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calc_weight Estimate causal weights

Description

Estimate causal weights

Usage

calc_weight(
data,
constraint = NULL,
estimand = c("ATE", "ATT", "ATC", "cATE", "feasible"),
method = supported.methods(),
formula = NULL,
transport.matrix = FALSE,
grid.search = FALSE,
...

)
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Arguments

data Either a matrix, a data.frame, or a DataSim class. Arguments "balance.covariates"
and "treatment.indicator" must be provided in the ... arguments if data is of
class data.frame or matrix.

constraint The constraints or penalties for the weights. See details.

estimand The estimand of interest. One of "ATT","ATC", or "ATE".

method The method to estimate the causal weights. Must be one of the methods returned
by supported.methods().

formula The formula for creating the design matrix used in various methods. See details.
transport.matrix

Should the method calculate the transportation matrix if not done as a part of the
method (TRUE/FALSE)? Default is FALSE.

grid.search Should hyperparameters be selected by a grid search? Only available for "SBW"
and "COT"/"Wasserstein" methods.

... Many additional arguments are possible depending on the chosen method. See
details for more information. Arguments "balance.covariates" and "treatment.indicator"
must be provided if data is of class data.frame or matrix.

Details

We detail some of the particulars of the function arguments below.

data:
The following classes are recognized by the data variable.

DataSim class:
The DataSim class is provided by this package for simulations. You can pass a DataSim object
(once data has been simulated) to this function and it will be recognized and handled appropri-
ately.

data.frame or matrix:
If the data argument is of class data.frame or matrix, then additional arguments are neces-
sary to pass in the dots (...). These must include a vector argument balance.covariates
and an integer or character in the treatment.indicator argument. The balance.covariates
argument should be either an integer vector giving the column numbers of the covariates to
balance or a character vector giving the names of the columns to balance. Similarly, the
treatment.indicator argument should be a integer giving the column number of the treat-
ment labels or a character giving the column name.

Constraints:
The constraint argument is used by the balancing methods like "SBW". This will specify a toler-
ance for basis function balance.
If method "COT"/"Wasserstein" is used, will specify the penalty parameter to put on the weights.
For "ATT" and "ATC" estimands, must be of the form list(penalty = ###), while for estimand
"ATE", must be a list of length 2 specifying penalty first for the controls and then for treated:
list(list(penalty = ###), list(penalty = ###)).
This argument is not needed if grid.search is TRUE.
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Formula:
For methods "SBW" or "COT", should be a formula object or character without a response but
with the covariate functions desired. e.g., "~." includes all covariates without transformation.
For methods "Logistic" and "Probit", a propensity score model either as a formula object or char-
acter: "z ~.".

Additional arguments in ...:
In addition to the already mentioned arguments, there are several additional optional arguments
for the method "COT".

• p. The power of the Wasserstein distance to use.
• metric. The metric to use for the ground cost function. See dist.metrics() for supported

distance metrics.
• penalty. What type of penalty should be used on the weights? Must be one of "entropy" or

"L2".
• add.divergence. TRUE or FALSE. If TRUE, penalty defaults to entropy. and will cal-

culate the Sinkhorn divergence version of Causal Optimal Transport. If choosing Sinkhorn
divergences, the Python package geomloss must be installed.

• balance.constraints. The tolerance for the balancing basis function methods.
• cost. If the cost matrix is already calculated, you can supply this to potentially save time.

Additionally, methods like "SBW" and "COT" need the specification of a solver function if using
balancing functions, i.e. if the formula argument is specified.

• solver. Should be one of "mosek" or "osqp".

