Package 'cccp'

September 9, 2022

Version 0.2-9
Date 2022-09-06
Title Cone Constrained Convex Problems
Maintainer Bernhard Pfaff <bernhard@pfaffikus.de></bernhard@pfaffikus.de>
Depends R ($>= 3.0.1$), methods
Suggests RUnit, numDeriv
LazyLoad yes
Description Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see http://cvxopt.org for more information).
Imports Rcpp (>= 0.11.2)
LinkingTo Rcpp, RcppArmadillo
License GPL (>= 3)
RcppModules CPG
Author Bernhard Pfaff [aut, cre], Lieven Vandenberghe [cph] (copyright holder of cvxopt), Martin Andersen [cph] (copyright holder of cvxopt), Joachim Dahl [cph] (copyright holder of cvxopt)
Repository CRAN
Repository/R-Forge/Project cccp
Repository/R-Forge/Revision 193
Repository/R-Forge/DateTimeStamp 2022-09-06 19:39:04
Date/Publication 2022-09-09 17:12:55 UTC
NeedsCompilation yes
R topics documented:
cccp 2 CPD-class 3

2 cccp

```
10
Rcpp_DCP-class
Rcpp_DLP-class
Rcpp_DNL-class
Rcpp_DQP-class
Rcpp PDV-class
19
```

ссср

Index

Solving linear and quadratic programs with cone constraints

Description

This function is the main function for defining and solving convex problems in the form of either linear or quadratic programs with cone constraints.

Usage

```
cccp(P = NULL, q = NULL, A = NULL, b = NULL, cList = list(),
    x0 = NULL, f0 = NULL, g0 = NULL, h0 = NULL,
    nlfList = list(), nlgList = list(), nlhList = list(),
    optctrl = ctrl())
```

Arguments

Р	An object of class matrix with dimension $N \times N$ or NULL.
q	An object of class vector with dimension $N\times 1$ or NULL.
Α	An object of class matrix with dimension $p \times N$.
b	An object of class vector with dimension $p \times 1$.

CPD-class 3

cList	A list object containing the cone constraints. Elements must be of either S4-class NNOC, or SOCC, or PSDC.
x0	An object of class vector with dimension $n\times 1$ for the initial values. The point x0 must be in the domain of the nonlinear constraints.
f0	function: the scalar-valued convex and twice-differentiable objective function (its first argument must be 'x').
g0	function: the gradient function of the objective (its first argument must be 'x').
h0	function: the Hessian function of the objective (its first argument must be 'x').
nlfList	A list object containing the nonlinear constraints as its elements. The functions have to be specified with x as their first argument and must be casted in implicit form, i.e. $f(x) \leq 0$.
nlgList	A list object containing the gradient functions as its elements. The functions have to be specified with x as their first argument.
nlhList	A list object containing the Hessian functions as its elements. The functions have to be specified with x as their first argument.
optctrl	An object of S4-class Rcpp_CTRL.

Value

An object of class Rcpp_CPS.

CPD-class	Class "CPD"	

Description

Class union of Rcpp_DLP, Rcpp_DQP, Rcpp_DCP and Rcpp_DNL.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "CPD" in the signature.

4 cps

CPG

Rcpp module: CPG

Description

Module for defining and solving convex programs.

Details

The module contains the following items: classes:

CONEC Class for inequality (cone) constraints.

CTRL Class for control parameters used in optimizations.

PDV Class for primal/dual variables.

DCP Class for definition of convex programs.

DLP Class for definition of linear programs.

DNL Class for definition of linear programs with non-linear constraints.

DQP Class for definition of quadratic programs.

CPS Class for solution of convex programs.

functions:

rpp Function for solving risk parity portfolios.

gpp Function for solving a geometric program.

cps

Solving a convex program

Description

This function returns an optimal point for a cone constraint convex program.

Usage

```
## S4 method for signature 'Rcpp_DCP,Rcpp_CTRL'
cps(cpd, ctrl)
## S4 method for signature 'Rcpp_DLP,Rcpp_CTRL'
cps(cpd, ctrl)
## S4 method for signature 'Rcpp_DNL,Rcpp_CTRL'
cps(cpd, ctrl)
## S4 method for signature 'Rcpp_DQP,Rcpp_CTRL'
cps(cpd, ctrl)
```

ctrl 5

Arguments

cpd	An object belonging to the class union CPD.
ctrl	An object of reference-class Rcpp_CTRL.

Value

An object of reference-class Rcpp_CPS.

ctrl Creating objects of reference-class CTRL	
---	--

Description

This function creates an object of reference-class CTRL which contains optimization parameters, e.g. the maximum number of iterations.

