The goal of bootPLS is to provide several non-parametric stable bootstrap-based techniques to determine the numbers of components in Partial Least Squares and sparse Partial Least Squares linear or generalized linear regression.
bootPLS
implements several algorithms that were published as a book chapter and two articles.
A new bootstrap-based stopping criterion in PLS component construction, J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods, doi:10.1007/978-3-319-40643-5_18.
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction, J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Compututing, 27, 757–774. doi:10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics, accepted.
Support for parallel computation and GPU is being developed.
This website and these examples were created by F. Bertrand and M. Maumy-Bertrand.
You can install the released version of bootPLS from CRAN with:
You can install the development version of bootPLS from github with:
Load and display the pinewood worm dataset.
library(bootPLS)
library(plsRglm)
data(pine, package = "plsRglm")
Xpine<-pine[,1:10]
ypine<-log(pine[,11])
Michel Tenenhaus’ reported in his book, La régression PLS (1998) Technip, Paris, that most of the expert biologists claimed that this dataset features two latent variables, which is tantamount to the PLS model having two components.
Leave one out CV (K=nrow(pine)
) one time (NK=1
).
bbb <- plsRglm::cv.plsR(log(x11)~.,data=pine,nt=6,K=nrow(pine),NK=1,verbose=FALSE)
plsRglm::cvtable(summary(bbb))
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1
#>
#> CV Q2 criterion:
#> 0 1
#> 0 1
#>
#> CV Press criterion:
#> 1 2 3 4 5
#> 0 0 0 0 1
Set up 6-fold CV (K=6
), 100 times (NK=2
), and use random=TRUE
to randomly create folds for repeated CV.
Display the results of the cross-validation.
plsRglm::cvtable(summary(bbb2))
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
#> NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#> NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#> NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
#> NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
#> NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
#> NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
#> NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
#> NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
#> NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
#>
#> CV Q2 criterion:
#> 0 1
#> 0 100
#>
#> CV Press criterion:
#> 1 2 3 4 5 6
#> 14 0 0 22 20 44
The \(Q^2\) criterion is recommended in that PLSR setting without missing data. A model with 1 component is selected by the cross-validation as displayed by the following figure. Hence the \(Q^2\) criterion (1 component) does not agree with the experts (2 components).
plot(plsRglm::cvtable(summary(bbb2)),type="CVQ2")
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
#> NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#> NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#> NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
#> NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
#> NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
#> NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
#> NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
#> NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
#> NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
#>
#> CV Q2 criterion:
#> 0 1
#> 0 100
#>
#> CV Press criterion:
#> 1 2 3 4 5 6
#> 14 0 0 22 20 44
As for the CV Press criterion it is unable to point out a unique number of components.
plot(plsRglm::cvtable(summary(bbb2)),type="CVPress")
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#>
#> NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
#> NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
#> NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
#> NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
#> NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
#> NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
#> NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
#> NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
#> NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
#> NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
#>
#> CV Q2 criterion:
#> 0 1
#> 0 100
#>
#> CV Press criterion:
#> 1 2 3 4 5 6
#> 14 0 0 22 20 44
The package features our bootstrap based algorithm to select the number of components in plsR regression. It is implemented with the nbcomp.bootplsR
function.
set.seed(4619)
nbcomp.bootplsR(Y=ypine,X=Xpine,R =500)
#> [1] 1
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#> [1] 2
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#> [1] 3
#> ____************************************************____
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Predicting X without NA neither in X nor in Y____
#> ****________________________________________________****
#>
#> [1] "Optimal number of components: K = 2"
#> [1] 2
The verbose=FALSE
option suppresses messages output during the algorithm, which is useful to replicate the bootstrap technique. To set up parallel computing, you can use the parallel
and the ncpus
options.
set.seed(4619)
res_boot_rep <- replicate(20,nbcomp.bootplsR(Y=ypine,X=Xpine,R =500,verbose =FALSE,parallel = "multicore",ncpus = 2))
It is easy to display the results with the barplot
function.
A model with two components should be selected using our bootstrap based algorithm to select the number of components. Hence the number of component selected with our algorithm agrees with what was stated by the experts.