Value

An object of class causalWeights

See Also

estimate_effect()

Examples

set.seed(23483)
n <- 2^7
p <- 6
overlap <- "low"
design <- "A"
estimate <- "ATE"
#### get simulation functions ####
data <- causalOT::Hainmueller$new(n = n, p = p,

design = design, overlap = overlap)
data$gen_data()

weights <- calc_weight(data = data,
p = p,
estimand = estimate,
method = "NNM")

## Not run:
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# Needs Python package GeomLoss
COTweights <- calc_weight(data = data,

p = 2,
constraint = list(list(penalty = 1000),

list(penalty = 10000)),
estimand = estimate,
method = "COT",
penalty = "entropy",
add.divergence = TRUE,
verbose = TRUE
)

# with basis function balancing.
COTweightsBF <- calc_weight(data = data,

p = 2,
constraint = list(list(penalty = 1000),

list(penalty = 10000)),
estimand = estimate,
method = "COT",
penalty = "entropy",
add.divergence = TRUE,
formula = "~.",
balance.constraints = 0.2,
solver = "osqp",
verbose = TRUE
)

## End(Not run)

causalEffect-class causalEffect class

Description

causalEffect class

Details

The variance.components slot is a list with slots

• E_Y1: The mean if the target population had all been treated.

• E_Y0: The mean if the target population had all received control

• E_Y1_X: The predicted conditional mean if the target population had all been treated.

• E_Y0_X: The predicted conditional mean if the target population had all received control.

Note that for "ATT" and "ATC" estimands, E_Y1_X or E_Y0_X will be NA, respectively.

Meanwhile, the options slot is a list with slots

• hajek: Were weights normalized to sum to 1 (TRUE/FALSE)

• doubly.robust: Was an augmented estimator used? (TRUE/FALSE)
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• matched: Wass barycentric projection estimator used? (TRUE/FALSE)

• split.model Was the outcome model calculated separately in each treatment group? (TRUE/FALSE)

• balance.covariates: The covariates selected for balance or in the outcome model in slot
data

• treatment.indicator: The column that is the treatment indicator in slot data

• outcome: The columns that is the outcome in slot data

• addl.args: Any additional arguments passed in the dots (...) of estimate_effect().

Slots

estimate The estimated treatment effect.

data The original data as a data.frame.

model The function used as the outcome model.

formula The formula for the outcome model.

weights The weights as an object of class causalWeights

estimand A character denoting the estimand targeted by the weights. One of "ATT","ATC", or
"ATE".

variance.components Objects for the asymptotic variance calculation designed so expensive mod-
els don’t have to be re-fit.

options A list with the arguments from the estimate_effect function. See details.

call The call from the estimate_effect() function.

causalOT An R package to perform causal inference using optimal transport dis-
tances.

Description

R code to perform causal inference weighting using a variety of methods and optimizers. The code
can estimate weights, estimate treatment effects, and also give variance estimates. These methods
are described in Dunipace, Eric (2021) https://arxiv.org/abs/2109.01991.

Author(s)

Eric Dunipace

https://arxiv.org/abs/2109.01991
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causalWeights-class causalWeights class

Description

causalWeights class

Slots

w0 A slot with the weights for the control group.

w1 The weights for the treated group.

gamma The trasportation matrix. If estimand is "ATE", will be a list with the transportation plan for
each treatment group to balance towards the overall treatment.

estimand A character denoting the estimand targeted by the weights. One of "ATT","ATC", or
"ATE".

method A character denoting the method used to estimate the weights.

args The other arguments used to construct the weights.

confint.causalEffect Confidence Intervals for Causal Effects

Description

Confidence Intervals for Causal Effects

Usage

## S3 method for class 'causalEffect'
confint(
object,
parm,
level = 0.95,
method = c("asymptotic", "bootstrap", "jackknife"),
...

)

Arguments

object An object of class causalEffect

parm Unused. Included to match forms of other confint functions

level Confidence level. Should be between 0 and 1. Default is 0.95.
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method How to calculate the confidence interval. Choices are "bootstrap" for a boot-
strap confidence interval, "asymptotic" for "asymptotic" confidence intervals,
and "jacknife" for jacknife confidence intervals. Default is "asymptotic" since it
is faster.

