Package 'covdepGE'

August 24, 2022
Title Covariate Dependent Graph Estimation
Version 1.0.0
Date 2022-08-14
Language en-US
BugReports https://github.com/JacobHelwig/covdepGE/issues
URL https://github.com/JacobHelwig/covdepGE
Description A covariate-dependent approach to Gaussian graphical modeling as described in Dasgupta et al. (2022). Employs a novel weighted pseudo-likelihood approach to model the conditional dependence structure of data as a continuous function of an extraneous covariate. The main function, covdepGE::covdepGE(), estimates a graphical representation of the conditional dependence structure via a block mean-field variational approximation, while several auxiliary functions (inclusionCurve(), matViz(), and plot.covdepGE()) are included for visualizing the resulting estimates.
License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.2.1
LinkingTo Rcpp, RcppArmadillo
Imports doParallel, foreach, ggplot2, glmnet, latex2exp, MASS, parallel, Rcpp, reshape 2 , stats

Suggests testhat ($>=3.0 .0$), covr, vdiffr
Config/testthat/edition 3
NeedsCompilation yes
Author Jacob Helwig [cre, aut], Sutanoy Dasgupta [aut],
Peng Zhao [aut],
Bani Mallick [aut],
Debdeep Pati [aut]
Maintainer Jacob Helwig jacob.a.helwig@tamu.edu
Repository CRAN
Date/Publication 2022-08-24 08:22:38 UTC

R topics documented:

covdepGE-package 2
covdepGE 3
generateData 11
inclusionCurve 13
matViz 15
plot.covdepGE 17
Index 19
covdepGE-package

covdepGE: Covariate Dependent Graph Estimation

Description

A covariate-dependent approach to Gaussian graphical modeling as described in Dasgupta et al. (2022). Employs a novel weighted pseudo-likelihood approach to model the conditional dependence structure of data as a continuous function of an extraneous covariate. The main function, covdepGE::covdepGE(), estimates a graphical representation of the conditional dependence structure via a block mean-field variational approximation, while several auxiliary functions (inclusionCurve(), matViz(), and plot.covdepGE()) are included for visualizing the resulting estimates.

Details

The conditional dependence structure (CDS) of a data matrix with p variables can be modeled as an undirected graph with p vertices, where two variables are connected if, and only if, the two variables are dependent given the remaining variables in the data. Gaussian graphical modeling (GGM) seeks to capture the CDS of the data under the assumption that the data are normally distributed. This distributional assumption is convenient for inference, as the CDS is given by the sparsity structure of the precision matrix, where the precision matrix is defined as the inverse covariance matrix of the data.

There is extensive GGM literature and many R packages for GGM, however, all make the restrictive assumption that the precision matrix is homogeneous throughout the data, or that there exists a partition of homogeneous subgroups. covdepGE avoids this strong assumption by utilizing information sharing to model the CDS as varying continuously with an extraneous covariate. Intuitively, this implies that observations having similar extraneous covariate values will have similar precision matrices.

To facilitate information sharing while managing complexity, covdepGE uses an efficient variational approximation conducted under the novel weighted pseudo-likelihood framework proposed by (1). covdepGE further accelerates inference by employing parallelism and executing expensive iterative computations in C++. Additionally, covdepGE offers a principled, data-driven approach for hyperparameter specification that only requires the user to input data and extraneous covariates to perform inference. Finally, covdepGE offers several wrappers around ggplot2 for seamless visualization of resulting estimates, such as matViz, inclusionCurve, and the S 3 method plot.covdepGE.

Author(s)

Maintainer: Jacob Helwig jacob.a.helwig@tamu.edu
Authors:

- Sutanoy Dasgupta sutanoy@stat.tamu.edu
- Peng Zhao <pzhao@stat.tamu. edu>
- Bani Mallick bmallick@stat.tamu.edu
- Debdeep Pati <debdeep@stat.tamu. edu>

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approximate Bayesian approach to covariate-dependent graphical modeling. pages 1-59, 2022.

