# Package 'cplots' 

March 24, 2022
Title Plots for Circular Data
Version 0.5-0
Date 2022-03-18
Imports circular, grDevices, graphics, stats
Description Provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, his-tograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
License GPL (>=2)
Encoding UTF-8
NeedsCompilation no
RoxygenNote 7.1.1
Author Danli Xu [aut],Yong Wang [aut, cre]
Maintainer Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)
Repository CRAN
Date/Publication 2022-03-24 08:50:02 UTC
$R$ topics documented:
cbarplot ..... 2
cdensity ..... 3
cdotplot ..... 5
chist ..... 7
circtrans ..... 9
cmdensity ..... 10
cmhist ..... 12
scalefactor ..... 14
Index ..... 16

```
cbarplot Circular Bar Plot
```


## Description

Function cbarplot can be used to plot 2-dimensional circular bar plots. The circular bar plots can only adopt the height-proportional transformation because of the white space between bars.

## Usage

cbarplot $($
x ,
nbins $=36$,
radius = 1/sqrt(base::pi),
prob $=$ TRUE,
nlabels = 4,
col = NULL,
border = NULL,
$\mathrm{m}=\mathrm{NA}$,
xlim = NULL,
ylim = NULL,
main $=$ NULL
)

## Arguments

$x \quad$ a numeric vector storing angular values between 0 and 2 pi, or an object that can be coerced to.
nbins the number of bins of the circular bar plot. Internally, it is rounded to a multiple of 4 .
radius the radius of the reference circle.
prob logical; if TRUE, the circular histogram graphic is a representation of probability densities; if FALSE, a representation of frequencies.
nlabels integer, for the number of levels to be plotted; if 0 , no label is plotted
col the color to fill the bars.
border the color of the border around the bars.
m the number of points within each bin to plot the top of a bar. The larger the number is, the smoother the plot looks.
xlim numeric vectors of length 2, giving the x coordinates ranges.
ylim numeric vectors of length 2, giving the y coordinates ranges.
main the main title (on top)

## Value

No return value

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

cdensity, cdotplot, chist

## Examples

```
# 600 observations from two von Mises distributions
library(circular)
x = c(rvonmises(200, circular(pi/4), 5), rvonmises(400, circular(pi), 20))
cbarplot(x)
cbarplot(x, prob=FALSE)
cbarplot(x, radius=1, nlabels=0, col="lightblue")
cbarplot(x, radius=1, col="lightblue", border="skyblue4")
```

    cdensity Circular Density Curve
    
## Description

Function cdensity can be used to plot 2-dimensional density curves for circular data.

## Usage

```
cdensity(
    f,
    radius = 1/sqrt(base::pi),
    area.prop = TRUE,
    total.area = 1,
    nlabels = 4,
    add = FALSE,
    n = 500,
    col = "red",
    xlim = NULL,
    ylim = NULL,
    main = NULL
)
```


## Arguments

f
radius
area.prop
total.area
nlabels
add
n
col
xlim
ylim numeric vectors of length 2, giving the y coordinates ranges.
main the main title (on top)

## Value

No return value

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

cbarplot, cdotplot, chist

## Examples

```
# 600 observations from two von Mises distributions
library(circular)
x = c(rvonmises(200, circular(pi/4), 5), rvonmises(400, circular(pi), 20))
dvm = function(x, mu=0, kappa=1) # von Mises density
    exp(kappa * cos(x - mu)) * (2 * pi * besselI(kappa, 0))^(-1)
f = function(x) 1/3 * dvm(x, pi/4, 5) + 2/3 * dvm(x, pi, 20)
cdensity(f) # plot the density in an area-proportional manner
```

```
chist(x) # circular histogram
cdensity(f, add=TRUE) # superimpose the density curve
chist(x, area=FALSE) # height-proportional circular histogram
cdensity(f, area=FALSE, add=TRUE) # superimpose the density curve
chist(x, radius=0) # rose diagrams
cdensity(f, radius=0, add=TRUE)
chist(x, radius=0, area=FALSE)
cdensity(f, radius=0, area=FALSE, add=TRUE)
```

cdotplot

Circular Stacked Dot Plot

## Description

Function cdotplot can be used to plot 2-dimensional stacked dot plot for circular data.

