Description

Percent cover of the grass Agrostis variablis at 25 alpine snowbank sites in the Absaroka-Beartooth Mountains.

Usage

data(agrostis)

Format

A data frame with 25 observations on the following 2 variables.
site Site number
cover Percent cover

Source

Aho, K. (2006) Alpine and Cliff Ecosystems in the North-Central Rocky Mountains. PhD dissertation, Montana State University, Bozeman, MT.

Description

The veterans administration studied the effect of AZT on AIDS symptoms for 338 HIV-positive military veterans who were just beginning to express AIDS. AZT treatment was withheld on a random component until helper T cells showed even greater depletion while the other group received the drug immediately. The subjects were also classified by race.

Usage

data(aids)

Format

A data frame with 338 observations on the following 3 variables.
race A factor with levels black, white.
AZT A factor with levels N, Y.
symptoms Presence/absence of AIDS symptoms.

Source

Agresti, A. (2012) Categorical Data Analysis, 3rd edition. New York. Wiley.

```
alfalfa.split.plot An agricultural split plot design
```


Description

An experiment was conducted in Iowa in 1944 to see how different varieties of alfalfa responded to the last cutting day of the previous year (Snedecor and Cochran 1967). We know that in the fall alfalfa can either continue to grow, or stop growing and store resources belowground in roots for growth during the following year. Thus, we might expect that later cutting dates inhibits growth for the following year. On the other hand, if plants are cut after they have gone into senescence, there should be little effect on productivity during the following year. There are two factors: 1) variety of alfalfa (three varieties were planted in each of three randomly chosen whole plots), and 2) the date of last cutting (Sept 1, Sept. 20, or Oct. 7). The dates were randomly chosen split plots within the whole plots. Replication was accomplished using six blocks of fields.

Usage

```
data(alfalfa.split.plot)
```


Format

The dataframe contains four variables:
yield Alfalfa yield (tons per acre).
variety Alfalfa variety. A factor with three levels "L"= Ladak, "C" = Cosack, and "R" = Ranger describing the variety of alfalfa seed used.
cut. time Time of last cutting. A factor with three levels: "None" = field not cut, "S1" = Sept 1 , "S20" = Sept. 20, or "O7" = Oct. 7.
block The block (whole plot replicate). A factor with six levels: "1", "2", "3", "4", "5", and "6".

Source

Snedecor, G. W. and Cochran, G. C. (1967) Statistical Methods, 6th edition. Iowa State University Press.
alpha.div Functions for calculating alpha diversity.

Description

Alpha diversity quantifies richness and evenness within a sampling unit (replicate).
The function alpha.div runs Simp. index or SW. index to calculate Simpson's, Inverse Simpson's or Shannon-Weiner diversities.
Simpson's index has a straightforward interpretation. It is the probability of reaching into a plot and simultaneously pulling out two different species. Inverse Simpson's diversity is equivalent to one over the probability that two randomly chosen individuals will be the same species. These measures have been attributed to Simpson (1949). While it does not allow straightforward interpretation of results, the Shannon-Weiner diversity (H^{\prime}) is another commonly used alpha-diversity measure based on the Kullback-Leibler information criterion (Macarthur and Macarthur 1961).

Usage

alpha.div(x,index)
Simp.index (x,inv)
SW.index (x)

Arguments

x
index The type of alpha diversity to be computed. The function currently has three choices. simp $=$ Simpson's diversity, inv.simp=inverse Simpson's, shan $=$ Shannon-Weiner diversity.
inv Logical, indicating whether or not Simpson's inverse diversity should be computed.

Value

A single diversity value is returned if x is a vector. A vector of diversities (one for each site) are returned if x is a matrix.

Author(s)

Ken Aho

References

Simpson, E. H. (1949) Measurement of diversity. Nature. 163: 688.
MacArthur, R. H., and MacArthur J. W. (1961) On bird species diversity. Ecology. 42: 594-598.

Examples

```
data(cliff.sp)
```

alpha.div(cliff.sp,"simp")

```
anm.ci
```

Animation demonstrations of confidence intervals.

Description

Provides animated depictions of confidence intervals for μ, σ^{2}, the population median, and the binomial parameter π.

Usage

```
anm.ci(parent=expression(rnorm(n)), par.val, conf \(=0.95\), sigma \(=\) NULL,
    par.type = c("mu", "median", "sigma.sq", "p"), n.est = 100,
    \(\mathrm{n}=50\), err.col \(=2\), par.col \(=4\), interval \(=0.1, \ldots\) )
anm.ci.tck()
```


Arguments

parent A parental distribution; ideally a distribution with known parameters.
par.val True parameter value which is being estimated.
conf Confidence level: 1-P(type I error).
sigma $\quad \sigma$ from the normal pdf, if known.
par.type The parameter whose confidence intervals to be estimated. There are currently four choices c("mu", "median", "sigma.sq", "p"). These are the normal pdf parameters μ and σ^{2}, the population median, and the binomial parameter, π.
n.est The number of confidence intervals to be created.
n
The sample size used for each confidence interval.
err.col The line color of the intervals which do not include the true value.
par.col The line color denoting the parameter value.
interval The time interval for animation (in seconds). Smaller intervals speed up animation

Additional arguments to plot.

Details

Provides an animated plot showing confidence intervals with respect to a known parameter. Intervals which do not contain the parameter are emphasized with different colors. Loading package tcltk allows use of function anm.ci.tck which provides an interactive GUI to run the function.

Value

Returns an animated plot.

Author(s)

Ken Aho

See Also

Additional documentation for methods provided in: ci.mu.t, ci.mu.z, ci.median, ci.sigma, and ci.p.

Examples

```
## Not run:
parent<-rnorm(100000)
anm.ci(parent, par.val=0, conf =.95, sigma =1, par.type="mu")
anm.ci(parent, par.val=1, conf =.95, par.type="sigma.sq")
anm.ci(parent, par.val=0, conf =.95, par.type="median")
parent<-rbinom(100000,1,p=.65)
anm.ci(parent, par.val=0.65, conf =.95, par.type="p")
##Interactive GUI, requires package 'tcltk'
anm.ci.tck()
## End(Not run)
```

anm. coin Animated demonstration of frequentist binomial convergence of probability using a coin flip.

Description

Creates an animated plot showing the results from coin flips, and the resulting convergence in $P($ Head) as the number of flips grows large.

Usage

anm. coin(flips $=1000$, p.head $=0.5$, interval $=0.01$, show. coin $=$ TRUE, \ldots) anm. coin.tck()

Arguments

flips The number of desired coin flips.
p.head User defined probability of a head; e.g., for a fair coin p.head $=0.5$.
interval The time between animation frames, in seconds.
show. coin Logical if show. coin=TRUE shows a second plot with coin flip results (head or tail).
... Additional arguments to plot.

Value

If show. coin=TRUE, returns two plots configured as a single graphical object. The first plot shows convergence in estimated $P($ Head $)$, i.e., number of heads/number of trials, as the number of trials grows large. The second plot shows individual outcomes of coin flips. The second (smaller) plot is not returned if show. coin=TRUE is specified. Loading tcltk allows use of the function anm. coin. tck, which creates an interactive GUI to run anm. coin.

Author(s)

Ken Aho

See Also

rbinom

Examples

\#\# Not run: anm.coin()

Description

A continuous pdf is conceptually a histogram whose bin area sums to one. Infinite, infinitely small bins, however, are required to allow depiction of an infinite number of distinct continuous outcomes.

Usage

```
anm.cont.pdf(part = "norm", interval = 0.3)
    see.pdf.conc.tck()
```


Arguments

$$
\begin{array}{ll}
\text { part } & \text { Parent distribution, options are "norm" }=N(0,1), " t "=t(10), " \exp "=\operatorname{EXP}(1), \\
& \text { and "unif" }=\operatorname{UNIF}(0,1) \\
\text { interval } & \text { Animation interval }
\end{array}
$$

Note

May not work every time because random values may exceed histogram range.

Author(s)

Ken Aho

Animated depiction of six-sided die throws.

Description

Convergence in probability for fair (or loaded) six-sided die.

Usage

anm. die(reps = 300, interval $=0.1$, show. die $=$ TRUE, $p=c(1 / 6,1 / 6,1 / 6$, 1/6, 1/6, 1/6), cl = TRUE)
anm.die.tck()

Arguments

reps	Number of die throws.
interval	Animation interval in frames per second.
show. die	Logical, indicating whether die outcomes should be shown.
p	A vector of length six which sums to one indicating the probability of die out- comes.
cl	Logical, Indicating whether or not color should be used.

Author(s)

Ken Aho

See Also

> anm.coin

Examples

```
## Not run:
```

anm.die()
\#\# End(Not run)

```
anm.ExpDesign
```

Animated depiction of experimental designs

Description

Describes random treatment allocation for fifteen experimental designs.

Usage

```
anm.ExpDesign(method="all", titles = TRUE, cex.text = 1, mp.col = NULL, lwda = 1,
n = 10, EUcol = hcl.colors(n, palette = "Dark 3"), interval = 0.5, iter = 30)
ExpDesign(method="all", titles = TRUE, cex.text = 1, mp.col = NULL, lwda = 1, n = 10,
EUcol = hcl.colors(n, palette = "Dark 3"),...)
anm.ExpDesign.tck()
```


Arguments

method A character vector listing the experimental methods to be demonstrated (see Details below).
titles A logical argument specifying whether or not plots should have main titles.
interval Time length spent on each frame in animation (in seconds).
iter Number of random iterations in animation.
cex.text Text character expansion plots.
mp.col Arrow colors in "matched" plot. Either a vector of length 3 or a single color.
lwda Arrow line widths.
$\mathrm{n} \quad$ Sample size (number of experimental units). Currently only implemented for method = "CRD"

EUcol Color of text identifying experimental units (or in some designs, treatments). Currently only implemented for method = "CRD", method = "factorial2by2", method = "RCBD", and method $=$ "nested"
... Additional arguments from plot.

Details

The function returns a plot or series of plots illustrating the workings of experimental designs. Random apportionment of treatments of experimental units (EUs) is illustrated for each of twelve experimental designs. A character string can be specified in the method argument using a subset of any of the following:
"CRD": a one-way completely randomized design,
"factorial2by2": a 2×2 design with four EUs,
"factorial2by2by2": a $2 \times 2 \times 2$ factorial designs with 8 EUs,
"nested": a nested design with two levels of nesting,
"RCBD" a randomized complete block design with two blocks, two treatments and four EUs,
"RIBD": a randomized incomplete block design with three blocks, three treatments, and six EUs,
"split": a split plot design with a whole plot (factor A) and a split plot (factor B),
"split.split": a split split-split plot design,
"SPRB": split plots in randomized blocks,
"strip.split": strip-split plot design,
"latin": a Latin squares design with $r=3$, and
"pairs": a matched pairs design.
The function anm.ExpDesign. tck provides an interactive GUI. Details on these designs are given below.

Completely randomized design (CRD)

In a completely randomized design experimental units are each randomly assigned to factor levels without constraints like blocking. This approach can (and should) be implemented in one way ANOVAs, and in more complex formats like factorial and hierarchical designs.

Factorial design

Treatments can be derived by combining factor levels from the multiple factors. This is called a factorial design. In a fully crossed factorial design with two factors, A and B, every level in factor A is contained in every level of factor B.

Randomized block design (RBD)

In a randomized block design a researcher randomly assigns experimental units to treatments separately within units called blocks. If all treatments are assigned exactly once within each block this is known as a randomized complete block design (RCBD)

Latin squares

Latin squares designs are useful when there are two potential blocking variables. These can figuratively or literally be represented by rows and columns. All treatments are assigned to each row and to each column, and for each row and column treatment assignments differ. Of course this stipulation limits the number of ways one can allocate treatments.

Nested design

In a nested design factor levels from one factor will be contained entirely in one factor level from another factor. Consider a design with two factors A and B. When every level of factor A appears with every level of factor B, and vice versa, then we have a fully crossed factorial design (see above). Conversely, when levels of B only occur within a single level of A, then B is nested in A.

Split plot design

A split plot design contains two nested levels of randomization. At the highest level are whole plots which are randomly assigned factor levels from one factor. At a second nested level whole plots are split to form split plots. The split plots are randomly assigned factor levels from a second factor. Split plot designs are replicated in units called blocks. Split-split plot design will have two levels of split plot nesting: C (split-split plots) are split plots within B (split plots), and B are split plots within A (whole plots). We can see obvious and confusing similarities here to nested designs. A split plot randomized block (SPRB) design will have whole plots randomly assigned within blocks, and split plots randomly assigned within the whole plots. Thus, levels of A (whole plot) are assigned randomly to a block, and split plots containing levels of B (split plot) are assigned within a level of A.

Strip plot design

Closely related to split plot designs are strip plots. Strip plots can be used address situations when relatively large experimental units are required for each of two factors in an experiment. A strip plot will have a row and column structure. Let the number of columns equal to the number of levels in factor A, and let the number of rows be equal to the number of levels in factor B. Levels in A are randomly assigned to columns only (across all rows) in a RBD format, and levels in B are assigned to rows only (across all columns). Interestingly, the levels in A serve as split plots in B and vice versa. However, unlike a split plot design assignment of treatments at this level is not entirely random since rows are assigned single levels in A, while columns are assigned single levels in B. Compared to a factorial design strip plots allow for greater precision in the measurement
of interaction effects while sacrificing precision in the measurement of main effects. Split-block design discussed by Littell et al. (2006), are indistinguishable from strip plots, described earlier, except that they are placed in the context of blocks. They are also indistinguishable from SPRBs except that the design has an explicit row/column structure (one level of A for each column, one level of B for each row), resulting in larger experimental units for A and B. Conversely, in a SPRB, different levels of A and B can be assigned within columns and rows respectively. A final type of split/strip plot design is known as a strip-split plot. Strip-split plots are three way designs (cf. Hoshmand 2006, Milliken and Johnson 2009). In these models a conventional two factor strip plot is created (factors A and B) and split plots are placed in the resulting cells (levels in factor C). The design is indistinguishable from a split-split plot design except for the fact that "columns" always constitute the same levels in A , while "rows" always constitute the same levels in B , allowing larger experimental units for A and B , and reflecting the strip plot relationship of A and B . Other, even more complex variants of split and strip plots are possible are possible. For instance, Littell et al. (2006) discuss a case study they describe as strip-split-split plot design!

Matched pairs

In a matched pairs design treatments are compared by using the same (or highly similar) experimental units. If treatments are assigned at particular time segments it is assumed that outcomes within an experimental unit are independent, i.e., there is no "carryover" effect from the previous treatment. Violation of this assumption may result in ashpericity and prevent conventional approaches.

Author(s)

Ken Aho

References

Hoshmand, A. R. (2006) Design of Experiments for Agriculture and the Natural Sciences 2nd Edition. CRC Press.

Littell, R. C., Stroup, W. W., and R. J. Fruend (2002) SAS for linear models. Wiley, New York.
Milliken, G. A., and D. E. Johnson (2009) Analysis of messy data: Vol. I. Designed experiments, 2nd edition. CRC.

See Also
samp.design

Examples

```
ExpDesign()
```

\#\# Not run: anm.ExpDesign()

Description

Animated depictions of geometric, exponential, and logistic growth.

Usage

```
anm.geo.growth(n0, lambda, time = seq(0, 20), ylab = "Abundance",
xlab = "Time", interval = 0.1, ...)
anm.exp.growth(n, rmax, time = seq(0, 20), ylab = "Abundance",
xlab = "Time", interval = 0.1, ...)
    anm.log.growth(n, rmax, K, time = seq(0, 60), ylab = "Abundance",
    xlab = "Time", interval = 0.1, ...)
    anm.geo.growth.tck()
    anm.exp.growth.tck()
    anm.log.growth.tck()
```


Arguments

n0 Population size at time zero for geometric population growth.
lambda Geometric growth rate.
time A time sequence, i.e. a vector of integers which must include 0.
ylab $\quad Y$-axis label.
xlab $\quad X$-axis label
interval Animation interval in seconds per frame.
... Additional arguments to plot
$\mathrm{n} \quad$ Initial population numbers for exponential and logistic growth
rmax The maximum intrinsic rate of increase
K The carrying capacity

Details

Presented here are three famous population growth models from ecology. Geometric, exponential and logistic growth. The first two model growth in the presence of unlimited resources. Geometric growth is exponential growth assuming non-overlapping generations, and is computed as:

$$
N_{t}=N_{0} \lambda^{t}
$$

where N_{t} is the number of individuals at time y, λ is the geometric growth rate, and t is time.
Exponential growth allows simultaneous existence of multiple generations, and is computed as:

$$
\frac{d N}{d t}=r_{\max } N
$$

where $r_{\max }$ is the maximum intrinsic rate of increase, i.e. max(birth rate - death rate), and N is the population size. With logistic growth, exponential growth is slowed as N approaches the carrying capacity. It is computed as:

$$
\frac{d N}{d t}=r_{\max } N \frac{K-N}{K}
$$

where $r_{\text {max }}$ is the maximum rate of intrinsic increase, N is the population size, and K is the carrying capacity

Package tcltk allows implementation of all three models using GUIs.

Author(s)

Ken Aho

See Also

anm.LVexp, anm.LVcomp

Examples

```
## Not run:
anm.geo.growth(10, 2.4)
## End(Not run)
```

anm.loglik

Description

Plots the normal, exponential, Poisson, binomial, and "custom" log-likelihood functions. By definition, likelihoods for parameter estimates are calculated by holding data constant and varying estimates. For the normal distribution a fixed value for the parameter which is not being estimated (μ or σ^{2}) is established using MLEs.

Usage

```
anm.loglik(X, dist = c("norm", "poi", "bin", "exp", "custom"),
plot.likfunc = TRUE, parameter = NULL, func = NULL, poss = NULL,
plot.density = TRUE, plot.calc = FALSE, xlab = NULL, ylab = NULL,
conv = diff(range(X))/70, anim = TRUE, est.col = 2, density.leg = TRUE,
cex.leg = 0.9, interval = 0.01, ...)
loglik.norm.plot(X, parameter = c("mu", "sigma.sq"), poss = NULL,
plot.likfunc = TRUE, plot.density = TRUE, plot.calc = FALSE,
xlab = NULL, ylab = NULL, conv = 0.01, anim = TRUE, est.col = 2,
density.leg = TRUE, cex.leg = 0.9, interval = 0.01, ...)
loglik.pois.plot(X, poss = NULL, plot.likfunc = TRUE,
plot.density = TRUE, plot.calc = FALSE, xlab = NULL, ylab = NULL,
conv = 0.01, anim = TRUE, interval = 0.01, ...)
loglik.binom.plot(X, poss = NULL, xlab = NULL, ylab = NULL,
plot.likfunc = TRUE, plot.density = TRUE, conv = 0.01, anim = TRUE,
interval = 0.01, ...)
loglik.exp.plot(X, poss = NULL, plot.likfunc = TRUE,
plot.density = TRUE, plot.calc = FALSE, xlab = NULL, ylab = NULL,
conv = 0.01, anim = TRUE, est.col = 2, density.leg = TRUE,
cex.leg = 0.9, interval = 0.01, ...)
loglik.custom.plot(X, func, poss, anim = TRUE, interval = 0.01,
xlab, ylab, ...)
anm.loglik.tck()
```


Arguments

X
A vector of quantitative data. The function does not currently handle extremely large datasets, $n>500$. Data should be integers (counts) for the Poisson loglikelihood function, and binary responses $(0,1)$ for the binomial log likelihood function. Data elements for the exponential log likelihood function must be greater than zero.
parameter The parameter for which ML estimation is desired in loglik.norm. plot. Specification of either "mu" or "sigma.sq" is required for the normal log-likelihood function. No specification is required for exponential, Poisson, and binomial log-likelihood functions since these distributions are generally specified with a single parameter, i.e., θ for the exponential, λ for the Poisson distribution, and p (the probability of a success) for the binomial distribution.
poss
An optional vector containing a sequence of possible parameter estimates. Elements in the vector must be distinct. If poss is not specified a vector of appropriate possibilities is provided by the function. This argument can be used to set xlim in the likelihood function and density plots.

dist	The type of assumed distribution there are currently five possibilities: "norm", "poi", "binom", "exp", and "custom". Use of custom distributions requires specification of a custom likelihood function in the argument func.
plot.likfunc	A logical command for indicating whether a graph of the log-likelihood function should be created.
plot.density	A logical command for indicating whether a second graph, in which densities are plotted on the pdf, should be created.
plot.calc	A logical command for indicating whether a third graph, in which log-densities are added to one another, should be created.
xlab	Optional X-axis label.
ylab	Optional Y-axis label.
conv	Precision of likelihood function. Decreasing conv increases the smoothness and precision of the ML function. Decreasing conv will also slow the animation.
anim	A logical command indicating whether animation should be used in plots.
est.col	Color used in depicting estimation.
density.leg	Logical. Should the legend for density be shown?
cex.leg	Character expansion for legend.
interval	Speed of animation, in seconds per frame. May not work in all systems; see Sys.sleep.
func	Custom likelihood function to be specified when using loglik. custom. plot. The function should have two arguments. An optional call to data, and the likelihood function parameter (see example below).
	Additional arguments from plot can be specified for likelihood function plots.

Details

These plots are helpful in explaining the workings of ML estimation for parameters. Animation is included as an option to further clarify processes. When specifying poss be sure to include the estimate that you "want" the log-likelihood function to maximize in the vector of possibilities, e.g. mean (X) for estimation of μ.

Value

Three animated plots can be created simultaneously. The first plot shows the normal, Poisson, exponential, binomial, or custom log-likelihood functions. The second plot shows the pdf with ML estimates for parameters. On this graph densities of observations are plotted as pdf parameters are varied. By default these two graphs will be created simultaneously on a single graphics device. By specifying plot.calc = TRUE a third plot can also be created which shows that log-likelihood is the sum of the log-densities. Animation in this third plot will be automatically sped up, using a primitive routine, for large datasets, and slowed for small datasets. The third plot will not be created for the binomial pdf because there will only be a single outcome from the perspective of likelihood (e.g. 10 successes out of 22 trials). The second and third plots will not be created for custom likelihood functions. Loading package tcltk allows use of the function anm.loglik.tck which provides an interactive GUI to run anm. loglik.

Author(s)

Ken Aho

See Also

dnorm, dpois, dexp, dbinom

Examples

```
## Not run:
##Normal log likelihood estimation of mu.
X<-c(11.2,10.8,9.0,12.4,12.1,10.3,10.4,10.6,9.3,11.8)
anm.loglik(X,dist="norm", parameter="mu")
##Add a plot describing log-likelihood calculation.
anm.loglik(X,dist="norm",parameter="mu",plot.calc=TRUE)
##Normal log likelihood estimation of sigma squared.
X<-c(11.2,10.8,9.0,12.4,12.1,10.3,10.4,10.6,9.3,11.8)
anm.loglik(X,dist="norm",parameter="sigma.sq")
##Exponential log likelihood estimation of theta
X<-c(0.82,0.32,0.14,0.41,0.09,0.32,0.74,4.17,0.36,1.80,0.74,0.07,0.45,2.33,0.21,
0.79,0.29,0.75,3.45)
anm.loglik(X,dist="exp")
##Poisson log likelihood estimation of lambda.
X<-c(1,3,4,0,2,3,4,3,5)
anm.loglik(X,dist="poi")
##Binomial log likelihood estimation of p.
X<-c(1,1,0,0,0,1,0,0,0,0)#where 1 = a success
anm.loglik(X,dist="bin",interval=.2)
##Custom log-likelihood function
func<-function(X=NULL, theta)theta^5*(1-theta)^10
anm.loglik(X=NULL, func=func,dist="custom", poss=seq(0,1,0.01),
xlab="Possibilities",ylab="Log-likelihood")
##Interactive GUI, requires package 'tcltk'
anm.loglik.tck()
## End(Not run)
```


Description

Depicts the process of least squares estimation by plotting the least squares function with respect to a vector of estimate possibilities.

Usage

```
anm.ls(X, poss=NULL, parameter = "mu", est.lty = 2, est.col = 2,
conv=diff(range(X))/50, anim=TRUE, plot.lsfunc = TRUE, plot.res = TRUE,
interval=0.01, xlab=expression(paste("Estimates for ", italic(E),
"(",italic(X),")", sep = "")),...)
anm.ls.tck()
```


Arguments

X	A numeric vector containing sample data.
poss	An ordered numeric sequence of possible parameter estimates. Inclusion of the least squares estimate in the vector (e.g. \bar{X} for μ will cause the least squares function be minimized at this value.
parameter	Parameter to be estimated. Only estimation for $E(X)$ is currently implemented. Note that if $X \sim N\left(\mu, \sigma^{2}\right)$ then $E(X)=\mu$.
est.lty	Line type to be used to indicate the least squares estimate.
est.col	Line color to be used to indicate the least squares estimate.
conv	Precision of LS function. Decreasing conv increases the smoothness and preci- sion of the function.
anim	A logical command indicating whether animation should be used in plots.
plot.lsfunc	A logical command indicating whether the least-squares function should be plot- ted.
plot.res	A logical command indicating whether a plot of residuals should be created.
interval	Speed of animation (in frames per second). A smaller interval decreases speed. May not work in all systems; see Sys. sleep.
xlab	X-axis label.
f.	Additional arguments to plot

Value

A plot of the least squares function is returned along with the least squares estimate for $\mathrm{E}(X)$ given a set of possibilities. The function anm. ls.tck provides a GUI to run the function.

Author(s)

Ken Aho

See Also

loglik.plot

Examples

```
## Not run: X<-c(11.2,10.8,9.0,12.4,12.1,10.3,10.4,10.6,9.3,11.8)
anm.ls(X)
## End(Not run)
```

```
anm.ls.reg
```

Animated plot of the least squares function.

Description

Depicts the process of least squares estimation of simple linear regression parameters by plotting the least squares function with respect to estimate possibilities for the intercept or slope.

Usage

anm.ls.reg(X, Y, parameter="slope", nmax=50, interval = 0.1, col = "red",...)
anm.ls.reg.tck()

Arguments

$X \quad$ A numeric vector containing explanatory data.
Y A numeric vector containing response data.
parameter Parameter to be estimated. Either "slope" or "intercept".

nmax	The number of parameter estimates to be depicted. The true LS estimate will always be in the center of this sequence.
interval	Speed of animation (in frames per second). A smaller interval decreases speed. May not work in all systems; see Sys. sleep.
col	Line color.
\ldots	Additional arguments to plot

Value

An animated plot of the plot possible regression lines is created along with an animated plot of the residual sum of squares. The function anm. ls.reg.tck provides a GUI to run the function.

Author(s)

Ken Aho

See Also

loglik.plot, anm.ls

Examples

```
## Not run:
X<-c(11.2,10.8,9.0,12.4,12.1,10.3,10.4,10.6,9.3,11.8)
Y<-log(X)
anm.ls.reg(X, Y, parameter = "slope")
## End(Not run)
```

```
anm.LV
```

Animated depictions of Lotka-Volterra competition and exploitation models

Description

Creates animated plots of two famous abundance models from ecology; the Lotka-Volterra competition and exploitation models

Usage

anm. $\operatorname{LVcomp(n1,~n2,~r1,~r2,~K1,~K2,~a2.1,~a1.2,~time~}=\operatorname{seq}(0,200)$, ylab $=$ "Abundance", xlab = "Time", interval = 0.1, ...)
anm.LVexp(nh, np, rh, con, p, d.p, time $=\operatorname{seq}(0,200)$, ylab = "Abundance", xlab = "Time", interval = 0.1, circle = FALSE, ...)
anm.LVc.tck()
anm.LVe.tck()

Arguments

$\mathrm{n} 1 \quad$ Initial abundance values for species one. To be used in the competition function anm. LVcomp, i.e., N_{1} in the competition equations below.
n2 Initial abundance values for species two in the competition function, i.e., N_{2} in the competition equations below.
r1 Maximum intrinsic rate of increase for species one, i.e., $r_{\max 1}$.
r2 Maximum intrinsic rate of increase for species two in the competition model anm.LVcomp, i.e., $r_{\max 2}$.
K1 Carrying capacity for species one, i.e., K_{1}.
K2 Carrying capacity for species two, i.e., K_{2}.
a2.1 The interspecific effect of species one on species two, i.e., the term α_{21}.
a1.2 The interspecific effect of species two on species one, i.e., the term α_{12}.

nh	Initial abundance values for the host (prey) species. To be used in the the exploitation model anm. LVexp, i.e., the term N_{h} at $t=1$.
np	Initial abundance values for the predator species in the the exploitation model, i.e., the term N_{p} at $t=1$.
rh	The intrinsic rate of increase for the host (prey) species, i.e., the term r_{h}.
con	The conversion rate of prey to predator, i.e., the term c.
p	The predation rate, i.e., the term p.
d.p	The death rate of predators, i.e., the term d_{p}.
time	A time sequence for which competition or exploitation is to be evaluated.
ylab	Y-axis label.
xlab	X-axis label.
interval	Animation speed per frame (in seconds).
circle	Logical, if TRUE a circular representation of the relation of prey and predator numbers is drawn.
	Additional arguments from plot.

Details

The Lotka-Volterra competition and exploitation models require simultaneous solutions for two differential equations. These are solved using the function rk4 from odesolve.
The interspecific competition model is based on:

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =r_{\max 1} N_{1} \frac{K_{1}-N_{1}-\alpha_{12}}{K_{1}} \\
\frac{d N_{2}}{d t} & =r_{\max 2} N_{2} \frac{K_{2}-N_{2}-\alpha_{21}}{K_{2}}
\end{aligned}
$$

where N_{1} is the number of individuals from species one, K_{1} is the carrying capacity for species one, $r_{\max 1}$ is the maximum intrinsic rate of increase of species one, and α_{12} is the interspecific competitive effect of species two on species one.
The exploitation model is based on:

$$
\begin{aligned}
\frac{d N_{h}}{d t} & =r_{h} N_{h}-p N_{h} N_{p} \\
\frac{d N_{p}}{d t} & =c p N_{h} N_{p}-d_{p} N_{p}
\end{aligned}
$$

where N_{h} is the number of individuals from the host (prey) species, N_{p} is the number of individuals from the predator species, r_{h} is the intrinsic rate of increase for the host (prey) species, p is the rate of predation, c is a conversion factor which describes the rate at which prey are converted to new predators, and d_{p} is the death rate of the predators.
The term $r_{h} N_{h}$ describes exponential growth for the host (prey) species. This will be opposed by deaths due to predation, i.e. the term $p N_{h} N_{p}$. The term $c p N_{h} N_{p}$ is the rate at which predators destroy prey. This in turn will be opposed by $d_{p} N_{p}$, i.e. predator deaths. Loading package tcltk allows one to run the GUIs in anm. LVe.tck and anm.LVc.tck.

Value

The functions return descriptive animated plots

Author(s)

Ken Aho, based on a concept elucidated by M. Crawley

References

Molles, M. C. (2010) Ecology, Concepts and Applications, 5th edition. McGraw Hill.
Crawley, M. J. (2007) The R Book. Wiley

Examples

\#\# Not run:

\#\#Species 2 drives species 1 to extinction anm. LVcomp ($\mathrm{n} 1=150, \mathrm{n} 2=50, \mathrm{r} 1=.7, \mathrm{r} 2=.8, \mathrm{~K} 1=200, \mathrm{~K} 2=1000, \mathrm{a} 2.1=.5, \mathrm{a} 1.2=.7$, time=seq(0,200)) \#\#Species coexist with numbers below carrying capacities anm. $\operatorname{LV} \operatorname{comp}(\mathrm{n} 1=150, \mathrm{n} 2=50, \mathrm{r} 1=.7, \mathrm{r} 2=.8, \mathrm{~K} 1=750, \mathrm{~K} 2=1000, \mathrm{a} 2.1=.5$, $\mathrm{a} 1.2=.7$, time=seq(0,200))

\#----------------------Exploitation--------------------------
\#Fast cycles
anm. LVexp(nh=300, np=50,rh=.7,con=.4,p=.006,d.p=.2, time=seq(0, 200))
\#\# End(Not run)

Animation of Markov Chain Monte Carlo walks in bivariate normal space

Description

The algorithm can use three different variants on MCMC random walks: Gibbs sampling, the Metropolis algorithm, and the Metropolis-Hastings algorithms to move through univariate anm.mc.norm and bivariate normal probability space. The jumping distribution is also bivariate normal with a mean vector at the current bivariate coordinates. The jumping kernel modifies the jumping distribution through multiplying the variance covariance of this distribution by the specified constant.

Usage

anm.mc.bvn(start $=c(-4,-4), m u=c(0,0)$, sigma $=$ matrix $(2,2$, data $=c(1,0$, $0,1))$, length = 1000, sim = "M", jump.kernel = 0.2, xlim = c(-4, 4), ylim = c(-4, 4), interval = 0.01, show.leg = TRUE, cex.leg = 1, ...)
anm.mc.norm(start = -4, mu = 0, sigma = 1, length = 2000, sim = "M", jump.kernel $=0.2, x \lim =c(-4,4), y l i m=c(0,0.4)$, interval $=0.01$, show.leg = TRUE,...)

```
anm.mc.bvn.tck()
```


Arguments

start	A two element vector specifying the bivariate starting coordinates.
mu	
sigma	A two element vector specifying the mean vector for the proposal distribution. bution.
length	The length of the MCMC chain. sim
Simulation method used. Must be one of "G" indicating Gibbs sampling, "M"	
indicating the Metropolis algorithm, or "MH" indicating the Metropolis-Hastings	
algorithm (Gibbs sampling is not implemented for anm. mc. norm).	

Value

The function returns two plots. These are: 1) the proposal bivariate normal distribution in which darker shading indicates higher density, and 2) an animated plot showing the MCMC algorithm walking through the probability space.

Author(s)

Ken Aho

References

Gelman, A., Carlin, J. B., Stern, H. S., and D. B. Rubin (2003) Bayesian Data Analysis, 2 nd edition. Chapman and Hall/CRC.

Description

Animated Comparisons of outcomes from simple random sampling, stratified random sampling and cluster sampling.

Usage

anm.samp.design(n=20, interval $=0.5$,iter $=30$, main $=" ", 1 w d=2,1 c o l=2)$
samp.design(n = 20, main = "", lwd = 2, lcol = 2)
anm.samp.design.tck()

Arguments

$n \quad$ The number of samples to be randomly selected from a population of 400 .
interval Time length spent on each frame in animation (in seconds).
iter Number of random iterations in animation.
main Main heading.
lwd Line width to distinguish strata in stratified and cluster designs.
lcol Line width to distinguish strata in stratified and cluster designs.

Details

Returns a plot comparing outcomes of random sampling, stratified random sampling and cluster sampling from a population of size 400 . For stratified random sampling the population is subdivided into four equally strata of size 100 . and $n / 4$ samples are taken within each strata. For cluster sampling the population is subdivided into four equally sized clusters and a census is taken from two clusters (regardless of specification of n). The function anm. samp. design depicts random sampling using animation

Value

A plot is returned with four subplots. (a) shows the population before sampling, (b) shows simple random sampling, (c) shows stratified random sampling, (d) shows cluster sampling. The function anm. samp. design. tck provides interaction with a teltk GUI.

Author(s)
Ken Aho

Examples

samp.design(20)
\#Animated demonstration
\#\# Not run: anm.samp.design(20)
anolis Anolis lizard contingency table data

Description

Schoener (1968) examined the resource partitioning of anolis lizards on the Caribbean island of South Bimini. He cross-classified lizard counts in habitats (branches in trees) with respect to three variables: lizard species A. sargei and A. distichus, branch height high and low, and branch size small and large.

Usage

data(anolis)

Format

A data frame with 8 observations on the following 4 variables.
height Brach height. A factor with levels H, L.
size Brach size. A factor with levels L, S.
species Anolis species. A factor with levels distichus, sagrei.
count Count at the cross classification.

Source

Schoener, T. W. (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49(4): 704-726.

```
anscombe Anscombe's quartet
```


Description

A set of four bivariate datasets with the same conditional means, conditional variances, linear regressions, and correlations, but with dramatically different forms of association.

Usage

data(anscombe)

Format

A data frame with 11 observations on the following 8 variables.
$x 1$ The first conditional variable in the first bivariate dataset.
y1 The second conditional variable in the first bivariate dataset.
x2 The first conditional variable in the second bivariate dataset.
y2 The second conditional variable in the second bivariate dataset.
x3 The first conditional variable in the third bivariate dataset.
y3 The second conditional variable in the third bivariate dataset.
x4 The first conditional variable in the fourth bivariate dataset.
y4 The second conditional variable in the fourth bivariate dataset.

Details

Anscombe (1973) used these datasets to demonstrate that summary statistics are inadequate for describing association.

Source

Anscombe, F. J. (1973) Graphs in statistical analysis. American Statistician 27 (1): 17-21.

References

Anscombe, F. J. (1973) Graphs in statistical analysis. American Statistician 27 (1): 17-21.

Examples

```
dev.new(height=3.5)
op <- par(mfrow=c(1,4),mar=c (0,0,2,3), oma = c(5, 4.2, 0, 0))
with(anscombe, plot(x1, y1, xlab = "", ylab = "", main = bquote(paste(italic(r),
" = ",.(round(cor(x1, y1),2)))))); abline(3,0.5)
with(anscombe, plot(x2, y2, xlab = "", ylab = "",, main = bquote(paste(italic(r),
" = ",.(round((or (x2, y2),2)))))); abline(3,0.5)
with(anscombe, plot(x3, y3, xlab = "", ylab = "",, main = bquote(paste(italic(r),
" = ",.(round(cor(x3, y3),2)))))); abline(3,0.5)
with(anscombe, plot(x4, y4, xlab = "", ylab = "",, main = bquote(paste(italic(r),
" = ",.(round(cor(x4, y4),2)))))); abline(3,0.5)
mtext(expression(italic(y[1])),side=1, outer = TRUE, line = 3)
mtext(expression(italic(y[2])),side=2, outer = TRUE, line = 2.6)
mtext("(a)",side=3, at = -42, line = .5)
mtext("(b)",side=3, at = -26, line = .5)
mtext("(c)",side=3, at = -10.3, line = .5)
mtext("(d)",side=3, at = 5.5, line = .5)
par(op)
```

ant.dew Ant honeydew data

Description

Wright et al. (2000) examined behavior of red wood ants (Formica rufa), a species that harvests honeydew in aphids. Worker ants traveled from their nests to nearby trees to forage honeydew from homopterans. Ants descending trees were laden with food and weighed more, given a particular ant head width, then unladen, ascending ants. The authors were interested in comparing regression parameters of the ascending and descending ants to create a predictive model of honeydew foraging load for a given ant size.

Usage

data(ant.dew)

Format

A data frame with 72 observations on the following 3 variables.
head.width Ant head width in mm
ant.mass Ant mass in mg
direction Direction of travel $A=$ ascending, $D=$ descending

Details

Data approximated from Fig. 1 in Wright et al. (2002)

Source

Wright, P. J., Bonser, R., and U. O. Chukwu (2000) The size-distance relationship in the wood ant Formica rufa. Ecological Entomology 25(2): 226-233.

```
AP.test Agresti-Pendergrast test
```


Description

Provides a more powerful alternative to Friedman's test for blocked (dependent) data with a single replicate.

Usage

AP.test(Y)

Arguments

Y A matrix with treatments in columns and blocks (e.g. subjects) in rows.

Details

The Agresti-Pendergrast test is more powerful than Friedman's test, given normality, and remains powerful in heavier tailed distributions (Wilcox 2005).

Value

Returns a dataframe showing the numerator and denominator degrees of freedom, F test statistic, and p-value.

Note

code based on Wilcox (2005).

Author(s)

Ken Aho

References

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

friedman.test, MS.test

Examples

```
temp<-c(2.58,2.63,2.62,2.85,3.01,2.7,2.83,3.15,3.43,3.47,2.78,2.71,3.02,3.14,3.35,
2.36,2.49,2.58,2.86,3.1,2.67,2.96,3.08,3.32,3.41,2.43,2.5,2.85,3.06,3.07)
Y<- matrix(nrow=6,ncol=5,data=temp,byrow=TRUE)
AP.test(Y)
```


Description

This dataset was used by Littell (2002) to demonstrate repeated measures analyses. The effect of two asthma drugs and a placebo were measured on 24 asthmatic patients. Each patient was randomly given each drug using an approach to minimize carry-over effects. Forced expiratory volume (FEV1), the volume of air that can be expired after taking a deep breath in one second, was measured. FEV1 was measured hourly for eight hours following application of the drug. A baseline measure of FEV1 was also taken 11 hours before application of the treatment.

Usage

data(asthma)

Format

The dataframe has 11 columns:
PATIENT The subjects (there were 24 patients).
BASEFEV1 A numerical variable; the baseline forced expiratory volume.
FEV11H Forced expiratory volume at 11 hours.
FEV12H Forced expiratory volume at 12 hours.
FEV13H Forced expiratory volume at 13 hours.
FEV14H Forced expiratory volume at 14 hours.
FEV15H Forced expiratory volume at 15 hours.
FEV16H Forced expiratory volume at 16 hours.
FEV17H Forced expiratory volume at 17 hours.
FEV18H Forced expiratory volume at 18 hours.
DRUG A factor with three levels "a" = a standard drug treatment, " c " $=$ the drug under development, and "p" = a placebo.