... Additional arguments if method is "bootstrap". Can include

• n.boot. How many bootstrap samples should be used. Default is 1000.
• boot.method. One of "n-out-of-n" or "m-out-of-n". Optimal transport

methods default to "m-out-of-n".
• verbose. Should a progress bar be printed? (TRUE/FALSE) Defaults to

FALSE.

Value

A list with slots "CI" giving the confidence bounds and "SD" giving estimates of the standard error
of the causal effects. If method is "bootstrap" and boot.method is "m-out-of-n", then there will also
be a slot named "unadjusted" giving the unadjusted confidence interval and standard error estimate
for reference.

Examples

# set-up data
set.seed(1234)
data <- Hainmueller$new()
data$gen_data()

# calculate quantities
weight <- calc_weight(data, method = "Logistic")
tx_eff <- estimate_effect(data = data, weights = weight)

# get asymptotic C.I.
confint(tx_eff, model = "lm", method = "asymptotic",

formula = list(treated = "y ~ .", control = "y ~ ."))

cost_fun Calculate cost matrix for a given estimand

Description

Calculate cost matrix for a given estimand

Usage

cost_fun(x, z, power = 2, metric = dist.metrics(), estimand = "ATE", ...)
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Arguments

x An object of class matrix

z A treatment indicator with values in 0 and 1. Should be of class integer or
vector

power The power used to calculate the the cost matrix: {(x− y)power}(1/power)

metric One of the values in dist.metrics.

estimand The estimand desired for the weighting estimator. See details

... Arguments passed to the RKHS calculating function including

• kernel, one of "RBF", "polynomial", "linear"
• rkhs.args The arguments used to construct the kernel

... can also be used to handle extra arguments passed by mistake so that an
error is not thrown.

Details

If the estimand is "ATT" or "ATC", cost_fun will calculate the cost matrix where the rows are
the control and the columns are the treated. If "ATE" will calculate to cost matrices with the first
having the rows corresponding to the control individual and the second having rows correspond to
the treated individuals. For both matrices, the columns will correspond to the full sample. The
dimensions of the output will depend on the estimand. For reference, let n1 =

∑
i zi, n0 =∑

i(1− zi), and n = n1 + n0.

Value

Output depends on the estimand.

• For ATT and ATC: a matrix of dimension

n0 × n1

.

• For ATE: a list of two matrices of dimension n0 × n and n1 × n. See details for more
information.

Examples

n0 <- 100
n1 <- 55
d <- 5
x1 <- matrix(stats::rnorm(n1*d), n1, d)
x0 <- matrix(stats::rnorm(n0*d), n0, d)

x <- rbind(x0,x1)
z <- c(rep(0,n0), rep(1,n1))
power <- 2.0

# ATT
estimand <- "ATT"
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metric <- "Lp"
cost_ATT <- cost_fun(x, z, power = power, metric = metric, estimand = estimand)
print(dim(cost_ATT))

# ATE
estimand <- "ATE"
cost_ATT <- cost_fun(x, z, power = power, metric = metric, estimand = estimand)
length(cost_ATT)

DataSim R6 Data Generating Parent Class

Description

R6 Data Generating Parent Class

R6 Data Generating Parent Class

Details

Can be used to make your own data simulation class. Should have the same slots listed in this class
at a minimum, but you can add your own, of course. An easy way to do this is to make your class
inherit from this one. See the example.

Value

An R6 object

Methods

Public methods:
• DataSim$get_x()

• DataSim$get_y()

• DataSim$get_z()

• DataSim$get_n()

• DataSim$get_x1()

• DataSim$get_x0()

• DataSim$get_p()

• DataSim$get_tau()

• DataSim$gen_data()

• DataSim$opt_weight()

• DataSim$opt_weight_dist()

• DataSim$clone()

Method get_x(): Gets the covariate data

Usage:
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DataSim$get_x()

Method get_y(): Gets the outcome vector

Usage:
DataSim$get_y()

Method get_z(): Gets the treatment indicator

Usage:
DataSim$get_z()

Method get_n(): Gets the number of observations

Usage:
DataSim$get_n()

