
Package ‘datawizard’
August 18, 2022

Type Package

Title Easy Data Wrangling and Statistical Transformations

Version 0.5.1

Maintainer Indrajeet Patil <patilindrajeet.science@gmail.com>

Description A lightweight package to easily manipulate, clean, transform,
and prepare your data for analysis. It also forms the data wrangling
backend for the packages in the 'easystats' ecosystem.

License GPL (>= 3)

URL https://easystats.github.io/datawizard/

BugReports https://github.com/easystats/datawizard/issues

Depends R (>= 3.5)

Imports insight (>= 0.18.2), stats, utils

Suggests bayestestR, boot, brms, data.table, dplyr, effectsize, gamm4,
ggplot2, haven, httr, knitr, lme4, mediation, parameters,
poorman (>= 0.2.6), psych, readxl, readr, rio, rmarkdown,
rstanarm, see, testthat (>= 3.1.0), tidyr, withr

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.2.1

NeedsCompilation no

Author Indrajeet Patil [aut, cre] (<https://orcid.org/0000-0003-1995-6531>,
@patilindrajeets),

Dominique Makowski [aut] (<https://orcid.org/0000-0001-5375-9967>,
@Dom_Makowski),

Daniel Lüdecke [aut] (<https://orcid.org/0000-0002-8895-3206>,
@strengejacke),

Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>,

1

https://easystats.github.io/datawizard/
https://github.com/easystats/datawizard/issues
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0001-9560-6336

2 R topics documented:

@bmwiernik),
Etienne Bacher [aut] (<https://orcid.org/0000-0002-9271-5075>),
Rémi Thériault [ctb] (<https://orcid.org/0000-0003-4315-6788>,
@rempsyc)

Repository CRAN

Date/Publication 2022-08-17 22:50:02 UTC

R topics documented:
adjust . 3
categorize . 5
center . 9
change_code . 13
coerce_to_numeric . 18
convert_na_to . 19
convert_to_na . 21
data_addprefix . 24
data_extract . 26
data_group . 29
data_match . 30
data_merge . 32
data_partition . 36
data_read . 38
data_relocate . 39
data_restoretype . 41
data_rotate . 42
data_tabulate . 43
data_to_long . 45
data_to_wide . 49
demean . 52
describe_distribution . 56
distribution_mode . 59
efc . 60
find_columns . 60
format_text . 63
nhanes_sample . 65
normalize . 65
ranktransform . 68
remove_empty . 70
replace_nan_inf . 71
rescale . 72
rescale_weights . 74
reshape_ci . 76
reverse . 77
rownames_as_column . 79
row_to_colnames . 79
skewness . 80

https://orcid.org/0000-0002-9271-5075
https://orcid.org/0000-0003-4315-6788

adjust 3

slide . 82
smoothness . 85
standardize . 86
standardize.default . 90
to_factor . 92
to_numeric . 94
visualisation_recipe . 97
weighted_mean . 97
winsorize . 98

Index 101

adjust Adjust data for the effect of other variable(s)

Description

This function can be used to adjust the data for the effect of other variables present in the dataset. It
is based on an underlying fitting of regressions models, allowing for quite some flexibility, such as
including factors as random effects in mixed models (multilevel partialization), continuous variables
as smooth terms in general additive models (non-linear partialization) and/or fitting these models
under a Bayesian framework. The values returned by this function are the residuals of the regression
models. Note that a regular correlation between two "adjusted" variables is equivalent to the partial
correlation between them.

Usage

adjust(
data,
effect = NULL,
select = NULL,
exclude = NULL,
multilevel = FALSE,
additive = FALSE,
bayesian = FALSE,
keep_intercept = FALSE,
ignore_case = FALSE

)

data_adjust(
data,
effect = NULL,
select = NULL,
exclude = NULL,
multilevel = FALSE,
additive = FALSE,
bayesian = FALSE,
keep_intercept = FALSE,

4 adjust

ignore_case = FALSE
)

Arguments

data A data frame.

effect Character vector of column names to be adjusted for (regressed out). If NULL
(the default), all variables will be selected.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

multilevel If TRUE, the factors are included as random factors. Else, if FALSE (default), they
are included as fixed effects in the simple regression model.

additive If TRUE, continuous variables as included as smooth terms in additive models.
The goal is to regress-out potential non-linear effects.

bayesian If TRUE, the models are fitted under the Bayesian framework using rstanarm.

keep_intercept If FALSE (default), the intercept of the model is re-added. This avoids the center-
ing around 0 that happens by default when regressing out another variable (see
the examples below for a visual representation of this).

categorize 5

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

A data frame comparable to data, with adjusted variables.

Examples

adjusted_all <- adjust(attitude)
head(adjusted_all)
adjusted_one <- adjust(attitude, effect = "complaints", select = "rating")
head(adjusted_one)

adjust(attitude, effect = "complaints", select = "rating", bayesian = TRUE)
adjust(attitude, effect = "complaints", select = "rating", additive = TRUE)
attitude$complaints_LMH <- cut(attitude$complaints, 3)
adjust(attitude, effect = "complaints_LMH", select = "rating", multilevel = TRUE)

if (require("bayestestR")) {
Generate data
data <- simulate_correlation(n = 100, r = 0.7)
data$V2 <- (5 * data$V2) + 20 # Add intercept

Adjust
adjusted <- adjust(data, effect = "V1", select = "V2")
adjusted_icpt <- adjust(data, effect = "V1", select = "V2", keep_intercept = TRUE)

Visualize
plot(data$V1, data$V2,
pch = 19, col = "blue",
ylim = c(min(adjusted$V2), max(data$V2)),
main = "Original (blue), adjusted (green), and adjusted - intercept kept (red) data"

)
abline(lm(V2 ~ V1, data = data), col = "blue")
points(adjusted$V1, adjusted$V2, pch = 19, col = "green")
abline(lm(V2 ~ V1, data = adjusted), col = "green")
points(adjusted_icpt$V1, adjusted_icpt$V2, pch = 19, col = "red")
abline(lm(V2 ~ V1, data = adjusted_icpt), col = "red")

}

categorize Recode (or "cut") data into groups of values.

Description

This functions divides the range of variables into intervals and recodes the values inside these inter-
vals according to their related interval. It is basically a wrapper around base R’s cut(), providing a
simplified and more accessible way to define the interval breaks (cut-off values).

6 categorize

Usage

categorize(x, ...)

data_cut(x, ...)

S3 method for class 'numeric'
categorize(
x,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
labels = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
categorize(
x,
select = NULL,
exclude = NULL,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
labels = NULL,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A (grouped) data frame, numeric vector or factor.

... not used.

split Character vector, indicating at which breaks to split variables, or numeric values
with values indicating breaks. If character, may be one of "median", "mean",
"quantile", "equal_length", or "equal_range". "median" or "mean" will
return dichotomous variables, split at their mean or median, respectively. "quantile"
and "equal_length" will split the variable into n_groups groups, where each
group refers to an interval of a specific range of values. Thus, the length of each
interval will be based on the number of groups. "equal_range" also splits the
variable into multiple groups, however, the length of the interval is given, and
the number of resulting groups (and hence, the number of breaks) will be deter-
mined by how many intervals can be generated, based on the full range of the
variable.

categorize 7

n_groups If split is "quantile" or "equal_length", this defines the number of re-
quested groups (i.e. resulting number of levels or values) for the recoded vari-
able(s). "quantile" will define intervals based on the distribution of the vari-
able, while "equal_length" tries to divide the range of the variable into pieces
of equal length.

range If split = "equal_range", this defines the range of values that are recoded into
a new value.

lowest Minimum value of the recoded variable(s). If NULL (the default), for numeric
variables, the minimum of the original input is preserved. For factors, the default
minimum is 1. For split = "equal_range", the default minimum is always 1,
unless specified otherwise in lowest.

labels Character vector of value labels. If not NULL, categorize() will returns factors
instead of numeric variables, with labels used for labelling the factor levels.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:

8 categorize

"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Details

Splits and breaks (cut-off values): Breaks are in general exclusive, this means that these values
indicate the lower bound of the next group or interval to begin. Take a simple example, a numeric
variable with values from 1 to 9. The median would be 5, thus the first interval ranges from 1-4
and is recoded into 1, while 5-9 would turn into 2 (compare cbind(1:9, categorize(1:9))).
The same variable, using split = "quantile" and n_groups = 3 would define breaks at 3.67 and
6.33 (see quantile(1:9, probs = c(1/3, 2/3))), which means that values from 1 to 3 belong
to the first interval and are recoded into 1 (because the next interval starts at 3.67), 4 to 6 into 2
and 7 to 9 into 3.

Recoding into groups with equal size or range: split = "equal_length" and split = "equal_range"
try to divide the range of x into intervals of similar (or same) length. The difference is that split
= "equal_length" will divide the range of x into n_groups pieces and thereby defining the in-
tervals used as breaks (hence, it is equivalent to cut(x, breaks = n_groups)), while split =
"equal_range" will cut x into intervals that all have the length of range, where the first interval
by defaults starts at 1. The lowest (or starting) value of that interval can be defined using the
lowest argument.

Value

x, recoded into groups. By default x is numeric, unless labels is specified. In this case, a factor is
returned, where the factor levels (i.e. recoded groups are labelled accordingly.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

center 9

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

set.seed(123)
x <- sample(1:10, size = 50, replace = TRUE)

table(x)

by default, at median
table(categorize(x))

into 3 groups, based on distribution (quantiles)
table(categorize(x, split = "quantile", n_groups = 3))

into 3 groups, user-defined break
table(categorize(x, split = c(3, 5)))

set.seed(123)
x <- sample(1:100, size = 500, replace = TRUE)

into 5 groups, try to recode into intervals of similar length,
i.e. the range within groups is the same for all groups
table(categorize(x, split = "equal_length", n_groups = 5))

into 5 groups, try to return same range within groups
i.e. 1-20, 21-40, 41-60, etc. Since the range of "x" is
1-100, and we have a range of 20, this results into 5
groups, and thus is for this particular case identical
to the previous result.
table(categorize(x, split = "equal_range", range = 20))

return factor with value labels instead of numeric value
set.seed(123)
x <- sample(1:10, size = 30, replace = TRUE)
categorize(x, "equal_length", n_groups = 3)
categorize(x, "equal_length", n_groups = 3, labels = c("low", "mid", "high"))

center Centering (Grand-Mean Centering)

Description

Performs a grand-mean centering of data.

10 center

Usage

center(x, ...)

centre(x, ...)

S3 method for class 'numeric'
center(
x,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
center(
x,
select = NULL,
exclude = NULL,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
force = FALSE,
remove_na = c("none", "selected", "all"),
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A (grouped) data frame, a (numeric or character) vector or a factor.

... Currently not used.

robust Logical, if TRUE, centering is done by subtracting the median from the variables.
If FALSE, variables are centered by subtracting the mean.

weights Can be NULL (for no weighting), or:

• For data frames: a numeric vector of weights, or a character of the name of
a column in the data.frame that contains the weights.

• For numeric vectors: a numeric vector of weights.

reference A data frame or variable from which the centrality and deviation will be com-
puted instead of from the input variable. Useful for standardizing a subset or
new data according to another data frame.

center 11

center Numeric value, which can be used as alternative to reference to define a refer-
ence centrality. If center is of length 1, it will be recycled to match the length
of selected variables for centering. Else, center must be of same length as the
number of selected variables. Values in center will be matched to selected vari-
ables in the provided order, unless a named vector is given. In this case, names
are matched against the names of the selected variables.

verbose Toggle warnings and messages.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

force Logical, if TRUE, forces centering of factors as well. Factors are converted to
numerical values, with the lowest level being the value 1 (unless the factor has
numeric levels, which are converted to the corresponding numeric value).

remove_na How should missing values (NA) be treated: if "none" (default): each col-
umn’s standardization is done separately, ignoring NAs. Else, rows with NA in
the columns selected with select / exclude ("selected") or in all columns
("all") are dropped before standardization, and the resulting data frame does
not include these cases.

append Logical or string. If TRUE, centered variables get new column names (with the
suffix "_c") and are appended (column bind) to x, thus returning both the orig-

12 center

inal and the centered variables. If FALSE, original variables in x will be over-
written by their centered versions. If a character value, centered variables are
appended with new column names (using the defined suffix) to the original data
frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

The centered variables.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

Difference between centering and standardizing: Standardized variables are computed by sub-
tracting the mean of the variable and then dividing it by the standard deviation, while centering
variables involves only the subtraction.

See Also

If centering within-clusters (instead of grand-mean centering) is required, see demean(). For stan-
dardizing, see standardize().

Examples

data(iris)

entire data frame or a vector
head(iris$Sepal.Width)
head(center(iris$Sepal.Width))
head(center(iris))
head(center(iris, force = TRUE))

only the selected columns from a data frame
center(anscombe, select = c("x1", "x3"))
center(anscombe, exclude = c("x1", "x3"))

centering with reference center and scale
d <- data.frame(

a = c(-2, -1, 0, 1, 2),
b = c(3, 4, 5, 6, 7)

)

change_code 13

default centering at mean
center(d)

centering, using 0 as mean
center(d, center = 0)

centering, using -5 as mean
center(d, center = -5)

change_code Recode old values of variables into new values

Description

This functions recodes old values into new values and can be used to to recode numeric or character
vectors, or factors.

Usage

change_code(x, ...)

data_recode(x, ...)