Source

Littell, R. C., Stroup, W. W., and R. J. Freund (2002) SAS for Linear Models. John Wiley and Associates.

auc

$$
\text { Area under a receiver operating characteristic }(R O C) \text { curve }
$$

Description

A simple algorithm for calculating $A U C$.

Usage

auc(obs, fit, plot = FALSE)

Arguments

obs Dichotomous 0,1 outcomes (i.e. response values for binomial GLM).
fit Fitted probabilities from some model.
plot
Logical, indicating whether or not ROC curve plot should be created.

Author(s)

Ken Aho

References

Agresti, A. (2012) Categorical Data Analysis, 3rd edition. New York. Wiley.

Examples

```
## Not run:
obs <-rbinom(30, 1, 0.5)
fit <- rbeta(30, 1, 2)
auc(obs, fit)
## End(Not run)
```


Description

In general, mammals are able to walk within minutes or hours after birth. Human babies, however, generally don't begin to walk until they are between 10 and 18 months of age. This occurs because, although humans are born with rudimentary reflexes for walking, they are unused, and thus largely disappear by the age of eight weeks. As a result these movements must be relearned by an infant following significant passage of time, through a process of trial and error. Zelazo et al. (1972) performed a series of experiments to determine whether certain exercises could allow infants to maintain their walking reflexes, and allow them to walk at an earlier age. Study subjects were 24 white male infants from middle class families, and were assigned to one of four exercise treatments.
Active exercise (AE): Parents were taught and were told to apply exercises that would strengthen the walking reflexes of their infant. Passive exercise (PE): Parents were taught and told to apply exercises unrelated to walking. Test-only (TO): The investigators did not specify any exercise, but visited and tested the walking reflexes of infants in weeks 1 through 8 . Passive and active exercise infants were also tested in this way. Control (C): No exercises were specified, and infants were only tested at weeks one and eight. This group was established to account for the potential effect of the walking reflex tests themselves.

Usage

data(baby.walk)

Format

A data frame with 22 observations on the following 2 variables.
date Age when baby first started walking (in months)
treatment A factor with levels AE C PE TO

Source

Ott, R. L., and M. T. Longnecker 2004 A First Course in Statistical Methods. Thompson.

References

Zelazo, P. R., Zelazo, N. A., and S. Kolb. 1972. Walking in the newborn. Science 176: 314-315.
bats Bat forearm length as a function of bat age

Description

Data from northern myotis bats (Myotis septentrionalis) captured in the field in Vermillion County Indiana in 2000.

Usage

data(bats)

Format

The dataframe has 2 columns:
days The age of the bats in days.
forearm. length The length of the forearm in millimeters.

Source

Krochmal, A. R., and D. W. Sparks (2007) Journal of Mammalogy. 88(3): 649-656.

Bayes.disc Bayesian graphical summaries for discrete or categorical data.

Description

An simple function for for summarizing a Bayesian analysis given discrete or categorical variables and priors.

Usage

Bayes.disc(Likelihood, Prior, data.name = "data", plot = TRUE,
c.data $=$ seq(1, length(Prior)), ...)

Bayes.disc.tck()

Arguments

Likelihood A vector of sample distribution probabilities. This must be in the same order as Prior, i.e. if θ_{1} is the first element in Prior, then $\operatorname{data} \mid \theta_{1}$ must be the first element in Data.

Prior A vector of prior probabilities, or weights.
data. name A name for data in conditional statements.
plot Logical, indicating whether a plot should be made.
c. data A character string of names for discrete classes
... Additional arguments to plot.

Author(s)

Ken Aho
bayes.1m Bayesian linear models with uniform priors

Description

Gelman et al. (2002) describe general methods for Bayesian implementation of simple linear models (e.g. simple and multiple regression and fixed effect one way ANOVA) with standard noninformative priors uniform on α, σ^{2}. The function is not yet suited for multifactor or multivariance (random effect) ANOVAs.

Usage

bayes. $\operatorname{lm}(\mathrm{Y}, \mathrm{X}$, model $=$ "anova", length $=1000$, cred $=0.95)$

Arguments

Y An $n \times 1$ column vector (a matrix with one column) containing the response variable.

X
model
The $n \times p$ design matrix
One of "anova" or "reg". Parameter output labels are changed depending on choice.
length Number of draws for posterior.
cred Level for credible interval.

Value

Provides the median and central credible intervals for model parameters.

Author(s)

Ken Aho

References

Gelman, A., Carlin, J. B., Stern, H. S., and D. B. Rubin (2003) Bayesian Data Analysis, 2nd edition. Chapman and Hall/CRC.

See Also

```
mcmc.norm.hier
```


Examples

```
## Not run:
data(Fbird)
X <- with(Fbird, cbind(rep(1, 18), vol))
Y <- Fbird$freq
bayes.lm(Y, X, model = "reg")
## End(Not run)
```

BCI. count Barro Colorado Island Tree Counts

Description

This dataset, lifted from vegan, contains tree counts in 1-hectare plots in Barro Colorado Island, Panama.

Usage

data(BCI.count)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225 species (columns). Full Latin names are used for tree species.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground) in each one hectare square of forest. Within each one hectare square, all individuals of all species were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.
The quadrats are located in a regular grid. See examples for the coordinates.

Source

https://www.science.org/doi/abs/10.1126/science.1066854. Documentation here follows directly from vegan

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nuñez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. \& Hubbell, S.P. (2002). Beta-diversity in tropical forest trees. Science 295, 666-669.

```
BCI.plant
```


Description

The presence of the tropical trees Alchornea costaricensis and Anacardium excelsum with diameter at breast height equal or larger than 10 cm were recorded on along with environmental factors at Barro Colorado Island in Panama (Kindt and Coe 2005). These data were originally from (Pyke et al. 2001).

Usage

data(BCI.plant)

Format

A data frame with 43 observations on the following 9 variables.
site.no. A factor with levels C1 C2 C3 C4 p1 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p2 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p3 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p4 p5 p6 p7 p8 p9
UTM.E UTM easting.
UTM. N UTM northing.
precip Precipitation in mm/year.
elev Elevation in m above sea level.
age A categorical vector describing age.
geology A factor describing geology with levels pT Tb Tbo Tc Tcm Tct Tgo Tl Tlc.
Alchornea.costaricensis Plant presence/absence.
Anacardium.excelsum Plant presence/absence.

Source

https://www.science.org/doi/abs/10.1126/science. 1066854

References

Pyke CR, Condit R, Aguilar S and Lao S. (2001). Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science 12: 553-566.
Kindt, R. \& Coe, R. (2005) Tree diversity analysis: A manual and software for common statistical methods for ecological and biodiversity studies. http://www.worldagroforestry.org/resources/databases/tree-diversity-analysis

```
BDM.test Brunner-Dette-Munk test
```


Description

One and two way heteroscedastic rank-based permutation tests. Two way designs are assumed to be factorial, i.e., interactions are tested.

Usage

BDM.test (Y, X)

BDM.2way (Y, X1, X2)

Arguments

$Y \quad$ Vector of response data. A quantitative vector
$X \quad$ A vector of factor levels for a one-way analysis. To be used with BDM. test
X1 A vector of factor levels for the first factor in a two-way factorial design. To be used with BDM. 2way.
X2 A vector of factor levels for the second factor in a two-way factorial design. To be used with BDM. 2way.

Details

A problem with the Kruskal-Wallis test is that, while it does not assume normality for groups, it still assumes homoscedasticity (i.e. the groups have the same distributional shape). As a solution Brunner et al. (1997) proposed a heteroscedastic version of the Kruskal-Wallis test which utilizes the F-distribution. Along with being robust to non-normality and heteroscedasticity, calculations of exact P-values using the Brunner-Dette-Munk method are not made more complex by tied values. This is another obvious advantage over the traditional Kruskal-Wallis approach.

Value

Returns a list with two components
Q The "relative effects" for each group.
Table An ANOVA type table with hypothesis test results.

Note

Code based on Wilcox (2005)

Author(s)

Ken Aho

References

Brunner, E., Dette, H., and A. Munk (1997) Box-type approximations in nonparametric factorial designs. Journal of the American Statistical Association. 92: 1494-1502.
Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

kruskal.test, trim.test

Examples

```
rye<-c(50,49.8,52.3,44.5,62.3,74.8,72.5, 80.2,47.6,39.5,47.7,50.7)
nutrient<-factor(c(rep(1,4),rep(2,4),rep(3,4)))
BDM.test(Y=rye,X=nutrient)
```

bear Grizzly bear litter sizes

Description

Counts of grizzly bear (Ursus arctos) litter sizes from the Greater Yellowstone Ecosystem from 1973-2010.

Usage

data(bear)

Format

A data frame with 38 observations on the following 5 variables.
Year Year.
X1. cub The number of litters with one cub.
X2. cub The number of litters with two cubs.
X3. cub The number of litters with three cubs.
X4. cub The number of litters with four cubs.

Source

Haroldson, M. A (2010) Assessing trend and estimating population size from counts of unduplicated females. Pgs 10-15 in Schwartz, C. C., Haroldson, M. A., and K. West editors. Yellowstone grizzly bear investigations: annual report of the Interagency grizzly bear study team, 2010. U. S. Geological Survey, Bozeman, MT.
beetle Wood boring beetle data

Description

Saint Germain et al. (2007) modeled the presence absence of a saprophytic wood boring beetle (Anthophylax attenuatus) as a function of the wood density of twenty-four decaying aspen trees (Populus tremuloides) in Western Quebec Canada.

Usage

data(beetle)

Format

A data frame with 24 observations on the following 4 variables.

Snag Snag identifier
Yrs.since. death The number of years since death, determined using dendrochronological methods.

Wood. density The density of the decaying wood (dry weight/volume) in units of $\mathrm{g} \mathrm{cm}-3$.
ANAT Beetle presence/absence (1/0)

Source

Saint-Germain, M., Drapeau, P., and C. Buddle (2007) Occurrence patterns of aspen- feeding woodborers (Coleoptera: Cerambycidae) along the wood decay gradient: active selection for specific host types or neutral mechanisms? Ecological Entomology 32: 712-721.

Description

Distinct classifications will have class labels that may prevent straightforward comparisons. This algorithm considers all possible permutations of class labels to find a configuration that maximizes agreement on the diagonal of a contingency table comparing two classifications. Classifications need not have the same number of classes.

Usage

best.agreement(class1, class2, test = FALSE, rperm = 100)

Arguments

class1 A vector containing class assignments to observations, e.g., a result from cutree
class2 A vector containing class assignments for a second classification
test Logical. Indicates whether or not the null hypothesis, that agreement between class1 and class 2 is no better than random, will be run.
rperm If test = TRUE, the number of random permutations used in null hypothesis testing.

Details

Class assignments are fixed in class1, all possible permutations of class labels in class2 are considered to find a configuration that maximizes agreement in the two classifications. If test=TRUE, a permutation test is run for the null hypothesis that maximum agreement between classifications is no better than random. This is done by sampling without replacement rperm times from class2, finding maximum agreement between class1 and the randomly permuted classifications, and dividing one plus the number of times that maximum agreement between the random classifications and class1 was greater than the maximum agreement observed for class1 and class2. Testing can be slow because it will be based on nested loops with $p x c$! steps, where p is nperm and c ! is the number of combinatorial permutations possible for categories in class2.

Value

A object of class max_agree.
n. possible.perms

Number of permutations considered
n.max.solutions

Number of configurations in which classification agreement is maximized. The first configuration identified is reported in max. class. names1 and max. class. names2.
max.agree Proportion of observations assigned to the same cluster
max.class.names1
Class labels in the first classification that allow maximum agreement.
max.class.names2
Class labels in the second classification that allow maximum agreement.
test Whether or not test was run.
p.val If test = TRUE, the p-value for the null hypothesis test described in Details above.

Author(s)

Ken Aho. The internal permutations algorithm for obtaining all possible permutations was provided by Benjamin Christoffersen on stackoverflow.

See Also

cutree, hclust

Examples

```
# Example comparing a 4 cluster average-linkage solution
# and a 5 cluster Ward-linakage solution
avg <- hclust(dist(USArrests), "ave")
avg.4 <- as.matrix(cutree(avg, k = 4))
war <- hclust(dist(USArrests), "ward.D")
war. }5\mathrm{ <- as.matrix(cutree(war, k = 5))
ba <- best.agreement(avg.4, war.5, test = TRUE)
ba
```

bin2dec Conversion of binary digits to decimal numbers

Description

Converts binary representations to digital numbers (e.g., $10101011=171$). Fractions, (e.g., 0.11101) will be evaluated to the number of bits provided. The function will handle whole number and fractions, but not whole numbers with fractional parts, (e.g., 111.100110).

Usage

bin2dec(digits, round = 4)

Arguments

digits A string of binary digits.
round \quad Rounding for fractional results, defaults to 4 .

Author(s)

Ken Aho

Examples

```
    bin2dec(1011001101) #=717
```

bombus Bombus pollen data.

Description

To investigate how pollen removal varied with reproductive caste in bemblebees (Bombus sp.) Harder and Thompson (1989) recorded the proportion of pollen removed by thirty five bumblebee queens and twelve worker bees.

Usage

data(bombus)

Format

This data frame contains the following columns:
pollen A numeric vector indicating the proportion of pollen removed.
caste A character string vector indicating whether a bee was a worker " W " or a queen " Q ".

Source

Harder, L. D. and Thompson, J. D. 1989. Evolutionary options for maximizing pollen dispersal in animal pollinated plants. American Naturalist 133: 323-344.
bone Bone development data

Description

Neter et al. (1996) described an experiment in which researchers investigated the confounding effect of gender and bone development on growth hormone therapy for prepubescent children. Gender had two levels: "M" and "F". The bone development factor had three levels indicating the severity of growth impediment before therapy: $1=$ severely depressed, $2=$ moderately depressed, and $3=$ mildly depressed. At the start of the experiment 3 children were assigned to each of the six treatment combinations. However 4 of the children were unable to complete the experiment, resulting in an unbalanced design.

Usage

data(bone)

Format

A data frame with 14 observations on the following 3 variables.
gender A factor with levels F M
devel A factor with levels 123
growth A numeric vector descibing the growth difference before and after hormone therapy

Source

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W (1996) Applied Linear Statistical Models. McGraw-Hill, Boston MA, USA.

```
book.menu Pulldown menus for 'asbio' interactive graphical functions
```


Description

Provides a pulldown GUI menus to allow access to asbio statistical and biological graphical demos, e.g. anm.ci, samp.dist, anm.loglik, etc. The function demos is deprecated. The function book. menu currently provides links to over 100 distinct GUIs (many of these are slaves to other GUIs), which in turn provide distinct graphical demonstrations. The GUIs work best with an SDI R interface.

Usage

book.menu()

Author(s)

Ken Aho and Roy Hill (Roy created the book. menu GUI)

See Also

anm.coin, anm.ci, anm.die, anm.exp.growth, anm.geo.growth, anm.log.growth, anm.loglik, anm.LVcomp, anm.LVexp, anm.ls, anm.ls.reg, anm.transM, see.lmu.tck, samp.dist, see.HW, see.logic, see.M, see.move, see.nlm, see.norm.tck, see. power, see.regression.tck, see.typeI_II, selftest.se.tck1, shade.norm, Venn

Examples

```
## Not run:
book.menu()
## End(Not run)
```

boot.ci.M Bootstrap CI of M-estimators differences of two samples

Description

Creates a bootstrap confidence interval for location differences for two samples. The default location estimator is the Huber one-step estimator, although any estimator can be used. The function is based on a function written by Wilcox (2005). Note, importantly, that P-values may be in conflict with the confidence interval bounds.

Usage

boot.ci.M(X1, X2, alpha $=0.05$, est $=$ huber.one.step, $R=1000$)

Arguments

X1	Sample from population one.
X2	Sample from population two.
alpha	Significance level.
est	Location estimator; default is the Huber one step estimator.
R	Number of bootstrap samples.

Value

Returns a list with one component, a dataframe containing summary information from the analysis:
R.used The number of bootstrap samples used. This may not $=$ R if NAs occur because $M A D=0$.
ci.type The method used to construct the confidence interval.
conf The level of confidence used.
se The bootstrap distribution of differences standard error.
original The original, observed difference.
lower Lower confidence bound.
upper Upper confidence bound.

Author(s)

Ken Aho and R. R. Wilcox from whom I stole liberally from code in the function m2ci on R-forge

References

Manly, B. F. J. (1997) Randomization and Monte Carlo methods in Biology, 2nd edition. Chapman and Hall, London.

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, 2nd edition. Elsevier, Burlington, MA.

See Also

bootstrap, ci.boot

Examples

```
## Not run:
X1<-rnorm(100, 2, 2.5)
X2<-rnorm(100,3,3)
boot.ci.M(X1,X2)
## End(Not run)
```

bootstrap A simple function for bootstrapping

Description

The function serves as a simplified alternative to the function boot from the library boot.

Usage

bootstrap(data, statistic, $\mathrm{R}=1000$, prob $=$ NULL, matrix $=$ FALSE)

Arguments

data Raw data to be bootstrapped. A vector or quantitative data or a matrix if matrix =TRUE.
statistic A function whose output is a statistic (e.g. a sample mean). The function must have only one argument, a call to data.
R
The number of bootstrap iterations.
prob A vector of probability weights for paramteric bootstrapping.
matrix A logical statement. If matrix = TRUE then rows in the matrix are sampled as multivariate observations.

Details

With bootstrapping we sample with replacement from a dataset of size n with n samples R times. At each of the R iterations a statistical summary can be created resulting in a bootstrap distribution of statistics.

Value

Returns a list. The utility function asbio: : :print. bootstrap returns summary output. Invisible items include the resampling distribution of the statistic, the data, the statistic, and the bootstrap samples.

Author(s)

Ken Aho

References

Manly, B. F. J. (1997) Randomization and Monte Carlo Methods in Biology, 2nd edition. Chapman and Hall, London.

See Also

boot, ci.boot

Examples

```
data(vs)
# A partial set of observations from a single plot for a Scandinavian
# moss/vascular plant/lichen survey.
site18<-t(vs[1,])
#Shannon-Weiner diversity
SW<-function(data){
d<-data[data!=0]
p<-d/sum(d)
-1*\operatorname{sum(p*log(p))}
}
    bootstrap(site18[,1],SW,R=1000,matrix=FALSE)
```

 bound. angle Angle of azimuth to a boundary.

Description

The function calculates the angle of azimuth from a Cartesian coordination given in X and Y to a nearest neighbor coordinate given by $n X$ and $n Y$. The nearest neighbor coordinates can be obtained using the function near. bound.

Usage

bound.angle(X, Y, nX, nY)

Arguments

$\mathrm{X} \quad$ Cartesian X coordinate of interest.
$Y \quad$ Cartesian Y coordinate of interest.
$\mathrm{nX} \quad$ Cartesian X coordinate of nearest neighbor point on a boundary.
$\mathrm{nY} \quad$ Cartesian Y coordinate of nearest neighbor point on a boundary.

Details

The function returns the nearest neighbor angles (in degrees) with respect to a four coordinate system ala ARC-GIS Near(Analysis). Output angles range from -180° to 180° : 0° to the East, 90° to the North, 180° (or -180°) to the West, and -90° to the South.

Value

Returns a vector of nearest neighbor angles.

Author(s)

Ken Aho

See Also

near. bound, prp

Examples

```
bX<-seq(0,49)/46
bY<-c(4.89000,4.88200,4.87400,4.87300,4.88000,4.87900, 4.87900,4.90100,4.90800,
4.91000,4.93300,4.94000,4.91100,4.90000,4.91700, 4.93000, 4.93500, 4.93700,
4.93300,4.94500,4.95900, 4.95400,4.95100,4.95800, 4.95810,4.95811,4.95810,
4.96100,4.96200, 4.96300,4.96500, 4.96500,4.96600, 4.96700, 4.96540,4.96400,
4.97600,4.97900, 4.98000, 4.98000, 4.98100, 4.97900, 4.98000, 4.97800, 4.97600,
4.97700,4.97400,4.97300,4.97100, 4.97000)
X<-c(0.004166667,0.108333333,0.316666667,0.525000000,0.483333333,0.608333333,
0.662500000,0.683333333,0.900000000,1.070833333)
Y<-c(4.67,4.25,4.26,4.50,4.90,4.10,4.70,4.40,4.20,4.30)
nn<-near.bound(X,Y,bX,bY)
bound.angle(X,Y,nn[,1],nn[,2])
```

bplot Barplots with error bars (including interval plots)

Description

Creates barplots for displaying statistical summaries by treatment (e.g. means, medians, M-estimates of location, standard deviation, variance, etc.) and their error estimates by treatment (i.e. standard errors, confidence intervals, $I Q R \mathrm{~s}, I Q R$ confidence intervals, and $M A D$ intervals). Custom intervals can also be created. The function can also be used to display letters indicating if comparisons of locations are significant after adjustment for simultaneous inference (see pairw. anova, pairw.kw, and/or pairw.fried).

```
Usage
bplot(y, x, bar.col = "gray", loc.meas = mean, sort = FALSE, order = NULL, int = "SE",
    conf = 0.95, uiw = NULL, liw = NULL, sfrac = 0.1, slty = 1, scol = 1,
    slwd = 1, exp.fact = 1.5, simlett = FALSE, lett.side = 3, lett = NULL,
    cex.lett = 1, names.arg = NULL, ylim = NULL, horiz = FALSE, xpd = FALSE,
    print.summary = TRUE, ...)
```


Arguments

y	A quantitative vector representing the response variable.
x	A categorical vector representing treatments (e.g. factor levels).
bar.col	Color of bar.
loc.meas	Measure of location or other summary statistic, e.g. mean, median, etc.
sort	Logical, if TRUE, then treatments are ordered by their location statistics.
order	A vector of length equal to the number of factor levels, specifying the order of bars with respect to the alphanumeric order of their names.
int	Type of error bar to be drawn, must be one of "SE", "CI", IQR, "MAD", "IQR.CI" or "bootSE". IQR-derived confidence intervals are based on $\pm-1.58 I Q R / \sqrt{n}$ and provide an approximate 95% confidence interval for the difference in two medians. The measure can be attributed to Chambers et al. (1983, p. 62), given McGill et al. (1978, p. 16). It is based on asymptotic normality of the median and assumes roughly equal sample sizes for the two medians being compared. The interval is apparently insensitive to the underlying distributions of the samples. The specification "bootSE" gives bootstrap SEs for the location measure using the function bootstrap
conf	Level of confidence, $1-P$ (type I error).
uiw	Upper y-coordinate for the error bar, if NULL then this will be computed from int.
liw	Lower y-coordinate for the error bar, if NULL then this will be computed from int.
sfrac	Scaling factor for the size of the "serifs" (end bars) on the confidence bars, in x-axis units.
slty	Line type for error bars.
scol	Line color for error bars.
slwd	Line width for error bars.
exp.fact	A multiplication factor indicating how much extra room is made for drawing letters in top of graph. Only used if simlett = TRUE.
simlett	A logical statement indicating whether or not letters should be shown above bars indicating that populations means have been determined to be significantly different.
lett.side	Side that letters will be drawn on, $1=$ bottom, $2=$ left, $3=$ top, $4=$ right.
lett	A vector of letters or some other code to display multiple comparison results.
cex.lett	Character expansion for multiple comparison result letters.

$\begin{array}{ll}\text { names.arg } & \begin{array}{l}\text { A vector of names to be plotted below each bar or error bar. If this argument is } \\ \text { omitted, then the names are taken from the names attribute of y. }\end{array} \\ \text { ylim } & \begin{array}{l}\text { Upper and lower limits of the } Y \text {-axis }\end{array} \\ \text { horiz } & \begin{array}{l}\text { Logical value. If FALSE, then bars are drawn vertically with the first bar to the } \\ \text { left. If TRUE, then bars are drawn horizontally with the first at the bottom. }\end{array} \\ \text { xpd } & \begin{array}{l}\text { Logical value. If FALSE, this overrides barplot designation xpd = TRUE, which } \\ \text { may cause bars to extend off the plot if ylim is modified. }\end{array} \\ \text { print. summary } & \begin{array}{l}\text { Logical value. If TRUE a summary of the location and dispersion measures used } \\ \text { in the plot is printed. }\end{array} \\ \ldots & \text { Additional arguments from barplot. }\end{array}$

Details

It is often desirable to display the results of a pairwise comparison procedure using sample measures of location and error bars. This functions allows these sorts of plots to be made. The function is essentially a wrapper for the function barplot.

Value

A plot is returned. Bar centers (ala barplot) are returned invisibly.

Author(s)

Ken Aho

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data Analysis. Wadsworth \& Brooks/Cole.
McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statistician 32, 12-16.

See Also

mad, barplot, pairw. anova, pairw.kw, pairw.fried

Examples

```
eggs<-c(11,17,16,14,15,12,10,15,19,11,23,20,18,17,27,33,22, 26, 28)
trt<-c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4)
bplot(y=eggs, x=factor(trt),int="SE",xlab="Treatment",ylab="Mean number of eggs",
simlett=TRUE, lett=c("b", "b","b","a"))
```

bromus Bromus tectorum dataset

Description

Cheatgrass (Bromus tectorum) is an introduced annual graminoid that has invaded vast areas of sagebrush steppe in the intermountain west. Because it completes its vegetative growth stage relatively early in the summer, it leaves behind senescent biomass that burns easily. As a result areas with cheatgrass often experience a greater frequency of summer fires. A number of dominant shrub species in sagebrush steppe are poorly adapted to fire. As a result, frequent fires can change a community formerly dominated by shrubs to one dominated by cheatgrass. Nitrogen can also have a strong net positive effect on the cheatgrass biomass. A study was conducted at the Barton Road Long Term Experimental Research site (LTER) in Pocatello Idaho to simultaneously examine the effect of shrub removal and nitrogen addition on graminoid productivity.

Usage
 data(bromus)

Format

The dataframe has 3 columns:
Plot Plot number.
Biomass Grass biomass in grams per meter squared.
Trt Treatment. C = Control, LN = Low nitrogen, $H N=$ High Nitrogen, $S R=$ Shrub removal.
bv.boxplot Bivariate boxplots

Description

Creates diagnostic bivariate quelplot ellipses (bivariate boxplots) using the method of Goldberg and Iglewicz (1992). The output can be used to check assumptions of bivariate normality and to identify multivariate outliers. The default robust=TRUE option relies on on a biweight correlation estimator function written by Everitt (2006). Quelplots, are potentially asymmetric, although the method currently employed here uses a single "fence" definition and creates symmetric ellipses.

Usage

bv.boxplot (X, Y, robust = TRUE, $D=7, x l a b=" X ", y l a b=" Y ", ~ p c h=21$, pch.out = NULL, bg = "gray", bg.out = NULL, hinge.col = 1, fence.col = 1, hinge.lty $=2$, fence.lty $=3$, xlim = NULL, ylim = NULL, names $=1: l e n g t h(X)$, ID.out $=$ FALSE, cex.ID.out $=0.7$, uni. CI $=$ FALSE, uni.conf $=0.95$, uni.CI.col = 1, uni.CI.lty = 1, uni.CI.lwd = 2, show.points = TRUE, ...)

Arguments

X
Y
robust
D
xlab Caption for X axis.
ylab Caption for Y axis.
pch Plotting character(s) for scatterplot.
pch.out Plotting character for outliers.
hinge.col Hinge color.
fence.col Fence color.
hinge.lty Hinge line type.
fence.lty Fence line type.
xlim
ylim The Y-limits of the plot.
bg Background color for points in scatterplot, defaults to black if pch is not in the range 21:26.
bg.out Background color for outlying points in scatterplot, defaults to black if pch is not in the range 21:26.
names An optional vector of names for X, Y coordinates.
ID. out Logical. Whether or not outlying points should be given labels (from argument name in plot.
cex.ID.out Character expansion for outlying ID labels.
uni.CI Logical. If true, univariate confidence intervals for the true median at confidence uni. CI are shown.
uni.conf Univariate confidence, only used if CI. uni = TRUE.
uni.CI.col Univariate confidence bound line color, only used if CI. uni = TRUE.
uni.CI.lty Univariate confidence bound line type, only used if CI. uni = TRUE.
uni.CI.lwd Univariate confidence bound line width, only used if CI. uni = TRUE.
show.points Logical. Whether points should be shown in graph.
... Additional arguments from points.

Details

Two ellipses are drawn. The inner is the "hinge" which contains 50 percent of the data. The outer is the "fence". Observations outside of the "fence" constitute possible troublesome outliers. The function bivariate from Everitt (2004) is used to calculate robust biweight measures of correlation, scale, and location if robust = TRUE (the default). We have the following form to the quelplot model:

$$
E_{i}=\sqrt{\frac{X_{s i}^{2}+Y_{s i}^{2}-2 R^{*} X_{s i} Y_{s i}}{1-R^{* 2}}}
$$

where $X_{s i}=\left(X_{i}-T_{X}^{*}\right) / S_{X}^{*}$, and $Y_{s i}=\left(Y_{i}-T_{X}^{*}\right) / S_{Y}^{*}$ are standardized values for X_{i} and Y_{i}, respectively, T_{X}^{*} and T_{Y}^{*} are location estimators for X and Y, S_{X}^{*} and S_{Y}^{*} are scale estimators for X and Y, and R^{*} is a correlation estimator for X and Y. We have:

$$
E_{m}=\operatorname{median}\left\{E_{i}: i=1,2, \ldots, n\right\}
$$

and

$$
E_{\max }=\max \left\{E_{i}: E_{i}^{2}<D E_{m}^{2}\right\}
$$

where D is a constant that regulates the distance of the "fence" and "hinge".
To draw the "hinge" we have:

$$
\begin{aligned}
& R_{1}=E_{m} \sqrt{\frac{1+R^{*}}{2}} \\
& R_{2}=E_{m} \sqrt{\frac{1-R^{*}}{2}}
\end{aligned}
$$

To draw the "fence" we have:

$$
\begin{aligned}
& R_{1}=E_{\max } \sqrt{\frac{1+R^{*}}{2}} \\
& R_{2}=E_{\max } \sqrt{\frac{1-R^{*}}{2}}
\end{aligned}
$$

For $\theta=0$ to 360 , let:

$$
\begin{aligned}
\Theta_{1} & =R_{1} \cos (\theta) \\
\Theta_{2} & =R_{2} \sin (\theta)
\end{aligned}
$$

The Cartesian coordinates of the "hinge" and "fence" are:

$$
\begin{aligned}
& X=T_{X}^{*}=\left(\Theta_{1}+\Theta_{2}\right) S_{X}^{*} \\
& Y=T_{Y}^{*}=\left(\Theta_{1}-\Theta_{2}\right) S_{Y}^{*}
\end{aligned}
$$

Quelplots, are potentially asymmetric, although the current (and only) method used here defines a single value for $E_{\max }$ and hence creates symmetric ellipses. Under this implementation at least one point will define $E_{\text {max }}$, and lie on the "fence".

Value

A diagnostic plot is returned. Invisible objects from the function include location, scale and correlation estimates for X and Y, estimates for E_{m} and $E_{\max }$, and a list of outliers (that exceed $E_{\max }$).

Author(s)

Ken Aho, the function relies on an Everitt (2006) function for robust M-estimation.

References

Everitt, B. (2006) An R and S-plus Companion to Multivariate Analysis. Springer.
Goldberg, K. M., and B. Ingelwicz (1992) Bivariate extensions of the boxplot. Technometrics 34: 307-320.

See Also

boxplot

Examples

```
Y1<-rnorm(100, 17, 3)
Y2<-rnorm(100, 13, 2)
bv.boxplot(Y1, Y2)
X <- c(-0.24, 2.53, -0.3, -0.26, 0.021, 0.81, -0.85, -0.95, 1.0, 0.89, 0.59,
0.61, -1.79, 0.60, -0.05, 0.39, -0.94, -0.89, -0.37, 0.18)
Y <- c(-0.83, -1.44, 0.33, -0.41, -1.0, 0.53, -0.72, 0.33, 0.27, -0.99, 0.15,
-1.17, -0.61, 0.37, -0.96, 0.21, -1.29, 1.40, -0.21, 0.39)
b <- bv.boxplot(X, Y, ID.out = TRUE, bg.out = "red")
b
```

bvn.plot Make plots of bivariate normal distributions

Description

The function uses functions from lattice and mvtnorm to make wireframe plots of bivariate normal distributions. Remember that the covariance must be less than the product of the marginal standard deviations (square roots of the diagonal elements).

Usage

bvn.plot(mu $=c(0,0), c v=0, v r=c(1,1)$, res $=0.3, x \operatorname{lab}=\operatorname{expression}(y[1])$, ylab = expression(y[2]), zlab = expression(paste("f(", y[1],",", y[2],")")), ...)

Arguments

mu A vector containing the joint distribution means.
$\mathrm{cv} \quad$ A number, indicating the covariance of the two variables.
vr The diagonal elements in the variance covariance matrix.
res Plot resolution. Smaller values create a more detailed wireframe plot.
xlab $\quad X$-axis label.
ylab $\quad Y$-axis label.
zlab $\quad Z$-axis label.
Additional arguments from wireframe.

Author(s)

Ken Aho

C.isotope

Atmospheric carbon and D14C measurements

Description

Atmospheric $\delta^{14} \mathrm{C}$ (per mille) and $\mathrm{CO}_{2}(\mathrm{ppm})$ measurements for La Jolla Pier, California. Latitude: 32.9 Degrees N, Longitude: 117.3 Degrees W, Elevation: $10 \mathrm{~m} ; \delta{ }^{14} \mathrm{C}$ derived from flask air samples

Usage

data(C.isotope)

Format

A data frame with 280 observations on the following 5 variables.
Date a factor with levels 01-Apr-96 01-Jul-92 01-Jul-93 02-Apr-01 02-Feb-96 02-Nov-94 02-0ct-92
03-Aug-06 03-Aug-92 03-Jan-95 03-Jan-97 03-Jul-95 03-Mar-93 03-May-05 03-May-96
03-Nov-05 04-Apr-94 04-Jun-01 04-Jun-03 04-Mar-03 04-May-01 04-May-07 04-Sep-96
05-Aug-96 05-Jul-05 05-Jun-00 05-Sep-00 06-Aug-02 06-0ct-06 06-Sep-01 06-Sep-07
07-Apr-05 07-Apr-95 07-Aug-07 07-Dec-07 07-Feb-01 07-Feb-03 07-Feb-05 07-Jun-07
07-Mar-01 07-Sep-05 08-Feb-94 08-Feb-95 08-Feb-99 08-Jan-01 08-Jun-95 08-Sep-99
09-Dec-01 09-Feb-93 09-Jan-02 09-Jun-04 09-Nov-00 09-Nov-02 09-Nov-06 09-Sep-02
09-Sep-03 09-Sep-92 10-Apr-03 10-Aug-01 10-Aug-97 10-Aug-99 10-Jan-98 10-Jun-02
10-Nov-95 10-Oct-00 10-Oct-04 10-Oct-97 11-Dec-92 11-Feb-00 11-Jan-07 11-Jan-93
11-Mar-94 11-Mar-96 11-Nov-93 11-Oct-02 12-Apr-93 12-Apr-99 12-Aug-93 12-Jul-02
12-Jun-06 12-Oct-07 13-Feb-98 13-Jan-98 13-Jun-01 13-Mar-95 13-May-02 13-Sep-06
14-Apr-00 14-Aug-00 14-Dec-98 14-Feb-03 14-Jul-00 14-Sep-04 15-Dec-93 15-Feb-06
15-Feb-95 15-May-95 15-Oct-99 16-Apr-96 16-Jul-01 16-Jun-00 16-Nov-03 16-Nov-99
16-Oct-95 17-Dec-02 17-Feb-02 17-Feb-97 17-Jul-06 17-Jul-07 17-Mar-06 17-May-94
17-Nov-99 18-Aug-00 18-Dec-92 18-Jul-97 18-Jun-05 18-Mar-03 18-May-93 18-Nov-94
19-Apr-05 20-Apr-04 20-Mar-00 21-Apr-06 21-Aug-95 21-Dec-04 21-Jan-00 21-Jul-99
21-Jun-02 21-Jun-93 22-Apr-97 22-Feb-00 22-Feb-96 22-Jan-96 22-Jun-94 22-Mar-02
22-May-06 22-May-98 23-Apr-98 23-Feb-07 23-Jul-92 23-Jun-97 23-Mar-01 23-Mar-05
24-Apr-03 24-Aug-94 24-Feb-93 24-Jul-01 24-Jul-02 24-Jun-03 24-Mar-04 25-Apr-02
25-Aug-98 25-Jan-06 25-Oct-96 26-Aug-04 26-Dec-03 26-Feb-04 26-Jan-05 26-Jan-99
26-Jun-96 26-Mar-04 26-May-00 26-May-04 26-Sep-95 27-Jul-04 27-Mar-07 27-Nov-96
27-Oct-05 28-Jul-04 28-Jul-05 29-Aug-03 29-Dec-02 29-Jul-98 29-Jun-98 29-Oct-92
29-Oct-98 30-Jun-97 30-Nov-93 31-Dec-99 31-Jan-04 31-Oct-01 31-Oct-03

Decimal.date A numeric vector
$\mathrm{CO} 2 \mathrm{CO}_{2}$ concentration (in ppm)
D14C $\delta{ }^{14} \mathrm{C}$ (in per mille)
D14C. uncertainty measurement uncertainty for D14C(in per mille)

Source

H. D. Graven, R. F. Keeling, A. F. Bollenbacher Scripps CO_{2} Program (http://scrippsco2. ucsd. edu) Scripps Institution of Oceanography (SIO) University of California La Jolla, California USA 92093-0244
and
T. P. Guilderson Center for Accelerator Mass Spectrometry (CAMS) Lawrence Livermore National Laboratory (LLNL) Livermore, California USA 94550

References

H. D. Graven, T. P. Guilderson and R. F. Keeling, Observations of radiocarbon in CO_{2} at La Jolla, California, USA 1992-2007: Analysis of the long-term trend. Journal of Geophysical Research.
caribou Caribou count data

Description

Stratified random sampling was used to estimate the size of the Nelchina herd of Alaskan caribou (Rangifer tarandus) in February 1962 (Siniff and Skoog 1964). The total population of sample units (for which responses would be counts of caribou) consisted of 699 four mile ${ }^{2}$ areas. This population was divided into six strata, and each of these was randomly sampled.

Usage

data(caribou)

Format

A data frame with 6 observations on the following 5 variables.
stratum Strata; a factor with levels A B C DE F
N.h Strata population size
n.h Strata sample size
x.bar.h Strata means
var.h Strata variances

Source

Siniff, D. B., and R. O. Skoog (1964) Aerial censusing of caribou using stratified random sampling. Journal of Wildlife Management 28: 391-401.

Description

These data were used by Ramsey and Schaefer (1997) to demonstrate multiple regression. The dataset was originally collected by Sacher and Stafeldt (1974) and provided (for varying sample sizes) average values of brain weight, body weight, gestation period and litter size for 96 placental mammal species.

Usage

data("case0902")

Format

A data frame with 96 observations on the following 5 variables.

Xs A factor defining common names for mammal species under examination.
Y Brain weight (in grams).
Xb Body weight (in kilograms).
Xg Gestation period length (in days).
Xl Litter size.

Source

Ramsey, F., and Schafer, D. (1997). The statistical sleuth: a course in methods of data analysis. Cengage Learning.

References

Sacher, G. A., and Staffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals: implications for the theory of vertebrate growth. The American Naturalist, 108(963), 593-615.

Examples

```
data(case0902)
```


Description

Ramsey and Schafer (1997) used this dataset to illustrate considerations in model selection. The data describe attributes of 61 female and 32 male clerical employees hired between 1965 and 1975 by a bank sued for sexual harassment.

Usage

data("case1202")

Format

A data frame with 93 observations on the following 7 variables.

Yhire Annual salary upon hire (US dollars).
Y77 Annual salary in 1977 (US dollars).
Xsex Sex; a factor with the levels FEMALE and MALE.
Xsen Seniority (months since first hired).
Xage Age (in months).
Xed Education (in years).
Xexp Experience previous to being hired by the bank (in months).

Source

Ramsey, F., and Schafer, D. (1997). The statistical sleuth: a course in methods of data analysis. Cengage Learning.

Examples

```
data(case1202)
```

```
chi.plot Chi plots for diagnosing multivariate independence.
```


Description

Chi-plots (Fisher and Switzer 1983, 2001) provide a method to diagnose multivariate non-independence among Y variables.

Usage

chi.plot(Y1, Y2, ...)

Arguments

Y1 A Y variable of interest. Must be quantitative vector.
Y2 A second Y variable of interest. Must also be a quantitative vector.
... Additional arguments from plot.