## Usage

```
cdotplot(
    x,
    nbins = 36,
    radius = 1,
    unit = NA,
    area.prop = TRUE,
    total.area = 1,
    m = NA,
    col = "lightblue",
    border = "skyblue4",
    xlim = NULL,
    ylim = NULL,
    main = NULL,
    x.legend = "bottomright",
    y.legend = NULL
)
```


## Arguments

X
nbins the number of bins of the circular histogram. Internally, it is rounded to a multiple of 4 .
radius the radius of the reference circle. If radius $=0$, a rose diagram is produced; if radius $>0$, a circular histogram is produced outside the reference circle.
unit the number of observations represented by each dot. If unit > 1, it means that each dot represents multiple observations.

| area.prop | logical; if TRUE, an area-proportional transformation is applied; if FALSE, a <br> height-proportional transformationis applied. |
| :--- | :--- |
| total. area | a positive number specifying the total area under the density curve. If total. area <br> = NULL, no scaling is applied, the plot is in the original scale. If area. prop = <br> TRUE, the total area is automatically unity without scaling. |
| m |  |
| the number of points within each bin to plot the circular dot plot. The larger the |  |
| number is, the smoother the plot looks. |  |
| col |  |
| the color to fill the bars. |  |

## Details

If the number of observations is relatively small, the usual circular stacked dot plot can be used with unit $=1$. If the dataset is large, the dots may become too dense to visualize or count. Setting unit to be any positive integer to allow each dot to represent more than one observation. If the number of observations in one bin is not a multiple of the specified unit, a partial dot can be used to represent the remainder at the top of the bin.

## Value

No return value

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

cbarplot, cdensity, chist

## Examples

```
# 30 observations from two von Mises distributions
library(circular)
x = c(rvonmises(10, circular(pi/4), 5), rvonmises(20, circular(pi), 20))
cdotplot(x) # area-proportional dot plot
cdotplot(x, area = FALSE) # height-proportional dot plot
```

```
# 900 observations from two von Mises distributions
y = c(rvonmises(300, circular(pi/4), 5), rvonmises(600, circular(pi), 20))
cdotplot(y, nbins=76, unit = 10) # area-proportional (partial) dot plot
cdotplot(y, nbins=76, unit = 10, area = FALSE) # height-proportional
```

chist

Circular Histogram and Rose Diagram

## Description

Function chist can be used to plot 2-dimensional histograms and rose diagrams for circular data.

```
Usage
    chist(
        x,
        nbins = 36,
        radius = 1/sqrt(base::pi),
        area.prop = TRUE,
        prob = TRUE,
        total.area = 1,
        nlabels = 4,
        col = "lightblue",
        border = "skyblue4",
        m = NA,
        xlim = NULL,
        ylim = NULL,
        main = NULL
    )
```


## Arguments

x
nbins the number of bins of the circular histogram. Internally, it is rounded to a multiple of 4 .
radius the radius of the reference circle. If radius $=0$, a rose diagram is produced; if radius $>0$, a circular histogram is produced outside the reference circle.
area.prop logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformationis applied.
prob logical; if TRUE, the circular histogram graphic is a representation of probability densities; if FALSE, a representation of frequencies.
total.area a positive number specifying the total area under the density curve. If total. area $=$ NULL, no scaling is applied, the plot is in the original scale. If area. prop $=$ TRUE, the total area is automatically unity without scaling.

| nlabels | integer, for the number of levels for the density/frequency values to be plotted; |
| :--- | :--- |
| if 0, no label is plotted |  |
| col | the color to fill the bars. |
| border | the color of the border around the bars. |
| $m$ | the number of points within each bin to plot the circular histogram. The larger |
| the number is, the smoother the plot looks. |  |
| xlim | numeric vectors of length 2, giving the x coordinates ranges. |
| ylim | numeric vectors of length 2, giving the y coordinates ranges. |
| main | the main title (on top) |

## Value

No return value

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

cbarplot, cdensity, cdotplot

## Examples

```
# 600 observations from two von Mises distributions
library(circular)
x = c(rvonmises(200, circular(pi/4), 5), rvonmises(400, circular(pi), 20))
chist(x) # area-proportional circular histgram
chist(x, area = FALSE) # height-proportional circular histgram
chist(x, radius=0) # area-proportional rose diagram
chist(x, radius=0, area=FALSE) # height-proportional rose diagram
chist(x, prob=FALSE) # labels for frequency
chist(x, nlabels=0) # no label
chist(x, xlim=c(-1.7,1)) # use xlim
chist(x, area=FALSE, total=2) # with scaling
chist(x, area=FALSE, total=NULL) # without scaling
```

```
circtrans Circular Transformation Formula
```


## Description

The function performs circular transformation of density or frequency, in an area-proportional or height-proportional manner.