See Also

Useful links:

- https://github.com/JacobHelwig/covdepGE
- Report bugs at https://github.com/JacobHelwig/covdepGE/issues

```
covdepGE
Covariate Dependent Graph Estimation
```


Description

Model the conditional dependence structure of X as a function of Z as described in (1)

Usage

```
covdepGE(
    X,
    Z = NULL,
    hp_method = "hybrid",
    ssq = NULL,
    sbsq = NULL,
    pip = NULL,
    nssq = 5,
    nsbsq = 5,
    npip = 5,
    ssq_mult = 1.5,
    ssq_lower = 1e-05,
    snr_upper = 25,
    sbsq_lower = 1e-05,
    pip_lower = 1e-05,
    pip_upper = NULL,
```

```
    tau = NULL,
    norm = 2,
    center_X = TRUE,
    scale_Z = TRUE,
    alpha_tol = 1e-05,
    max_iter_grid = 10,
    max_iter = 100,
    edge_threshold = 0.5,
    sym_method = "mean",
    parallel = FALSE,
    num_workers = NULL,
    prog_bar = TRUE
)
```


Arguments

X
Z
$n \times p$ numeric matrix; data matrix. For best results, n should be greater than p
NULL OR $n \times q$ numeric matrix; extraneous covariates. If NULL, Z will be treated as constant for all observations, i.e.:
$Z<-\operatorname{rep}(0, \operatorname{nrow}(X))$
If Z is constant, the estimated graph will be homogeneous throughout the data. NULL by default
hp_method character in c("grid_search","model_average","hybrid"); method for selecting hyperparameters from the the hyperparameter grid. The grid will be generated as the Cartesian product of ssq, sbsq, and pip. Fix X_{j}, the j-th column of X, as the response; then, the hyperparameters will be selected as follows:

- If "grid_search", the point in the hyperparameter grid that maximizes the total ELBO summed across all n regressions will be selected
- If "model_average", then all posterior quantities will be an average of the variational estimates resulting from the model fit for each point in the hyperparameter grid. The averaging weights for each of the n regressions are the exponentiated ELBO
- If "hybrid", then models will be averaged over pip as in "model_average", with σ^{2} and σ_{β}^{2} chosen for each π in pip by maximizing the total ELBO over the grid defined by the Cartesian product of ssq and sbsq as in "grid_search"
"hybrid" by default
ssq
sbsq
NULL OR numeric vector with positive entries; candidate values of the hyperparameter σ^{2} (prior residual variance). If NULL, ssq will be generated for each variable X_{j} fixed as the response as:

```
ssq <- seq(ssq_lower, ssq_upper, length.out = nssq)
```

NULL by default
NULL OR numeric vector with positive entries; candidate values of the hyper- parameter σ_{β}^{2} (prior slab variance). If NULL, sbsq will be generated for each variable X_{j} fixed as the response as:

```
sbsq <- seq(sbsq_lower, sbsq_upper, length.out = nsbsq)
```


NULL by default

pip \quad NULL OR numeric vector with entries in $(0,1)$; candidate values of the hyperparameter π (prior inclusion probability). If NULL, pip will be generated for each variable X_{j} fixed as the response as:

```
pip <- seq(pip_lower, pi_upper, length.out = npip)
```

NULL by default
nssq
nsbsq
npip positive integer; number of points to generate for ssq if ssq is NULL. 5 by default positive integer; number of points to generate for sbsq if sbsq is NULL. 5 by default positive integer; number of points to generate for pip if pip is NULL. 5 by default positive numeric; if ssq is NULL, then for each variable X_{j} fixed as the response:

```
ssq_upper <- ssq_mult * stats::var(X_j)
```

Then, ssq_upper will be the greatest value in ssq for variable X_{j}. 1.5 by default
positive numeric; if ssq is NULL, then ssq_lower will be the least value in ssq. $1 \mathrm{e}-5$ by default positive numeric; upper bound on the signal-to-noise ratio. If sbsq is NULL, then for each variable X_{j} fixed as the response:

```
s2_sum <- sum(apply(X, 2, stats::var))
sbsq_upper <- snr_upper / (pip_upper * s2_sum)
```

Then, sbsq_upper will be the greatest value in sbsq. 25 by default
positive numeric; if sbsq is NULL, then sbsq_lower will be the least value in sbsq. $1 \mathrm{e}-5$ by default numeric in $(0,1)$; if pip is NULL, then pip_lower will be the least value in pip. $1 \mathrm{e}-5$ by default