Usage

Arguments

maxiters	integer, the maximum count of iterations.
abstol	numeric, the absolute level for convergence to be achieved.
reltol	numeric, the relative level for convergence to be achieved.
feastol	numeric, the feasable level for convergence to be achieved.
stepadj	numeric, step size adjustment in combined step.
beta	numeric, parameter in backtracking line search.
trace	logical, if TRUE (the default), the solver's progress during the iterations is shown. $ \\$

Value

An object of reference-class CTRL.

Note

Either abstol or reltol can be set to a negative real number. feastol must be greater than zero.

See Also

```
Rcpp_CTRL
```

6 dcp

dcp	Creating a member object of the reference-class DCP
-----	---

Description

This function returns an object containing the definition of a convex program with non-linear constraints and (if provided) cone constraints. The returned object is a member of the reference-class DCP.

Usage

Arguments

x0	An object of class vector with dimension $n\times 1$ for the initial values. The point x0 must be in the domain of the nonlinear constraints.
f0	function: the scalar-valued convex and twice-differentiable objective function (its first argument must be 'x').
g0	function: the gradient function of the objective (its first argument must be 'x'); returning a vector.
h0	function: the Hessian function of the objective (its first argument must be 'x'); returning a matrix.
cList	A list object containing the cone constraints. Elements must be of either S4-class NNOC, or SOCC, or PSDC or an empty list in case of no inequality constraints.
nlfList	A list object containing the nonlinear constraints as its elements. The functions have to be specified with x as their first argument and must be casted in implicit form, <i>i.e.</i> $f(x) \leq 0$.
nlgList	A list object containing the gradient functions as its elements. The functions have to be specified with x as their first argument.
nlhList	A list object containing the Hessian functions as its elements. The functions have to be specified with x as their first argument.
A	An object of class matrix with dimension $p\times n$ or NULL for problems without equality constraints.
b	An object of class vector with dimension $p\times 1$ or NULL for problems without equality constraints.

Value

An object belonging to the reference-class DCP.

dlp 7

dlp

Creating a member object of the reference-class DLP

Description

This function returns an object containing the definition of a cone constrained linear program. The returned object is a member of the reference-class DLP.

Usage

```
dlp(q, A = NULL, b = NULL, cList = list())
```

Arguments

q	An object of class vector with dimension $n \times 1$.
A	An object of class matrix with dimension $p\times n$ or NULL for problems without equality constraints.
b	An object of class vector with dimension $p\times 1$ or NULL for problems without equality constraints.
cList	A list object containing the cone constraints. Elements must be of either reference-class NNOC, or SOCC, or PSDC or an empty list in case of no inequality constraints.

Value

An object belonging to the reference-class DLP.

dnl

Creating a member object of the reference-class DNL

Description

This function returns an object containing the definition of a linear program with non-linear constraints and (if provided) cone constraints. The returned object is a member of the reference-class DNL.

Usage

```
dnl(q, A = NULL, b = NULL, cList = list(),
      x0, nlfList = list(), nlgList = list(), nlhList = list())
```

8 dqp

Argument	S
----------	---

q	vector of length n for the coefficients in the objective.
A	An object of class matrix with dimension $p\times n$ or NULL for problems without equality constraints.
b	An object of class vector with dimension $p\times 1$ or NULL for problems without equality constraints.
cList	A list object containing the cone constraints. Elements must be of either S4-class NNOC, or SOCC, or PSDC or an empty list in case of no inequality constraints.
x0	An object of class vector with dimension $n \times 1$ for the initial values. The point x0 must be in the domain of the nonlinear constraints.
nlfList	A list object containing the nonlinear constraints as its elements. The functions have to be specified with x as their first argument and must be casted in implicit form, <i>i.e.</i> $f(x) \leq 0$.
nlgList	A list object containing the gradient functions as its elements. The functions have to be specified with x as their first argument.
nlhList	A list object containing the Hessian functions as its elements. The functions have to be specified with x as their first argument.

Value

An object belonging to the reference-class DNL.

dqp Creating a member object of the reference-class DQP

Description

This function returns an object containing the definition of a cone constrained quadratic program. The returned object is a member of the reference-class DQP.

Usage

```
dqp(P, q, A = NULL, b = NULL, cList = list())
```

Arguments

Р	An object of class matrix with dimension $n \times n$.
q	An object of class vector with dimension $n \times 1$.
Α	An object of class matrix with dimension $p \times n$ or NULL for problems without equality constraints.
b	An object of class vector with dimension $p\times 1$ or NULL for problems without equality constraints.
cList	A list object containing the cone constraints. Elements must be of either reference-class NNOC, or SOCC, or PSDC or an empty list in case of no inequality constraints.

getFoo 9

Value

An object belonging to the reference-class DQP.

getFoo

Extractor methods for reference class objects

Description

Returns a member of reference class objects.