The package also features our bootstrap based algorithm to select, for a given \(\eta\) value, the number of components in spls regression. It is implemented with the nbcomp.bootspls
function.
nbcomp.bootspls(x=Xpine,y=ypine,eta=.5)
#> eta = 0.5
#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
#>
#> Optimal parameters: eta = 0.5, K = 3
#> $mspemat
#>
#> eta= 0.5 , K= 3 0.9595453
#>
#> $eta.opt
#> [1] 0.5
#>
#> $K.opt
#> [1] 3
A doParallel
and foreach
based parallel computing version of the algorithm is implemented as the nbcomp.bootspls.para
function.
nbcomp.bootspls.para(x=Xpine,y=ypine,eta=.5)
#> [1] "eta = 0.5"
#> [1] 2
#> [1] 3
#>
#> Optimal parameters: eta = 0.5, K = 2
#> $mspemat
#>
#> eta= 0.5 ; K= 2 1.131643
#>
#> $eta.opt
#> [1] 0.5
#>
#> $K.opt
#> [1] 2
nbcomp.bootspls.para(x=Xpine,y=ypine,eta=c(.2,.5))
#> [1] "eta = 0.2"
#> [1] 2
#> [1] 3
#> [1] "eta = 0.5"
#> [1] 2
#> [1] 3
#>
#> Optimal parameters: eta = 0.5, K = 2
#> $mspemat
#>
#> eta= 0.2 ; K= 2 1.076495
#> eta= 0.5 ; K= 2 1.067325
#>
#> $eta.opt
#> [1] 0.5
#>
#> $K.opt
#> result.2
#> 2
Pinewood worm data reloaded.
library(bootPLS)
library(plsRglm)
data(pine, package = "plsRglm")
Xpine<-pine[,1:10]
ypine<-log(pine[,11])
datasetpine <- cbind(ypine,Xpine)
coefs.plsR.adapt.ncomp(datasetpine,sample(1:nrow(datasetpine)))
#> [1] 2.000000000 8.064227044 -0.003019447
#> [4] -0.054389603 -0.005212285 -0.109946405
#> [7] 0.038799785 -0.078324545 -1.334080678
#> [10] -0.045021804 -0.390730689 0.054696227
Replicate the results to get the bootstrap distributions of the selected number of components and the coefficients.
replicate(20,coefs.plsR.adapt.ncomp(datasetpine,sample(1:nrow(datasetpine))))
#> [,1] [,2] [,3]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,4] [,5] [,6]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,7] [,8] [,9]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,10] [,11] [,12]
#> [1,] 4.000000000 2.000000000 2.000000000
#> [2,] 10.934323181 8.064227044 8.064227044
#> [3,] -0.004164703 -0.003019447 -0.003019447
#> [4,] -0.061586032 -0.054389603 -0.054389603
#> [5,] 0.038677103 -0.005212285 -0.005212285
#> [6,] -0.568792403 -0.109946405 -0.109946405
#> [7,] 0.135567126 0.038799785 0.038799785
#> [8,] 0.447111779 -0.078324545 -0.078324545
#> [9,] -0.885736030 -1.334080678 -1.334080678
#> [10,] -0.110684199 -0.045021804 -0.045021804
#> [11,] -1.141903333 -0.390730689 -0.390730689
#> [12,] -0.397050615 0.054696227 0.054696227
#> [,13] [,14] [,15]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,16] [,17] [,18]
#> [1,] 4.000000000 2.000000000 2.000000000
#> [2,] 10.934323181 8.064227044 8.064227044
#> [3,] -0.004164703 -0.003019447 -0.003019447
#> [4,] -0.061586032 -0.054389603 -0.054389603
#> [5,] 0.038677103 -0.005212285 -0.005212285
#> [6,] -0.568792403 -0.109946405 -0.109946405
#> [7,] 0.135567126 0.038799785 0.038799785
#> [8,] 0.447111779 -0.078324545 -0.078324545
#> [9,] -0.885736030 -1.334080678 -1.334080678
#> [10,] -0.110684199 -0.045021804 -0.045021804
#> [11,] -1.141903333 -0.390730689 -0.390730689
#> [12,] -0.397050615 0.054696227 0.054696227
#> [,19] [,20]
#> [1,] 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227
Parallel computing support with the ncpus
and parallel="multicore"
options.