S3 method for class 'numeric'
change_code(
x,
recode = NULL,
default = NULL,
preserve_na = TRUE,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
change_code(
x,
select = NULL,
exclude = NULL,
recode = NULL,
default = NULL,
preserve_na = TRUE,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

14 change_code

Arguments

x A data frame, numeric or character vector, or factor.

... not used.

recode A list of named vectors, which indicate the recode pairs. The names of the list-
elements (i.e. the left-hand side) represent the new values, while the values of the
list-elements indicate the original (old) values that should be replaced. When re-
coding numeric vectors, element names have to be surrounded in backticks. For
example, recode=list(`0`=1) would recode all 1 into 0 in a numeric vector.
See also ’Examples’ and ’Details’.

default Defines the default value for all values that have no match in the recode-pairs.
Note that, if preserve_na=FALSE, missing values (NA) are also captured by the
default argument, and thus will also be recoded into the specified value. See
’Examples’ and ’Details’.

preserve_na Logical, if TRUE, NA (missing values) are preserved. This overrides any other
arguments, including default. Hence, if preserve_na=TRUE, default will no
longer convert NA into the specified default value.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

change_code 15

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Details

This section describes the pattern of the recode arguments, which also provides some shortcuts, in
particular when recoding numeric values.

• Single values

Single values either need to be wrapped in backticks (in case of numeric values) or "as is"
(for character or factor levels). Example: recode=list(`0`=1,`1`=2) would recode 1 into
0, and 2 into 1. For factors or character vectors, an example is: recode=list(x="a",y="b")
(recode "a" into "x" and "b" into "y").

• Multiple values

Multiple values that should be recoded into a new value can be separated with comma. Ex-
ample: recode=list(`1`=c(1,4),`2`=c(2,3)) would recode the values 1 and 4 into 1,
and 2 and 3 into 2. It is also possible to define the old values as a character string, like:
recode=list(`1`="1,4",`2`="2,3") For factors or character vectors, an example is: recode=list(x=c("a","b"),y=c("c","d")).

• Value range

Numeric value ranges can be defined using the :. Example: recode=list(`1`=1:3,`2`=4:6)
would recode all values from 1 to 3 into 1, and 4 to 6 into 2.

• min and max

placeholder to use the minimum or maximum value of the (numeric) variable. Useful, e.g.,
when recoding ranges of values. Example: recode=list(`1`="min:10",`2`="11:max").

• default values

The default argument defines the default value for all values that have no match in the recode-
pairs. For example, recode=list(`1`=c(1,2),`2`=c(3,4)), default=9 would recode
values 1 and 2 into 1, 3 and 4 into 2, and all other values into 9. If preserve_na is set to
FALSE, NA (missing values) will also be recoded into the specified default value.

• Reversing and rescaling

See reverse() and rescale().

Value

x, where old values are replaced by new values.

16 change_code

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

You can use options(data_recode_pattern = "old=new") to switch the behaviour of the recode-
argument, i.e. recode-pairs are now following the pattern old values = new values, e.g. if
getOption("data_recode_pattern") is set to "old=new", then recode(`1`=0) would recode
all 1 into 0. The default for recode(`1`=0) is to recode all 0 into 1.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

numeric ----------
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")

out <- change_code(x, list(`0` = 1, `1` = 2:3, `2` = 4))
out
table(out, useNA = "always")

to recode NA values, set preserve_na to FALSE
out <- change_code(

x,
list(`0` = 1, `1` = 2:3, `2` = 4, `9` = NA),
preserve_na = FALSE

)
out
table(out, useNA = "always")

preserve na ----------
out <- change_code(x, list(`0` = 1, `1` = 2:3), default = 77)

change_code 17

out
table(out, useNA = "always")

recode na into default ----------
out <- change_code(

x,
list(`0` = 1, `1` = 2:3),
default = 77,
preserve_na = FALSE

)
out
table(out, useNA = "always")

factors (character vectors are similar) ----------
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)

out <- change_code(x, list(x = "a", y = c("b", "c")))
out
table(out)

out <- change_code(x, list(x = "a", y = "b", z = "c"))
out
table(out)

out <- change_code(x, list(y = "b,c"), default = 77)
same as
change_code(x, list(y = c("b", "c")), default = 77)
out
table(out)

data frames ----------
set.seed(123)
d <- data.frame(

x = sample(c(1:4, NA), 12, TRUE),
y = as.factor(sample(c("a", "b", "c"), 12, TRUE)),
stringsAsFactors = FALSE

)

change_code(
d,
recode = list(`0` = 1, `1` = 2:3, `2` = 4, x = "a", y = c("b", "c")),
append = TRUE

)

switch recode pattern to "old=new" ----------
options(data_recode_pattern = "old=new")

numeric

18 coerce_to_numeric

set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")

out <- change_code(x, list(`1` = 0, `2:3` = 1, `4` = 2))
table(out, useNA = "always")

factors (character vectors are similar)
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)

out <- change_code(x, list(a = "x", `b, c` = "y"))
table(out)

reset options
options(data_recode_pattern = NULL)

coerce_to_numeric Convert to Numeric (if possible)

Description

Tries to convert vector to numeric if possible (if no warnings or errors). Otherwise, leaves it as is.

Usage

coerce_to_numeric(x)

Arguments

x A vector to be converted.

Value

Numeric vector (if possible)

Examples

coerce_to_numeric(c("1", "2"))
coerce_to_numeric(c("1", "2", "A"))

convert_na_to 19

convert_na_to Replace missing values in a variable or a data frame.

Description

Replace missing values in a variable or a data frame.

Usage

convert_na_to(x, ...)

S3 method for class 'numeric'
convert_na_to(x, replacement = NULL, verbose = TRUE, ...)

S3 method for class 'character'
convert_na_to(x, replacement = NULL, verbose = TRUE, ...)

S3 method for class 'data.frame'
convert_na_to(
x,
select = NULL,
exclude = NULL,
replacement = NULL,
replace_num = replacement,
replace_char = replacement,
replace_fac = replacement,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A numeric, factor, or character vector, or a data frame.

... Not used.

replacement Numeric or character value that will be used to replace NA.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

20 convert_na_to

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

replace_num Value to replace NA when variable is of type numeric.

replace_char Value to replace NA when variable is of type character.

replace_fac Value to replace NA when variable is of type factor.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

x, where NA values are replaced by replacement.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Examples

Convert NA to 0 in a numeric vector
convert_na_to(

c(9, 3, NA, 2, 3, 1, NA, 8),
replacement = 0

)

convert_to_na 21

Convert NA to "missing" in a character vector
convert_na_to(

c("a", NA, "d", "z", NA, "t"),
replacement = "missing"

)

For data frames

test_df <- data.frame(
x = c(1, 2, NA),
x2 = c(4, 5, NA),
y = c("a", "b", NA)

)

Convert all NA to 0 in numeric variables, and all NA to "missing" in
character variables
convert_na_to(

test_df,
replace_num = 0,
replace_char = "missing"

)

Convert a specific variable in the data frame
convert_na_to(

test_df,
replace_num = 0,
replace_char = "missing",
select = "x"

)

Convert all variables starting with "x"
convert_na_to(

test_df,
replace_num = 0,
replace_char = "missing",
select = starts_with("x")

)

Convert NA to 1 in variable 'x2' and to 0 in all other numeric
variables
convert_na_to(

test_df,
replace_num = 0,
select = list(x2 = 1)

)

convert_to_na Convert non-missing values in a variable into missing values.

22 convert_to_na

Description

Convert non-missing values in a variable into missing values.

Usage

convert_to_na(x, ...)

S3 method for class 'numeric'
convert_to_na(x, na = NULL, verbose = TRUE, ...)

S3 method for class 'factor'
convert_to_na(x, na = NULL, drop_levels = FALSE, verbose = TRUE, ...)

S3 method for class 'data.frame'
convert_to_na(
x,
select = NULL,
exclude = NULL,
na = NULL,
drop_levels = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A vector, factor or a data frame.

... Not used.

na Numeric, character vector or logical (or a list of numeric, character vectors or
logicals) with values that should be converted to NA. Numeric values applied to
numeric vectors, character values are used for factors, character vectors or date
variables, and logical values for logical vectors.

verbose Toggle warnings.

drop_levels Logical, for factors, when specific levels are replaced by NA, should unused lev-
els be dropped?

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

convert_to_na 23

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

x, where all values in na are converted to NA.

Examples

x <- sample(1:6, size = 30, replace = TRUE)
x
values 4 and 5 to NA
convert_to_na(x, na = 4:5)

data frames
set.seed(123)
x <- data.frame(

a = sample(1:6, size = 20, replace = TRUE),
b = sample(letters[1:6], size = 20, replace = TRUE),
c = sample(c(30:33, 99), size = 20, replace = TRUE)

)
for all numerics, convert 5 to NA. Character/factor will be ignored.
convert_to_na(x, na = 5)

for numerics, 5 to NA, for character/factor, "f" to NA
convert_to_na(x, na = list(6, "f"))

select specific variables
convert_to_na(x, select = c("a", "b"), na = list(6, "f"))

24 data_addprefix

data_addprefix Rename columns and variable names

Description

Safe and intuitive functions to rename variables or rows in data frames. data_rename() will rename
column names, i.e. it facilitates renaming variables data_addprefix() or data_addsuffix() add
prefixes or suffixes to column names. data_rename_rows() is a convenient shortcut to add or
rename row names of a data frame, but unlike row.names(), its input and output is a data frame,
thus, integrating smoothly into a possible pipe-workflow.

Usage

data_addprefix(
data,
pattern,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
...

)

data_addsuffix(
data,
pattern,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
...

)

data_rename(data, pattern = NULL, replacement = NULL, safe = TRUE, ...)

data_rename_rows(data, rows = NULL)

Arguments

data A data frame, or an object that can be coerced to a data frame.

pattern Character vector. For data_rename(), indicates columns that should be se-
lected for renaming. Can be NULL (in which case all columns are selected). For
data_addprefix() or data_addsuffix(), a character string, which will be
added as prefix or suffix to the column names.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),

data_addprefix 25

• a string with the variable name (e.g., "column_name"), or a character vector
of variable names (e.g., c("col1", "col2", "col3")),

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

... Other arguments passed to or from other functions.

replacement Character vector. Indicates the new name of the columns selected in pattern.
Can be NULL (in which case column are numbered in sequential order). If not
NULL, pattern and replacement must be of the same length.

safe Do not throw error if for instance the variable to be renamed/removed doesn’t
exist.

rows Vector of row names.

Value

A modified data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

26 data_extract

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()
• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()
• Functions to find or select columns: data_select(), data_find()
• Functions to filter rows: data_match(), data_filter()

Examples

Add prefix / suffix to all columns
head(data_addprefix(iris, "NEW_"))
head(data_addsuffix(iris, "_OLD"))

Rename columns
head(data_rename(iris, "Sepal.Length", "length"))
data_rename(iris, "FakeCol", "length", safe=FALSE) # This fails
head(data_rename(iris, "FakeCol", "length")) # This doesn't
head(data_rename(iris, c("Sepal.Length", "Sepal.Width"), c("length", "width")))

Reset names
head(data_rename(iris, NULL))

Change all
head(data_rename(iris, paste0("Var", 1:5)))

data_extract Extract one or more columns or elements from an object

Description

data_extract() (or its alias extract()) is similar to $. It extracts either a single column or
element from an object (e.g., a data frame, list), or multiple columns resp. elements.

Usage

data_extract(data, select, ...)

S3 method for class 'data.frame'
data_extract(
data,
select,
name = NULL,
extract = "all",
as_data_frame = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

data_extract 27

Arguments

data The object to subset. Methods are currently available for data frames and data
frame extensions (e.g., tibbles).

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

... For use by future methods.
name An optional argument that specifies the column to be used as names for the

vector elements after extraction. Must be specified either as literal variable name
(e.g., column_name) or as string ("column_name"). name will be ignored when
a data frame is returned.

extract String, indicating which element will be extracted when select matches mul-
tiple variables. Can be "all" (the default) to return all matched variables,
"first" or "last" to return the first or last match, or "odd" and "even" to re-
turn all odd-numbered or even-numbered matches. Note that "first" or "last"
return a vector (unless as_data_frame = TRUE), while "all" can return a vector
(if only one match was found) or a data frame (for more than one match). Type
safe return values are only possible when extract is "first" or "last" (will
always return a vector) or when as_data_frame = TRUE (always returns a data
frame).

as_data_frame Logical, if TRUE, will always return a data frame, even if only one variable was
matched. If FALSE, either returns a vector or a data frame. See extract for
details.

28 data_extract

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

Details

data_extract() can be used to select multiple variables or pull a single variable from a data frame.
Thus, the return value is by default not type safe - data_extract() either returns a vector or a data
frame.

Extracting single variables (vectors): When select is the name of a single column, or when
select only matches one column, a vector is returned. A single variable is also returned when
extract is either "first or "last". Setting as_data_frame to TRUE overrides this behaviour
and always returns a data frame.

Extracting a data frame of variables: When select is a character vector containing more than
one column name (or a numeric vector with more than one valid column indices), or when select
uses one of the supported select-helpers that match multiple columns, a data frame is returned.
Setting as_data_frame to TRUE always returns a data frame.

Value

A vector (or a data frame) containing the extracted element, or NULL if no matching variable was
found.