Usage

```
## S4 method for signature 'Rcpp_PDV'
getx(object)
## S4 method for signature 'Rcpp_CPS'
getx(object)
## S4 method for signature 'Rcpp_PDV'
gety(object)
## S4 method for signature 'Rcpp_CPS'
gety(object)
## S4 method for signature 'Rcpp_PDV'
gets(object)
## S4 method for signature 'Rcpp_CPS'
gets(object)
## S4 method for signature 'Rcpp_PDV'
getz(object)
## S4 method for signature 'Rcpp_CPS'
getz(object)
## S4 method for signature 'Rcpp_CPS'
getstate(object)
## S4 method for signature 'Rcpp_CPS'
getstatus(object)
## S4 method for signature 'Rcpp_CPS'
getniter(object)
## S4 method for signature 'Rcpp_CTRL'
getparams(object)
```

Arguments

object

An object of either reference-class Rcpp_PDV or Rcpp_CPS, or Rcpp_CTRL.

Value

The relevant member object of the class.

gp

Description

This function solves a geometric program.

Usage

```
gp(F0, g0, FList = list(), gList = list(), nno = NULL,
    A = NULL, b = NULL, optctrl = ctrl())
```

Arguments

F0	Matrix in the objective function.
g0	Matrix in the objective function (affine terms).
FList	List of matrices in posinomial functions.
gList	List of matrices in posinomial functions (affine terms).
nno	Object created by a call to nnoc().
Α	Lefthand-side matrix of equality constraints.
b	Lefthand-side matrix of equality constraints.
optctrl	Object of reference class 'Rcpp_CTRL', created by a call to ctrl().

Details

Solves a geometric program casted in its epigraph form.

Value

An object of S4-class Rcpp_CPS.

References

Boyd, S., Kim, S.-J., Vandenberghe, L. and A. Hassibi (2007), A tutorial on geometric programming, *Optim Eng*, Educational Section, **8**:67–127, Springer.

11

11

Minimizing L1-norm

Description

This function minimizes a L1-norm of the form $||Pu-q||_1$, whereby P is a $(m \times n)$ matrix and q is a $m \times 1$ vector. This function is wrapper function for invoking the cps-method of Linear Programs.

Usage

```
11(P, q = NULL, optctrl = ctrl())
```

Arguments

P matrix of dimension $m \times n$.

q vector of length m.

optctrl An object of S4-class Rcpp_CTRL.

Value

An object of S4-class Rcpp_CPS.

nlfc

Definition of nonlinear inequality constraints

Description

This function is the interface to the reference class NLFC for creating nonlinear constraints.

Usage

```
nlfc(G, h)
```

Arguments

h

G Object of class "matrix": A $(m \times n)$ matrix containing the coefficients of the

lefthand-side linear inequality constraints.

Object of class NLFV: A $(m \times 1)$ vector containing the coefficients of the righthand-

side linear inequality constraints as slot u.

Value

List with elements: conType, G and h.

12 psdc

nnoc

Definition of linear inequality constraints

Description

This function is the interface to the reference class NNOC for creating linear constraints.

Usage

```
nnoc(G, h)
```

Arguments

h

G Object of class "matrix": A $(m \times n)$ matrix containing the coefficients of the

lefthand-side linear inequality constraints.

Object of class NNOV: A $(m \times 1)$ vector containing the coefficients of the righthand-

side linear inequality constraints as slot u.

Value

List with elements: conType, G and h.

psdc

Definition of positive semidefinite cone inequality constraints

Description

This function is the interface to the reference class PSDC for creating positive semidefinite cone constraints.

Usage

```
psdc(Flist, F0)
```

Arguments

Flist Object of class "list": A list with the matrices appearing on the left-hand side

of the matrix inequality.

F0 Object of class "matrix": The matrix appearing on the righthand-side.

Details

A psd-cone constraint is given as $\sum_{i=1}^{n} x_i F_i \leq F_0$. The matrix G is created as $G = [\operatorname{vech}(F_1)| \dots | \operatorname{vech}(F_n)]$ and the vector h is constructed as $h = [\operatorname{vech}(F_0)]$.

Value

List with elements: conType, G and h.

Rcpp_CONEC-class 13

Rcpp_CONEC-class

Class "Rcpp_CONEC"

Description

Class for inequality (cone) constraints.