coefs.plsR.adapt.ncomp(datasetpine,sample(1:nrow(datasetpine)),ncpus=2,parallel="multicore")
#> [1] 4.000000000 10.934323181 -0.004164703
#> [4] -0.061586032 0.038677103 -0.568792403
#> [7] 0.135567126 0.447111779 -0.885736030
#> [10] -0.110684199 -1.141903333 -0.397050615
replicate(20,coefs.plsR.adapt.ncomp(datasetpine,sample(1:nrow(datasetpine)),ncpus=2,parallel="multicore"))
#> [,1] [,2] [,3]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,4] [,5] [,6]
#> [1,] 2.000000000 4.000000000 2.000000000
#> [2,] 8.064227044 10.934323181 8.064227044
#> [3,] -0.003019447 -0.004164703 -0.003019447
#> [4,] -0.054389603 -0.061586032 -0.054389603
#> [5,] -0.005212285 0.038677103 -0.005212285
#> [6,] -0.109946405 -0.568792403 -0.109946405
#> [7,] 0.038799785 0.135567126 0.038799785
#> [8,] -0.078324545 0.447111779 -0.078324545
#> [9,] -1.334080678 -0.885736030 -1.334080678
#> [10,] -0.045021804 -0.110684199 -0.045021804
#> [11,] -0.390730689 -1.141903333 -0.390730689
#> [12,] 0.054696227 -0.397050615 0.054696227
#> [,7] [,8] [,9]
#> [1,] 2.000000000 4.000000000 2.000000000
#> [2,] 8.064227044 10.934323181 8.064227044
#> [3,] -0.003019447 -0.004164703 -0.003019447
#> [4,] -0.054389603 -0.061586032 -0.054389603
#> [5,] -0.005212285 0.038677103 -0.005212285
#> [6,] -0.109946405 -0.568792403 -0.109946405
#> [7,] 0.038799785 0.135567126 0.038799785
#> [8,] -0.078324545 0.447111779 -0.078324545
#> [9,] -1.334080678 -0.885736030 -1.334080678
#> [10,] -0.045021804 -0.110684199 -0.045021804
#> [11,] -0.390730689 -1.141903333 -0.390730689
#> [12,] 0.054696227 -0.397050615 0.054696227
#> [,10] [,11] [,12]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,13] [,14] [,15]
#> [1,] 4.000000000 2.000000000 2.000000000
#> [2,] 10.934323181 8.064227044 8.064227044
#> [3,] -0.004164703 -0.003019447 -0.003019447
#> [4,] -0.061586032 -0.054389603 -0.054389603
#> [5,] 0.038677103 -0.005212285 -0.005212285
#> [6,] -0.568792403 -0.109946405 -0.109946405
#> [7,] 0.135567126 0.038799785 0.038799785
#> [8,] 0.447111779 -0.078324545 -0.078324545
#> [9,] -0.885736030 -1.334080678 -1.334080678
#> [10,] -0.110684199 -0.045021804 -0.045021804
#> [11,] -1.141903333 -0.390730689 -0.390730689
#> [12,] -0.397050615 0.054696227 0.054696227
#> [,16] [,17] [,18]
#> [1,] 2.000000000 2.000000000 2.000000000
#> [2,] 8.064227044 8.064227044 8.064227044
#> [3,] -0.003019447 -0.003019447 -0.003019447
#> [4,] -0.054389603 -0.054389603 -0.054389603
#> [5,] -0.005212285 -0.005212285 -0.005212285
#> [6,] -0.109946405 -0.109946405 -0.109946405
#> [7,] 0.038799785 0.038799785 0.038799785
#> [8,] -0.078324545 -0.078324545 -0.078324545
#> [9,] -1.334080678 -1.334080678 -1.334080678
#> [10,] -0.045021804 -0.045021804 -0.045021804
#> [11,] -0.390730689 -0.390730689 -0.390730689
#> [12,] 0.054696227 0.054696227 0.054696227
#> [,19] [,20]
#> [1,] 2.000000000 4.000000000
#> [2,] 8.064227044 10.934323181
#> [3,] -0.003019447 -0.004164703
#> [4,] -0.054389603 -0.061586032
#> [5,] -0.005212285 0.038677103
#> [6,] -0.109946405 -0.568792403
#> [7,] 0.038799785 0.135567126
#> [8,] -0.078324545 0.447111779
#> [9,] -1.334080678 -0.885736030
#> [10,] -0.045021804 -0.110684199
#> [11,] -0.390730689 -1.141903333
#> [12,] 0.054696227 -0.397050615
Loading the data and creating the data frames.
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
dataset <- cbind(y=yaze_compl,Xaze_compl)
Fitting a logistic PLS regression model with 10 components. You have to use the family option when fitting the plsRglm.
modplsglm <- plsRglm(y~.,data=dataset,10,modele="pls-glm-family",family="binomial")
#> ____************************************************____
#>
#> Family: binomial
#> Link function: logit
#>
#> ____Component____ 1 ____
#> ____Component____ 2 ____
#> ____Component____ 3 ____
#> ____Component____ 4 ____
#> ____Component____ 5 ____
#> ____Component____ 6 ____
#> ____Component____ 7 ____
#> ____Component____ 8 ____
#> ____Component____ 9 ____
#> ____Component____ 10 ____
#> ____Predicting X without NA neither in X or Y____
#> ****________________________________________________****
Perform the bootstrap based algorithm with the nbcomp.bootplsRglm
function. By default 250 resamplings are carried out.
Plotting the bootstrap distributions of the coefficients of the components.