Examples

single variable
data_extract(mtcars, cyl, name = gear)
data_extract(mtcars, "cyl", name = gear)
data_extract(mtcars, -1, name = gear)
data_extract(mtcars, cyl, name = 0)
data_extract(mtcars, cyl, name = "row.names")

selecting multiple variables
head(data_extract(iris, starts_with("Sepal")))
head(data_extract(iris, ends_with("Width")))
head(data_extract(iris, 2:4))

select first of multiple variables
data_extract(iris, starts_with("Sepal"), extract = "first")

select first of multiple variables, return as data frame
head(data_extract(iris, starts_with("Sepal"), extract = "first", as_data_frame = TRUE))

data_group 29

data_group Create a grouped data frame

Description

This function is comparable to dplyr::group_by(), but just following the datawizard function
design. data_ungroup() removes the grouping information from a grouped data frame.

Usage

data_group(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
verbose = TRUE,
...

)

data_ungroup(x, verbose = TRUE, ...)

Arguments

x A data frame

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")

30 data_match

(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

Value

A grouped data frame, i.e. a data frame with additional information about the grouping structure
saved as attributes.

Examples

data(efc)
if (requireNamespace("poorman")) {

suppressPackageStartupMessages(library(poorman, quietly = TRUE))

total mean
efc %>%

summarize(mean_hours = mean(c12hour, na.rm = TRUE))

mean by educational level
efc %>%

data_group(c172code) %>%
summarize(mean_hours = mean(c12hour, na.rm = TRUE))

}

data_match Return filtered or sliced data frame, or row indices

Description

Return a filtered (or sliced) data frame or row indices of a data frame that match a specific condition.
data_filter() works like data_match(), but works with logical expressions or row indices of a
data frame to specify matching conditions.

Usage

data_match(x, to, match = "and", return_indices = FALSE, drop_na = TRUE, ...)

data_filter(x, filter, ...)

data_match 31

Arguments

x A data frame.

to A data frame matching the specified conditions. Note that if match is a value
other than "and", the original row order might be changed. See ’Details’.

match String, indicating with which logical operation matching conditions should be
combined. Can be "and" (or "&"), "or" (or "|") or "not" (or "!").

return_indices Logical, if FALSE, return the vector of rows that can be used to filter the original
data frame. If FALSE (default), returns directly the filtered data frame instead of
the row indices.

drop_na Logical, if TRUE, missing values (NAs) are removed before filtering the data. This
is the default behaviour, however, sometimes when row indices are requested
(i.e. return_indices=TRUE), it might be useful to preserve NA values, so re-
turned row indices match the row indices of the original data frame.

... Not used.

filter A logical expression indicating which rows to keep, or a numeric vector indicat-
ing the row indices of rows to keep.

Details

For data_match(), if match is either "or" or "not", the original row order from x might be
changed. If preserving row order is required, use data_filter() instead.

mimics subset() behaviour, preserving original row order
head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
#> Datsun 710 22.8 1 1
#> Hornet Sportabout 18.7 0 0
#> Duster 360 14.3 0 0
#> Merc 450SE 16.4 0 0

re-sorting rows
head(data_match(mtcars[c("mpg", "vs", "am")],

data.frame(vs = 0, am = 1),
match = "or"))

#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
#> Hornet Sportabout 18.7 0 0
#> Duster 360 14.3 0 0
#> Merc 450SE 16.4 0 0
#> Merc 450SL 17.3 0 0

While data_match() works with data frames to match conditions against, data_filter() is ba-
sically a wrapper around subset(subset = <filter>). However, unlike subset(), it preserves
label attributes and is useful when working with labelled data.

32 data_merge

Value

A filtered data frame, or the row indices that match the specified configuration.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

data_match(mtcars, data.frame(vs = 0, am = 1))
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))

observations where "vs" is NOT 0 AND "am" is NOT 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
equivalent to
data_filter(mtcars, vs != 0 & am != 1)

observations where EITHER "vs" is 0 OR "am" is 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
equivalent to
data_filter(mtcars, vs == 0 | am == 1)

slice data frame by row indices
data_filter(mtcars, 5:10)

data_merge Merge (join) two data frames, or a list of data frames

Description

Merge (join) two data frames, or a list of data frames. However, unlike base R’s merge(), data_merge()
offers a few more methods to join data frames, and it does not drop data frame nor column attributes.

data_merge 33

Usage

data_merge(x, ...)

data_join(x, ...)

S3 method for class 'data.frame'
data_merge(x, y, join = "left", by = NULL, id = NULL, verbose = TRUE, ...)

S3 method for class 'list'
data_merge(x, join = "left", by = NULL, id = NULL, verbose = TRUE, ...)

Arguments

x, y A data frame to merge. x may also be a list of data frames that will be merged.
Note that the list-method has no y argument.

... Not used.

join Character vector, indicating the method of joining the data frames. Can be
"full", "left" (default), "right", "inner", "anti", "semi" or "bind". See
details below.

by Specifications of the columns used for merging.

id Optional name for ID column that will be created to indicate the source data
frames for appended rows. Only applies if join = "bind".

verbose Toggle warnings.

Details

Merging data frames: Merging data frames is performed by adding rows (cases), columns
(variables) or both from the source data frame (y) to the target data frame (x). This usually requires
one or more variables which are included in both data frames and that are used for merging,
typically indicated with the by argument. When by contains a variable present in both data frames,
cases are matched and filtered by identical values of by in x and y.

Left- and right-joins: Left- and right joins usually don’t add new rows (cases), but only new
columns (variables) for existing cases in x. For join = "left" or join = "right" to work, by
must indicate one or more columns that are included in both data frames. For join = "left", if
by is an identifier variable, which is included in both x and y, all variables from y are copied to x,
but only those cases from y that have matching values in their identifier variable in x (i.e. all cases
in x that are also found in y get the related values from the new columns in y). If there is no match
between identifiers in x and y, the copied variable from y will get a NA value for this particular
case. Other variables that occur both in x and y, but are not used as identifiers (with by), will be
renamed to avoid multiple identical variable names. Cases in y where values from the identifier
have no match in x’s identifier are removed. join = "right" works in a similar way as join =
"left", just that only cases from x that have matching values in their identifier variable in y are
chosen.

In base R, these are equivalent to merge(x, y, all.x = TRUE) and merge(x, y, all.y = TRUE).

34 data_merge

Full joins: Full joins copy all cases from y to x. For matching cases in both data frames, values
for new variables are copied from y to x. For cases in y not present in x, these will be added as
new rows to x. Thus, full joins not only add new columns (variables), but also might add new
rows (cases).

In base R, this is equivalent to merge(x, y, all = TRUE).

Inner joins: Inner joins merge two data frames, however, only those rows (cases) are kept that
are present in both data frames. Thus, inner joins usually add new columns (variables), but also
remove rows (cases) that only occur in one data frame.

In base R, this is equivalent to merge(x, y).

Binds: join = "bind" row-binds the complete second data frame y to x. Unlike simple rbind(),
which requires the same columns for both data frames, join = "bind" will bind shared columns
from y to x, and add new columns from y to x.

Value

A merged data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 2:4)

x
y

"by" will default to all shared columns, i.e. "c" and "id". new columns
"d" and "e" will be copied from "y" to "x", but there are only two cases
in "x" that have the same values for "c" and "id" in "y". only those cases
have values in the copied columns, the other case gets "NA".
data_merge(x, y, join = "left")

data_merge 35

we change the id-value here
x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 3:5)

x
y

no cases in "y" have the same matching "c" and "id" as in "x", thus
copied variables from "y" to "x" copy no values, all get NA.
data_merge(x, y, join = "left")

one case in "y" has a match in "id" with "x", thus values for this
case from the remaining variables in "y" are copied to "x", all other
values (cases) in those remaining variables get NA
data_merge(x, y, join = "left", by = "id")

data(mtcars)
x <- mtcars[1:5, 1:3]
y <- mtcars[28:32, 4:6]

add ID common column
x$id <- 1:5
y$id <- 3:7

left-join, add new variables and copy values from y to x,
where "id" values match
data_merge(x, y)

right-join, add new variables and copy values from x to y,
where "id" values match
data_merge(x, y, join = "right")

full-join
data_merge(x, y, join = "full")

data(mtcars)
x <- mtcars[1:5, 1:3]
y <- mtcars[28:32, c(1, 4:5)]

add ID common column
x$id <- 1:5
y$id <- 3:7

left-join, no matching rows (because columns "id" and "disp" are used)
new variables get all NA values
data_merge(x, y)

one common value in "mpg", so one row from y is copied to x
data_merge(x, y, by = "mpg")

only keep rows with matching values in by-column
data_merge(x, y, join = "semi", by = "mpg")

36 data_partition

only keep rows with non-matching values in by-column
data_merge(x, y, join = "anti", by = "mpg")

merge list of data frames. can be of different rows
x <- mtcars[1:5, 1:3]
y <- mtcars[28:31, 3:5]
z <- mtcars[11:18, c(1, 3:4, 6:8)]
x$id <- 1:5
y$id <- 4:7
z$id <- 3:10
data_merge(list(x, y, z), join = "bind", by = "id", id = "source")

data_partition Partition data

Description

Creates data partitions (for instance, a training and a test set) based on a data frame that can also be
stratified (i.e., evenly spread a given factor) using the group argument.

Usage

data_partition(
data,
proportion = 0.7,
group = NULL,
seed = NULL,
row_id = ".row_id",
verbose = TRUE,
training_proportion = proportion,
...

)

Arguments

data A data frame, or an object that can be coerced to a data frame.

proportion Scalar (between 0 and 1) or numeric vector, indicating the proportion(s) of the
training set(s). The sum of proportion must not be greater than 1. The remain-
ing part will be used for the test set.

group A character vector indicating the name(s) of the column(s) used for stratified
partitioning.

seed A random number generator seed. Enter an integer (e.g. 123) so that the random
sampling will be the same each time you run the function.

row_id Character string, indicating the name of the column that contains the row-id’s.

verbose Toggle messages and warnings.

data_partition 37

training_proportion

Deprecated, please use proportion.

... Other arguments passed to or from other functions.

Value

A list of data frames. The list includes one training set per given proportion and the remaining data
as test set. List elements of training sets are named after the given proportions (e.g., $p_0.7), the
test set is named $test.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

data(iris)
out <- data_partition(iris, proportion = 0.9)
out$test
nrow(out$p_0.9)

Stratify by group (equal proportions of each species)
out <- data_partition(iris, proportion = 0.9, group = "Species")
out$test

Create multiple partitions
out <- data_partition(iris, proportion = c(0.3, 0.3))
lapply(out, head)

Create multiple partitions, stratified by group - 30% equally sampled
from species in first training set, 50% in second training set and
remaining 20% equally sampled from each species in test set.
out <- data_partition(iris, proportion = c(0.3, 0.5), group = "Species")
lapply(out, function(i) table(i$Species))

38 data_read

data_read Read (import) data files from various sources

Description

This functions imports data from various file types. It is a small wrapper around haven::read_spss(),
haven::read_stata(), haven::read_sas(), readxl::read_excel() and data.table::fread()
resp. readr::read_delim() (the latter if package data.table is not installed). Thus, supported file
types for importing data are data files from SPSS, SAS or Stata, Excel files or text files (like ’.csv’
files). All non-supported file types are passed to rio::import().

Usage

data_read(path, path_catalog = NULL, encoding = NULL, verbose = TRUE, ...)

Arguments

path Character string, the file path to the data file.

path_catalog Character string, path to the catalog file. Only relevant for SAS data files.

encoding The character encoding used for the file. Usually not needed.

verbose Toggle warnings and messages.

... Arguments passed to the related read_*() function.

Value

A data frame.

Supported file types

data_read() is a wrapper around the haven, data.table, readr readxl and rio packages. Currently
supported file types are .txt, .csv, .xls, .xlsx, .sav, .por, .dta and .sas (and related files).
All other file types are passed to rio::import().

Compressed files (zip) and URLs

data_read() can also read the above mentioned files from URLs or from inside zip-compressed
files. Thus, path can also be a URL to a file like "http://www.url.com/file.csv". When path
points to a zip-compressed file, and there are multiple files inside the zip-archive, then the first
supported file is extracted and loaded.

General behaviour

data_read() detects the appropriate read_*() function based on the file-extension of the data file.
Thus, in most cases it should be enough to only specify the path argument. However, if more
control is needed, all arguments in ... are passed down to the related read_*() function.

data_relocate 39

Differences to other packages that read foreign data formats

data_read() is most comparable to rio::import(). For data files from SPSS, SAS or Stata,
which support labelled data, variables are converted into their most appropriate type. The major
difference to rio::import() is that data_read() automatically converts variables into factors,
unless the variables are only partially labelled, in which case variables are converted to numerics.
Character vectors are preserved. Hence, variables, where all values are labelled, will be converted
into factors, where imported value labels will be set as factor levels. Else, if a variable has no value
labels or less value labels than values, the variable is either converted into numeric or character
vector. Value labels are then preserved as "labels" attribute.

data_relocate Relocate (reorder) columns of a data frame

Description

data_relocate() will reorder columns to specific positions, indicated by before or after. data_reorder()
will instead move selected columns to the beginning of a data frame. Finally, data_remove() re-
moves columns from a data frame. All functions support select-helpers that allow flexible specifi-
cation of a search pattern to find matching columns, which should be reordered or removed.

Usage

data_relocate(
data,
select,
before = NULL,
after = NULL,
ignore_case = FALSE,
verbose = TRUE,
...

)

data_reorder(data, select, ignore_case = FALSE, verbose = TRUE, ...)

data_remove(data, select, ignore_case = FALSE, verbose = FALSE, ...)