Extends

Class "C++Object", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

cone: Object of class activeBindingFunction: Type of cone constraints.

G: Object of class activeBindingFunction: Left-hand side of inequality constraints.

h: Object of class activeBindingFunction: Right-hand side of inequality constraints.

sidx: Object of class activeBindingFunction: Row index for subsets of cone constraints.

dims: Object of class activeBindingFunction: Dimension of cone constraints.

K: Object of class activeBindingFunction: Count of inequality constraints.

n: Object of class activeBindingFunction: Count of variables in objective.

Examples

showClass("Rcpp_CONEC")

Rcpp_CPS-class

Class "Rcpp_CPS"

Description

Class for solution of convex programs.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

pdv: Object of class activeBindingFunction: Primal-dual variables.

state: Object of class activeBindingFunction: Vector of state variables in convex programs.

status: Object of class activeBindingFunction: Character indicating the status of the returned solution.

niter: Object of class activeBindingFunction: Integer, count of iterations.

sidx: Object of class activeBindingFunction: Integer matrix, start and end indices of slack variables.

14 Rcpp_DCP-class

Examples

```
showClass("Rcpp_CPS")
```

Rcpp_CTRL-class

Class "Rcpp_CTRL"

Description

Class for control options used in optimization routines.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

ctrlparams: Object of class activeBindingFunction: List of control parameters.

Examples

```
showClass("Rcpp_CTRL")
```

Rcpp_DCP-class

Class "Rcpp_DCP"

Description

Class for definition of convex programs with non-linear constraints.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

x0: Object of class activeBindingFunction: Initial values.

cList: Object of class activeBindingFunction: Inequality constraints, class CONEC.

nList: Object of class activeBindingFunction: List with elements of functions for evaluating non-linear constraints, their associated gradients and their associated Hessians.

A: Object of class activeBindingFunction: Left-hand side of equality cosntraints.

b: Object of class activeBindingFunction: Right-hand side of equality cosntraints.

Examples

```
showClass("Rcpp_DCP")
```

Rcpp_DLP-class 15

cpp_DLP-class Class "Rcpp_DLP"	

Description

Class for definition of linear programs.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

- q: Object of class activeBindingFunction: Matrix related to linear term in objective.
- A: Object of class activeBindingFunction: Left-hand side of equality cosntraints.
- b: Object of class activeBindingFunction: Right-hand side of equality cosntraints.
- cList: Object of class activeBindingFunction: Inequality constraints, class CONEC.

Examples

```
showClass("Rcpp_DLP")
```

pp_DNL"

Description

Class for definition of linear programs with non-linear constraints.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

- q: Object of class activeBindingFunction: Matrix related to linear term in objective.
- A: Object of class activeBindingFunction: Left-hand side of equality cosntraints.
- b: Object of class activeBindingFunction: Right-hand side of equality cosntraints.
- cList: Object of class activeBindingFunction: Inequality constraints, class CONEC.
- x0: Object of class activeBindingFunction: Initial values.
- nList: Object of class activeBindingFunction: List with elements of functions for evaluating non-linear constraints, their associated gradients and their associated Hessians.

Examples

```
showClass("Rcpp_DNL")
```

16 Rcpp_PDV-class

Rcpp_DQP-class

Class "Rcpp_DQP"

Description

Class for definition of quadratic programs.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

- P: Object of class activeBindingFunction: Matrix related to quadratic term in objective.
- q: Object of class activeBindingFunction: Matrix related to linear term in objective.
- A: Object of class activeBindingFunction: Left-hand side of equality cosntraints.
- b: Object of class activeBindingFunction: Right-hand side of equality cosntraints.
- cList: Object of class activeBindingFunction: Inequality constraints, class CONEC.

Examples

```
showClass("Rcpp_DQP")
```

Rcpp_PDV-class

Class "Rcpp_PDV"

Description

Class for primal/dual variables in convex programs.

Extends

Class "C++0bject", directly. All reference classes extend and inherit methods from "envRefClass".

Fields

- x: Object of class activeBindingFunction: Primal variables.
- y: Object of class activeBindingFunction: Dual variables.
- s: Object of class activeBindingFunction: Primal slack variables.
- z: Object of class activeBindingFunction: Dual slack variables.

kappa: Object of class activeBindingFunction: Self-dual embedding variable; used in LPs, only.

tau: Object of class activeBindingFunction: Self-dual embedding variable; used in LPs, only.

rp 17

Examples

```
showClass("Rcpp_PDV")
```

rp

Risk-parity optimization

Description

This function determines a risk-parity solution of a long-only portfolio with a budget-constraint.