## Usage

circtrans(x, radius $=0$, area.prop $=$ TRUE, factor $=1$ )

## Arguments

$x \quad$ a numeric vector storing angular values between 0 and 2 pi, or an object that can be coerced to.
radius the radius of the reference circle.
area.prop logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformationis applied.
factor a positive number representing the scale factor to scale the entire plot.

## Value

A numerical vector of the transformed values

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020) Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

scalefactor

## Examples

```
library(circular)
x = as.vector(rvonmises(20, circular(pi), 10))
circtrans(x) # area-proportional transformation
circtrans(x, area.prop = FALSE) # height-proportional transformation
circtrans(x, factor = 2) # with a scaling factor
```


## Description

Function cmdensity can be used to plot 2-dimensional density curves for circular data with multiple classes. The density curves are stacked to avoid any overlap.

## Usage

cmdensity (
funlist,
funprop $=1$,
radius = 1/sqrt(base::pi),
area.prop = TRUE,
total.area = 1,
$\mathrm{n}=500$,
nlabels = 4,
cols = NULL,
borders = NULL,
xlim = NULL,
ylim = NULL,
main $=$ NULL,
type = c("null", "compass", "clock"),
add $=$ FALSE,
x.legend = "bottomright",
y.legend = NULL,
fill = TRUE,
lty = 1,
lwd = 1
)

## Arguments

| funlist | a list of functions which can be used to calculate the density values for each <br> class, evaluated at given points defined by the first argument of the functions. <br> The set of points is a sequence from 0 to $2 \pi$, with length $n$. |
| :--- | :--- |
| funprop | proportions for functions. It is 1 by default. A user can choose different propor- <br> tions for the functions so as to represent different numbers of observations. If <br> they do not add up to the number of functions (k), it will be normalised so that <br> sum(classprop) = k. |
| radius | the radius of the reference circle. |
| area.prop | logical; if TRUE, an area-proportional transformation is applied; if FALSE, a <br> height-proportional transformationis applied. |


| total.area | a positive number specifying the total area under all the density curves. If total . area $=$ NULL, no scaling is applied, the plot is in the original scale. If area. prop $=$ TRUE, the total area is automatically unity without scaling. |
| :---: | :---: |
| n | the number of points used to plot each density curve. The larger the number is, the more accurate the curve is. |
| nlabels | integer, for the number of levels to be plotted; if 0 , no label is plotted. |
| cols | the colors to fill the area under each density curve, with the same order as the class. |
| borders | the colors of the borders. |
| xlim | numeric vectors of length 2 , giving the x coordinates ranges. |
| ylim | numeric vectors of length 2 , giving the y coordinates ranges. |
| main | the main title (on top) |
| type | the type of circular data, one of the values "null", "compass" or "clock". If "null", no special lables plotted for directions. If "compass", the four cardinal directions are printed inside the reference circle. If "clock", labels for 24 hours are printed inside the reference circle. |
| add | logical; if TRUE, density curves are superimposed to the current plot, for example, the circular histograms, rose diagrams and stacked dot plots. |
| x.legend | x coordinate to plot the legend. |
| y.legend | $y$ coordinate to plot the legend. |
| fill | logical. If TRUE t , fills the regions with colors under/between the density curves. If FALSE, only the density curves are plotted. |
| lty | line width |
| lwd | line width |

## Value

No return value

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

cdensity, cmhist

## Examples

```
# Load and pre-process the dataset
library(circular)
data("pigeons", package = "circular")
x = pigeons[,2] / 180 * pi # bearing
y = pigeons[,1] # treatment
vs = split(x, factor(y, unique(y))) # list of classified value
prop = sapply(vs, length) / length(x) # proportion of each class
# Define the kde function for each class using von Mises kernels
dvm = function(x, mu=0, kappa=1) # von Mises density
    exp(kappa * cos(x - mu)) * (2 * pi * besselI(kappa, 0))^(-1)
kdevm = function(x, x0, bw=0.3)
    rowMeans(outer(x, x0, dvm, 0.5 / (1 - exp(-bw^2 / 2))))
fs = list(function(x) kdevm(x, x0=vs[[1]]),
    function(x) kdevm(x, x0=vs[[2]]),
    function(x) kdevm(x, x0=vs[[3]]))
# stacked density curves for 3 classes
cmdensity(fs) # 1:1:1
cmdensity(fs, prop) # using proportions for functions
```


## cmhist Multi-class Stacked Circular Histogram and Rose Diagram

## Description

Function cmhist can be used to plot 2-dimensional histograms and rose diagrams for circular data with multiple classes. The histograms are stacked to avoid any overlap.