Arguments

data A data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),

40 data_relocate

• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

before, after Destination of columns. Supplying neither will move columns to the left-hand
side; specifying both is an error. Can be a character vector, indicating the name
of the destination column, or a numeric value, indicating the index number of
the destination column. If -1, will be added before or after the last column.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

Value

A data frame with reordered columns.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

data_restoretype 41

Examples

Reorder columns
head(data_relocate(iris, select = "Species", before = "Sepal.Length"))
head(data_relocate(iris, select = "Species", before = "Sepal.Width"))
head(data_relocate(iris, select = "Sepal.Width", after = "Species"))
same as
head(data_relocate(iris, select = "Sepal.Width", after = -1))

reorder multiple columns
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = "Sepal.Width"))
same as
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = 2))

Reorder columns
head(data_reorder(iris, c("Species", "Sepal.Length")))
head(data_reorder(iris, c("Species", "dupa"))) # Safe for non-existing cols

Remove columns
head(data_remove(iris, "Sepal.Length"))
head(data_remove(iris, starts_with("Sepal")))

data_restoretype Restore the type of columns according to a reference data frame

Description

Restore the type of columns according to a reference data frame

Usage

data_restoretype(data, reference = NULL, ...)

Arguments

data A data frame to pivot.

reference A reference data frame from which to find the correct column types.

... Currently not used.

Value

A data frame with columns whose types have been restored based on the reference data frame.

Examples

data <- data.frame(
Sepal.Length = c("1", "3", "2"),
Species = c("setosa", "versicolor", "setosa"),
New = c("1", "3", "4")

42 data_rotate

)

fixed <- data_restoretype(data, reference = iris)
summary(fixed)

data_rotate Rotate a data frame

Description

This function rotates a data frame, i.e. columns become rows and vice versa. It’s the equivalent of
using t() but restores the data.frame class, preserves attributes and prints a warning if the data
type is modified (see example).

Usage

data_rotate(data, rownames = NULL, colnames = FALSE, verbose = TRUE)

data_transpose(data, rownames = NULL, colnames = FALSE, verbose = TRUE)

Arguments

data A data frame.

rownames Character vector (optional). If not NULL, the data frame’s rownames will be
added as (first) column to the output, with rownames being the name of this
column.

colnames Logical or character vector (optional). If TRUE, the values of the first column in
x will be used as column names in the rotated data frame. If a character vector,
values from that column are used as column names.

verbose Toggle warnings.

Value

A (rotated) data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

data_tabulate 43

Examples

x <- mtcars[1:3, 1:4]

x

data_rotate(x)
data_rotate(x, rownames = "property")

use values in 1. column as column name
data_rotate(x, colnames = TRUE)
data_rotate(x, rownames = "property", colnames = TRUE)

warn that data types are changed
str(data_rotate(iris[1:4,]))

use either first column or specific column for column names
x <- data.frame(a = 1:5, b = 11:15, c = letters[1:5], d = rnorm(5))
data_rotate(x, colnames = TRUE)
data_rotate(x, colnames = "c")

data_tabulate Create frequency tables of variables

Description

This function creates frequency tables of variables, including the number of levels/values as well as
the distribution of raw, valid and cumulative percentages.

Usage

data_tabulate(x, ...)

Default S3 method:
data_tabulate(x, drop_levels = FALSE, name = NULL, verbose = TRUE, ...)

S3 method for class 'data.frame'
data_tabulate(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
collapse = FALSE,
drop_levels = FALSE,
verbose = TRUE,
...

)

44 data_tabulate

Arguments

x A (grouped) data frame, a vector or factor.

... not used.

drop_levels Logical, if TRUE, factor levels that do not occur in the data are included in the
table (with frequency of zero), else unused factor levels are dropped from the
frequency table.

name Optional character string, which includes the name that is used for printing.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

collapse Logical, if TRUE collapses multiple tables into one larger table for printing. This
affects only printing, not the returned object.

Value

A data frame, or a list of data frames, with one frequency table as data frame per variable.

data_to_long 45

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Examples

data(efc)

vector/factor
data_tabulate(efc$c172code)

data frame
data_tabulate(efc, c("e42dep", "c172code"))

grouped data frame
if (requireNamespace("poorman")) {

suppressPackageStartupMessages(library(poorman, quietly = TRUE))
efc %>%
group_by(c172code) %>%
data_tabulate("e16sex")

collapse tables
efc %>%

group_by(c172code) %>%
data_tabulate("e16sex", collapse = TRUE)

}

for larger N's (> 100000), a big mark is automatically added
set.seed(123)
x <- sample(1:3, 1e6, TRUE)
data_tabulate(x, name = "Large Number")

to remove the big mark, use "print(..., big_mark = "")"
print(data_tabulate(x), big_mark = "")

data_to_long Reshape (pivot) data from wide to long

Description

This function "lengthens" data, increasing the number of rows and decreasing the number of columns.
This is a dependency-free base-R equivalent of tidyr::pivot_longer().

46 data_to_long

Usage

data_to_long(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols,
colnames_to

)

reshape_longer(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols,
colnames_to

)

Arguments

data A data frame to pivot.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

data_to_long 47

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

names_to The name of the new column that will contain the column names.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern

If names_to contains multiple values, this argument controls how the column
name is broken up. names_pattern takes a regular expression containing match-
ing groups, i.e. "()".

values_to The name of the new column that will contain the values of the pivoted variables.

values_drop_na If TRUE, will drop rows that contain only NA in the values_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its structure.

rows_to The name of the column that will contain the row names or row numbers from
the original data. If NULL, will be removed.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains("") or select
= regex(""), however, since the select-helpers may not work when called from
inside other functions (see ’Details’), this argument may be used as workaround.

... Currently not used.

cols Identical to select. This argument is here to ensure compatibility with tidyr::pivot_longer().
If both select and cols are provided, cols is used.

colnames_to Deprecated. Use names_to instead.

48 data_to_long

Value

If a tibble was provided as input, reshape_longer() also returns a tibble. Otherwise, it returns a
data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

wide_data <- data.frame(replicate(5, rnorm(10)))

Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:5))
data_to_long(wide_data)

Customizing the names
data_to_long(wide_data,

select = c(1, 2),
names_to = "Column",
values_to = "Numbers",
rows_to = "Row"

)

Full example

if (require("psych")) {

data <- psych::bfi # Wide format with one row per participant's personality test

Pivot long format
data_to_long(data,

select = regex("\\d"), # Select all columns that contain a digit
colnames_to = "Item",
values_to = "Score",
rows_to = "Participant"

)

if (require("tidyr")) {
reshape_longer(

tidyr::who,
select = new_sp_m014:newrel_f65,

data_to_wide 49

names_to = c("diagnosis", "gender", "age"),
names_pattern = "new_?(.*)_(.)(.*)",
values_to = "count"

)
}

}

data_to_wide Reshape (pivot) data from long to wide

Description

This function "widens" data, increasing the number of columns and decreasing the number of rows.
This is a dependency-free base-R equivalent of tidyr::pivot_wider().

Usage

data_to_wide(
data,
id_cols = NULL,
values_from = "Value",
names_from = "Name",
names_sep = "_",
names_prefix = "",
names_glue = NULL,
values_fill = NULL,
verbose = TRUE,
...,
colnames_from,
rows_from,
sep

)

reshape_wider(
data,
id_cols = NULL,
values_from = "Value",
names_from = "Name",
names_sep = "_",
names_prefix = "",
names_glue = NULL,
values_fill = NULL,
verbose = TRUE,
...,
colnames_from,
rows_from,

50 data_to_wide

sep
)

Arguments

data A data frame to pivot.

id_cols The name of the column that identifies the rows. If NULL, it will use all the
unique rows.

values_from The name of the column that contains the values to be used as future variable
values.

names_from The name of the column that contains the levels to be used as future column
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns to create custom column names. Note that
the only delimiters supported by names_glue are curly brackets, { and }.

values_fill Optionally, a (scalar) value that will be used to replace missing values in the new
columns created.

verbose Toggle warnings.

... Not used for now.

colnames_from Deprecated. Use names_from instead.

rows_from Deprecated. Use id_cols instead.

sep Deprecated. Use names_sep instead.

Value

If a tibble was provided as input, reshape_wider() also returns a tibble. Otherwise, it returns a
data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

https://glue.tidyverse.org/index.html

data_to_wide 51

Examples

data_long <- read.table(header = TRUE, text = "
subject sex condition measurement

1 M control 7.9
1 M cond1 12.3
1 M cond2 10.7
2 F control 6.3
2 F cond1 10.6
2 F cond2 11.1
3 F control 9.5
3 F cond1 13.1
3 F cond2 13.8
4 M control 11.5
4 M cond1 13.4
4 M cond2 12.9")

reshape_wider(
data_long,
id_cols = "subject",
names_from = "condition",
values_from = "measurement"

)

reshape_wider(
data_long,
id_cols = "subject",
names_from = "condition",
values_from = "measurement",
names_prefix = "Var.",
names_sep = "."

)

production <- expand.grid(
product = c("A", "B"),
country = c("AI", "EI"),
year = 2000:2014

)
production <- data_filter(production, (product == "A" & country == "AI") | product == "B")

production$production <- rnorm(nrow(production))

reshape_wider(
production,
names_from = c("product", "country"),
values_from = "production",
names_glue = "prod_{product}_{country}"

)

52 demean

demean Compute group-meaned and de-meaned variables

Description

demean() computes group- and de-meaned versions of a variable that can be used in regression
analysis to model the between- and within-subject effect. degroup() is more generic in terms of
the centering-operation. While demean() always uses mean-centering, degroup() can also use the
mode or median for centering.

Usage

demean(
x,
select,
group,
suffix_demean = "_within",
suffix_groupmean = "_between",
add_attributes = TRUE,
verbose = TRUE

)

degroup(
x,
select,
group,
center = "mean",
suffix_demean = "_within",
suffix_groupmean = "_between",
add_attributes = TRUE,
verbose = TRUE

)

detrend(
x,
select,
group,
center = "mean",
suffix_demean = "_within",
suffix_groupmean = "_between",
add_attributes = TRUE,
verbose = TRUE

)

Arguments

x A data frame.

demean 53

select Character vector (or formula) with names of variables to select that should be
group- and de-meaned.

group Character vector (or formula) with the name of the variable that indicates the
group- or cluster-ID.

suffix_demean, suffix_groupmean

String value, will be appended to the names of the group-meaned and de-meaned
variables of x. By default, de-meaned variables will be suffixed with "_within"
and grouped-meaned variables with "_between".

add_attributes Logical, if TRUE, the returned variables gain attributes to indicate the within- and
between-effects. This is only relevant when printing model_parameters() - in
such cases, the within- and between-effects are printed in separated blocks.

verbose Toggle warnings and messages.

center Method for centering. demean() always performs mean-centering, while degroup()
can use center = "median" or center = "mode" for median- or mode-centering,
and also "min" or "max".

Details

Heterogeneity Bias: Mixed models include different levels of sources of variability, i.e. error
terms at each level. When macro-indicators (or level-2 predictors, or higher-level units, or more
general: group-level predictors that vary within and across groups) are included as fixed effects
(i.e. treated as covariate at level-1), the variance that is left unaccounted for this covariate will
be absorbed into the error terms of level-1 and level-2 (Bafumi and Gelman 2006; Gelman and
Hill 2007, Chapter 12.6.): “Such covariates contain two parts: one that is specific to the higher-
level entity that does not vary between occasions, and one that represents the difference between
occasions, within higher-level entities” (Bell et al. 2015). Hence, the error terms will be correlated
with the covariate, which violates one of the assumptions of mixed models (iid, independent
and identically distributed error terms). This bias is also called the heterogeneity bias (Bell et
al. 2015). To resolve this problem, level-2 predictors used as (level-1) covariates should be
separated into their "within" and "between" effects by "de-meaning" and "group-meaning": After
demeaning time-varying predictors, “at the higher level, the mean term is no longer constrained
by Level 1 effects, so it is free to account for all the higher-level variance associated with that
variable” (Bell et al. 2015).

Panel data and correlating fixed and group effects: demean() is intended to create group- and
de-meaned variables for panel regression models (fixed effects models), or for complex random-
effect-within-between models (see Bell et al. 2015, 2018), where group-effects (random effects)
and fixed effects correlate (see Bafumi and Gelman 2006). This can happen, for instance, when
analyzing panel data, which can lead to Heterogeneity Bias. To control for correlating predictors
and group effects, it is recommended to include the group-meaned and de-meaned version of time-
varying covariates (and group-meaned version of time-invariant covariates that are on a higher
level, e.g. level-2 predictors) in the model. By this, one can fit complex multilevel models for
panel data, including time-varying predictors, time-invariant predictors and random effects.

Why mixed models are preferred over fixed effects models: A mixed models approach can
model the causes of endogeneity explicitly by including the (separated) within- and between-
effects of time-varying fixed effects and including time-constant fixed effects. Furthermore, mixed

54 demean

models also include random effects, thus a mixed models approach is superior to classic fixed-
effects models, which lack information of variation in the group-effects or between-subject ef-
fects. Furthermore, fixed effects regression cannot include random slopes, which means that fixed
effects regressions are neglecting “cross-cluster differences in the effects of lower-level controls
(which) reduces the precision of estimated context effects, resulting in unnecessarily wide confi-
dence intervals and low statistical power” (Heisig et al. 2017).