NULL OR numeric in $(0,1)$; if pip is NULL, then pip_upper will be the greatest value in pip. If sbsq is NULL, pip_upper will be used to calculate sbsq_upper. If NULL, pip_upper will be calculated for each variable X_{j} fixed as the response as:
lasso <- glmnet::cv.glmnet(X, X_j)
non0 <- sum(glmnet: :coef.glmnet(lasso, s = "lambda.1se") [-1] != 0) non0 <- min(max (non0, 1), p-1)
pip_upper <- non0 / p
NULL by default
tau
NULL OR positive numeric OR numeric vector of length n with positive entries; bandwidth parameter. Greater values allow for more information to be shared between observations. Allows for global or observation-specific specification. If NULL, use 2-step KDE methodology as described in (2) to calculate observationspecific bandwidths. NULL by default

norm	numeric in $[1, \infty]$; norm to use when calculating weights. Inf results in infinity norm. 2 by default
center_X	logical; if TRUE, center X column-wise to mean 0 . TRUE by default
scale_Z	logical; if TRUE, center and scale Z column-wise to mean 0 , standard deviation 1 prior to calculating the weights. TRUE by default
alpha_tol	positive numeric; end CAVI when the Frobenius norm of the change in the alpha matrix is within alpha_tol. 1e-5 by default
max_iter_grid	positive integer; if tolerance criteria has not been met by max_iter_grid iterations during grid search, end CAVI. After grid search has completed, CAVI is performed with the final hyperparameters selected by grid search for at most max_iter iterations. Does not apply to hp_method = "model_average". 10 by default
max_iter	positive integer; if tolerance criteria has not been met by max_iter iterations, end CAVI. 100 by default
edge_threshold	numeric in $(0,1)$; a graph for each observation will be constructed by including an edge between variable i and variable j if, and only if, the (i, j) entry of the symmetrized posterior inclusion probability matrix corresponding to the observation is greater than edge_threshold. 0.5 by default
sym_method	character in c("mean", "max", "min"); to symmetrize the posterior inclusion probability matrix for each observation, the (i, j) and (j, i) entries will be postprocessed as sym_method applied to the (i, j) and (j, i) entries. "mean" by default
parallel	logical; if TRUE, hyperparameter selection and CAVI for each of the p variables will be performed in parallel using foreach. Parallel backend may be registered prior to making a call to covdepGE. If no active parallel backend can be detected, then parallel backend will be automatically registered using:
	doParallel::registerDoParallel(num_workers)
	FALSE by default
num_workers	NULL OR positive integer less than or equal to parallel: : detectCores(); argument to doParallel::registerDoParallel if parallel = TRUE and no parallel backend is detected. If NULL, then:
	num_workers <- floor(parallel::detectCores() / 2)
	NULL by default
prog_bar	logical; if TRUE, then a progress bar will be displayed denoting the number of remaining variables to fix as the response and perform CAVI. If parallel, no progress bar will be displayed. TRUE by default

Value

Returns object of class covdepGE with the following values:
graphs list with the following values:

- graphs: list of n numeric matrices of dimension $p \times p$; the l-th matrix is the adjacency matrix for the l-th observation
- unique_graphs: list; the l-th element is a list containing the l-th unique graph and the indices of the observation(s) corresponding to this graph
- inclusion_probs_sym: list of n numeric matrices of dimension $p \times p$; the l-th matrix is the symmetrized posterior inclusion probability matrix for the l-th observation
- inclusion_probs_asym: list of n numeric matrices of dimension $p \times p$; the l-th matrix is the posterior inclusion probability matrix for the l-th observation prior to symmetrization

```
variational_params
```

list with the following values:

- alpha: list of p numeric matrices of dimension $n \times(p-1)$; the (i, j) entry of the k-th matrix is the variational approximation to the posterior inclusion probability of the j-th variable in a weighted regression with variable k fixed as the response, where the weights are taken with respect to observation i
- mu: list of p numeric matrices of dimension $n \times(p-1)$; the (i, j) entry of the k-th matrix is the variational approximation to the posterior slab mean for the j-th variable in a weighted regression with variable k fixed as the response, where the weights are taken with respect to observation i
- ssq_var: list of p numeric matrices of dimension $n \times(p-1)$; the (i, j) entry of the k-th matrix is the variational approximation to the posterior slab variance for the j-th variable in a weighted regression with variable k fixed as the response, where the weights are taken with respect to observation i

hyperparameters

list of p lists; the j-th list has the following values for variable j fixed as the response:

- grid: matrix of candidate hyperparameter values, corresponding ELBO, and iterations to converge
- final: the final hyperparameters chosen by grid search and the ELBO and iterations to converge for these hyperparameters
model_details list with the following values:
- elapsed: amount of time to fit the model
- n : number of observations
- p : number of variables
- ELBO: ELBO summed across all observations and variables. If hp_method is "model_average" or "hybrid", this ELBO is averaged across the hyperparameter grid using the model averaging weights for each variable
- num_unique: number of unique graphs
- grid_size: number of points in the hyperparameter grid
- args: list containing all passed arguments of length 1
weights list with the following values:
- weights: $n \times n$ numeric matrix. The (i, j) entry is the similarity weight of the i-th observation with respect to the j-th observation using the j-th observation's bandwidth
- bandwidths: numeric vector of length n. The i-th entry is the bandwidth for the i-th observation

Overview

Suppose that X is a p-dimensional data matrix with n observations and that Z is a q-dimensional extraneous covariate, also with n observations, where the l-th observation in Z is associated with the l-th observation in X . Further suppose that the l-th row of X follows a p-dimensional Gaussian distribution with mean 0 and precision matrix $\Omega\left(z_{l}\right)$, where z_{l} is the l-th entry of Z and Ω is a continuous function mapping from the space of extraneous covariates to the space of $p \times p$ nonsingular matrices. Then, for the l-th observation, the (j, k) entry of $\Omega\left(z_{l}\right)$ is non-zero if, and only if, variable j and variable k are dependent given the remaining variables in X .

Given data satisfying these assumptions, the covdepGE function employs the algorithm described in (1) to estimate a graphical representation of the structure of Ω for each of the observations in X as a continuous function of Z. This graph contains an undirected edge between two variables X_{j} and X_{k} if, and only if, X_{j} and X_{k} are conditionally dependent given the remaining variables. Core components of this methodology are the weighted pseudo-likelihood framework in which inference is conducted via a block mean-field variational approximation.

Graph Estimation

Graphs are constructed using a pseudo-likelihood approach by fixing each of the columns X_{j} of X as the response and performing a spike-and-slab regression using the remaining variables X_{k} in X as predictors. To determine if an edge should be added between X_{j} and X_{k}, the posterior inclusion probability of X_{k} in a regression with X_{j} fixed as the response $\left(P I P_{j}\left(X_{k}\right)\right)$ and vice versa $\left(P I P_{k}\left(X_{j}\right)\right)$ are symmetrized according to sym_method (e.g., by taking the mean of $P I P_{k}\left(X_{j}\right)$ and $P I P_{j}\left(X_{k}\right)$). If the symmetrized $P I P$ is greater than edge_threshold, an edge will be included between X_{j} and X_{k}.

To model Ω as a function of Z, n weighted spike-and-slab regressions are performed for each variable X_{j} fixed as the response. The similarity weights for the l-th regression are taken with respect to observation l such that observations having similar values of Z to z_{l} will have larger weights. These similarity weights in conjunction with the pseudo-likelihood framework comprise the weighted pseudo-likelihood approach introduced by (1). Note that model performance is best when $n>p$.

Variational Inference

Spike-and-slab posterior quantities are estimated using a block mean-field variational approximation. Coordinate Ascent Variational Inference (CAVI) is performed for each of the weighted regressions to select the variational parameters that maximize the ELBO. The parameters for each of the regression coefficients are the mean and variance of the slab (μ and $\sigma_{\text {var }}^{2}$, respectively) and the probability that the coefficient is non-zero (α). μ and α for all coefficients are initialized as 0 and 0.2 , respectively.

CAVI for the n regressions is performed simultaneously for variable X_{j} fixed as the response. With each of the n sets of α as the rows of an $n \times(p-1)$ matrix, the CAVI for variable X_{j} is ended for
all n regressions when the Frobenius norm of the change in the α matrix is less than alpha_tol or after max_iter iterations of CAVI have been performed.
Note that since the regressions performed for variable X_{j} and X_{k} fixed as the response are independent of each other, they may be performed in parallel by setting parallel = TRUE. Registering parallel backend with greater than p workers offers no benefit, since each worker takes on one variable to fix as the response and perform the n regressions.