Method get_x1(): Gets the covariate data for the treated individuals

Usage:
DataSim$get_x1()

Method get_x0(): Gets the covaraiate data for the control individuals

Usage:
DataSim$get_x0()

Method get_p(): Gets the dimensionality covariate data

Usage:
DataSim$get_p()

Method get_tau(): Gets the individual treatment effects

Usage:
DataSim$get_tau()

Method gen_data(): Generates the data. Default is an empty function

Usage:
DataSim$gen_data()

Method opt_weight(): Gets the optimal weights to get the correct expectation

Usage:
DataSim$opt_weight(estimand = "ATE", augment = FALSE, solver = "mosek")

Arguments:

estimand One of "ATT","ATC","ATE"
augment Should we use an augmented estimator? TRUE or FALSE.
solver One of "mosek" or "gurobi"

Method opt_weight_dist(): Gets the distance of the weights from the optimal weights

Usage:



12 dist.metrics

DataSim$opt_weight_dist(
weight,
estimand = "ATE",
augment = FALSE,
solver = "mosek"

)

Arguments:
weight The estimated weights
estimand One of "ATT","ATC","ATE"
augment Should we use an augmented estimator? TRUE or FALSE.
solver One of "mosek", "gurobi", or "quadprog"

Method clone(): The objects of this class are cloneable with this method.

Usage:
DataSim$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

MyClass <- R6::R6Class("MyClass",
inherit = DataSim,
public = list(),
private = list())

dist.metrics Supported distance metrics

Description

Supported distance metrics

Usage

dist.metrics()

Details

The "sdLp" method uses a metric with distances normalized by the standard deviation of each of
the covariates ((x[,j]-y[,j])/sd(c(x[,j],y[,j])))^p, where x and y are the data matrices in
each group and j is a column in each matrix.

The "mahalanobis" metric is related except it normalizes by the full variance-covariance matrix. Be
warned that neither "sdLp" or "mahalanobis" may make sense for binary covariates and care should
be taken.

The "Lp" method uses the simple Lp norm, while "RKHS" calculates the kernel for a reproducible
kernel Hilbert space (RKHS).
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Value

a character vector with values "sdLp", "mahalanobis", "Lp", and "RKHS"

Examples

dist.metrics()

ESS Effective Sample Size

Description

Effective Sample Size

Usage

ESS(x)

## S4 method for signature 'numeric'
ESS(x)

## S4 method for signature 'causalWeights'
ESS(x)

Arguments

x Either a vector of weights summing to 1 or an object of class causalWeights

Details

Calculates the effective sample size as described by Kish (1965). However, this calculation has
some problems and the PSIS() function should be used instead.

Value

Either a number denoting the effective sample size or if x is of class causalWeights, then returns a
list of both values in the treatment and control groups.

Methods (by class)

• ESS(numeric): default ESS method for numeric vectors

• ESS(causalWeights): ESS method for objects of class causalWeights

See Also

PSIS()
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Examples

x <- rep(1/100,100)
ESS(x)

estimate_effect Estimate treatment effects

Description

Estimate treatment effects

Usage

estimate_effect(
data,
formula = NULL,
weights,
hajek = TRUE,
doubly.robust = TRUE,
matched = FALSE,
estimand = c("ATT", "ATC", "ATE", "feasible"),
model = NULL,
split.model = TRUE,
sample_weight = NULL,
...