Details

The method relies on calculating all possible pairwise differences within \mathbf{y}_{1} and within \mathbf{y}_{2}. Let pairwise differences associated with the first observation in \mathbf{y}_{1} that are greater than zero be transformed to ones and all other differences be zeros. Take the sum of the transformed values, and let this sum divided by $(1-n)$ be be the first element in the $1 \times n$ vector \mathbf{z}. Find the rest of the elements $(2, . ., n)$ in \mathbf{z} using the same process.
Perform the same transformation for the pairwise differences associated with the first observation in \mathbf{y}_{2}. Let pairwise differences associated with the first observation in \mathbf{y}_{2} that are greater than zero be transformed to ones and all other differences be zeros. Take the sum of the transformed values, and let this sum divided by $(1-n)$ be be the first element in the $1 \times n$ vector \mathbf{g}. Find the rest of the elements $(2, . ., n)$ in \mathbf{g} using the same process.
Let pairwise differences associated with the first observation in \mathbf{y}_{1} and the first observation in \boldsymbol{y}_{2} that are both greater than zero be transformed to ones and all other differences be zeros. Take the sum of the transformed values, and let this sum divided by $(1-n)$ be be the first element in the 1 x n vector \mathbf{h}. Find the rest of the elements $(2, . ., n)$ in \mathbf{h} using the same process. We let:

$$
\begin{gathered}
S=\operatorname{sign}((\boldsymbol{z}-0.5)(\boldsymbol{g}-0.5)) \\
\chi=(\boldsymbol{h}-\boldsymbol{z} \times \boldsymbol{g}) / \sqrt{\boldsymbol{z} \times(1-\boldsymbol{z}) \times \boldsymbol{g} \times(1-\boldsymbol{g})} \\
\lambda=4 \times S \times \max \left[(\boldsymbol{z}-0.5)^{2},(\boldsymbol{g}-0.5)^{2}\right]
\end{gathered}
$$

We plot the resulting paired χ and λ values for values of λ less than $4(1 /(n-1)-0.5)^{2}$. Values outside of $\frac{1.78}{\sqrt{n}}$ can be considered non-independent.

Value

Returns a chi-plot.

Author(s)

Ken Aho and Tom Taverner (Tom provided modified original code to eliminate looping)

References

Everitt, B. (2006) R and S-plus Companion to Multivariate Analysis. Springer.
Fisher, N. I, and Switzer, P. (1985) Chi-plots for assessing dependence. Biometrika, 72: 253-265.
Fisher, N. I., and Switzer, P. (2001) Graphical assessment of dependence: is a picture worth 100 tests? The American Statistician, 55: 233-239.

See Also

bv.boxplot

Examples

```
Y1<-rnorm(100, 15, 2)
Y2<-rnorm(100, 18, 3.2)
chi.plot(Y1, Y2)
```

chronic Chronic ailment counts for urban and rural women in Australia

Description

Brown et al (1996) showed that Australian women who live in rural areas tended to have fewer visits with general practitioners. It was not clear from this data, however, whether this was because they were healthier or because of other factors (e.g. shortage of doctors, higher costs of visits, longer distances to travel for visits, etc.). To address this Dobson issue (2001) compiled data describing the number of chronic medical conditions for women visiting general practitioners in New South Wales. Women were divided into two groups; those from rural areas, and those from urban areas. All of the women were age 70-75, had the same socioeconomic status and reported to general practitioners three or fewer times in 1996. The question of central interest was: "do women who have the same level of general practitioner visits have the same medical need?"

Usage

data(chronic)

Format

A data frame with 49 observations on the following 4 variables.
subject The subject number.
count The number of chronic conditions in a subject.
setting a factor with levels RURAL URBAN.

Source

Dobson, A. J. 2001. An Introduction to Generalized Linear Models, 2nd edition. Chapman and Hall, London.

References

Brown, W. J. Bryon, L., Byles, J., et al. (1996) Women's health in Australia: establishment of the Australian longitudinal study on women's health. Journal of Women's Health. 5: 467-472.

```
ci.boot Bootstrap confidence intervals
```


Description

Bootstrap confidence intervals for the output of function bootstrap. Up to five different interval estimation methods can be called simultaneously: the normal approximation, the basic bootstrap, the percentile method, the bias corrected and accelerated method (BCa), and the studentized bootstrap method.

Usage

ci.boot(x, method = "all", sigma.t = NULL, conf = 0.95)

Arguments

x
method
sigma.t Vector of standard errors in association with studentized intervals.
conf \quad Confidence level; $1-P$ (Type I error).

Author(s)

Ken Aho

References

Manly, B. F. J. (1997) Randomization and Monte Carlo Methods in Biology, 2nd edition. Chapman and Hall, London.

See Also

boot, bootstrap,

Examples

```
data(vs)
# A partial set of observations from a single plot for a Scandinavian
# moss/vascular plant/lichen survey.
site18<-t(vs[1,])
#Shannon-Weiner diversity
SW<-function(data){
d<-data[data!=0]
p<-d/sum(d)
-1*\operatorname{sum(p*log(p))}
}
b <- bootstrap(site18[,1],SW)
ci.boot(b)
```

ci.impt Confidence interval for the product of two proportions

Description

Provides one and two-tailed confidence intervals for the true product of two proportions.

Usage

```
ci.impt(y1, n1, y2 = NULL, n2 = NULL, avail.known = FALSE, pi.2 = NULL,
conf = .95, x100 = TRUE, alternative = "two.sided", bonf = TRUE, wald = FALSE)
```


Arguments

y1 The number of successes associated with the first proportion.
n1 The number of trials associated with the first proportion.
y2 The number of successes associated with the second proportion. Not used if avail. known = TRUE.
n2 The number of trials associated with the first proportion. Not used if avail . known = TRUE.
avail.known Logical. Are the proportions $\pi_{2 i}$ known? If avail. known $=$ TRUE these proportions should specified in the pi. 2 argument.
pi. 2 Proportions for $\pi_{2 i}$. Required if avail. known = TRUE.
conf Confidence level, i.e., $1-\alpha$.
$x 100 \quad$ Logical. If true, estimate is multiplied by 100.
alternative One of "two.sided", "less", "greater". Allows lower, upper, and twotailed confidence intervals. If alternative = "two. sided" (the default), then a conventional two-sided confidence interval is given. The specifications alternative = "less" and alternative = "greater" provide lower and upper tailed CIs, respectively.
bonf Logical. If bonf = TRUE, and the number of requested intervals is greater than one, then Bonferroni-adjusted intervals are returned.
wald Logical. If avail.known = TRUE one can apply one of two standard error estimators. The default is a delta-derived estimator. If wald $=$ TRUE is specified a modified Wald standard error estimator is used.

Details

Let Y_{1} and Y_{2} be multinomial random variables with parameters $n_{1}, \pi_{1 i}$ and $n_{2}, \pi_{2 i}$, respectively; where $i=1,2, \ldots, r$. Under delta derivation, the log of the products of $\pi_{1 i}$ and $\pi_{2 i}$ (or the log of a product of $\pi_{1 i}$ and $\pi_{2 i}$ and a constant) is asymptotically normal with mean $\log \left(\pi_{1 i} \times \pi_{2 i}\right)$ and variance $\left(1-\pi_{1 i}\right) / \pi_{1 i} n_{1}+\left(1-\pi_{2 i}\right) / \pi_{2 i} n_{2}$. Thus, an asymptotic $(1-\alpha) 100$ percent confidence interval for $\pi_{1 i} \times \pi_{2 i}$ is given by:

$$
\hat{\pi}_{1 i} \times \hat{\pi}_{2 i} \times \exp \left(\pm z_{1-(\alpha / 2)} \hat{\sigma}_{i}\right)
$$

where: $\hat{\sigma}_{i}^{2}=\frac{\left(1-\hat{\pi}_{1 i}\right)}{\hat{\pi}_{1 i} n_{1}}+\frac{\left(1-\hat{\pi}_{2 i}\right)}{\hat{\pi}_{2 i} n_{2}}$ and $z_{1-(\alpha / 2)}$ is the standard normal inverse CDF at probability $1-\alpha$.

Value

Returns a list of class = "ci". Printed results are the parameter estimate and confidence bounds.

Note

Method will perform poorly given unbalanced sample sizes.

Author(s)

Ken Aho

References

Aho, K., and Bowyer, T. 2015. Confidence intervals for a product of proportions: Implications for importance values. Ecosphere 6(11): 1-7.

See Also

ci.prat, ci.p

Examples

ci.impt $(30,40,25,40)$

```
ci.median Confidence interval for the median
```


Description

Calculates the upper and lower confidence bounds for the true median, and calculates true coverage of the interval.

Usage

ci.median(x, conf = 0.95)

Arguments

x
A vector of quantitative data.
conf
The desired level of confidence $1-P$ (type I error).

Value

Returns a list of class = "ci". Default printed results are the parameter estimate and confidence bounds. Other invisible objects include:
coverage The true coverage of the interval.

Author(s)

Ken Aho

References

Ott, R. L., and M. T. Longnecker (2004) A First Course in Statistical Methods. Thompson.

See Also

median

Examples

```
x<-rnorm(20)
ci.median(x)
```


Description

In some situations we may wish to quantify confidence in the region above or below a mean estimate. For instance, a biologist working with an endangered species may be interested in saying: "I am 95 percent confident that the true mean number of offspring is above a particular threshold." In a one-sided situation, we essentially let our confidence be 1-2 (instead of $1-\alpha$). Thus, if our significance level for a two-tailed test is α, our one-tailed significance level will be 2α.

Usage

ci.mu.oneside(data, conf $=0.95, \mathrm{n}=$ NULL, Var $=$ NULL, $x b a r=$ NULL, summarized = FALSE, $\mathrm{N}=\mathrm{NULL}, \mathrm{fpc}=$ FALSE, tail = "upper")

Arguments

data A vector of quantitative data. Required if summarized=TRUE.
conf \quad Level of confidence; 1-P(type I error).
n Sample size. Required if summarized=TRUE.
Var Sample variance. Required if summarized=TRUE.
xbar Sample mean. Required if summarized=TRUE.
summarized Logical. Indicates whether summary statistics instead of raw data should be used.
N Population size. Required if summarized=TRUE.
fpc Logical. Indicating whether finite population corrections should be made.
tail Indicates what side the one sided confidence limit should be calculated for. Choices are "upper" or "lower".

Value

Returns a list of class = "ci". Default output is a matrix with the sample mean and either the upper or lower confidence limit.

Author(s)

Ken Aho

References

Bain, L. J., and Engelhardt, M. (1992) Introduction to Probability and Mathematical Statistics. Duxbury press, Belmont, CA, USA.

See Also

> ci.mu.t

Examples

```
ci.mu.oneside(rnorm(100))
```

ci.mu.z $\quad Z$ and t confidence intervals for $m u$.

Description

These functions calculate t and z confidence intervals for μ. Z confidence intervals require specification (and thus knowledge) of σ. Both methods assume underlying normal distributions although this assumption becomes irrelevant for large sample sizes. Finite population corrections are provided if requested.

Usage

```
ci.mu.z(data, conf = 0.95, sigma = 1, summarized = FALSE, xbar = NULL,
fpc = FALSE, N = NULL, n = NULL)
ci.mu.t(data, conf = 0.95, summarized = FALSE, xbar = NULL, sd = NULL,
fpc = FALSE, N = NULL, n = NULL)
```


Arguments

data	A vector of quantitative data. Required if summarized $=$ FALSE
conf	Confidence level; 1-P(type I error).
sigma	The population standard deviation.
summarized	A logical statement specifying whether statistical summaries are to be used. If summarized $=$ FALSE, then the sample mean and the sample standard deviation (t.conf only) are calculated from the vector provided in data. If summarized = FALSE then the sample mean xbar, the sample size n, and, in the case of ci.mu.t, the sample standard deviation st. dev, must be provided by the user.
xbar	The sample mean. Required if summarized = TRUE.
fpc	A logical statement specifying whether a finite population correction should be made. If $\mathrm{fpc}=$ TRUE then both the sample size n and the population size N must be specified.
N	The population size. Required if $\mathrm{fpc}=$ TRUE
sd	The sample standard deviation. Required if summarized=TRUE.
n	The sample size. Required if summarized = TRUE.

Details

ci.mu.z and ci.mu.t calculate confidence intervals for either summarized data or a dataset provided in data. Finite population corrections are made if a user specifies $f p c=T R U E$ and provides some value for N .

Value

Returns a list of class = "ci". Default printed results are the parameter estimate and confidence bounds. Other invisible objects include:

Margin the confidence margin.

Author(s)

Ken Aho

References

Lohr, S. L. (1999) Sampling: Design and Analysis. Duxbury Press. Pacific Grove, USA.

See Also

pnorm, pt

Examples

```
#With summarized=FALSE
x<-c(5,10,5,20,30,15,20,25,0,5,10,5,7,10, 20,40,30,40,10,5,0,0, 3, 20, 30)
ci.mu.z(x, conf=.95, sigma=4, summarized=FALSE)
ci.mu.t(x, conf=.95, summarized=FALSE)
#With summarized = TRUE
ci.mu.z(x, conf=.95, sigma=4, xbar=14.6,n=25, summarized=TRUE)
ci.mu.t(x, conf=.95,sd=4, xbar=14.6,n=25, summarized=TRUE)
#with finite population correction and summarized = TRUE
ci.mu.z(x, conf=.95, sigma=4, xbar=14.6, n=25, summarized=TRUE,fpc=TRUE,N=100)
ci.mu.t(x, conf=.95, sd=4,xbar=14.6, n=25, summarized=TRUE,fpc=TRUE,N=100)
```

ci.p Confidence interval estimation for the binomial parameter pi using five popular methods.

Description

Confidence interval formulae for μ are not appropriate for variables describing binary outcomes. The function p . conf calculates confidence intervals for the binomial parameter π (probability of success) using raw or summarized data. By default Agresti-Coull point estimators are used to estimate π and $\sigma_{\hat{\pi}}$. If raw data are to be used (the default) then successes should be indicated as ones and failures as zeros in the data vector. Finite population corrections can also be specified.

Usage

```
ci.p(data, conf = 0.95, summarized = FALSE, phat = NULL,
fpc = FALSE, n = NULL, N = NULL, method="agresti.coull", plot = TRUE)
```


Arguments

data	A vector of binary data. Required if summarized = FALSE.
conf	Level of confidence 1-P(type I error).
summarized	Logical; indicate whether raw data or summary stats are to be used.
phat	Estimate of π. Required if summarized = TRUE.
$f p \mathrm{c}$	Logical. Indicates whether finite population corrections should be used. If fpc $=$ TRUE then N must be specified. Finite population corrections are not possible for method = "exact" or method = "score".
n	Sample size. Required if summarized = TRUE.
N	Population size. Required if $\mathrm{fpc}=$ TRUE .
method	Type of method to be used in confidence interval calculations, method ="agresti . coull" is the default. Other procedures include method="asymptotic" which provides the conventional normal (Wald) approximation, method = "score", method = "LR", and method="exact" (see Details below). Partial names can be used. The "exact" method cannot be implemented if summarized=TRUE.
plot	Logical. Should likelihood ratio plot be created with estimate from method $=$ "LR".

Details

For the binomial distribution, the parameter of interest is the probability of success, π. ML estimators for the parameter, π, and its standard deviation, σ_{π} are:

$$
\begin{gathered}
\hat{\pi}=\frac{x}{n} \\
\hat{\sigma}_{\hat{\pi}}=\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}
\end{gathered}
$$

where x is the number of successes and n is the number of observations.
Because the sampling distribution of any ML estimator is asymptotically normal, an "asymptotic" $100(1-\alpha) \%$ confidence interval for π is found using:

$$
\hat{\pi} \pm z_{1-(\alpha / 2)} \hat{\sigma}_{\hat{\pi}} .
$$

This method has also been called the Wald confidence interval.
These estimators can create extremely inaccurate confidence intervals, particularly for small sample sizes or when π is near 0 or 1 (Agresti 2012). A better method is to invert the Wald binomial test statistic and vary values for π_{0} in the test statistic numerator and standard error. The interval consists of values of π_{0} in which result in a failure to reject null at α. Bounds can be obtained by finding
the roots of a quadratic expansion of the binomial likelihood function (See Agresti 2012). This has been called a "score" confidence interval (Agresti 2012). An simple approximation to this method can be obtained by adding $z_{1-(\alpha / 2)}(\approx 2$ for $\alpha=0.05)$ to the number of successes and failures (Agresti and Coull 1998). The resulting Agresti-Coull estimators for π and $\sigma_{\hat{\pi}}$ are:

$$
\begin{gathered}
\hat{\pi}=\frac{x+z^{2} / 2}{n+z^{2}} \\
\hat{\sigma}_{\hat{\pi}}=\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n+z^{2}}}
\end{gathered}
$$

where z is the standard normal inverse cdf at probability $1-\alpha / 2$.
As above, the $100(1-\alpha) \%$ confidence interval for the binomial parameter π is found using:

$$
\hat{\pi} \pm z_{1-(\alpha / 2)} \hat{\sigma}_{\hat{\pi}} .
$$

The likelihood ratio method method $=$ "LR" finds points in the binomial log-likelihood function where the difference between the maximum likelihood and likelihood function is closest to $\chi_{1}^{2}(1-$ $\alpha) / 2$ for support given in π_{0}. As support the function uses seq(0.00001, 0.99999, by $=0.00001$).

The "exact" method of Clopper and Pearson (1934) is bounded at the nominal limits, but actual coverage may be well below this level, particularly when n is small and π is near 0 or 1 .

Agresti (2012) recommends the Agresti-Coull method over the normal approximation, the score method over the Agresti-Coull method, and the likelihood ratio method over all others. The Clopper Pearson has been repeatedly criticized as being too conservative (Agresti and Coull 2012).

Value

Returns a list of class = "ci".

pi.hat	Estimate for π.
S.p.hat	Estimate for $\sigma_{\hat{\pi}}$.
margin	Confidence margin.
ci	Confidence interval.

Note

This function contains only a few of the many methods that have been proposed for confidence interval estimation for π.

Author(s)

Ken Aho. thanks to Simon Thelwall for finding an error with summarized data under fpc.

References

Agresti, A. (2012) Categorical Data Analysis, 3rd edition. New York. Wiley.
Agresti, A., and Coull, B . A. (1998) Approximate is better than 'exact' for interval estimation of binomial proportions. The American Statistician. 52: 119-126.
Clopper, C. and Pearson, S. (1934) The use of confidence or fiducial limits illustrated in the case of the Binomial. Biometrika 26: 404-413.
Ott, R. L., and Longnecker, M. T. (2004) A First Course in Statistical Methods. Thompson.
Wilson, E. B.(1927) Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association 22: 209-212.

See Also

ci.mu.z

Examples

```
#In 2001, it was estimated that 56,200 Americans would be diagnosed with
# non-Hodgkin's lymphoma and that 26,300 would die from it (Cernan et al. 2002).
# Here we find the 95% confidence interval for the probability of diagnosis, pi.
ci.p(c(rep(0, 56200-26300),rep(1,26300))) # Agresti-Coull
ci.p(c(rep(0, 56200-26300),rep(1,26300)), method = "LR") # Likelihood Ratio
# summarized = TRUE
n = 56200
x = 26300
phat = x/n
ci.p(summarized = TRUE, phat = phat, n = n) # Agresti-Coull
# Use 2001 US population size as N
N <- 285 * 10^6
ci.p(c(rep(0, 56200-26300),rep(1,26300)), fpc = TRUE, N = N) # Agresti-Coull
ci.p(summarized = TRUE, phat = phat, n = n, N = N, fpc = TRUE) # Agresti-Coull
```

ci.prat Confidence intervals for the ratio of binomial and multinomial proportions

Description

A number of methods have been developed for obtaining confidence intervals for the ratio of two binomial proportions. These include the Wald/Katz-log method (Katz et al. 1978), adjusted-log (Walter 1975, Pettigrew et al. 1986), Koopman asymptotic score (Koopman 1984), Inverse hyperbolic sine transformation (Newman 2001), the Bailey method (Bailey (1987), and the Noether (1957) procedure. Koopman results are found iteratively for most intervals using root finding.

Usage

ci.prat(y1, n1, y2, n2, conf = 0.95, method = "katz.log",
bonf = FALSE, tol = .Machine\$double.eps^0.25, R = 1000, r = length(y1))

Arguments

y1
n1
y2
n2
conf
method
bonf Logical, indicating whether or not Bonferroni corrections should be applied for simultaneous inference if $\mathrm{y} 1, \mathrm{y} 2, \mathrm{n} 1$ and n 2 are vectors.
tol The desired accuracy (convergence tolerance) for the iterative root finding procedure when finding Koopman intervals. The default is taken to be the smallest positive floating-point number of the workstation implementing the function, raised to the 0.25 power, and will normally be approximately 0.0001 .
$R \quad$ If method "boot" is chosen, the number of bootstrap iterations.
$r \quad$ The number of ratios to which family-wise inferences are being made. Assumed to be length (y 1).

Details

Let Y_{1} and Y_{2} be multinomial random variables with parameters $n_{1}, \pi_{1 i}$, and $n_{2}, \pi_{2 i}$, respectively; where $i=\{1,2,3, \ldots, r\}$. This encompasses the binomial case in which $r=1$. We define the true selection ratio for the i th resource of r total resources to be:

$$
\theta_{i}=\frac{\pi_{1 i}}{\pi_{2 i}}
$$

where $\pi_{1 i}$ and $\pi_{2 i}$ represent the proportional use and availability of the i th resource, respectively. Note that if $r=1$ the selection ratio becomes relative risk. The maximum likelihood estimators for $\pi_{1 i}$ and $\pi_{2 i}$ are the sample proportions:

$$
\hat{\pi}_{1 i}=\frac{y_{1 i}}{n_{1}}
$$

and

$$
\hat{\pi}_{2 i}=\frac{y_{2 i}}{n_{2}}
$$

where $y_{1 i}$ and $y_{2 i}$ are the observed counts for use and availability for the i th resource. The estimator for θ_{i} is:

$$
\hat{\theta}_{i}=\frac{\hat{\pi}_{1 i}}{\hat{\pi}_{2 i}}
$$

Method Algorithm
Katz-log $\quad \hat{\theta}_{i} \times \exp \left(\pm z_{1}-\alpha / 2 \hat{\sigma}_{W}\right)$, where $\hat{\sigma}_{W}^{2}=\frac{\left(1-\hat{\pi}_{1 i}\right)}{\hat{\pi}_{1 i} n_{1}}+\frac{\left(1-\hat{\pi}_{2 i}\right)}{\hat{\pi}_{2 i} n_{2}}$.

Adjusted-log $\quad \hat{\theta}_{A i} \times \exp \left(\pm z_{1}-\alpha / 2 \hat{\sigma}_{A}\right)$,
where $\hat{\theta}_{A i}=\frac{y_{1 i}+0.5 / n_{1}+0.5}{y_{2 i}+0.5 / n_{2}+0.5}$,
$\hat{\sigma}_{A}^{2}=\frac{1}{y_{1}+0.5}-\frac{1}{n_{1}+0.5}+\frac{1}{y_{2}+0.5}-\frac{1}{n_{2}+0.5}$.

Bailey
$\hat{\theta}_{i}\left[\frac{1 \pm z_{1}-(\alpha / 2)\left(\hat{\pi}_{1 i}^{\prime} / y_{1 i}+\hat{\pi}_{2 i}^{\prime} / y_{2 i}-z_{1}-(\alpha / 2)^{2} \hat{\pi}_{1 i}^{\prime} \hat{\pi}_{2 i}^{\prime} / 9 y_{1 i} y_{2 i}\right)^{1 / 2} / 3}{1-z_{1-(\alpha / 2)^{2}} \hat{\pi}_{2 i}^{\prime} / 9 y_{2 i}}\right]^{3}$, where $\hat{\pi}_{1 i}^{\prime}=1-\hat{\pi}_{1 i}$, and $\hat{\pi}_{2 i}^{\prime}=1-\hat{\pi}_{2 i}$.

Inv. hyperbolic sine $\ln \left(\hat{\theta}_{i}\right) \pm\left[2 \sinh ^{-1}\left(\frac{z_{(1-\alpha / 2)}}{2} \sqrt{\frac{1}{y_{1 i}}-\frac{1}{n_{1}}+\frac{1}{y_{2 i}}-\frac{1}{n_{2}}}\right)\right]$,
Koopman Find $X^{2}\left(\theta_{0}\right)=\chi_{1}^{2}(1-\alpha)$, where $\tilde{\pi}_{1 i}=\frac{\theta_{0}\left(n_{1}+y_{2 i}\right)+y_{1 i}+n_{2}-\left[\left\{\theta_{0}\left(n_{1}+y_{2 i}\right)+y_{1 i}+n_{2}\right\}^{2}-4 \theta_{0}\left(n_{1}+n_{2}\right)\left(y_{1 i}+y_{2 i}\right)\right]^{0.5}}{2\left(n_{1}+n_{2}\right)}$, $\tilde{\pi}_{2 i}=\frac{\tilde{\pi}_{1 i}}{\theta_{0}}$, and $X^{2}\left(\theta_{0}\right)=\frac{\left(y_{1 i}-n_{1} \tilde{\pi}_{1 i}\right)^{2}}{2\left(n_{1}+n_{2}\right)} n_{1} \tilde{\pi}_{1 i}\left(1-\tilde{\pi}_{1 i}\right) \quad\left\{1+\frac{n_{1}\left(\theta_{0}-\tilde{\pi}_{1 i}\right)}{n_{2}\left(1-\tilde{\pi}_{1 i}\right)}\right\}$.

Noether $\quad \hat{\theta}_{i} \pm z_{1}-\alpha / 2 \hat{\sigma}_{N}$,

$$
\text { where } \hat{\sigma}_{N}^{2}=\hat{\theta}_{i}^{2}\left(\frac{1}{y_{1 i}}-\frac{1}{n_{1}}+\frac{1}{y_{2 i}}-\frac{1}{n_{2}}\right) .
$$

Exception handling strategies are generally necessary in the cases $y_{1}=0, n_{1}=y_{1}, y_{2}=0$, and $n_{2}=$ y_{2} (see Aho and Bowyer 2015).
The bootstrap method currently employs percentile confidence intervals.

Value

Returns a list of class = "ci". Default output is a matrix with the point and interval estimate.

Author(s)

Ken Aho

References

Agresti, A., Min, Y. (2001) On small-sample confidence intervals for parameters in discrete distributions. Biometrics 57: 963-97.
Aho, K., and Bowyer, T. 2015. Confidence intervals for ratios of proportions: implications for selection ratios. Methods in Ecology and Evolution 6: 121-132.
Bailey, B.J.R. (1987) Confidence limits to the risk ratio. Biometrics 43(1): 201-205.
Katz, D., Baptista, J., Azen, S. P., and Pike, M. C. (1978) Obtaining confidence intervals for the risk ratio in cohort studies. Biometrics 34: 469-474
Koopman, P. A. R. (1984) Confidence intervals for the ratio of two binomial proportions. Biometrics 40:513-517.

Manly, B. F., McDonald, L. L., Thomas, D. L., McDonald, T. L. and Erickson, W.P. (2002) Resource Selection by Animals: Statistical Design and Analysis for Field Studies. 2nd edn. Kluwer, New York, NY

Newcombe, R. G. (2001) Logit confidence intervals and the inverse sinh transformation. The American Statistician 55: 200-202.

Pettigrew H. M., Gart, J. J., Thomas, D. G. (1986) The bias and higher cumulants of the logarithm of a binomial variate. Biometrika 73(2): 425-435.

Walter, S. D. (1975) The distribution of Levins measure of attributable risk. Biometrika 62(2): 371-374.

See Also

ci.p, ci.prat.ak

Examples

```
# From Koopman (1984)
```

ci.prat(y1 = 36, n1 = 40, y2 = 16, n2 = 80, method = "katz")
ci.prat(y1 $=36, \mathrm{n} 1=40, \mathrm{y} 2=16, \mathrm{n} 2=80$, method $=$ "koop")

Confidence intervals for ratios of proportions when the denominator is known

Description

It is increasingly possible that resource availabilities on a landscape will be known. For instance, in remotely sensed imagery with sub-meter resolution, the areal coverage of resources can be quantified to a high degree of precision, at even large spatial scales. Included in this function are six methods for computation of confidence intervals for a true ratio of proportions when the denominator proportion is known. The first (adjusted-Wald) results from the variance of the estimator $\hat{\sigma}_{\hat{\pi}}$ after multiplication by a constant. Similarly, the second method(Agresti-Coull-adjusted) adjusts the variance of the estimator $\hat{\sigma}_{\hat{\pi}_{A C}}$, where $\hat{\pi}_{A C}=(y+2) /(n+4)$. The third method (fixed-log) is based on delta derivations of the logged ratio. The fourth method is Bayesian and based on the beta posterior distribution derived from a binomial likelhood function and a beta prior distribution. The fifth procedure is an older method based on Noether (1959). Sixth, bootstrapping methods can also be implemented.

Usage

ci.prat.ak(y1, n1, pi2 = NULL, method = "ac", conf = 0.95, bonf = FALSE, bootCI.method = "perc", R = 1000, sigma.t = NULL, r = length(y1), gamma.hyper = 1, beta.hyper = 1)

Arguments

y1 The ratio numerator number of successes. A scalar or vector.
n1 The ratio numerator number of trials. A scalar or vector of length (y1)
pi2 The denominator proportion. A scalar or vector of length (y 1)
method One of "ac", "wald", "noether-fixed", "boot", "fixed-log" or "bayes" for the Agresti-Coull-adjusted, adjusted Wald, noether-fixed, bootstrapping, fixedlog and Bayes-beta, methods, respectively. Partial distinct names can be used.
conf The level of confidence, i.e. 1-P(type I error).
bonf Logical, indicating whether or not Bonferroni corrections should be applied for simultaneous inference if $\mathrm{y} 1, \mathrm{y} 2, \mathrm{n} 1$ and n 2 are vectors.
bootCI.method If method = "boot" the type of bootstrap confidence interval to calculate. One of "norm", "basic", "perc", "BCa", or "student". See ci.boot for more information.
R If method = "boot" the number of bootstrap samples to take. See ci. boot for more information.
sigma.t If method = "boot" and bootCI.methd = "student" a vector of standard errors in association with studentized intervals. See ci.boot for more information.
$r \quad$ The number of ratios to which family-wise inferences are being made. Assumed to be length (y 1).
gamma.hyper If method = "bayes". A scalar or vector. Value(s) for the first hyperparameter for the beta prior distribution.
beta.hyper If method = "bayes". A scalar or vector. Value(s) for the second hyperparameter for the beta prior distribution.

Details

Koopman et al. (1984) suggested methods for handling extreme cases of y_{1}, n_{1}, y_{2}, and n_{2} (see below). These are applied through exception handling here (see Aho and Bowyer 2015).
Let Y_{1} and Y_{2} be multinomial random variables with parameters $n_{1}, \pi_{1 i}$, and $n_{2}, \pi_{2 i}$, respectively; where $i=\{1,2,3, \ldots, r\}$. This encompasses the binomial case in which $r=1$. We define the true selection ratio for the i th resource of r total resources to be:

$$
\theta_{i}=\frac{\pi_{1 i}}{\pi_{2 i}}
$$

where $\pi_{1 i}$ and $\pi_{2 i}$ represent the proportional use and availability of the i th resource, respectively. If $r=1$ the selection ratio becomes relative risk. The maximum likelihood estimators for $\pi_{1 i}$ and $\pi_{2 i}$ are the sample proportions:

$$
\hat{\pi}_{1 i}=\frac{y_{1 i}}{n_{1}}
$$

and

$$
\hat{\pi}_{2 i}=\frac{y_{2 i}}{n_{2}}
$$

where $y_{1 i}$ and $y_{2 i}$ are the observed counts for use and availability for the i th resource. If $\pi_{2 i} \mathrm{~s}$ are known, the estimator for θ_{i} is:

$$
\hat{\theta}_{i}=\frac{\hat{\pi}_{1 i}}{\pi_{2 i}}
$$

The function ci.prat. ak assumes that selection ratios are being specified (although other applications are certainly possible). Therefore it assume that $y_{1 i}$ must be greater than 0 if $\pi_{2 i}=1$, and assumes that $y_{1 i}$ must $=0$ if $\pi_{2 i}=0$. Violation of these conditions will produce a warning message.

Method Algorithm
Agresti Coull-Adjusted $\quad \hat{\theta}_{A C i} \pm z_{1-(\alpha / 2)} \sqrt{\hat{\pi}_{A C 1 i}\left(1-\hat{\pi}_{A C 1 i}\right) /\left(n_{1}+4\right) \hat{\pi}_{A C 1 i} \pi_{2 i}^{2}}$,
where $\hat{\pi}_{A C 1 i}=\frac{y_{1}+z^{2} / 2}{n_{1}+z^{2}}$, and $\hat{\theta}_{A C i}=\frac{\hat{\pi}_{A C 1 i}}{\pi_{2 i}}$,
where z is the standard normal inverse cdf at probability $1-\alpha / 2(\approx 2$ when $\alpha=0.05)$.
Bayes-beta $\quad\left(\frac{X_{\alpha / 2}}{\pi_{2 i}}, \frac{X_{1-(\alpha / 2)}}{\pi_{2 i}}\right)$,
where $X \sim \operatorname{BETA}\left(y_{1 i}+\gamma_{i}, n_{1}+\beta-y_{1 i}\right)$.
Fixed-log $\quad \hat{\theta}_{i} \times \exp \left(\pm z_{1-\alpha / 2} \hat{\sigma}_{F}\right)$,
where $\hat{\sigma}_{F}^{2}=\left(1-\hat{\pi}_{1 i}\right) / \hat{\pi}_{1 i} n_{1}$.

Noether-fixed

$$
\frac{\hat{\pi}_{1 i} / \pi_{2}}{1+z_{1-(\alpha / 2)}^{2}} 1+\frac{z_{1-(\alpha / 2)}^{2}}{2 y_{1 i}} \pm z_{1-(\alpha / 2)}^{2} \sqrt{\hat{\sigma}_{N F}^{2}+\frac{z_{1-(\alpha / 2)}^{2}}{4 y_{1 i}^{2}}}
$$

$$
\text { where } \hat{\sigma}_{N F}^{2}=\frac{1-\hat{\pi}_{1 i}}{n_{1} \hat{\pi}_{1 i}}
$$

Wald-adjusted

$$
\hat{\theta}_{i} \pm z_{1-(\alpha / 2)} \sqrt{\hat{\pi}_{1 i}\left(1-\hat{\pi}_{1 i}\right) / n_{1} \hat{\pi}_{1 i} \pi_{2 i}^{2}}
$$

Value

Returns a list of class = "ci". Default output is a matrix with the point and interval estimate.

Author(s)

Ken Aho

References

Aho, K., and Bowyer, T. 2015. Confidence intervals for ratios of proportions: implications for selection ratios. Methods in Ecology and Evolution 6: 121-132.

See Also

ci.prat, ci.p

Examples

ci.prat.ak(3,4,.5)

```
ci.sigma Confidence interval for sigma squared.
```


Description

The function calculates confidence intervals for σ^{2}. We assume that the parent population is normal.

Usage

```
ci.sigma(data, conf = 0.95, S.sq = NULL, n = NULL, summarized = FALSE)
```


Arguments

data A vector of quantitative data. Required if summarized=FALSE.
conf Level of confidence. 1-P(type I error).
S.sq Sample variance, required if summarized=TRUE.
$\mathrm{n} \quad$ Sample size, required if summarized=TRUE.
summarized Logical. If summarized=TRUE then the user must supply S. sq and n

Value

Returns a list of class = "ci". Default printed results are the point estimate and confidence bounds. Other objects are invisible.

Author(s)

Ken Aho

References

Bain, L. J., and M. Engelhardt. 1992. Introduction to Probability and Mathematical Statistics. Duxbury press. Belmont, CA, USA.

See Also

ci.mu.z

Examples

```
ci.sigma(rnorm(20))
```


Description

A statistical estimate along with its associated confidence interval can be considered to be an inferential statement about the sampled population. However this statement will only be correct if the method of sampling is considered in the computations of standard errors. The function ci.strat provides appropriate computations given stratified random sampling.

Usage

ci.strat(data, strat, N.h, conf = 0.95, summarized = FALSE, use.t = FALSE, n.h = NULL, x.bar.h = NULL, var.h = NULL)

Arguments

data A vector of quantitative data. Required if summarized=FALSE.
strat A vector describing strata.
N.h A vector describing the number of experimental units for each of the k strata.
conf Level of confidence; 1-P(type I error).
summarized Logical. Indicates whether summarized data are to be used.
use.t Logical. Indicates whether t or z confidence intervals should be built.
n.h A vector indicating the number of experimental units sampled in each of the k strata. Required if summarized=TRUE.
x.bar.h A vector containing the sample means for each of the k strata. Required if summarized=TRUE .
var.h A vector containing the sample variances for each of the k strata. Required if summarized=TRUE.

Details

the conventional formula for the sample standard error assumes simple random sampling. There are two other general types of sampling designs: stratified random sampling and cluster sampling. Since cluster sampling is generally used for surveys involving human demographics we will only describe corrections for stratified random sampling here. For more information on sample standard error adjustments for cluster sampling see Lohr (1999).
For a stratified random sampling design let N be the known total number of units in the defined population of interest, and assume that the population can be logically divided into k strata; $N=$ $N_{1}+N_{2}+N_{3}+\ldots+N_{k}$ (i.e. we are assuming that we know both the total population size, and the population size of each stratum). We sample each of the k strata with n_{h} observations; $h=1,2, \ldots, k$.

We estimate the variance in the h th stratum as:

$$
S_{h}^{2}=\frac{1}{n_{h}-1} \sum_{i=1}^{n_{k}}\left(X_{h i}-\bar{X}_{h}\right)^{2}
$$

where $X_{h i}$ is the i th observation from the h th strata and \bar{X}_{h} is the h th sample mean. We estimate the true population total, T, with:

$$
\hat{T}=\sum_{h=i}^{k} N_{h} \bar{X}_{h}
$$

We estimate the population mean, μ, with:

$$
\bar{X}_{s t r}=\frac{\hat{T}}{N}
$$

An unbiased estimator for the standard error of $\bar{X}_{s t r}$ is:

$$
S_{\bar{X}_{s t r}}=\sqrt{\sum_{h=1}^{k}\left(1-\frac{n_{h}}{N_{h}}\right)\left(\frac{N_{h}}{N}\right)^{2}\left(\frac{S_{h}^{2}}{n_{h}}\right)}
$$

The standard error of \hat{T} is also of interest. Here is an unbiased estimator:

$$
S_{\hat{T}}=\sqrt{\sum_{h=1}^{k}\left(1-\frac{n_{h}}{N_{h}}\right) N_{h}^{2}\left(\frac{S_{h}^{2}}{n_{h}}\right)}
$$

Note that these standard errors have both a finite population correction and adjustments for stratification built into them. Assuming that sample sizes within each stratum are large or that the sampling design has a large number of strata, a $100(1-\alpha)$ percent confidence interval for μ and T can be constructed using:

$$
\begin{gathered}
\bar{X}_{s t r} \pm z_{1-\alpha / 2} S_{\bar{X}_{s t r}} \\
\hat{T} \pm z_{1-\alpha / 2} S_{\hat{T}}
\end{gathered}
$$

In situations where sample sizes or the number of strata are small, a $t(n-k)$ distribution can (and should) be used for calculation of confidence intervals, where $n=n_{1}+n_{2}+\ldots+n_{k}$.

Value

Returns a list with two items:
$\begin{array}{ll}\text { strat.summary } & \text { A matrix with columns: N.h, n.h,x.bar.h and var.h } \\ \text { CI } & \text { Confidence intervals for } \mu \text { and } T\end{array}$

Author(s)

Ken Aho

References

Lohr, S. L. (1999) Sampling: Design and Analysis. Duxbury Press. Pacific Grove, USA.
Siniff, D. B., and Skoog, R. O. (1964) Aerial censusing of caribou using stratified random sampling. Journal of Wildlife Management 28: 391-401.

See Also

> ci.mu.z

Examples

```
#Data from Siniff and Skoog (1964)
Caribou<-data.frame(Stratum=c("A", "B", "C", "D", "E", "F"),N.h=c(400, 30,61,18,70,120),
n.h=c(98,10,37,6,39,21),x.bar.h=c(24.1, 25.6,267.6,179, 293.7,33.2),
var.h=c(5575,4064,347556, 22798,123578,9795))
attach(Caribou)
ci.strat(data, strat=Stratum,N.h=N.h, conf=.95, summarized=TRUE, use.t=FALSE,n.h=n.h,
x.bar.h=x.bar.h,var.h=var.h)
```

```
cliff.env Environmental data for the community dataset cliff.sp
```


Description

The data here are a subset of a dataset collected by Aho (2006) which describe the distribution of communities of lichens and vascular and avascular plant species on montane cliffs in Northeast Yellowstone National Park. Of particular interest was whether substrate (limestone or andesitic conglomerate) or water supply influenced community composition.

Usage

data(cliff.env)

Format

This data frame contains the following columns:
sub a factor with 2 levels "Andesite" and "Lime" describing substrate type.
water a factor with 3 levels "W" "I" "D" indicating wet, intermediate, or dry conditions.

Details

Two categorical environmental variables are described for 54 sites. sub describes the substrate; there are two levels: "Andesite" and "Lime". water describes distance of samples from waterfalls which drain the cliff faces; there are three levels "W" indicating wet, "I" indicating intermediate, and "D" indicating dry.