Hyperparameter specification

Each regression requires the specification of 3 hyperparameters: π (the prior probability of inclusion), σ^{2} (the prior residual variance), and σ_{β}^{2} (the prior variance of the slab). covdepGE offers 3 methods for hyperparameter specification via the hp_method argument: grid_search, model_average, and hybrid. Empirically, grid search offers the best sensitivity and model_average offers the best specificity, while hybrid sits between the other two methods in both metrics.
The hyperparameter candidate grid is generated by taking the Cartesian product between ssq, sbsq, and pip (candidate values for $\sigma^{2}, \sigma_{\beta}^{2}$, and π, respectively). Each of the methods gives an approach for selecting points from this grid.

In grid_search, the point from the grid that produces the model that has the greatest total ELBO is selected, where the total ELBO is calculated by summing the ELBO for each of the n regressions for a variable X_{j} fixed as the response. Thus, all observations use the same set of hyperparameters for the regression on X_{j}.
Instead of selecting only one model as in grid_search, models are averaged over in model_average. With X_{j} fixed as the response, the unnormalized weights for each grid point used to perform this averaging is calculated by exponentiating the ELBO for each of the n regressions. Note that since the ELBO for a given grid point will vary across the n regressions due to differing similarity weights, each of the n sets of averaging weights will be unique.
Finally, hybrid combines grid_search and model_average. Fixing X_{j} as the response, for each π candidate in pip, the point in the grid defined by the Cartesian product of ssq and sbsq is selected by maximizing the total ELBO summed across the n regressions. The resulting models for each of the π candidates are then averaged using the exponentiated ELBO for each of the n regressions as the unnormalized averaging weights.
Note that in the search step of grid_search and hybrid, CAVI for each of the grid points is performed for at most max_iter_grid iterations. A second CAVI is then performed for max_iter iterations using the hyperparameters that maximized the total ELBO in the first step. Setting max_iter_grid to be less than max_iter (as is the default) will result in a more efficient search.

Candidate grid generation

The candidate grids (ssq, sbsq, and pip) may be passed as arguments, however, by default, these grids are generated automatically. Each of the grids are spaced uniformly between an upper end point and a lower end point. The number of points in each grid is 5 by default. Grids include end points, and the number of points in each grid is controlled by the arguments nssq, nsbsq, and npip. The lower endpoints (ssq_lower, sbsq_lower, and pip_lower) are all $1 \mathrm{e}-5$ by default. The upper endpoints are calculated dependent on the variable X_{j} fixed as the response.
ssq_upper is simply the variance of X_{j} times ssq_mult. By default, ssq_mult is 1.5 .
pip_upper is calculated by regressing the remaining variables on X_{j} using LASSO. The shrinkage hyperparameter for LASSO is chosen to be lambda. 1 se . The number of non-zero coefficients
estimated by LASSO is then divided by p-1 to calculate pip_upper. Note that if the LASSO estimate to the number of non-zero coefficients is 0 or $p-1$, this estimate is changed to 1 or $p-2$ (respectively) to ensure that pip_upper is greater than 0 and less than 1.
Finally, an upper bound is induced on σ_{β}^{2} by deriving a rough upper bound for the signal-to-noise ratio that depends on σ_{β}^{2}. Let Σs_{j}^{2} be the sum of the sample variances of the columns of the predictors X^{\prime}. Under the simplifying assumptions that the expected values of X^{\prime} and the spike-and-slab regression coefficients β are 0 and that X^{\prime} and β are independent, the variance of the dot product of X^{\prime} with β is $\pi \cdot \sigma^{2} \cdot \sigma_{\beta}^{2} \cdot \Sigma s_{j}^{2}$. Thus, the signal-to-noise ratio under these assumptions is given by $\pi \cdot \sigma_{\beta}^{2} \cdot \Sigma s_{j}^{2}$. Replacing π with pip_upper and σ_{β}^{2} with sbsq_upper gives an upper bound on the signal-to-noise ratio. Setting this bound equal to snr_upper gives an expression for sbsq_upper.