Terminology: The group-meaned variable is simply the mean of an independent variable within
each group (or id-level or cluster) represented by group. It represents the cluster-mean of an
independent variable. The regression coefficient of a group-meaned variable is the between-
subject-effect. The de-meaned variable is then the centered version of the group-meaned variable.
De-meaning is sometimes also called person-mean centering or centering within clusters. The
regression coefficient of a de-meaned variable represents the within-subject-effect.

De-meaning with continuous predictors: For continuous time-varying predictors, the recom-
mendation is to include both their de-meaned and group-meaned versions as fixed effects, but
not the raw (untransformed) time-varying predictors themselves. The de-meaned predictor should
also be included as random effect (random slope). In regression models, the coefficient of the de-
meaned predictors indicates the within-subject effect, while the coefficient of the group-meaned
predictor indicates the between-subject effect.

De-meaning with binary predictors: For binary time-varying predictors, there are two recom-
mendations. First is to include the raw (untransformed) binary predictor as fixed effect only and
the de-meaned variable as random effect (random slope). The alternative would be to add the
de-meaned version(s) of binary time-varying covariates as additional fixed effect as well (instead
of adding it as random slope). Centering time-varying binary variables to obtain within-effects
(level 1) isn’t necessary. They have a sensible interpretation when left in the typical 0/1 format
(Hoffmann 2015, chapter 8-2.I). demean() will thus coerce categorical time-varying predictors
to numeric to compute the de- and group-meaned versions for these variables, where the raw
(untransformed) binary predictor and the de-meaned version should be added to the model.

De-meaning of factors with more than 2 levels: Factors with more than two levels are de-
meaned in two ways: first, these are also converted to numeric and de-meaned; second, dummy
variables are created (binary, with 0/1 coding for each level) and these binary dummy-variables
are de-meaned in the same way (as described above). Packages like panelr internally convert
factors to dummies before demeaning, so this behaviour can be mimicked here.

De-meaning interaction terms: There are multiple ways to deal with interaction terms of
within- and between-effects. A classical approach is to simply use the product term of the de-
meaned variables (i.e. introducing the de-meaned variables as interaction term in the model for-
mula, e.g. y ~ x_within * time_within). This approach, however, might be subject to bias (see
Giesselmann & Schmidt-Catran 2020).

Another option is to first calculate the product term and then apply the de-meaning to it. This
approach produces an estimator “that reflects unit-level differences of interacted variables whose
moderators vary within units”, which is desirable if no within interaction of two time-dependent
variables is required.

A third option, when the interaction should result in a genuine within estimator, is to "double
de-mean" the interaction terms (Giesselmann & Schmidt-Catran 2018), however, this is currently

demean 55

not supported by demean(). If this is required, the wmb() function from the panelr package
should be used.

To de-mean interaction terms for within-between models, simply specify the term as interaction
for the select-argument, e.g. select = "a*b" (see ’Examples’).

Analysing panel data with mixed models using lme4: A description of how to translate the
formulas described in Bell et al. 2018 into R using lmer() from lme4 can be found in this
vignette.

Value

A data frame with the group-/de-meaned variables, which get the suffix "_between" (for the group-
meaned variable) and "_within" (for the de-meaned variable) by default.

References

• Bafumi J, Gelman A. 2006. Fitting Multilevel Models When Predictors and Group Effects
Correlate. In. Philadelphia, PA: Annual meeting of the American Political Science Associa-
tion.

• Bell A, Fairbrother M, Jones K. 2019. Fixed and Random Effects Models: Making an In-
formed Choice. Quality & Quantity (53); 1051-1074

• Bell A, Jones K. 2015. Explaining Fixed Effects: Random Effects Modeling of Time-Series
Cross-Sectional and Panel Data. Political Science Research and Methods, 3(1), 133–153.

• Gelman A, Hill J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models.
Analytical Methods for Social Research. Cambridge, New York: Cambridge University Press

• Giesselmann M, Schmidt-Catran, AW. 2020. Interactions in fixed effects regression models.
Sociological Methods & Research, 1–28. https://doi.org/10.1177/0049124120914934

• Heisig JP, Schaeffer M, Giesecke J. 2017. The Costs of Simplicity: Why Multilevel Mod-
els May Benefit from Accounting for Cross-Cluster Differences in the Effects of Controls.
American Sociological Review 82 (4): 796–827.

• Hoffman L. 2015. Longitudinal analysis: modeling within-person fluctuation and change.
New York: Routledge

See Also

If grand-mean centering (instead of centering within-clusters) is required, see center().

Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
iris$binary <- as.factor(rbinom(150, 1, .35)) # binary variable

x <- demean(iris, select = c("Sepal.Length", "Petal.Length"), group = "ID")
head(x)

https://easystats.github.io/parameters/articles/demean.html
https://easystats.github.io/parameters/articles/demean.html

56 describe_distribution

x <- demean(iris, select = c("Sepal.Length", "binary", "Species"), group = "ID")
head(x)

demean interaction term x*y
dat <- data.frame(

a = c(1, 2, 3, 4, 1, 2, 3, 4),
x = c(4, 3, 3, 4, 1, 2, 1, 2),
y = c(1, 2, 1, 2, 4, 3, 2, 1),
ID = c(1, 2, 3, 1, 2, 3, 1, 2)

)
demean(dat, select = c("a", "x*y"), group = "ID")

or in formula-notation
demean(dat, select = ~ a + x * y, group = ~ID)

describe_distribution Describe a distribution

Description

This function describes a distribution by a set of indices (e.g., measures of centrality, dispersion,
range, skewness, kurtosis).

Usage

describe_distribution(x, ...)

S3 method for class 'numeric'
describe_distribution(
x,
centrality = "mean",
dispersion = TRUE,
iqr = TRUE,
range = TRUE,
quartiles = FALSE,
ci = NULL,
iterations = 100,
threshold = 0.1,
verbose = TRUE,
...

)

S3 method for class 'factor'
describe_distribution(x, dispersion = TRUE, range = TRUE, verbose = TRUE, ...)

S3 method for class 'data.frame'

describe_distribution 57

describe_distribution(
x,
select = NULL,
exclude = NULL,
centrality = "mean",
dispersion = TRUE,
iqr = TRUE,
range = TRUE,
quartiles = FALSE,
include_factors = FALSE,
ci = NULL,
iterations = 100,
threshold = 0.1,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A numeric vector, a character vector, a data frame, or a list. See Details.

... Additional arguments to be passed to or from methods.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

iqr Logical, if TRUE, the interquartile range is calculated (based on stats::IQR(),
using type = 6).

range Return the range (min and max).

quartiles Return the first and third quartiles (25th and 75pth percentiles).

ci Confidence Interval (CI) level. Default is NULL, i.e. no confidence intervals are
computed. If not NULL, confidence intervals are based on bootstrap replicates
(see iterations). If centrality = "all", the bootstrapped confidence inter-
val refers to the first centrality index (which is typically the median).

iterations The number of bootstrap replicates for computing confidence intervals. Only
applies when ci is not NULL.

threshold For centrality = "trimmed" (i.e. trimmed mean), indicates the fraction (0 to
0.5) of observations to be trimmed from each end of the vector before the mean
is computed.

verbose Toggle warnings and messages.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),

58 describe_distribution

• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

include_factors

Logical, if TRUE, factors are included in the output, however, only columns for
range (first and last factor levels) as well as n and missing will contain informa-
tion.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Details

If x is a data frame, only numeric variables are kept and will be displayed in the summary.

If x is a list, the behavior is different whether x is a stored list. If x is stored (for example,
describe_distribution(mylist) where mylist was created before), artificial variable names
are used in the summary (Var_1, Var_2, etc.). If x is an unstored list (for example, describe_distribution(list(mtcars$mpg))),
then "mtcars$mpg" is used as variable name.

Value

A data frame with columns that describe the properties of the variables.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only

distribution_mode 59

applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Note

There is also a plot()-method implemented in the see-package.

Examples

describe_distribution(rnorm(100))

data(iris)
describe_distribution(iris)
describe_distribution(iris, include_factors = TRUE, quartiles = TRUE)
describe_distribution(list(mtcars$mpg, mtcars$cyl))

distribution_mode Compute mode for a statistical distribution

Description

Compute mode for a statistical distribution

Usage

distribution_mode(x)

Arguments

x An atomic vector, a list, or a data frame.

Value

The value that appears most frequently in the provided data. The returned data structure will be the
same as the entered one.

Examples

distribution_mode(c(1, 2, 3, 3, 4, 5))
distribution_mode(c(1.5, 2.3, 3.7, 3.7, 4.0, 5))

https://easystats.github.io/see/articles/parameters.html
https://easystats.github.io/see/

60 find_columns

efc Sample dataset from the EFC Survey

Description

Selected variables from the EUROFAMCARE survey. Useful when testing on "real-life" data sets,
including random missing values. This data set also has value and variable label attributes.

find_columns Find or get columns in a data frame based on search patterns

Description

find_columns() returns column names from a data set that match a certain search pattern, while
get_columns() returns the found data. data_select() is an alias for get_columns(), and data_find()
is an alias for find_columns().

Usage

find_columns(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

data_find(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

get_columns(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,

find_columns 61

verbose = TRUE,
...

)

data_select(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...

)

Arguments

data A data frame.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

62 find_columns

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is compara-
ble to using one of the two select-helpers, select = contains("") or select
= regex(""), however, since the select-helpers may not work when called from
inside other functions (see ’Details’), this argument may be used as workaround.

verbose Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

Details

Note that there are some limitations when calling this from inside other functions. The following
will work as expected, returning all columns that start with "Sep":

foo <- function(data) {
find_columns(data, select = starts_with("Sep"))

}
foo(iris)

However, this example won’t work as expected!

foo <- function(data) {
i <- "Sep"
find_columns(data, select = starts_with(i))

}
foo(iris)

One workaround is to use the regex argument, which provides at least a bit more flexibility than
exact matching. regex in its basic usage (as seen below) means that select behaves like the
contains("") select-helper, but can also make the function more flexible by allowing to define
complex regular expression pattern in select.

foo <- function(data) {
i <- "Sep"
find_columns(data, select = i, regex = TRUE)

}
foo(iris)

Value

find_columns() returns a character vector with column names that matched the pattern in select
and exclude, or NULL if no matching column name was found. get_columns() returns a data frame
with matching columns.

format_text 63

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

Examples

Find columns names by pattern
find_columns(iris, starts_with("Sepal"))
find_columns(iris, ends_with("Width"))
find_columns(iris, regex("\\."))
find_columns(iris, c("Petal.Width", "Sepal.Length"))

starts with "Sepal", but not allowed to end with "width"
find_columns(iris, starts_with("Sepal"), exclude = contains("Width"))

find numeric with mean > 3.5
numeric_mean_35 <- function(x) is.numeric(x) && mean(x, na.rm = TRUE) > 3.5
find_columns(iris, numeric_mean_35)

format_text Convenient text formatting functionalities

Description

Convenience functions to manipulate and format text.

Usage

format_text(
text,
sep = ", ",
last = " and ",
width = NULL,
enclose = NULL,
...

)

text_fullstop(text)

64 format_text

text_lastchar(text, n = 1)

text_concatenate(text, sep = ", ", last = " and ", enclose = NULL)

text_paste(text, text2 = NULL, sep = ", ", enclose = NULL, ...)

text_remove(text, pattern = "", ...)

text_wrap(text, width = NULL, ...)

Arguments

text, text2 A character string.

sep Separator.

last Last separator.

width Positive integer giving the target column width for wrapping lines in the output.
Can be "auto", in which case it will select 90\ default width.

enclose Character that will be used to wrap elements of text, so these can be, e.g.,
enclosed with quotes or backticks. If NULL (default), text elements will not be
enclosed.

... Other arguments to be passed to or from other functions.

n The number of characters to find.

pattern Character vector. For data_rename(), indicates columns that should be se-
lected for renaming. Can be NULL (in which case all columns are selected). For
data_addprefix() or data_addsuffix(), a character string, which will be
added as prefix or suffix to the column names.

Value

A character string.

Examples

Add full stop if missing
text_fullstop(c("something", "something else."))

Find last characters
text_lastchar(c("ABC", "DEF"), n = 2)

Smart concatenation
text_concatenate(c("First", "Second", "Last"))
text_concatenate(c("First", "Second", "Last"), last = " or ", enclose = "`")

Remove parts of string
text_remove(c("one!", "two", "three!"), "!")

Wrap text

nhanes_sample 65

long_text <- paste(rep("abc ", 100), collapse = "")
cat(text_wrap(long_text, width = 50))

Paste with optional separator
text_paste(c("A", "", "B"), c("42", "42", "42"))

nhanes_sample Sample dataset from the National Health and Nutrition Examination
Survey

Description

Selected variables from the National Health and Nutrition Examination Survey that are used in the
example from Lumley (2010), Appendix E.

References

Lumley T (2010). Complex Surveys: a guide to analysis using R. Wiley

normalize Normalize numeric variable to 0-1 range

Description

Performs a normalization of data, i.e., it scales variables in the range 0 - 1. This is a special case
of rescale(). unnormalize() is the counterpart, but only works for variables that have been
normalized with normalize().

Usage

normalize(x, ...)

S3 method for class 'numeric'
normalize(x, include_bounds = TRUE, verbose = TRUE, ...)

S3 method for class 'data.frame'
normalize(
x,
select = NULL,
exclude = NULL,
include_bounds = TRUE,
ignore_case = FALSE,
verbose = TRUE,
...

)

66 normalize

unnormalize(x, ...)