Usage

```
rp(x0, P, mrc, optctrl = ctrl())
```

Arguments

x0 matrix of dimension $n \times 1$; starting values. P matrix of dimension $n \times n$; dispersion matrix.

mrc matrix of dimension $n \times 1$; the marginal risk contributions.

optctrl An object of S4-class Rcpp_CTRL.

Value

An object of S4-class Rcpp_CPS.

References

Spinu, F. (2013), An Algorithm for Computing Risk Parity Weights, SSRN, *OMERS Capital Markets*, July 2013.

socc

Definition of second-oder cone inequality constraints

Description

This function is the interface to the reference class SOCC for creating second-oder cone constraints.

Usage

```
socc(F, g, d, f)
```

18 socc

Arguments

F	Object of class "matrix": The matrix appearing in the norm-expression on the left-hand side of a second-order cone constraint.
g	Object of class "numeric": The vector appearing in the norm-expression on the left-hand side of a second-order cone constraint.
d	Object of class "numeric": The vector appearing on the right-hand side of a second-order cone constraint.
f	Object of class "numeric": The scalar appearing on the right-hand side of a second-order cone constraint.

Details

A second-order cone constraint is given as $||Fx+g||_2 \le d'x+f$. The matrix G is created as G=[-d,-F] and the vector h is constructed as h=[f,g].

Value

List with elements: conType, G and h.

Index

, alagaa	CTDL (CDC) 4
* classes CPD-class, 3	CTRL (CPG), 4 ctrl, 5
nlfc, 11	Ctf 1, 3
nnoc, 12	DCP (CPG), 4
	dcp, 6
psdc, 12	DLP (CPG), 4
Rcpp_CONEC-class, 13	dlp, 7
Rcpp_CPS-class, 13	DNL (CPG), 4
Rcpp_CTRL-class, 14	dn1, 7
Rcpp_DCP-class, 14	DQP (CPG), 4
Rcpp_DLP-class, 15	dqp, 8
Rcpp_DNL-class, 15	44p, 0
Rcpp_DQP-class, 16	envRefClass, 13-16
Rcpp_PDV-class, 16	
socc, 17	getFoo, 9
* datasets	getniter(getFoo),9
CPG, 4	<pre>getniter,Rcpp_CPS-method(getFoo),9</pre>
* optimize	getparams (getFoo), 9
cccp, 2	<pre>getparams, Rcpp_CTRL-method (getFoo), 9</pre>
cps, 4	gets (getFoo), 9
ctrl,5	<pre>gets,Rcpp_CPS-method(getFoo),9</pre>
dcp, 6	<pre>gets,Rcpp_PDV-method(getFoo),9</pre>
dlp, 7	getstate (getFoo), 9
dn1, 7	<pre>getstate,Rcpp_CPS-method(getFoo),9</pre>
dqp, 8	getstatus (getFoo), 9
getFoo, 9	<pre>getstatus,Rcpp_CPS-method(getFoo),9</pre>
gp, 10	getx (getFoo), 9
11, 11	<pre>getx,Rcpp_CPS-method(getFoo),9</pre>
rp, 17	<pre>getx,Rcpp_PDV-method(getFoo),9</pre>
Culphinat 12 16	gety (getFoo), 9
C++0bject, <i>13–16</i>	<pre>gety,Rcpp_CPS-method(getFoo),9</pre>
cccp, 2	<pre>gety,Rcpp_PDV-method(getFoo),9</pre>
CONEC (CPG), 4	getz (getFoo), 9
CPD-class, 3	<pre>getz,Rcpp_CPS-method(getFoo),9</pre>
CPG, 4	<pre>getz,Rcpp_PDV-method(getFoo),9</pre>
CPS (CPG), 4	gp, 10
cps, 4	gpp (CPG), 4
cps, Rcpp_DCP, Rcpp_CTRL-method (cps), 4	
cps, Rcpp_DLP, Rcpp_CTRL-method (cps), 4	11, 11
cps, Rcpp_DNL, Rcpp_CTRL-method (cps), 4	mlfa 11
<pre>cps,Rcpp_DQP,Rcpp_CTRL-method(cps),4</pre>	nlfc, 11

20 INDEX

```
nnoc, 12

PDV (CPG), 4
psdc, 12

Rcpp_CONEC-class, 13
Rcpp_CPS-class, 13
Rcpp_CTRL, 5
Rcpp_CTRL-class, 14
Rcpp_DCP-class, 14
Rcpp_DLP-class, 15
Rcpp_DNL-class, 15
Rcpp_DQP-class, 16
Rcpp_PDV-class, 16
rp, 17
rpp (CPG), 4

socc, 17
```