Similarity Weights

The similarity weight for observation k with respect to observation l is $\phi_{\tau_{l}}\left(\left\|z_{l}-z_{k}\right\|\right)$. Here, $\|\cdot\|$ denotes the norm specified by the norm argument, z_{l} and z_{k} are the values of Z for the l-th and k-th observations, $\phi_{\tau_{l}}$ is the univariate Gaussian density with standard deviation τ_{l}, and τ_{l} is the bandwidth for the l-th observation.
tau may be passed as an argument, however, by default, it is estimated using the methodology given in (2). (2) describes a two-step approach for density estimation, where in the first step, an initial estimate is calculated using Silverman's rule of thumb for initializing bandwidth values, and in the second step, the density is refined by updating the bandwidth values. This methodology is used here to estimate the density of Z, and the updated bandwidths from the second step are used for tau.

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approximate Bayesian approach to covariate-dependent graphical modeling. pages 1-59, 2022.
(2) Sutanoy Dasgupta, Debdeep Pati, and Anuj Srivastava. A Two-Step Geometric Framework For Density Modeling. Statistica Sinica, 30(4):2155-2177, 2020.

Examples

```
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
```

```
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
            ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
        n1 + n2 + 1, ",\ldots.,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
```

generateData Generate Covariate-Dependent Data

Description

Generate a 1-dimensional extraneous covariate and p-dimensional Gaussian data with a precision matrix that varies as a continuous function of the extraneous covariate. This data is distributed similar to that used in the simulation study from (1)

Usage

generateData($p=5, n 1=60, n 2=60, n 3=60, Z=$ NULL, true_precision $=$ NULL $)$

Arguments

p
n1
n2
n3
positive integer; number of variables in the data matrix. 5 by default positive integer; number of observations in the first interval. 60 by default positive integer; number of observations in the second interval. 60 by default positive integer; number of observations in the third interval. 60 by default

NULL or numeric vector; extraneous covariate values for each observation. If NULL, Z will be generated from a uniform distribution on each of the intervals
true_precision NULL OR list of matrices of dimension $p \times p$; true precision matrix for each observation. If NULL, the true precision matrices will be generated dependent on Z. NULL by default

Value

Returns list with the following values:
$\mathrm{X} \quad$ a $(\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3) \times p$ numeric matrix, where the i-th row is drawn from a p dimensional Gaussian with mean 0 and precision matrix true_precision[[i]]

Z
a $(\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3) \times 1$ numeric matrix, where the i-th entry is the extraneous covariate z_{i} for observation i
true_precision list of $\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3$ matrices of dimension $p \times p$; the i-th matrix is the precision matrix for the i-th observation
interval vector of length $n 1+n 2+n 3$; interval assignments for each of the observations, where the i-th entry is the interval assignment for the i-th observation

Extraneous Covariate

If $Z=N U L L$, then the generation of Z is as follows:
The first n 1 observations have z_{i} from from a uniform distribution on the interval $(-3,-1)$ (the first interval).

Observations $\mathrm{n} 1+1$ to $\mathrm{n} 1+\mathrm{n} 2$ have z_{i} from from a uniform distribution on the interval $(-1,1)$ (the second interval).
Observations $\mathrm{n} 1+\mathrm{n} 2+1$ to $\mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3$ have z_{i} from a uniform distribution on the interval $(1,3)$ (the third interval).

Precision Matrices

If true_precision $=$ NULL, then the generation of the true precision matrices is as follows:
All precision matrices have 2 on the diagonal and 1 in the $(2,3) /(3,2)$ positions.
Observations in the first interval have a 1 in the $(1,2) /(1,2)$ positions, while observations in the third interval have a 1 in the $(1,3) /(3,1)$ positions.

Observations in the second interval have 2 entries that vary as a linear function of their extraneous covariate. Let $\beta=1 / 2$. Then, the $(1,2) /(2,1)$ positions for the i-th observation in the second interval are $\beta \cdot\left(1-z_{i}\right)$, while the $(1,3) /(3,1)$ entries are $\beta \cdot\left(1+z_{i}\right)$.

Thus, as z_{i} approaches -1 from the right, the associated precision matrix becomes more similar to the matrix for observations in the first interval. Similarly, as z_{i} approaches 1 from the left, the matrix becomes more similar to the matrix for observations in the third interval.