)

Arguments

data A data.frame, a list, or a DataSim object

formula the outcome model formula

weights An object of class causalWeights

hajek Should the weights be normalized to sum to 1 (TRUE/FALSE)

doubly.robust Should an augmented estimator be used? (TRUE/FALSE)

matched Should a matched or barycentric project estimator be used? (TRUE/FALSE)

estimand Estimand to use. Should agree with estimand in the weights or can be left blank.
One of "ATT", "ATC", or "ATE".

model The outcome model as a character referring to a function or function

split.model Should the outcome model be calculated separately in each treatment group?
(TRUE/FALSE)

sample_weight The sample weights. Either NULL or an object of class sampleWeights

... Pass additional arguments to the outcome modeling functions like lm. Argu-
ments "balance.covariates" and "treatment.indicator" must be provided if data is
of class data.frame or matrix.
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Value

an object of class causalEffect

Examples

# set-up data
data <- Hainmueller$new()
data$gen_data()

# calculate quantities
weight <- calc_weight(data, method = "Logistic")
tx_eff <- estimate_effect(data = data, weights = weight)

# get estimate
print(tx_eff$estimate)

Hainmueller Hainmueller data example

Description

Hainmueller data example

Hainmueller data example

Details

Generates the data as described in Hainmueller (2012).

Value

An R6 object of class DataSim

Super class

causalOT::DataSim -> Hainmueller

Methods

Public methods:
• Hainmueller$gen_data()

• Hainmueller$gen_x()

• Hainmueller$gen_y()

• Hainmueller$gen_z()

• Hainmueller$new()

• Hainmueller$get_design()

• Hainmueller$get_pscore()
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• Hainmueller$clone()

Method gen_data(): Generates the data

Usage:
Hainmueller$gen_data()

Method gen_x(): Generates the covaraiate data

Usage:
Hainmueller$gen_x()

Method gen_y(): Generates the outcome data

Usage:
Hainmueller$gen_y()

Method gen_z(): Generates the treatment indicator

Usage:
Hainmueller$gen_z()

Method new(): Generates the the Hainmueller R6 class

Usage:
Hainmueller$new(
n = 100,
p = 6,
param = list(),
design = "A",
overlap = "low",
...

)

Arguments:

n The number of observations
p The dimensions of the covariates. Fixed to 6.
param The data generating parameters fed as a list.
design One of "A" or "B". See details.
overlap One of "high", "low", or "medium". See details.
... Extra arguments. Currently unused.

Details:
Design:
Design "A" is the setting where the outcome is generated from a linear model, Y (0) = Y (1) =
X1 +X2 +X3 −X4 +X5 +X6 + η and design "B" is where the outcome is generated from
the non-linear model Y (0) = Y (1) = (X1 +X2 +X5)

2 + η.
Overlap:
The treatment indicator is generated fromZ = 1(X1+2X2−2X3−X4−0.5X5+X6+ν > 0),
where ν depends on the overlap selected. If overlap is "high", then ν ∼ N(0, 100). If overlap
is "low", then ν ∼ N(0, 30). Finally, if overlap is "medium", then ν is drawn from a χ2 with
5 degrees of freedom that is scaled and centered to have mean 0.5 and variance 67.6.
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Returns: An object of class DataSim.

Examples:
data <- Hainmueller$new(n = 100, p = 6, design = "A", overlap = "low")
data$gen_data()
print(data$get_x()[1:2,])

Method get_design(): Returns the chosen design parameters

Usage:
Hainmueller$get_design()

Method get_pscore(): Returns the true propensity score

Usage:
Hainmueller$get_pscore()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Hainmueller$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `Hainmueller$new`
## ------------------------------------------------

data <- Hainmueller$new(n = 100, p = 6, design = "A", overlap = "low")
data$gen_data()
print(data$get_x()[1:2,])

LaLonde LaLonde data example

Description

LaLonde data example

LaLonde data example

Details

Returns the LaLonde data as used by Dehjia and Wahba. Note the data is fixed and gen_data()
will just initialize the fixed data.

Value

An R6 object of class DataSim
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Super class

causalOT::DataSim -> LaLonde

Methods

Public methods:
• LaLonde$gen_data()

• LaLonde$get_tau()

• LaLonde$gen_x()

• LaLonde$gen_y()

• LaLonde$gen_z()

• LaLonde$new()

• LaLonde$get_design()

• LaLonde$clone()

Method gen_data(): Sets up the data

Usage:
LaLonde$gen_data()

Method get_tau(): Returns the experimental treatment effect, $1794

Usage:
LaLonde$get_tau()

Method gen_x(): Sets up the covariate data

Usage:
LaLonde$gen_x()

Method gen_y(): Sets up the outcome data

Usage:
LaLonde$gen_y()

Method gen_z(): Sets up the treatment indicator

Usage:
LaLonde$gen_z()

Method new(): Initializes the LaLonde object.