Source

Aho, K.(2006) Alpine Ecology and Subalpine Cliff Ecology in the Northern Rocky Mountains. Doctoral dissertation, Montana State University, 458 pgs.
cliff.sp Yellowstone NP cliff community data

Description

A subset of a dataset collected by Aho (2006) which describes the distribution of communities of lichens and vascular and avascular plant species on montane cliffs in Northeast Yellowstone National Park. Of particular interest was whether substrate (limestone or andesitic conglomerate) or water supply influenced community composition.

Usage

data(cliff.sp)

Details

Responses are average counts from two 10×10 point frames at 54 sites. Abundance data are for eleven species, 9 lichens, 3 mosses, and 2 vascular plants. Data were gathered in the summer of 2004 on two andesitic/volcanic peaks (Barronette and Abiathar) with sedimentary layers at lower elevations.

Source

Aho, K.(2006) Alpine Ecology and Subalpine Cliff Ecology in the Northern Rocky Mountains. Doctoral dissertation, Montana State University, 458 pgs.
concrete \quad Concrete strength dataset for data mining

Description

The actual concrete compressive strength (MPa) for a given mixture under a specific age (days) was determined from laboratory assays. Data are in raw form (not scaled).

Usage

```
    data("concrete")
```


Format

A data frame with 1030 observations on the following 9 variables.
X 1 kg of cement in a m^{3} mixture.
$\times 2 \mathrm{~kg}$ of blast furnace slag in a m^{3} mixture.
X3 kg of fly ash in a m^{3} mixture.
$X 4 \mathrm{~kg}$ of water in a m^{3} mixture.
$X 5 \mathrm{~kg}$ of superplasticizer in a m^{3} mixture.
$X 6 \mathrm{~kg}$ of coarse aggregate in a m^{3} mixture.
$X 7 \mathrm{~kg}$ of fine aggregate in a m^{3} mixture.
X8 Age: day(1-365), a numeric vector
Y Concrete compressive strength in MPa, a numeric vector

Details

The order of variables corresponds to the order in the original data.

Source

Prof. I-Cheng Yeh Department of Information Management Chung-Hua University, Hsin Chu, Taiwan 30067, R.O.C. e-mail:icyeh@chu.edu.tw TEL:886-3-5186511

References

Past Usage:
Primary
I-Cheng, Y. (1998) Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, 28(12): 1797-1808 .
Others
I-Cheng. Y. (1998) Modeling concrete strength with augment-neuron networks. J. of Materials in Civil Engineering, ASCE 10(4): 263-268.

I-Cheng, Y. (1999) Design of high performance concrete mixture using neural networks. J. of Computing in Civil Engineering, ASCE 13 (1): 36-42.
I-Cheng, Y. (2003) Prediction of Strength of Fly Ash and Slag Concrete By The Use of Artificial Neural Networks. Journal of the Chinese Institute of Civil and Hydraulic Engineering Vol. 15, No. 4, pp. 659-663 (2003).
I-Cheng, Y. (2003) A mix Proportioning Methodology for Fly Ash and Slag Concrete Using artificial neural networks. Chung Hua Journal of Science and Engineering 1(1): 77-84.
I-Cheng, Y. (2006). Analysis of strength of concrete using design of experiments and neural networks. Journal of Materials in Civil Engineering, ASCE 18(4): 597-604.
Acknowledgements, Copyright Information, and Availability:
NOTE: Reuse of this database is unlimited with retention of copyright notice for Prof. I-Cheng Yeh.

Description

Calculates whether pairs of observations from two vectors are concordant discordant or neither. These are displayed in the lower diagonal of a symmetric output matrix as $1,-1$ or 0 .

Usage

ConDis.matrix (Y1, Y2)

Arguments

Y1 A vector of quantitative data.
Y2 A vector of quantitative data. Observations are assumed to be paired with respective observations from Y 1 .

Details

Consider all possible combinations of $\left(Y_{1 i}, Y_{i j}\right)$ and $\left(Y_{2 i}, Y_{i j}\right)$ where $1<=i<j<=n$. A pair is concordant if $Y_{1 i}>Y_{1 j}$ and $Y_{2 i}>Y_{2 j}$ or if $Y_{1 i}<Y_{1 j}$ and $Y_{2 i}<Y_{2 j}$. Conversely, a pair is discordant if $Y_{1 i}<Y_{1 j}$ and $Y_{2 i}>Y_{2 j}$ or if $Y_{1 i}>Y_{1 j}$ and $Y_{2} i<Y_{2 j}$. This information has a number of important uses including calculation of Kendall's τ.

Value

A matrix is returned. Elements in the lower triangle indicate whether observations are concordant $($ element $=1)$, discordant $($ element $=-1)$ or neither $($ element $=0)$.

Author(s)

Ken Aho

References

Hollander, M., and Wolfe, D. A. (1999) Nonparametric statistical methods. New York: John Wiley \& Sons.

Liebetrau, A. M. (1983) Measures of association. Sage Publications, Newbury Park, CA.
Sokal, R. R., and Rohlf, F. J. (1995) Biometry. W. H. Freeman and Co., New York.

See Also

cor

Examples

```
#Crab data from Sokal and Rohlf (1998)
crab<-data.frame(gill.wt=c(159,179,100,45,384,230,100,320, 80, 220, 320, 210),
body.wt=c(14.4,15.2,11.3,2.5, 22.7,14.9,1.41,15.81,4.19,15.39,17.25,9.52))
attach(crab)
crabm<-ConDis.matrix(gill.wt,body.wt)
crabm
```

corn Corn yield data

Description

Hoshmand (2006) described a split plot design to test grain yield of corn with respect to corn hybrids (split plots) and nitrogen (in whole plots). The experiment was replicated at two blocks.

Usage

data(corn)

Format

A data frame with 40 observations on the following 4 variables.
yield Corn yield in bushels per acre.
hybrid Type of hybrid, P = pioneer, levels were: A632xLH38 LH74xLH51 Mo17xA634 P3732 P3747. N Nitrogen addition in lbs/acre 070140210.
block A blocking factor with levels 12.

Source

Hoshmand, A. R. (2006) Design of Experiments for Agriculture and the Natural Sciences 2nd Edition. Chapman and Hall.

```
    crab.weight crab gill and body weight data
```


Description

Gill weight and body weight data for 12 striped shore crabs (Pachygrapsus crassipes).

Usage

data(crab.weight)
crabs

Format

A data frame with 12 observations on the following 2 variables.
gill.wt Gill weight in mg
body.wt Body weight in grams

Source

Sokal, R. R., and F. J. Rohlf (2012) Biometry, 4th edition. W. H. Freeman and Co., New York.

$$
\text { crabs } \quad \text { Agresti crabs dataset }
$$

Description

Horseshoe crab satellite counts as a function of crab phenotype.

Usage

data(crabs)

Format

A data frame with 173 observations on the following 5 variables.
color A factor with levels $1=$ light medium, $2=$ medium, $3=$ dark medium, $4=$ dark.
spine A factor with levels $1=$ both good, $2=$ one worn or broken, $3=$ both worn or broken.
width Crab carapace width in cm.
satell Number of satellites.
weight Crab weight in in kg.

Source

Agresti, A. (2012) An Introduction to Categorical Data Analysis, 3rd edition. Wiley, New Jersey.

References

Brockman, H. J. (1996) Satellite male groups in horseshoe crabs, Limulus polyphemus. Ethology 102(1) 1-21.
cuckoo Tippett cuckoo egg data

Description

Part of a dataset detailing cuckoo egg lengths found in other birds nests. Units are millimeters

Usage

data(cuckoo)

Format

A data frame with 16 observations on the following 3 variables.
TP Tree pipit
HS Hedge sparrow
RB Robin

Source
Tippett, L. H. C. (1952) The Methods of Statistics, 4th Edition. Wiley.

Description

Allows much easier multivariate comparisons of groups of sites then provided by the function mahalanobis in the base library.

Usage

D.sq(g1, g2)

Arguments

g1 Community vector for site 1
g2 Community vector for site 2

Author(s)

Ken Aho

References

Legendre, P, and L. Legendre (1998) Numerical Ecology, 2nd English Edition. Elsevier, Amsterdam, The Netherlands.

See Also

```
    mahalanobis
```


Examples

```
g1<-matrix(ncol=3,nrow=3, data=c(1,0,3,2,1,3,4,0,2))
g2<-matrix(ncol=3,nrow=3, data=c(1, 2, 4, 5, 2, 3, 4, 3, 1))
D.sq(g1,g2)$D.sq
```

 death.penalty Florida state death penalty data

Description

Dataset detailing death penalty 674 homicide trials in the state of Florida from 1976-1987 with respect to verdict, and victim and defendant race. The data were previously used (Agresti 2012) to demonstrate Simpson's Paradox.

Usage

data(death.penalty)

Format

A data frame with 8 observations on the following 4 variables.
count Counts from cross classifications.
verdict Death penalty verdict No Yes.
d. race Defendant's race Black White.
v. race Victims’ race Black White.

Details

A reversal of associations or comparisons may occur as a result of lurking variables or aggregating groups. This is called Simpson's Paradox.

Source

Agresti, A. (2012) Categorical Data Analysis, 3rd edition. New York. Wiley.
Radelet, M. L., and G. L. Pierce (1991) Choosing those who will die: race and the death penalty in Florida. Florida Law Review 43(1):1-34.

Simpson, E. H. (1951) The Interpretation of interaction in contingency tables. Journal of the Royal Statistical Society Ser. B 13: 238-241.
deer Maternal deer data

Description

Monteith et al. (2009) examined the maternal life history characteristics of white-tailed deer (Odocoileus virginianus) originating from the Black Hills in southwestern South Dakota and from eastern South Dakota. Because litter size and dam size affects offspring weight the investigators used proportional birth mass (dam mass/total litter mass) as a measure of reproductive investment by deer.

Usage

data(deer)

Format

The dataframe contains 6 columns

Birth. Yr Year of birth.
Litter.size Number of offspring.
Region Categorical variable with two factor levels. $\mathrm{BH}=$ Black Hills, $\mathrm{ER}=$ Eastern Region.
Dam.weight Dam weight in kg.
Total.birth.mass Mass of litter in kg.
Prop.mass Total birth mass divided by dam weight.

Source

Monteith, K. L, Schmitz, L. E., Jenks, J. A., Delger, J. A., and R. T. Bowyer. 2009. Growth of male white tailed deer: consequences of maternal effects. Journal of Mammalogy 90(3): 651-660.

Description

Telemetry data for mule deer \#296 from the Starkey Experimental Forest in Northeastern Oregon. Data are high resolution (10 minute) radio collar readings from $8 / 20 / 2008$ to $11 / 6 / 2008$. Also included are data for nearest neighbor locations of forest/grassland boundaries.

Usage

data(deer. 296)

Format

A data frame with 5423 observations on the following 7 variables.
Time Unit of time measurement used at the Starkey Experimental Forest
X Mule Deer X-coordinate, UTM Easting
Y Mule Deer Y-coordinate, UTM Northing
NEAR_X Nearest boundary location X coordinate
NEAR_Y Nearest boundary location Y coordinate
Hab_Type Type of habitat
NEAR_ANGLE A numeric vector containing the angle of azimuth to the nearest point on the boundary with respect to a four quadrant system. NE $=0^{\circ}$ to 90°, NW is $>90^{\circ}$ and $\leq 180^{\circ}$, SE is $<0^{\circ}$ and $\leq-90^{\circ}$ is $>-90^{\circ}$ and $\leq-180^{\circ}$.
depression Hamilton depression scores before and after drug treatment

Description

Hollander and Wolfe (1999) presented Hamilton depression scale factor measurements for 9 patients with mixed anxiety and depression. Measurements were taken at a time preceding administration of tranquilizer, and a time after tranquilizer administration.

Usage

data(depression)

Format

A data frame with 18 observations on the following 3 variables.
subject Experimental subject.
scale Hamilton depression scale score. 0-7 is considered to be normal. Scores of 20 or higher indicate moderate to very severe depression
time A factor with levels post pre indicating before and after tranquilizer treatment.

Source

Hollander, M., and D. A. Wolfe. 1999. Nonparametric Statistical Methods. New York: John Wiley \& Sons.
DH.test Doornik-Hansen test for multivariate normality.

Description

The Doornik-Hansen test for multivariate normality is a powerful alternative to the Shapiro-Wilk test.

Usage

DH.test(Y, Y.names = NULL)

Arguments

$\mathrm{Y} \quad$ An $n \mathrm{x} p$ a dataframe of dependent variables.
Y . names \quad Names of Y variables; should be a $1 \times p$ character string.

Details

An assumption of multivariate normality is exceedingly difficult to verify. Hypothesis tests tend to be too stringent, and multivariate diagnostic plots only allow viewing of two variables at a time. Univariate normality of course can be verified using normal probability plots. However while marginal non-normality indicates multivariate non-normality, marginal normality does not insure that Y variables collectively follow a multivariate normal distribution.
The Doornik-Hansen test for multivariate normality (Doornik and Hansen 2008) is based on the skewness and kurtosis of multivariate data that is transformed to insure independence. The DH test is more powerful than the Shapiro-Wilk test for most tested multivariate distributions (Doornik and Hansen 2008). The function DH.test also runs the Doornik-Hansen test for both multivariate and univariate normality. The later test follows directly from the work of Bowman and Shenton (1975), Shenton and Bowman (1977) and D'Agostino (1970).

Value

Returns a list with two objects.
multi A dataframe containing multivariate results, i.e. the test statistic, E, the degrees of freedom and the p-value.
comp2 A dataframe with p rows detailing univariate tests. Columns in the dataframe contain the test statistics, degrees of freedom and P-values.

Note

As with all inferential normality tests our null hypothesis is that the underlying population is normal, in this case multivariate normal.

Author(s)

Ken Aho

References

D’Agostino, R. B. (1970). Transformation to normality of the null distribution of g1, Biometrika 57: 679-681.
Doornik, J.A. and Hansen, H. (2008). An Omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics 70, 927-939.

Shenton, L. R. and Bowman, K. O. (1977). A bivariate model for the distribution of b1 and b2, Journal of the American Statistical Association 72: 206.211.

See Also

shapiro.test, bv.boxplot

Examples

```
data(iris)#The ubiquitous multivariate iris data.
```

DH.test(iris[,1:4],Y.names=names(iris[,1:4]))
d02

Description

Dissolved O_{2} readings in ppm for 15 random locations above and below a riverside community.

Usage

data(d02)

Format

A data frame with 30 observations on the following 2 variables.

02 Dissolved O_{2} levels in ppm.
location River flow location with respect to town. Levels are Above Below.

Source

Ott, R. L., and M. T. Longnecker (2004) A First Course in Statistical Methods. Thompson.

```
drugs
Contingency data for high school marijuana, alcohol, and cigarette use
```


Description

Agresti (2012) included a three way contingency table describing cigarette, alcohol, and marijuana use of high school students in Dayton Ohio.

Usage

data(drugs)

Format

A data frame with 8 observations on the following 4 variables.
alc Alcohol use. A factor with levels N Y .
cig Cigarette use. A factor with levels N Y.
mari Marijuana use. A factor with levels N Y
count Counts for the cross-classification.

Source

Agresti, A. 2012. Categorical Data Analysis, 3rd edition. New York. Wiley.
e. cancer Esophageal cancer data modified slightly to create a balanced threeway factorial design

Description

Breslow and Day (1980) studied the effect of age, tobacco, and alcohol on esophageal cancer rates at Ile-et-Vilaine, France. Data are altered slightly to make the design balanced, and to allow enough degrees of freedom to perform a fully factorial three way ANOVA.

Usage

data(e.cancer)

Format

The dataset contains four variables:
age grp. age group, a factor with four levels: "25-34", "35-44", "45-54", "55-64", and "65-74".
alcohol alcohol consumed (g/day).
tobacco tobacco consumed (g/day).
cases number of esophageal cancer cases.

Source

Breslow, N. E. and N. E. Day (1980) Statistical Methods in Cancer Research. 1: The Analysis of Case-Control Studies. IARC Lyon / Oxford University Press.

$$
\text { eff.rbd } \quad \text { Efficiency of a randomized block design compared to a CRD }
$$

Description

Calculates the RCBD efficiency ratio for a linear model with one main factor and one blocking factor. Values greater than 1 indicate that the RCBD has greater efficiency compared to a CRD.

Usage

eff.rbd(lm)

Arguments

1m
An object of class lm. The blocking factor must be called "block".

Author(s)

Ken Aho

References

Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li (2005) Applied Linear Statistical Models. McGraw-Hill Irwin.
enzyme Enzymatic rate data for the phospholipase protein ExoU

Description

The bacterium Pseudomonas aeruginosa causes disease in human hosts leading to sepsis and even death in part by secreting lipases (proteins that break down lipids) into cellular environments. The protein ExoU is a phospholipase produce by particularly virulent strains of P. aeruginosa. Benson et al. (2009) measured of ExoU enzymatic activity under varying levels of the fluorescent phospholipase substrate PED6.

Usage

data(enzyme)

Format

A data frame with 10 observations on the following 3 variables.
substrate PED6 concentration (in micromoles).
rate enzymatic rate (nmol of cleaved of PED6 per mg ExoU).
sd standard deviation of rate for each level of substrate.

Source

Benson, M. A., Schmalzer, K. M., and D. W. Frank (2009) A sensitive fluorescence-based assay for the detection of ExoU mediated PLA2 activity. Clin Chim Acta 411(3-4): 190-197.

ES.May May's effective specialization index

Description

May and Beverton (1990) created the effective specialization index to quantify the degree of specialization of insects with potential host plants.

Usage

ES. May (mat, digs = 3)

Arguments

mat A symmetric matrix with potential specialist hosts in rows and and the number species specializing on each of the host species in columns (see details below).
digs The number of significant digits in output.

Details

The structure of the object mat is nonintuitive. In the rows of the matrix are species which can be selected by potential specialists (i.e. hosts). May and Beverton (1990) used four oak species. The columns indicate the degree of specialization of potential specialists. May and Beverton (1990) were interested in the specialization of beetles. The first element (row 1, column 1) in their 4 x 4 matrix contained only beetle species found on host 1 . The second element (row 1, column 2) contained the number of beetle species found on host 1 and one other host. The third element (row 1 , column 3) contained the number of beetle species found on host 1 and two other hosts. The fourth element (row 1, column 4) contained the number of beetle species occurring on all four hosts.

Value

Output is a list
E.S_coefficients

Nk The number of distinct specialists.
Pki.matrix The proportion of potential specialists on the k th host
N.matrix The raw data.
fk.matrix
fk .vector For the k th host, the proportion of species which are effectively specialized.
Nk.vector The number of species which are effectively specialized on the k th host.

Author(s)

Ken Aho and Jessica Fultz

References

May, R. M. and Beverton, R. J. H. (1990) How many species [and discussion]. Philosophical Transactions: Biological Sciences. 330 (1257) 293-304.

Examples

\#data from May and Beverton (1990)
beetle<-matrix(ncol=4, nrow=4, data=c(5, $8,7,8,20,10,9,8,14,15,11,8,15,15,12,8)$, byrow=TRUE)
ES.May (beetle)
exercise.repeated Repeated measures data for an exercise experiment.

Description

Freund et al. (1986) listed data for a longitudinal study of exercise therapies. The data were analyzed using AR1 covariance matrices in mixed models by Fitzmaurice et al. (2004). In the study 37 patients were randomly assigned to one of two weightlifting programs. In the first program (TRT 1), repetitions with weights were increased as subjects became stronger. In the second program (TRT 2), the number of repetitions was fixed but weights were increased as subjects became stronger. An index measuring strength was created and recorded at day $0,2,4,6,8,10$, and 12 .

Usage

```
    data(exercise.repeated)
```


Format

The dataframe contains a repeated measures dataset describing the strength of 37 subjects with respect to two weightlifting programs. There are four columns:

ID Subject ID.

TRT The type of weightlifting treatment (a factor with two levels, 1 and 2).
strength A strength index.
day The day that strength was measured on a subject, measured from the start of the experiment.

Source

Fitzmaurice, G. M., Laird, N. M, and Waird, J. H. (2004) Applied Longitudinal Analysis. Wiley.

Description

These data concern posts published during the year 2014 on the Facebook page of a popular cosmetics brand. The data here are 500 of the 790 rows and part of the features analyzed by Moro et al. (2016). The remaining data points were omitted due to confidentiality issues.

Usage

data(facebook)

Format

A data frame with 500 observations on the following 19 variables.
X 1 Total number of likes of the page containing a post.
X2 Type of content; a factor with levels Link, Photo, Status, and Video.
X3 Manual content category; a factor with levels: action (special offers and contests), product (direct advertisement, explicit brand content), and inspiration (non-explicit brand related content).
X4 Month the post was posted.
X5 Weekday the post was published.
X6 Hour the post was posted
X7 An binary variable indicating if the company paid to Facebook for advertising.
Y1 Lifetime post total reach: the number of people who saw a page post.
Y2 Lifetime number of total impressions: the number of times a post from a page is displayed, whether the post is clicked or not.
Y3 Lifetime engaged users: the total number of people who clicked anywhere in a post (unique users).
Y4 Lifetime number of post consumers: the number of people who clicked anywhere in a post after purchasing something on the page.
Y5 Lifetime number of post consumptions: the number of clicks anywhere in a post by people after purchasing something on the page.
Y6 Lifetime number of post impressions by people who have liked the page.
Y7 Lifetime post reach by people who like the page.
Y8 Lifetime number of people who have liked the page and engaged with the post.
Y9 Number of "comments"" on the post.
Y10 Number of "likes" on the post.
Y11 Number of times the post was "shared.""
Y12 Total interactions: the sum of "likes," "comments," and "shares" of the post.

References

This dataset is publicly available for research. The details are described in (Moro et al., 2016). Please include this citation if you plan to use this data:
S. Moro, P. Rita, Vala, B. (2016) Predicting social media performance metrics and evaluation of the impact on brand building: A data mining approach. Journal of Business Research 69(9): 33413351.
Fbird Frigatebird drumming frequency data

Description

Male magnificent frigatebirds (Fregata magnificens) have an enlarged red throat pouch that has probably evolved as the result of sexual selection. During courtship displays males attract females by displaying this pouch and using it to make a drumming sound. Madsen et al. (2004) noted that conditions (e.g. oblique viewing angles) often limit females' ability to appraise pouch size exactly. Since females choose mates based on pouch size, a question of interest is whether females could use the pitch of the pouch drumming as an indicator of pouch size. Madsen et al. (2004) estimated the pouch volume and fundamental drumming frequency for forty males at Isla Isabel in Nayarit Mexico. Eighteen of these observations are in this dataset.

Usage
 data(Fbird)

Format

The dataframe contains two variables:
vol Pouch volume (in cm^{3}).
freq Frequency of drumming (in Hz)

Source

Madsen, V., Balsby, T.J.S., Dabelsteen, T., and J.L. Osorno (2004) Bimodal signaling of a sexually selected trait: gular pouch drumming in the magnificent frigatebird. Condor 106: 156-160.

```
    fire Fire data from Yellowstone National Park
```


Description

Fires from 1988 constituted the largest conflagration in the history of Yellowstone National Park. This dataframe lists burned areas for ten Yellowstone stream catchments (Robinson et al. 1994).

Usage

data(fire)

Format

A data frame with 10 observations on the following 2 variables.
fire Burn area in, in hectares ${ }^{2}$.
stream A factor with levels Blacktail Cache EF.Blacktail Fairy Hellroaring Iron. Springs
Pebble Rose SF. Cache Twin

Source

Robinson, C. T., Minshall, G. W., and S. R. Rushforth (1994) The effects of the 1988 wildfires on diatom assemblages in the streams of Yellowstone National Park. Technical Report NPS/NRYELL/NRTR93/XX.
fly.sex Fly sex and longevity

Description

Partridge and Farqaur (1981) studied the effect of the number of mating partners on the longevity of fruit flies. Five different mating treatments were applied to single male fruit flies. As a concomitant variable thorax length was measured.

Usage

data(fly.sex)

Format

A data frame with 125 observations on the following 3 variables.
treatment a factor with levels $1=$ One virgin female per day, $2=$ eight virgin females per day, 3 $=$ a control group with one newly inseminated female per day, $4=$ a control group with eight newly inseminated females per day, and 5 a control group with no added females.
longevity Age in days.
thorax Thorax length in mm.

Source

Quinn, G. P., and M. J. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press.

References

Partridge, L., and Farquhar, M. (1981), Sexual activity and the lifespan of male fruit flies, Nature 294, 580-581.
frog Australian frog calls following fire

Description

Driscoll and Roberts (1997) examined the impact of fire on the Walpole frog (Geocrinia lutea) in catchments in Western Australia by counting the number of calling males in six paired burn and control sites for three years following spring burning in 1991.

Usage

data(frog)

Format

A data frame with 18 observations on the following 3 variables.
catchment A factor with levels angove logging newpipe newquinE newquinW oldquinE.
frogs The difference in the number of male frog calls for control - burned sites.
year Year.

Source

Quinn, G. P., and M. J. Keough (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press.

References

Driscoll, D. A., and J. D. Roberts. 1997. Impact of fuel-reduction burning on the frog Geocrinia lutea in southwest Western Australia. Australian Journal of Ecology 22:334-339.
fruit
Fruit weight data from Littell et al. (2002)

Description

Valencia orange tree fruit weights are measured at harvest with respect to five irrigation treatment applied in eight blocks in a RCBD.

Usage

data(fruit)

Format

A data frame with 40 observations on the following 3 variables.
block a factor describing eight blocks
irrig a factor with levels basin flood spray sprinkler trickle
fruitwt a numeric vector

Source

Littell, R. C., Stroup, W. W., and R. J. Freund (2002) SAS for linear models. John Wiley and Associates.
G.mean Geometric mean

Description

Calculates the geometric mean.

Usage

G.mean (x)

Arguments

x

> A vector of quantitative data.

Value

Returns the geometric mean.

Author(s)

Ken Aho

See Also

H. mean, HL. mean

Examples

```
x<-c(2,1,4,5,6,2.4,7,2.2,.002,15,17,.001)
G.mean(x)
```


g.test

Likelihood ratio test for tabular data

Description

Provides likelihood ratio tests for one way and multiway tables.

Usage

g.test(y, correct $=$ FALSE, pi.null = NULL)

Arguments

$y \quad$ A vector of at least 2 elements, or a matrix. Must contain only non-negative integers.
correct Logical. Indicating whether Yates correction for continuity should be used.
pi.null Optional vector or matrix of null proportions. Must sum to one.

Author(s)

Ken Aho

Examples

```
obs <- c(6022, 2001)
g.test(obs, pi.null = c(0.75, 0.25))
```


Description

Four materials (A, B, C, D) used in permanent press garments were subjected to a test for shrinkage. The four materials were placed in a heat chamber with with four settings (pos). The test was then conducted in four runs (run).

Usage

data(garments)

Format

A data frame with 16 observations on the following 4 variables.
run Test run, a factor with levels 1234
pos Heat position, a factor with levels 1234
mat Fabric materials, a factor with levels A B C D
shrink Shrinkage measure, a numeric vector

Source

Littell, R. C., Stroup, W. W., and R. J. Freund (2002) SAS for Linear Models. John Wiley and Associates.

Glucose2 Glucose Levels Following Alcohol Ingestion

Description

The Glucose 2 data frame has 196 rows and 4 columns.

Format

This data frame contains the following columns:
Subject a factor with levels 1 to 7 identifying the subject whose glucose level is measured.
Date a factor with levels 12 indicating the occasion in which the experiment was conducted.
Time a numeric vector giving the time since alcohol ingestion (in $\mathrm{min} / 10$).
glucose a numeric vector giving the blood glucose level (in $\mathrm{mg} / \mathrm{dl}$).

Details

Hand and Crowder (Table A.14, pp. 180-181, 1996) describe data on the blood glucose levels measured at 14 time points over 5 hours for 7 volunteers who took alcohol at time 0 . The same experiment was repeated on a second date with the same subjects but with a dietary additive used for all subjects.

Note

Descriptions and details are from the library nlme.

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York. (Appendix A.10)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall, London.

```
goats Mountain goat data from Yellowstone National Park
```


Description

Mount goat (Oreomnos americanus) feces data and soil nutrient data for eight different mountains in the Northern Absarokas in Yellowstone National Park.

Usage

data(goats)

Format

The dataframe has 3 columns:
feces feces concentration (Percent occurrence per 0.1, m^2 plot).
NO3 Nitrate concentration in ppm.
organic.matter Organic matter concentration (LOI) as a percentage.

Source

Aho, K. (2012) Management of introduced mountain goats in Yellowstone National Park (vegetation analysis along a mountain goat gradient). PMIS: 105289. Report prepared for USDA National Park Service. 150 pp.
grass Agricultural factorial design

Description

Littell et al. (2006) describe an experiment to distinguish the effects of three seed growing methods on the yield of five turf grass varieties. The seed growing methods were applied to seed from each grass variety. Six pots were planted with each variety \times method combination. The pots were placed in a growth chamber with uniform conditions and dry matter (in grams) was weighed from above ground clips after four weeks.

Usage

data(grass)

Format

The dataframe has three columns:
yield Refers to grass yield.
method Seed growing method. A factor with three levels: a, b, c.
variety Grass variety. A factor with five levels: $1,2,3,4,5$.

Source

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and O. Schabenberger (2006) SAS
for mixed models 2nd ed. SAS press.
H.mean Harmonic mean

Description

Calculates the harmonic mean.

Usage

H.mean (x)

Arguments

$x \quad$ Vector of quantitative data.

Value

Returns the harmonic mean.

Author(s)

Ken Aho

See Also

G.mean, HL.mean

Examples

$x<-c(2,1,4,5,6,2.4,7,2.2, .002,15,17, .001)$
H. mean (x)

$$
\text { heart } \quad \text { Heart rate data from Milliken and Johnson (2009) }
$$

Description

A repeated measures demonstration dataset from Milliken and Johnson (1999). Heart rate was measured for twenty four subject at four time periods following administration of a treatment. The treatment types were two active heart drugs and a control. One treatment was assigned to each subject. Thus each drug was administered to eight subjects.

Usage

data(heart)

Format

A data frame with 96 observations on the following 4 variables.
rate A numeric vector describing heart rate (bpm).
time A factor with levels t1 t2 t3 t4
drug A factor with levels AX23 BWW9 Ctrl
subject A factor describing which subject (in drug) that measurements were made on.

Source

Milliken, G. A., and D. E. Johnson (2008) Analysis of Messy Data: Vol. I. Designed Experiments, 2nd edition. CRC.

Examples

```
## Not run:
#data(heart)
#aov(rate ~ drug * time + Error(subject%in%drug), data = heart)
## End(Not run)
```

HL.mean Hodges-Lehman estimator of location

Description

Calculates the Hodges-Lehman estimate of location -which is consistent for the true pseudomedianusing Walsh averages (Hollander and Wolfe 1999, pgs. 51-55). If requested, the function also provides confidence intervals for the true pseudomedian. In a symmetric distribution the mean, median, and pseudomedian will be identical.

Usage

HL.mean (x, conf $=$ NULL, method $=$ "exact")

Arguments

x
A vector of quantitative data.
conf A proportion specifying 1-P(type I error).
method method for confidence interval calculation. One of "approx", which uses a normal approximation, or "exact", which uses the Wilcoxon sign-rank quantile function (see Hollander and Wolfe 1999).

Author(s)

Ken Aho

References

Hollander, M., and Wolfe, D. A (1999) Nonparametric Statistical Methods. New York: John Wiley \& Sons.

See Also

H.mean, G.mean

Examples

```
# Hamilton depression scale (Hollander and Wolfe 1999)
x<-c( -0.952, 0.147, -1.022, -0.430, -0.620, -0.590, -0.490, 0.080, -0.010)
HL.mean(x, conf = .96)
```


Description

The Huber M-estimator is a robust high efficiency estimator of location that has probably been under-utilized by biologists. It is based on maximizing the likelihood of a weighting function. This is accomplished using an iterative least squares process. The Newton Raphson algorithm is used here. The function usually converges fairly quickly (<10 iterations). The function uses the Median Absolute Deviation function, mad. Note that if $\mathrm{MAD}=0$, then NA is returned.

Usage

huber.mu(x, c $=1.28$, iter $=20$, conv $=1 \mathrm{e}-07$)

Arguments

$x \quad$ A vector of quantitative data.
c Stop criterion. The value $c=1.28$ gives 95% efficiency of the mean given normality.
iter Maximum number of iterations.
conv Convergence criterion.

Value

Returns Huber's M-estimator of location.

Author(s)

Ken Aho

References

Huber, P. J. (2004) Robust Statistics. Wiley.
Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

huber. one.step, huber. NR, mad

Examples

```
x <- rnorm(100)
huber.mu(x)
```


Description

Algorithm for calculating fully iterated or one step Huber M-estimators of location.

Usage

huber. $\operatorname{NR}(x, c=1.28$, iter $=20)$

Arguments

$x \quad$ A vector of quantitative data
c Bend criterion. The value $c=1.28$ gives 95% efficiency of the mean given normality.
iter Maximum number of iterations

Details

The Huber M-estimator is a robust high efficiency estimator of location that has probably been under-utilized by biologists. It is based on maximizing the likelihood of a weighting function. This is accomplished using an iterative least squares process. The Newton Raphson algorithm is used here. The function usually converges fairly quickly <10 iterations. The function uses the Median Absolute Deviation function, mad. Note that if $\mathrm{MAD}=0$, then NA is returned.

Value

Returns iterative least squares iterations which converge to Huber's M-estimator. The first element in the vector is the sample median. The second element is the Huber one-step estimate.

Author(s)

Ken Aho

References

Huber, P. J. (2004) Robust Statistics. Wiley.
Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

huber. one.step, huber.mu, mad

Examples

$x<-r n o r m(100)$
huber. NR(x)
huber.one.step Huber one step M-estimator

Description

Returns the first Raphson-Newton iteration of the function Huber.NR.

Usage

huber.one.step(x, c = 1.28)

Arguments

$x \quad$ Vector of quantitative data
c Bend criterion. The value $c=1.28$ gives 95% efficiency of the mean given normality.

Details

The Huber M-estimator function usually converges fairly quickly, hence the justification of the Huber one step estimator. The function uses the Median Absolute Deviation function, mad. If MAD $=0$, then NA is returned.

Value

Returns the Huber one step estimator.

Author(s)

Ken Aho

References

Huber, P. J. (2004) Robust Statistics. Wiley.
Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

huber.mu, huber.NR, mad

Examples

$x<-r n o r m(100)$
huber.one.step (x)

Description

In development, currently displays three illusions. Illusion 3 is from Yihui Xie's package animation.

Usage

illusions(ill.no = 1)

Arguments

ill.no Integer in 1:3 describing which illusion number to view.

Author(s)

Ken Aho. Illusion 3 uses code from Yihui Xie's package animation.

Examples

illusions(1)
illusions(2)
illusions(3)
ipomopsis Ipomopsis fruit yield data

Description

The following question is based on data from Crawley (2007). We are interested in the effect of grazing on seed production in the plant scarlet gilia Ipomopsis aggregata. Forty plants were allocated to two treatments, grazed and ungrazed. Grazed plants were exposed to rabbits during the first two weeks of stem elongation. They were then protected from subsequent grazing by the erection of a fence and allowed to continue growth. Because initial plant size may influence subsequent fruit production, the diameter of the top of the rootstock was measured before the experiment began. At the end of the experiment, fruit production (dry weight in milligrams) was recorded for each of the forty plants.

Usage

data(ipomopsis)

Format

A data frame with 40 observations on the following 3 variables.
root Rootstock diameter in mm
fruit Fruit dry weight in mg
grazing a factor with levels Grazed Ungrazed

Source

Website associated with - Crawley, M. J. 2007. The R book. Wiley.
joint.ci.bonf Calculates joint confidence intervals for parameters in linear models using a Bonferroni procedure.

Description

Creates widened confidence intervals to allow joint consideration of parameter confidence intervals.

Usage

joint.ci.bonf(model, conf = 0.95)

Arguments

model A linear model created by lm
conf level of confidence $1-P$ (type I error)

Details

As with all Bonferroni-based methods for joint confidence the resulting intervals are exceedingly conservative and thus are prone to type II error.

Value

Returns a dataframe with the upper and lower confidence bounds for each parameter in a linear model.

Author(s)

Ken Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

confint, p.adjust

Examples

```
Soil.C<-c(13,20,10,11,2, 25,30, 25,23)
Soil.N<-c(1.2,2,1.5,1,0.3,2,3,2.7,2.5)
Slope<-c(15,14,16,12,10,18,25,24,20)
Aspect<-c(45,120,100,56,5,20,5,15,15)
Y<-as.vector(c(20,30,10,15,5,45,60,55,45))
model<-lm(Y~Soil.C+Soil.N+Slope+Aspect)
joint.ci.bonf(model)
```

K
Soil potassium analyses from 8 laboratories

Description

Jacobsen et al. (2002) sent nine "identical" soil samples to eight soil testing laboratories in the Great Plains region of the Central United States over a three year period of time. Among other characteristics the labs were paid to measure soil potassium. A question of interest was whether the labs would produce identical analytical results.

Usage

data(K)

Format

A data frame with 72 observations on the following 2 variables.
K Soil K in $\mathrm{mg} / \mathrm{kg}$
lab Laboratories, a factor with levels B DEFGHI J

Source

Jacobsen, J. S., Lorber, S. H., Schaff, B. E., and C. A. Jones (2002) Variation in soil fertility test results from selected Northern Great Plains laboratories. Commun. Soil Sci. plant Anal., 33(3\&4): 303-319.

Description

The kappa statistic, along with user and producer error rates are conventionally used in the remote sensing to describe the effectiveness of ground cover classifications. Since it simultaneously considers both errors of commission and omission, kappa can be considered a more conservative measure of classification accuracy than the percentage of correctly classified items.

Usage

Kappa(class1, reference)

Arguments

class1	A vector describing a classification of experimental units.
reference	A vector describing the "correct" classification of the experimental units in class1

Value

Returns a list with 4 items
ttl_agreement The percentage of correctly classified items.
user_accuracy The user accuracy for each category of the classification.
producer_accuracy
The producer accuracy for each category of the classification.
kappa The kappa statistic.
table A two way contingency table comparing the user supplied classification to the reference classification.

Author(s)

Ken Aho

References

Jensen, J. R. (1996) Introductory digital imagery processing 2nd edition. Prentice-Hall.

Examples

```
reference<-c("hi","low","low","hi","low","med","med")
class1<-c("hi","hi","low","hi","med","med","med")
Kappa(class1,reference)
```

km Kaplan-Meier survivorship.

Description

Calculates survivorship for individuals in a population over time based on the method of KaplanMeier; cf. Pollock et al. (1989).

Usage

km(r, d, var = "0", conf = 0.95, age.seq=seq(1,length(r)), ylab = "Survivorship", xlab = "Age class", type = "b", plot.km = TRUE, plot.CI = TRUE, ...)

Arguments

$r \quad$ Numbers of individuals at risk in each age or time class.
d Vector of the number of deaths in each age or time class.
var Type of procedure used to calculate variance in confidence intervals "0" = Oakes, "G" = Greenwood.
conf Level of confidence for confidence interval calculations; 1-P(type I error)
age.seq A sequence of numbers indicating the age classes used.
ylab $\quad Y$-axis label.
xlab $\quad X$-axis label.
type type argument from plot.
plot.km Logical. Should plot be created?
plot.CI Logical. Should confidence interval be overlaid on plot?
Additional arguments from plot.

Details

Details for this index are given in Pollock et al. (1989).

Value

Returns a list with the following components
s.hat A vector of estimated survivorship probabilities from the 1st age class onward.

Greenwood.Var The estimated Greenwood variance for each age class.
Oakes.Var The estimated Oakes variance for each age class.
CI Upper and lower confidence bound to the true survivorship.

Author(s)

Ken Aho

References

Pollock, K. H., Winterstein, S. R., and Curtis, P. D. (1989) Survival analysis in telemetry studies: the staggered entry design. Journal of Wildlife Management. 53(1):7-1.

Examples

```
##Example from Pollock (1989)
r<-c}(18,18,18,16,16,16,15,15,13,10,8,8,7
d<-c(0,0,2,0,0,1,0,1,1,1,0,0,0)
    km(r,d)
```

Kullback Kullback test for equal covariance matrices.

Description

Provides Kullback's (1959) test for multivariate homoscedasticity.

Usage

Kullback(Y, X)

Arguments

Y
An $n \times p$ matrix of quantitative variables
X
An $n \times 1$ vector of categorical assignments (e.g. factor levels)

Details

Multivariate general linear models assume equal covariance matrices for all factor levels or factor level combinations. Legendre and Legendre (1998) recommend this test for verifying homoscedasticity. P-values concern a null hypothesis of equal population covariance matrices. P-values from the test are conservative with respect to type I error.

Value

Returns a dataframe with the test statistic (which follows a chi-square distribution if H_{0} is true), the chi-square degrees of freedom, and the calculated p-value. Invisible objects include the within group dispersion matrix.