Computing the bootstrap based confidence intervals of the coefficients of the components.
plsRglm::confints.bootpls(aze_compl.bootYT)
#> Warning in norm.inter(t, adj.alpha): extreme
#> order statistics used as endpoints
#> Warning in norm.inter(t, adj.alpha): extreme
#> order statistics used as endpoints
#> Warning in norm.inter(t, adj.alpha): extreme
#> order statistics used as endpoints
#>
#> [1,] -0.1909709 2.3581748 -0.4489036 1.9697388
#> [2,] -0.1514302 0.8243332 -0.3376837 0.7471037
#> [3,] -0.4319055 1.7434199 -0.6285256 1.5594694
#> [4,] -0.3748813 1.0973698 -0.5490521 0.9657205
#> [5,] -0.3963722 0.8830876 -0.5130832 0.8905919
#> [6,] -0.6441165 1.2480090 -0.9267788 1.1913771
#> [7,] -0.6863159 1.0264625 -0.8829492 1.0706084
#> [8,] -1.1970167 1.4738770 -1.2043483 1.7957092
#> [9,] -0.8340372 0.9057530 -1.0433636 0.9124285
#> [10,] -1.0786394 1.2056122 -1.1600493 1.2398892
#>
#> [1,] 1.11236461 3.531007 0.71686088
#> [2,] 0.20267973 1.287467 0.07412900
#> [3,] 0.22338048 2.411375 -0.03355241
#> [4,] 0.05733105 1.572104 -0.45493576
#> [5,] -0.22108731 1.182588 -0.38904916
#> [6,] -0.47946992 1.638686 -0.53350462
#> [7,] -0.60361567 1.349942 -0.75368847
#> [8,] -1.37023450 1.629823 -1.54876392
#> [9,] -0.72858196 1.227210 -0.74456869
#> [10,] -1.11385399 1.286084 -1.02902293
#>
#> [1,] 2.1861124
#> [2,] 0.8286440
#> [3,] 1.6424348
#> [4,] 1.1619803
#> [5,] 0.9004701
#> [6,] 1.4582694
#> [7,] 1.0112706
#> [8,] 1.3140140
#> [9,] 1.1516065
#> [10,] 1.3514701
#> attr(,"typeBCa")
#> [1] TRUE
Computing the bootstrap based confidence intervals of the coefficients of the components.
The package also features our bootstrap based algorithm to select, for a given \(\eta\) value, the number of components in sgpls regression. It is implemented in the nbcomp.bootsgpls
.
set.seed(4619)
data(prostate, package="spls")
nbcomp.bootsgpls((prostate$x)[,1:30], prostate$y, R=250, eta=0.2, typeBCa = FALSE)
#> [1] "eta = 0.2"
#> [1] "K = 1"
#> [1] "K = 2"
#> [1] "K = 3"
#> [1] "K = 4"
#> [1] "K = 5"
#> Warning: glm.fit: fitted probabilities
#> numerically 0 or 1 occurred
#>
#> Optimal parameters: eta = 0.2, K = 4
#> $err.mat
#>
#> eta= 0.2 ; K= 4 0.2554545
#>
#> $eta.opt
#> [1] 0.2
#>
#> $K.opt
#> [1] 4
#>
#> $cands
#> [,1] [,2] [,3] [,4]
#> [1,] 0.2554545 30 0.2 4
A doParallel
and foreach
based parallel computing version of the algorithm is implemented as the nbcomp.bootspls.para
function.
nbcomp.bootsgpls.para((prostate$x)[,1:30], prostate$y, R=250, eta=c(.2,.5), maxnt=10, typeBCa = FALSE)
#> [1] "eta = 0.2"
#> [1] "K = 1"
#> [1] "K = 2"
#> [1] "K = 3"
#> [1] "K = 4"
#> [1] "K = 5"
#> [1] "eta = 0.5"
#> [1] "K = 1"
#> [1] "K = 2"
#> [1] "K = 3"
#> [1] "K = 4"
#> [1] "K = 5"
#> Warning: glm.fit: algorithm did not converge
#> Warning: glm.fit: fitted probabilities
#> numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities
#> numerically 0 or 1 occurred
#> Warning: glm.fit: fitted probabilities
#> numerically 0 or 1 occurred
#>
#> Optimal parameters: eta = 0.5, K = 4
#> $err.mat
#>
#> eta= 0.2 ; K= 4 0.2727273
#> eta= 0.5 ; K= 4 0.2636364
#>
#> $eta.opt
#> [1] 0.5
#>
#> $K.opt
#> [1] 4
#>
#> $cands
#> [,1] [,2] [,3] [,4]
#> [1,] 0.2636364 27.4 0.5 4