Usage:
LaLonde$new(n = NULL, p = NULL, param = list(), design = "NSW", ...)

Arguments:
n Not used. Maintained for symmetry with other DataSim objects.
p Not used. Maintained for symmetry with other DataSim objects.
param Not used. Maintained for symmetry with other DataSim objects.
design One of "NSW" or "Full". "NSW" uses the original experimental data from the job

training program while option "Full" uses the treated individuals from LaLonde’s study and
compares them to individuals from the Current Population Survey as controls.
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... Not used.

Examples:

nsw <- LaLonde$new(design = "NSW")
nsw$gen_data()
nsw$get_n()

obs.study <- LaLonde$new(design = "Full")
obs.study$gen_data()
obs.study$get_n()

Method get_design(): Returns the chosen design parameters

Usage:
LaLonde$get_design()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LaLonde$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `LaLonde$new`
## ------------------------------------------------

nsw <- LaLonde$new(design = "NSW")
nsw$gen_data()
nsw$get_n()

obs.study <- LaLonde$new(design = "Full")
obs.study$gen_data()
obs.study$get_n()

mean_bal Standardized absolute mean difference calculations

Description

This function will calculate the difference in means between treatment groups standardized by the
pooled standard-deviation of the respective covariates.

Usage

mean_bal(data, weights = NULL, ...)
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Arguments

data Either a data.frame, matrix, or object of class DataSim

weights An object of class causalWeights or a list with slots w0 and w1.

... Additional arguments passed to the function to know which covariates are to be
balanced ("balance.covariates"), and treatment indicator ("treatment.indicator").
These can be column names or numbers. These arguments are not needed if
using the causalOT DataSim class.

Value

A vector of mean balances

Examples

n <- 100
p <- 6
x0 <- matrix(rnorm(2*n * p), 2*n, p)
x1 <- matrix(rnorm(n * p), n, p)
weights <- list(w0 = rep(1/(2*n), 2 * n), w1 = rep(1/n, n))
data <- cbind(rbind(x0,x1), z = c(rep(0,2*n), rep(1, n)))
colnames(data) <- c(paste0("x", 1:p), "z")
mb <- mean_bal(data, weights, balance.covariates = paste0("x", 1:p),

treatment.indicator = "z")
print(mb)

ot.methods Supported optimal transport methods

Description

Lists the supported OT methods. Note "COT" and "Wasserstein" are equivalent.

Usage

ot.methods()

Value

A character vector with values "NNM","Wasserstein", "COT", and "SCM".

Examples

ot.methods()
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pph An external control trial of treatments for post-partum hemorrhage

Description

A dataset evaluating treatments for post-partum hemorrhage. The data contain treatment groups
receiving misoprostol vs potential controls from other locations that received only oxytocin. The
data is stored as a numeric matrix.

Usage

data(pph)

Format

A matrix with 802 rows and 17 variables

Details

The variables are as follows:

• cum_blood_20m. The outcome variable denoting cumulative blood loss in mL 20 minutes
after the diagnosis of post-partum hemorrhage (650 – 2000).

• tx. The treatment indicator of whether an individual received misoprostol (1) or oxytocin (0).

• age. the mother’s age in years (15 – 43).

• no_educ. whether a woman had no education (1) or some education (0).

• num_livebirth. the number of previous live births.

• cur_married. whether a mother is currently married (1 = yes, 0 = no).

• gest_age. the gestational age of the fetus in weeks (35 – 43).

• prev_pphyes. whether the woman has had a previous post-partum hemorrahge.

• hb_test. the woman’s hemoglobin in mg/dL (7 – 15).