Author(s)

Pierre Legendre is the author of the most recent version of this function asbio ver $>=1.0$. Stephen Ousley discovered an error in the original code. Ken Aho was the author of the original function

References

Kullback, S. (1959) Information Theory and Statistics. John Wiley and Sons.
Legendre, P, and Legendre, L. (1998) Numerical Ecology, 2nd English edition. Elsevier, Amsterdam, The Netherlands.

Examples

Y1<-rnorm(100,10,2)
Y2<-rnorm(100,15,2)
Y3<-rnorm(100,20,2)
$\mathrm{Y}<-\mathrm{cbind}(\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3)$
X<-factor (c (rep $(1,50)$, rep $(2,50)))$
Kullback(Y,X)
larrea Creosote bush counts

Description

Phillips and MacMahon (1981) conducted an extensive study of Larrea tridentata (creosote bush) distributions in the Mojave and Sonoran deserts from several life stage classes based areal coverage: Life stage 1 (102-103 cm^{2}) Life stage $2\left(103-104 \mathrm{~cm}^{2}\right)$, and Life stage $3\left(104-105 \mathrm{~cm}^{2}\right)$. Data were generated (using variance and mean values, and the function rpois to approximate the results of the authors.

Usage

data(larrea)

Format

A data frame with 25 observations on the following 3 variables.
class1 Counts from life stage 1
class2 Counts from life stage 2
class3 Counts from life stage 3

References

Phillips, D. L., and J. A. MacMahon (1981) Competition and spacing patterns in desert shrubs. Journal of Ecology 69(1): 97-115.
life.exp Mouse life expectancy data

Description

Weindruch et al. (1986) compared life expectancy of field mice given different diets. To accomplish this, the authors randomly assigned 244 mice to one of four diet treatments.

Usage

data(life.exp)

Format

A data frame with 244 observations on the following 2 variables.
lifespan Lifespan in weeks
treatment a factor with levels N/N85: Mice were fed normally both before and after weaning (the slash distinguishes pre and post weaning). After weaning the diet consisted of $85 \mathrm{kcal} / \mathrm{week}$, a conventional total for mice rearing, $N / R 40$: Mice were fed normally before weaning, but were given a severely restricted diet of 40 kcal per week after feeding, N/R50: Mice were restricted to 50 kcal per week before and after weaning, R/R50: Mice were fed normally before weaning, but their diet was restricted to 50 kcal per week after weaning.

Source

Ramsey, F. L., and D. W. Schafer (1997) The Statistical Sleuth: A Course in Methods of Data Analysis. Duxbury Press, Belmont, CA.

References

Weindruch, R., Walford, R. L., Fligiel, S., and D. Guthrie (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. The Journal of Nutrition 116 (4): 641-54.

Examples

```
data(life.exp)
## maybe str(life.exp) ; plot(life.exp) ...
```


Description

The function provide model selection summaries using AIC, AICc, BIC, Mallow's C_{p}, and PRESS for a list of objects of class lm

Usage

lm.select(lms, deltaAIC = FALSE)

Arguments

lms A list containing linear models.
deltaAIC Logical; Should a \triangle AIC summary be given with relative likelihoods and Akaike weights?

Note

Mallow's C_{p} assumes that all models are nested within the first model in the argument lms. Nonnesting will produce a warning message.

Author(s)

Ken Aho

See Also

AIC, press

Examples

```
Y <- rnorm(100)
X1 <- rnorm(100)
X2 <- rnorm(100)
lms <- list(lm(Y ~ X1), lm(Y ~ X1 + X2))
lm.select(lms)
```

magnets Magnet pain relief data

Description

Magnets have long been used as an alternative medicine, particularly in the Far East, for speeding the recovery of broken bones and to aid in pain relief. Vallbona et al. (1997) tested whether chronic pain experienced by post-polio patients could be treated with magnetic fields applied directly to pain trigger points. The investigators identified fifty subjects who not only had post-polio syndrome, but who also experienced muscular or arthritic pain. Magnets were applied to pain trigger points in 29 randomly selected subjects, and in the other 21 a placebo was applied. The patients were asked to subjectively rate pain on a scale from one to ten before and after application of the magnet or placebo.

Usage

data(magnets)

Format

The dataframe contains 4 columns
Score_1 Reported pain level before application of treatment.
Score_2 Reported pain level after application of treatment.
Active Categorical variable indicating whether the device applied was active (magnet) or inactive (placebo).

Source

Vallbona, C. et al (1997) Response of pain to static magnetic fields in post-polio patients, a double blind pilot study. Archives of Physical Medicine and Rehabilitation. 78: 1200-1203.

MC Simple functions for MCMC demonstrations

Description

Function MC creates random Markov Chain from a transitions matrix. Function Rf presents proportional summaries of discrete states from MC. Function mat. pow finds the exponential expansion of a matrix. Required for finding the expectations of a transition matrix.

Usage

MC(T, start, length)
Rf(res)
mat. pow(mat, pow)

Arguments

T A symmetric transition matrix.
start Starting state
length Length of the chain to be created
res Results from MC.
mat A symmetric matrix.
pow Power the matrix is to be raised to.

Author(s)

Ken Aho

Examples

A <- matrix (nrow $=4, \mathrm{ncol}=4, \mathrm{c}(0.5,0.5,0,0,0.25,0.5,0.25,0,0,0.25,0.5,0.25$, $0,0,0.5,0.5)$, byrow $=$ TRUE)
pi. $0<-\mathrm{c}(1,0,0,0)$
Tp10 <- mat. $\operatorname{pow}(A, 10)$
chain <- MC(A, 1, 100)
Rf(chain)

MC.test

Monte Carlo hypothesis testing for two samples.

Description

MC. test calculates a permutation distribution of test statistics from a Welcht-test. It compares this distribution to an initial test statistic calculated using non-permuted data, to derive an empirical P-value.

Usage

MC. test (Y, X, perm = 1000, alternative = "not.equal", paired = FALSE, print = TRUE)

Arguments

Y	Response data.
X	Categorical explanatory variable.
perm	Number of iterations.
paired	Logical: Are sample paired?
alternative	Alternative hypothesis. One of three options: "less", "greater", or "not.equal". print
	These provide lower-tail, upper-tail, and two-tailed tests.
	Logical: automatically print a pretty summary of results (default).

Details

The method follows the description of Manly (1998) for a two-sample test. Upper and lower tailed tests are performed by finding the portion of the distribution greater than or equal to the observed t test statistic (upper-tailed) or less than or equal to the observed test statistic (lower-tailed). A two tailed test is performed by multiplying the portion of the null distribution greater than or equal to the absolute value of the observed test statistic and less than or equal to the absolute value of the observed test statistic times minus one. Results from the test will be similar to oneway_test from the library coin because it is based on an equivalent test statistic. As with t. test, pairing is assumed to occur within levels of X. That is, the responses $Y=11$ and $Y=2$ occur in the same pair (block) below.
$Y<-c(11,12,13,2,3,4)$
$X<-c(1,1,1,2,2,2)$

Value

Returns a list with the following items:

```
observed.test.statistic
```

t-statistic calculated from non-permuted (original)data.
no_of_permutations_exceeding_observed_value
The number of times a Monte Carlo derived test statistic was more extreme than the initial observed test statistic.
p.value \quad Empirical P-value
alternative The alternative hypothesis

Author(s)

Ken Aho, thanks to Vince Buonaccorsi who found an error under paired = TRUE.

References

Manly, B. F. J. (1997) Randomization and Monte Carlo Methods in Biology, 2nd edition. Chapman and Hall, London.

See Also

t.test

Examples

```
Y<-c(runif(100,1, 3),runif(100,1.2,3.2))
X<-factor(c(rep(1,100),rep(2,100)))
MC.test(Y,X,alternative="less")
```


Description

These functions are designed for Gibbs sampling comparison of groups with normal hierarchical models (see Gelman 2003), and for providing appropriate summaries.

Usage

mcmc.norm.hier(data, length $=1000$, n.chains $=5$)
norm.hier.summary (M, burn.in $=0.5$, cred $=0.95$, conv.log $=$ TRUE)

Arguments

data	A numerical matrix with groups in columns and observations in rows.
length	An integer specifying the length of MCMC chains.
n. chains	The number of chains to be computed for each parameter
M	An output array from mcmc. norm. hier.
burn. in	The burn in period for the chains. The default value, 0.5 , indicates that only the latter half of chains should be used for calculating summaries.
cred	Credibility interval width.
conv.log	A logical argument indicating whether convergence for σ and τ should be con- sidered on a log scale.

Details

An important Bayesian application is the comparison of groups within a normal hierarchical model. We assume that the data from each group are independent and from normal populations with means $\theta[j], j=(1, \ldots, J)$, and a common variance, σ^{2}. We also assume that group means, are normally distributed with an unknown mean, μ, and an unknown variance, τ^{2}. A uniform prior distribution is assumed for $\mu, \log \sigma$ and $\tau ; \sigma$ is logged to facilitate conjugacy. The function mcmc.norm.hier provides posterior distributions of $\theta[j]$'s, μ, σ and τ. The distributions are derived from univariate conditional distributions from the multivariate likelihood function. These conditional distributions provide a situation conducive to MCMC Gibbs sampling. Gelman et al. (2003) provide excellent summaries of these sorts of models.
The function mcmc. summary provides statistical summaries for the output array from mcmc. norm. hier including credible intervals (empirically derived directly from chains) and the Gelman/Rubin convergence criterion, \hat{R}.

Value

The function mcmc. norm. hier returns a three dimensional (step x variable x chain) array. The function mcmc. summary returns a summary table containing credible intervals and the Gelman/Rubin convergence criterion, \hat{R}.

Author(s)

Ken Aho

References

Gelman, A., Carlin, J. B., Stern, H. S., and D. B. Rubin (2003) Bayesian Data Analysis, 2nd edition. Chapman and Hall/CRC.

See Also

R.hat

Examples

```
## Not run:
data(cuckoo)
mcmc.norm.hier(cuckoo,10,2)
## End(Not run)
```

ML.k | Maximum likelihood algorithm for determining the binomial dispersal |
| :--- |
| coefficient |

Description

The function uses the maximum likelihood method described by Bliss and R. A. Fisher (1953) to determine maximum likelihood estimates for the binomial parameters m (the mean) and k (a parameter describing aggregation/dispersion).

Usage

$$
\text { ML.k(f, } x \text {, res }=1 \mathrm{e}-06)
$$

Arguments

f	A vector of frequencies for objects in x (must be integers).
x	A vector of counts, must be sequential integers.
res	Resolution for the ML estimator.

Value

Returns a list with two items
k
The negative binomial dispersion parameter, k
m
The negative binomial distribution mean, m

Note

The program is slow at the current resolution. Later iterations will use linear interpolation, or Fortran loops, or both.

Author(s)

Ken Aho

References

Bliss, C. I., and R. A. Fisher (1953) Fitting the negative binomial distribution to biological data. Biometrics 9: 176-200.

See Also

dnbinom

Examples

```
mites <- seq(0, 8)
freq <- c(70, 38, 17, 10, 9, 3, 2, 1, 0)
ML.k(freq, mites)
```


Description

Calculates the sample mode; i.e. the most frequent outcome in a dataset. Non-existence of the mode will return a message. Several errors in earlier versions were corrected in asbio 0.4.

Usage

```
    Mode(x)
```


Arguments

x
A vector of quantitative data.

Value

Returns the sample mode or an error message if the mode does not exist.

Author(s)

Ken Aho

References

Bain, L. J., and M. Engelhardt (1992) Introduction to Probability and Mathematical Statistics. Duxbury press. Belmont, CA, USA.

See Also

H. mean, HL. mean, mean, median, huber.mu

Examples

```
x<-round(rnorm(100000, mean=10,sd=2),0)
Mode(x)
```

 modlevene.test Modified Levene's test

Description

Conducts the modified Levene's test for homoscedastic populations.

Usage

modlevene.test (y, x)

Arguments

$y \quad$ Vector of quantitative ressponses, e.g., residuals from a linear model.
$x \quad$ Vector of factor levels.

Details

The modified Levene's test is a test for homoscedasticity that (unlike the classic F-test) is robust to violations of normality (Conover et al. 1981). In a Modified Levene's test we calculate $d_{i j}=$ $\left|e_{i j}-\tilde{e}_{i}\right|$ where \tilde{e}_{i} is the i th factor level residual median. We then run an ANOVA on the $d_{i j}$'s. If the p-value is $<\alpha$, we reject the null and conclude that the population error variances are not equal.

Value

An ANOVA table is returned with the modified Levene's test results.

Author(s)

Ken Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

fligner.test

Examples

```
eggs<-c(11, 17,16,14,15,12,10,15,19,11,23,20,18,17, 27, 33, 22, 26, 28)
trt<-as.factor(c(1, 1, 1,1,1,2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4))
lm1<-lm(eggs~trt)
modlevene.test(residuals(lm1),trt)
```

 montane.island Mountain island biogeographic data

Description

Lomolino et al. (1989) investigated the relationship between the area of montane forest patches (islands) and the richness of mammal fauna in the Southwestern United States. This dataset contains richness and area information for 27 montane islands.

Usage

data(montane.island)

Format

A data frame with 27 observations on the following 3 variables.

Island.name a factor with levels Abajos Animas Blacks Capitans Catalinas Chirucahuas Chuskas Guadalupes Huachucas Hualapais Lasals Magdalenas Manzanos Mogollon Mt. Taylor N. Rincon N. Uncompaghre Navajo Organs Pinalenos Prescotts S. Kabib Sacramentos San Mateos Sandias Santa Ritas Zunis.

Richness A numeric vector; the number of species.
Area A numeric vector; area in km^{2}.

Source

Lomolino, M. V., Brown, J. H., and R. Davis (1989) Island biogeography of montane forest mammals in the American Southwest. Ecology 70: 180-194.

```
moose.sel Datasets for resource use and availability
```


Description

A collection of datasets which can be used to calculate and compare selection ratios. Datasets are: goat.sel, mule.sel, quail.sel, elk.sel, bighorn.sel, bighornAZ.sel, juniper.sel and are described (briefly) in Manly et al. (2002) and Aho and Bowyer (2015).

Usage

```
data(moose.sel)
data(goat.sel)
data(quail.sel)
data(elk.sel)
data(bighorn.sel)
data(bighornAZ.sel)
data(juniper.sel)
```


Format

Dataframes with observations on the following variables.
resources A factor listing resource types.
avail Proportional availability (for datasets without n 2 and y 2).
y1 A numeric vector: number of times the resource was used.
y2 A numeric vector: number of time the resource was observed.
n 1 A numeric vector: number of times that all resources were used.
n2 A numeric vector: number of times that all resources were observed.

Source

Manly BF, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource Selection by Animals: Statistical Design and Analysis for Field Studies. 2nd edn. Kluwer, New York

References

Aho, K., and Bowyer, T. 2015. Confidence intervals for ratios of proportions: implications for selection ratios. Methods in Ecology and Evolution 6: 121-132.

```
mosquito Mosquito wing length data
```


Description

Sokal and Rohlf (2012) describe an experiment to gauge the variability in wing length in female mosquitos (Aedes intrudens). Four females were randomly selected from three cages and two measurements were made on the left wing of each female. Both cage and female (in cage) can be seen as random effects.

Usage

data(mosquito)

Format

A data frame with 24 observations on the following 4 variables.
length Wing length in micrometers
cage Cage number.
female Female (in cage) number
measures Measurement (in female in cage) number, i.e. pseudoreplicates in female.

Source

Sokal, R. R., and F. J. Rohlf (2012) Biometry, 4th edition. W. H. Freeman and Co., New York.

```
MS.test
```

Mack-Skillings test

Description

Runs a Mack-Skillings test for situations applicable to rank-based permutation procedures with blocking and more than one replicate for treatments in a block.

Usage

MS.test(Y, X, reps)

Arguments

Y

X
reps

A matrix of response data. The MS. test function requires that response data are organized in columns (see example below).
$X \quad$ A vector of treatments. The length of the vector should be equal to the number of rows in the response matrix.
The number of replicates in each treatment (unbalanced designs cannot be analyzed).

Details

When we have more than one replication within a block, and the number of replications is equal for all treatments, we can use the Mack-Skillings test (Mack and Skillings 1980) as a rank based permutation procedure to test for main effect differences. If ties occur the value of the significance level is only approximate. Hollander and Wolfe (1996) provide a method for finding exact P-values by deriving a test statistic distribution allowing ties.

Value

Returns a dataframe summarizing the degrees of freedom, test statistic and p-value.

Author(s)

Ken Aho

References

Campbell, J. A., and O. Pelletier (1962) Determination of niacin (niacinamide) in cereal products. J. Assoc. Offic. Anal. Chem. 45: 449-453.

Hollander, M., and D. A. Wolfe (1999) Nonparametric Statistical Methods. New York: John Wiley \& Sons.
Mack, G. A., and J. H. Skillings (1980) A Friedman-type rank test for main effects in a two-factor ANOVA. Journal of the American Statistical Association. 75: 947-951.

See Also

friedman.test

Examples

```
#data from Campbell and Pelletier (1962)
Niacin0<-c(7.58,7.87,7.71,8.00,8.27,8,7.6,7.3,7.82,8.03,7.35,7.66)
Niacin4<-c(11.63,11.87,11.40,12.20,11.70,11.80,11.04,11.50,11.49,11.50,10.10,11.70)
Niacin8<-c(15.00,15.92,15.58,16.60,16.40,15.90,15.87,15.91,16.28,15.10,14.80,15.70)
Niacin<-cbind(Niacin0,Niacin4,Niacin8)
lab<-c(rep(1,3),rep(2,3),rep(3,3),rep(4,3))
MS.test(Niacin, lab, reps=3)
```

myeloma
Patient responses to myeloma drug treatments

Description

Murakami et al. (1997) studied the effect of drugs treatments on levels of serum beta- 2 microglobulin in patients with multiple myeloma. Serum beta- 2 microglobulin is produced in the body as a result of myelomas, and thus can be used as an indicator of the severity of disease
near.bound

Usage

data(myeloma)

Format

A data frame with 20 observations on the following 2 variables.
mglobulin Levels of serum beta-2 microglobulin in mg / l
drug Drug treatment strategy. Control = sumerifon alone, Trt = malphalan and sumerifon.

Source

Ott, R. L., and M. T. Longnecker (2004) A First Course in Statistical Methods. Thompson.

References

Murakami, H., Ogawara, H., Morita, K., Saitoh, T., Matsushima, T., Tamura, J., Sawamura, M., Karasawa, M., Miyawaki, M.,, Schimano, S., Satoh, S., and J Tsuchiy (1997) Serum beta-2microglobulin in patients with multiple myeloma treated with alpha interferon. Journal of Medicine 28(5-6):311-8.
near.bound Nearest neighbor boundary coordinates

Description

Finds nearest neighbor boundary Cartesian coordinates for use as arguments in function prp.

Usage

near.bound (X, Y, bX, bY)

Arguments

X A vector of Cartesian X-coordinates (e.g. UTMs) describing an animal's locations (e.g. telemetry data).

Y A vector of Cartesian Y coordinates (e.g. UTMs) describing an animal's locations (e.g. telemetry data).
bX A vector of boundary X-coordinates.
bY A vector of boundary Y-coordinates.

Value

Returns Cartesian X, Y coordinates of nearest neighbor locations on a boundary.

Author(s)

Ken Aho

See Also

prp, bound. angle

Examples

```
bX<-seq \((0,49) / 46\)
bY<-c \((4.89000,4.88200,4.87400,4.87300,4.88000,4.87900,4.87900,4.90100,4.90800\),
\(4.91000,4.93300,4.94000,4.91100,4.90000,4.91700,4.93000,4.93500,4.93700\),
\(4.93300,4.94500,4.95900,4.95400,4.95100,4.95800,4.95810,4.95811,4.95810\),
\(4.96100,4.96200,4.96300,4.96500,4.96500,4.96600,4.96700,4.96540,4.96400\),
\(4.97600,4.97900,4.98000,4.98000,4.98100,4.97900,4.98000,4.97800,4.97600\),
4.97700, 4.97400, 4.97300, 4.97100, 4.97000)
\(X<-c(0.004166667,0.108333333,0.316666667,0.525000000,0.483333333,0.608333333\),
\(0.662500000,0.683333333,0.900000000,1.070833333)\)
\(\mathrm{Y}<-\mathrm{c}(4.67,4.25,4.26,4.50,4.90,4.10,4.70,4.40,4.20,4.30)\)
near. bound \((X, Y, b X, b Y)\)
```

one.sample.t

One sample t-test

Description

Provides a one-sample hypothesis test. The test assumes that the underlying population is normal.

Usage

one.sample.t(data $=$ NULL, null.mu $=0$, xbar $=$ NULL, $s d, n=N U L L$, alternative = "two.sided", conf = 0.95)

Arguments

data
null.mu
xbar
sd
n
alternative
conf

A vector of quantitative data. Not required if x bar and n are supplied by the user.
The expectation for the null distribution.
Sample mean. Not required if is .null (data)==FALSE
The sample standard deviation. Not required if is.null(data)==FALSE
The sample size. Not required if is null (data)==FALSE
Type of test. One of three must be specified "two.sided", "less", or "greater" Confidence level.

Details

The function can use either raw data is.null (data)==FALSE or summarized data if is.null (data)==TRUE. With the later xbar, and n must be specified by the user.

Value

Returns a test statistic and a p-value.

Author(s)

Ken Aho. Thanks to Samuel Hale for identifying a function bug.

See Also

pt

Examples

```
one.sample.t(null.mu = 131, xbar = 126, sd = 12, n = 85,
alternative = "two.sided")
```

one.sample.z One sample z-test

Description

Provides a one-sample hypothesis test. The test assumes that the underlying population is normal and furthermore that σ is known.

Usage

one.sample.z(data $=$ NULL, null.mu $=0$, xbar $=$ NULL, sigma, $n=$ NULL, alternative = "two.sided", conf = 0.95)

Arguments

data	A vector of quantitative data. Not required if xbar and n are supplied by the user.
null.mu	The expectation for the null distribution.
xbar	Sample mean. Not required if is.null(data)==FALSE
sigma	The null distribution standard deviation
n	The sample size. Not required if is.null(data)==FALSE
alternative	Type of test. One of three must be specified "two.sided", "less", or "greater" conf
Confidence level.	

Details

The function can use either raw data is. null (data)==FALSE or summarized data if is.null (data)==TRUE. With the later xbar and n must be specified by the user.

Value

Returns a test statistic and a p-value.

Author(s)

Ken Aho

See Also

pnorm

Examples

one.sample.z(null.mu=131, xbar=126, sigma=12, n=85, alternative="two.sided")

```
paik Paik diagrams
```


Description

Paik diagrams for the representation of Simpsons Paradox in three way tables.

Usage

paik(formula, counts, resp.lvl = 2, data, circle.mult = 0.4, xlab = NULL,
ylab $=$ NULL, leg.title $=$ NULL, leg.loc $=$ NULL, show.mname $=$ FALSE,...)

Arguments

formula	A two sided formula, e.g. $Y \sim X 1+X 2$, with cross-classified categorical vari- ables. The second explanatory variable, i.e. X 2, is used as the trace variable whose levels are distinguished in the graph with different colors. Interactions and nested terms are not allowed.		
counts	A vector of counts for the associated categorical variables in formula.		
resp.lvl	The level in Y of primary interest. See example below. data circle.mult		
Dataframe containing variables in formula.			
Multiplier for circle radii in the diagram.		\quad	X-axis label. By default this is defined as the categories in the first explanatory
:---			
variable, $X 1$.			

ylab	Y-axis label. By default these will be proportions with respect to the specified level of interest in the response.
leg.title	Legend title. By default the conditioning variable name.
leg.loc	Legend location. A legend location keyword; "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" or "center".
show.mname	Logical, indicating whether or not the words "Marginal prop" should printed in the graph above the dotted line indicating marginal proportions.
\ldots.	Additional arguments from plot.

Author(s)

Ken Aho

References

Agresti, A. (2012) Categorical Data Analysis, 3rd edition. New York. Wiley.
Paik M. (1985) A graphical representation of a three-way contingency table: Simpson’s paradox and correlation. American Statistician 39:53-54.

```
Examples
require(tcltk)
data(death.penalty)# from Agresti 2012
op <- par(mfrow=c(1,2), mar=c(4,4,0,0))
paik(verdict ~ d.race + v.race, counts = count, data = death.penalty,
leg.title = "Victims race", xlab = "Defendants race",
ylab = "Proportion receiving death penalty")
par(mar=c(4,2,0,2))
paik(verdict ~ v.race + d.race, counts = count, data = death.penalty,
xlab = "Victims race", leg.title = "Defendants race",leg.loc="topleft",
ylab = "", yaxt = "n")
message("Type: vignette(\"simpson\") for more information about this figure")
par(op)
```

pairw. anova Conducts pairwise post hoc and planned comparisons associated with
an ANOVA

Description

The function pairw. anova replaces the defunct Pairw.test. Conducts all possible pairwise tests with adjustments to P-values using one of five methods: Least Significant difference (LSD), Bonferroni, Tukey-Kramer honest significantly difference (HSD), Scheffe's method, or Dunnett's method. Dunnett's method requires specification of a control group, and does not return adjusted P-values. The functions scheffe. cont and bonf. cont allow Bonferroni and Scheffe's family-wise adjustment of individual planned pairwise contrasts.

Usage

```
pairw.anova(y, x, conf.level = 0.95, method = "tukey",
MSE = NULL, df.err = NULL, control = NULL)
lsdCI(y, x, conf.level = 0.95, MSE = NULL, df.err = NULL)
bonfCI(y, x, conf.level = 0.95, MSE = NULL, df.err = NULL)
tukeyCI(y, x, conf.level = 0.95, MSE = NULL, df.err = NULL)
scheffeCI(y, x, conf.level = 0.95, MSE = NULL, df.err = NULL)
dunnettCI(y, x, conf.level = 0.95, control = NULL)
scheffe.cont(y, x, lvl = c("x1", "x2"), conf.level = 0.95,
MSE = NULL, df.err = NULL)
bonf.cont(y, x, lvl = c("x1", "x2"), conf.level = 0.95,
MSE = NULL, df.err = NULL, comps = 1)
```


Arguments

$y \quad$ A quantitative vector containing the response variable
x A categorical vector containing the groups (e.g. factor levels or treatments)
conf.level
$1-P($ type I error $)$
method One of five possible choices: "lsd", "bonf", "tukey", "scheffe", "dunnett"
MSE \quad Value of MSE from the ANOVA model. Default $=$ NULL
df.err Degrees of freedom error from the omnibus ANOVA. Default $=$ NULL
control Control group for Dunnett's test.
lvl A two element vector defining two factor levels to be compared using Scheffe's and the Bonferroni method.
comps The number of comparisons to be made in the Bonferroni method.

Details

Adjustment of comparison type I error for simultaneous inference is a contentious subject and will not be discussed here. For description of methods go to Kutner et al. (2005). For models where the number of factors is ≥ 2, MSE and the residual degrees of freedom (used in the computation of confidence intervals for all pairwise methods used here) will vary depending on the experimental design and the number of factors. Thus, for multifactor designs the user should specify the residual degrees of freedom and MSE from the overall ANOVA. This will be unnecessary for one-way ANOVAs.

Value

The function pairw. anova and the confidence interval functions it calls return a list of class = "pairw". For all but the LSD test (which also returns LSD) and Dunnett's test (which does not return adjusted P-values), the utility function print. pairw returns a descriptive head and a six column summary dataframe containing:

1) the type of contrast (names are taken from levels in x),
2) the mean difference,
3) the lower confidence bound of the true mean difference,
4) the upper confidence bound of the true mean difference,
5) the hypothesis decision, given the prescribed significance level, and
6) the adjusted P-value.

Other invisible objects include:
cont a vector of contrasts.
conf The confidence level.
band A two column matrix containing the lower and upper confidence bounds.
The pairw class also has a utility function plot. pairw which provides either a barplot of location measures with errors and letters indicating whether true effects are significant and the defined significance level (argument type $=1$) or confidence intervals for the true difference of each comparison (argument type $=2$). See code below and and plot. pairw for examples.

Note

Different forms of these functions have existed for years without implementation into libraries. My version here, based on the function outer is unique.

Author(s)

Ken Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li., W (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

plot. pairw. Functions from library mult.comp provide more sophisticated comparisons including customized contrasts and one tailed tests.

Examples

```
eggs<-c(11, 17,16, 14, 15,12,10,15,19,11, 23,20,18,17, 27, 33, 22, 26, 28)
trt<-as.factor(c(1,1,1,1,1,2,2, 2, 2, 2, 3, 3, 3, 3,4,4,4,4,4))
pairw.anova(y = eggs, x = trt, method = "lsd")##LSD method
pairw.anova(y = eggs, x = trt, method = "bonf")##Bonferroni
pairw.anova(y = eggs, x = trt, method = "scheffe")##Sheffe
tukey <- pairw.anova(y = eggs, x = trt, method = "tukey")##Tukey HSD
plot(tukey)
#you can also try plot(tukey, type = 2)
blood.count <- data.frame(bc=c(7.4,8.5,7.2,8.24,9.84,8.32,9.76,8.8,
7.68,9.36,12.8,9.68,12.16,9.2,10.55), trt=c(rep("C",6),rep("A",4),rep("B",5)))
with(blood.count, pairw.anova(y=bc, x=trt, control="C",method="dunnett"))##Dunnett
scheffe.cont(y = eggs, x = trt, lvl = c(1, 3))
scheffe.cont(y = eggs, x = trt, lvl = c(1,2))
bonf.cont(y = eggs, x = trt, lvl = c(1,3), comps = 2)
bonf.cont(y = eggs, x=trt, lvl = c(1,2), comps = 2)
```

pairw.fried Multiple pairwise comparison procedure to accompany a Friedman test.

Description

Replaces now defunct FR.multi. comp. As with ANOVA we can examine multiple pairwise comparisons from a Friedman test after we have rejected the overall null hypothesis. However we will need to account for family-wise type I error in these comparisons which will be non-orthogonal. A conservative multiple comparison method used here is based on the Bonferroni procedure.

Usage

pairw.fried(y, x, blocks, nblocks, conf = 0.95)

Arguments

y	A vector of responses, i.e. quantitative data.
x	A categorical vector of factor levels.
blocks	A categorical vector of blocks.
nblocks	The number of blocks.
conf	The level of confidence. $1-P($ type I error $)$.

Value

Returns a list of class = "pairw". The utility print function returns a descriptive head and a six column summary dataframe containing:

1) the type of contrast (names are taken from levels in x),
2) the mean rank difference,
3) the lower confidence bound of the true mean rank difference,
4) the upper confidence bound of the true mean rank difference,
5) the hypothesis decision given the prescribed significance level, and
6) the adjusted P-value.

Author(s)

Ken Aho

References

Fox, J. R., and Randall, J. E. (1970) Relationship between forearm tremor and the biceps electromyogram. Journal of Applied Physiology 29: 103-108.

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

friedman.test, plot.pairw

Examples

```
#Data from Fox and Randall (1970)
tremors <- data.frame(freq = c(2.58, 2.63, 2.62, 2.85, 3.01, 2.7, 2.83, 3.15,
3.43, 3.47, 2.78, 2.71, 3.02, 3.14, 3.35, 2.36, 2.49, 2.58, 2.86, 3.1, 2.67,
2.96, 3.08, 3.32, 3.41, 2.43, 2.5, 2.85, 3.06, 3.07), weights =
factor(rep(c(7.5, 5, 2.5, 1.25, 0), 6)), block = factor(rep (1 : 6, each = 5)))
fr <- with(tremors, pairw.fried(y = freq, x = weights, blocks = block, nblocks = 6, conf = .95))
fr
plot(fr, loc.meas = median, int = "IQR")
# you can also try: plot(fr, type = 2, las = 2)
```

pairw.kw | Multiple pairwise comparison procedure to accompany a Kruskal- |
| :--- |
| Wallis test |

Description

Replaces the defunct KW.multi. comp. As with ANOVA we can examine multiple pairwise comparisons from a Kruskal-Wallis test after we have rejected our omnibus null hypothesis. However we will need to account for the fact that these comparisons will be non-orthogonal. A conservative multiple comparison method used here is based on the Bonferroni inequality.

Usage

pairw.kw(y, x, conf)

Arguments

y	The response variable. A vector of quantitative responses.
x	An explanatory variable. A vector of factor levels.
conf	The level of desired confidence, $1-P($ type I error).

Value

Returns a list of class = "pairw". The utility print function returns a descriptive head and a six column summary dataframe containing:

1) the type of contrast (names are taken from levels in x),
2) the mean rank difference,
3) the lower confidence bound of the true mean rank difference,
4) the upper confidence bound of the true mean rank difference,
5) the hypothesis decision given the prescribed significance level,
6) the adjusted P-value.

Author(s)

Ken Aho and Richard Boyce. Richard provided an adjustment for ties. Thanks to Paule BodsonClermont for pointing out issues with the default behaviour of rank, leading to incorrect answers from pair. kw given missing vaues.

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

pairw.anova, pairw.fried, plot.pairw

Examples

```
rye.data <- data.frame(rye = c(50, 49.8, 52.3, 44.5, 62.3, 74.8, 72.5, 80.2,
47.6, 39.5, 47.7,50.7), nutrient = factor(c(rep(1, 4), rep(2, 4), rep(3, 4))))
kw <- with(rye.data, pairw.kw(y = rye, x = nutrient, conf = .95))
kw
plot(kw, loc.meas = median, int = "IQR")
# you can also try: plot(kw, type = 2)
```

pairw.oneway Welch tests controlled for simultaneous inference

Description

Conducts all possible pairwise Welch tests with adjustments to P-values using methods from p . adjust

Usage

pairw.oneway (y, x, conf $=0.95$, digits $=5$, method $=$ "holm")

Arguments

y	Response variable
x	Explanatory variable
conf	Confidence level
digits	Number of digits in results

method Generalized method for controlling family wise type one error. These must be methods from p.adjust, i.e., "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Names can be abbreviated.

Value

The function pairw. oneway and the confidence interval functions it calls return a list of class = "pairw".

1) the type of contrast (names are taken from levels in x),
2) the mean difference,
3) the lower confidence bound of the true mean difference,
4) the upper confidence bound of the true mean difference,
5) the hypothesis decision, given the prescribed significance level, and

6) the adjusted P-value.
Other invisible objects include:

```
cont a vector of contrasts.
conf The confidence level.
band A two column matrix containing the lower and upper confidence bounds.
```


Note

Note that while P-values will be adjusted for simultaneous inference (unless method = "none"), confidence interval width are generally not adjusted. In particular, CI widths correspond to Welch SEs and Satterthwaite t degrees of freedoms Thus they control for heteroscedasticity, however they do not control for family-wise levels of α unless method = "bonferroni", under which the restrictive confidence level $1-(\alpha / 2 r)$ is used, where r is the number of comparisons.

Author(s)

Ken Aho and Peter Eckert

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li., W (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

p.adjust, pairw.anova

Examples

```
y <- rnorm(30)
x <- as.factor(c(rep(1,10), rep(2,10), rep(3, 10)))
p <- pairw.oneway (y,x)
p
plot(p)
```


Description

The functions here can be used to customize upper and lower triangles in correlation matrices. In particular panel.cor.res provides correlation coefficients (any alternative from cor can be used) and p-values for correlation tests. The function panel. Im puts linear fitted lines from simple linear regression in scatterplots. Note that the function panel. smooth provides a smoother fit.

Usage

panel.cor.res(x, y, digits = 2, meth = "pearson", cex.cor=1)
panel.lm(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1, col.line = 2,lty = par("lty"))

Arguments

x
y
digits
number of digits in text for panel.cor.res
meth type of correlation coefficient from panel.cor.res, one of "pearson", "spearman", "kendall"
cex.cor size of text in panel.lm
col color of points in panel.lm
bg background color of points in panel.lm
pch type of symbols for points in panel.lm
cex symbol size in panel.lm
lty line type in panel.lm
col.line color of lines in panel.lm
variable 1 in correlation
variable 2 in correlation
number of digits in text for panel. cor. res
uthor(s)
Ken Aho

See Also

cor, cor.test, panel.smooth

Examples

```
data(asthma)
attach(asthma)
pairs(asthma,cex.labels=1,cex=.95,gap=.1,lower.panel=panel.cor.res,
upper.panel=panel.lm)
```

partial.R2

Partial correlations of determination in multiple regression

Description

Calculates the partial correlation of determination for a variable of interest in a multiple regression.

Usage

partial.R2(nested.lm, ref.lm)

Arguments

$$
\begin{array}{ll}
\text { nested. lm } & \text { A linear model without the variable of interest. } \\
\text { ref. } 1 \mathrm{~m} & \text { A linear model with the variable of interest. }
\end{array}
$$

Details

Coefficients of partial determination measure the proportional reduction in sums of squares after a variable of interest, X, is introduced into a model. We can see how this would be of interest in a multiple regression.

Value

The partial R^{2} is returned.

Author(s)

Ken Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

```
cor, partial.resid.plot
```


Examples

```
Soil.C<-c(13, 20, 10, 11, 2, 25, 30, 25, 23)
Soil.N<-c(1.2,2,1.5,1,0.3,2,3,2.7,2.5)
Slope<-c(15,14,16,12,10,18, 25,24,20)
Aspect<-c(45,120,100,56,5,20,5,15,15)
Y<-as.vector(c(20, 30, 10, 15,5,45,60,55,45))
lm.with<-lm(Y~Soil.C+Soil.N+Slope+Aspect)
lm.without<-update(lm.with, ~. - Soil.N)
partial.R2(lm.without,lm.with)
```

partial.resid.plot Partial residual plots for interpretation of multiple regression.

Description

The function creates partial residual plots which help a user graphically determine the effect of a single predictor with respect to all other predictors in a multiple regression model.

Usage

partial.resid.plot(x, smooth.span $=0.8$, lf.col $=2$, sm.col $=4, \ldots$)

Arguments

x	A output object of class lm or class glm
smooth. span	Degree of smoothing for smoothing line.
lf.col	Color for linear fit.
sm.col	Color for smoother fit.
\ldots.	Additional arguments from plot.

Details

Creates partial residual plots (see Kutner et al. 2002). Smoother lines from lowess and linear fits from lm are imposed over plots to help an investigator determine the effect of a particular X variable on Y with all other variables in the model. The function automatically inserts explanatory variable names on axes.

Value

Returns p partial residual plots, where $p=$ the number of explanatory variables.

Author(s)

Ken Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

```
partial.R2
```


Examples

```
Soil.C<-c(13,20,10,11,2, 25,30,25,23)
Soil.N<-c(1.2,2,1.5,1,0.3,2,3,2.7,2.5)
Slope<-c(15,14,16,12,10,18,25,24,20)
Aspect<-c(45,120,100,56,5,20,5,15,15)
Y<-c(20,30, 10,15,5,45,60,55,45)
x <- lm(Y ~ Soil.N + Soil.C + Slope + Aspect)
op <- par(mfrow=c(2,2),mar=c(5,4,1,1.5))
partial.resid.plot(x)
par(op)
```


PCB PCBs and herring egg thickness

Description

Thirteen sites in the Great Lakes were selected for a study to quantify PCB concentrations in 1982 and 1996 (Hughes et al. 1998). At each site 9-13 American herring gull (Larus smithsonianus) eggs were randomly collected and tested for PCB content.

Usage

data(PCB)

Format

A data frame with 26 observations on the following 3 variables.
nest Nest number
level PCB levels microgram/gram of dry weight
year a numeric vector

Source

Ott, R. L., and M. T. Longnecker (2004) A First Course in Statistical Methods. Thompson.

References

Hughes, K. D., Weselogh, D. V., and B. M. Braune (1998) The ratio of DDE to PCB concentrations in Great Lakes herring gull eggs and its use in interpreting contaminants data. Journal of Great Lakes Research 24(1): 12-31.

```
perm.fact.test Permutation test for two and three way factorial designs
```


Description

Provides permutation tests for two and three way designs, using permutations of of the response vector with respect to factor levels. One way permutation tests are provided by MC.test, and the function oneway_test in coin.

Usage

perm.fact.test(Y, X1, X2, X3 = NA, perm = 100, method = "a")

Arguments

Y

X3 If necessary, a vector of factor levels describing factor three.
perm Number of permutations.
method Either "a" or "b", see below.

Details

Manly (1997) describes five factorial permutation methods which allow testing of interactions. None of these should be considered to be extensively tested or strongly supported by the statistical literature. (a) In the first method observations are randomly allocated to factorial treatments preserving the sample size for each treatment. Permutation distributions of the F statistics for A, B, and $A B$ are used for statistical tests. (b) In the second method observations are randomized as above but permutation distributions of MSA, MSB and MSAB are obtained. (c) Edgington (1995) recommended a restricted randomization procedure where observations within a main effect are randomized while holding other effects constant. Either mean squares or F statistics can be used to create permutation distributions. Edgington emphasized that testing interactions with this method are not possible, but that by randomizing over all AB combinations (as in alternative "a" above) provides a test statistic sensitive to interactions. (d) Still and White (1981) recommended a restricted testing procedure (as in (c) above) but recommended testing interactions after "subtracting" main effects. (e) Ter Braak (1992) recommended replacing observations by their residuals from the initial linear model. These are then permuted, assuming that sample sizes were equal to original sample sizes across interactions of treatments. Permutation distributions of the F statistics for A, B, and AB are then used for statistical tests. Manly (1997) recommends methods a, b, d, or e. Methods a and b are currently implemented.