## Usage

```
cmhist(
    value,
    class,
    nbins = 36,
    radius = 1/sqrt(base::pi),
    area.prop = TRUE,
    prob = TRUE,
    proportion = FALSE,
    total.area = 1,
    nlabels = 4,
    cols = NULL,
    borders = NULL,
    m = NA,
    xlim = NULL,
    ylim = NULL,
```

```
    main = NULL,
    type = c("null", "compass", "clock"),
    x.legend = "bottomright",
    y.legend = NULL
)
```


## Arguments

$\left.\begin{array}{ll}\text { value } & \begin{array}{l}\text { a numeric vector storing angular values between } 0 \text { and } 2 \text { pi, or an object that can } \\ \text { be coerced to. }\end{array} \\ \text { a character vector specifying the group the value belongs to. It needs to have } \\ \text { the same length as value, otherwise it is repeated to the length of value. The } \\ \text { order of plotting from the innermost to the outermost depends on the order of } \\ \text { their appearance in class. } \\ \text { the number of bins of the circular histogram. Internally, it is rounded to a mul- } \\ \text { tiple of 4. } \\ \text { the radius of the reference circle. If radius = 0, a rose diagram is produced; if } \\ \text { radius > 0, a circular histogram is produced outside the reference circle. }\end{array}\right\}$

## Value

No return value

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

## See Also

```
chist, cmdensity
```


## Examples

```
# Load the dataset
library(circular)
data("pigeons", package = "circular")
x = pigeons[,2] / 180 * pi
y = pigeons[,1]
# stacked circular histograms
cmhist(x, y) # area-proportional
cmhist(x, y, area=FALSE) # height-proportional
```

    scalefactor Scaling Factor
    
## Description

The function calculates the scaling factor so that after scaling the original density curve (before transformation), the total area after transformation (excluding the reference circle) has the specified value.

## Usage

scalefactor (x, radius $=0$, total. area $=1$, area. prop $=$ TRUE)

## Arguments

x
radius
total.area
area.prop
a numeric vector storing the heights of a density curve or a histogram.
the radius of the reference circle.
a positive number specifying the total area.
logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformationis applied.

## Details

Each value in $x$ is a density value before transformation, for points equally-spaced on $[0,2 \pi)$. For a smooth density curve, use a reasonably large number of points, equally-spaced on $[0,2 \pi)$. The area under the density curve after transformation is then approximated by that of the corresponding sectors. Note if area. prop = TRUE, the scale factor is simply the value of total. area.

## Value

A numerical value for the scaling factor

## Author(s)

Danli Xu [dxu452@aucklanduni.ac.nz](mailto:dxu452@aucklanduni.ac.nz), Yong Wang [yongwang@auckland.ac.nz](mailto:yongwang@auckland.ac.nz)

## References

Xu, D. and Wang, Y. (2020). Area-proportional Visualization for Circular Data. Journal of Computational and Graphical Statistics, 29, 351-357.

See Also
circtrans

## Examples

```
dvm = function(x, mu=0, kappa=1) # von Mises density
exp(kappa * cos(x - mu)) * (2 * pi * besselI(kappa, 0))^(-1)
x = dvm(seq(0, 2 * pi, len = 100), pi, 10)
scalefactor(x) # area-proportional transformation
scalefactor(x, area.prop = FALSE) # height-proportional transformation
scalefactor(x, total.area = 2) # total area of 2
scalefactor(x, area.prop = FALSE, total.area = 2)
```


## Index

```
* circular bar plot
        cbarplot,2
* circular density curve
        cdensity, }
* circular histogram
        chist,7
* circular stacked dot plot
        cdotplot, 5
* circular transformation
        circtrans,9
* multi-class stacked circular histogram
        cmhist, 12
* rose diagram
        chist,7
* scale
    scalefactor,14
* stacked circular density curve
        cmdensity, 10
cbarplot, 2, 4, 6,8
cdensity, 3, 3, 6, 8, 11
cdotplot, 3, 4, 5,8
chist, 3, 4, 6, 7, 14
circtrans, 9, 15
cmdensity, 10, 14
cmhist, 11, 12
scalefactor, 9,14
```