Examples

```
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
        ggtitle(paste0("True precision matrix, interval 3, observations ",
                            n1 + n2 + 1, ",\ldots,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
```


Description

Plot the posterior inclusion probability of an edge between two variables as a function of observation index

Usage

inclusionCurve(out, col_idx1, col_idx2, line_type = "solid", line_size = 0.5, line_color = "black", point_shape = 21, point_size = 1.5, point_color = "\#500000", point_fill = "white"
)

Arguments

out	object of class covdepGE; return of covdepGE function
col_idx1	integer in $[1, p]$; column index of the first variable
col_idx2	integer in $[1, p]$; column index of the second variable
line_type	linetype; ggplot2 line type to interpolate the probabilities. "solid" by default
line_size	positive numeric; thickness of the interpolating line. 0.5 by default color; color of interpolating line. "black" by default
line_color	shape; shape of the points denoting observation-specific inclusion probabilities; point_shape 21 by default
point_size	positive numeric; size of probability points. 1.5 by default point_color color; color of probability points. "\#500000" by default
point_fill	color; fill of probability points. Only applies to select shapes. "white" by default

Value
Returns ggplot2 visualization of inclusion probability curve

Examples

```
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
```

matViz

```
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
            ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
                n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
```

```
matViz Visualize a matrix
```


Description

Create a visualization of a matrix

Usage

matViz(
x ,

```
    color1 = "white",
    color2 = "#500000",
    grid_color = "black",
    incl_val = FALSE,
    prec = 2,
    font_size = 3,
    font_color1 = "black",
    font_color2 = "white",
    font_thres = mean(x)
)
```


Arguments

x	matrix; matrix to be visualized
color1	color; color for low entries. "white" by default
color2	color; color for high entries. "\#500000" by default
grid_color	color; color of grid lines. "black" by default
incl_val	logical; if TRUE, the value for each entry will be displayed. FALSE by default prec
	TRUE. 2 by default
font_size	positive numeric; size of font if incl_val is TRUE. 3 by default
font_color1	color; color of font for low entries if incl_val is TRUE. "black" by default font_color2 color; color of font for high entries if incl_val is TRUE. "white" by default
font_thres	numeric; values less than font_thres will be displayed in font_color1 if incl_val is TRUE. mean (x) by default

Value

Returns ggplot2 visualization of matrix

Examples

```
library(ggplot2)
# get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision
# get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
```

```
# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)
# visualize the true precision matrices in each of the intervals
# interval 1
matViz(prec[[1]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
    ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations ",
                            n1 + n2 + 1, ",...,", n1 + n2 + n3))
# fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z, nssq = 2, nsbsq = 2, npip = 2))
plot(out)
# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
```

plot.covdepGE
Plot the Graphs Estimated by covdepGE

Description

Create a list of the unique graphs estimated by covdepGE

Usage

\#\# S3 method for class 'covdepGE'
plot(x, graph_colors = NULL, title_sum = TRUE, ...)

Arguments

x
object of class covdepGE; return of covdepGE function
graph_colors
NULL OR vector; the j-th element is the color for the j-th graph. If NULL, all graphs will be colored with "\#500000". NULL by default
title_sum logical; if TRUE the indices of the observations corresponding to the graph will be included in the title. TRUE by default
... additional arguments will be ignored

Value

Returns list of ggplot2 visualizations of unique graphs estimated by covdepGE

Examples

```
library (ggplot2)
\# get the data
set.seed(12)
data <- generateData()
X <- data\$X
Z <- data\$Z
interval <- data\$interval
prec <- data\$true_precision
\# get overall and within interval sample sizes
n <- \(\operatorname{nrow}(X)\)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)
\# visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +
    geom_histogram(aes(Z, fill = interval), color = "black", bins = n \%/\% 5)
\# visualize the true precision matrices in each of the intervals
\# interval 1
matViz(prec[[1]], incl_val \(=\) TRUE \()+\)
    ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))
\# interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 \%/\% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +
            ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))
\# interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +
    ggtitle(paste0("True precision matrix, interval 3, observations",
                        \(\mathrm{n} 1+\mathrm{n} 2+1, ", \ldots, ", \mathrm{n} 1+\mathrm{n} 2+\mathrm{n} 3)\) )
\# fit the model and visualize the estimated graphs
(out <- \(\operatorname{covdepGE}(X, Z, n s s q=2\), nsbsq = 2, npip = 2))
plot(out)
\# visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)
```


Index

_PACKAGE (covdepGE-package), 2
covdepGE, 3
covdepGE-method (covdepGE), 3
covdepGE-package, 2
generateData, 11
inclusionCurve, 13
matViz, 15
plot. covdepGE, 17