• induced_laboryes. whether labor was induced (1 = yes, 0 = no).

• augmented_laboryes. whether labor was augmented (1 = yes, 0 = no).

• early_cordclampyes. whether the umbilical cord was clamped early (1 = yes, 0 = no).

• control_cordtractionyes. whether cord traction was controlled (1 = yes, 0 = no).

• uterine_massageyes. whether a uterine massage was given (1 = yes, 0 = no).

• placenta. whether placenta was delivered before treatment given (1 = yes, 0 = no).

• bloodlossattx. amount of blood lost when treatment given (500 mL – 1800 mL)

• sitecode. Which site is the individual from? (1 = Cairo, Egypt, 2 = Turkey, 3 = Hocmon,
Vietnam, 4 = Cuchi, Vietnam, and 5 Burkina Faso).
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See Also

Data from the following Harvard Dataverse:

• Winikoff, Beverly, 2019, "Two randomized controlled trials of misoprostol for the treatment
of postpartum hemorrhage", https://doi.org/10.7910/DVN/ETHH4N, Harvard Dataverse, V1.

The data was originally analyzed in

• Blum, J. et al. Treatment of post-partum haemorrhage with sublingual misoprostol versus oxy-
tocin in women receiving prophylactic oxytocin: a double-blind, randomised, non-inferiority
trial. The Lancet 375, 217–223 (2010).

PSIS Pareto-Smoothed Importance Sampling

Description

Pareto-Smoothed Importance Sampling

Usage

PSIS(x, r_eff = NULL, ...)

## S4 method for signature 'numeric'
PSIS(x, r_eff = NULL, ...)

## S4 method for signature 'causalWeights'
PSIS(x, r_eff = NULL, ...)

## S4 method for signature 'list'
PSIS(x, r_eff = NULL, ...)

PSIS_diag(x, ...)

## S4 method for signature 'numeric'
PSIS_diag(x, r_eff = NULL)

## S4 method for signature 'causalWeights'
PSIS_diag(x, r_eff = NULL)

## S4 method for signature 'causalPSIS'
PSIS_diag(x, ...)

## S4 method for signature 'list'
PSIS_diag(x, r_eff = NULL)

## S4 method for signature 'psis'
PSIS_diag(x, r_eff = NULL)
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Arguments

x For PSIS(), a vector of weights, an object of class causalWeights, or a list with
slots "w0" and "w1". For PSIS_diag, the results of a run of PSIS().

r_eff A vector of relative effective sample size with one estimate per observation.
If providing an object of class causalWeights, should be a list of vectors with
one vector for each sample. See psis() from the loo package for more details.
Updates to the loo package now make it so this parameter should be ignored.

... Arguments passed to the psis() function.

Details

Acts as a wrapper to the psis() function from the loo package. It is built to handle the data types
found in this package. This method is preferred to the ESS() function in causalOT since the latter
is prone to error (infinite variances) but will not give good any indication that the estimates are
problematic.

Value

For PSIS(), returns a list. See psis() from loo for a description of the outputs. Will give the log of
the smoothed weights in slot log_weights, and in the slot diagnostics, it will give the pareto_k
parameter (see the pareto-k-diagnostic page) and the n_eff estimates. PSIS_diag() returns the
diagnostic slot from an object of class "psis".

Methods (by class)

• PSIS(numeric): numeric weights

• PSIS(causalWeights): object of class causalWeights

• PSIS(list): list of weights

• PSIS_diag(numeric): numeric weights

• PSIS_diag(causalWeights): object of class causalWeights diagnostics

• PSIS_diag(causalPSIS): diagnostics from the output of a previous call to PSIS

• PSIS_diag(list): a list of objects

• PSIS_diag(psis): output of PSIS function

See Also

ESS()

Examples

x <- runif(100)
w <- x/sum(x)

res <- PSIS(x = w, r_eff = 1)
PSIS_diag(res)
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sampleWeights-class sampleWeights class