S3 method for class 'numeric'
unnormalize(x, verbose = TRUE, ...)

S3 method for class 'data.frame'
unnormalize(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A numeric vector, (grouped) data frame, or matrix. See ’Details’.

... Arguments passed to or from other methods.

include_bounds Logical, if TRUE, return value may include 0 and 1. If FALSE, the return value
is compressed, using Smithson and Verkuilen’s (2006) formula (x * (n - 1) +
0.5) / n, to avoid zeros and ones in the normalized variables. This can be useful
in case of beta-regression, where the response variable is not allowed to include
zeros and ones.

verbose Toggle warnings and messages on or off.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")

normalize 67

(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Details

• If x is a matrix, normalization is performed across all values (not column- or row-wise). For
column-wise normalization, convert the matrix to a data.frame.

• If x is a grouped data frame (grouped_df), normalization is performed separately for each
group.

Value

A normalized object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

References

Smithson M, Verkuilen J (2006). A Better Lemon Squeezer? Maximum-Likelihood Regression
with Beta-Distributed Dependent Variables. Psychological Methods, 11(1), 54–71.

See Also

Other transform utilities: ranktransform(), rescale(), reverse(), standardize()

Examples

normalize(c(0, 1, 5, -5, -2))
normalize(c(0, 1, 5, -5, -2), include_bounds = FALSE)

head(normalize(trees))

68 ranktransform

ranktransform (Signed) rank transformation

Description

Transform numeric values with the integers of their rank (i.e., 1st smallest, 2nd smallest, 3rd small-
est, etc.). Setting the sign argument to TRUE will give you signed ranks, where the ranking is done
according to absolute size but where the sign is preserved (i.e., 2, 1, -3, 4).

Usage

ranktransform(x, ...)

S3 method for class 'numeric'
ranktransform(x, sign = FALSE, method = "average", verbose = TRUE, ...)

S3 method for class 'data.frame'
ranktransform(
x,
select = NULL,
exclude = NULL,
sign = FALSE,
method = "average",
ignore_case = FALSE,
...

)

Arguments

x Object.

... Arguments passed to or from other methods.

sign Logical, if TRUE, return signed ranks.

method Treatment of ties. Can be one of "average" (default), "first", "last", "random",
"max" or "min". See rank() for details.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

ranktransform 69

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

A rank-transformed object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), rescale(), reverse(), standardize()

Examples

ranktransform(c(0, 1, 5, -5, -2))
ranktransform(c(0, 1, 5, -5, -2), sign = TRUE)

head(ranktransform(trees))

70 remove_empty

remove_empty Return or remove variables or observations that are completely miss-
ing

Description

These functions check which rows or columns of a data frame completely contain missing values,
i.e. which observations or variables completely have missing values, and either (1) returns their
indices; or (2) removes them from the data frame.

Usage

empty_columns(x)

empty_rows(x)

remove_empty_columns(x)

remove_empty_rows(x)

remove_empty(x)

Arguments

x A data frame.

Value

• For empty_columns() and empty_rows(), a numeric (named) vector with row or column
indices of those variables that completely have missing values.

• For remove_empty_columns() and remove_empty_rows(), a data frame with "empty" columns
or rows removed, respectively.

• For remove_empty, both empty rows and columns will be removed.

Examples

tmp <- data.frame(
a = c(1, 2, 3, NA, 5),
b = c(1, NA, 3, NA, 5),
c = c(NA, NA, NA, NA, NA),
d = c(1, NA, 3, NA, 5)

)

tmp

indices of empty columns or rows
empty_columns(tmp)
empty_rows(tmp)

replace_nan_inf 71

remove empty columns or rows
remove_empty_columns(tmp)
remove_empty_rows(tmp)

remove empty columns and rows
remove_empty(tmp)

replace_nan_inf Convert infinite or NaN values into NA

Description

Replaces all infinite (Inf and -Inf) or NaN values with NA.

Usage

replace_nan_inf(data)

Arguments

data A vector or a data frame.

Value

Data with Inf, -Inf, and NaN converted to NA.

Examples

a vector
x <- c(1, 2, NA, 3, NaN, 4, NA, 5, Inf, -Inf, 6, 7)
replace_nan_inf(x)

a data frame
df <- data.frame(

x = c(1, NA, 5, Inf, 2, NA),
y = c(3, NaN, 4, -Inf, 6, 7),
stringsAsFactors = FALSE

)
replace_nan_inf(df)

72 rescale

rescale Rescale Variables to a New Range

Description

Rescale variables to a new range. Can also be used to reverse-score variables (change the key-
ing/scoring direction).

Usage

rescale(x, ...)

change_scale(x, ...)

S3 method for class 'numeric'
rescale(x, to = c(0, 100), range = NULL, verbose = TRUE, ...)

S3 method for class 'data.frame'
rescale(
x,
select = NULL,
exclude = NULL,
to = c(0, 100),
range = NULL,
ignore_case = FALSE,
...

)

Arguments

x A (grouped) data frame, numeric vector or factor.

... Arguments passed to or from other methods.

to Numeric vector of length 2 giving the new range that the variable will have
after rescaling. To reverse-score a variable, the range should be given with the
maximum value first. See examples.

range Initial (old) range of values. If NULL, will take the range of the input vector
(range(x)).

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),

rescale 73

• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

A rescaled object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), ranktransform(), reverse(), standardize()

Examples

rescale(c(0, 1, 5, -5, -2))
rescale(c(0, 1, 5, -5, -2), to = c(-5, 5))
rescale(c(1, 2, 3, 4, 5), to = c(-2, 2))

74 rescale_weights

Specify the "theoretical" range of the input vector
rescale(c(1, 3, 4), to = c(0, 40), range = c(0, 4))

Reverse-score a variable
rescale(c(1, 2, 3, 4, 5), to = c(5, 1))
rescale(c(1, 2, 3, 4, 5), to = c(2, -2))

Data frames
head(rescale(iris, to = c(0, 1)))
head(rescale(iris, to = c(0, 1), select = "Sepal.Length"))

One can specify a list of ranges
head(rescale(iris, to = list(

"Sepal.Length" = c(0, 1),
"Petal.Length" = c(-1, 0)

)))

rescale_weights Rescale design weights for multilevel analysis

Description

Most functions to fit multilevel and mixed effects models only allow to specify frequency weights,
but not design (i.e. sampling or probability) weights, which should be used when analyzing complex
samples and survey data. rescale_weights() implements an algorithm proposed by Asparouhov
(2006) and Carle (2009) to rescale design weights in survey data to account for the grouping struc-
ture of multilevel models, which then can be used for multilevel modelling.

Usage

rescale_weights(data, group, probability_weights, nest = FALSE)

Arguments

data A data frame.

group Variable names (as character vector, or as formula), indicating the grouping
structure (strata) of the survey data (level-2-cluster variable). It is also possi-
ble to create weights for multiple group variables; in such cases, each created
weighting variable will be suffixed by the name of the group variable.

probability_weights

Variable indicating the probability (design or sampling) weights of the survey
data (level-1-weight).

nest Logical, if TRUE and group indicates at least two group variables, then groups
are "nested", i.e. groups are now a combination from each group level of the
variables in group.

rescale_weights 75

Details

Rescaling is based on two methods: For pweights_a, the sample weights probability_weights
are adjusted by a factor that represents the proportion of group size divided by the sum of sampling
weights within each group. The adjustment factor for pweights_b is the sum of sample weights
within each group divided by the sum of squared sample weights within each group (see Carle
(2009), Appendix B). In other words, pweights_a "scales the weights so that the new weights sum
to the cluster sample size" while pweights_b "scales the weights so that the new weights sum to
the effective cluster size".

Regarding the choice between scaling methods A and B, Carle suggests that "analysts who wish
to discuss point estimates should report results based on weighting method A. For analysts more
interested in residual between-group variance, method B may generally provide the least biased es-
timates". In general, it is recommended to fit a non-weighted model and weighted models with both
scaling methods and when comparing the models, see whether the "inferential decisions converge",
to gain confidence in the results.

Though the bias of scaled weights decreases with increasing group size, method A is preferred when
insufficient or low group size is a concern.

The group ID and probably PSU may be used as random effects (e.g. nested design, or group and
PSU as varying intercepts), depending on the survey design that should be mimicked.

Value

data, including the new weighting variables: pweights_a and pweights_b, which represent the
rescaled design weights to use in multilevel models (use these variables for the weights argument).

References

• Carle A.C. (2009). Fitting multilevel models in complex survey data with design weights:
Recommendations. BMC Medical Research Methodology 9(49): 1-13

• Asparouhov T. (2006). General Multi-Level Modeling with Sampling Weights. Communica-
tions in Statistics - Theory and Methods 35: 439-460

Examples

if (require("lme4")) {
data(nhanes_sample)
head(rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR"))

also works with multiple group-variables
head(rescale_weights(nhanes_sample, c("SDMVSTRA", "SDMVPSU"), "WTINT2YR"))

or nested structures.
x <- rescale_weights(
data = nhanes_sample,
group = c("SDMVSTRA", "SDMVPSU"),
probability_weights = "WTINT2YR",
nest = TRUE

)
head(x)

76 reshape_ci

nhanes_sample <- rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR")

glmer(
total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)) + (1 | SDMVPSU),
family = poisson(),
data = nhanes_sample,
weights = pweights_a

)
}

reshape_ci Reshape CI between wide/long formats

Description

Reshape CI between wide/long formats.

Usage

reshape_ci(x, ci_type = "CI")

Arguments

x A data frame containing columns named CI_low and CI_high (or similar, see
ci_type).

ci_type String indicating the "type" (i.e. prefix) of the interval columns. Per easystats
convention, confidence or credible intervals are named CI_low and CI_high,
and the related ci_type would be "CI". If column names for other intervals
differ, ci_type can be used to indicate the name, e.g. ci_type = "SI" can be
used for support intervals, where the column names in the data frame would be
SI_low and SI_high.

Value

A data frame with columns corresponding to confidence intervals reshaped either to wide or long
format.

Examples

x <- data.frame(
Parameter = c("Term 1", "Term 2", "Term 1", "Term 2"),
CI = c(.8, .8, .9, .9),
CI_low = c(.2, .3, .1, .15),
CI_high = c(.5, .6, .8, .85),
stringsAsFactors = FALSE

)

reshape_ci(x)
reshape_ci(reshape_ci(x))

reverse 77

reverse Reverse-Score Variables

Description

Reverse-score variables (change the keying/scoring direction).

Usage

reverse(x, ...)

reverse_scale(x, ...)

S3 method for class 'numeric'
reverse(x, range = NULL, verbose = TRUE, ...)

S3 method for class 'data.frame'
reverse(
x,
select = NULL,
exclude = NULL,
range = NULL,
ignore_case = FALSE,
...

)

Arguments

x A (grouped) data frame, numeric vector or factor.

... Arguments passed to or from other methods.

range Initial (old) range of values. If NULL, will take the range of the input vector
(range(x)).

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

78 reverse

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

A reverse-scored object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), ranktransform(), rescale(), standardize()

Examples

reverse(c(1, 2, 3, 4, 5))
reverse(c(-2, -1, 0, 2, 1))

Specify the "theoretical" range of the input vector
reverse(c(1, 3, 4), range = c(0, 4))

Factor variables
reverse(factor(c(1, 2, 3, 4, 5)))
reverse(factor(c(1, 2, 3, 4, 5)), range = 0:10)

Data frames

rownames_as_column 79

head(reverse(iris))
head(reverse(iris, select = "Sepal.Length"))

rownames_as_column Tools for working with row names

Description

Tools for working with row names

Usage

rownames_as_column(x, var = "rowname")

column_as_rownames(x, var = "rowname")

Arguments

x A data frame.

var Name of column to use for rownames. For column_as_rownames(), this argu-
ment can be the variable name or the column number.

Value

rownames_as_column() and column_as_rownames() both return a data frame.

Examples

Convert between row names and column --------------------------------
test <- rownames_as_column(mtcars, var = "car")
test
head(column_as_rownames(test, var = "car"))

row_to_colnames Tools for working with column names

Description

Tools for working with column names

Usage

row_to_colnames(x, row = 1, na_prefix = "x", verbose = TRUE)

colnames_to_row(x, prefix = "x")

80 skewness

Arguments

x A data frame.

row Row to use as column names.

na_prefix Prefix to give to the column name if the row has an NA. Default is ’x’, and it will
be incremented at each NA (x1, x2, etc.).

verbose Toggle warnings.

prefix Prefix to give to the column name. Default is ’x’, and it will be incremented at
each column (x1, x2, etc.).

Value

row_to_colnames() and colnames_to_row() both return a data frame.

Examples

Convert a row to column names --------------------------------
test <- data.frame(

a = c("iso", 2, 5),
b = c("year", 3, 6),
c = c(NA, 5, 7)

)
test
row_to_colnames(test)

Convert column names to row --------------------------------
test <- data.frame(

ARG = c("BRA", "FRA"),
`1960` = c(1960, 1960),
`2000` = c(2000, 2000)

)
test
colnames_to_row(test)

skewness Compute Skewness and (Excess) Kurtosis

Description

Compute Skewness and (Excess) Kurtosis

Usage

skewness(x, na.rm = TRUE, type = "2", iterations = NULL, verbose = TRUE, ...)

kurtosis(x, na.rm = TRUE, type = "2", iterations = NULL, verbose = TRUE, ...)

skewness 81

S3 method for class 'parameters_kurtosis'
print(x, digits = 3, test = FALSE, ...)