Value

A dataframe is returned describing initial F test statistics for main effects and interactions, degrees of freedom, and permutation P-values.

Author(s)

Ken Aho

References

Edgington, E. S. (1995) Randomization Tests, 3rd edition. Marcel Dekker, New York.
Manly, B. F. J. (1997) Randomization and Monte Carlo Methods in Biology, 2nd edition. Chapman and Hall, London.
Still, A. W., and A. P. White (1981) The approximate randomization test as an alternative to the F test in analysis of variance. British Journal of Mathematics and Statistical Psychology. 34: 243-252.

Ter Braak, C. F. J. (1992) Permutation versus bootstrap significance tests in multiple regression and ANOVA. In Jockel, K. J. (ed). Bootstrapping and Related Techniques. Springer-Verlag, Berlin.

See Also

MC. test

Examples

```
lizard<-data.frame(ants=c(13, 242, 105, 8, 59, 20,515,488, 88, 18, 44, 21, 182, 21, 7, 24, 312,68,
460, 1223, 990, 140,40, 27), size=factor(c(rep (1, 12), rep (2, 12))),
month=factor(rep(rep(c(1, 2, 3,4), each=3),2)))
attach(lizard)
perm.fact.test(ants,month,size,perm=100, method = "b")
```

pika Nitrogen content of soils under pika haypiles

Description

Aho (1998) hypothesized that pikas worked as ecosystem engineers by building relatively rich soils (via decomposing haypiles and fecal accumulations) in otherwise barren scree. Soils from twenty one paired on-haypile and off-haypile sites were gathered from Rendezvous Peak Grand Teton National Park to determine if the habitats differed in total soil nitrogen.

Usage

data(pika)

Format

A data frame with 22 observations on the following 2 variables.

Haypile a numeric vector
On.Off. . N a numeric vector

References

Aho, K., Huntly N., Moen J., and T. Oksanen (1998) Pikas (Ochotona princeps: Lagomorpha) as allogenic engineers in an alpine ecosystem. Oecologia. 114 (3): 405-409.
plantTraits Plant traits for 136 species

Description

This dataset, from the library cluster, describes 136 plant species according to biological attributes (morphological or reproductive).

Usage

data(plantTraits)

Format

A data frame with 136 observations on the following 31 variables.
pdias Diaspore mass (mg).
longindex Seed bank longevity.
durflow Flowering duration.
height Plant height, an ordered factor with levels ' 1 ' < '2' < ... <'8'.
begflow Time of first flowering, an ordered factor with levels ' $1^{\prime}<'^{\prime}<3^{\prime}<3^{\prime} 4^{\prime}<5^{\prime}<{ }^{\prime} 6^{\prime}<7^{\prime}$ < '8' < '9'.
mycor Mycorrhizae, an ordered factor with levels '0'never < '1' sometimes < '2'always.
vegaer Aerial vegetative propagation, an ordered factor with levels '0'never < ' 1 ' present but limited< '2'important.
vegsout Underground vegetative propagation, an ordered factor with 3 levels identical to 'vegaer' above.
autopoll Selfing pollination, an ordered factor with levels '0'never $<$ '1'rare $<$ '2' often $<$ the rule'3'.
insects Insect pollination, an ordered factor with 5 levels ' 0 ' $<\ldots<{ }^{\prime} 4$ '.
wind Wind pollination, an ordered factor with 5 levels ' 0 ' $<\ldots<$ ' 4 '.
lign A binary factor with levels ' $0: 1$ ', indicating if plant is woody.
piq A binary factor indicating if plant is thorny.
ros A binary factor indicating if plant is rosette.
semiros Semi-rosette plant, a binary factor ('0': no; '1': yes).
leafy Leafy plant, a binary factor.
suman Summer annual, a binary factor.
winan Winter annual, a binary factor.
monocarp Monocarpic perennial, a binary factor.
polycarp Polycarpic perennial, a binary factor.
seasaes Seasonal aestival leaves, a binary factor.
seashiv Seasonal hibernal leaves, a binary factor.
seasver Seasonal vernal leaves, a binary factor.
everalw Leaves always evergreen, a binary factor.
everparti Leaves partially evergreen, a binary factor.
elaio Fruits with an elaiosome (dispersed by ants), a binary factor.
endozoo Endozoochorous fruits, a binary factor.
epizoo Epizoochorous fruits, a binary factor.
aquat Aquatic dispersal fruits, a binary factor.
windgl wind dispersed fruits, a binary factor.
unsp Unspecialized mechanism of seed dispersal, a binary factor.

Details

Most of factor attributes are not disjunctive. For example, a plant can be usually pollinated by insects but sometimes self-pollination can occur.

Note

The description here follows directly from that in cluster.

Source

Vallet, Jeanne (2005) Structuration de communautes vegetales et analyse comparative de traits biologiques le long d'un gradient d'urbanisation. Memoire de Master 2 'Ecologie-BiodiversiteEvolution'; Universite Paris Sud XI, 30p.+ annexes (in french).
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. (2005). Cluster Analysis Basics and Extensions; unpublished.

```
plot.pairw
```

Plots confidence intervals and/or bars with letters indicating significant differences for objects from class pairw

Description

Provides a utility confidence interval plotting function for objects of class = "pairw", e.g., objects from pairw. anova, pair.fried, and pairw.kw.

Usage

```
## S3 method for class 'pairw'
plot(x, type = 1, lcol = 1, lty = NULL, lwd = NULL,
cap.length = 0.1, xlab = "", main = NULL, explanation = TRUE,...)
```


Arguments

X
type
lty Confidence bar line type, see par.
lwd Confidence bar line width, see par.
cap.length Widths for caps on interval bars (in inches).
xlab X-axis label.
main Main caption. Defaults to a descriptive head.
explanation Logical. If TRUE (default) provides plot explanation with text.
... Additional arguments from bplot or barplot for type 1 and 2 graphs, respectively.

Author(s)

Ken Aho. Letters for type 1 graphs obtained using the function multcompLetters from package multcompView which uses the algorithm of Peipho (2004).

References

Piepho, H-P (2004) An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics 13(2): 456-466.

See Also

pairw.anova, pairw.fried, pairw.kw, barplot, bplot, multcompLetters

Examples

```
eggs<-c(11,17,16,14,15,12,10,15,19,11,23,20,18,17,27,33,22, 26, 28)
trt<-as.factor(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4))
# Type 1 plot
plot(pairw.anova(y = eggs, x = trt, method = "scheffe", conf = . 8), int = "CI",
conf = .8)
# Type 2 plot
plot(pairw.anova(y = eggs, x = trt, method = "scheffe", conf = . 8), type = 2)
# Data from Fox and Randall (1970)
tremors <- data.frame(freq = c(2.58, 2.63, 2.62, 2.85, 3.01, 2.7, 2.83, 3.15,
3.43, 3.47, 2.78, 2.71, 3.02, 3.14, 3.35, 2.36, 2.49, 2.58, 2.86, 3.1, 2.67,
2.96, 3.08, 3.32, 3.41, 2.43, 2.5, 2.85, 3.06, 3.07), weights =
factor(rep(c(7.5, 5, 2.5, 1.25, 0), 6)), block = factor(rep (1 : 6, each = 5)))
```

```
plot(with(tremors, pairw.fried(y = freq, x = weights, blocks = block, nblocks =
6, conf = .95)), loc.meas = median, int = "IQR", bar.col = "lightgreen",
lett.side = 4, density = 3, horiz = TRUE) # Note how blocking increases power
rye.data <- data.frame(rye = c(50, 49.8, 52.3, 44.5, 62.3, 74.8, 72.5, 80.2,
47.6, 39.5, 47.7,50.7), nutrient = factor(c(rep(1, 4), rep(2, 4), rep(3, 4))))
plot(with(rye.data, pairw.kw(y = rye, x = nutrient, conf = .95)), type = 2)
```

plotAncova Creates plots for one way ANCOVAs

Description

ANCOVA plots are created, potentially with distinct line types and/or symbols and colors for treatments. A legend relating ciphers to treatments is also included.

Usage

```
plotAncova(model, pch = NULL, lty = NULL, col = NULL, leg.loc = "topright",
```

leg.cex = 1, leg.bty = "o", leg.bg = par("bg"), legend.title = NULL,...)

Arguments

model Result from lm. An additive model results in a common slope plot. An interaction model results in distinct slopes for treatments
pch A scalar, or a vector of length n defining symbols for treatments.
lty A scalar, or a vector of length n defining line types for treatments.
col A scalar, or a vector of length n defining color for symbols and lines.
leg.loc Location of the legend. " n " suppresses the legend.
leg.cex Character expansion from legend.
leg.bty Box type from legend.
leg.bg Background color from legend.
legend.title Legend title from legend.
... Additional arguments from plot

Value

Returns an ANCOVA plot and model coefficients.

Author(s)

Ken Aho

See Also

lm

Examples

```
x <- rnorm(20)
y <- 3 * x + rnorm(20)
cat <- c(rep("A",5),rep("B",5),rep("C",5),rep("D",5))
l <- lm(y ~ x * cat)
plotAncova(l, leg.loc = "bottomright")
```

```
plotCI.reg Plots a simple linear regression along with confidence and prediction
```

 intervals.

Description

Plots the fitted line from a simple linear regression $(y \sim x)$ and (if requested) confidence and prediction intervals.

Usage

plotCI.reg(x, y, conf $=0.95, C I=$ TRUE, $P I=$ TRUE, resid $=$ FALSE, reg.col $=1$, $C I . c o l=2$, PI.col $=4$, reg.lty $=1, C I . l t y=2$, PI.lty $=3$, reg.lwd $=1$, CI. lwd $=1$, resid.lty $=3$, resid.col $=4, \ldots$)

Arguments

x	The explanatory variable, a numeric vector.
y	The response variable, a numeric vector
conf	The level of confidence; $1-P$ (type I error)
PI	Logical; should the confidence interval be plotted?
resid	Logical; should the prediction interval be plotted?
reg.col	Logical; should residuals be plotted?
CI.col	Color of the fitted regression line.
PI.col	Color of the confidence interval lines.
reg.lty	Color of the prediction interval lines.
CI.lty	Line type for the fitted regression line.
PI.lty	Line type for the confidence interval.
reg.lwd	Line type for the confidence interval.
	Line width for the regression line.

CI.lwd	Line widths for the confidence and prediction intervals.
resid.lty	Line width for the regression line.
resid.col	Line color for residual lines.
\ldots	Additional arguments from plot

Value

Returns a plot with a regression line and (if requested) confidence and prediction intervals

Author(s)

Ken Aho

See Also

plot, predict

Examples

```
y<-c(1, 2, 1, 3, 4, 2, 3, 4, 3, 5, 6)
x<-c(2, 3, 1, 4, 5, 4, 5, 6, 7, 6, 8)
plotCI.reg(x,y)
```


PM2. 5

PM 2.5 pollutant data from Pocatello Idaho

Description

PM 2.5 pollutants (those less than 2.5 microns in diameter) can be directly emitted from sources such as forest fires, or can form when gases discharged from power plants, industries and automobiles react in the air. Once inhaled, these particles can affect the heart and lungs and cause serious health problems. The DEQ began monitoring PM 2.5 pollutants in Pocatello Idaho in November 1998.

Usage

data(PM2.5)

Format

A data frame with 65 observations on the following 2 variables.
Yr.mos Year and month. A factor with levels 19981119981219991199910199911199912 199921999319994199951999619997199981999920001200010200011200012 200022000320004200052000620007200082000920011200110200111200112 200122001320014200152001620017200182001920021200210200211200212 200222002320024200252002620027200282002920031200310200311200312 2003220033200342003520036200372003820039200412004220043
PM2.5 A numeric vector describing PM 2.5 pollutant levels in $\mathrm{mug} / \mathrm{m}^{2}$.

Source

Idaho department of Environmental Quality

```
polyamine Polyamine data from Hollander and Wolfe (1999)
```


Description

Polyamines are a class of organic compounds having two or more primary amino groups. They appear to have a number of important functions including regulation of cell proliferation, cell differentiation, and cell death. Polyamine plasma levels taken for healthy children of different ages were summarized by Hollander and Wolfe (1999).

Usage

```
    data(polyamine)
```


Format

A data frame with 25 observations on the following 2 variables.
age Child age in years (0 indicates newborn)
p.amine Polyamine level in blood

Source

Hollander, M., and D. A. Wolfe (1999) Nonparametric Statistical Methods. New York: John Wiley \& Sons.
portneuf \quad Portneuf River longitudinal N and P data

Description

Portneuf River data from the Siphon Road site near Pocatello Idaho, downstream from an elemental P refinery.

Usage

data(portneuf)

Format

A data frame with 176 observations on the following 3 variables.
date Dates from 1998-01-15 to 2011-08-16
TKN Total Kjeldahl nitrogen (measured as a percentage)
total.P Total phosphorous (mg/L)

Source

Idaho State Department of Environmental Quality
potash Potash/cotton strength data

Description

An oft-cited RCBD example is an agricultural experiment which evaluates the effect of levels of of soil $\mathrm{K}_{2} \mathrm{O}$ (potash) on the breaking strength of cotton fibers (Cochran and Cox 1957). Five levels of $\mathrm{K}_{2} \mathrm{O}$ were used in the soil subplots ($36,54,72,108$, and 144 lbs per acre) and a single sample of cotton was taken from each of five subplot. The experiment had three blocks, and each of the $\mathrm{K}_{2} \mathrm{O}$ treatments was randomly assigned to the five subplots within each block.

Usage

data(potash)

Format

A data frame with 15 observations on the following 3 variables.
treatment a factor with levels 365472108144
block a factor with levels 123
strength a numeric vector

Source

Cochran, W. G. and G. M. Cox (1957) Experimental Designs (Second Edition). New York: John Wiley \& Sons.

Description

In his "Statistical Methods for Research Workers" Fisher (1925) introduced the world to ANOVA using data from the famous Rothamsted Agricultural Experimental Station. In one example Fisher compared potato yield (per plant) for twelve potato varieties and three fertilizer treatments (a basal manure application, along with sulfur and chloride addition). Three replicates were measured for each of the $12 \times 3=36$ treatment combinations.

Usage

data(potato)

Format

A data frame with 108 observations on the following 4 variables.
Yield Potato yield in lbs per plant
Variety Potato variety: Ajax Arran comrade British queen Duke of York Epicure Great Scot Iron duke K of K Kerrs pink Nithsdale Tinwald perfection Up-to-date

Fert Fertilizer type: $\mathrm{B}=$ basal manure, $\mathrm{Cl}=$ chloride addition, $\mathrm{S}=$ sulfur addition.
Patch Feld patch number 123456789

Source

Fisher, R. A. (1925) Statistical Methods for Research Workers, 1st edition. Oliver and Boyd, Edinburgh

```
power.z.test Power analysis for a one sample z-test
```


Description

A power analysis for a one sample z-test. The function requires α, σ, the effect size, the type of test (one tailed or two-tailed), and either power ($1-\beta$) or n (sample size). If n is provided, then power is calculated. Conversely, if one provides power, but not n, then the required n is calculated.

Usage

power.z.test(sigma $=1, \mathrm{n}=$ NULL, power $=$ NULL, alpha $=0.05$, effect $=$ NULL, test = c("two.tail", "one.tail"), strict = FALSE)

Arguments

sigma The population standard deviation.
$\mathrm{n} \quad$ The sample size. Not required if power is specified.
power \quad The desired power. Not required if n is specified.
alpha Probability of type I error.
effect Effect size.
test One of two choices: "two.tail" or "one.tail".
strict Causes the function to use a strict interpretation of power in a two-sided test. If strict = TRUE then power for a two sided test will include the probability of rejection in the opposite tail of the true effect. If strict = FALSE (the default) power will be half the value of α if the true effect size is zero.

Value

Returns a list
sigma The prescribed population variance.
n
The sample size.
power The power.
alpha The type I error probability.
test The type of test prescribed.
effect The effect size.

Author(s)

Ken Aho

References

Bain, L. J., and M. Engelhardt (1992) Introduction to Probability and Mathematical Statistics. Duxbury press. Belmont, CA, USA.

See Also

pnorm

Examples

```
power.z.test(sigma=6,effect=5, power=.9, test="one.tail")
```

```
    press prediction sum of squares
```


Description

Calculates PREdiction Sum of Squares (PRESS) for a linear model.

Usage

```
press(lm, as.R2 = FALSE)
```


Arguments

Im

An object of class $1 m$.
as.R2 Logical. Whether or not output should be expressed as predicted R^{2}, i.e., $P R E S S / T S S$.

Details

The press statistic is calculated as:

$$
\sum_{i=1}^{n} d_{i}^{2}
$$

where

$$
d_{i}=\frac{e_{i}}{1-h_{i i}}
$$

where $h_{i i}$ is the i th diagonal element in the hat matrix.

Value

Returns the PRESS statistic.

Author(s)

Ken Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

cor

Examples

```
Y <- rnorm(100)
X <- rnorm(100)
press(lm(Y ~ X))
```


Description

A diversity and richness analysis method based on the Preston (1948) log-normal distribution.

Usage

Preston.dist(counts, start $=0.2$, cex.octave $=1$, cex.legend $=1$, cex.pt $=1, \ldots$)

Arguments

counts Vector of counts for species in a community dataset.
start \quad Starting value for non-linear least squares estimation of a in $n=n_{0} \times e^{-a R^{2}}$.
cex.octave Character expansion for octave labels.
cex.legend Character expansion for legend.
cex.pt Character expansion for symbols.
... Additional arguments from plot.

Details

Preston (1948) proposed that after a $\log _{2}$ transformation species abundances, grouped in bins representing a doubling of abundance (octaves), would be normally distributed. Thus, after this transformation most species in a sample would have intermediate abundance, and there would be relatively few rare or ubiquitous species. The Preston model is based on the Gaussian function: $n=n_{0} \times e^{-a R^{2}}$, where, n_{0} is the number of species contained in the modal octave, n is the number of species contained in an octave R octaves from the modal octave, and a is an unknown parameter. The parameter a is estimated using the function nls , using a starting value, 0.2 , recommended by Preston. The area under Preston curve provides an extrapolated estimate of richness and thus an indication of the adequacy of a sampling effort. Preston called a line placed at the 0th octave the veil line. He argued that species with abundances below the veil line have not been detected due to inadequate sampling.

Value

Graph of the Preston log-normal distribution for a dataset given by "counts", and a summary of the analysis including the fitted Gaussian equation, the estimated number of species, and an estimate for the percentage of sampling that was completed i.e. [length(counts)/Est.no.of.spp]*100.

Author(s)

Ken Aho

References

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254-283.

See Also

```
    dnorm, nls
```


Examples

```
data(BCI.count)
BCI.ttl<-apply(BCI.count,2,sum)
Preston.dist(BCI.ttl)
```

prostate Prostate cancer data

Description

Hastie et al. (2001) describe a cancer research study that attempted to associate prostate specific antigens and and a number of prognostic measures in the context of advanced prostate cancer.
Data in the experiment were collected from 97 men who were about to undergo radial prostectomies.

Usage

data(prostate)

Format

A data frame with 97 observations on the following 4 variables.
PSA Serum prostate-specific albumin level ($\mathrm{mg} / \mathrm{ml}$).
vol Tumor volume (cc).
weight Prostate weight (g).
Gleason Pathologically determined grade of disease. Summed scores were either 6, 7, or 8 with higher scores indicating worse prognosis.

Source

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

References

Hastie, T., R. Tibshirani, and J. Friedman (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer.
prp Perpendicularity

Description

Calculates a perpendicularity index, η, for animal spatial movements. The index has a $[0,1]$ range with 0 indicating a perfectly parallel movement with respect to boundary or edge and 1 indicating perfectly perpendicular movement. Other summaries are also provided.

Usage

prp(Time, S.X, S.Y, N.X, N.Y, habitat $=$ NULL, near.angle $=$ NULL, F.0.NA = TRUE)

Arguments

Time A numeric vector containing the times when spatial coordinates were recorded.
S.X $\quad X$-coordinates of animal.
S.Y $\quad Y$-coordinates of animal.
N.X $\quad X$-coordinate of nearest point on boundary. These data can be obtained from function near. bound or from ARCGIS Near output.
N.Y $\quad Y$-coordinate of nearest point on boundary. These data can be obtained from function near. bound or from ARCGIS Near output.
habitat A character vector of habitat categories.
near.angle A numeric vector containing the angle of azimuth to the nearest point on the boundary with respect to a four quadrant system. $\mathrm{NE}=0^{\circ}$ to 90°, NW is $>90^{\circ}$ and $\leq 180^{\circ}$, SE is $<0^{\circ}$ and $\leq-90^{\circ}$ is $>-90^{\circ}$ and $\leq-180^{\circ}$. This output can be obtained from function bound. angle or from ARCGIS Near output.
F.0.NA A logical argument specifying whether or not a time interval in which $\mathrm{F}=0$ should be made NA (see Figure from examples)

Details

This index for perpendicularity, η is based on the following rules:
if $\delta \leq 90^{\circ}$ then $\eta=\delta / 90^{\circ}$; if $90^{\circ}<\delta \leq 135^{\circ}$ then $\eta=\left[90^{\circ}-\left(\delta-90^{\circ}\right)\right] / 90^{\circ}$; if $135^{\circ}<\delta \leq 180^{\circ}$ then $\eta=\left(\delta-90^{\circ}\right) / 90^{\circ}$
For notation create Figures from examples.

Value

Returns a list with four or five items.
lines A matrix with $n-1$ rows containing line lengths for the lines A, B, C, D and F. See figure in examples below.
angles A matrix with $n-1$ rows containing line lengths for the angles κ, γ and δ. See Figure in examples below.
moment. by.moment
This component provides a matrix with $n-1$ rows. Included are the columns: End.time, Eta. Index, Delta, Habitat, and Brdr chng. The columns Habitat, and Brdr chng are excluded if habitat $=$ NULL or near. angle $=$ NULL.
P. summary Contains averages and standard errors for η.
crossing.summary
Crossing binomial summaries. Provided if habitat and near. angle are specified.

Author(s)

Ken Aho

References

Kie, J.G., A.A. Ager, and R.T. Bowyer (2005) Landscape-level movements of North American elk (Cervus elaphus): effects of habitat patch structure and topography. Landscape Ecology 20:289300.

McGarigal K., SA Cushman, M.C. Neel, and E. Ene (2002) FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.

See Also

near. bound, bound. angle

Examples

```
## Not run:
###Diagram describing prp output.
y<-rnorm(100,0,5)
plot(seq(1,100), sort(y), type="l",xaxt="n",yaxt="n",lwd=2,xlab="",ylab="")
op <- par(font=3)
segments(52,-12,46, sort(y)[46],lty=1,col=1,1wd=1)##A
segments(90,-8, 85, sort(y)[85],lty=1,col=1,lwd=1)##B
segments(46,\operatorname{sort(y)[46],85, sort(y)[85],lty=1)##F}
segments(90,-8,46, sort(y)[46],lty=2)##D
arrows(52,-12,90,-8, length=.1,lwd=3)##C
arrows(20,-12,20,8,lty=2,col="gray",length=.1)#North
arrows(20, sort(y)[46],95, sort(y)[46],length=.1,lty=2,col="gray")
arrows(20,-12,95,-12,length=.1,lty=2, col="gray")#East
text(20,9,"N",col="gray");text(97,-12, "E", col= "gray");text(97,sort(y)[46], "E",
col= "gray")
text(49.5,-12.5,"a");text(92.5,-8.5,"b")
text(45.5,-5.5, "A",font=4,col=1);text(70,-9,"C",font=4,col=1);text(91.5,-1.75,"B",
font=4,col=1)
```

```
text(44, sort(y)[46]+1, "c"); text(67.5,-2.5, "D", font=4, col=1); text(65, 3.9, "F", font=4,
col=1)
text(87,sort(y)[87]+1,"d"); text(57,-10, expression(kappa),col=1);
text(81, sort(y)[87]-3, expression(gamma), col=1); text(57,1.3, expression(theta),col=1)
text(64,-11.5,expression(beta),col=1)
library(plotrix)
draw.arc(50, -12,6,1.35,col=1);draw.arc(50, -12,6,.3, col=1);draw.arc(50, -12, 6,0.02,
col=1)
draw.arc(46,sort(y)[46],7,.01,col=1);draw.arc(46, sort(y)[46],7,.5,col="white")
draw. arc(85, sort(y)[85],6,-2.7, col=1);draw.arc(85, sort(y)[85],6,-1.4, col="white",
lwd=2)
legend("topleft",c(expression(paste(kappa, " = acos[(",C^2," + ",X^2," - ",D^2,")
/2CX]")),
expression(paste(gamma," = acos[(",Y^2," + ",F^2," - ",D^2,")/2YF]")),
expression(paste(theta," = atan[(",y[f]," - ",y[n],")/(",x[f]," - ",x[n],")]")),
expression(paste(beta, " = atan[(",y[epsilon]," - ",y[alpha],")/(",x[epsilon],
" - ",x[alpha],")]"))),
bty="n",cex=.9,inset=-.025)
###Figure for demo dataset.
bX<-seq(0,49)/46
bY<-c(4.89000,4.88200,4.87400,4.87300,4.88000,4.87900,4.87900,4.90100,4.90800,
4.91000,4.93300,4.94000,4.91100,4.90000,4.91700,4.93000,4.93500,4.93700,
4.93300,4.94500,4.95900,4.95400,4.95100,4.95800, 4.95810,4.95811,4.95810,
4.96100,4.96200,4.96300,4.96500, 4.96500,4.96600, 4.96700, 4.96540,4.96400,
4.97600,4.97900,4.98000,4.98000,4.98100,4.97900,4.98000,4.97800,4.97600,
4.97700,4.97400,4.97300,4.97100,4.97000)
X<-c(0.004166667,0.108333333,0.316666667,0.525000000,0.483333333,0.608333333,
0.662500000,0.683333333,0.900000000,1.070833333)
Y<-c(4.67,4.25,4.26,4.50,4.90,4.10,4.70,4.40,4.20,4.30)
plot(bX,bY, type="l",lwd=2,xlab="",ylab="",ylim=c(4,5.1))
lines(X,Y)
for(i in 1:9)arrows(X[i],Y[i],X[i+1],Y[i+1],length=.1,lwd=1, angle=20)
mx<-rep (1,9)
my<-rep(1,9)
for(i in 1:9)mx[i]<-mean(c(X[i],X[i+1]))
for(i in 1:9)my[i]<-mean(c(Y[i],Y[i+1]))
for(i in 1:9)text(mx[i],my[i],i,font=2,cex=1.3)
nn<-near.bound(X,Y,bX,bY)
prp(seq(1, 10), X,Y,nn[,1],nn[, 2])$moment.by.moment
par(op)
## End(Not run)
```

pseudo.v
Jacknife pseudo-values

Description

The function returns jackknife pseudovalues which can then be used to create statistical summaries, e.g. the jackknife parameter estimate, and the jackknife standard error. The function can be run on univariate data (matrix = FALSE) or multivariate data (matrix $=$ TRUE). In the later case matrix rows are treated as multivariate observations.

Usage

pseudo.v(data, statistic, order $=1$, matrix $=$ FALSE)

Arguments

data	A vector (matrix =FALSE) or matrix (matrix=TRUE) of quantitative data.
statistic	A function whose output is a statistic (e.g. a sample mean). The function must have only one argument, a call to data.
order	The order of jackknifing to be used.
matrix	A logical statement. If matrix = TRUE then rows in the matrix are sampled as multivariate observations.

Details

In the first order jackknife procedure a statistic $\hat{\theta}$ is calculated using all n samples, it is then calculated with the first observation removed $\hat{\theta}_{-1}$, with only the second observation removed, $\hat{\theta}_{-2}$, and so on. This process is repeated for all n samples. The resulting vector of size n contains pseudovalues for their respective observations.

Value

A vector of first-order jackknife pseudovalues is returned.

Author(s)

Ken Aho

References

Manly, B. F. J. (1997) Randomization and Monte Carlo Methods in Biology, 2nd edition. Chapman and Hall, London.

See Also

```
empinf, boot, bootstrap
```


Examples

```
data(cliff.sp)
siteCD1<-data.frame(t(cliff.sp[1,]))
#Shannon-Weiner diversity
SW<-function(data){
d<-data[data!=0]
p<-d/sum(d)
-1*sum(p*log(p))
}
pv<-pseudo.v(siteCD1,SW)
```

qq.Plot Normal quantile plots for single or multiple factor levels

Description

Provides quantile plots for one or more factor levels overlaid on a single graph. If plot.CI = TRUE, then code for bootstrapped confidence provided in the documentation for boot is applied to create confidence envelopes. If plot. CI = FALSE, qqnorm and qqline are used to create overlaid normal probability plots given multiple categories in x .

Usage

```
qq.Plot(y, x = NULL, col = NULL, pch = NULL, main = "", R = 5000, fit.lty = 1,
env.lty = 2, conf = 0.95, type = "point", ylim = NULL, xlim = NULL, xlab = NULL,
ylab = NULL, plot.CI = FALSE, standy = TRUE, ...)
```


Arguments

y
$\mathrm{x} \quad$ A categorical variable to subset y
col A scalar or vector with length equivalent to the number of levels in x, describing colors of points and lines for levels in x.
pch A scalar or vector with length equivalent to the number of levels in x, describing symbols for levels in x.
main Main title.
R Number of bootstrap samples for calculating confidence envelopes
fit.lty Line type for fit line(s).
env.lty Line type for fit line(s).
conf Level of confidence in confidence envelopes.
type Type of bootstrapped confidence envelope. One of "point" or "overall".

xlim	A two element vector defining the lower and upper x-axis limits .
ylim	A two element vector defining the lower and upper y-axis limits .
xlab	X-axis label.
ylab	Y-axis label.
plot.CI	Logical, specifying whether or not confidence ellipses should be plotted.
standy	Logical, specifying if observations should be standardized.
\ldots	Other arguments from plot.

Author(s)

Ken Aho

See Also

qqnorm, qqline, envelope, boot

Examples

```
y <- rnorm(50)
x <- c(rep(1, 25), rep(2, 25))
qq.Plot(y, x)
```

r.bw

Description

Calculates biweight midvariance if one variable is given and biweight midvariances, midcovariance and midcorrelation if two variables are given. Biweight midcorrelation is a robust alternative to Pearson's r.

Usage

$r . b w(X, Y=N U L L)$

Arguments

$X \quad$ A numeric vector
$Y \quad$ An optional second numeric variable.

Details

Biweight statistics are robust to violations of normality. Like the sample median the sample midvariance has a breakdown point of approximately 0.5 . The triefficiency of the biweight midvariance was the highest for any of the 150 measures of scale compared by Lax (1985).

Value

Returns the biweight variance if one variable is given, and the biweight midvariances, midcovariance and midcorrelation if two variables are given.

Author(s)

Ken Aho

References

Lax, D. A. (1985) Robust estimators of scale: finite sample performance in long-tailed symmetric distributions. Journal of the American Statistical Association, 80 736-741.
Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

cor, r.pb

Examples

$x<-r n o r m(100)$
$y<-r n o r m(100)$
$r . b w(x, y)$
r.dist

Visualize the sampling distribution of Pearson's product moment correlation

Description

Stumbling points for many methods of inference for the true correlation ρ and for independence are: 1) asymmetry, 2) explicit bounds on ρ, and 3) dependence on sample size, of the sampling distribution of r.
The functions here allow visualization of these characteristics. The algorithm used for the sampling distribution of r is based on the first two steps in an asymptotic series (see Kenney and Keeping 1951).

Usage

r.dist(rho, r, n)
see.r.dist.tck()

Arguments

rho	Population correlation
r	A numeric vector containing possible estimates of $r h o$.
n	Sample size, an integer.

Details

All distributions are standardized to have an area of one.

Author(s)

Ken Aho

References

Kenney, J. F. and E. S. Keeping (1951) Mathematics of Statistics, Pt. 2, 2nd ed. Van Nostrand, Princeton, NJ.

Weisstein, E. W. (2012) Correlation Coefficient-Bivariate Normal Distribution. From MathWorldA Wolfram Web Resource. http://mathworld.wolfram.com/CorrelationCoefficientBivariateNormalDistribution.html

See Also

cor

Examples

```
dev.new(height=3.5)
op <- par(mfrow=c(1,2),mar=c (0,0,1.5,3), oma = c(5, 4.2, 0, 0))
vals <- r.dist(0.9, seq(-1, 1, .001), 5)
plot(seq(-1, 1, .001), vals, type = "l",ylab = "", xlab = "")
vals <- r.dist(0.5, seq(-1, 1, .001), 5)
lines(seq(-1, 1, .001), vals, lty = 2)
vals <- r.dist(0.0, seq(-1, 1, .001), 5)
lines(seq(-1, 1, .001), vals, lty = 3)
legend("topleft", lty = c(1, 2, 3), title = expression(paste(italic(n)," = 5")),
legend = c(expression(paste(rho, " = 0.9")),expression(paste(rho, " = 0.5")),
expression(paste(rho," = 0"))),bty = "n")
vals <- r.dist(0.9, seq(-1, 1, .001), 30)
plot(seq(-1, 1, .001), vals, type = "l",xlab= "", ylab= "")
vals <- r.dist(0.5, seq(-1, 1, .001), 30)
lines(seq(-1, 1, .001), vals, lty = 2)
vals <- r.dist(0.0, seq(-1, 1, .001), 30)
lines(seq(-1, 1, .001), vals, lty = 3)
legend("topleft", lty = c(1, 2, 3), title = expression(paste(italic(n)," = 30")),
legend = c(expression(paste(rho, " = 0.9")),expression(paste(rho, " = 0.5")),
expression(paste(rho, " = 0"))), bty = "n")
mtext(side = 2, expression(paste(italic(f),"(",italic(r),")")), outer = TRUE, line = 3)
mtext(side = 1, expression(italic(r)), outer = TRUE, line = 3, at = .45)
par(op)
```


Description

The degree of convergence of a random Markov Chain can be estimated using the Gelman-Rubin convergence statistic, \hat{R}, based on the stability of outcomes between and within m chains of the same length, n. Values close to one indicate convergence to the underlying distribution. Values greater than 1.1 indicate inadequate convergence.

Usage

R.hat(M, burn.in = 0.5)

Arguments

M
An $n \times m$ numeric matrix of Markov Chains.
burn.in The proportion of each chains to be used as a burn in period. The default value, 0.5 , means that only the latter half of the chains will be used in computing \hat{R}.

Details

Gelman et al. (2003, pg. 296) provides insufficient details to reproduce this function. To get the real function see Gelman and Rubin (1992). The authors list one other change in their Statlab version of this function at http://lib.stat.cmu.edu/S/itsim. They recommend multiplying sqrt (postvar/W) by sqrt $((d f+3) / t(d f+1))$. The original code and this function can produce estimates below 1 .

Author(s)

Ken Aho and unknown StatLib author

References

Gelman, A. and D. B. Rubin (1992) Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7:457-511.

Gelman, A., Carlin, J. B., Stern, H. S., and D. B. Rubin (2003) Bayesian Data Analysis, 2nd edition. Chapman and Hall/CRC.

```
    r.pb Percentage bend correlation
```


Description

The percentage bend correlation is a robust alternative to Pearson's product moment correlation.

Usage

$$
r . \operatorname{pb}(X, Y, \text { beta }=0.2)
$$

Arguments

X	A quantitative vector
Y	A second quantitative vector
beta	Bend criterion

Details

The percentage bend correlation belongs to class of correlation measures which protect against marginal distribution (X and Y) outliers. In this way it is similar to Kendall's τ, Spearman's ρ, and biweight midcovariance. A second class of robust correlation measures which take in to consideration the overall structure of the data (O estimators) are discussed by Wilcox (2005, pg. 389). A value for the bend criterion beta is required in the R.pb function; beta $=0.2$ is recommended by Wilcox (2005).

Value

A dataframe with the correlation, test statistic and P-value for the null hypothesis of independence are returned.

Author(s)

Ken Aho

References

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

corr, r.bw

Examples

$$
\begin{aligned}
& x<-r n o r m(100) \\
& y<-r n o r m(100) \\
& r . \operatorname{pb}(x, y)
\end{aligned}
$$

Description

Rabino et al. (2013) provided: $\mathrm{CSIRO} \delta^{13} \mathrm{C}$ and CO_{2} measures covering 1000 years.

Usage

data("Rabino_CO2")

Format

Sample.type A factor with levels firn and ice.
depth Depth of core (in meters).
effective. age Age of CO_{2} (in years AD).
d13C.CO2 $\delta^{13} \mathrm{C}$ (per mille).
$\mathrm{CO} 2 \mathrm{CO}_{2}$ level (in ppm).
uncertainty Uncertainty in measures (in ppm $\left(\mathrm{CO}_{2}\right)$ or per mille $\left(\delta^{13} \mathrm{C}\right)$).

Source

Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M. O., Langenfelds, R. L., ... \& Jenk, T. M. (2013). A revised 1000 year atmospheric $\delta^{13} \mathrm{C}-\mathrm{CO}_{2}$ record from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres, 118(15), 8482-8499

Examples

```
data(Rabino_CO2)
data(Rabino_del13C)
op <- par(mar=c(5,4.5,1,4.5))
with(Rabino_del13C, plot(effective.age,
d13C.C02, xlab = "Year", type='p',
col = 1, pch = 21, bg = 'red', ylab = ''))
axis(2, col = 'red', col.axis = 'red')
mtext(side = 2, expression(paste(delta,' ','
'^13,'C (per mille)')), col = 'red',
line = 3, cex = 1.2)
par(new = TRUE)
with(Rabino_CO2, plot(effective.age,
CO2, type='p', col=1,pch = 21,
bg = 'blue', axes = FALSE, xlab = "", ylab = ""))
axis(4, col = 'blue', col.axis = 'blue')
mtext(side=4,expression(paste('Atmospheric ',
```

```
CO[2], ' (ppm)')),
line = 3, col = 'blue', cex = 1.2)
par(op)
```

rat Rat glycogen data from Sokal and Rohlf (2012)

Description

This dataset from Sokal and Rohlf (2012) can be used to demonstrate pseudoreplication. Six rats were randomly given one of three treatments: "control", "compound 217", and "compound $217+$ sugar". After a short period of time the rats were euthanized and the glycogen content of their livers was measured. Two glycogen measurements were made for three different preparations of each liver. Clearly the liver preparations and measurements on those preparations are nested in each rat, and are not independent.

Usage
 data(rat)

Format

A data frame with 36 observations on the following 4 variables.
glycogen A numeric vector describing glycogen levels. Units are arbitrary.
diet Nutritional compound: $1=$ "control", $2=$ "compound 217 ", $3=$ "compound $217+$ sugar".
rat Rat animal number.
liver Liver preparation.
measure Measurement number.

Source

Sokal, R. R., and Rohlf, F. J. (2012) Biometry, 4th edition. W. H. Freeman and Co., New York.
refinery Refinery CO dataset

Description

In the early 1990s an oil refinery northeast of San Francisco agreed with local air quality regulators [the Bay Area Air Quality Management District (BAAQMD)] to reduce carbon monoxide emissions. Baselines for reductions were to be based on measurements of CO made by refinery personnel, and by independent measurements from BAAQMD scientists for the roughly the same time period

Usage

data(refinery)

Format

The dataframe contains three columns:

CO Carbon monoxide. Measured in ppm.
Source The source of measurements; either refinery or BAAQMD.
Date Month/Day/Year
rinvchisq \quad Random draws from a scaled inverse chi-square distribution

Description

The distribution is an important component of Bayesian normal hierarchical models with uniform priors.

Usage

rinvchisq(n, df, scale = 1/df)

Arguments

n
The number of random draws.
df
Degrees of freedom parameter.
scale Scale non-centrality parameter.

Details

Code based on a function with same name in package goeR.

See Also

The function is a wrapper for rchisq.

Description

Contains a Y variable constrained to be a random function of fifteen X variables, which, in turn, are generated from a multivariate normal distribution with no correlation between dimensions.

Usage

data("rmvm")

Format

A data frame with 500 observations on the following 16 variables.
Y A response vector defined to be: $Y=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}+X_{8}+X_{9}+$ $X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}+\epsilon$ where $\epsilon \sim N(0,1)$.
X 1 A random predictor
X2 A random predictor
X3 A random predictor
X4 A random predictor
X5 A random predictor
X6 A random predictor
X7 A random predictor
X8 A random predictor
X9 A random predictor
X10 A random predictor
X11 A random predictor
X12 A random predictor
X13 A random predictor
X14 A random predictor
X15 A random predictor

Details

Data used by Derryberry et al. (in review) to consider high dimensional model selection applications.

References

Derryberry, D., Aho, K., Peterson, T., Edwards, J. (In review). Finding the "best" second order regression model in a polynomial number of steps. American Statistician.