Description

sampleWeights class

Slots

a The sample weights for the fist group

b The sample weights for the second group

total The sample weights for the overall sample

sinkhorn Sinkhorn Loss

Description

This function serves as an R wrapper to the Python function SamplesLoss in the GeomLoss package
http://www.kernel-operations.io/geomloss/api/pytorch-api.html?highlight=samplesloss#
geomloss.SamplesLoss

Usage

sinkhorn(
x,
y,
a,
b,
power = 2,
blur = 0.05,
reach = NULL,
diameter = NULL,
scaling = 0.5,
truncate = 5,
metric = "Lp",
cluster_scale = NULL,
debias = TRUE,
verbose = FALSE,
backend = "auto",
...

)

http://www.kernel-operations.io/geomloss/api/pytorch-api.html?highlight=samplesloss#geomloss.SamplesLoss
http://www.kernel-operations.io/geomloss/api/pytorch-api.html?highlight=samplesloss#geomloss.SamplesLoss
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Arguments

x covariates for the first set of samples. Should be of class matrix.

y covariates for the second set of samples. Should be of class matrix.

a The empirical measure of the first set of samples.

b The empirical measure of the second set of samples.

power power of the optimal transport distance.

blur The finest level of detail that should be handled by the loss function to prevent
overfitting on the samples/ locations.

reach specifies the typical scale associated to the constraint strength

diameter A rough indication of the maximum distance between points, which is used to
tune the epsilon-scaling descent and provide a default heuristic for clustering
multiscale schemes. If None, a conservative estimate will be computed on-the-
fly.

scaling specifies the ratio between successive values of sigma in the epsilon-scaling de-
scent. This parameter allows you to specify the trade-off between speed (scaling
< .4) and accuracy (scaling > .9).

truncate If backend is "multiscale", specifies the effective support of a Gaussian/Laplacian
kernel as a multiple of its standard deviation

metric Set the metric. One of "Lp","sdLp", or "mahalanobis".

cluster_scale If backend is "multiscale", specifies the coarse scale at which cluster centroids
will be computed. If NULL, a conservative estimate will be computed from di-
ameter and the ambient space’s dimension, making sure that memory overflows
won’t take place.

debias specifies if we should compute the unbiased Sinkhorn divergence instead of the
classic, entropy-regularized "SoftAssign" loss.

verbose if backend is "multiscale", specifies whether information on the clustering and
epsilon-scaling descent should be displayed in the standard output.

backend one of "auto", "tensorized", "online", or "multiscale"

... not currently used. Used to absorb extra arguments passed by other functions
without throwing an error.

Value

a list with slots "loss", "f", "g". "loss" is the Sinkhorn distance, "f" is the potential corresponding to
data x, and "g" is the potential corresponding to data y.

Examples

## Not run:
# requires Python and GeomLoss package
x <- stats::rnorm(100, 100, 10)
a <- rep(1/100, 100)

y <- stats::rnorm(50, 50, 10)
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b <- rep(1/50, 50)

sink <- sinkhorn(x = x, y = y, a = a, b = b, power = 2,
metric = "Lp", debias = TRUE)

# sinkhorn distance, de-biased
print(sink$loss)

# potentials for first 5 obs in each group
print(sink$f[1:5])
print(sink$g[1:5])

## End(Not run)

supported.methods Supported weighting methods

Description

Supported weighting methods

Usage

supported.methods()

Value

A character vector with values "Logistic", "Probit", "SBW", "SCM", "CBPS", "NNM", "Wasser-
stein" or equivalently "COT", and "None".

Examples

supported.methods()

supported.solvers Supported solvers

Description

Supported solvers

Usage

supported.solvers()
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Details

The solvers "mosek" and "gurobi" are commercial solvers that require software licenses. "quad-
prog" uses the osqp R package and "lbfgs" will either use pytorch in Python or the lbfgs3c
package in R, which are both free.

Value

a character vector with values "lbfgs","mosek","gurobi", and "osqp"

Examples

supported.solvers()
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