S3 method for class 'parameters_skewness'
print(x, digits = 3, test = FALSE, ...)

S3 method for class 'parameters_skewness'
summary(object, test = FALSE, ...)

S3 method for class 'parameters_kurtosis'
summary(object, test = FALSE, ...)

Arguments

x A numeric vector or data.frame.

na.rm Remove missing values.

type Type of algorithm for computing skewness. May be one of 1 (or "1", "I"
or "classic"), 2 (or "2", "II" or "SPSS" or "SAS") or 3 (or "3", "III" or
"Minitab"). See ’Details’.

iterations The number of bootstrap replicates for computing standard errors. If NULL (de-
fault), parametric standard errors are computed.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

digits Number of decimal places.

test Logical, if TRUE, tests if skewness or kurtosis is significantly different from zero.

object An object returned by skewness() or kurtosis().

Details

Skewness: Symmetric distributions have a skewness around zero, while a negative skewness
values indicates a "left-skewed" distribution, and a positive skewness values indicates a "right-
skewed" distribution. Examples for the relationship of skewness and distributions are:

• Normal distribution (and other symmetric distribution) has a skewness of 0
• Half-normal distribution has a skewness just below 1
• Exponential distribution has a skewness of 2
• Lognormal distribution can have a skewness of any positive value, depending on its parame-

ters

(https://en.wikipedia.org/wiki/Skewness)

Types of Skewness: skewness() supports three different methods for estimating skewness, as
discussed in Joanes and Gill (1988) :

• Type "1" is the "classical" method, which is g1 = (sum((x - mean(x))^3) / n) / (sum((x -
mean(x))^2) / n)^1.5

• Type "2" first calculates the type-1 skewness, then adjusts the result: G1 = g1 * sqrt(n * (n
- 1)) / (n - 2). This is what SAS and SPSS usually return

82 slide

• Type "3" first calculates the type-1 skewness, then adjusts the result: b1 = g1 * ((1 - 1 /
n))^1.5. This is what Minitab usually returns.

Kurtosis: The kurtosis is a measure of "tailedness" of a distribution. A distribution with a
kurtosis values of about zero is called "mesokurtic". A kurtosis value larger than zero indicates a
"leptokurtic" distribution with fatter tails. A kurtosis value below zero indicates a "platykurtic"
distribution with thinner tails (https://en.wikipedia.org/wiki/Kurtosis).

Types of Kurtosis: kurtosis() supports three different methods for estimating kurtosis, as
discussed in Joanes and Gill (1988) :

• Type "1" is the "classical" method, which is g2 = n * sum((x - mean(x))^4) / (sum((x -
mean(x))^2)^2) - 3.

• Type "2" first calculates the type-1 kurtosis, than adjusts the result: G2 = ((n + 1) * g2 + 6)
* (n - 1)/((n - 2) * (n - 3)). This is what SAS and SPSS usually return

• Type "3" first calculates the type-1 kurtosis, than adjusts the result: b2 = (g2 + 3) * (1 - 1 /
n)^2 - 3. This is what Minitab usually returns.

Standard Errors: It is recommended to compute empirical (bootstrapped) standard errors (via
the iterations argument) than relying on analytic standard errors (Wright & Herrington, 2011).

Value

Values of skewness or kurtosis.

References

• D. N. Joanes and C. A. Gill (1998). Comparing measures of sample skewness and kurtosis.
The Statistician, 47, 183–189.

• Wright, D. B., & Herrington, J. A. (2011). Problematic standard errors and confidence inter-
vals for skewness and kurtosis. Behavior research methods, 43(1), 8-17.

Examples

skewness(rnorm(1000))
kurtosis(rnorm(1000))

slide Shift numeric value range

Description

This functions shifts the value range of a numeric variable, so that the new range starts at a given
value.

slide 83

Usage

slide(x, ...)

data_shift(x, ...)

S3 method for class 'numeric'
slide(x, lowest = 0, ...)

S3 method for class 'data.frame'
slide(
x,
select = NULL,
exclude = NULL,
lowest = 0,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame or numeric vector.

... not used.

lowest Numeric, indicating the lowest (minimum) value when converting factors or
character vectors to numeric values.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are

84 slide

excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

Value

x, where the range of numeric variables starts at a new value.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

smoothness 85

Examples

numeric
head(mtcars$gear)
head(slide(mtcars$gear))
head(slide(mtcars$gear, lowest = 10))

data frame
sapply(slide(mtcars, lowest = 1), min)
sapply(mtcars, min)

smoothness Quantify the smoothness of a vector

Description

Quantify the smoothness of a vector

Usage

smoothness(x, method = "cor", lag = 1, iterations = NULL, ...)

Arguments

x Numeric vector (similar to a time series).

method Can be "diff" (the standard deviation of the standardized differences) or "cor"
(default, lag-one autocorrelation).

lag An integer indicating which lag to use. If less than 1, will be interpreted as
expressed in percentage of the length of the vector.

iterations The number of bootstrap replicates for computing standard errors. If NULL (de-
fault), parametric standard errors are computed.

... Arguments passed to or from other methods.

Value

Value of smoothness.

References

https://stats.stackexchange.com/questions/24607/how-to-measure-smoothness-of-a-time-series-in-r

Examples

x <- (-10:10)^3 + rnorm(21, 0, 100)
plot(x)
smoothness(x, method = "cor")
smoothness(x, method = "diff")

86 standardize

standardize Standardization (Z-scoring)

Description

Performs a standardization of data (z-scoring), i.e., centering and scaling, so that the data is ex-
pressed in terms of standard deviation (i.e., mean = 0, SD = 1) or Median Absolute Deviance
(median = 0, MAD = 1). When applied to a statistical model, this function extracts the dataset,
standardizes it, and refits the model with this standardized version of the dataset. The normalize()
function can also be used to scale all numeric variables within the 0 - 1 range.

For model standardization, see standardize.default().

Usage

standardize(x, ...)

standardise(x, ...)

S3 method for class 'numeric'
standardize(
x,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
verbose = TRUE,
...

)

S3 method for class 'factor'
standardize(
x,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
force = FALSE,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
standardize(
x,
select = NULL,

standardize 87

exclude = NULL,
robust = FALSE,
two_sd = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
scale = NULL,
remove_na = c("none", "selected", "all"),
force = FALSE,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

unstandardize(x, ...)

unstandardise(x, ...)

S3 method for class 'numeric'
unstandardize(
x,
center = NULL,
scale = NULL,
reference = NULL,
robust = FALSE,
two_sd = FALSE,
...

)

S3 method for class 'data.frame'
unstandardize(
x,
center = NULL,
scale = NULL,
reference = NULL,
robust = FALSE,
two_sd = FALSE,
select = NULL,
exclude = NULL,
...

)

Arguments

x A (grouped) data frame, a vector or a statistical model (for unstandardize()
cannot be a model).

... Arguments passed to or from other methods.

88 standardize

robust Logical, if TRUE, centering is done by subtracting the median from the variables
and dividing it by the median absolute deviation (MAD). If FALSE, variables are
standardized by subtracting the mean and dividing it by the standard deviation
(SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD de-
pending on robust). This method can be useful to obtain model coefficients of
continuous parameters comparable to coefficients related to binary predictors,
when applied to the predictors (not the outcome) (Gelman, 2008).

weights Can be NULL (for no weighting), or:

• For model: if TRUE (default), a weighted-standardization is carried out.
• For data.frames: a numeric vector of weights, or a character of the name

of a column in the data.frame that contains the weights.
• For numeric vectors: a numeric vector of weights.

reference A data frame or variable from which the centrality and deviation will be com-
puted instead of from the input variable. Useful for standardizing a subset or
new data according to another data frame.

center, scale • For standardize():
Numeric values, which can be used as alternative to reference to define
a reference centrality and deviation. If scale and center are of length 1,
they will be recycled to match the length of selected variables for standard-
ization. Else, center and scale must be of same length as the number of
selected variables. Values in center and scale will be matched to selected
variables in the provided order, unless a named vector is given. In this case,
names are matched against the names of the selected variables.

• For unstandardize():
center and scale correspond to the center (the mean / median) and the
scale (SD / MAD) of the original non-standardized data (for data frames,
should be named, or have column order correspond to the numeric col-
umn). However, one can also directly provide the original data through
reference, from which the center and the scale will be computed (accord-
ing to robust and two_sd). Alternatively, if the input contains the attributes
center and scale (as does the output of standardize()), it will take it
from there if the rest of the arguments are absent.

verbose Toggle warnings and messages on or off.

force Logical, if TRUE, forces recoding of factors and character vectors as well.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

standardize 89

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

remove_na How should missing values (NA) be treated: if "none" (default): each col-
umn’s standardization is done separately, ignoring NAs. Else, rows with NA in
the columns selected with select / exclude ("selected") or in all columns
("all") are dropped before standardization, and the resulting data frame does
not include these cases.

append Logical or string. If TRUE, standardized variables get new column names (with
the suffix "_z") and are appended (column bind) to x, thus returning both the
original and the standardized variables. If FALSE, original variables in x will
be overwritten by their standardized versions. If a character value, standardized
variables are appended with new column names (using the defined suffix) to the
original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

Value

The standardized object (either a standardize data frame or a statistical model fitted on standardized
data).

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

90 standardize.default

Note

When x is a vector or a data frame with remove_na = "none"), missing values are preserved, so
the return value has the same length / number of rows as the original input.

See Also

See center() for grand-mean centering of variables.

Other transform utilities: normalize(), ranktransform(), rescale(), reverse()

Other standardize: standardize.default()

Examples

d <- iris[1:4,]

vectors
standardise(d$Petal.Length)

Data frames
overwrite
standardise(d, select = c("Sepal.Length", "Sepal.Width"))

append
standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = TRUE)

append, suffix
standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = "_std")

standardizing with reference center and scale
d <- data.frame(

a = c(-2, -1, 0, 1, 2),
b = c(3, 4, 5, 6, 7)

)

default standardization, based on mean and sd of each variable
standardize(d) # means are 0 and 5, sd ~ 1.581139

standardization, based on mean and sd set to the same values
standardize(d, center = c(0, 5), scale = c(1.581, 1.581))

standardization, mean and sd for each variable newly defined
standardize(d, center = c(3, 4), scale = c(2, 4))

standardization, taking same mean and sd for each variable
standardize(d, center = 1, scale = 3)

standardize.default Re-fit a model with standardized data

standardize.default 91

Description

Performs a standardization of data (z-scoring) using standardize() and then re-fits the model to
the standardized data.

Standardization is done by completely refitting the model on the standardized data. Hence, this
approach is equal to standardizing the variables before fitting the model and will return a new model
object. This method is particularly recommended for complex models that include interactions or
transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables
a robust standardization of data, based on the median and the MAD instead of the mean and the SD.

Usage

Default S3 method:
standardize(
x,
robust = FALSE,
two_sd = FALSE,
weights = TRUE,
verbose = TRUE,
include_response = TRUE,
...

)

Arguments

x A statistical model.
robust Logical, if TRUE, centering is done by subtracting the median from the variables

and dividing it by the median absolute deviation (MAD). If FALSE, variables are
standardized by subtracting the mean and dividing it by the standard deviation
(SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD de-
pending on robust). This method can be useful to obtain model coefficients of
continuous parameters comparable to coefficients related to binary predictors,
when applied to the predictors (not the outcome) (Gelman, 2008).

weights If TRUE (default), a weighted-standardization is carried out.
verbose Toggle warnings and messages on or off.
include_response

If TRUE (default), the response value will also be standardized. If FALSE, only
the predictors will be standardized.

• Note that for GLMs and models with non-linear link functions, the response
value will not be standardized, to make re-fitting the model work.

• If the model contains an stats::offset(), the offset variable(s) will be
standardized only if the response is standardized. If two_sd = TRUE, offsets
are standardized by one-sd (similar to the response).

• (For mediate models, the include_response refers to the outcome in the
y model; m model’s response will always be standardized when possible).

... Arguments passed to or from other methods.

92 to_factor

Value

A statistical model fitted on standardized data

Generalized Linear Models

Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to the
predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability of
the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the OR of
a change of 1 SD in the predictor, etc.)

Dealing with Factors

standardize(model) or standardize_parameters(model, method = "refit") do not standard-
ize categorical predictors (i.e. factors) / their dummy-variables, which may be a different behaviour
compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic
such behaviours, either use standardize_parameters(model, method = "basic") to obtain post-
hoc standardized parameters, or standardize the data with standardize(data, force = TRUE) be-
fore fitting the model.

Transformed Variables

When the model’s formula contains transformations (e.g. y ~ exp(X)) the transformation effectively
takes place after standardization (e.g., exp(scale(X))). Since some transformations are undefined
for none positive values, such as log() and sqrt(), the relevel variables are shifted (post standard-
ization) by Z - min(Z) + 1 or Z - min(Z) (respectively).

See Also

Other standardize: standardize()

Examples

model <- lm(Infant.Mortality ~ Education * Fertility, data = swiss)
coef(standardize(model))

to_factor Convert data to factors

Description

Convert data to factors

to_factor 93

Usage

to_factor(x, ...)

data_to_factor(x, ...)

S3 method for class 'data.frame'
to_factor(
x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
append = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame or vector.

... Arguments passed to or from other methods.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

94 to_numeric

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

verbose Toggle warnings.