Examples

```
\#\# Code used to create data
\#\# Not run:
sigma <- matrix (nrow \(=15\), ncol \(=15,0)\)
\(\operatorname{diag}(\) sigma \()=1\)
mvn <- rmvnorm(n=500, mean=rnorm(15), sigma=sigma)
\(Y<-\operatorname{mvn}[, 1]+\operatorname{mvn}[, 2]+\operatorname{mvn}[, 3]+\operatorname{mvn}[, 4]+\operatorname{mvn}[, 4]+\operatorname{mvn}[, 5]+\operatorname{mvn}[, 6]+\operatorname{mvn}[, 7]+\)
\(\operatorname{mvn}[, 8]+\operatorname{mvn}[, 9]+\operatorname{mvn}[, 10]+\operatorname{mvn}[, 11]+\operatorname{mvn}[, 12]+\operatorname{mvn}[, 13]+\operatorname{mvn}[, 14]+\operatorname{mvn}[15]+\operatorname{rnorm}(500)\)
rmvm <- data.frame(cbind(Y, mvn))
names(rmvm) <- c("Y", paste("X", 1:15, sep = ""))
\#\# End(Not run)
```

Animated and/or snapshot representations of a statistic's sampling distribution

Description

This help page describes a series of asbio functions for depicting sampling distributions. The function samp. dist samples from a parent distribution without replacement with sample size $=\mathrm{s}$. size, R times. At each iteration a statistic requested in stat is calculated. Thus a distribution of R statistic estimates is created. The function samp. dist shows this distribution as an animated anim = TRUE or non-animated anim = FALSE density histogram. Sampling distributions for up to four different statistics utilizing two different parent distributions are possible using samp. dist. Sampling distributions can be combined in various ways by specifying a function in func (see below). The function samp. dist.n was designed to show (with animation) how sampling distributions vary with sample size, and is still under development. The function samp. dist. snap creates snapshots, i.e. simultaneous views of a sampling distribution at particular sample sizes. The function dirty. dist can be used to create contaminated parent distributions.

Usage

```
samp.dist(parent = NULL, parent2 = NULL, biv.parent = NULL, s.size = 1, s.size2
    = NULL, R = 1000, nbreaks = 50, stat = mean, stat2 = NULL, stat3 = NULL, stat4
    = NULL, xlab = expression(bar(x)), func = NULL, show.n = TRUE, show.SE = FALSE,
    anim = TRUE, interval = 0.01, col.anim = "rainbow", digits = 3, ...)
samp.dist.snap(parent = NULL, parent2 = NULL, biv.parent = NULL, stat = mean,
stat2 = NULL, stat3 = NULL, stat4 = NULL, s.size = c(1, 3, 6, 10, 20, 50),
s.size2 = NULL, R = 1000, func = NULL, xlab = expression(bar(x)),
show.SE = TRUE, fits = NULL, show.fits = TRUE, xlim = NULL, ylim = NULL, ...)
samp.dist.method.tck()
samp.dist.tck(statc = "mean")
```

```
samp.dist.snap.tck1(statc = "mean")
samp.dist.snap.tck2(statc = "mean")
dirty.dist(s.size, parent = expression(rnorm(1)),
cont = expression(rnorm(1, mean = 10)), prop.cont = 0.1)
samp.dist.n(parent, R = 500, n.seq = seq(1, 30), stat = mean, xlab = expression(bar(x)),
    nbreaks = 50, func = NULL, show.n = TRUE,
    show.SE = FALSE, est.density = TRUE, col.density = 4, lwd.density = 2,
    est.ylim = TRUE, ylim = NULL, anim = TRUE, interval = 0.5,
    col.anim = NULL, digits = 3, ...)
```


Arguments

parent	A vector or vector generating function, describing the parental distribution. Any collection of values can be used. When using random value generators for parental distributions, for CPU efficiency (and accuracy) one should use parent $=\operatorname{expression}(r p d f(s . s i z e, ~ . .)$.$) . Datasets exceeding 100000$ observations are not recommended.
parent2	An optional second parental distribution (see parent above), useful for the construction of sampling distributions of test statistics. When using random value generators use parent2 $=\operatorname{expression(rpdf}($ s.size2, ...)).
biv.parent	A bivariate (two column) distribution.
s.size	An integer defining sample size (or a vector of integers in the case of samp. dist. snap) to be taken at each of R iterations from the parental distribution.
s.size2	An optional integer defining a second sample size if a second statistic is to be calculated. Again, this will be a vector of integers in the of samp.dist.snap.
R	The number of samples to be taken from parent distribution(s).
nbreaks	Number of breaks in the histogram.
stat	The statistic whose sampling distribution is to be represented. Will work for any summary statistic that only requires a call to data; e.g. mean, var, median, etc.
stat2	An optional second statistic. Useful for conceptualizing sampling distributions of test statistics. Calculated from sampling parent2.
stat3	An optional third statistic. The sampling distribution is created from the same sample data used for stat.
stat4	An optional fourth statistic. The sampling distribution is created from the same sample data used for stat2.
xlab	X-axis label.
func	An optional function used to manipulate a sampling distribution or to combine the sampling distributions of two or more statistics. The function must contain the following arguments (although they needn't all be used in the function): s.dist, s.dist2, s.size, and s.size2. When sampling from a single parent distribution use s.dist3 in the place of s.dist2. For an estimator involving two parent distributions and four statistics, six arguments will be required:

	s.dist, s.dist2, s.dist3, s.dist4. s.size, and s.size2, s.dist3, and as non-fixed arguments (see example below).
show.n	A logical command, TRUE indicates that sample size for parent will be displayed.
show.SE	A logical command, TRUE indicates that bootstrap standard error for the statistic will be displayed.
anim	A logical command indicating whether or not animation should be used.
interval	Animation speed. Decreasing interval increases speed.
col.anim	Color to be used in animation. Three changing color palettes: rainbow, gray, heat. colors, or "fixed" color types can be used.
digits	The number of digits to be displayed in the bootstrap standard error.
fits	Fitted distributions for samp. dist. snap A function with two argument: s.size and s.size2
show.fits	Logical indicating whether or not fits should be shown (fits will not be shown if no fitting function is specified regardless of whether this is TRUE or FALSE
xlim	A two element numeric vector defining the upper and lower limits of the X-axis.
ylim	A two element numeric vector defining the upper and lower limits of the Y-axis.
statc	Presets for certain statistics. Currently one of "custom", "mean", "median", "trimmed mean", "Winsorized mean", "Huber estimator", "H-L estimator", "sd", "var", "IQR", "MAD", "(n-1)S^2/sigma^2", "F*", "t* (1 sample)", "t* (2 sample)", "Pearson correlation" or "covariance".
cont	A distribution representing a source of contamination in the parent population. Used by function dirty.dist.
prop.cont	The proportion of the parent distribution that is contaminated by code.
$\mathrm{n} . \mathrm{seq}$	A range of sample sizes for samp.dist. n
est.density	A logical command for samp. dist.n. if TRUE then a density line is plotted over the histogram. Only used if fix. $\mathrm{n}=$ true.
col.density	The color of the density line for samp. dist.n. See est. density above.
lwd.density	The width of the density line for samp.dist.n. See est. density above.
est.ylim	Logical. If TRUE Y-axis limits are estimated logically for the animation in samp.dist.n. Consistent Y-axis limits make animations easier to visualize. Only used if fix. $\mathrm{n}=$ TRUE.
	Additional arguments from plot.histogram.

Details

Sampling distributions of individual statistics can be created with samp.dist, or the function can be used in more sophisticated ways, e.g. to create sampling distributions of ratios of statistics, i.e. t^{*}, F^{*} etc. (see examples below). To provide pedagogical clarity animation for figures is provided. To calculate bivariate statistics, specify the parent distribution with biv. parent and the statistic with func (see below).

Two general uses of the function samp.dist are possible. 1) One can demonstrate the accumulation of statistics for a single sample size using animation. This is useful because as more and more
statistics are acquired the frequentist paradigm associated with sampling distributions becomes better represented (i.e the number of estimates is closer to infinity). This is elucidated by allowing the default fix. $\mathrm{n}=$ TRUE. Animation will be provided with the default anim = TRUE. Up two parent distributions, up to two sample sizes, and up to four distinct statistics (i.e. four distinct sampling distributions, representing four distinct estimators) can be used. The arguments stat and stat3 will be drawn from parent, while stat3 and stat 4 will be drawn from parent2. These distributions can be manipulated and combined in an infinite number of ways with an auxiliary function called in the argument func (see examples below). This allows depiction of sampling distributions made up of multiple estimators, e.g. test statistics. 2) One can provide simultaneous snapshots of a sampling distribution at a particular sample size with the function samp. dist. snap.

Loading the package tcltk allows use of the functions samp.dist.tck, samp.dist.method.tck, samp. dist. snap.tck1 and samp. dist.snap.tck2, which provide interactive GUIs that run samp. dist.

Value

Returns a representation of a statistic's sampling distribution in the form of a histogram.

Author(s)

Ken Aho

Examples

```
## Not run:
##Central limit theorem
#Snapshots of four sample sizes.
samp.dist.snap(parent=expression(rexp(s.size)), s.size = c(1,5,10,50), R = 1000)
##sample mean animation
samp.dist(parent=expression(rexp(s.size)), col.anim="heat.colors", interval=.3)
##Distribution of t-statistics from a pooled variance t-test under valid and invalid assumptions
#valid
t.star<-function(s.dist1, s.dist2, s.dist3, s.dist4, s.size = 6, s.size2 =
s.size2){
MSE<-(((s.size - 1) * s.dist3) + ((s.size2 - 1) * s.dist4))/(s.size + s.size2-2)
func.res <- (s.dist1 - s.dist2)/(sqrt(MSE) * sqrt((1/s.size) + (1/s.size2)))
func.res}
samp.dist(parent = expression(rnorm(s.size)), parent2 =
expression(rnorm(s.size2)), s.size=6, s.size2 = 6, R=1000, stat = mean,
stat2 = mean, stat3 = var, stat4 = var, xlab = "t*", func = t.star)
curve(dt(x, 10), from = -6, to = 6, add = TRUE, lwd = 2)
legend("topleft", lwd = 2, col = 1, legend = "t(10)")
\#invalid; same population means (null true) but different variances and other distributional \#characteristics.
samp.dist(parent = expression(runif(s.size, min = 0, max = 2)), parent2 =
expression(rexp(s.size2)), s.size=6, s.size2 = 6, R = 1000, stat = mean,
stat2 = mean, stat3 = var, stat4 = var, xlab = "t*", func = t.star)
```

```
curve(dt(x, 10),from = -6, to = 6,add = TRUE, lwd = 2)
legend("topleft", lwd = 2, col = 1, legend = "t(10)")
## Pearson's R
require(mvtnorm)
BVN <- function(s.size) rmvnorm(s.size, c(0, 0), sigma = matrix(ncol = 2,
nrow = 2, data = c(1, 0, 0, 1)))
samp.dist(biv.parent = expression(BVN(s.size)), s.size = 20, func = cor, xlab = "r")
#Interactive GUI, require package 'tcltk'
samp.dist.tck("S^2")
samp.dist.snap.tck1("Huber estimator")
samp.dist.snap.tck2("F*")
## End(Not run)
```

samp.dist.mech

Animated representation of sampling distribution basics

Description

Mountain goats are randomly sampled 10 at a time and weighed [goat weights are normal $N(90.5$, 225)], a mean weight is calculated from these measures and added to collection of mean weights in the form of a histogram.

Usage

```
samp.dist.mech(rep, int = 0.05)
samp.dist.mech.tck()
```


Arguments

rep \quad Number of samples. Should not greatly exceed 100.
int The time interval for animation (in seconds). Smaller intervals speed up animation

Note

Nice goat image from https://all-free-download.com/

Author(s)

Ken Aho

Description

Compilation of mammalian BMR and biomass data from the large data sets used in the studies of Hart (1971), Heusner (1991), Lovegrove (2000, 2003) and White \& Seymour (2003). Data compiled by Savage (2004).

Usage

data("savage")

Format

A data frame with 1006 observations on the following 9 variables.
Order Mammal order.
Family Mammal family.
Species Mammal genus and species.
Mass Biomass in grams.
BMR Basal metabolic rate in watts
AvgMass Average mass, given multiple reports for a particular species.
AvgBMR Average BMR, given multiple reports for a particular species.
References Authorities from whom data were obtained.
Notes Note concerning a repeated species name.

Source

Savage, 548 V.M., Gillooly, J.F., Woodruff, W.H., West, G.B., Allen, A.P., Enquist, B.J., Brown, J.H. (2004) The predominance of quarter-power scaling in biology. Functional Ecology, 18, 257282.

References

Hart, J.S. (1971) Rodents in Comparative Physiology of Thermoregulation, Vol. II Mammals (ed. G.C. Whittow), pp. 2-149. Academic Press, New York.

Heusner, A.A. (1991) Size and power in mammals. Journal of Experimental Biology 160, 25-54.
Lovegrove, B.G. (2000) The zoogeography of mammalian basal metabolic rate. American Naturalist 156, 201-219.
Lovegrove, B.G. (2003) The influence of climate on the metabolic rate of small mammals: a slowfast metabolic continuum. Journal of Comparative Physiology B 173, 87-112.
White, C.R. and Seymour, R.S. (2003) Mammalian basal metabolic rate is proportional to 584 body mass 2/3. Proceedings of the National Academy of Sciences, 100, 4046-4049.

Description

Scientists have long been concerned with identifying physiological characteristics which result in a disposition for schizophrenia. Early studies suggested that the volume of particular brain regions of schizophrenic patients may differ from non-afflicted individuals. However these studies often contained confounding variables (e.g. socioeconomic status, genetics) which obscured brain volume/ schizophrenia relationships (Ramsey and Schafer 1997). To control for confounding variables Suddath et al. (1990) examined 15 pairs of monozygotic twins where one twin was schizophrenic and the other was not. Twins were located from an intensive search throughout the United States and Canada. The authors used magnetic resonance imaging to measure brain volume of particular regions in the twin's brains.

Usage

data(sc.twin)

Format

The dataframe has 2 columns:
unaffected Left hippocampus volumes for unaffected twins.
affected Left hippocampus volumes for affected twins.

> se.jack Jackknife standard error from a set of pseudovalues

Description

Calculates the conventional jackknife standard error from a set of pseudovalues. The function se.jack provides Tukey's jackknife estimator. The function se.jack provides a measure associated with first order jackknife estimates of species richness (Heltsche and Forester 1983).

Usage

se. jack(x)
se. jack1 (x)

Arguments

x
A numeric vector of pseudovalue, for instance from function pseudo.v.

Author(s)

Ken Aho

References

Heltshe, J. F., and N. E. Forrester (1983) Estimating species richness using the jackknife procedure. Biometrics 39: 1-12.

See Also

pseudo.v

Examples

```
trag <- c(59, 49, 75, 43, 94, 68, 77, 78, 63, 71, 31, 59, 53, 48, 65, 73, 50, 59, 50, 57)
p <- pseudo.v(trag, statistic = mean)
se.jack(p[,2])
```

```
sedum.ts CO2 exchange time series data
```


Description

Gurevitch et al. (1986) demonstrated time series analysis with data describing change in CO_{2} concentration of airstreams passing over a Sedum wrightii test plant.

Usage

data(sedum.ts)

Format

A data frame with 24 observations on the following 3 variables.
exchange CO_{2} exchange, measured as: [change in CO_{2} concentration (g / mg)]/ plant fresh mass (g). Thus units are $1 / \mathrm{mg}$. Positive values indicate net CO_{2} uptake while negative values indicate net CO 2 output.
time A numeric vector indicating two hour intervals
treatment Dry = water withheld for several week, Wet = plant well watered.

Source

Gurevitch, J. and S. T. Chester, Jr (1986) Analysis of repeated measures experiments. Ecology 67(1): 251-255.

Description

Slider GUI for examining the interaction of precision and accuracy.

Usage

see.accPrec.tck()

Author(s)

Ken Aho
see.ancova.tck Visualize ANCOVA mechanics

Description

An interactive GUI to view ANCOVA meachnics. Exp. power tries to simulate explanatory power in the concomitant variable. It simply results in (1 - Exp. power) \times Residual SE.

Usage

```
see.ancova.tck()
```


Author(s)

Ken Aho

Description

Slider control of the means and (constant) variability of three factor level populations. An ANOVA is run based on a random sample of these populations.

Usage

see. anova.tck()

Author(s)

Ken Aho
see.cor.range.tck Depict the effect of range on correlation

Description

Function interactively depicts the effect of the data range on association measures.

Usage

see.cor. range.tck(sd = 0.5)

Arguments

sd Amount of noise added to linear association. Residuals around line pulled from a normal distribution centered at zero with this standard deviation.

Author(s)

Ken Aho

References

Based on a figure from https://en.wikipedia.org/wiki/Correlation_and_dependence

Description

Visualize exponential power functions, including a Gaussian distribution.

Usage

see.exppower.tck()

Details

The normal distribution and Gaussian distribution are based on an exponential power function:

$$
f(x)=\exp \left(-|x|^{m}\right)
$$

Letting $m=2$ results in a Gaussian distribution. Standardizing this so that the area under the curve $=1$ results in the standard normal distribution.

Author(s)

Ken Aho

See Also

book.menu
see.HW Visualize the Hardy Weinberg equilibrium

Description

Allows interactive depiction of the Hardy Weinberg equilibrium.

Usage

see.HW(parg)
see.HW.tck()

Arguments

parg \quad Proportion of the allele p in the population, i.e. a number between 0 and 1.

Details

Solves and depicts the Hardy Weinberg equilibrium, i.e:

$$
p p+2 p q+q q=1
$$

Author(s)

Ken Aho

```
    see.lma.tck ANOVA linear models
```


Description

Derives ANOVA linear model using matrix algebra

Usage

see. 1 ma.tck()

Author(s)

Ken Aho

```
see.lmr.tck
```

Regression linear model derivation from linear algebra

Description

Given Y and X matrices a regression linear model is demonstrated using matrix algebra.

Usage

see.lmr.tck()
$\mathrm{pm1}(\mathrm{Y}, \mathrm{X}, \mathrm{sz}=1$, showXY $=$ TRUE $)$

Arguments

Y
Response variable
$X \quad$ Explanatory variables
sz
Text expansion factor
showXY
Logical, indicating whether or not X and Y matrices should be shown.

Details

X requires a Y intercept variable X_{0} and at least one other variable.

Author(s)

Ken Aho

See Also

lm

Description

The default design is balanced, as a result Type I = Type II = Type III SS. A student can then delete one or more Y responses, and corresponding X responses to see create an unbalanced design. Now the types of SS will no longer be equal. Furthermore, the order that X1 and X2 are specified will now matter in the case of Type I SS, although it will not matter for type II and III SS.

Usage

see.lmu.tck()
pm(Y, X1, X2, X1X2, change.order = FALSE, delete = 0)

Arguments

Y
X1 First column in design matrix with effect coding.
X2 Second column in design matrix.
X1X2 An interaction column. The product of design matrix columns one and two
change.order A logical command specifying whether or not the order of X1 and X2 should changed in the model specification.
delete when delete $!=0$ an observation number to be deleted.

Author(s)

Ken Aho

See Also

lm

Description

It is vital that scientists understand what logical and fallacious arguments are. This worksheet provides a pedagogical tool for considering logic.

Usage

see.logic()

Author(s)

Ken Aho

References

Salmon, W (1963) Logic. Prentice-Hall

See Also

> book.menu

Examples

```
    ## Not run:
    see.logic()
    ## End(Not run)
```

see.M
Visualization of the M-estimation function

Description

The function provides interactive visualization of robust M estimation of location.

Usage

see.M()

Details

The value $c=1.28$ gives 95 percent efficiency of the mean given normality. The sample median and mean can be considered special cases of M-estimators. The value $c=0$ provides the sample median, while the value, $c=\infty$ gives the sample mean.

Author(s)

Ken Aho

References

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also
huber.mu, huber.NR

Depiction of the effect of random level selection on inferences concerning fixed effects

Description

The levels for a fixed factor are shown in rows, while the columns are levels for a random factor. Thus, the table depicts a mixed model. Assume that the values in the table are population means. For instance, the true mean of random level R1 for the fixed level F1 is 1. Using information from all random factor levels, the null hypothesis for the fixed factor is true. That is, $\mu_{F 1}=\mu_{F 2}=\mu_{F 3}$. However when we select a subset of random levels, this is obscured. In fact, for any subset of random factor levels it appears as if there is evidence against H_{0}, i.e. there appears to be variability among the fixed factor level means. Thus, to avoid inflation of type I error (rejection of a true null hypothesis) we must consider the interaction of the random and fixed factors when considering inference for the fixed factor level populations.

Usage

see.mixedII()

Author(s)

Ken Aho, thanks to Ernest Keeley

References

Maxwell, S. E., and H. D. Delaney (2003) Designing Experiments and Analyzing Data: A Model Comparison Perspective, 2nd edition. Routledge Academic.

Description

tcltk GUI representation of the multinomial in a simple (binomial) context.

Usage

see.mnom.tck()

Author(s)

Ken Aho

Description

Scatterplot points can be moved with see.move, while points can be added and deleted with see.adddel. The function see.move is an appropriation from tcltk demos, with a few bells and whistles added.

Usage

```
see.move()
see.adddel()
```


Author(s)

the R Development Core Team for see.move, Ken Aho for see. adddel.
see.nlm Visualize important non-linear functions

Description

A number of important equation forms require that their parameters be estimated using the nonlinear least squares. Here are six.

Usage

```
see.nlm()
```


Author(s)

Ken Aho

References

Crawley, M. J. (2007) The R Book. Wiley.

```
see.norm.tck Visualize pdfs
```


Description

Interactive GUIs for visualizing how distributions change with changing values of pdf parameters, e.g. μ and σ. The basic ideas here are lifted largely from a clever function from Greg Snow's package TeachingDemos. The functions see.pdfdriver.tck and see.pdfdriver are tcltk utility functions.

Usage

```
see.norm.tck()
see.normcdf.tck()
see.beta.tck()
see.betacdf.tck()
see.bin.tck()
see.bincdf.tck()
see.chi.tck()
see.chicdf.tck()
see.disc.unif.tck()
see.disc.unifcdf.tck()
see.exp.tck()
see.expcdf.tck()
see.F.tck()
see.Fcdf.tck()
```

```
see.gam.tck()
see.gamcdf.tck()
see.geo.tck()
see.geocdf.tck()
see.hyper.tck()
see.hypercdf.tck()
see.logis.tck()
see.logiscdf.tck()
see.nbin.tck()
see.nbincdf.tck()
see.lnorm.tck()
see.lnormcdf.tck()
see.pois.tck()
see.poiscdf.tck()
see.t.tck()
see.tcdf.tck()
see.unif.tck()
see.unifcdf.tck()
see.weib.tck()
see.weibcdf.tck()
see.pdfdriver.tck()
see.pdfdriver(pdf, show.cdf = TRUE)
```


Arguments

pdf	Name of probability density function
show.cdf	Logical, indicating whether or not the cumulative distribution function should be shown.

Author(s)

Ken Aho

Examples

```
## Not run:
see.norm.tck()
## End(Not run)
```


Description

Provides an interactive pedagogical display of power.

Usage

```
see.power(alpha = NULL, sigma = NULL, n = NULL, effect = NULL,
test = "lower", xlim = c(-3, 3), strict = FALSE)
see.power.tck()
```


Arguments

alpha	Type I error.
sigma	Standard deviation of underlying population.
n	sample size
effect	Effect size
test	Type of test, one of c("lower", "upper", "two").
xlim	X-axis limits
strict	Causes the function to use a strict interpretation of power in a two-sided test. If strict = TRUE then power for a two sided test will include the probability of rejection in the opposite tail of the true effect. If strict = FALSE (the default) power will be half the value of α if the true effect size is zero.

Details

The function see. power provides an interactive display of power. The function see. power.tck provides a tcltk GUI to manipulate see. power

Author(s)

Ken Aho

```
see.rEffect.tck Visualize random effects model
```


Description

An experiment to ascertain the effect of two randomly selected brands of soil fertilizer on wheat yield. In the upper figure two brands of fertilizer (1 and 2) are randomly chosen from a population of potential choices. The mean yields produced by the population of fertilizers $E\left(Y \mid A_{i}\right)$ are normally distributed. That is, it is possible to select a factor level that will result in very small average yields, or one that will result in large average yields, but it is more likely that a chosen factor level will produce some intermediate average effect. We proceed with the experiment by assigning two experimental units (two wheat fields) to each fertilizer. We assume that the yield of fields is normally distributed for each fertilizer, and furthermore that the factor levels are homoscedastic. We weigh our evidence against the H_{0} of a non-zero population variance by estimating the variability among factor levels. The more that yield varies with respect to nutrient treatments the more evidence we will have against H_{0}.

Usage

```
see.rEffect.tck()
```

Author(s)

Ken Aho

see.regression.tck Demonstration of regression mechanics

Description

Population and sample regression lines are interactively depicted. The same random observations generated by the true error distribution is used for both models.

Usage

see.regression.tck()

Author(s)

Ken Aho

```
see.roc.tck Interactive depiction of ROC curves
```


Description

Sliders allow users to change distinctness of dichotomous classes (success and failure). This will affect the ROC curve. One can also change the criteria defining what constitutes a success. While this will not change the ROC curve (which compares true positive and false negative rates at all possible success cutoff), it The will change empirical rates of true positives, true negatives, false positives, and false negatives given the defined cutoff.

Usage

see.roc.tck()

Author(s)

Ken Aho, inspired by a graphical demo at http://www. anaesthetist.com/mnm/stats/roc/Findex. htm

Description

LOWESS, kernel, and spline smoothers are depicted, using tcltk widgets.

Usage

see.smooth.tck()

Author(s)

Ken Aho, appropriated ideas from demo in library tcltk.

See Also

loess, ksmooth, smooth.spline

```
see.ttest.tck Visualize t-tests
```


Description

Interactive GUI for demonstrating t-tests

Usage

see.ttest.tck()

Author(s)

Ken Aho

Description

The function provides a tcltk driver illustrating type I, type II error, and power.

Usage

```
see.typeI_II()
```


Author(s)

Ken Aho

See Also

```
see.power,power.z.test
```

selftest.se.tck1 Interactive self-testing questions

Description

These functions provide interactive multiple-choice questions.

Usage

selftest.se.tck1()

Author(s)

Ken Aho

Description

Littell et al. (2006) use the data here to introduce analysis of split plot designs using mixed models. Twelve silicon wafers were randomly selected from a lot, and were randomly assigned to four different processing modes. Resistance on the chips was measured in four different positions (four different chips) on each wafer. Mode of processing and position of chips were fixed factors, while wafer was a random effect. The experimental units with respect to process are the wafers. The experimental units with respect to position are individual chips. Thus the wafer is the whole plot, whereas the positions (chips) are split plot units

Usage

data(Semiconductor)

Format

The dataframe contains four columns:
Resistance The response variable of interest. Measured in ohms.
Process The explanatory variable of interest. The type of process used to create the computer chips. A factor with 4 levels.
Wafer The whole plot containing four chips. There were four wafers tested, i.e. four levels, 1,2,3,4.
Chip Position on the wafer. These are split plots within the whole plots. Four levels: 1, 2, 3, 4 .

Source

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and O. Schabenberger (2006) SAS for Mixed Models 2nd ed. SAS press.

SexDeterm Fern environmental sex determination data

Description

Sex determination (male and female) data at ecologically relevant glucose, N , and P concentrations and stoichiometries, at both ambient and elevated levels of CO_{2}. The term "ameristic" denotes gametophytes with only male gametangia, while the term "meristic" refers to gametophytes with female or female and male gametangia.

Usage
 data("SexDeterm")

Format

A data frame with 156 observations on the following 11 variables.
CO2.Level a factor with levels Ambient Elevated CO 2 levels
Block a numeric vector, the elevated CO 2 experiment was completed in 2 blocks
Glucose. Level the number of C atoms relative to the number of P atoms, with 5 indicating the presence of 6 micromolar glucose and 0 indicating the absence of glucose in the growth media
N. Level the number of N atoms relative to the number of P atoms
P . Level the number of P atoms relative to the number of N atoms
C.N.P the ratio of C to N to P atoms, a factor with levels $1: 11: 21: 31: 416: 116: 216: 3$ $16: 432: 132: 232: 332: 448: 148: 248: 348: 45: 1: 15: 1: 25: 1: 35: 1: 45: 16: 15: 16: 2$ $5: 16: 35: 16: 45: 32: 15: 32: 25: 32: 35: 32: 45: 48: 15: 48: 25: 48: 35: 48: 4$
Total.Gametophyte.No. the total number of gametophytes in each population
No..of.Ameristic.Gametophytes the number of ameristic (male) gametophytes in each gametophyte population
No..of.Meristic.Gametophytes the number of meristic (female and hermaphrodite) gametophytes in each gametophyte population
Ameristic.Meristic.Ratio the ratio of ameristic gametophytes to meristic gametophytes (sex ratio)

Pct. Ameristic.Gametophytes the percentage of ameristic gametophytes per total gametophyte population

References

Goodnoe, T. T., Hill, J. P., Aho, K. (2016) Effects of variation in carbon, nitrogen and phosphorous molarity and stoichiometry on sex determination in the fern Ceratopteris richardii. Botany 94(4): 249-259.

Examples

```
data(SexDeterm)
```

shad American gizzard shad data

Description

Hollander and Wolfe (1999) describe young of year lengths at four sites for American gizzard shad, Dorosoma cepedianum, a fish of the herring family.

Usage

```
data(shad)
```


Format

A data frame with 40 observations on the following 2 variables.
length Fish length in cm
site a factor with levels I II III IV

Source

Hollander, M., and D. A. Wolfe (1999) Nonparametric Statistical Methods. New York: John Wiley \& Sons.
shade. norm Shading functions for interpretation of pdf probabilities.

Description

Creates plots with lower, upper, two-tailed, and middle of the distribution shading for popular pdfs.

Usage

```
shade.norm(x = NULL, from = NULL, to = NULL, sigma = 1, mu = 0,
tail = "lower", show.p = TRUE, show.d = FALSE, show.dist = TRUE, digits = 5,
legend.cex = .9, shade.col="gray",...)
shade.t(x = NULL, from = NULL, to = NULL, nu = 3, tail = "lower",
show.p = TRUE, show.d = FALSE, show.dist = TRUE, digits = 5,legend.cex = . 9,
shade.col="gray",...)
shade.F(x = NULL, from = NULL, to = NULL, nu1 = 1, nu2 = 5,
tail = "lower", show.p = TRUE, show.d = FALSE, show.dist = TRUE,
prob.to.each.tail = 0.025, digits = 5, legend.cex = .9,shade.col="gray",...)
shade.chi(x = NULL, from = NULL, to = NULL, nu = 1, tail = "lower",
show.p = TRUE, show.d = FALSE, show.dist = TRUE, prob.to.each.tail = 0.025,
digits = 5,legend.cex = .9,shade.col="gray",...)
shade.bin( }x=NULL,from=NULL, to=NULL, n=1, p=0.5, tail=" X=x", show.p=TRUE
show.dist=TRUE, show.d=FALSE,legend.cex = .9,digits=5, ...)
shade.poi( }\textrm{x}=\textrm{NULL},\mathrm{ from=NULL, to=NULL,lambda=5, tail="X=x", show.p=TRUE,
show.dist=TRUE, show.d=FALSE,legend.cex = .9,digits=5, ...)
shade.wei(x = NULL, from = NULL, to = NULL, theta = 1, beta = 1, tail = "lower",
show.p = TRUE, show.d = FALSE, show.dist = TRUE, prob.to.each.tail = 0.025,
digits = 5, legend.cex = 0.9, shade.col = "gray", ...)
```


Arguments

X
to
sigma
mu
tail One of four possibilities: "lower" provides lower tail shading, "upper" provides upper tail shading, "two" provides two tail shading, and "middle" provide shading in the middle of the pdf, between "from" and "to". The additional option "two. custom" is allowed for shade. norm and shade.t. This allows calculation of asymmetric two tailed probabilities. It requires that the argument x is a two element vector with elements denoting the upper bound of the lower tail and the lower bound of the upper tail. For discrete pdfs (binomial and Poisson) the possibility " $\mathrm{X}=\mathrm{x}$ " is also allowed, and will be equivalent to the density. Two tailed probability is not implemented for shade. poi.
show.p Logical; indicating whether probabilities are to be shown.
show.d Logical; indicating whether densities are to be shown.
show. dist Logical; indicating whether parameters for the distribution are to be shown.
nu Degrees of freedom.
nu1 \quad Numerator degrees of freedom for the F-distribution.
nu2 Denominator degrees of freedom for the F-distribution.
prob.to.each.tail
Probability to be apportioned to each tail in the F and Chi-square distributions if tail = "two".
digits Number of digits to be reported in probsabilities and densities.
$\mathrm{n} \quad$ The number of trials for the binomial pdf.
$p \quad$ The binomial probability of success.
lambda The Poisson parameter (i.e. rate).
legend.cex Character expansion for legends in plots.
shade.col Color of probability shading.
theta Pdf parameter.
beta Pdf parameter.
... Additional arguments to plot.

Value

Returns a plot with the requested pdf and probability shading.

Note

Lower-tailed chi-squared probabilities are not plotted correctly for $\mathrm{df}<3$.

Author(s)

Ken Aho

Examples

```
## Not run:
##normal
shade.norm(x=1.2, sigma=1,mu=0,tail="lower")
shade.norm(x=1.2, sigma=1,mu=0, tail="upper")
shade.norm(x=1.2, sigma=1, mu=0, tail="two")
shade.norm(from=-.4,to=0, sigma=1,mu=0,tail="middle")
shade.norm(from=0, to=0, sigma=1, mu=0, tail="middle")
shade.norm(x=c(-0.2, 2),sigma=1,mu=0,tail="two.custom")
##t
shade.t(x=-1, nu=5, tail="lower")
shade.t(x=-1, nu=5, tail="upper")
shade.t(x=-1,nu=5, tail="two")
shade.t(from=.5,to=.7,nu=5,tail="middle")
##F
shade.F(x=2, nu1=15, nu2=8, tail="lower")
shade.F(x=2, nu1=15, nu2=8, tail="upper")
shade.F(nu1=15, nu2=8, tail="two",prob.to.each.tail=0.025)
shade.F(from=.5, to=.7, nu1=15, nu2=10, tail="middle")
##Chi.sq
shade.chi(x=2,nu=5,tail="lower")
shade.chi(x=2,nu=5,tail="upper")
shade.chi(nu=7,tail="two",prob.to.each.tail=0.025)
shade.chi(from=.5,to=.7, nu=5,tail="middle")
##binomial
shade.bin(x=5,n=20, tail="X=x", show.d=TRUE)
shade.bin(x=5,n=20,tail="lower")
shade.bin(x=5,n=20,tail="two")
shade.bin(from=8, to=12,n=20,tail="middle")
##Poisson
shade.poi(x=5,lambda=6, tail="X=x", show.d=TRUE)
shade.poi( }x=5,l\mathrm{ lambda=7, tail="lower")
shade.poi( }x=5,l\mathrm{ lambda=8, tail="upper")
shade.poi(from=8,to=12,lambda=7,tail="middle")
## End(Not run)
```


Description

Provides tcltk GUIs to manage asbio shade functions.

Usage

```
shade.bin.tck()
shade.chi.tck()
shade.F.tck()
shade.norm.tck()
shade.poi.tck()
shade.t.tck()
```


Author(s)

Ken Aho

See Also

shade
simberloff
Compilations of genus and species counts from Simberloff (1970)

Description

A compilation of taxonomic (species and genus) counts for a wide array of organism groups for island and associated mainland locations. Taken from Simberloff (1970).

Usage

data("simberloff")

Format

A data frame with 204 observations on the following 12 variables.
Location Island and mainland location.
Designation A factor with levels Island Mainland.
Hypothesized. source Hypothesized mainland location for particular island location.
No.spp. The number of species

Obs.S.G Observed species/genus (S/G) ratio
E.S.G. Expected S / G ratio, based on random sampling from mainland pool of species.
prop. . obs. . cogeners The proportion of observed cogeners, only reported for bird species.
prop. .exp. cogeners The proportion of expected cogeners based on random sampling from the associated mainland pool of species, only reported for bird species.
Authority Source of information for compilation.
Life.form A factor with levels Ants Land birds Passerine birds Vascular plants.
Notes. 1 Notes from Simberloff (1970)
Notes. 2 Additional notes from Simberloff (1970)

Source

Simberloff, D. (1970) Taxonomic diversity of island biotas. Evolution 24, 23-47.

```
skew Sample skewness and kurtosis
```


Description

Functions for skewness and kurtosis.

Usage

skew (x, method="unbiased")
kurt(x, method="unbiased")

Arguments

x	A vector of quantitative data.
method	The type of method used for computation of skew and kurtosis. Two choices
are possible for skewness: "moments" and "unbiased", and three choices are	
possible for kurtosis: "unbiased", "moments", and "excess".	

Details

Aside from centrality and variability we can describe distributions with respect to their shape. Two important shape descriptors are skewness and kurtosis. Skewness describes the relative density in the tails of a distribution while kurtosis describes the peakedness of a distribution. When quantified for a population skewness and kurtosis are denoted as γ_{1} and γ_{2} respectively. For a symmetric distribution skewness will equal zero; i.e. $\gamma_{1}=0$. A distribution with more density in its right-hand tail will have $\gamma_{1}>0$, while one with more density in its left-hand tail will have $\gamma_{1}<0$. These distributions are often referred to as positively-skewed and negatively-skewed respectively. If a distribution is normally peaked (mesokurtic) then $\gamma_{2}=3$. As a result the number three is generally
subtracted from kurtosis estimates so that a normal distribution will have $\gamma_{2}=0$. Thus strongly peaked (leptokurtic) distributions will have $\gamma_{2}>0$, while flat-looking (platykurtic) distributions will have a kurtosis $\gamma_{2}<0$.
Several types of skewness and kurtosis estimation are possible.
For method of moments estimation let:

$$
m_{j}=(1 / n) \sum_{i}\left(X_{i}-\bar{X}\right)^{j}
$$

then the method of moments skewness is: $m_{3} / m_{2}^{3 / 2}$, the method of moments kurtosis is: m_{4} / m_{2}^{2}, and the excess method of moments kurtosis is $m_{4} / m_{2}^{2}-3$.
These estimators are biased low, particularly given small sample sizes. A more complex estimator is required to account for this bias. This is provided by method = "unbiased" in skew and kurt.

Value

Output will be the sample skewness or kurtosis.

Author(s)

Ken Aho

Examples

$\exp <-r \exp (10000)$
skew(exp)
kurt(exp)

SM.temp.moist Alpine soil temperature and moisture time series

Description

Soil temperature and water availability from Mt. Washburn in Yellowstone National Park. Data were taken at soil depth of 5 cm from a late snowmelt site at UTM 4960736.977544792 .225 zone 12T NAD 83, elevation 3070m.

Usage

data(SM.temp.moist)

Format

A data frame with 30 observations on the following 4 variables.
year A numeric vector describing year.
day The "day of year", whereby Jan $1=$ day 1 and Dec 32 = day 365 (366 for leap years).
Temp_C Temperature in degrees Celsius.
Moisture Soil water availability sensor reading. A reading of 35 is approximately equal to -1.5 MPa .

Source

Aho, K. (2006) Alpine Ecology and Subalpine Cliff Ecology in the Northern Rocky Mountains. Doctoral dissertation, Montana State University, 458 pgs.

```
snore Snoring and heart disease contingency data
```


Description

Norton and Dunn (1985) compiled data from four family practice clinics in Toronto to quantify the association between snoring and heart disease for 2484 subjects.

Usage

data(snore)

Format

A data frame with 2484 observations on the following 3 variables.
snoring A factor with levels every.night nearly.ever. night never occasional
ord.snoring Agresti (21012) transformed the explanatory levels to ordinal values in his analysis of this data.
disease Presence/absence of heart disease

Source

Norton, P. G., and E. V. Dunn (1985) Snoring as a risk factor for disease: an epidemiological survey. British Medical Journal 291: 630-632.

```
so2.us.cities SO2 data for 32 US cities with respect to 6 explanatory variables
```


Description

Of concern for public health officials and biologists are models of air pollution as a function of environmental characteristics. Using a meta-analysis of government publications Sokal and Rolf (1995) compiled an interesting dataset which investigates air pollution (measured as annual mean SO_{2} concentration per m^{3}) as a function of six environmental variables for 32 cities in the United States. Whenever the data were available they are based on averages of three years 1969, 1970, and 1971.

Usage

```
    data(so2.us.cities)
```


Format

The dataset contains 8 variables:
City US city.
Y Average annual SO_{2} concentration per m^{3}.
X1 Average annual temperature (degrees Celsius).
X2 Number of industrial companies with more than 20 employees.
X3 Population size (1970 census) in thousands.
X4 Average Annual average wind speed.
X5 Average Annual precipitation (cm).
X6 Average number of days with precipitation.

Source

Sokal, R. R., and F. J. Rohlf (2012) Biometry, 4th ed. Freeman.

stan.error	Variance and standard error estimators for the sampling distribution of the sample mean

Description

Estimator for the variance for the sampling distribution of the sample mean, i.e. S^{2} / n, and the standard deviation of the sampling distribution, i.e. $S / \sqrt{(} n)$.