Details

Convert data to numeric by converting characters to factors and factors to either numeric levels or
dummy variables. The "counterpart" to convert variables into numeric is to_numeric().

Value

A factor, or a data frame of factors.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data
frame is returned, even when select only selects a range of variables. That is, the function is only
applied to those variables that have a match in select, while all other variables remain unchanged.
In other words: for this function, select will not omit any non-included variables, so that the
returned data frame will include all variables from the input data frame.

Examples

str(to_factor(iris))

use labels as levels
data(efc)
str(efc$c172code)
head(to_factor(efc$c172code))

to_numeric Convert data to numeric

Description

Convert data to numeric by converting characters to factors and factors to either numeric levels or
dummy variables. The "counterpart" to convert variables into factors is to_factor().

to_numeric 95

Usage

to_numeric(x, ...)

data_to_numeric(x, ...)

S3 method for class 'data.frame'
to_numeric(
x,
select = NULL,
exclude = NULL,
dummy_factors = TRUE,
preserve_levels = FALSE,
lowest = NULL,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
...

)

Arguments

x A data frame, factor or vector.

... Arguments passed to or from other methods.

select Variables that will be included when performing the required tasks. Can be
either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector

of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),

• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),

• one of the following select-helpers: starts_with(""), ends_with(""),
contains(""), a range using : or regex(""),

• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),

• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude ar-
gument instead.

96 to_numeric

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

dummy_factors Transform factors to dummy factors (all factor levels as different columns filled
with a binary 0-1 value).

preserve_levels

Logical, only applies if x is a factor. If TRUE, and x has numeric factor levels,
these will be converted into the related numeric values. If this is not possible,
the converted numeric values will start from 1 to number of levels.

lowest Numeric, indicating the lowest (minimum) value when converting factors or
character vectors to numeric values.

append Logical or string. If TRUE, recoded or converted variables get new column names
and are appended (column bind) to x, thus returning both the original and the
recoded variables. The new columns get a suffix, based on the calling function:
"_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or
"_s" for slide(). If append=FALSE, original variables in x will be overwritten
by their recoded versions. If a character value, recoded variables are appended
with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

verbose Toggle warnings.

Value

A data frame of numeric variables.

Selection of variables - select argument

For most functions that have a select argument the complete input data frame is returned, even
when select only selects a range of variables. However, for to_numeric(), factors might be
converted into dummies, thus, the number of variables of the returned data frame no longer match
the input data frame. Hence, when select is used, only those variables (or their dummies) specified
in select will be returned. Use append=TRUE to also include the original variables in the returned
data frame.

Examples

to_numeric(head(ToothGrowth))
to_numeric(head(ToothGrowth), dummy_factors = FALSE)

factors
x <- as.factor(mtcars$gear)
to_numeric(x, dummy_factors = FALSE)
to_numeric(x, dummy_factors = FALSE, preserve_levels = TRUE)

visualisation_recipe 97

visualisation_recipe Prepare objects for visualisation

Description

This function prepares objects for visualisation by returning a list of layers with data and geoms
that can be easily plotted using for instance ggplot2.

If the see package is installed, the call to visualization_recipe() can be replaced by plot(),
which will internally call the former and then plot it using ggplot. The resulting plot can be cus-
tomized ad-hoc (by adding ggplot’s geoms, theme or specifications), or via some of the arguments
of visualisation_recipe() that control the aesthetic parameters.

See the specific documentation page for your object’s class:

• modelbased: https://easystats.github.io/modelbased/reference/visualisation_recipe.
estimate_predicted.html

• correlation: https://easystats.github.io/correlation/reference/visualisation_recipe.
easycormatrix.html

Usage

visualisation_recipe(x, ...)

Arguments

x An easystats object.

... Other arguments passed to other functions.

weighted_mean Weighted Mean, Median, SD, and MAD

Description

Weighted Mean, Median, SD, and MAD

Usage

weighted_mean(x, weights = NULL, verbose = TRUE, ...)

weighted_median(x, weights = NULL, verbose = TRUE, ...)

weighted_sd(x, weights = NULL, verbose = TRUE, ...)

weighted_mad(x, weights = NULL, constant = 1.4826, verbose = TRUE, ...)

https://easystats.github.io/modelbased/reference/visualisation_recipe.estimate_predicted.html
https://easystats.github.io/modelbased/reference/visualisation_recipe.estimate_predicted.html
https://easystats.github.io/correlation/reference/visualisation_recipe.easycormatrix.html
https://easystats.github.io/correlation/reference/visualisation_recipe.easycormatrix.html

98 winsorize

Arguments

x an object containing the values whose weighted mean is to be computed.

weights A numerical vector of weights the same length as x giving the weights to use for
elements of x.

verbose Show warning when weights are negative?
If weights = NULL, x is passed to the non-weighted function.

... arguments to be passed to or from methods.

constant scale factor.

Examples

GPA from Siegel 1994
x <- c(3.7, 3.3, 3.5, 2.8)
wt <- c(5, 5, 4, 1) / 15

weighted_mean(x, wt)
weighted_median(x, wt)

weighted_sd(x, wt)
weighted_mad(x, wt)

winsorize Winsorize data

Description

Winsorize data

Usage

winsorize(data, ...)

S3 method for class 'numeric'
winsorize(
data,
threshold = 0.2,
method = "percentile",
robust = FALSE,
verbose = TRUE,
...

)

winsorize 99

Arguments

data data frame or vector.

... Currently not used.

threshold The amount of winsorization, depends on the value of method:

• For method = "percentile": the amount to winsorize from each tail.

• For method = "zscore": the number of SD/MAD-deviations from the mean/median
(see robust)

• For method = "raw": a vector of length 2 with the lower and upper bound
for winsorization.

method One of "percentile" (default), "zscore", or "raw".

robust Logical, if TRUE, winsorizing through the "zscore" method is done via the me-
dian and the median absolute deviation (MAD); if FALSE, via the mean and the
standard deviation.

verbose Toggle warnings.

Details

Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the
statistical data to reduce the effect of possibly spurious outliers. The distribution of many statistics
can be heavily influenced by outliers. A typical strategy is to set all outliers (values beyond a
certain threshold) to a specified percentile of the data; for example, a 90\ to the 5th percentile, and
data above the 95th percentile set to the 95th percentile. Winsorized estimators are usually more
robust to outliers than their more standard forms.

Value

A data frame with winsorized columns or a winsorized vector.

See Also

• Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()

• Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()

• Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()

• Functions to recode data: rescale(), reverse(), categorize(), change_code(), slide()

• Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(),
ranktransform(), winsorize()

• Split and merge data frames: data_partition(), data_merge()

• Functions to find or select columns: data_select(), data_find()

• Functions to filter rows: data_match(), data_filter()

100 winsorize

Examples

hist(iris$Sepal.Length, main = "Original data")

hist(winsorize(iris$Sepal.Length, threshold = 0.2),
xlim = c(4, 8), main = "Percentile Winsorization"

)

hist(winsorize(iris$Sepal.Length, threshold = 1.5, method = "zscore"),
xlim = c(4, 8), main = "Mean (+/- SD) Winsorization"

)

hist(winsorize(iris$Sepal.Length, threshold = 1.5, method = "zscore", robust = TRUE),
xlim = c(4, 8), main = "Median (+/- MAD) Winsorization"

)

hist(winsorize(iris$Sepal.Length, threshold = c(5, 7.5), method = "raw"),
xlim = c(4, 8), main = "Raw Thresholds"

)

Also works on a data frame:
winsorize(iris, threshold = 0.2)

Index

∗ data
efc, 60
nhanes_sample, 65

∗ standardize
standardize, 86
standardize.default, 90

∗ transform utilities
normalize, 65
ranktransform, 68
rescale, 72
reverse, 77
standardize, 86

adjust, 3

categorize, 5
categorize(), 8, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
center, 9
center(), 8, 16, 26, 32, 34, 37, 40, 42, 48, 50,

55, 63, 84, 90, 99
centre (center), 9
change_code, 13
change_code(), 8, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
change_scale (rescale), 72
coerce_to_numeric, 18
colnames_to_row (row_to_colnames), 79
column_as_rownames

(rownames_as_column), 79
convert_na_to, 19
convert_to_na, 21

data_addprefix, 24
data_addprefix(), 8, 16, 25, 32, 34, 37, 40,

42, 48, 50, 63, 84, 99
data_addsuffix (data_addprefix), 24
data_addsuffix(), 8, 16, 25, 32, 34, 37, 40,

42, 48, 50, 63, 84, 99
data_adjust (adjust), 3

data_cut (categorize), 5
data_extract, 26
data_filter (data_match), 30
data_filter(), 9, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_find (find_columns), 60
data_find(), 9, 16, 26, 32, 34, 37, 40, 42, 48,

50, 63, 84, 99
data_group, 29
data_join (data_merge), 32
data_match, 30
data_match(), 9, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_merge, 32
data_merge(), 9, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_partition, 36
data_partition(), 9, 16, 26, 32, 34, 37, 40,

42, 48, 50, 63, 84, 99
data_read, 38
data_recode (change_code), 13
data_relocate, 39
data_relocate(), 8, 16, 25, 32, 34, 37, 40,

42, 48, 50, 63, 84, 99
data_remove (data_relocate), 39
data_remove(), 8, 16, 25, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_rename (data_addprefix), 24
data_rename(), 8, 16, 25, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_rename_rows (data_addprefix), 24
data_rename_rows(), 8, 16, 25, 32, 34, 37,

40, 42, 48, 50, 63, 84, 99
data_reorder (data_relocate), 39
data_reorder(), 8, 16, 25, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_restoretype, 41
data_rotate, 42
data_rotate(), 8, 16, 25, 32, 34, 37, 40, 42,

101

102 INDEX

48, 50, 63, 84, 99
data_select (find_columns), 60
data_select(), 9, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_shift (slide), 82
data_tabulate, 43
data_to_factor (to_factor), 92
data_to_long, 45
data_to_long(), 8, 16, 25, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_to_numeric (to_numeric), 94
data_to_wide, 49
data_to_wide(), 8, 16, 25, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
data_transpose (data_rotate), 42
data_ungroup (data_group), 29
degroup (demean), 52
demean, 52
demean(), 12
describe_distribution, 56
detrend (demean), 52
distribution_mode, 59

efc, 60
empty_columns (remove_empty), 70
empty_rows (remove_empty), 70

find_columns, 60
format_text, 63

get_columns (find_columns), 60

kurtosis (skewness), 80

nhanes_sample, 65
normalize, 65, 69, 73, 78, 90
normalize(), 8, 16, 26, 32, 34, 37, 40, 42, 48,

50, 63, 84, 86, 99

print.parameters_kurtosis (skewness), 80
print.parameters_skewness (skewness), 80

rank(), 68
ranktransform, 67, 68, 73, 78, 90
ranktransform(), 8, 16, 26, 32, 34, 37, 40,

42, 48, 50, 63, 84, 99
remove_empty, 70
remove_empty_columns (remove_empty), 70
remove_empty_rows (remove_empty), 70
replace_nan_inf, 71

rescale, 67, 69, 72, 78, 90
rescale(), 8, 15, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 65, 84, 99
rescale_weights, 74
reshape_ci, 76
reshape_longer (data_to_long), 45
reshape_wider (data_to_wide), 49
reverse, 67, 69, 73, 77, 90
reverse(), 8, 15, 16, 26, 32, 34, 37, 40, 42,

48, 50, 63, 84, 99
reverse_scale (reverse), 77
row_to_colnames, 79
rownames_as_column, 79

skewness, 80
slide, 82
slide(), 8, 16, 26, 32, 34, 37, 40, 42, 48, 50,

63, 84, 99
smoothness, 85
standardise (standardize), 86
standardize, 67, 69, 73, 78, 86, 92
standardize(), 8, 12, 16, 26, 32, 34, 37, 40,

42, 48, 50, 63, 84, 91, 99
standardize.default, 90, 90
standardize.default(), 86
standardize_models

(standardize.default), 90
stats::IQR(), 57
stats::offset(), 91
summary.parameters_kurtosis (skewness),

80
summary.parameters_skewness (skewness),

80

text_concatenate (format_text), 63
text_fullstop (format_text), 63
text_lastchar (format_text), 63
text_paste (format_text), 63
text_remove (format_text), 63
text_wrap (format_text), 63
to_factor, 92
to_numeric, 94

unnormalize (normalize), 65
unstandardise (standardize), 86
unstandardize (standardize), 86

visualisation_recipe, 97

weighted_mad (weighted_mean), 97

INDEX 103

weighted_mean, 97
weighted_median (weighted_mean), 97
weighted_sd (weighted_mean), 97
winsorize, 98
winsorize(), 8, 16, 26, 32, 34, 37, 40, 42, 48,

50, 63, 84, 99

	adjust
	categorize
	center
	change_code
	coerce_to_numeric
	convert_na_to
	convert_to_na
	data_addprefix
	data_extract
	data_group
	data_match
	data_merge
	data_partition
	data_read
	data_relocate
	data_restoretype
	data_rotate
	data_tabulate
	data_to_long
	data_to_wide
	demean
	describe_distribution
	distribution_mode
	efc
	find_columns
	format_text
	nhanes_sample
	normalize
	ranktransform
	remove_empty
	replace_nan_inf
	rescale
	rescale_weights
	reshape_ci
	reverse
	rownames_as_column
	row_to_colnames
	skewness
	slide
	smoothness
	standardize
	standardize.default
	to_factor
	to_numeric
	visualisation_recipe
	weighted_mean
	winsorize
	Index