Usage

stan.error (x)
stan.error.sq(x)

Arguments

x
A vector of quantitative data.

Author(s)

Ken Aho

See Also

Description

UTM northing and easting data along with 18 other environmental variables describing the Starkey experimental forest.

```
Usage
    data(starkey)
```

suess
del14C in the atmosphere from 1700-1950

Description

Six reservoir model prediction of the $\delta^{1} 4 \mathrm{C}$ in the atmosphere from approximately $1700-1950$ as provided by Bacastow and Keeling (1973).

Usage

```
data("suess")
```


Format

A data frame with 149 observations on the following 3 variables.
Year Year
del14C Levels of $\delta^{1} 4 \mathrm{C}$
Source Sources used by Bacastow et al. (1973). lermanN = Northern Hemisphere measures from Lerman (1970), lermanS = Southern Hemisphere measures from Lerman (1970), suess $=$ Northern Hemisphere measures from Suess (1955, 1965), stuiver $=$ Northern Hemisphere measures from Stuiver (1963).

Source

Bacastow, R., Keeling, C. D., Woodwell, G. M., \& Pecan, E. V. (1973). Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from AD 1700 to 2070 as deduced from a geochemical model (No. CONF-720510-). Univ. of California, San Diego, La Jolla; Brookhaven National Lab., Upton, NY (USA).

References

Secondary sources used by Bacastow et al. (1973):
Lerman, J. C., Mook, W. G., \& Vogel, J. C. (1970). C14 in tree rings from different localities. In Radiocarbon Variations and Absolute Chronology. Proceedings, XII Nobel Symposium. New York: Wiley. p (pp. 275-301).

Stuiver, M. (1963). Yale natural radiocarbon measurements IX. Radiocarbon, 11, 545-658.
Suess, H. E. (1965). Secular variations of the cosmic-ray-produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research, 70(23), 5937-5952.

Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415-417.

Examples

```
data(suess)
with(suess, plot(Year, del14C, col = Source, pch = as.numeric(Source)))
with(suess, legend("topright", legend = levels(Source), col = 1:4, pch = 1:4))
lines(lowess(suess$Year, suess$del14C, f = .25), lwd = 2)
```

 trag Salsify height dataset

Description

Heights of salsify Tragapogon dubius at the Barton Road long term experimental site in Pocatello Idaho.

Usage

data(trag)

Format

A data frame with 20 observations on the following variable.
height T. dubius plant height in cm
transM Transition matrix analysis

Description

Creates a plot showing expected numbers of individuals in specified age classes or life stages given survivorship probabilities from a transition matrix (cf. Caswell 2000). The function anm. transM provides an animated view of the population growth curves. The function anm. TM. tck provides a tcltk GUI to run anm. TM. tck.

Usage

transM(A, init, inter = 100, stage.names $=c(" A l l \operatorname{grps} ", 1:(n \operatorname{col}(A)))$,
leg. room $=1.5, \ldots$)
anm.transM(A,init,inter=100, stage.names $=c(" A l l$ grps", $1:(n \operatorname{col}(A)))$,
leg. room $=1.5$, anim.interval=0.1,...)
anm.TM.tck()

Arguments

A Transition matrix containing survivorship probabilities and fecundities see Caswell (2000).
init A numeric vector containing initial numbers in each age class of interest.
inter Number of time intervals for which population numbers are to be calculated.
stage. names A character vector giving life stage names.
leg.room A Y-axis multiplier intended to create room for a legend.
anim.interval Speed of animation in frames per second.
... Additional arguments for plot

Value

Returns a plot and proportions of the population in each age class for the number of time intervals in inter.

Author(s)

Ken Aho

References

Caswell, H (2000) Matrix Population Models: Construction, Analysis and Interpretation, 2nd Edition. Sinauer Associates, Sunderland, Massachusetts.
Gurevitch, J., Scheiner, S. M., and G. A. Fox (2006) The Ecology of Plants. Sinauer.

Examples

```
    #Endangered cactus data data from Gurevitch et al. (2006)
    A<-matrix(nrow=3,ncol=3, data=c(.672,0,.561,0.018,0.849,0,0,0.138,0.969),
    byrow=TRUE)
    init<-c(10, 2,1)
    transM(A, init,inter=100,stage.names=c("All","Sm. Juv.","Lg. Juv.","Adults"),
    xlab="Years from present",ylab="n")
    #animated version
    ## Not run:
    anm.transM(A,init,inter=100,stage.names=c("All","Sm. Juv.","Lg. Juv.","Adults"),
    xlab="Years from present",ylab="n")
    ## End(Not run)
```

 trim.me
 Trim data

Description

Trims observations above and below the central $(1-2 \lambda)$ part of an an ordered vector of data.

Usage

trim.me(Y, trim = 0.2)

Arguments

Y
A vector of quantitative data.
trim
Proportion (0-1) to be trimmed from each tail of an ordered version of Y .

Value

Returns a trimmed data vector.

Author(s)

Ken Aho

Examples

```
x<-c(2,1,4,5,6,2.4,7,2.2,.002,15,17,.001)
trim.me(x)
```

trim.ranef.test Robust test for random factors using trimmed means.

Description

Provides a robust hypothesis test for the null: $\operatorname{Var}(X)=0$, for a population of random factor levels.

Usage

trim. ranef.test($\mathrm{Y}, \mathrm{X}, \operatorname{tr}=0.2)$

Arguments

$Y \quad$ Vector of response data. A quantitative vector.
$X \quad$ Vector of factor levels
tr Amount of trimming. A number from 0-0.5.

Details

Robust analyses for random effect designs are particularly important since standard random effects models provide poor control over type I error when assumptions of normality and homoscedasticity are violated. Specifically, Wilcox (1994) showed that even with equal sample sizes, and moderately large samples, actual probability of type I error can exceed 0.3 if normality and homoscedasticity are violated.

Value

Returns a list with three components dataframe describing numerator and denominator degrees of freedom, the F test statistic and the p-value.

Note

code based on Wilcox (2005)

Author(s)

Ken Aho

References

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

Examples

```
rye<-c(50,49.8,52.3,44.5,62.3,74.8,72.5,80.2,47.6,39.5,47.7,50.7)
nutrient<-factor(c(rep (1,4),rep (2,4),rep (3,4)))
trim.ranef.test(rye,nutrient,tr=.2)
```

trim.test Robust one way trimmed means test.

Description

A robust heteroscedastic procedure using trimmed means.

Usage

trim.test(Y, X, tr = 0.2)

Arguments

Y A vector of responses. A quantitative vector
$X \quad$ A vector of factor levels.
tr The degree of trimming. A value from 0-0.5.

Details

The method utilized here is based on the simple idea of replacing means with trimmed means and standard error estimates, based on all the data, with the standard error of the trimmed mean (Wilcox 2005). The method has the additional benefit of being resistant to heteroscedasticity due to the use of the Welch method for calculating degrees of freedom. With no trimming the degrees of freedom reduce to those of the one way Welch procedure in oneway. test.

Value

Returns a dataframe with numerator and denominator degrees of freedom, a test statistic, and a p-value based on the F-distribution.

Note
code based on Wilcox (2005)

Author(s)

Ken Aho

References

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

See Also

oneway.test

Examples

rye<-c $(50,49.8,52.3,44.5,62.3,74.8,72.5,80.2,47.6,39.5,47.7,50.7)$
nutrient<-factor $(c(\operatorname{rep}(1,4), \operatorname{rep}(2,4), \operatorname{rep}(3,4)))$
trim. test(rye, nutrient, tr=. 2)

```
tukey.add.test Tukey's test of additivity.
```


Description

With an RBD we are testing the null hypothesis that there is no treatment effect in any block. As a result randomized block designs including RBDs, Latin Squares, and spherical repeated measures assume that there is no interaction effect between blocks and main factors (i.e. main effects and block are additive). We can test this assumption with the Tukey's test for additivity. We address the following hypotheses:
H_{0} : Main effects and blocks are additive, versus H_{A} : Main effects and blocks are non-additive.

Usage

tukey.add.test(y, A, B)

Arguments

$y \quad$ Response variable. Vector of quantitative data.
A Main effects. Generally a vector of categorical data.
B Blocking variable. A vector of categories (blocks).

Details

Tukey's test for additivity is best for detecting simple block x treatment interactions; for instance, when lines in an interaction plot cross. As a result interaction plots should be used for diagnosis of other types of interactions. A high probability of type II error results from the inability Tukey's additivity test to detect complex interactions (Kirk 1995). As a result a conservative value of should be used, i.e. $0.1-0.25$.

Value

Returns a table with test results.

Author(s)

Orginal author unknown. Modified by K. Aho

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

Kirk, R. E. 1995. Experimental Design. Brooks/Cole. Pacific Grove, CA.

Examples

```
treatment<-as.factor(c(36,54,72,108,144,36,54,72,108,144,36,54,72,108,144))
block<-as.factor(c(rep (1,5),rep (2,5),rep (3,5)))
strength<-c(7.62,8.14,7.76,7.17,7.46,8,8.15,7.73,7.57,7.68, 7.93,7.87,7.74, 7.8,7.21)
tukey.add.test(strength,treatment,block)
```

veneer Veneer data from Littell et al. (2002)

Description

Four examples of each of five brands of a synthetic wool veneer material were subjected to a friction test and a measure of wear was determined for each experimental unit.

Usage

data(veneer)

Format

A data frame with 20 observations on the following 2 variables.
wear a numeric vector
brand a factor with levels ACME AJAX CHAMP TUFFY XTRA

Source

Littell, R. C., Stroup, W. W., and R. J. Freund (2002) SAS for Linear Models. John Wiley and Associates.

Description

The user specifies the probabilities of two outcomes, and if applicable, their intersection. A Venn diagram is returned. The universe, S, will generally not have unit area, but in many applications will be a good approximation. The area of the intersection will also be an approximation.

Usage

$\operatorname{Venn}(A, B, A a n d B=0, l a b A=" A ", l a b B=" B "$, cex.text $=.95, \ldots$)
Venn.tck()

Arguments

A
Probability of event A
B Probability of event B
AandB Probability of the intersection of A and B
labA Label assigned to event A in the diagram
labB Label assigned to event B in the diagram
cex.text Character expansion for text.
... Additional arguments from plot

Value

A Venn diagram is returned.

Author(s)

K. Aho

References

Bain, L. J., and M. Engelhardt (1992) Introduction to Probability and Mathematical Statistics. Duxbury press. Belmont, CA, USA.

Examples

$\operatorname{Venn}(A=.3, B=.2, A$ and $B=.06)$

Description

Scandinavian, lichen, bryophyte, and vascular plant data from Vare et al. (1995).

Usage

data(vs)

Format

A data frame with 24 observations (sites) on 44 variables (species).

Details

Lifted from dataframe $\{$ varespec $\}$ in package vegan.

Source

The dataset $\{$ varespec $\}$ in package vegan

References

Vare, H., Ohtonen, R., and J. Oksanen (1995) Effects of reindeer grazing on understory vegetation in dry Pinus sylvestris forests. Journal of Vegetation Science 6: 523-530.

```
wash.rich Species richness and environmental variables from Mt Washburn
```


Description

Aho and Weaver (2010) examined the effect of environmental characteristics on alpine vascular plant species richness on Mount Washburn (3124m) a volcanic peak in north-central Yellowstone National Park.

Usage

data(wash.rich)

Format

A data frame with 40 observations on the following 7 variables.
site Site identifier.
Y Species richness.
X1 Percent Kjeldahl (total) soil N.
X2 Slope in degrees.
X3 Aspect in degrees from true north.
X4 Percent cover of surface rock.
X5 Soil pH.

Source

Aho, K., and T. Weaver (2010) Ecology of alpine nodes: environments, communities, and ecosystem evolution (Mount Washburn; Yellowstone Natl. Park). Arctic, Antarctic, and Alpine Research. 40(2): 139-151.
webs \quad Spider web length data

Description

Gosline et al. (1984) applied heat to strands of spider web to determine whether the structure underlying webs was rubber-like. Data are estimated from a scatterplot in Gosline et al..

Usage

data(webs)

Format

The dataframe contains 4 columns
obs Observation number.
relative length Relative strand strand length after heat application.
temp.C Temp in degrees Celsius.
residuals Residuals from the linear model length~temp.C.

Source

Gosline, J. M., Denny, M. W. and Demont, M. E. (1984). Spider silk as rubber. Nature 309, 551552.

Description

Allard (1966) sought to quantify variation in the yield in wheat grasses. Five wheat crosses were selected from a breeding program and were grown at four randomly selected locations where the wheat would be grown commercially. At each location crosses (families) were randomly assigned to particular sections of fields, i.e. at each location a one way randomized block design was conducted.

Usage
 data(wheat)

Format

The dataframe has four columns:
yield Refers to wheat yield.
loc Refers to randomly selected locations where wheat were grown commercially. A factor with four levels: $1,2,3,4$.
block Refers to the replicate block within location. A factor with four levels: 1, 2, 3,4. Within each block five wheat crosses were randomly assigned and grown.
cross Refers to wheat crosses. A factor with five levels: 1, 2, 3, 4, 5 .

Source

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and O. Schabenberger (2006) SAS for Mixed Models 2nd ed. SAS press.
whickham Whickham contingency table data for smokers and survivorship

Description

Appleton et al. (1996) summarized a study from the Whickham district of England to quantify the association of smoking, age, and death. 1,314 women were interviewed in the early 1970s with respect to their smoking habits. Twenty years later the women were relocated and classified with respect to survival at the time of the follow up (yes or no), whether they smoked at the time of the original interview (yes or no), and age at the time of the original study ($1=18-24,2=35-64,3=$ >65) .

Usage
 data(whickham)

Format

A data frame with 12 observations on the following 4 variables.
age A factor with levels 123.
survival A factor with levels $\mathrm{N} Y$.
smoke A factor with levels $\mathrm{N} Y$.
count Cross-classification count.

Source

Appleton, D. R., French, J. M., Vanderpump, M. P. J. (1996) Ignoring a covariate: AN example of Simpson's paradox. The American Statistician 50(4): 340-341.

```
wildebeest Wildebeest carcass categorical data
```


Description

To test the "predation-sensitive food" hypothesis, which predicts that both food and predation limit prey populations, Sinclair and Arcese (1995) examined wildebeest (Connochaetes taurinus) carcasses in the Serengeti. The degree of malnutrition in animals was measured by marrow content since marrow will contain the last fat reserves in ungulates. Carcasses were cross-classified with respect to three categorical variables: sex (M,F), cause of death (predation, non-predation), and marrow type ($\mathrm{SWF}=$ Solid White Fatty, indicating healthy animals, $\mathrm{OG}=$ Opaque Gelatinous, indicating malnourishment, and TG = Translucent Gelatinous, the latter indicating severe malnourishment).

Usage

data(wildebeest)

Format

A data frame with 12 observations on the following 4 variables.
marrow A factor with levels OG SWF TG.
sex A factor with levels F M.
predation A factor with levels N P.
count Count in each cell

Source

Sinclair, A. R. E., and P. Arcese (1995) Population consequences of predation-sensitive foraging: the Serengeti wildebeest. Ecology 76(3): 882-891.
win Winsorize data

Description

Winsorizes the proportion of ordered data given by lambda from each tail.

Usage

```
win(x, lambda = 0.2)
```


Arguments

x
lambda

A vector of data.
A proportion from 0-1 giving the amount of data to be Winsorized in each tail of an ordered dataset.

Details

In Winsorization we we replace responses that are not in the central $1-2 \lambda$ part of an ordered sample with the minimum and maximum responses of the central part of the sample.

Value

Returns Winsorized data.

Author(s)

Ken Aho

References

Wilcox, R. R. (2005) Introduction to Robust Estimation and Hypothesis Testing, Second Edition. Elsevier, Burlington, MA.

Examples

```
x<-c(2,1,4,5,6,2.4,7,2.2,.002,15,17,.001)
win(x)
```

wine \quad White wine quality data for data mining

Description

These data concern white variants of the Portuguese "Vinho Verde" wine. Quality is an ordinal variable based on the median assessment of of at least 3 wine experts. Each expert graded wine quality between 0 (very bad) and 10 (excellent).

Usage

```
    data("wine")
```


Format

A data frame with 4898 observations on the following 12 variables.
Y Wine quality.
X1 Volatile acidity.
X2 Citric acid content.
X3 Residual Sugar content.
X4 Chloride content.
X5 Free sulfur dioxide content.
X6 Total sulfur dioxide content.
X7 Density.
X8 $\mathrm{pH}:-\log _{10}\left[\mathrm{H}^{+}\right]$.
X9 Sulphate content.
X10 Alcohol content.
X11 Fixed acidity.

Source

Paulo Cortez (Univ. Minho), Antonio Cerdeira, Fernando Almeida, Telmo Matos and Jose Reis (CVRVV) @ 2009

References

Past Usage:
P. Cortez, A. Cerdeira, F. Almeida, T. Matos, Reis, J.(2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47(4):547-553.
world.co2 World CO2 levels, by country, from 1980 to 2006

Description

The Carbon Dioxide Information Analysis Center (CDIAC) has compiled extensive data, detailing total carbon dioxide emissions from the consumption and flaring of fossil fuels (in millions of metric tons of carbon dioxide). Data can be broken down by country. More up-to-date data can be found in this package at world.emissions.

Usage

data(world.co2)

Format

The dataframe contains 16 columns
Year The year of CO_{2} measure (1980-2006).
Afghanistan CO_{2} emissions in Afghanistan from 1980-2006 (1×10^{6} metric tons).
Belgium CO_{2} emissions in Belgium...
Brazil CO_{2} emissions in Brazil...
Canada CO_{2} emissions in Canada...
China CO_{2} emissions in China...
Finland CO_{2} emissions in Finland...
Ghana CO_{2} emissions in Ghana...
Italy CO_{2} emissions in Italy...
Japan CO_{2} emissions in Japan...
Kenya CO_{2} emissions in Kenya...
Mexico CO_{2} emissions in Mexico...
Saudi.Arabia CO_{2} emissions in Saudi Arabia...
United.Arab.Emirates CO_{2} emissions in the United Arab Emirates..
United.States CO_{2} emissions in United States...
World.Total CO_{2} emissions totals for the world...

Source

Carbon Dioxide Information Analysis Center (CDIAC); https://cdiac.ess-dive.lbl.gov/trends/ emis/tre_coun.html

Description

A subset of the complete CO_{2} and Greenhouse Gas Emissions dataset maintained by Our World in Data (https://ourworldindata.org/) through 2019. The data follow a format of 1 row per "country" per year.

Usage

data("world.emissions")

Format

A data frame with 23708 observations on the following 15 variables.
iso_code Three-letter summary code for countries (ISO 3166-1 alpha-3).
country A character vector identifying country.
year Year data were collected, 1750-2019
co2 Annual production-based emissions of carbon dioxide $\left(\mathrm{CO}_{2}\right)$, measured in million tonnes. This is based on territorial emissions, which do not account for emissions from traded goods.
coal_co2 Annual production-based emissions of CO_{2} from coal, measured in million tonnes.
flaring_co2 Annual production-based emissions of CO_{2} from flaring, measured in million tonnes.
gas_co2 Annual production-based emissions of CO_{2} from gas, measured in million tonnes.
oil_co2 Annual production-based emissions of CO_{2} from oil, measured in million tonnes.
other_industry_co2 Annual production-based emissions of CO_{2} from other industry sources, measured in million tonnes. Based on territorial emissions,.
total_ghg Total greenhouse gas emissions, including land use change and forestry, measured in million tonnes of CO_{2}-equivalents.
methane Total methane emissions, measured in million tonnes of CO_{2}-equivalents.
nitrous_oxide Total nitrous oxide emissions, measured in million tonnes of CO_{2}-equivalents.
primary_energy_consumption Primary energy consumption, measured in terawatt-hours per year.
population Population by country, available from 1800 to 2021 based on Gapminder data, HYDE, and UN Population Division (2019) estimates.
gdp Gross domestic product measured in international-\$ using 2011 prices to adjust for price changes over time (inflation) and price differences between countries. Calculated by multiplying GDP per capita with population.
continent Continent. Caribbean countries are distinguished from other North American countries. Additionally a level called "Redundant" is included to parse redundant entries in the country column, e.g., the "countries" Libya and Africa contain redundant information.

Details

Thanks to BIOL 6651 students at ISU who annotated these data: Laurel Faurot, Sawyer Finley, Spencer Roop, Therese Balkenbush, Lauren Tucker, Jessica Call and Riley Lanfear.

Source

https://github.com/owid/co2-data

References

According to Our World in Data (https://ourworldindata.org/), CO_{2} data are sourced from the Global Carbon Project (https://www.globalcarbonproject.org) which releases updates of CO_{2} emissions data annually. Greenhouse gas emissions (including methane, and nitrous oxide) are sourced from the CAIT Climate Data Explorer (https://www.climatewatchdata.org:443/ ?source=cait), and downloaded from the Climate Watch Portal (https: //www. climatewatchdata. org. Energy consumption data this data are sourced from a combination of two sources The Statistical Review of World Energy https://www.bp.com/en/global/corporate/energy-economics/ statistical-review-of-world-energy.html and World Bank Development Indicators https: //databank.worldbank.org/source/world-development-indicators. Although The Statistical Review of World Energy is published annually, it does not provide data for all countries. For countries absent from this dataset, we calculated primary energy by multiplying the World Bank, World Development Indicators metric Energy use per capita by total population figures. The World Bank sources its metric from the International Energy Agency (IEA). Other variables were collected from a variety of sources including the United Nations, Gapminder, and the Maddison Project Database.

Examples

```
data(world.emissions)
```


Description

Population levels of 13 countries from 1980-2006. Population numbers are rounded to the nearest 100,000. More up-to-date data can be found in this package at world.emissions

```
Usage
data(world.pop)
```


Format

The dataframe contains 14 columns
Year The year of population measurements (1980-2006)
Afghanistan Population in Afghanistan from 1980-2006, rounded to the nearest 100,000.
Brazil Population in Brazil...
Canada Population in Canada...
China Population in China...
Finland Population in Finland...
Italy Population in Italy...
Japan Population in Japan...
Kenya Population in Kenya...
Mexico Population in Mexico...
Saudi.Arabia Population in Saudi Arabia...
United.Arab.Emirates Population in the United Arab Emirates...
United.States Population in United States...
World.Total Population totals for the world...

Source

US census bureau: https://www.census.gov/programs-surveys/international-programs/ about/idb.html

Index

```
* datasets
    agrostis,6
    aids,7
    alfalfa.split.plot,7
    anolis,29
    anscombe, 29
    ant.dew, 31
    asthma, 32
    baby.walk, 34
    bats,35
    BCI.count, 37
    BCI.plant, 38
    bear,40
    beetle,41
    bombus,44
    bone, 44
    bromus, 52
    C.isotope,56
    caribou, 57
    case0902,58
    case1202,59
    chronic,61
    cliff.env, 80
    cliff.sp,81
    concrete, 81
    corn,84
    crab.weight, 84
    crabs, }8
    cuckoo,86
    death.penalty, }8
    deer, }8
    deer.296,89
    depression,89
    d02, 91
    drugs, }9
    e.cancer,93
    enzyme, 94
    exercise.repeated,96
    facebook,97
```

Fbird, 98
fire, 99
fly.sex, 99
frog, 100
fruit, 101
garments, 103
Glucose2, 103
goats, 104
grass, 105
heart, 106
ipomopsis, 111
K, 113
larrea, 117
life.exp, 118
magnets, 120
montane.island, 127
moose.sel, 128
mosquito, 129
myeloma, 130
PCB, 146
pika, 148
plantTraits, 149
PM2.5, 154
polyamine, 155
portneuf, 155
potash, 156
potato, 157
prostate, 161
Rabino_CO2, 172
rat, 173
refinery, 173
rmvm, 175
savage, 181
sc.twin, 182
sedum.ts, 183
Semiconductor, 198
SexDeterm, 198
shad, 199
simberloff, 203

SM. temp.moist, 205
snore, 206
so2.us.cities, 206
starkey, 208
suess, 208
trag, 209
veneer, 215
vs, 217
wash.rich, 217
webs, 218
wheat, 219
whickham, 219
wildebeest, 220
wine, 222
world.co2, 223
world.emissions, 224
world.pop, 225

* design

anm.ExpDesign, 13
anm. samp.design, 28

* graphs

anm.ci, 9
anm. coin, 11
anm. cont.pdf, 12
anm.die, 12
anm.ExpDesign, 13
anm.geo.growth, 17
anm. loglik, 18
anm.ls, 21
anm.ls.reg, 23
anm.LV, 24
anm.mc.bvn, 26
anm. samp. design, 28
Bayes.disc, 35
book.menu, 45
bplot, 49
bv.boxplot, 52
bvn.plot, 55
chi.plot, 60
illusions, 111
paik, 134
panel.cor.res, 142
partial.resid.plot, 144
plot.pairw, 150
plotAncova, 152
plotCI.reg, 153
Preston.dist, 160
r.dist, 168
R.hat, 170
samp.dist, 176
samp.dist.mech, 180
see. accPrec.tck, 184
see. ancova.tck, 184
see. anova.tck, 185
see.cor. range.tck, 185
see.exppower.tck, 186
see. HW, 186
see. 1ma.tck, 187
see. 1 mr. tck, 187
see. 1 mu.tck, 188
see.logic, 189
see.M, 189
see.mixedII, 190
see.mnom.tck, 191
see.move, 191
see.nlm, 192
see.norm.tck, 192
see. power, 193
see.rEffect.tck, 194
see.regression.tck, 195
see. roc.tck, 195
see.smooth.tck, 196
see.ttest.tck, 196
see.typeI_II, 197
shade.norm, 200
shade.norm.tck, 202
transM, 210
Venn, 216

* htest

AP. test, 31
BDM. test, 39
boot.ci.M, 46
ci.mu.oneside, 66
ci.mu.z, 67
ci.p, 68
ci.sigma, 77
ci.strat, 78

DH.test, 90
eff.rbd, 93
g.test, 102
joint.ci.bonf, 112
km, 115
Kullback, 116
MC.test, 121
modlevene.test, 126
MS. test, 129

```
    one.sample.t, 132
    one.sample.z, 133
    pairw.anova, }13
    pairw.fried,138
    pairw.kw, 140
    pairw.oneway, 141
    panel.cor.res,142
    perm.fact.test,146
    plot.pairw, 150
    plotCI.reg, 153
    r.pb,171
    trim.ranef.test, 212
    trim.test, 213
    tukey.add.test, 214
* manip
    boot.ci.M, 46
    bootstrap,47
    ci.boot,62
    MC, 120
    pseudo.v, 165
* multivariate
    bv.boxplot,52
    chi.plot,60
    D.sq, }8
    DH.test,90
    Kappa,114
    Kullback,116
* univar
    anm.loglik, 18
    AP.test, 31
    BDM.test, 39
    boot.ci.M, 46
    ci.median, }6
    ci.mu.oneside, }6
    ci.mu.z, 67
    ci.p,68
    ci.sigma,77
    ci.strat,78
    joint.ci.bonf,112
    km, 115
    lm.select,119
    MC.test, 121
    modlevene.test,126
    MS.test, 129
    one.sample.t, 132
    one.sample.z, }13
    pairw.anova, }13
    pairw.fried,138
```

pairw.kw, 140
pairw. oneway, 141
partial.resid.plot, 144
perm.fact.test, 146
plotCI.reg, 153
press, 159
r.bw, 167
r.pb, 171
shade. norm, 200
skew, 204
stan.error, 207
trim. ranef.test, 212
trim.test, 213
tukey.add.test, 214
agrostis, 6
AIC, 119
aids, 7
alfalfa.split.plot, 7
alpha.div, 8
anm.ci, 9, 45
anm.coin, 11, 13, 45
anm. cont.pdf, 12
anm.die, 12, 45
anm.exp.growth, 45
anm.exp.growth (anm.geo.growth), 17
anm.ExpDesign, 13
anm.geo.growth, 17, 45
anm.log.growth, 45
anm.log.growth (anm.geo.growth), 17
anm.loglik, 18, 45
anm.ls, 21, 24, 45
anm.ls.reg, 23, 45
anm.LV, 24
anm.LVc.tck (anm.LV), 24
anm.LVcomp, 18, 45
anm.LVcomp (anm.LV), 24
anm.LVe.tck (anm.LV), 24
anm. LVexp, 18, 45
anm. LVexp (anm.LV), 24
anm.mc.bvn, 26
anm.mc.norm (anm.mc.bvn), 26
anm. samp. design, 28
anm. TM. tck (transM), 210
anm. transM, 45
anm. transM (transM), 210
anolis, 29
anscombe, 29
ant. dew, 31

AP.test, 31
asthma, 32
auc, 33
baby.walk, 34
barplot, 51, 151
bats, 35
Bayes.disc, 35
bayes.lm, 36
BCI. count, 37
BCI.plant, 38
BDM. 2way (BDM. test), 39
BDM.test, 39
bear, 40
beetle, 41
best. agreement, 42
bighorn.sel (moose.sel), 128
bighornAZ.sel (moose.sel), 128
bin2dec, 43
bombus, 44
bone, 44
bonf.cont (pairw. anova), 135
bonfCI (pairw.anova), 135
book.menu, 45, 186, 189
boot, 47, 48, 62, 165-167
boot.ci.M, 46
bootstrap, 47, 47, 50, 62, 165
bound. angle, 48, 132, 162, 163
boxplot, 55
bplot, 49, 151
bromus, 52
bv. boxplot, 52, 61, 91
bvn.plot, 55
C.isotope, 56
caribou, 57
case0902, 58
case1202, 59
chi.plot, 60
chronic, 61
ci. boot, $47,48,62,75$
ci.impt, 63
ci.median, 10, 65
ci.mu.oneside, 66
ci.mu.t, 10, 67
ci.mu.t(ci.mu.z), 67
ci.mu.z, 10, 67, 71, 77, 80
ci.p, 10, 64, 68, 74, 76
ci.prat, 64, 71, 76
ci.prat.ak, 74, 74
ci.sigma, 10, 77
ci.strat, 78
cliff.env, 80
cliff.sp, 81
concrete, 81
ConDis.matrix, 83
confint, 113
cor, 83, 142-144, 159, 168, 169
cor.test, 143
corn, 84
corr, 171
crab.weight, 84
crabs, 85
cuckoo, 86
cutree, 42, 43
D.sq, 86
dbinom, 21
death.penalty, 87
deer, 88
deer.296, 89
depression, 89
dexp, 21
DH.test, 90
dirty.dist (samp.dist), 176
dnbinom, 125
dnorm, 21, 161
d02, 91
dpois, 21
drugs, 92
dunnettCI (pairw.anova), 135
e. cancer, 93
eff.rbd, 93
elk.sel (moose.sel), 128
empinf, 165
envelope, 167
enzyme, 94
ES.May, 95
exercise.repeated, 96
ExpDesign (anm.ExpDesign), 13
facebook, 97
Fbird, 98
fire, 99
fligner.test, 127
fly.sex, 99
FR.multi.comp (pairw.fried), 138
friedman.test, 32, 130, 139
frog, 100
fruit, 101
G.mean, 101, 106, 107
g.test, 102
garments, 103
Glucose2, 103
goat.sel (moose.sel), 128
goats, 104
grass, 105
gray, 178
H.mean, 102, 105, 107, 126
hclust, 43
heart, 106
heat.colors, 178
HL.mean, 102, 106, 107, 126
huber.mu, 108, 109, 110, 126, 190
huber. NR, 108, 109, 110, 190
huber. one.step, 108, 109, 110
illusions, 111
ipomopsis, 111
IQR, 50
joint.ci.bonf, 112
juniper.sel (moose.sel), 128
K, 113
Kappa, 114
km, 115
kruskal.test, 40
ksmooth, 196
Kullback, 116
kurt (skew), 204
KW.multi.comp (pairw.kw), 140
larrea, 117
legend, 152
life.exp, 118
lm, 112, 145, 152, 153, 188
lm.select, 119
loess, 196
loglik.binom.plot (anm.loglik), 18
loglik.custom.plot (anm.loglik), 18
loglik.exp.plot (anm.loglik), 18
loglik.norm.plot (anm.loglik), 18
loglik.plot, 23, 24
loglik.plot (anm. loglik), 18
loglik. pois.plot (anm.loglik), 18
lowess, 145
lsdCI (pairw. anova), 135
mad, 51, 108-110
magnets, 120
mahalanobis, 87
mat. pow (MC), 120
MC, 120
MC. test, 121, 146, 148
mcmc.norm.hier, 37, 123
mean, 126, 177
median, 65, 126, 177
ML.k, 124

Mode, 125
modlevene. test, 126
montane.island, 127
moose.sel, 128
mosquito, 129
MS.test, 32, 129
mule.sel (moose.sel), 128
multcompLetters, 151
myeloma, 130
near. bound, 48, 49, 131, 162, 163
$\mathrm{nls}, 160,161$
norm.hier.summary (mcmc.norm.hier), 123
one.sample.t, 132
one.sample.z, 133
oneway.test, 213
outer, 137
p.adjust, 113, 141, 142
paik, 134
pairw.anova, 49, 51, 135, 141, 142, 151
pairw.fried, 49, 51, 138, 141, 151
pairw.kw, 49, 51, 140, 151
pairw.oneway, 141
panel.cor.res, 142
panel.lm (panel.cor.res), 142
panel.smooth, 142, 143
par, 151
partial.R2, 143, 145
partial.resid.plot, 144, 144
PCB, 146
perm.fact.test, 146
pika, 148
plantTraits, 149
plot, 10, 11, 14, 17, 20, 22, 23, 25, 27, 36, 60, $115,135,145,152,154,160,167$, 201, 210, 216
plot.histogram, 178
plot.pairw, 137, 139, 141, 150
plotAncova, 152
plotCI.reg, 153
pm (see.1mu.tck), 188
pm1 (see. 1mr.tck), 187
PM2.5, 154
pnorm, 68, 134, 158
points, 53
polyamine, 155
portneuf, 155
potash, 156
potato, 157
power.z.test, 157, 197
predict, 154
press, 119, 159
Preston.dist, 160
print.addtest (tukey.add.test), 214
print.bci (boot.ci.M), 46
print.BDM (BDM.test), 39
print.blm (bayes.lm), 36
print.bootstrap (bootstrap), 47
print.ci (ci.mu.z), 67
print.ciboot (ci.boot), 62
print.kback (Kullback), 116
print.max_agree (best.agreement), 42
print.mltest (modlevene.test), 126
print.oneSamp (one.sample.z), 133
print. pairw (pairw.anova), 135
print.prp.index (prp), 162
prostate, 161
prp, 49, 131, 132, 162
pseudo.v, 164, 182, 183
pt, 68, 133
qq.Plot, 166
qqline, 166, 167
qqnorm, 166, 167
quail.sel (moose.sel), 128
r.bw, 167, 171
r.dist, 168
r.eff (see.rEffect.tck), 194
R.hat, 124, 170
r.pb, 168, 171

Rabino_CO2, 172

Rabino_del13C (Rabino_C02), 172
rainbow, 178
rank, 140
rat, 173
rbinom, 11
rchisq, 174
refinery, 173
Rf (MC), 120
rinvchisq, 174
rmvm, 175
rpois, 117
samp.design, 16
samp. design (anm. samp.design), 28
samp.dist, 45, 176
samp.dist.mech, 180
savage, 181
sc.twin, 182
scheffe.cont (pairw.anova), 135
scheffeCI (pairw. anova), 135
sd, 207
se. jack, 182
se.jack1 (se.jack), 182
sedum.ts, 183
see. accPrec.tck, 184
see. adddel (see.move), 191
see. ancova.tck, 184
see. anova.tck, 185
see.beta.tck (see.norm.tck), 192
see.betacdf.tck (see.norm.tck), 192
see.bin.tck (see.norm.tck), 192
see.bincdf.tck (see.norm.tck), 192
see.chi.tck (see.norm.tck), 192
see.chicdf.tck (see.norm.tck), 192
see.cor. range.tck, 185
see.disc.unif.tck (see.norm.tck), 192
see.disc.unifcdf.tck (see.norm.tck), 192
see.exp.tck (see.norm.tck), 192
see. expcdf.tck (see.norm.tck), 192
see.exppower.tck, 186
see.F.tck (see.norm.tck), 192
see. Fcdf.tck (see.norm.tck), 192
see.gam.tck (see.norm.tck), 192
see.gamcdf.tck (see.norm.tck), 192
see.geo.tck (see.norm.tck), 192
see.geocdf.tck (see.norm.tck), 192
see. HW, 45, 186
see.hyper.tck (see.norm.tck), 192
see.hypercdf.tck (see.norm.tck), 192
see.lma.tck, 187
see.lmr.tck, 187
see.lmu.tck, 45, 188
see.lnorm.tck (see.norm.tck), 192
see.lnormcdf.tck (see.norm.tck), 192
see.logic, 45, 189
see.logis.tck (see.norm.tck), 192
see.logiscdf.tck (see.norm.tck), 192
see.M, 45, 189
see.mixedII, 190
see.mnom.tck, 191
see.move, 45, 191
see.nbin.tck (see.norm.tck), 192
see.nbincdf.tck (see.norm.tck), 192
see.nlm, 45, 192
see.norm.tck, 45, 192
see. normcdf.tck (see.norm.tck), 192
see.pdf.conc.tck (anm. cont.pdf), 12
see. pdfdriver (see.norm.tck), 192
see.pois.tck (see.norm.tck), 192
see.poiscdf.tck (see.norm.tck), 192
see.power, 45, 193, 197
see.r.dist.tck (r.dist), 168
see.rEffect.tck, 194
see.regression.tck, 45, 195
see.roc.tck, 195
see.smooth.tck, 196
see.t.tck (see.norm.tck), 192
see.tcdf.tck (see.norm.tck), 192
see.ttest.tck, 196
see.typeI_II, 45, 197
see.unif.tck (see.norm.tck), 192
see.unifcdf.tck (see.norm.tck), 192
see.weib.tck (see.norm.tck), 192
see.weibcdf.tck (see.norm.tck), 192
selftest.ANOVAmixed.tck1
(selftest.se.tck1), 197
selftest.ANOVAsiminf.tck1
(selftest.se.tck1), 197
selftest.ANVOVA_design.tck
(selftest.se.tck1), 197
selftest.bayes4.tck(selftest.se.tck1), 197
selftest.bayes5.tck(selftest.se.tck1), 197
selftest.codettest.tck (selftest.se.tck1), 197
selftest.conf.tck1 (selftest.se.tck1),

197
selftest.corr.tck1 (selftest.se.tck1), 197
selftest.H0.tck (selftest.se.tck1), 197
selftest.jack.tck(selftest.se.tck1), 197
selftest.ML_OLS.tck(selftest.se.tck1), 197
selftest.nonparametric6.tck (selftest.se.tck1), 197
selftest.pdfs.tck(selftest.se.tck1), 197
selftest.prob.tck(selftest.se.tck1), 197
selftest.regapproaches.tck1
(selftest.se.tck1), 197
selftest.regapproaches.tck2 (selftest.se.tck1), 197
selftest.regapproaches.tck3
(selftest.se.tck1), 197
selftest.regapproaches.tck4
(selftest.se.tck1), 197
selftest.regchar.tck1
(selftest.se.tck1), 197
selftest.regdiag.tck1
(selftest.se.tck1), 197
selftest.regdiag.tck2
(selftest.se.tck1), 197
selftest.regdiag.tck3 (selftest.se.tck1), 197
selftest.sampd.tck1 (selftest.se.tck1), 197
selftest.science.tck1
(selftest.se.tck1), 197
selftest.se.tck1, 45, 197
selftest.stats.tck(selftest.se.tck1), 197
selftest.stats.tck1 (selftest.se.tck1), 197
selftest.ttest.tck(selftest.se.tck1), 197
selftest.typeIISS.tck1
(selftest.se.tck1), 197
Semiconductor, 198
SexDeterm, 198
shad, 199
shade, 203
shade (shade.norm), 200
shade.bin.tck (shade.norm.tck), 202
shade.chi.tck (shade.norm.tck), 202
shade.F.tck (shade. norm.tck), 202
shade. norm, 45, 200
shade.norm.tck, 202
shade. poi.tck (shade.norm.tck), 202
shade.t.tck (shade.norm.tck), 202
shapiro.test, 91
simberloff, 203
Simp.index (alpha.div), 8
skew, 204
SM. temp.moist, 205
smooth.spline, 196
snore, 206
so2.us.cities, 206
stan.error, 207
starkey, 208
suess, 208
SW. index (alpha.div), 8
Sys.sleep, 20, 22, 23
t.test, 122
trag, 209
transM, 210
trim.me, 211
trim. ranef.test, 212
trim. test, 40, 213
tukey.add.test, 214
tukeyCI (pairw. anova), 135
var, 177
varespec (vs), 217
veneer, 215
Venn, 45, 216
vs, 217
wash.rich, 217
webs, 218
wheat, 219
whickham, 219
wildebeest, 220
win, 221
wine, 222
wireframe, 56
world.co2, 223
world.emissions, 223, 224, 225
world.pop, 225

